WO2010095496A1 - 圧粉コア - Google Patents

圧粉コア Download PDF

Info

Publication number
WO2010095496A1
WO2010095496A1 PCT/JP2010/051082 JP2010051082W WO2010095496A1 WO 2010095496 A1 WO2010095496 A1 WO 2010095496A1 JP 2010051082 W JP2010051082 W JP 2010051082W WO 2010095496 A1 WO2010095496 A1 WO 2010095496A1
Authority
WO
WIPO (PCT)
Prior art keywords
atomic
core
powder
soft magnetic
alloy powder
Prior art date
Application number
PCT/JP2010/051082
Other languages
English (en)
French (fr)
Inventor
水嶋 隆夫
Original Assignee
アルプス・グリーンデバイス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アルプス・グリーンデバイス株式会社 filed Critical アルプス・グリーンデバイス株式会社
Priority to JP2011500551A priority Critical patent/JP5327765B2/ja
Publication of WO2010095496A1 publication Critical patent/WO2010095496A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F3/00Cores, Yokes, or armatures
    • H01F3/08Cores, Yokes, or armatures made from powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • B22F3/26Impregnating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F5/00Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
    • B22F5/10Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product of articles with cavities or holes, not otherwise provided for in the preceding subgroups
    • B22F5/106Tube or ring forms
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C45/00Amorphous alloys
    • C22C45/02Amorphous alloys with iron as the major constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/153Amorphous metallic alloys, e.g. glassy metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/153Amorphous metallic alloys, e.g. glassy metals
    • H01F1/15358Making agglomerates therefrom, e.g. by pressing
    • H01F1/15366Making agglomerates therefrom, e.g. by pressing using a binder
    • H01F1/15375Making agglomerates therefrom, e.g. by pressing using a binder using polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/005Impregnating or encapsulating

