WO2010092946A1 - フッ素およびケイ素を含む排水の処理方法、フッ化カルシウムの製造方法、およびフッ素含有排水処理設備 - Google Patents

フッ素およびケイ素を含む排水の処理方法、フッ化カルシウムの製造方法、およびフッ素含有排水処理設備 Download PDF

Info

Publication number
WO2010092946A1
WO2010092946A1 PCT/JP2010/051864 JP2010051864W WO2010092946A1 WO 2010092946 A1 WO2010092946 A1 WO 2010092946A1 JP 2010051864 W JP2010051864 W JP 2010051864W WO 2010092946 A1 WO2010092946 A1 WO 2010092946A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluorine
silicon
wastewater
solid
waste water
Prior art date
Application number
PCT/JP2010/051864
Other languages
English (en)
French (fr)
Inventor
克義 谷田
木下 勉
知福 博行
草介 小野田
Original Assignee
株式会社神鋼環境ソリューション
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2009215695A external-priority patent/JP5661265B2/ja
Priority claimed from JP2009215696A external-priority patent/JP5661266B2/ja
Priority claimed from JP2009288060A external-priority patent/JP2011125812A/ja
Application filed by 株式会社神鋼環境ソリューション filed Critical 株式会社神鋼環境ソリューション
Priority to CN2010800071045A priority Critical patent/CN102307816A/zh
Priority to CA2749421A priority patent/CA2749421A1/en
Priority to EP10741223.1A priority patent/EP2397444B1/en
Priority to US13/147,815 priority patent/US20110293506A1/en
Publication of WO2010092946A1 publication Critical patent/WO2010092946A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F9/00Multistage treatment of water, waste water or sewage
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/58Treatment of water, waste water, or sewage by removing specified dissolved compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/42Electrodialysis; Electro-osmosis ; Electro-ultrafiltration; Membrane capacitive deionization
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/469Treatment of water, waste water, or sewage by electrochemical methods by electrochemical separation, e.g. by electro-osmosis, electrodialysis, electrophoresis
    • C02F1/4693Treatment of water, waste water, or sewage by electrochemical methods by electrochemical separation, e.g. by electro-osmosis, electrodialysis, electrophoresis electrodialysis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/58Treatment of water, waste water, or sewage by removing specified dissolved compounds
    • C02F1/60Silicon compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/38Treatment of water, waste water, or sewage by centrifugal separation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/469Treatment of water, waste water, or sewage by electrochemical methods by electrochemical separation, e.g. by electro-osmosis, electrodialysis, electrophoresis
    • C02F1/4693Treatment of water, waste water, or sewage by electrochemical methods by electrochemical separation, e.g. by electro-osmosis, electrodialysis, electrophoresis electrodialysis
    • C02F1/4695Treatment of water, waste water, or sewage by electrochemical methods by electrochemical separation, e.g. by electro-osmosis, electrodialysis, electrophoresis electrodialysis electrodeionisation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • C02F1/54Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using organic material
    • C02F1/56Macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/66Treatment of water, waste water, or sewage by neutralisation; pH adjustment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/68Treatment of water, waste water, or sewage by addition of specified substances, e.g. trace elements, for ameliorating potable water
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F2001/007Processes including a sedimentation step
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • C02F2001/5218Crystallization
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/12Halogens or halogen-containing compounds
    • C02F2101/14Fluorine or fluorine-containing compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/34Nature of the water, waste water, sewage or sludge to be treated from industrial activities not provided for in groups C02F2103/12 - C02F2103/32
    • C02F2103/346Nature of the water, waste water, sewage or sludge to be treated from industrial activities not provided for in groups C02F2103/12 - C02F2103/32 from semiconductor processing, e.g. waste water from polishing of wafers
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/34Nature of the water, waste water, sewage or sludge to be treated from industrial activities not provided for in groups C02F2103/12 - C02F2103/32
    • C02F2103/40Nature of the water, waste water, sewage or sludge to be treated from industrial activities not provided for in groups C02F2103/12 - C02F2103/32 from the manufacture or use of photosensitive materials
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/002Construction details of the apparatus
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Definitions