Definitions

  • the present invention relates to a dust core formed by solidifying and molding an amorphous soft magnetic alloy powder with a binder.
  • the powder core shown in Patent Document 1 below is obtained by solidifying and molding an amorphous soft magnetic alloy powder with a binder.
  • amorphous soft magnetic alloy powder By using amorphous soft magnetic alloy powder, the magnetic properties can be effectively improved.
  • the dust core formed using the amorphous soft magnetic alloy powder has a low core strength, and has a problem that it is easily damaged during use or in an assembly process.
  • An object of the present invention is to provide a dust core capable of improving the core strength by improving the coating layer covering the core body and suppressing the deterioration of the magnetic properties.
  • the powder core in the present invention is characterized in that an amorphous soft magnetic alloy powder is solidified by a binder and a coating layer made of methacrylic acid diester is formed by impregnation. Thereby, core strength can be effectively improved compared with the past, suppressing the fall of a magnetic characteristic.
  • the coating layer is preferably formed by vacuum impregnation.
  • the voids formed inside the core body, in which the amorphous soft magnetic alloy powder is solidified by the binder are more effectively filled with the resin layer made of methacrylic acid diester, The strength can be further improved.
  • the amorphous soft magnetic alloy powder preferably contains Fe as a main component and contains at least two of P, C, B, and Si.
  • the amorphous soft magnetic alloy powder has the following composition formula: Preferably it is formed.
  • M is one or more elements selected from Cr, Mo, W, V, Nb, Ta, Ti, Zr, Hf, Pt, Pd, and Au
  • a, b, x indicating the composition ratio , Y, z, w, t are 0 atomic% ⁇ x ⁇ 3 atomic%, 0 atomic% ⁇ y ⁇ 15 atomic%, 0 atomic% ⁇ z ⁇ 8 atomic%, 1 atomic% ⁇ w ⁇ 12 atomic%, 0.5 atomic% ⁇ t ⁇ 8 atomic%, 0 atomic% ⁇ a ⁇ 20 atomic%, 0 atomic% ⁇ b ⁇ 5 atomic%, 70 atomic% ⁇ (100-ab-xyzzw) -T) ⁇ 80 atomic%.
  • the core strength can be improved as compared with the conventional one while suppressing the deterioration of the magnetic properties.
  • (A) is a perspective view of the dust core of this embodiment
  • (b) is an enlarged cross-sectional view when cut in the thickness direction from the AA line of (a)
  • Explanatory drawing showing the measurement method of core strength, Frequency in the conventional example (no coating), comparative example (resin made of butyral phenol) and example (resin made of methacrylic acid diester) of molded article 1 (using silicone resin as a binder)
  • the frequency in the conventional example (without coating) of the molded product 2 using an acrylic resin as a binder
  • the comparative example comparative example (resin whose coating layer is made of butyral phenol) and the example (res
  • FIG. 1 (a) is a perspective view of the dust core in the present embodiment
  • FIG. 1 (b) is a view of the dust core when FIG. 1 (a) is cut in the thickness direction along the line AA. It is an expanded sectional view.
  • the powder core 1 shown in FIG. 1 (a) is formed in an annular shape, but the shape is not limited.
  • the dust core 1 includes a core body 2 in which an amorphous soft magnetic alloy powder is solidified by a binder, and a coating layer 3 that covers the entire surface of the core body 2. Composed.
  • the amorphous soft magnetic alloy powder of the present embodiment is, for example, substantially spherical or elliptical. A large number of the amorphous soft magnetic alloy powders exist in the structure, and the amorphous soft magnetic alloy powders are insulated from each other by the binder.
  • the amorphous soft magnetic alloy powder is formed by, for example, a water atomization method, and is composed of an amorphous phase containing Fe as a main component and containing at least two of P, C, B, and Si. Is.
  • the specific composition formula of the amorphous soft magnetic alloy powder is as follows.
  • M is one or more elements selected from Cr, Mo, W, V, Nb, Ta, Ti, Zr, Hf, Pt, Pd, and Au
  • a, b, x indicating the composition ratio , Y, z, w, t are 0 atomic% ⁇ x ⁇ 3 atomic%, 0 atomic% ⁇ y ⁇ 15 atomic%, 0 atomic% ⁇ z ⁇ 8 atomic%, 1 atomic% ⁇ w ⁇ 12 atomic%, 0.5 atomic% ⁇ t ⁇ 8 atomic%, 0 atomic% ⁇ a ⁇ 20 atomic%, 0 atomic% ⁇ b ⁇ 5 atomic%, 70 atomic% ⁇ (100-ab-xyzzw -T) ⁇ 80 atomic%.
  • the amorphous soft magnetic alloy powder of the present embodiment includes Fe exhibiting magnetism and metalloid elements such as P, C, and B having an amorphous forming ability, the amorphous phase is the main phase. And excellent soft magnetic properties.
  • the element M (Cr, Mo, W, V, Nb, Ta, Ti, Zr, Hf, Pt, Pd, Au, or one or more elemental elements) is added to improve the corrosion resistance. Can do.
  • ⁇ Tx has a remarkable temperature interval of 30K or more, further 50K or more, and soft magnetism also has excellent characteristics at room temperature.
  • the amorphous soft magnetic alloy powder of the present embodiment can relieve internal stress without precipitating a crystalline phase when heat treated under appropriate conditions, and can further improve soft magnetic properties.
  • the amount of Fe (100-abxxyzwt) in the amorphous soft magnetic alloy powder of this embodiment is preferably 70 atomic% or more and 83 atomic% or less, and 70 atomic%. It is more preferably 80 atomic% or less, and further preferably 73 atomic% or more. Thus, high saturation magnetization is shown by the high amount of Fe. If the added amount of Fe exceeds 80 atomic%, the converted vitrification temperature (Tg / Tm) indicating the degree of amorphous forming ability of the alloy becomes less than 0.54, and the amorphous forming ability decreases. It is not preferable. In the above formula, Tm represents the melting point of the magnetic powder.
  • the Co amount a of the amorphous soft magnetic alloy powder can be in the range of 0 to 20 atomic%, and the Ni amount b can be in the range of 0 to 5 atomic%.
  • Co has the effect of increasing the Curie temperature Tc and enhancing the corrosion resistance. However, if it exceeds 20 atomic%, the amount of Fe decreases accordingly, the saturation magnetization becomes 180 ⁇ 10 ⁇ 6 Wbm / Kg or less, and Tc rises to a temperature near Tg, which makes it difficult to perform heat treatment.
  • Ni improves corrosion resistance (highest corrosion resistance among ferromagnetic elements), but saturation magnetization tends to decrease at 6 atomic% or more.
  • C, P, B, and Si are elements that enhance the ability to form an amorphous material, and it is preferable to add at least two of these elements.
  • composition ratio y of P is 15 atomic% or less, the temperature interval ⁇ Tx of the supercooled liquid is developed and the amorphous forming ability of the alloy powder is improved.
  • the element M represented by Cr, Mo, W, V, Nb, Ta, Ti, Zr, and Hf can form a passivated oxide film on the alloy powder, and can improve the corrosion resistance of the alloy powder.
  • Cr is most effective for improving the corrosion resistance.
  • These elements may be added alone or in combination of two or more, for example, in combination of Mo, V and Mo, Cr and V, Cr and Cr, Mo, V, etc. You may do it.
  • Mo and V are slightly inferior in corrosion resistance to Cr, but the amorphous forming ability is improved. Therefore, these elements are selected as necessary.
  • Zr and Hf have the highest glass forming ability.
  • Ti, Zr, and Hf are highly oxidizable, so if these elements are added in a large amount, melting the alloy powder raw material in the atmosphere will oxidize the molten metal during melting and lower the soft magnetic properties (saturation magnetization). Resulting in.
  • These elements also contribute to the formation of a passive film on the powder surface and improve the corrosion resistance.
  • the effect of improving the corrosion resistance as the magnetic powder can be obtained by adding one or more kinds of noble metal elements selected from Pt, Pd and Au, and by dispersing these noble metal elements on the powder surface, Corrosion resistance is improved.
  • These noble metal elements may be added alone or in combination with the above-described elements having an effect of improving corrosion resistance such as Cr. Since the above precious metal elements do not mix with Fe, if a large amount is added, the glass forming ability is lowered, and soft magnetic properties (saturation magnetization) are also lowered.
  • the amount of the element M added is preferably 0.5 atomic% or more.
  • Sn, In, Zn, Ga, etc. have the effect of softening the alloy and the effect of making it easy to obtain a spherical powder when forming the alloy powder by atomization. It may be added as necessary.
  • the thermal stability is improved when Si is added, 0.5 atomic% or more may be added as necessary.
  • the Si amount t needs to be 0.5 atomic% or more and 8 atomic% or less, preferably 2 to 8 atomic%, more preferably 3 atomic% or more and 7 atomic% or less.
  • This Si is an important element in the amorphous soft magnetic alloy powder of the present embodiment, and in the process where the molten alloy is rapidly cooled in the presence of water by the water atomization method to form an amorphous alloy, Si prevents the alloy powder from being corroded in addition to the elements that have the effect of improving the corrosion resistance.
  • the B amount w is preferably 1 atom% or more and 12 atom% or less, more preferably 2 atom% or more and 10 atom% or less, and further preferably 4 atom% or more and 9 atom% or less.
  • the C amount z is preferably 8 atomic% or less, more preferably 0 atomic% to 6 atomic% or less, and further preferably 1 atomic% or more and 4 atomic% or less.
  • the total composition ratio (y + z + w + t) of these metalloid elements C, P, B and Si is preferably 17 atomic percent or more and 25 atomic percent or less, and more preferably 18 atomic percent or more and 25 atomic percent or less. .
  • the composition ratio of the metalloid elements exceeds 25 atomic%, the composition ratio of Fe is particularly decreased, and the saturation magnetization is decreased, which is not preferable.
  • the total composition ratio of the metalloid elements is less than 17 atomic%, the amorphous forming ability is lowered and it is difficult to obtain an amorphous phase single phase structure.
  • Ge may be contained in the above composition in an amount of 4 atomic% or less.
  • the value of Tx / Tm is 0.5 or more, and depending on the composition, 0.55 or more is obtained. Further, inevitable impurities may be included in addition to the elements represented by the above composition.
  • the amorphous soft magnetic alloy powder of the present embodiment preferably has an average aspect ratio of 1 or more and 3.5 or less, more preferably 1 or more and 3 or less. More preferably, it is 2 or more and 2.5 or less. If the average aspect ratio exceeds 3.5, the amount of amorphous powder increases and the molding density decreases. Moreover, it becomes difficult to take insulation between the amorphous soft magnetic alloy powders when the core is formed.
  • the amorphous soft magnetic alloy powder of the present embodiment preferably has an average particle size (D50) of 30 ⁇ m or less, more preferably D50 of 5 ⁇ m or more and 30 ⁇ m or less, and 9 ⁇ m or more and 19 ⁇ m or less. More preferably.
  • D50 of the amorphous soft magnetic alloy powder exceeds 30 ⁇ m, eddy currents are generated in the powder grains and the core loss increases.
  • the particle diameter becomes larger than 30 ⁇ m the powder shape gradually becomes irregular. This leads to a decrease in molding density, magnetic permeability, and deterioration of DC superimposition characteristics.
  • the thickness is less than 5 ⁇ m, the demagnetizing field of the powder increases, the magnetic permeability of the powder and the dust core decreases, and the apparent oxygen concentration increases.
  • the amorphous soft magnetic alloy powder of the present embodiment preferably has a tap density of 3.7 Mg / m 3 or more, more preferably 3.8 Mg / m 3 or more, and 3.9 Mg / m. More preferably, it is 3 or more.
  • this tap density is high, the density of the core body 2 is increased, the magnetic permeability of the dust core 1 and the direct current superposition characteristics are improved, and the strength of the molded body is also increased.
  • the amorphous soft magnetic alloy powder of the present embodiment preferably has an oxygen concentration of 3000 ppm or less, more preferably 2500 ppm or less, and further preferably 2000 ppm or less. If the oxygen concentration becomes too high, rust is likely to be generated on the surface due to corrosion, the magnetic properties as powder are reduced, and the loss of the dust core 1 is increased and the permeability is reduced.
  • the specific surface area is less than 0.40 m 2 / g, more preferably not more than 0.38m 2 / g, 0.35m 2 / g or less More preferably.
  • a powder with a high specific surface area has many irregularities in the powder shape, and a powder with a high specific surface area has a high oxygen concentration.
  • the specific surface area is high, it becomes difficult to take insulation between powders, making it difficult to take insulation between powders, and the molding density of the powder core 1 is lowered. Magnetic permeability and direct current superimposition characteristics also deteriorate.
  • binder examples include acrylic resin, epoxy resin, silicone resin, silicone rubber, phenol resin, urea resin, melamine resin, liquid or powdery resin such as PVA (polyvinyl alcohol) or rubber, water glass ( Na 2 O—SiO 2 ), oxide glass powder (Na 2 O—B 2 O 3 —SiO 2 , PbO—B 2 O 3 —SiO 2 , PbO—BaO—SiO 2 , Na 2 O—B 2 O 3 -ZnO, CaO-BaO-SiO 2 , Al 2 O 3 -B 2 O 3 -SiO 2, B 2 O 3 -SiO 2), glassy material produced by a sol-gel method (SiO 2, Al 2 O 3 , ZrO 2 and TiO 2 as main components).
  • PVA polyvinyl alcohol
  • oxide glass powder Na 2 O—B 2 O 3 —SiO 2 , PbO—B 2 O 3 —SiO 2 , PbO—Ba
  • a coating layer 3 made of methacrylic acid diester is formed on the surface of the core body 2 by impregnation.
  • strength can be improved compared with the past, suppressing the fall of a magnetic characteristic.
  • the core strength can be improved, the magnetic properties are deteriorated or the deterioration of the magnetic properties is small, but the core strength may not be improved.
  • the coating layer 3 made of methacrylic acid diester is mainly composed of methacrylic acid diester, and does not exclude the inclusion of a trace amount additive or unavoidable additive in addition to the methacrylic acid diester.
  • the coating layer 3 can be formed by immersing the core body 2 in an AS6701 impregnating solution manufactured by ASEC Corporation.
  • the coating layer 3 is formed by vacuum impregnation.
  • the pores inside the core body 2 in which the amorphous soft magnetic alloy powder is solidified by the binder By vacuum impregnation, it is considered that the pores are more effectively filled with a resin layer of methacrylic acid diester, and the core strength can be further improved.
  • the coil is wound directly on the dust core 1 of the present embodiment, or the coil is wound while the dust core 1 is placed in a resin case.
  • the dust core 1 of the present embodiment has a higher core strength and is therefore damaged compared to the conventional case. Can be difficult.
  • an amorphous soft magnetic alloy powder having the above composition is formed by an atomizing method.
  • the atomization method it is preferable to use a water atomization method or a gas atomization method.
  • the target amorphous soft magnetic alloy is controlled by controlling the water injection pressure, the injection flow rate, the molten alloy flow rate, etc.
  • the aspect ratio and average particle size (D50) of the powder can be obtained.
  • the obtained amorphous soft magnetic alloy powder may be heat-treated as necessary. By performing the heat treatment, the internal stress of the alloy powder is relaxed, and the magnetic properties of the amorphous soft magnetic alloy powder can be further improved.
  • the amorphous soft magnetic alloy is mixed with an additive comprising a binder and a lubricant.
  • the mixing ratio of the binder in the mixture is preferably in the range of 0.3% by mass to 5% by mass.
  • the mixing ratio of the lubricant in the mixture is preferably in the range of 0.1% by mass to 2% by mass.
  • zinc stearate can be used as the lubricant.
  • the amorphous soft magnetic alloy and the additive are mixed and then dried and pulverized to obtain a granulated powder.
  • the granulated powder is classified so as to be easily filled in a press mold. For example, a granulated powder of 300 to 850 ⁇ m obtained by classification using a sieve having an opening of 300 ⁇ m or more and 850 ⁇ m or less is used.
  • the granulated powder is filled into a mold, and while applying pressure, it is heated to room temperature or a predetermined temperature and compression molded to obtain a core precursor having a predetermined shape.
  • the press pressure is 20 t / cm 2 .
  • the core precursor has an annular shape as shown in FIG. 1, for example, and has an outer diameter of 20 mm, an inner diameter of 12 mm, and a height of 6.8 mm.
  • the core precursor is heat-treated.
  • heating is performed at 510 ° C. for 1 hour under a N 2 gas atmosphere with a temperature increase rate of 40 ° C./min.
  • internal stress generated in the amorphous soft magnetic alloy powder by compression molding can be removed.
  • the core body 2 manufactured as described above is immersed in an impregnating solution obtained by dissolving methacrylic acid diester in a solvent, and evacuated in the immersed state. Subsequently, the core body 2 is pulled up from the impregnating solution, washed, and then dried. Thereby, the coating layer 3 made of methacrylic acid diester can be formed on the surface of the core body 2.
  • a substantially spherical amorphous magnetic powder of Fe 74 at% Cr 2% P 9 at% C 2 at% B 8 at% Si 5 at% was formed by a water atomization method.
  • a powder core (molded product 1) was formed using a silicone resin as a binder.
  • the compacting core (molded product 2) was formed using an acrylic resin as the binder.
  • each molded article was manufactured with the following three types.
  • the core body 2 shown in FIG. 1 was evacuated for 7 minutes while being immersed in the impregnating solution of AS6701 manufactured by ASEC Corporation. Subsequently, the core body 2 was pulled up from the impregnation liquid and washed with ethanol. And it dried for 30 minutes at 150 degreeC with the drying furnace.
  • a coating layer was formed under the same conditions as in the example except that an impregnating solution obtained by dissolving butyral phenol resin in a solvent was used.
  • FIG. 3 is a graph showing the relationship between the frequency and permeability shown in Table 1
  • FIG. 4 is a graph showing the frequency and core loss shown in Table 1.
  • the core strength shown in Table 1 was found to be about twice as large as that of the conventional example and about 1.5 times that of the comparative example.
  • the core strength of the powder core using the commercially available crystalline Fe—Al—Si soft magnetic alloy powder was 219 N, but in the examples, the core strength was almost the same as that of the commercially available product.
  • Table 2 below shows experimental results for the molded product 2 (using an acrylic resin as a binder).
  • FIG. 5 is a graph showing the relationship between the frequency and permeability shown in Table 2
  • FIG. 6 is a graph showing the frequency and core loss shown in Table 2.
  • the molded product 2 using the acrylic resin as the binder can effectively improve the core loss although the permeability is slightly inferior to the molded product 1 using the silicone resin.
  • the strength shown in Table 2 it was found that in the example, the strength was about 2.6 times that of the conventional example and about 1.7 times that of the comparative example. In addition, it was found that it was about 1.3 times as large as that of a powder core (core strength: 219 N) using a commercially available crystalline Fe—Al—Si alloy powder.