  • the present invention relates to a method for treating wastewater containing fluorine and silicon, a method for producing calcium fluoride, and a fluorine-containing wastewater treatment facility.
  • wastewater containing fluorine and silicon generated in a semiconductor manufacturing factory, a solar cell manufacturing factory, a liquid crystal factory, a factory with a PFC (perfluorocarbon) gas processing process or a silicon etching process is processed as follows, for example. Yes.
  • Calcium hydroxide (Ca (OH) 2 ) is added to wastewater containing fluorine and silicon and reacted on the alkali side to produce sludge containing calcium fluoride (CaF 2 ) and calcium silicate (CaSiO 3 ), The generated sludge is separated for industrial waste treatment.
  • the generated precipitate can be used without industrial waste treatment as in the prior art. That is, it is possible to recycle fluorine contained in wastewater that has been treated as industrial waste as calcium fluoride.
  • Patent Document 1 As a method for obtaining a high-purity precipitate having a high content of calcium fluoride from wastewater containing fluorine and silicon, for example, there is a method as described in Patent Document 1.
  • the silicon concentration in the waste water is adjusted to 500 mg / L or less as SiO 2 by diluting waste water containing fluorine and silicon, and then at pH 4.5 to 8.5. It is a reaction of a water-soluble calcium compound. According to this method, it is said that a high-purity precipitate having a CaF 2 concentration of 90% or more can be deposited.
  • Patent Document 1 it is necessary to dilute wastewater containing fluorine and silicon in advance in order to adjust the silicon concentration in the wastewater to 500 mg / L or less as SiO 2 , and the amount of wastewater to be treated is large. It will increase from the beginning. As a result, there is a problem that the wastewater treatment facility becomes larger than before, and the installation space, the manufacturing cost, the maintenance management cost, etc. of the wastewater treatment facility may become much larger than before.
  • the present invention has been made in view of the above circumstances, and its purpose (first object) is to dilute wastewater containing fluorine and silicon, that is, to concentrate wastewater containing fluorine and silicon at a high concentration. Even if it treats as it is, it is providing the waste water treatment technique (especially pre-treatment technique) for enabling it to collect
  • the second object of the present invention is to provide a wastewater treatment technology (especially a pretreatment technology) that can keep the chemical cost lower than in the past when treating wastewater containing fluorine and silicon to recover calcium fluoride. Is to provide.
  • the present inventors have added alkali to wastewater containing fluorine and silicon to decompose fluoric acid (H 2 SiF 6 ) present in the wastewater, It was discovered that the above problem can be solved (the first object can be achieved) by precipitating silicon as silicate and removing the precipitated silicate from the waste water by solid-liquid separation. Based on this, the present invention has been completed.
  • the first aspect of the present invention includes an alkali addition step of adding alkali to wastewater containing fluorine and silicon, and a solid-liquid separation step of solid-liquid separation of the silicate precipitated in the alkali addition step. This is a method for treating waste water containing fluorine and silicon.
  • silicon as silicate is removed from the waste water by solid-liquid separation of the silicate precipitated in the alkali addition step.
  • calcium fluoride can be recovered without diluting the wastewater containing fluorine and silicon, that is, even if the wastewater containing fluorine and silicon is treated at a high concentration (fluorine recycling).
  • fluorine can be recovered at a high recovery rate as high-purity calcium fluoride.
  • the alkali more than an equivalent with the fluorine contained in the said waste_water
  • the pH of the wastewater becomes about 6.5 or more, the decomposition of fluoric acid (H 2 SiF 6 ) is promoted, and the precipitation amount of silicate can be increased.
  • the equivalent means the molar equivalent.
  • the molar equivalent represents the ratio of the substance amount (unit: mol [mol]).
  • the alkali is preferably sodium hydroxide or potassium hydroxide.
  • sodium hydroxide or potassium hydroxide as an additive to be added to wastewater containing fluorine and silicon, for example, post-treatment of treated wastewater becomes easier as compared with the case of using ammonia as an additive.
  • potassium hydroxide as an additive, it is possible to cope with wastewater with a high fluorine concentration. Further, since sodium hydroxide is less expensive than other additives, there is an advantage that chemical cost can be reduced by using sodium hydroxide as an additive.
  • the second aspect of the present invention is obtained by adding water-soluble calcium to the separation liquid obtained by the solid-liquid separation step in the first aspect of the present invention (method for treating wastewater containing fluorine and silicon). It is a manufacturing method of calcium fluoride which collects calcium fluoride.
  • fluorine is recovered as high-purity calcium fluoride at a high recovery rate by adding water-soluble calcium to the waste water (separate) from which silicon has been removed to recover calcium fluoride. That is, even if wastewater containing fluorine and silicon is treated at a high concentration, fluorine can be recovered as high purity calcium fluoride with a high recovery rate.
  • the third aspect of the present invention is a precipitation means for depositing silicate by adding alkali to waste water containing fluorine and silicon, and a silicate deposited on the downstream side of the precipitation means.
  • a fluorine-containing wastewater treatment facility comprising solid-liquid separation means for obtaining a separation liquid containing fluorine by solid-liquid separation.
  • drain is adjusted to 6 or more in the said precipitation means. This will accelerate the decomposition of Fukkei acid (H 2 SiF 6), the precipitation amount of the silicate is increased. That is, the silicon removal rate is increased.
  • a calcium fluoride recovery means that is installed downstream of the solid-liquid separation means and collects calcium fluoride by adding water-soluble calcium to the separation liquid.
  • an electrodialysis apparatus including a bipolar membrane, a cation exchange membrane, and an anion exchange membrane contains fluorine after solid-liquid separation. Based on this finding, it was found that the above problem can be solved by separating the separated liquid into an acidic solution containing hydrogen fluoride and an alkaline solution through the liquid (the second object can be achieved). The present invention has been completed.
  • the fourth aspect of the present invention is a solid-liquid separation step for solid-liquid separation of silicate from waste water containing fluorine and silicon, and a separation liquid obtained by the solid-liquid separation step is divided into a bipolar membrane, a cation
  • a hydrogen fluoride separation step comprising supplying an exchange membrane and an electrodialyzer equipped with an anion exchange membrane to separate the separated liquid into an acidic solution containing hydrogen fluoride and an alkaline solution, and fluorine and silicon This is a wastewater treatment method.
  • the separation liquid obtained in the solid-liquid separation step is supplied to an electrodialysis apparatus having a bipolar membrane to separate the separation liquid into an acidic solution containing hydrogen fluoride and an alkaline solution.
  • an acidic solution containing fluorine can be obtained. Therefore, when collecting calcium fluoride (recycling of fluorine), it is not necessary to add acid (chemicals) from the outside, or the amount of acid (chemicals) added Can be reduced. That is, in treating the waste water containing fluorine and silicon to recover calcium fluoride, the chemical cost can be kept lower than before.
  • the above-described method for treating wastewater containing fluorine and silicon according to the first aspect of the present invention and the method for treating wastewater containing fluorine and silicon according to the fourth aspect of the present invention described above are “fluorine and silicon”.
  • the process of “solid-liquid separation of silicate from waste water containing silicon” is common. That is, the method for treating wastewater containing fluorine and silicon according to the first aspect of the present invention and the method for treating wastewater containing fluorine and silicon according to the fourth aspect of the present invention are “drainage containing fluorine and silicon”. It has the same special technical feature in that it has both steps of “solid-liquid separation of silicate from the solid”.
  • the waste water is acidic waste water and further includes an alkali addition step of adding alkali to the waste water to precipitate silicate before the solid-liquid separation step.
  • the silicate precipitated in this step is separated from the waste water in the subsequent solid-liquid separation step.
  • the alkaline solution separated in the hydrogen fluoride separation step is returned to the alkali addition step and added to the waste water in the alkali addition step.
  • the amount of alkali newly added in the alkali addition step can be suppressed by returning the alkaline solution separated in the hydrogen fluoride separation step to the alkali addition step.
  • the alkali is preferably sodium hydroxide or potassium hydroxide.
  • sodium hydroxide or potassium hydroxide as an additive to be added to wastewater containing fluorine and silicon, for example, post-treatment of treated wastewater becomes easier than when ammonia is used as an additive.
  • potassium hydroxide as an additive, it is possible to cope with wastewater with a high fluorine concentration. Further, since sodium hydroxide is less expensive than other additives, there is an advantage that chemical cost can be reduced by using sodium hydroxide as an additive.
  • the fifth aspect of the present invention comprises adding water-soluble calcium to the acidic solution containing hydrogen fluoride obtained by the fourth aspect of the present invention (method for treating wastewater containing fluorine and silicon). It is a manufacturing method of calcium fluoride which collects calcium fluoride.
  • the sixth aspect of the present invention is a solid-liquid separation means for obtaining a separation liquid containing fluorine by solid-liquid separation of silicate in waste water containing fluorine and silicon, and a downstream of the solid-liquid separation means.
  • An electrodialyzer equipped with a bipolar membrane, a cation exchange membrane, and an anion exchange membrane for separating the separated liquid into an acidic solution containing hydrogen fluoride and an alkaline solution, and a fluorine-containing wastewater treatment facility comprising: is there.
  • the waste water is an acidic waste water, further provided with a precipitation unit that is installed on the upstream side of the solid-liquid separation unit and deposits silicate by adding alkali to the waste water. .
  • an alkali return means for returning the alkaline solution separated by the electrodialyzer to the precipitation means and adding it to the waste water.
  • it further comprises a calcium fluoride recovery means that is installed on the downstream side of the electrodialyzer and that recovers calcium fluoride by adding water-soluble calcium to the acidic solution containing hydrogen fluoride. preferable.
  • FIG. 1 is a process flow diagram showing a wastewater treatment method (a wastewater treatment method containing fluorine and silicon) according to the first embodiment of the present invention.
  • this example is a treatment example when the waste water (raw water) containing fluorine and silicon is acidic. (First embodiment)
  • a wastewater treatment facility 100 for carrying out the treatment method according to the present embodiment includes a pH adjustment tank 1 and a solid-liquid separation means 2 in order from the upstream side of the treatment process. , A reaction tank 3 and a precipitation tank 4.
  • the pH adjustment tank 1, the solid-liquid separation means 2, the reaction tank 3, and the precipitation tank 4 are connected to each other by piping or the like.
  • the pH adjustment tank 1 includes a stirrer 1a, and the reaction tank 3 includes a stirrer 3a.
  • the pH adjusting tank 1 corresponds to the precipitation means of the present invention.
  • the reaction tank 3 and the precipitation tank 4 constitute the calcium fluoride recovery means of the present invention. If silicon is present in wastewater containing high-concentration fluorine, fluorine reacts with silicon under acidic conditions and exists in the wastewater as fluoric acid (H 2 SiF 6 ).
  • First step (alkali addition step)
  • sodium hydroxide (NaOH) is added to waste water (raw water) containing fluorine and silicon.
  • waste water (raw water) containing fluorine and silicon is supplied to the pH adjustment tank 1, and a sodium hydroxide solution is added to the pH adjustment tank 1, and the waste water is stirred by the stirrer 1 a.
  • fluorine and silicon exist in the state of fluoric acid (H 2 SiF 6 ) in the waste water.
  • fluoric acid H 2 SiF 6
  • silicon is precipitated in the waste water as sodium silicate (Na 2 SiO 3 ).
  • the pH of the waste water is 6 or more, preferably 6.5 to 7.5, and more preferably about 7 by adding sodium hydroxide to the waste water containing fluorine and silicon.
  • the quantity of the pH adjuster added to the reaction tank 3 at a 3rd process can be reduced by making pH of waste_water
  • alkali added to the waste water containing fluorine and silicon may be ammonia (ammonia water or ammonia gas) instead of the sodium hydroxide (NaOH) described above, or other alkali.
  • ammonia ammonia water or ammonia gas
  • potassium hydroxide KOH
  • potassium hydroxide when potassium hydroxide is added to wastewater containing fluorine and silicon, fluoric acid (H 2 SiF 6 ) is decomposed into potassium fluoride (KF) and potassium silicate (K 2 SiO 3 ).
  • KF potassium fluoride
  • K 2 SiO 3 potassium silicate
  • the solubility of potassium fluoride is very high at about 1017,000 mg / L. Therefore, according to the addition of potassium hydroxide, it is possible to cope with wastewater having a higher fluorine concentration.
  • sodium hydroxide when sodium hydroxide is added as in this embodiment, the post-treatment of the treated wastewater after the recovery of fluorine (calcium fluoride) is easier than in the case of adding ammonia.
  • fluoric acid H 2 SiF 6
  • sodium silicate Na 2 SiO 3
  • the solubility of sodium fluoride is about 41010 mg / L.
  • sodium hydroxide is suitable as an alkali to be added in the case of wastewater having a fluorine concentration of about 18000 mg / L or less.
  • potassium hydroxide and ammonia are suitable as the alkali to be added.
  • Solid-liquid separation step In the second step, the sodium silicate (Na 2 SiO 3 ) precipitated in the first step is subjected to solid-liquid separation.
  • the waste water sufficiently stirred in the pH adjustment tank 1 is sent to the solid-liquid separation means 2.
  • the solid-liquid separation means 2 silicon in the wastewater is discharged out of the system as sodium silicate (Na 2 SiO 3 ), and then, for example, industrial waste processing is performed. Note that fluorine is in a state of being dissolved in the separation liquid.
  • the separated liquid is sent to the subsequent reaction tank 3.
  • Examples of the solid-liquid separation means 2 may include (1) a filtration device, (2) a centrifugal separator, (3) a centrifugal separator + filtration device, and (4) a filter press (in a second embodiment to be described later). The same).
  • Stable solid-liquid separation becomes possible by performing solid-liquid separation by filtration (filtration device).
  • solid-liquid separation by performing solid-liquid separation by centrifugation (centrifuge), it is possible to perform solid-liquid separation at a lower cost than in the case of filtration (filtration device).
  • solid-liquid separation by performing solid-liquid separation with a filter press, solid-liquid separation can be performed easily and inexpensively (compared to the case of filtration (filtering device)), and stable solid-liquid separation becomes possible. .
  • the centrifugal supernatant liquid may be allowed to stand, and the supernatant liquid may be sent to the subsequent reaction tank 3 as a separated liquid.
  • the centrifugal supernatant By allowing the centrifugal supernatant to stand, the low specific gravity component (Na 2 SiO 3 ) that has not been removed by centrifugation contained in the centrifugal supernatant is precipitated, and sodium silicate (silicon) can be further removed. .
  • the solid-liquid separation may be performed by centrifugation (centrifuge) before performing the filtration (filtering device). After performing solid-liquid separation by centrifugation (centrifugal separator), the load on the filtration device can be reduced by solid-liquid separation by filtration (filtration device). In comparison, the maintenance cost of the filtration device can be reduced.
  • centrifugal separator After performing solid-liquid separation by centrifugation (centrifugal separator), the centrifugal supernatant liquid is allowed to stand still, the supernatant liquid is further filtered, and the filtered water is sent to the subsequent reaction tank 3 as a separated liquid. May be. Thereby, Na 2 SiO 3 can be further removed.
  • the first process and the second process described above are pretreatment of waste water containing fluorine and silicon. Through these pretreatment steps, silicon as silicate can be removed from the waste water. As a result, fluorine can be recovered as calcium fluoride at a high recovery rate without diluting wastewater containing fluorine and silicon, that is, even if wastewater containing fluorine and silicon is treated at a high concentration. It becomes like this. Specific examples of fluorine recovery will be described below.
  • step water-soluble calcium is added to the separation liquid obtained in the second step, and fluorine is recovered as calcium fluoride.
  • water-soluble calcium and a pH adjuster are added to the separation liquid supplied from the solid-liquid separation means 2 to the reaction vessel 3 and stirred with a stirrer 3a.
  • the pH of the separation liquid is lowered by the addition of the pH adjusting agent.
  • pH adjusters include hydrochloric acid, nitric acid, sulfuric acid, and acetic acid.
  • the calcium fluoride is taken out from the tank bottom.
  • the supernatant of the sedimentation tank 4 is sent to a subsequent treatment facility (not shown) as treated waste water.
  • the water-soluble calcium added to the separation liquid supplied to the reaction tank 3 includes calcium chloride, calcium nitrate, calcium acetate, calcium sulfate, and calcium carbonate (the same applies to the second embodiment described later).
  • the calcium concentration can be increased while maintaining the acidic state, and the precipitation performance of CaF 2 is increased.
  • alkaline water-soluble calcium such as calcium hydroxide can be used, the precipitation performance is lowered as compared with the case where acidic water-soluble calcium is used.
  • calcium fluoride is not taken out from the separation liquid as in the above-described embodiment, but after adding water-soluble calcium to the separation liquid obtained in the second step and stirring, coagulation precipitation treatment is performed. Also good.
  • the flocculant include nonionic polymer flocculants and anionic polymer flocculants.
  • FIG. 2 is a graph showing the optimum pH examination experiment result in the first step. Specifically, the graph shown in FIG. 2 shows the solubility silicon concentration (S—Si) when a sodium hydroxide solution was added to wastewater containing fluorine and silicon having a fluorine concentration of about 8000 mg / L. The change is plotted. As can be seen from FIG. 2, as the sodium hydroxide solution is added and the pH of the waste water is raised, the concentration of soluble silicon in the waste water first decreases. After that, once it does not decrease, the soluble silicon concentration tends to decrease again. It can be seen that the slope of the curve changes around pH 6.
  • the soluble silicon concentration does not decrease any more.
  • S-Si shows a tendency to increase slightly after the pH exceeds about 7.
  • the soluble silicon concentration is an indicator that silicon exists in the wastewater in the form of fluoric acid (H 2 SiF 6 ).
  • S-Si has become less than 400 mg / L (state of small silicon Fukkei acid (H 2 SiF 6)), Fukkei acid (H 2 SiF 6) It is understood that the precipitation amount of sodium silicate can be increased. Further, by setting the pH of the waste water to 6.5 or more and 7.5 or less, S-Si is less than 200 mg / L, so that the precipitation amount of sodium silicate can be further increased, and wasteful alkali addition is performed. It can be seen that (addition of alkali that does not contribute to decomposition of fluoric acid) can be prevented. Furthermore, when the pH of the waste water is about 7, S-Si is about 100 mg / L, and it can be seen that both the improvement in the amount of sodium silicate deposited and the saving of chemicals to be added can be achieved.
  • FIG. 3 is a graph showing the results of confirming the amount of sodium hydroxide added in the first step.
  • an experiment was conducted to determine how much sodium hydroxide (NaOH) can be added to the wastewater containing fluorine and silicon to bring the pH of the wastewater to about 7.
  • Na sodium hydroxide
  • FIG. 3 in order to bring the pH of the waste water containing fluorine and silicon to about 7, fluorine serving as a monovalent anion and Na (sodium) serving as an equivalent monovalent cation are required. is there. That is, 1 equivalent of Na is required for fluorine.
  • an equivalent means a molar equivalent.
  • the molar equivalent represents the ratio of the substance amount (unit: mol [mol]).
  • FIG. 3 shows that the pH of the wastewater becomes about 6.5 or more by adding sodium hydroxide (alkali) equivalent to or more than fluorine contained in the wastewater. This will accelerate the decomposition of Fukkei acid (H 2 SiF 6), the precipitation amount of the silicate is increased.
  • alkali sodium hydroxide
  • the soluble silicon concentration (S—Si) of the separated solution was about 100 mg / L.
  • the S-Si of the separation liquid was 140 to 150 mg / L, about 110 mg / L, and about 100 mg / L, respectively.
  • FIG. 4 is a process flow diagram showing a wastewater treatment method (a wastewater treatment method containing fluorine and silicon) according to the second embodiment of the present invention.
  • This example is a treatment example when the waste water (raw water) containing fluorine and silicon is acidic.
  • symbol is attached
  • the description of the same contents as the processing method of the first embodiment will be simplified or omitted.
  • a wastewater treatment facility 101 for carrying out the treatment method according to the present embodiment, in order from the upstream side of the treatment step, is a pH adjustment tank 1 and a solid-liquid separation means 2. , An electrodialyzer 5, a reaction tank 3, and a precipitation tank 4.
  • the pH adjustment tank 1, the solid-liquid separation means 2, the electrodialyzer 5, the reaction tank 3, and the precipitation tank 4 are connected to each other by piping or the like.
  • the pH adjusting tank 1 corresponds to the precipitation means of the present invention.
  • the reaction tank 3 and the precipitation tank 4 constitute the calcium fluoride recovery means of the present invention.
  • the main difference between the wastewater treatment facility 101 of this embodiment and the wastewater treatment facility 100 of the first embodiment described above is that, in this embodiment, the electrodialyzer 5 is disposed between the solid-liquid separation means 2 and the reaction tank 3. It is a point that is installed.
  • First step (alkali addition step)
  • sodium hydroxide (NaOH) is added to waste water (raw water) containing fluorine and silicon.
  • wastewater raw water containing fluorine and silicon is supplied to the pH adjustment tank 1, and a sodium hydroxide solution is added to the pH adjustment tank 1, and the wastewater is stirred by the stirrer 1 a.
  • fluorine and silicon exist in the state of fluoric acid (H 2 SiF 6 ) in the waste water.
  • fluoric acid H 2 SiF 6
  • silicon is precipitated in the waste water as sodium silicate (Na 2 SiO 3 ).
  • the pH of the waste water is 6 or more, preferably 6.5 or more and 7.5 or less, more preferably It is preferable to adjust to about 7.
  • Solid-liquid separation step In the second step, the sodium silicate (Na 2 SiO 3 ) precipitated in the first step is subjected to solid-liquid separation.
  • the waste water sufficiently stirred in the pH adjustment tank 1 is sent to the solid-liquid separation means 2.
  • the solid-liquid separation means 2 silicon in the wastewater is discharged out of the system as sodium silicate (Na 2 SiO 3 ), and then, for example, industrial waste processing is performed. Note that fluorine is in a state of being dissolved in the separation liquid.
  • the separated liquid is sent to the subsequent electrodialysis apparatus 5.
  • the separation liquid obtained in the second step is supplied to the electrodialysis apparatus 5, and sodium fluoride (NaF) in the separation liquid is converted into hydrogen fluoride (HF) and sodium hydroxide (NaOH).
  • HF hydrogen fluoride
  • NaOH sodium hydroxide
  • the electrodialysis apparatus 5 includes a bipolar membrane 21, a cation exchange membrane 22 (cation exchange membrane), and an anion exchange membrane 23 (anion exchange membrane).
  • a salt chamber 25, an alkali line chamber 24, and an acid line chamber 26 are defined.
  • a unit in which these three kinds of membranes are combined is called a cell, and the internal structure of the electrodialysis apparatus 5 is a structure in which many cells are combined and stacked like a filter press, and electrodes are provided at both ends. ing.
  • a direct current is passed through this electrode to separate sodium fluoride (NaF) in the separation liquid into hydrogen fluoride (HF) and sodium hydroxide (NaOH).
  • the bipolar membrane 21 is a membrane in which one side of the membrane has a property of a cation exchange membrane and the other side has a property of an anion exchange membrane.
  • the acid line chamber 26 of the electrodialysis apparatus 5 is connected to the reaction tank 3 via a flow path (for example, piping).
  • the alkali line chamber 24 is connected to the pH adjustment tank 1 via the flow path 6 (for example, piping).
  • the desalting chamber 25 is connected to a drainage line.
  • the separation liquid (NaF) supplied from the solid-liquid separation means 2 to the electrodialysis apparatus 5 flows through the desalting chamber 25 of the electrodialysis apparatus 5.
  • Na + as a cation moves to the alkali line chamber 24 via the cation exchange membrane 22, and F ⁇ as an anion moves to the acid line chamber 26 via the anion exchange membrane 23.
  • HF hydrogen fluoride
  • NaOH sodium hydroxide
  • Na + and F ⁇ move to the alkali line chamber 24 and the acid line chamber 26, respectively, so that the concentration of NaF decreases (desalted), and the desalted liquid in the separated liquid is dehydrated. It is discharged from the salt chamber 25.
  • HF hydrogen fluoride
  • NaOH sodium hydroxide
  • the electrodialysis apparatus 5 and the pH adjustment tank 1 are connected by a flow path 6.
  • the flow path 6 is an alkali return means for returning NaOH separated by the electrodialyzer 5 to the pH adjusting tank 1 and adding it to waste water (raw water).
  • a pump (a component device of alkali return means) may be installed in the flow path 6. By this alkali returning means, NaOH separated in the third step is returned to the first step and added to the waste water (raw water).
  • the first to third steps described above are pretreatment of waste water containing fluorine and silicon.
  • the separation liquid obtained in the second step is supplied to the electrodialysis apparatus 5 including the bipolar membrane 21, and sodium fluoride (NaF) in the separation liquid is converted to hydrogen fluoride ( By separating into acid) and sodium hydroxide, an acidic solution containing fluorine (hydrofluoric acid solution) can be obtained. Then, when recovering calcium fluoride (recycling of fluorine), acid (chemical) ) Need not be added.
  • the waste water (raw water) containing fluorine and silicon supplied to the pH adjusting tank 1 may contain an acid other than fluorine (for example, nitric acid).
  • an acid other than fluorine for example, nitric acid.
  • the amount of alkali (chemical amount) used in the first step may become enormous.
  • the amount of alkali to be newly added can be suppressed by returning NaOH separated by the electrodialyzer 5 in the third step to the pH adjusting tank 1.
  • the pretreatment waste water (desalted solution) discharged from the electrodialyzer 5 has a low salt concentration. Therefore, corrosion of the pretreatment wastewater treatment facility (not shown) can be reduced, and scaling in the treatment facility can be reduced.
  • step 4 water-soluble calcium is added to the hydrofluoric acid solution (HF) separated in the third step, and fluorine is recovered as calcium fluoride.
  • HF hydrofluoric acid solution
  • fluorine is recovered as calcium fluoride.
  • FIG. 4 first, water-soluble calcium is added to the hydrofluoric acid solution supplied from the electrodialyzer 5 to the reaction tank 3, and the mixture is stirred with the stirrer 3a.
  • the hydrofluoric acid solution is acidic, and calcium fluoride (CaF 2 ) having a relatively large particle size can be precipitated (crystallized) by reacting with water-soluble calcium under acidic conditions.
  • the calcium fluoride is taken out from the tank bottom.
  • the supernatant of the sedimentation tank 4 is sent to a subsequent treatment facility (not shown) as treated waste water.
  • the extraction of calcium fluoride from the hydrofluoric acid solution (HF) is not the method as in the above embodiment, but water-soluble calcium is added to the hydrofluoric acid solution (HF) obtained in the third step. Then, after stirring, the coagulation sedimentation treatment may be performed.
  • the flocculant include nonionic polymer flocculants and anionic polymer flocculants.
  • Wastewater treatment facility 101 of this embodiment provided with the electrodialysis apparatus 5 comprising the bipolar membrane 21, and (2) Wastewater treatment facility 100 of the first embodiment that does not have the electrodialysis apparatus 5 (FIG. 1), and how much the amount of chemical used differs.
  • the waste water treatment facility 100 shown in FIG. 1 adds a pH adjusting agent such as hydrochloric acid or the like to the reaction tank 3 without the electrodialysis apparatus 5 (including a point where NaOH cannot be returned to the pH adjusting tank 1). In this respect, it differs from the wastewater treatment facility 101, and the other configuration is the same as the wastewater treatment facility 101.
  • the calculation conditions were such that the amount of water (raw water) containing fluorine and silicon was 10 m 3 , and the concentration of fluorine contained therein was 10%. Note that acids other than fluorine were not contained in the raw water.
  • the amount of NaOH (sodium hydroxide) used (required) in the wastewater treatment facility 101 of this embodiment was 680 kg.
  • the amount of NaOH (sodium hydroxide) used (required) in the wastewater treatment facility 100 of the first embodiment was 2101 kg.
  • the amount of HCl (hydrochloric acid) used (required) in the wastewater treatment facility 101 of this embodiment is 0 kg.
  • the amount of HCl (hydrochloric acid) used (necessary) in the wastewater treatment facility 100 of the first embodiment was 1900 kg.
  • the amount of chemical used can be greatly reduced, that is, the chemical cost can be kept low.
  • the chemical cost reduction effect increases as the amount of waste water (raw water) to be processed increases.
  • pH adjustment tank 2 Solid-liquid separation means 3: Reaction tank 4: Precipitation tank 100: Wastewater treatment facility (fluorine-containing wastewater treatment facility)