Abstract

【課題】 本発明は、コア本体を覆う被覆層を改良して、磁気特性の低下を抑制しつつコア強度を向上させることが可能な圧粉コアを提供することを目的としている。 【解決手段】 非晶質軟磁性合金粉末が結着材によって固化成形されてなるコア本体2の表面全体に含浸によりメタクリル酸ジエステルからなる被覆層3を形成した。これにより、磁気特性の低下を抑制しつつ従来に比べて効果的に、コア強度を向上させることができる。

Description

圧粉コア
 本発明は、非晶質軟磁性合金粉末が結着材によって固化成形されてなる圧粉コアに関する。
 下記の特許文献1に示す圧粉コアは、非晶質軟磁性合金粉末が結着材により固化成形されたものである。非晶質軟磁性合金粉末を用いることで磁気特性を効果的に向上させることができる。
 しかしながら非晶質軟磁性合金粉末は硬質であるが故に、圧粉コアの製造過程での圧縮成形によっても塑性変形が小さく、粉末間の結着力が低下しやすかった。このため、前記非晶質軟磁性合金粉末を用いて形成された圧粉コアは、コア強度が低く、使用時や、組立工程等で破損しやすい問題が生じた。
 下記の特許文献1に記載の発明では、ブチラールフェノール樹脂からなる保護層によりコア全体を被覆している。
特開2004-363235号公報
 後述する実験に示すように、ブチラールフェノール樹脂からなる保護層によりコア全体を被覆した圧粉コアでは、前記保護層により被覆しない圧粉コアに比べてコア強度を向上させることが可能であるが、本発明者は、鋭意検討を重ねた結果、更にコア強度を向上させることが可能な圧粉コアの発明に至った。
 本発明は、コア本体を覆う被覆層を改良して、磁気特性の低下を抑制しつつコア強度を効果的に向上させることが可能な圧粉コアを提供することを目的としている。
 本発明における圧粉コアは、非晶質軟磁性合金粉末が結着材によって固化成形されてなるとともに含浸によりメタクリル酸ジエステルからなる被覆層が形成されていることを特徴とするものである。これにより、磁気特性の低下を抑制しつつ従来に比べてコア強度を効果的に向上させることができる。
 本発明では、前記被覆層は真空含浸により形成されることが好ましい。これにより、非晶質軟磁性合金粉末が結着材によって固化成形されたコア本体内部に形成された空孔が、より効果的に、メタクリル酸ジエステルからなる樹脂層により埋められると考えられ、コア強度の更なる向上を図ることが出来る。
 また本発明では、前記非晶質軟磁性合金粉末は、Feを主成分とし、少なくともP、C、B、Siのうち2種以上を含むことが好ましく、具体的には、下記の組成式で形成されることが好ましい。
 Fe100-a-b-x-y-z-w-tCoaNibxyzwSit
 ただし、MはCr、Mo、W、V、Nb、Ta、Ti、Zr、Hf、Pt、Pd、Auより選ばれる1種または2種以上の元素であり、組成比を示すa、b、x、y、z、w、tは、0原子%≦x≦3原子%、0原子%≦y≦15原子%、0原子%≦z≦8原子%、1原子%≦w≦12原子%、0.5原子%≦t≦8原子%、0原子%≦a≦20原子%、0原子%≦b≦5原子%、70原子%≦(100-a-b-x-y-z-w-t)≦80原子%を示す。
 また実験では、結着材としてシリコーン樹脂とアクリル樹脂の夫々を用いたが、いずれを用いても、磁気特性の低下を抑制しつつ効果的にコア強度を向上させることが可能なことを確認できた。
 本発明の圧粉コアによれば、磁気特性の低下を抑制しつつ従来に比べてコア強度を向上させることができる。
(a)は本実施形態の圧粉コアの斜視図、(b)は(a)のA-A線から厚さ方向に切断したときの拡大断面図、 コア強度の測定方法を示す説明図、 成形品1(結着材としてシリコーン樹脂を使用)の従来例(被覆なし)、比較例(被覆層がブチラールフェノールからなる樹脂)及び実施例(被覆層がメタクリル酸ジエステルから成る樹脂)における周波数と透磁率との関係を示すグラフ、 成形品1(結着材としてシリコーン樹脂を使用)の従来例(被覆なし)、比較例(被覆層がブチラールフェノールからなる樹脂)及び実施例(被覆層がメタクリル酸ジエステルから成る樹脂)における周波数とコアロスとの関係を示すグラフ、 成形品2(結着材としてアクリル樹脂を使用)の従来例(被覆なし)、比較例(被覆層がブチラールフェノールからなる樹脂)及び実施例(被覆層がメタクリル酸ジエステルから成る樹脂)における周波数と透磁率との関係を示すグラフ、 成形品2(結着材としてアクリル樹脂を使用)の従来例(被覆なし)、比較例(被覆層がブチラールフェノールからなる樹脂)及び実施例(被覆層がメタクリル酸ジエステルから成る樹脂)における周波数とコアロスとの関係を示すグラフ。
 図1(a)は、本実施形態における圧粉コアの斜視図、図1(b)は図1(a)をA-A線に沿って厚さ方向に切断したときの前記圧粉コアの拡大断面図である。
 図1(a)に示す圧粉コア1は、円環状で形成されているが、形状を限定するものでない。
 図1(b)に示すように圧粉コア1は、非晶質軟磁性合金粉末が結着材によって固化成形されたコア本体2と、前記コア本体2の表面全体を覆う被覆層3とで構成される。
 本実施形態の非晶質軟磁性合金粉末は、例えば、略球状あるいは楕円体状からなる。前記非晶質軟磁性合金粉末は、組織中に多数個存在し、各非晶質軟磁性合金粉末間が前記結着材にて絶縁された状態となっている。
 前記非晶質軟磁性合金粉末は、例えば、水アトマイズ法により形成されたものであり、Feを主成分とし、P、C、B、Siのうち少なくとも2種以上を含む非晶質相からなるものである。
 具体的な前記非晶質軟磁性合金粉末の組成式は以下の通りである。
 Fe100-a-b-x-y-z-w-tCoaNibxyzwSit
 ただし、MはCr、Mo、W、V、Nb、Ta、Ti、Zr、Hf、Pt、Pd、Auより選ばれる1種または2種以上の元素であり、組成比を示すa、b、x、y、z、w、tは、0原子%≦x≦3原子%、0原子%≦y≦15原子%、0原子%≦z≦8原子%、1原子%≦w≦12原子%、0.5原子%≦t≦8原子%、0原子%≦a≦20原子%、0原子%≦b≦5原子%、70原子%≦(100-a-b-x-y-z-w-t)≦80原子%を示す。
 本実施形態の非晶質軟磁性合金粉末は、磁性を示すFeと、非晶質形成能を有するP、C、B等といった半金属元素を具備しているので、非晶質相を主相とするとともに優れた軟磁気特性を示す。
 また、元素M(Cr、Mo、W、V、Nb、Ta、Ti、Zr、Hf、Pt、Pd、Auのうちの1種又は2種以上の元素素)を添加して耐食性を向上させることができる。
 更にこの非晶質軟磁性合金粉末は、ΔTx=Tx-Tg(ただしTxは結晶化開始温度、Tgはガラス遷移温度を示す。)の式で表される過冷却液体の温度間隔ΔTxが20K以上を示すが、組成によってはΔTxが30K以上、さらには50K以上という顕著な温度間隔を有し、また、軟磁性についても室温で優れた特性を有している。
 また本実施形態の非晶質軟磁性合金粉末は、適度な条件で熱処理した場合に結晶質相を析出させることなく内部応力を緩和でき、軟磁気特性をより向上させることができる。
 本実施形態の非晶質軟磁性合金粉末のFe量(100-a-b-x-y-z-w-t)は、70原子%以上83原子%以下であることが好ましく、70原子%以上80原子%以下であることがより好ましく、73原子%以上であることが更に好ましい。このようにFe量が高いことで高い飽和磁化を示す。なおFeの添加量が80原子%を越えると、合金の非晶質形成能の程度を示す換算ガラス化温度(Tg/Tm)が0.54未満になり、非晶質形成能が低下するので好ましくない。なお、上記式においてTmは磁性粉末の融点を示す。