Abstract

 本発明の目的(第一の目的)は、フッ素およびケイ素を含む排水を希釈処理することなく、すなわち、フッ素およびケイ素を含む排水を高濃度のままで処理しても、高純度のフッ化カルシウムとしてフッ素を高回収率で回収できるようにするための排水処理技術(特に前処理技術)を提供することである。 フッ素およびケイ素を含む排水をpH調整槽1に供給し水酸化ナトリウム(NaOH)を添加してケイ酸ナトリウムを析出させる。その後、固液分離手段2に供給してケイ酸ナトリウムを固液分離する。

Description

フッ素およびケイ素を含む排水の処理方法、フッ化カルシウムの製造方法、およびフッ素含有排水処理設備
 本発明は、フッ素およびケイ素を含む排水の処理方法、フッ化カルシウムの製造方法、およびフッ素含有排水処理設備に関する。
 従来、半導体製造工場、太陽電池製造工場、液晶工場、PFC(パーフルオロカーボン)ガス処理工程やシリコンエッチング工程のある工場などで発生するフッ素およびケイ素を含む排水は、例えば次のようにして処理されている。フッ素およびケイ素を含む排水に水酸化カルシウム(Ca(OH))を添加してアルカリ側で反応させ、フッ化カルシウム(CaF)とケイ酸カルシウム(CaSiO)とを含む汚泥を生成させ、生成した汚泥を分離して産廃処理している。
 一方、フッ化カルシウムの含有率が高い高純度の沈殿物を上記排水から生成させることができたならば、生成した沈殿物を従来のように産廃処理することなく利用することができる。すなわち、従来は産廃処理されていた排水に含まれるフッ素をフッ化カルシウムとして再資源化することができるのである。
 ここで、フッ素およびケイ素を含む排水からフッ化カルシウムの含有率が高い高純度の沈殿物を得るための方法としては、例えば、特許文献1に記載されたような方法がある。特許文献1に記載された方法は、まず、フッ素およびケイ素を含む排水を希釈することにより排水中のケイ素濃度をSiOとして500mg/L以下に調整し、その後、pH4.5~8.5において水溶性カルシウム化合物を反応させるというものである。この方法により、CaF濃度が90%以上の高純度沈殿物を析出させることができる、と称されている。
特許第3240669号公報
 しかしながら、特許文献1に記載された方法では、排水中のケイ素濃度をSiOとして500mg/L以下に調整すべくフッ素およびケイ素を含む排水をあらかじめ希釈する必要があり、処理しなければならない排水量が当初よりも増大してしまう。その結果、排水処理設備が従来よりも大きくなってしまい、排水処理設備の設置スペース、製造コスト、維持管理コストなどが従来よりも多大なものとなってしまう場合があるという問題がある。
 本発明は、上記実情に鑑みてなされたものであって、その目的(第一の目的)は、フッ素およびケイ素を含む排水を希釈処理することなく、すなわち、フッ素およびケイ素を含む排水を高濃度のままで処理しても、高純度のフッ化カルシウムとしてフッ素を高回収率で回収できるようにするための排水処理技術(特に前処理技術)を提供することである。
 また、本発明の第二の目的は、フッ素およびケイ素を含む排水を処理してフッ化カルシウムを回収するにあたり、従来よりも薬品コストを低く抑えることができる排水処理技術(特に前処理技術)を提供することである。
課題を解決するための手段及び効果
 本発明者らは、前記課題を解決すべく鋭意検討した結果、フッ素およびケイ素を含む排水にアルカリを添加して当該排水中に存在するフッケイ酸(HSiF)を分解し、排水中のケイ素をケイ酸塩として析出させ、析出したケイ酸塩を固液分離により排水から除去することにより、前記課題を解決できること(前記第一の目的を達成することができること)を見出し、この知見に基づき本発明が完成するに至ったのである。
 すなわち、本発明の第1の態様は、フッ素およびケイ素を含む排水にアルカリを添加するアルカリ添加工程と、前記アルカリ添加工程により析出したケイ酸塩を固液分離する固液分離工程と、を備えるフッ素およびケイ素を含む排水の処理方法である。
 この構成によると、上記アルカリ添加工程により析出したケイ酸塩を固液分離することにより、ケイ酸塩としてケイ素は排水から除去される。その結果、フッ素およびケイ素を含む排水を希釈処理することなく、すなわち、フッ素およびケイ素を含む排水を高濃度のままで処理しても、その後、フッ化カルシウムを回収する(フッ素の再資源化)にあたり、高純度のフッ化カルシウムとしてフッ素を高回収率で回収することができるようになる。
 また本発明において、前記アルカリ添加工程において、前記排水のpHを6以上に調整することが好ましい。これにより、フッケイ酸(HSiF)の分解が促進され、ケイ酸塩の析出量が高まる。すなわち、ケイ素の除去率が高まる。
 さらに本発明において、前記アルカリ添加工程において、前記排水に含まれるフッ素と当量以上のアルカリを添加することが好ましい。これにより、排水のpHが約6.5以上となり、フッケイ酸(HSiF)の分解が促進され、ケイ酸塩の析出量を高めることができる。
 ここで、当量とはモル当量のことをいう。モル当量は、物質量(単位:モル[mol])の比を表すものである。
 さらに本発明において、前記アルカリは水酸化ナトリウムまたは水酸化カリウムであることが好ましい。
 フッ素およびケイ素を含む排水に添加する添加剤として、水酸化ナトリウムまたは水酸化カリウムを用いることで、例えば添加剤としてアンモニアを用いた場合に比べて処理排水の後処理が容易となる。
 また、添加剤として水酸化カリウムを用いることで、フッ素濃度の高い排水に対応することができる。また、水酸化ナトリウムは他の添加剤と比較して安価であるので、添加剤として水酸化ナトリウムを用いることで薬品コストを低減できるというメリットもある。
 また本発明の第2の態様は、前記した本発明の第1の態様(フッ素およびケイ素を含む排水の処理方法)における固液分離工程により得られた分離液に水溶性カルシウムを添加してフッ化カルシウムを回収するフッ化カルシウムの製造方法である。
 この構成によると、ケイ素が除去された排水(分離液)に水溶性カルシウムを添加してフッ化カルシウムを回収することにより、高純度のフッ化カルシウムとしてフッ素は高回収率で回収される。すなわち、フッ素およびケイ素を含む排水を高濃度のままで処理しても、高純度のフッ化カルシウムとしてフッ素を高回収率で回収することができる。
 また本発明の第3の態様は、フッ素およびケイ素を含む排水にアルカリを添加してケイ酸塩を析出させる析出手段と、前記析出手段の下流側に設置され、前記析出させたケイ酸塩を固液分離してフッ素を含む分離液を得る固液分離手段と、を備えるフッ素含有排水処理設備である。
 また本発明において、前記析出手段において、前記排水のpHが6以上に調整されることが好ましい。これにより、フッケイ酸(HSiF)の分解が促進され、ケイ酸塩の析出量が高まる。すなわち、ケイ素の除去率が高まる。
 さらに本発明において、前記固液分離手段の下流側に設置され、前記分離液に水溶性カルシウムを添加してフッ化カルシウムを回収するためのフッ化カルシウム回収手段をさらに備えることが好ましい。
 また、本発明者らは、前記課題を解決すべくさらに鋭意検討した結果、バイポーラ膜、陽イオン交換膜、および陰イオン交換膜を備えた電気透析装置に、固液分離後のフッ素を含む分離液をとおして当該分離液をフッ化水素を含む酸性溶液とアルカリ性溶液とに分離することにより、前記課題を解決できること(前記第二の目的を達成することができること)を見出し、この知見に基づき本発明が完成するに至ったのである。
 すなわち、本発明の第4の態様は、フッ素およびケイ素を含む排水からケイ酸塩を固液分離する固液分離工程と、前記固液分離工程により得られた分離液を、バイポーラ膜、陽イオン交換膜、および陰イオン交換膜を備えた電気透析装置に供給して当該分離液をフッ化水素を含む酸性溶液とアルカリ性溶液とに分離するフッ化水素分離工程と、を備えるフッ素およびケイ素を含む排水の処理方法である。
 この構成によると、固液分離工程により得られた分離液を、バイポーラ膜を具備してなる電気透析装置に供給して当該分離液をフッ化水素を含む酸性溶液とアルカリ性溶液とに分離することにより、フッ素を含む酸性溶液が得られるので、その後、フッ化カルシウムを回収する(フッ素の再資源化)にあたり、外部から酸(薬品)を添加しなくて済む、または酸(薬品)の添加量を減らすことができる。すなわち、フッ素およびケイ素を含む排水を処理してフッ化カルシウムを回収するにあたり、従来よりも薬品コストを低く抑えることができる。
 なお、前記した本発明の第1の態様に係るフッ素およびケイ素を含む排水の処理方法と、上記の本発明の第4の態様に係るフッ素およびケイ素を含む排水の処理方法とは、「フッ素およびケイ素を含む排水からケイ酸塩を固液分離する」という工程が共通している。すなわち、本発明の第1の態様に係るフッ素およびケイ素を含む排水の処理方法と、本発明の第4の態様に係るフッ素およびケイ素を含む排水の処理方法とは、「フッ素およびケイ素を含む排水からケイ酸塩を固液分離する」という工程をいずれも有する点で、同一の特別な技術的特徴を有する。
 また本発明において、前記排水は、酸性の排水であって、前記固液分離工程の前に、前記排水にアルカリを添加してケイ酸塩を析出させるアルカリ添加工程をさらに備えることが好ましい。本工程により析出させたケイ酸塩は、後の固液分離工程で排水から分離される。
 さらに本発明において、前記フッ化水素分離工程で分離されたアルカリ性溶液を、前記アルカリ添加工程に戻して前記アルカリ添加工程において前記排水に添加することが好ましい。
 この構成によると、フッ化水素分離工程で分離されたアルカリ性溶液をアルカリ添加工程に戻すことにより、当該アルカリ添加工程において新規に添加するアルカリの量を抑えることができる。
 さらに本発明において、前記アルカリは水酸化ナトリウムまたは水酸化カリウムであることが好ましい。
 フッ素およびケイ素を含む排水に添加する添加剤として、水酸化ナトリウムもしくは水酸化カリウムを用いることで、例えば添加剤としてアンモニアを用いた場合に比べて処理排水の後処理が容易となる。
 また、添加剤として水酸化カリウムを用いることで、フッ素濃度の高い排水に対応することができる。また、水酸化ナトリウムは他の添加剤と比較して安価であるので、添加剤として水酸化ナトリウムを用いることで薬品コストを低減できるというメリットもある。
 また本発明の第5の態様は、前記した本発明の第4の態様(フッ素およびケイ素を含む排水の処理方法)により得られたフッ化水素を含む酸性溶液に水溶性カルシウムを添加してフッ化カルシウムを回収するフッ化カルシウムの製造方法である。
 この構成によると、フッ化カルシウムを回収するにあたり、外部から酸(薬品)を添加しなくて済む、または酸(薬品)の添加量を減らすことができる。
 また本発明の第6の態様は、フッ素およびケイ素を含む排水中のケイ酸塩を固液分離してフッ素を含む分離液を得る固液分離手段と、前記固液分離手段の下流側に設置され、前記分離液をフッ化水素を含む酸性溶液とアルカリ性溶液とに分離する、バイポーラ膜、陽イオン交換膜、および陰イオン交換膜を備えた電気透析装置と、を備えるフッ素含有排水処理設備である。
 また本発明において、前記排水は、酸性の排水であって、前記固液分離手段の上流側に設置され、前記排水にアルカリを添加してケイ酸塩を析出させる析出手段をさらに備えることが好ましい。
 さらに本発明において、前記電気透析装置により分離されたアルカリ性溶液を前記析出手段に戻して前記排水に添加するためのアルカリ戻し手段をさらに備えることが好ましい。
 さらに本発明において、前記電気透析装置の下流側に設置され、前記フッ化水素を含む酸性溶液に水溶性カルシウムを添加してフッ化カルシウムを回収するためのフッ化カルシウム回収手段をさらに備えることが好ましい。
本発明の第1実施形態に係る排水処理方法を示す処理フロー図である。 第1工程における最適pH検討実験結果を示すグラフである。 第1工程における水酸化ナトリウム添加量確認実験結果を示すグラフである。 本発明の第2実施形態に係る排水処理方法を示す処理フロー図である。 図4に示す電気透析装置の内部構造を示すための図である。
 以下、本発明を実施するための形態について図面を参照しつつ説明する。図1は、本発明の第1実施形態に係る排水処理方法(フッ素およびケイ素を含む排水の処理方法)を示す処理フロー図である。なお、この例は、フッ素およびケイ素を含む排水(原水)が酸性の場合の処理例である。
(第1実施形態)
 図1に示すように、本実施形態に係る処理方法を実施するための排水処理設備100(フッ素含有排水処理設備)は、処理工程の上流側から順に、pH調整槽1、固液分離手段2、反応槽3、および沈殿槽4を備えている。pH調整槽1、固液分離手段2、反応槽3、および沈殿槽4は、それぞれ、相互に配管などで接続される。
 pH調整槽1は攪拌機1aを備え、反応槽3は攪拌機3aを備える。なお、pH調整槽1が本発明の析出手段に相当する。また、反応槽3と沈殿槽4とで、本発明のフッ化カルシウム回収手段を構成する。なお、高濃度のフッ素を含む排水中にケイ素が存在していると、酸性条件下ではフッ素はケイ素と反応してフッケイ酸(HSiF)として排水中に存在する。
(第1工程(アルカリ添加工程))
 第1工程では、フッ素およびケイ素を含む排水(原水)に水酸化ナトリウム(NaOH)を添加する。図1に示したように、フッ素およびケイ素を含む排水(原水)をpH調整槽1に供給するとともに、水酸化ナトリウム溶液をpH調整槽1に投入して、攪拌機1aで排水を攪拌する。
 ここで、フッ素およびケイ素は、排水中にフッケイ酸(HSiF)の状態で存在する。フッ素およびケイ素を含む排水に水酸化ナトリウム溶液を添加して攪拌すると、フッケイ酸(HSiF)は分解し、ケイ素はケイ酸ナトリウム(NaSiO)として排水中に析出する。
 なお、フッ素およびケイ素を含む排水に水酸化ナトリウムを添加することで、当該排水のpHを、6以上、好ましくは6.5以上7.5以下、より好ましくは約7に調整することが好ましい。
 排水のpHを6以上にすることで、フッケイ酸(HSiF)の分解が促進され、ケイ酸ナトリウムの析出量を高めることができる。排水のpHを6.5以上7.5以下にすることで、ケイ酸ナトリウムの析出量をより高めることができるとともに、無駄なアルカリ添加(フッケイ酸の分解に寄与しないアルカリ添加)を防止することができる。また、後述する第3工程では、pH調整剤により分離液のpHを酸性側に調整し、酸性条件下で分離液と水溶性カルシウムとを反応させる。これより、排水のpHを7.5以下にすることで、第3工程で反応槽3に添加するpH調整剤の量を低減することができる。また、排水のpHを約7にすることで、ケイ酸ナトリウムの析出量向上と、薬品(第1工程で添加するアルカリ、および第3工程で添加するpH調整剤)の節約とを両立させることができる。
 なお、フッ素およびケイ素を含む排水に添加するアルカリは、前記した水酸化ナトリウム(NaOH)ではなくアンモニア(アンモニア水またはアンモニアガス)であってもよいし、その他のアルカリでもよい。水酸化ナトリウム(NaOH)以外の好適な添加剤としては、例えば水酸化カリウム(KOH)を挙げることができる(後述する第2実施形態においても同様)。
 フッ素およびケイ素を含む排水にアンモニアを添加すると、フッケイ酸(HSiF)は、フッ化アンモニウム(NHF)とシリカ(SiO)とに分解する。ここで、フッ化アンモニウムの溶解度は、約849000mg/Lと高い。したがって、アンモニア添加によると、フッ素濃度の高い排水に対応することができる。
 また、フッ素およびケイ素を含む排水に水酸化カリウムを添加すると、フッケイ酸(HSiF)は、フッ化カリウム(KF)とケイ酸カリウム(KSiO)とに分解する。ここで、フッ化カリウムの溶解度は、約1017000mg/Lと非常に高い。したがって、水酸化カリウム添加によると、フッ素濃度のより高い排水に対応することができる。
 一方、本実施形態のように水酸化ナトリウム添加によると、フッ素(フッ化カルシウム)回収後の処理排水の後処理がアンモニア添加の場合に比して容易となる。ここで、水酸化ナトリウム添加によると、フッケイ酸(HSiF)は、フッ化ナトリウム(NaF)とケイ酸ナトリウム(NaSiO)とに分解する。フッ化ナトリウムの溶解度は、約41010mg/Lである。フッ化ナトリウムの溶解度から換算するに、フッ素の溶解度という観点からは、フッ素濃度が約18000mg/L以下の排水の場合には、添加するアルカリとして水酸化ナトリウムが適している。フッ素濃度が約18000mg/Lを超える排水を無希釈処理する場合には、添加するアルカリとして水酸化カリウムやアンモニアが適している。
(第2工程(固液分離工程))
 第2工程では、第1工程により析出したケイ酸ナトリウム(NaSiO)を固液分離する。図1に示すように、pH調整槽1で十分に攪拌された排水は、固液分離手段2に送られる。固液分離手段2により、排水中のケイ素はケイ酸ナトリウム(NaSiO)として系外に排出され、その後、例えば産廃処理されることになる。なお、フッ素は、分離液中に溶解している状態である。分離液は、後段の反応槽3に送られる。
 固液分離手段2としては、(1)ろ過装置、(2)遠心分離機、(3)遠心分離機+ろ過装置、(4)フィルタープレスなどを挙げることができる(後述する第2実施形態においても同様)。
 固液分離をろ過(ろ過装置)で行うことにより、安定した固液分離が可能となる。また、固液分離を遠心分離(遠心分離機)で行うことにより、ろ過(ろ過装置)の場合に比して安価な固液分離が可能となる。また、固液分離をフィルタープレスで行うことにより、容易に、安価に(ろ過(ろ過装置)の場合に比して)固液分離を行うことができ、かつ安定した固液分離が可能となる。
 また、固液分離を遠心分離(遠心分離機)で行った後、遠心上澄み液を静置して、その上澄み液を分離液として後段の反応槽3に送ってもよい。遠心上澄み液を静置することにより、遠心上澄み液中に含まれる遠心分離で除去されなかった低比重成分(NaSiO)が沈殿し、よりケイ酸ナトリウム(ケイ素)を除去することができる。
 また、固液分離をろ過(ろ過装置)で行う前に遠心分離(遠心分離機)で行ってもよい。遠心分離(遠心分離機)で固液分離を行った後、ろ過(ろ過装置)で固液分離することにより、ろ過装置の負荷を低減することができ、ろ過装置単体で固液分離する場合に比して、ろ過装置の維持管理費を抑えることができる。
 さらには、固液分離を遠心分離(遠心分離機)で行った後、遠心上澄み液を静置し、その上澄み液をさらにろ過して、そのろ過水を分離液として後段の反応槽3に送ってもよい。これにより、さらにNaSiOを除去することができる。
 以上説明した第1工程および第2工程が、フッ素およびケイ素を含む排水の前処理である。これらの前処理工程により、ケイ酸塩としてケイ素を排水から除去することができる。その結果、フッ素およびケイ素を含む排水を希釈処理することなく、すなわち、フッ素およびケイ素を含む排水を高濃度のままで処理しても、フッ化カルシウムとしてフッ素を高回収率で回収することができるようになる。フッ素回収の具体例については以下で説明する。
(第3工程(フッ化カルシウム回収工程))
 第3工程では、第2工程により得られた分離液に水溶性カルシウムを添加して、フッ化カルシウムとしてフッ素を回収する。図1に示すように、まず、固液分離手段2から反応槽3へ供給された分離液に、水溶性カルシウムおよびpH調整剤を添加して攪拌機3aで攪拌する。pH調整剤の添加により分離液のpHは下がる。このようにして酸性条件下で分離液と水溶性カルシウムとを反応させることにより、比較的粒径の大きなフッ化カルシウム(CaF)を析出(晶析)させることができる。pH調整剤としては、塩酸、硝酸、硫酸、酢酸などがある。
 次に、反応槽3の液体を沈殿槽4に送り、フッ化カルシウムを槽底に沈殿させた後、槽底からフッ化カルシウムを取り出す。沈殿槽4の上澄みは処理排水として後段の処理設備(不図示)に送られる。
 ここで、反応槽3へ供給された分離液に添加する水溶性カルシウムは、塩化カルシウム、硝酸カルシウム、酢酸カルシウム、硫酸カルシウム、および炭酸カルシウムなどがある(後述する第2実施形態においても同様)。これらの種類の水溶性カルシウムを用いることで酸性状態を維持したままカルシウム濃度を上げることができ、CaFの析出性能が上がる。なお、水酸化カルシウムなどのアルカリ性の水溶性カルシウムを用いることもできるが、酸性の水溶性カルシウムを用いる場合に比べて析出性能は低下する。
 なお、分離液からのフッ化カルシウムの取り出しは、上記実施形態のような方法ではなく、第2工程により得られた分離液に水溶性カルシウムを添加して攪拌した後、凝集沈殿処理を行ってもよい。凝集剤としては、例えば、ノニオン系高分子凝集剤、アニオン系高分子凝集剤などを挙げることができる。
 以上説明したように、前記第2工程において固液分離によりケイ酸塩としてケイ素を排水から除去した後、この第3工程においてケイ素が除去された排水(分離液)に水溶性カルシウムを添加してフッ化カルシウムを回収することにより、高純度のフッ化カルシウムとしてフッ素を高回収率で回収することができる。
(第1工程における最適pH検討実験結果)
 図2は、前記第1工程における最適pH検討実験結果を示すグラフである。具体的には、図2に示すグラフは、フッ素濃度が約8000mg/Lのフッ素およびケイ素を含む排水に、水酸化ナトリウム溶液を添加していったときの溶解性ケイ素濃度(S-Si)の変化をプロットしたものである。図2からわかるように、水酸化ナトリウム溶液を添加していき排水のpHを上げていくと、排水中の溶解性ケイ素濃度はまずは下がっていく。その後、いったん低下しなくなった後、溶解性ケイ素濃度は再び下がっていく傾向を示す。なお、pH6前後で曲線の傾きが変化していることがわかる。また、排水のpHが7付近を越えた後は、それ以上、溶解性ケイ素濃度は下がらない。逆に、pHが7付近を越えた後は若干ではあるがS-Siは上昇傾向を示している。なお、溶解性ケイ素濃度(S-Si)は、ケイ素がフッケイ酸(HSiF)の状態で排水中に存在することの指標となる。
 排水のpHを6以上にすることで、S-Siは400mg/L未満となっており(フッケイ酸(HSiF)の状態のケイ素が少ない)、フッケイ酸(HSiF)の分解が促進され、ケイ酸ナトリウムの析出量を高め得ることがわかる。また、排水のpHを6.5以上7.5以下にすることで、S-Siは200mg/L未満となっており、ケイ酸ナトリウムの析出量をより高めることができるとともに、無駄なアルカリ添加(フッケイ酸の分解に寄与しないアルカリ添加)を防止できることがわかる。さらに、排水のpHを約7にすることで、S-Siは約100mg/Lとなっており、ケイ酸ナトリウムの析出量向上と、添加する薬品の節約とを両立させ得ることがわかる。
(第1工程におけるNaOH添加量確認実験結果)
 図3は、前記第1工程における水酸化ナトリウム添加量確認実験結果を示すグラフである。ここでは、フッ素およびケイ素を含む排水に、どの程度の水酸化ナトリウム(NaOH)を添加すれば排水のpHを約7にすることができるか実験を行った。図3からわかるように、フッ素およびケイ素を含む排水のpHを約7にするためには、一価の陰イオンとなるフッ素と当量の一価の陽イオンとなるNa(ナトリウム)とが必要である。すなわち、フッ素に対して1当量のNaが必要である。なお、当量とはモル当量のことをいう。モル当量は、物質量(単位:モル[mol])の比を表すものである。
 また、図3より、排水に含まれるフッ素と当量以上の水酸化ナトリウム(アルカリ)を添加することにより、排水のpHは約6.5以上となることがわかる。これにより、フッケイ酸(HSiF)の分解が促進され、ケイ酸塩の析出量が高まる。
(アンモニアによるフッケイ酸(HSiF)分解実験結果)