 前記非晶質軟磁性合金粉末のCo量aは0~20原子%の範囲で可能であり、Ni量bは0~5原子%の範囲で可能である。Coはキュリー温度Tcを高めるとともに耐食性を高める効果を有する。しかし、20原子%を超えるとその分、Fe量が減り、飽和磁化が180×10-6Wbm/Kg以下になるとともに、TcがTg近傍温度まで上昇し、熱処理し難くなるので望ましくない。Niは耐食性を向上させる(強磁性元素の中で最も耐食性が高い)が、6原子%以上では飽和磁化が低下する傾向となる。
 C、P、B及びSiは、非晶質形成能を高める元素であり、このうち、少なくとも2種以上を添加すると好ましい。Feと上記元素Mにこれらの元素を添加して多元系とすることにより、Feと上記元素Mのみの2元系とした場合よりも安定して非晶質相が形成される。
 特にPはFeと低温(約1050℃)で共晶組成を持つため、組織の全体が非晶質を形成しやすくなる。また、PとSiを同時に添加すると、過冷却液体の温度間隔ΔTxを発現し易くなって非晶質形成能が向上し、非晶質単相の組織を得る際の製造条件を比較的簡易な方向に緩和できる。
 Pの組成比yが15原子%以下であれば、過冷却液体の温度間隔ΔTxが発現して合金粉末の非晶質形成能が向上する。
 また、Cr、Mo、W、V、Nb、Ta、Ti、Zr、Hfに代表される元素Mは、合金粉末に不動態化酸化皮膜を形成でき、合金粉末の耐食性を向上できる。これらの元素のうち耐食性の向上に最も効果があるものはCrである。水アトマイズ法において、合金溶湯が直接水に触れたとき、更には合金粉末の乾燥工程において生じる腐食部分の発生を防ぐことができる(目視レベル)。また、これらの元素は単独添加するか、あるいは2種以上の組み合わせで複合添加しても良く、例えば、Mo、VとMo、CrとV、Cr及びCr、Mo、V等の組合せで複合添加しても良い。これらの元素のうち、Mo,Vは耐食性がCrより若干劣るものの非晶質形成能が向上するため、必要に応じてこれらの元素を選択する。
 上記組成式中の元素Mとして採用される元素のうちガラス形成能はZr、Hfが最も高い。Ti、Zr、Hfは酸化性が強いため、これらの元素が多く添加されていると、大気中で合金粉末原料を溶解すると原料溶解中に溶湯が酸化し、軟磁気特性(飽和磁化)が低下してしまう。これらの元素も粉末表面の不働態被膜形成に寄与し、耐食性を向上させる。
 また、磁性粉末としての耐食性向上効果は、Pt、Pd、Auのうちから選択される1種又は2種以上の貴金属元素の添加によっても得られ、これら貴金属元素を粉末表面に分散することにより、耐食性が向上する。また、これらの貴金属元素は単独添加あるいは上記のCr等の耐食性向上効果のある元素との組み合わせて複合添加しても良い。上記の貴金属元素はFeと混じり合わないため、多く添加されているとガラス形成能が低下し、また、軟磁気特性(飽和磁化)も低下する。
 非晶質軟磁性合金粉末に耐食性を持たせるためには、上記元素Mの添加量は0.5原子%以上とすることが好適である。
 なおSn、In、Zn、Ga等は、合金を軟化させる効果、アトマイズにて合金粉末を形成する際に球形の形状の粉末を得られ易くする効果があり、このような効果を訴求するために必要に応じて添加すると良い。
 次に、Siを添加すると熱的安定性が向上するため、必要に応じて、0.5原子%以上添加してもよい。また、Siの添加量が8原子%を超えると、融点が上昇してしまう。従ってSi量tは、0.5原子%以上8原子%以下であることが必要であり、好ましくは2~8原子%、より好ましくは3原子%以上7原子%以下の添加量である。
 このSiは本実施形態の非晶質軟磁性合金粉末において重要な元素であり、合金溶湯が水アトマイズ法により水の存在雰囲気で急冷されて非晶質合金化する過程において、非晶質軟磁性合金粉末が腐食されることを先の耐食性向上効果を奏する元素に加えてSiが防止する。
 次に、B量wが1原子%未満では磁性粉末が得られ難く、12原子%を超えると融点が上昇してしまう。従って、B量wは、1原子%以上12原子%以下であることが好ましく、2原子%以上10原子%以下であることがより好ましく、4原子%以上9原子%以下であることがさらに好ましい。
 また、Cを添加すると熱的安定性が向上するためCが添加されていることが好ましい。また、C量zが8原子%を超えると、融点が上昇してしまう。従って、C量zは、8原子%以下であることが好ましく、0原子%を超えて6原子%以下であることがより好ましく、1原子%以上4原子%以下であることがさらに好ましい。
 これらの半金属元素C、P、B及びSiの合計の組成比(y+z+w+t)は、17原子%以上25原子%以下であることが好ましく、18原子%以上25原子%以下とすることが更に好ましい。
 半金属元素の合計の組成比が25原子%を越えると、特にFeの組成比が相対的に低下し、飽和磁化が低下するので好ましくない。半金属元素の合計の組成比が17原子%未満では、非晶質形成能が低下し非晶質相単相組織が得られにくい。
 本実施形態の磁性粉末においては、上記の組成に、Geが4原子%以下含有されていてもよい。
 上記のいずれの場合の組成においても、本実施形態においては、Tx/Tmの値が0.5以上、組成によっては0.55以上が得られる。
 また上記の組成で示される元素の他に不可避的不純物が含まれていても良い。
 次に、本実施形態の非晶質軟磁性合金粉末は、アスペクト比の平均が1以上3.5以下であることが好ましく、アスペクト比の平均が1以上3以下であることがより好ましく、1.2以上2.5以下であることがさらに好ましい。アスペクト比の平均が3.5を超えると不定形粉末が多くなり、成形密度が低下する。またコア成形した際に非晶質軟磁性合金粉末間の絶縁が取り難くなる。
 また、本実施形態の非晶質軟磁性合金粉末は、平均粒径(D50)が30μm以下であることが好ましく、D50が5μm以上、30μm以下であることがより好ましく、9μm以上19μm以下であることがさらに好ましい。非晶質軟磁性合金粉末のD50が30μmを超えると粉末粒内に渦電流が発生し、コア損失が増加する。30μmよりも粒径が大きくなると粉末形状が徐々に異形状化してくる。これは成形密度の低下、透磁率、直流重畳特性の劣化につながる。また、5μm未満にすると粉末の反磁界が大きくなり、粉末、圧粉コアの透磁率が低下するとともに、見かけの酸素濃度が高くなる。
 また、本実施形態の非晶質軟磁性合金粉末は、タップ密度が3.7Mg/m3以上であることが好ましく、3.8Mg/m3以上であることがより好ましく、3.9Mg/m3以上であることがさらに好ましい。このタップ密度が高いとコア本体2の密度が高くなるとともに、圧粉コア1の透磁率、直流重畳特性が向上し、成形体の強度も高まる。
 また、本実施形態の非晶質軟磁性合金粉末は、酸素濃度が3000ppm以下であることが好ましく、2500ppm以下であることがより好ましく、2000ppm以下であることがさらに好ましい。酸素濃度が高くなりすぎると腐食により表面に錆が発生しやすくなり、粉末としての磁気特性を低下させ、圧粉コア1の損失増大、透磁率の低下を引き起こす。
 また、本発明の非晶質軟磁性合金粉末は比表面積が0.40m2/g以下であることが好ましく、0.38m2/g以下であることがより好ましく、0.35m2/g以下であることがさらに好ましい。比表面積が高い粉末は粉末形状に凹凸が多くなり、比表面積が高い粉末は酸素濃度が高くなる。比表面積が高いと粉末間の絶縁がとり難くなり、粉末間の絶縁が取り難くなり、圧粉コア1の成形密度が低下する。透磁率、直流重畳特性も低下する。
 また、前記結着材としては、アクリル樹脂、エポキシ樹脂、シリコーン樹脂、シリコーンゴム、フェノール樹脂、尿素樹脂、メラミン樹脂、PVA(ポリビニルアルコール)等の液状又は粉末状の樹脂あるいはゴムや、水ガラス(Na2O-SiO2)、酸化物ガラス粉末(Na2O-B23-SiO2、PbO-B23-SiO2、PbO-BaO-SiO2、Na2O-B23-ZnO、CaO-BaO-SiO2、Al23-B23-SiO2、B23-SiO2)、ゾルゲル法により生成するガラス状物質(SiO2、Al23、ZrO2、TiO2等を主成分とするもの)等を挙げることができる。