 フッ素濃度が約8000mg/Lのフッ素およびケイ素を含む排水に水酸化ナトリウム(NaOH)を添加し、排水のpHを約7にすると、図2に示したように、排水中の溶解性ケイ素濃度(S-Si)は約100mg/Lであった。一方、上記フッ素およびケイ素を含む排水にアンモニアを添加し、排水のpHを約7にすると、排水中の溶解性ケイ素濃度(S-Si)は、水酸化ナトリウム添加の場合と同様に約100mg/Lであった。これより、アンモニア添加でフッケイ酸の分解を行っても、水酸化ナトリウム添加の場合と同等の分解効果が得られることがわかる。
(固液分離実験結果)
 固液分離方法として、ろ過、遠心分離、遠心分離+遠心上澄み液静置(遠心上澄み液を静置して、その上澄み液を分離液とする)、またはフィルタープレス、という方法をとった場合のそれぞれの固液分離実験結果を以下に記載する。
 まず、ろ過の場合、分離液の溶解性ケイ素濃度(S-Si)は約100mg/Lであった。また、遠心分離、遠心分離+遠心上澄み静置、およびフィルタープレスの場合、分離液のS-Siは、それぞれ、140~150mg/L、約110mg/L、および約100mg/Lであった。固液分離方法として、ろ過またはフィルタープレスを採用することにより、遠心分離よりも安定した固液分離が可能となる。なお、遠心分離を採用したとしても、その遠心上澄み液を静置することにより、ろ過(またはフィルタープレス)と同等の固液分離が可能となる。
(第2実施形態)
 図4は、本発明の第2実施形態に係る排水処理方法(フッ素およびケイ素を含む排水の処理方法)を示す処理フロー図である。この例は、フッ素およびケイ素を含む排水(原水)が酸性の場合の処理例である。
 なお、本実施形態の排水処理設備101を構成する機器について、前述した第1実施形態の排水処理設備100を構成する機器と同様の機器については同一の符号を付している。また、本実施形態の処理方法についても、第1実施形態の処理方法と同様の内容については、その説明を簡略または省略することとする。
 図4に示すように、本実施形態に係る処理方法を実施するための排水処理設備101(フッ素含有排水処理設備)は、処理工程の上流側から順に、pH調整槽1、固液分離手段2、電気透析装置5、反応槽3、および沈殿槽4を備えている。pH調整槽1、固液分離手段2、電気透析装置5、反応槽3、および沈殿槽4は、それぞれ、相互に配管などで接続される。なお、pH調整槽1が本発明の析出手段に相当する。また、反応槽3と沈殿槽4とで、本発明のフッ化カルシウム回収手段を構成する。
 本実施形態の排水処理設備101と前述した第1実施形態の排水処理設備100との主な相違点は、本実施形態では、固液分離手段2と反応槽3との間に電気透析装置5を設置している点である。
(第1工程(アルカリ添加工程))
 第1工程では、フッ素およびケイ素を含む排水(原水)に水酸化ナトリウム(NaOH)を添加する。図4に示したように、フッ素およびケイ素を含む排水(原水)をpH調整槽1に供給するとともに、水酸化ナトリウム溶液をpH調整槽1に投入して、攪拌機1aで排水を攪拌する。
 ここで、フッ素およびケイ素は、排水中にフッケイ酸(HSiF)の状態で存在する。フッ素およびケイ素を含む排水に水酸化ナトリウム溶液を添加して攪拌すると、フッケイ酸(HSiF)は分解し、ケイ素はケイ酸ナトリウム(NaSiO)として排水中に析出する。
 なお、第1実施形態の場合と同様、フッ素およびケイ素を含む排水に水酸化ナトリウムを添加することで、当該排水のpHを、6以上、好ましくは6.5以上7.5以下、より好ましくは約7に調整することが好ましい。
 排水のpHを6以上にすることで、フッケイ酸(HSiF)の分解が促進され、ケイ酸ナトリウムの析出量を高めることができる。排水のpHを6.5以上7.5以下にすることで、ケイ酸ナトリウムの析出量をより高めることができるとともに、無駄なアルカリ添加(フッケイ酸の分解に寄与しないアルカリ添加)を防止することができる。また、排水のpHを約7にすることで、ケイ酸ナトリウムの析出量向上と、薬品(第1工程で添加するアルカリ)の節約とを両立させることができる。
(第2工程(固液分離工程))
 第2工程では、第1工程により析出したケイ酸ナトリウム(NaSiO)を固液分離する。図4に示すように、pH調整槽1で十分に攪拌された排水は、固液分離手段2に送られる。固液分離手段2により、排水中のケイ素はケイ酸ナトリウム(NaSiO)として系外に排出され、その後、例えば産廃処理されることになる。なお、フッ素は、分離液中に溶解している状態である。分離液は、後段の電気透析装置5に送られる。
(第3工程(フッ化水素分離工程))
 第3工程では、第2工程により得られた分離液を電気透析装置5に供給して当該分離液中のフッ化ナトリウム(NaF)をフッ化水素(HF)と水酸化ナトリウム(NaOH)とに分離する。まず、電気透析装置5について、図5を参照しつつ説明する。
 電気透析装置5は、バイポーラ膜21、陽イオン交換膜22(カチオン交換膜)、および陰イオン交換膜23(アニオン交換膜)を具備してなる装置であって、これら3種類の膜により、脱塩室25、アルカリライン室24、酸ライン室26が区画形成される。また、これら3種類の膜を組み合せた単位をセルといい、電気透析装置5の内部構造は、このセルが多数組み合せられてフィルタープレスのように積層され、両端に電極が設けられた構造となっている。この電極より直流電流を通電して分離液中のフッ化ナトリウム(NaF)をフッ化水素(HF)と水酸化ナトリウム(NaOH)とに分離する。なお、バイポーラ膜21は、膜の片面が陽イオン交換膜の性質を有し、反対側の面が陰イオン交換膜の性質を有する膜である。
 また、電気透析装置5の酸ライン室26は、流路(例えば配管)を介して反応槽3に接続される。アルカリライン室24は、流路6(例えば配管)を介してpH調整槽1に接続される。脱塩室25は、排水ラインに接続される。
(酸・アルカリへの分離について)
 ここで、固液分離手段2から電気透析装置5へ供給された分離液(NaF)は、電気透析装置5の脱塩室25を流れる。このとき、陽イオンであるNaは、陽イオン交換膜22を介してアルカリライン室24へ移動し、陰イオンであるFは、陰イオン交換膜23を介して酸ライン室26へ移動する。
 一方、バイポーラ膜21に接液するアルカリライン室24・酸ライン室26を流れる水の一部がバイポーラ膜21内部に浸透し、HとOHとに電離し、Hは陰極側の酸ライン室26へ移動する。OHは、陽極側のアルカリライン室24へ移動する。
 そして、酸ライン室26においては、HとFとでHF(フッ化水素)が生成し、アルカリライン室24では、NaとOHとでNaOH(水酸化ナトリウム)が生成する。脱塩室25においては、NaおよびFがそれぞれアルカリライン室24、酸ライン室26に移動をすることでNaFの濃度が低くなり(脱塩されて)、分離液の脱塩液が脱塩室25から排出される。HF(フッ化水素)は、酸ライン室26から反応槽3へ送られ、NaOH(水酸化ナトリウム)は、アルカリライン室24からpH調整槽1へ戻される。
(アルカリの戻し)
 本実施形態では、電気透析装置5とpH調整槽1とは流路6で接続されている。流路6は、電気透析装置5により分離されたNaOHをpH調整槽1に戻して排水(原水)に添加するためのアルカリ戻し手段である。なお、流路6にはポンプ(アルカリ戻し手段の一構成機器)を設置することもある。このアルカリ戻し手段により、第3工程で分離されたNaOHを、第1工程に戻して排水(原水)に添加する。
 以上説明した第1工程~第3工程が、フッ素およびケイ素を含む排水の前処理である。上記した第3工程において、第2工程により得られた分離液を、バイポーラ膜21を具備してなる電気透析装置5に供給して当該分離液中のフッ化ナトリウム(NaF)をフッ化水素(酸)と水酸化ナトリウムとに分離することにより、フッ素を含む酸性溶液(フッ化水素酸溶液)が得られるので、その後、フッ化カルシウムを回収する(フッ素の再資源化)にあたり、酸(薬品)を添加しなくて済む。
 pH調整槽1に供給されるフッ素およびケイ素を含む排水(原水)中には、フッ素以外の酸(例えば、硝酸)が含まれていることがある。この場合、第1工程において使用するアルカリの量(薬品量)が膨大となることがある。しかしながら、本実施形態では、第3工程で電気透析装置5により分離されたNaOHをpH調整槽1に戻すことにより、新規に添加するアルカリの量を抑えることができている。
 また、電気透析装置5から排出される前処理排水(脱塩液)は塩濃度が低い。そのため、前処理排水の処理設備(不図示)の腐食を軽減でき、またその処理設備でのスケーリングを軽減できる。
(フッ素およびケイ素を含む排水(原水)がアルカリ性または中性の場合)
 フッ素およびケイ素を含む排水(原水)がアルカリ性または中性の場合、排水中のほとんどのケイ素は、ケイ酸ナトリウム(NaSiO)として排水中に析出した状態にある。この場合、前記した第1工程(アルカリ添加工程、装置としてはpH調整槽1)は特に設ける必要はない(フッ素およびケイ素を含む排水(原水)を直接、固液分離手段2に供給してもよい。)。そのため、電気透析装置5で回収したアルカリをpH調整槽1に戻す必要がなくなり、アルカリを使用する他の工程、例えばアルカリスクラバーで用いることができる。
 次に、フッ化カルシウム回収の具体例について説明する。
(第4工程(フッ化カルシウム回収工程))
 第4工程では、第3工程で分離されたフッ化水素酸溶液(HF)に水溶性カルシウムを添加して、フッ化カルシウムとしてフッ素を回収する。図4に示すように、まず、電気透析装置5から反応槽3へ供給されたフッ化水素酸溶液に、水溶性カルシウムを添加して攪拌機3aで攪拌する。ここで、フッ化水素酸溶液は酸性であり、酸性条件下で水溶性カルシウムと反応させることにより、比較的粒径の大きなフッ化カルシウム(CaF)を析出(晶析)させることができる。
 次に、反応槽3の液体を沈殿槽4に送り、フッ化カルシウムを槽底に沈殿させた後、槽底からフッ化カルシウムを取り出す。沈殿槽4の上澄みは処理排水として後段の処理設備(不図示)に送られる。
 なお、フッ化水素酸溶液(HF)からのフッ化カルシウムの取り出しは、上記実施形態のような方法ではなく、第3工程により得られたフッ化水素酸溶液(HF)に水溶性カルシウムを添加して攪拌した後、凝集沈殿処理を行ってもよい。凝集剤としては、例えば、ノニオン系高分子凝集剤、アニオン系高分子凝集剤などを挙げることができる。
(薬品使用量低減効果)
 (1)バイポーラ膜21を具備してなる電気透析装置5を備えた本実施形態の排水処理設備101と、(2)電気透析装置5を有さない第1実施形態の排水処理設備100(図1参照)と、で薬品の使用量がどの程度相違するか比較計算した。なお、図1に示した排水処理設備100は、電気透析装置5を有さない点(NaOHをpH調整槽1に戻せない点を含む)、塩酸などのpH調整剤を反応槽3に添加する点、で排水処理設備101と相違し、その他の構成は排水処理設備101と同一である。
 計算条件は、フッ素およびケイ素を含む排水(原水)の水量を10m、これに含まれるフッ素濃度を10%とした。なお、フッ素以外の酸は原水中に含まれていないこととした。
(アルカリ使用量について)
 本実施形態の排水処理設備101で使用する(必要となる)NaOH(水酸化ナトリウム)の量は、680kgであった。一方、第1実施形態の排水処理設備100で使用する(必要となる)NaOH(水酸化ナトリウム)の量は、2101kgであった。
(酸使用量について)
 本実施形態の排水処理設備101で使用する(必要となる)HCl(塩酸)の量は、0kgである。一方、第1実施形態の排水処理設備100で使用する(必要となる)HCl(塩酸)の量は、1900kgであった。
 この比較計算結果から明らかなように、本発明によると、薬品使用量を大幅に少なくすることができ、すなわち、薬品コストを低く抑えることができる。なお、処理する排水(原水)量が増えれば増えるほど、薬品コスト低減効果は大きくなる。
 以上、本発明の実施形態について説明したが、本発明は上述の実施の形態に限られるものではなく、特許請求の範囲に記載した限りにおいて様々に変更して実施することが可能なものである。
1:pH調整槽
2:固液分離手段
3:反応槽
4:沈殿槽
100:排水処理設備(フッ素含有排水処理設備)