 図1(b)に示すように、コア本体2の表面には含浸によりメタクリル酸ジエステルからなる被覆層3が形成されている。これにより、磁気特性の低下を抑制しつつ従来に比べてコア強度を向上させることができる。被覆層3の種類によっては、コア強度を向上させることができても磁気特性が劣化したり、磁気特性の劣化は小さいが、コア強度を向上させることができないことがある。これに対して、本実施形態によれば、被覆層3を設けずコア本体2のみで形成した形態(従来例)や、被覆層3をブチラールフェノール樹脂で形成した形態(特許文献1の形態;比較例)と同等の実用レベルの磁気特性を得ることができ、且つ、前記の従来例や比較例に比べてコア強度を大きくすることができる。従来例に対しては約2倍以上、比較例に対しては約1.5倍以上の大きいコア強度が得られることが後述の実験によりわかっている。
 メタクリル酸ジエステルからなる被覆層3は、メタクリル酸ジエステルを主成分としており、メタクリル酸ジエステル以外に微量添加物や不可避的添加物を含むことを除外するものでない。
 例えば、前記被覆層3は、アセック株式会社製のAS6701の含浸液にコア本体2を浸漬させて形成することができる。
 また、本実施形態では、前記被覆層3を真空含浸により形成することが好適である。非晶質軟磁性合金粉末が結着材によって固化成形されたコア本体2の内部には空孔が存在する。真空含浸により、より効果的に前記空孔がメタクリル酸ジエステルによる樹脂層で埋められると考えられ、コア強度の更なる向上を図ることが可能になる。
 例えばチョークコイルとして本実施形態の圧粉コア1に直にコイルを巻回形成したり、あるいは前記圧粉コア1を樹脂ケースに入れた状態でコイルを巻回形成する。このように圧粉コア1にコイルを巻回したり、圧粉コア1を樹脂ケースに入れるとき、あるいは使用時において、本実施形態の圧粉コア1はコア強度が高いため、従来に比べて破損しにくくできる。
 続いて圧粉コア1の製造方法を説明する。
 まず、上記した組成を備える非晶質軟磁性合金粉末をアトマイズ法により形成する。アトマイズ法には水アトマイズ法あるいはガスアトマイズ法を使用することが好適である。ここで、例えば、水アトマイズ法にて前記非晶質軟磁性合金粉末を製造する際、水の噴射圧力、噴射流量、合金溶湯流量等をコントロールすることにより、目的とする非晶質軟磁性合金粉末のアスペクト比や平均粒径(D50)を得ることができる。
 続いて、非晶質軟磁性合金粉末を大気雰囲気中で加熱乾燥した後、これらの粉末を分級して、所定の平均粒径を有する球状あるいは球状に近い形状の非晶質軟磁性合金粉末を得る。
 得られた非晶質軟磁性合金粉末は必要に応じて熱処理しても良い。熱処理をすることで合金粉末の内部応力が緩和され、非晶質軟磁性合金粉末の磁気特性をより向上できる。
 続いて、前記非晶質軟磁性合金と、結着材及び潤滑材を有してなる添加材とを混合する。混合物中の前記結着材の混合率は、0.3質量%~5質量%の範囲内であることが好適である。また混合物中の潤滑材の混合率は、0.1質量%~2質量%の範囲内であることが好適である。前記潤滑材には例えばステアリン酸亜鉛を使用できる。
 前記非晶質軟磁性合金と添加材とを混合した後、乾燥・粉砕して造粒粉を得る。
 前記造粒粉を、プレス成型の金型に充填しやすいように分級する。例えば目開き300μm以上850μm以下のふるいを用い分級して得られる300~850μmの造粒粉を使用する。
 続いて、前記造粒粉を金型に充填し、圧力を印加しつつ、室温又は所定の温度まで加熱して圧縮成形して所定形状のコア前駆体を得る。例えばプレス圧は20t/cm2である。またコア前駆体は例えば図1のような円環形状であり、一例を示すと、外径:20mm、内径:12mm、高さ:6.8mmである。
 続いて前記コア前駆体を熱処理する。熱処理条件の一例を示すと、N2ガス雰囲気下で、昇温速度を40℃/minとし510℃で1時間加熱する。これにより、圧縮成形により前記非晶質軟磁性合金粉末に生じた内部応力を除去することができる。
 上記により製造したコア本体2をメタクリル酸ジエステルを溶媒に溶解した含浸液に浸漬し、浸漬した状態で真空排気する。続いて、前記コア本体2を含浸液から引き上げ、洗浄した後、乾燥を行う。これにより、コア本体2の表面にメタクリル酸ジエステルからなる被覆層3を形成することが出来る。
 実験では、水アトマイズ法によりFe74at%Cr2%9at%2at%8at%Si5at%の略球状の非晶質磁性粉末を形成した。
 結着材にシリコーン樹脂を用いて圧粉コア(成形品1)を形成した。また、結着材にアクリル樹脂を用いて圧粉コア(成形品2)を形成した。
 そして各成形品を次の3種類にて製造した。
 (従来例)・・被覆層を形成しない圧粉コア。
 (比較例)・・被覆層をブチラールフェノール樹脂で形成した圧粉コア。
 (実施例)・・被覆層をメタクリル酸ジエステルで形成した圧粉コア。
 実施例では、図1に示すコア本体2をアセック株式会社製のAS6701の含浸液中に浸しながら、7分間、真空排気した。続いてコア本体2を含浸液から引き上げ、エタノールにて洗浄した。そして、乾燥炉にて150℃で30分間、乾燥を行った。比較例では、ブチラールフェノール樹脂を溶媒に溶解した含浸液を用いた以外、実施例と同じ条件で被覆層を形成した。
 実験では、従来例、比較例及び実施例の各成形品の透磁率及びコアロスを測定した。また従来例、比較例及び実施例の各成形品のコア強度を測定した。コア強度の測定法は、図2に示すようにして行った。そして、成形品が破壊したときに加えた加圧力をコア強度とした。
 成形品1(結着材にシリコーン樹脂を使用)に対する実験結果を以下の表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1に示す周波数と透磁率との関係をグラフ化にしたものが図3、表1に示す周波数とコアロスをグラフ化にしたものが図4である。
 表1及び図3に示すように、実施例では、従来例及び比較例に比べてやや透磁率が低くなるが実施例でも実用レベルをキープしており大差ないことがわかった。また表1及び図3に示すように、実施例では、従来例及び比較例に比べてややコアロスが大きくなるが実施例でも実用レベルをキープしており大差ないことがわかった。
 一方、表1に示すコア強度については実施例では、従来例の約2倍、比較例の約1.5倍に大きくなることがわかった。
 また市販品である結晶性のFe-Al-Si系軟磁性合金粉末を使用した圧粉コアのコア強度は219Nであったが、実施例では市販品とほぼ同等のコア強度が得られた。
 次に成形品2(結着材にアクリル樹脂を使用)に対する実験結果を以下の表2に示す。
Figure JPOXMLDOC01-appb-T000002
 表2に示す周波数と透磁率との関係をグラフ化にしたものが図5、表2に示す周波数とコアロスをグラフ化にしたものが図6である。
 表2及び図5に示すように、実施例では、従来例及び比較例に比べてやや透磁率が低くなるが実施例でも実用レベルをキープしており大差ないことがわかった。また表2及び図6に示すように、実施例では、従来例及び比較例に比べてややコアロスが大きくなるが実施例でも実用レベルをキープしており大差ないことがわかった。
 なお結着材としてアクリル樹脂を用いた成形品2では、シリコーン樹脂を用いた成形品1に比べて、透磁率が若干劣るものの、コアロスを効果的に改善できることがわかった。
 そして、表2に示すコア強度において、実施例では、従来例の約2.6倍、比較例の約1.7倍に大きくなることがわかった。また市販品である結晶性のFe-Al-Si系合金粉末を使用した圧粉コア(コア強度は219N)に対しても約1.3倍に大きくなることがわかった。
1 圧粉コア
2 コア本体
3 被覆層