Claims (17)

  1.  フッ素およびケイ素を含む排水にアルカリを添加するアルカリ添加工程と、
     前記アルカリ添加工程により析出したケイ酸塩を固液分離する固液分離工程と、
     を備える、フッ素およびケイ素を含む排水の処理方法。
  2.  前記アルカリ添加工程において、前記排水のpHを6以上に調整することを特徴とする、請求項1に記載のフッ素およびケイ素を含む排水の処理方法。
  3.  前記アルカリ添加工程において、前記排水に含まれるフッ素と当量以上のアルカリを添加することを特徴とする、請求項1または2に記載のフッ素およびケイ素を含む排水の処理方法。
  4.  前記アルカリは水酸化ナトリウムまたは水酸化カリウムであることを特徴とする、請求項1~3のいずれかに記載のフッ素およびケイ素を含む排水の処理方法。
  5.  請求項1~4のいずれかに記載のフッ素およびケイ素を含む排水の処理方法における固液分離工程により得られた分離液に水溶性カルシウムを添加してフッ化カルシウムを回収する、フッ化カルシウムの製造方法。
  6.  フッ素およびケイ素を含む排水にアルカリを添加してケイ酸塩を析出させる析出手段と、
     前記析出手段の下流側に設置され、前記析出させたケイ酸塩を固液分離してフッ素を含む分離液を得る固液分離手段と、
     を備える、フッ素含有排水処理設備。
  7.  前記析出手段において、前記排水のpHが6以上に調整されることを特徴とする、請求項6に記載のフッ素含有排水処理設備。
  8.  前記固液分離手段の下流側に設置され、前記分離液に水溶性カルシウムを添加してフッ化カルシウムを回収するためのフッ化カルシウム回収手段をさらに備えることを特徴とする、請求項6または7に記載のフッ素含有排水処理設備。
  9.  フッ素およびケイ素を含む排水からケイ酸塩を固液分離する固液分離工程と、
     前記固液分離工程により得られた分離液を、バイポーラ膜、陽イオン交換膜、および陰イオン交換膜を備えた電気透析装置に供給して当該分離液をフッ化水素を含む酸性溶液とアルカリ性溶液とに分離するフッ化水素分離工程と、
     を備える、フッ素およびケイ素を含む排水の処理方法。
  10.  前記排水は、酸性の排水であって、
     前記固液分離工程の前に、前記排水にアルカリを添加してケイ酸塩を析出させるアルカリ添加工程をさらに備えることを特徴とする、請求項9に記載のフッ素およびケイ素を含む排水の処理方法。
  11.  前記フッ化水素分離工程で分離されたアルカリ性溶液を、前記アルカリ添加工程に戻して前記アルカリ添加工程において前記排水に添加することを特徴とする、請求項10に記載のフッ素およびケイ素を含む排水の処理方法。
  12.  前記アルカリは水酸化ナトリウムまたは水酸化カリウムであることを特徴とする、請求項10または11に記載のフッ素およびケイ素を含む排水の処理方法。
  13.  請求項9~12のいずれかに記載のフッ素およびケイ素を含む排水の処理方法により得られた前記フッ化水素を含む酸性溶液に水溶性カルシウムを添加してフッ化カルシウムを回収する、フッ化カルシウムの製造方法。
  14.  フッ素およびケイ素を含む排水中のケイ酸塩を固液分離してフッ素を含む分離液を得る固液分離手段と、
     前記固液分離手段の下流側に設置され、前記分離液をフッ化水素を含む酸性溶液とアルカリ性溶液とに分離する、バイポーラ膜、陽イオン交換膜、および陰イオン交換膜を備えた電気透析装置と、
     を備える、フッ素含有排水処理設備。
  15.  前記排水は、酸性の排水であって、
     前記固液分離手段の上流側に設置され、前記排水にアルカリを添加してケイ酸塩を析出させる析出手段をさらに備えることを特徴とする、請求項14に記載のフッ素含有排水処理設備。
  16.  前記電気透析装置により分離されたアルカリ性溶液を前記析出手段に戻して前記排水に添加するためのアルカリ戻し手段をさらに備えることを特徴とする、請求項15に記載のフッ素含有排水処理設備。
  17.  前記電気透析装置の下流側に設置され、前記フッ化水素を含む酸性溶液に水溶性カルシウムを添加してフッ化カルシウムを回収するためのフッ化カルシウム回収手段をさらに備えることを特徴とする、請求項14~16のいずれかに記載のフッ素含有排水処理設備。
PCT/JP2010/051864 2009-02-13 2010-02-09 フッ素およびケイ素を含む排水の処理方法、フッ化カルシウムの製造方法、およびフッ素含有排水処理設備 WO2010092946A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN2010800071045A CN102307816A (zh) 2009-02-13 2010-02-09 含氟和硅的废水的处理方法、氟化钙的制造方法和含氟废水处理设备
CA2749421A CA2749421A1 (en) 2009-02-13 2010-02-09 Method for processing waste water containing fluorine and silicon, method for producing calcium fluoride, and facility for processing fluorine-containing waste water
EP10741223.1A EP2397444B1 (en) 2009-02-13 2010-02-09 Method and facility for processing waste water containing fluorine and silicon
US13/147,815 US20110293506A1 (en) 2009-02-13 2010-02-09 Method for processing waste water containing fluorine and silicon, method for producing calcium fluoride, and facility for processing fluorine-containing waste water

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
JP2009-030867 2009-02-13
JP2009030867 2009-02-13
JP2009-030868 2009-02-13
JP2009030868 2009-02-13
JP2009215695A JP5661265B2 (ja) 2009-02-13 2009-09-17 フッ素の再資源化方法、およびフッ素含有排水処理設備
JP2009-215696 2009-09-17
JP2009-215695 2009-09-17
JP2009215696A JP5661266B2 (ja) 2009-02-13 2009-09-17 フッ素およびケイ素を含む排水の処理方法、およびフッ素含有排水処理設備
JP2009288060A JP2011125812A (ja) 2009-12-18 2009-12-18 フッ素およびケイ素を含む排水の処理方法、フッ化カルシウムの製造方法、およびフッ素含有排水処理設備
JP2009-288060 2009-12-18