Claims (5)

  1.  非晶質軟磁性合金粉末が結着材によって固化成形されてなるとともに含浸によりメタクリル酸ジエステルからなる被覆層が形成されていることを特徴とする圧粉コア。
  2.  前記被覆層は真空含浸により形成される請求項1記載の圧粉コア。
  3.  前記非晶質軟磁性合金粉末は、Feを主成分とし、少なくともP、C、B、Siのうち2種以上を含む請求項1又は2に記載の圧粉コア。
  4.  前記非晶質軟磁性合金粉末は、下記の組成式で形成される請求項3記載の圧粉コア。
     Fe100-a-b-x-y-z-w-tCoaNibxyzwSit
     ただし、MはCr、Mo、W、V、Nb、Ta、Ti、Zr、Hf、Pt、Pd、Auより選ばれる1種または2種以上の元素であり、組成比を示すa、b、x、y、z、w、tは、0原子%≦x≦3原子%、0原子%≦y≦15原子%、0原子%≦z≦8原子%、1原子%≦w≦12原子%、0.5原子%≦t≦8原子%、0原子%≦a≦20原子%、0原子%≦b≦5原子%、70原子%≦(100-a-b-x-y-z-w-t)≦80原子%を示す。
  5.  前記結着材には、シリコーン樹脂あるいはアクリル樹脂が用いられる請求項1ないし4のいずれか1項に記載の圧粉コア。
PCT/JP2010/051082 2009-02-20 2010-01-28 圧粉コア WO2010095496A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011500551A JP5327765B2 (ja) 2009-02-20 2010-01-28 圧粉コア

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-037440 2009-02-20
JP2009037440 2009-02-20

Publications (1)

Publication Number Publication Date
WO2010095496A1 true WO2010095496A1 (ja) 2010-08-26

Family

ID=42633782

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/051082 WO2010095496A1 (ja) 2009-02-20 2010-01-28 圧粉コア

Country Status (2)

Country Link
JP (1) JP5327765B2 (ja)
WO (1) WO2010095496A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102969114A (zh) * 2012-11-22 2013-03-13 德清森腾电子科技有限公司 低磁导率、低功耗的铁硅铝粉末材料及其制备方法
CN102962465A (zh) * 2012-11-22 2013-03-13 德清森腾电子科技有限公司 低磁导率、低功耗的铁硅铝软磁材料及其制备方法
CN103887031A (zh) * 2012-12-19 2014-06-25 阿尔卑斯绿色器件株式会社 Fe基软磁性粉末、使用了其的复合磁性粉末及使用了上述复合磁性粉末的压粉磁芯
CN104756203A (zh) * 2012-10-31 2015-07-01 松下知识产权经营株式会社 复合磁性体及其制造方法
JP2015167183A (ja) * 2014-03-04 2015-09-24 Necトーキン株式会社 ナノ結晶軟磁性合金粉末およびそれを用いた圧粉磁芯
WO2016117201A1 (ja) * 2015-01-22 2016-07-28 アルプス・グリーンデバイス株式会社 圧粉コア、該圧粉コアの製造方法、該圧粉コアを備える電気・電子部品、および該電気・電子部品が実装された電気・電子機器
JP2018022916A (ja) * 2014-01-29 2018-02-08 アルプス電気株式会社 電子部品および電子機器
WO2019044698A1 (ja) * 2017-08-29 2019-03-07 アルプスアルパイン株式会社 圧粉コア、該圧粉コアの製造方法、該圧粉コアを備える電気・電子部品、および該電気・電子部品が実装された電気・電子機器
JP2022113767A (ja) * 2017-10-02 2022-08-04 味の素株式会社 インダクタ基板の製造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06302416A (ja) * 1993-04-13 1994-10-28 Seiko Epson Corp 樹脂結合型磁石
JPH08306520A (ja) * 1995-05-01 1996-11-22 Kubota Corp 高透磁率成形体及びその製造方法
JP2004363235A (ja) * 2003-06-03 2004-12-24 Alps Electric Co Ltd 圧粉コア
JP2005057230A (ja) * 2003-08-06 2005-03-03 Amotech Co Ltd Fe系非晶質金属粉末の製造方法およびこれを用いた軟磁性コアの製造方法
JP2010027871A (ja) * 2008-07-18 2010-02-04 Tamura Seisakusho Co Ltd 圧粉磁心及びその製造方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0696924A (ja) * 1992-09-17 1994-04-08 Seiko Epson Corp 樹脂結合型磁石
JP2003188009A (ja) * 2001-12-17 2003-07-04 Matsushita Electric Ind Co Ltd 複合磁性材料
JP4562022B2 (ja) * 2004-04-22 2010-10-13 アルプス・グリーンデバイス株式会社 非晶質軟磁性合金粉末及びそれを用いた圧粉コアと電波吸収体
JP2008109080A (ja) * 2006-09-29 2008-05-08 Alps Electric Co Ltd 圧粉磁心及びその製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06302416A (ja) * 1993-04-13 1994-10-28 Seiko Epson Corp 樹脂結合型磁石
JPH08306520A (ja) * 1995-05-01 1996-11-22 Kubota Corp 高透磁率成形体及びその製造方法
JP2004363235A (ja) * 2003-06-03 2004-12-24 Alps Electric Co Ltd 圧粉コア
JP2005057230A (ja) * 2003-08-06 2005-03-03 Amotech Co Ltd Fe系非晶質金属粉末の製造方法およびこれを用いた軟磁性コアの製造方法
JP2010027871A (ja) * 2008-07-18 2010-02-04 Tamura Seisakusho Co Ltd 圧粉磁心及びその製造方法