Publications (1)

Publication Number Publication Date
WO2010092946A1 true WO2010092946A1 (ja) 2010-08-19

Family

ID=44515310

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/051864 WO2010092946A1 (ja) 2009-02-13 2010-02-09 フッ素およびケイ素を含む排水の処理方法、フッ化カルシウムの製造方法、およびフッ素含有排水処理設備

Country Status (6)

Country Link
EP (1) EP2397444B1 (ja)
KR (1) KR20110115151A (ja)
CN (1) CN102307816A (ja)
CA (1) CA2749421A1 (ja)
TW (1) TWI534092B (ja)
WO (1) WO2010092946A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102225814A (zh) * 2011-04-13 2011-10-26 黑龙江省牡丹江农垦奥宇石墨深加工有限公司 含氟废水处理装置及其处理方法
JP2012055841A (ja) * 2010-09-09 2012-03-22 Sasakura Engineering Co Ltd 酸の回収方法
WO2013153847A1 (ja) * 2012-04-13 2013-10-17 セントラル硝子株式会社 フッ化カルシウムの製造方法及び装置
WO2013153846A1 (ja) * 2012-04-13 2013-10-17 セントラル硝子株式会社 フッ化カルシウムの製造方法及び装置
CN110304765A (zh) * 2019-07-25 2019-10-08 鞍钢贝克吉利尼水处理有限公司 处理炼钢含氟浊环水的快速沉降脱氟剂及制备、使用方法
CN112159033A (zh) * 2020-09-16 2021-01-01 天津市市政工程设计研究院 一种光伏废水深度处理系统及应用方法
CN113023952A (zh) * 2021-03-24 2021-06-25 福建省长汀金龙稀土有限公司 一种稀土熔盐电解含氟废水处理方法
CN117228871A (zh) * 2023-09-08 2023-12-15 北京神舟茂华环保科技有限公司 一种含氟废水中氟离子选择性分离及全组分回收的方法

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201305064A (zh) * 2011-07-26 2013-02-01 Mega Union Technology Inc 含氟廢液的回收處理方法及其設備
CN102745780A (zh) * 2012-07-24 2012-10-24 天津城市建设学院 一种电化学电解除氟装置和方法
US20140251806A1 (en) * 2013-03-07 2014-09-11 Siemens Energy, Inc. Water treatment arrangement for steam-assisted oil production operation
CN103232053B (zh) * 2013-05-17 2014-12-03 北方民族大学 用处理工业含氟废水产生的底泥生产氟化钙的方法
CN105358491B (zh) 2013-07-05 2018-06-08 三菱重工业株式会社 水处理方法以及水处理系统
CN103435190A (zh) * 2013-09-02 2013-12-11 苏州富奇诺水治理设备有限公司 一种高氟、氯含量废水的处理方法
CN104276687B (zh) * 2013-09-10 2016-08-17 徐磊 一种回收再利用肠衣加工废液中动物蛋白饲料的方法
TWI552964B (zh) * 2014-01-28 2016-10-11 Yi-Ting Liu Wastewater treatment with hydrofluoric acid
TWI552963B (zh) * 2014-01-28 2016-10-11 Yi-Ting Liu Waste acid solution treatment method
CN104973712A (zh) * 2014-10-23 2015-10-14 铜陵县明晋生产力促进中心有限公司 一种磷石膏废水的处理方法和设备
CN104445730B (zh) * 2014-11-21 2017-02-08 贵州开磷集团股份有限公司 一种含磷氟废水的综合利用方法
CN105776781A (zh) * 2016-03-30 2016-07-20 山东辰宇稀有材料科技有限公司 一种降低光伏行业污泥中氟硅酸盐的方法
CN106277005B (zh) * 2016-08-27 2017-08-01 盛隆资源再生(无锡)有限公司 一种从氟化钙污泥资源中回收冰晶石、碳酸钙和硫酸钠的方法
TWI625427B (zh) * 2017-03-07 2018-06-01 Feng wei lun Processing system and method for etching high concentration waste liquid for recycling
CN110318066A (zh) * 2019-06-20 2019-10-11 青岛鼎海电化学科技有限公司 一种四烷基氢氧化铵的制备方法
CN113353940B (zh) * 2021-08-10 2021-11-26 清大国华环境集团股份有限公司 一种集成电路行业含氟废液资源化利用的方法
CN114873784A (zh) * 2022-05-07 2022-08-09 苏州湛清环保科技有限公司 含氟废水资源化处理工艺方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS516351A (en) * 1974-07-08 1976-01-19 Tore Eng Co Ltd Datsuennoshukusuino shorihoho
JPH09176874A (ja) * 1995-12-21 1997-07-08 Shinko Pantec Co Ltd 硝フッ酸廃液等の酸混合液の再生回収処理方法
JP3240669B2 (ja) 1992-02-24 2001-12-17 栗田工業株式会社 フッ素及びケイ素を含む排水の処理法
JP2003236564A (ja) * 2002-02-15 2003-08-26 Sumitomo Metal Ind Ltd 金属フッ化物を含有する水溶液の処理方法
JP2009196858A (ja) * 2008-02-22 2009-09-03 Ebara Corp 合成蛍石回収方法及び回収装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3725265A (en) * 1971-01-22 1973-04-03 Grace W R & Co Purification of waste water
US5876685A (en) * 1996-09-11 1999-03-02 Ipec Clean, Inc. Separation and purification of fluoride from industrial wastes

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS516351A (en) * 1974-07-08 1976-01-19 Tore Eng Co Ltd Datsuennoshukusuino shorihoho
JP3240669B2 (ja) 1992-02-24 2001-12-17 栗田工業株式会社 フッ素及びケイ素を含む排水の処理法
JPH09176874A (ja) * 1995-12-21 1997-07-08 Shinko Pantec Co Ltd 硝フッ酸廃液等の酸混合液の再生回収処理方法
JP2003236564A (ja) * 2002-02-15 2003-08-26 Sumitomo Metal Ind Ltd 金属フッ化物を含有する水溶液の処理方法
JP2009196858A (ja) * 2008-02-22 2009-09-03 Ebara Corp 合成蛍石回収方法及び回収装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2397444A4

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012055841A (ja) * 2010-09-09 2012-03-22 Sasakura Engineering Co Ltd 酸の回収方法
CN102225814A (zh) * 2011-04-13 2011-10-26 黑龙江省牡丹江农垦奥宇石墨深加工有限公司 含氟废水处理装置及其处理方法
CN102225814B (zh) * 2011-04-13 2012-11-14 黑龙江省牡丹江农垦奥宇石墨深加工有限公司 含氟废水处理装置及其处理方法
WO2013153847A1 (ja) * 2012-04-13 2013-10-17 セントラル硝子株式会社 フッ化カルシウムの製造方法及び装置
WO2013153846A1 (ja) * 2012-04-13 2013-10-17 セントラル硝子株式会社 フッ化カルシウムの製造方法及び装置
CN110304765A (zh) * 2019-07-25 2019-10-08 鞍钢贝克吉利尼水处理有限公司 处理炼钢含氟浊环水的快速沉降脱氟剂及制备、使用方法
CN112159033A (zh) * 2020-09-16 2021-01-01 天津市市政工程设计研究院 一种光伏废水深度处理系统及应用方法
CN113023952A (zh) * 2021-03-24 2021-06-25 福建省长汀金龙稀土有限公司 一种稀土熔盐电解含氟废水处理方法
CN117228871A (zh) * 2023-09-08 2023-12-15 北京神舟茂华环保科技有限公司 一种含氟废水中氟离子选择性分离及全组分回收的方法
CN117228871B (zh) * 2023-09-08 2024-04-16 北京神舟茂华环保科技有限公司 一种含氟废水中氟离子选择性分离及全组分回收的方法

Also Published As

Publication number Publication date
TW201041809A (en) 2010-12-01
EP2397444B1 (en) 2016-04-20
EP2397444A1 (en) 2011-12-21
CN102307816A (zh) 2012-01-04
TWI534092B (zh) 2016-05-21
EP2397444A4 (en) 2012-10-03
KR20110115151A (ko) 2011-10-20
CA2749421A1 (en) 2010-08-19

Similar Documents

Publication Publication Date Title
WO2010092946A1 (ja) フッ素およびケイ素を含む排水の処理方法、フッ化カルシウムの製造方法、およびフッ素含有排水処理設備
CN106746113B (zh) 一种光伏行业含氟废水资源化及回用的工艺和系统
JP4747216B2 (ja) フッ素およびケイ素を含む排水の前処理方法、およびフッ素およびケイ素を含む排水の処理設備
JP2019533628A (ja) リチウム化合物の製造方法
WO2015198438A1 (ja) フッ化物含有水の処理方法及び処理装置
CN110668629A (zh) 一种电解法制三氟化氮工艺产生的电解废渣废水的处理方法
US20110293506A1 (en) Method for processing waste water containing fluorine and silicon, method for producing calcium fluoride, and facility for processing fluorine-containing waste water
WO2016029613A1 (zh) 一种脱硫铅膏滤液的净化方法及装置
JP2006061754A (ja) フッ素含有廃水の処理方法およびフッ素含有廃水の処理設備
JP5661265B2 (ja) フッ素の再資源化方法、およびフッ素含有排水処理設備
JP5692278B2 (ja) フッ化物含有水の処理方法及び処理装置
CN110294560A (zh) 一种薄膜太阳能电池生产废水处理方法
JP2011125812A (ja) フッ素およびケイ素を含む排水の処理方法、フッ化カルシウムの製造方法、およびフッ素含有排水処理設備
JP6079524B2 (ja) 再生フッ化カルシウムの製造方法
JP5661266B2 (ja) フッ素およびケイ素を含む排水の処理方法、およびフッ素含有排水処理設備
JP5205089B2 (ja) 廃棄電解液の処理方法
JP5464374B2 (ja) フッ素およびケイ素を含む排水の前処理方法、およびフッ素およびケイ素を含む排水の処理設備
JP3946322B2 (ja) アルミニウムによって汚染された塩酸廃液及び硫酸廃液の処理方法
CN114455750A (zh) 一种用于高盐难降解废水处理的方法及系统
CN216106483U (zh) 一种火电厂脱硫废水资源化利用系统
CN219885842U (zh) 一种金属表面酸洗废水处理系统
JP2018195707A (ja) 水酸化テトラメチルアンモニウム(tmah)の回収方法
CN113105013B (zh) 一种锌冶炼电解液中氟氯的脱除方法
CN107857331B (zh) 一种利用固体泡沫法回收去除废水中铜离子的方法
TWI639561B (zh) 含氟化物水的處理方法及處理裝置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080007104.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10741223

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2880/KOLNP/2011

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2749421

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2010741223

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13147815

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20117020368

Country of ref document: KR

Kind code of ref document: A