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104756203B (zh) * 2012-10-31 2017-10-20 松下知识产权经营株式会社 复合磁性体及其制造方法
CN104756203A (zh) * 2012-10-31 2015-07-01 松下知识产权经营株式会社 复合磁性体及其制造方法
US9881722B2 (en) 2012-10-31 2018-01-30 Panasonic Intellectual Property Management Co., Ltd. Composite magnetic body and method for manufacturing same
CN102962465A (zh) * 2012-11-22 2013-03-13 德清森腾电子科技有限公司 低磁导率、低功耗的铁硅铝软磁材料及其制备方法
CN102969114A (zh) * 2012-11-22 2013-03-13 德清森腾电子科技有限公司 低磁导率、低功耗的铁硅铝粉末材料及其制备方法
CN103887031A (zh) * 2012-12-19 2014-06-25 阿尔卑斯绿色器件株式会社 Fe基软磁性粉末、使用了其的复合磁性粉末及使用了上述复合磁性粉末的压粉磁芯
JP2014120699A (ja) * 2012-12-19 2014-06-30 Alps Green Devices Co Ltd Fe基軟磁性粉末、前記Fe基軟磁性粉末を用いた複合磁性粉末及び前記複合磁性粉末を用いた圧粉磁心
CN103887031B (zh) * 2012-12-19 2016-09-07 阿尔卑斯绿色器件株式会社 Fe基软磁性粉末、使用了其的复合磁性粉末及使用了上述复合磁性粉末的压粉磁芯
JP2018022918A (ja) * 2014-01-29 2018-02-08 アルプス電気株式会社 電子部品および電子機器
JP2018022916A (ja) * 2014-01-29 2018-02-08 アルプス電気株式会社 電子部品および電子機器
JP2018022917A (ja) * 2014-01-29 2018-02-08 アルプス電気株式会社 インダクタンス素子および電子機器
JP2015167183A (ja) * 2014-03-04 2015-09-24 Necトーキン株式会社 ナノ結晶軟磁性合金粉末およびそれを用いた圧粉磁芯
JPWO2016117201A1 (ja) * 2015-01-22 2017-10-05 アルプス電気株式会社 圧粉コア、該圧粉コアの製造方法、該圧粉コアを備える電気・電子部品、および該電気・電子部品が実装された電気・電子機器
WO2016117201A1 (ja) * 2015-01-22 2016-07-28 アルプス・グリーンデバイス株式会社 圧粉コア、該圧粉コアの製造方法、該圧粉コアを備える電気・電子部品、および該電気・電子部品が実装された電気・電子機器
US11574764B2 (en) 2015-01-22 2023-02-07 Alps Electric Co., Ltd. Dust core, method for manufacturing dust core, electric/electronic component including dust core, and electric/electronic device equipped with electric/electronic component
WO2019044698A1 (ja) * 2017-08-29 2019-03-07 アルプスアルパイン株式会社 圧粉コア、該圧粉コアの製造方法、該圧粉コアを備える電気・電子部品、および該電気・電子部品が実装された電気・電子機器
JP2022113767A (ja) * 2017-10-02 2022-08-04 味の素株式会社 インダクタ基板の製造方法

Also Published As

Publication number Publication date
JP5327765B2 (ja) 2013-10-30
JPWO2010095496A1 (ja) 2012-08-23

Similar Documents

Publication Publication Date Title
WO2010095496A1 (ja) 圧粉コア
JP5094276B2 (ja) 圧粉コア及びその製造方法
JP5099480B2 (ja) 軟磁性金属粉末、圧粉体、および軟磁性金属粉末の製造方法
JP5458452B2 (ja) Fe基非晶質合金粉末、及び前記Fe基非晶質合金粉末を用いた圧粉コア、ならびにコイル封入圧粉コア
JP5419302B2 (ja) Fe基非晶質合金、及び前記Fe基非晶質合金を用いた圧粉コア、ならびにコイル封入圧粉コア
JP4308864B2 (ja) 軟磁性合金粉末、圧粉体及びインダクタンス素子
KR102048566B1 (ko) 압분자심
TWI578338B (zh) Powder core and its manufacturing method
JP6026293B2 (ja) 圧粉磁心とその製造方法
JP5263653B2 (ja) 圧粉磁心およびその製造方法
JP3624681B2 (ja) 複合磁性材料およびその製造方法
JP2007019134A (ja) 複合磁性材料の製造方法
JP5715614B2 (ja) 圧粉磁心とその製造方法
JP2009302420A (ja) 圧粉磁心及びその製造方法
JP2020095988A (ja) 圧粉磁心
JP2009259974A (ja) 高強度圧粉磁心、高強度圧粉磁心の製造方法、チョークコイル及びその製造方法
JP2006339525A (ja) コイル封入圧粉磁心
JP2015005581A (ja) 圧粉磁心とその製造方法
JPH02290002A (ja) Fe―Si系合金圧粉磁心およびその製造方法
JP2019201155A (ja) 圧粉磁芯およびインダクタ素子
JP4850764B2 (ja) 圧粉磁心の製造方法
JP4618557B2 (ja) 軟磁性合金圧密体及びその製造方法
TWI578339B (zh) Soft magnetic composition, method of manufacturing the same, magnetic core, and coil type electronic component
JP6620643B2 (ja) 圧粉成形磁性体、磁芯およびコイル型電子部品
JP2002184616A (ja) 圧粉磁心

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10743625

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011500551

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10743625

Country of ref document: EP

Kind code of ref document: A1