WO2010092749A1 - 有機elディスプレイおよびその製造方法 - Google Patents

有機elディスプレイおよびその製造方法 Download PDF

Info

Publication number
WO2010092749A1
WO2010092749A1 PCT/JP2010/000337 JP2010000337W WO2010092749A1 WO 2010092749 A1 WO2010092749 A1 WO 2010092749A1 JP 2010000337 W JP2010000337 W JP 2010000337W WO 2010092749 A1 WO2010092749 A1 WO 2010092749A1
Authority
WO
WIPO (PCT)
Prior art keywords
organic
color filter
counter electrode
transparent counter
laser
Prior art date
Application number
PCT/JP2010/000337
Other languages
English (en)
French (fr)
Inventor
宮澤和利
中橋昭久
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to CN201080003173.9A priority Critical patent/CN102210193B/zh
Priority to EP10741029.2A priority patent/EP2378841B1/en
Priority to JP2010521249A priority patent/JP4673447B2/ja
Priority to US13/133,352 priority patent/US8772052B2/en
Publication of WO2010092749A1 publication Critical patent/WO2010092749A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/17Passive-matrix OLED displays
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/10Apparatus or processes specially adapted to the manufacture of electroluminescent light sources
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/26Light sources with substantially two-dimensional radiating surfaces characterised by the composition or arrangement of the conductive material used as an electrode
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/26Light sources with substantially two-dimensional radiating surfaces characterised by the composition or arrangement of the conductive material used as an electrode
    • H05B33/28Light sources with substantially two-dimensional radiating surfaces characterised by the composition or arrangement of the conductive material used as an electrode of translucent electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/81Anodes
    • H10K50/818Reflective anodes, e.g. ITO combined with thick metallic layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/38Devices specially adapted for multicolour light emission comprising colour filters or colour changing media [CCM]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/302Details of OLEDs of OLED structures
    • H10K2102/3023Direction of light emission
    • H10K2102/3026Top emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/82Cathodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/82Cathodes
    • H10K50/828Transparent cathodes, e.g. comprising thin metal layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/861Repairing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S438/00Semiconductor device manufacturing: process
    • Y10S438/94Laser ablative material removal

Definitions

  • the present invention relates to an organic EL display and a manufacturing method thereof.
  • organic EL displays are expected as next-generation flat display panels.
  • the organic EL display is self-luminous and has no viewing angle dependency, and has advantages such as high contrast, thinness, light weight, and low power consumption.
  • the organic EL element constituting the organic EL display basically has a pixel electrode and a counter electrode, and an organic layer disposed between the pixel electrode and the counter electrode.
  • the organic layer includes a light emitting layer containing phosphor molecules, an electron conductive thin film and a hole conductive thin film sandwiching the light emitting layer.
  • the method for manufacturing an organic EL display includes a step of laminating an organic layer or a thin film electrode having a thickness of several tens of nanometers. Although these lamination processes are performed in a clean room, foreign substances such as particles cannot be completely removed from the equipment for forming the organic layer and the surrounding environment. Accordingly, foreign matter may be mixed into the organic layer in the process of manufacturing the organic EL display.
  • a laser repair method is known as a method for stopping leakage of current through a foreign substance mixed in an organic layer.
  • the laser repair method is a method for preventing leakage of current through foreign matter by irradiating a portion of the organic layer in which foreign matter is mixed (hereinafter also referred to as “defect portion”) with laser light (for example, Patent Document 1). To 12).
  • Patent Document 1 describes a method in which a pixel electrode in a defective portion of an organic EL element having a color filter is irradiated with laser light to cause multiphoton absorption only on the pixel electrode. As a result, only the pixel electrode in the defective portion is destroyed (insulated) without destroying other members such as a color filter, and current leakage between the pixel electrode and the counter electrode through which foreign matter has passed can be suppressed. it can.
  • Patent Documents 2 to 5 disclose methods of preventing current leakage due to foreign matter by removing either the pixel electrode or the counter electrode in the defective portion by laser irradiation.
  • Patent Document 6 discloses a method of insulating an electrode in a defective portion by oxidizing the electrode in the defective portion by laser irradiation. By insulating the defective portion, current leakage due to foreign matter can be prevented.
  • Patent Documents 7 to 9 disclose a method of insulating a foreign substance in a defective portion by laser irradiation and preventing current leakage due to the foreign substance.
  • Patent Documents 10 to 12 disclose a laser repair device having a control unit and a beam generator. By irradiating the defect part in the organic EL display panel whose position is specified by the control part with the beam from the beam generator, the defect part can be insulated and repaired.
  • An object of the present invention is to provide a method for manufacturing an organic EL display in which a decrease in luminance at a defective portion is suppressed.
  • the first of the present invention relates to a method for manufacturing an organic EL display shown below.
  • the second aspect of the present invention relates to the organic EL display shown below.
  • An organic EL display having a substrate and organic EL elements arranged in a matrix on the substrate, wherein each of the organic EL elements includes a pixel electrode disposed on the substrate, and the pixel electrode
  • An organic layer disposed on the organic layer, a transparent counter electrode disposed on the organic layer, a protective layer disposed on the transparent counter electrode, and a color filter disposed on the protective layer.
  • the EL element has a defect in the organic layer, the region on the defect of the transparent counter electrode is destroyed, and the region on the defect in the color filter is removed.
  • Organic EL display having a substrate and organic EL elements arranged in a matrix on the substrate, wherein each of the organic EL elements includes a pixel electrode disposed on the substrate, and the pixel electrode
  • An organic layer disposed on the organic layer, a transparent counter electrode disposed on the organic layer, a protective layer disposed on the transparent counter electrode, and a color filter disposed on
  • the color filter on the non-light-emitting region is also removed, it is possible to suppress a decrease in luminance in the non-light-emitting region and suppress uneven luminance in the organic EL display. Yes (described later).
  • the figure which shows the transparent counter electrode destroyed by laser irradiation The figure which shows the state which the organic electroluminescent display of this invention light-emitted Sectional drawing of the organic light emitting element contained in the organic electroluminescent display of this invention
  • the manufacturing method of the organic EL display of the present invention is as follows: 1) First step of preparing an organic EL panel, 2) Defect in an organic layer in an organic EL element constituting the organic EL panel 3) a third step of irradiating a region on the defective portion of the transparent counter electrode with laser light through a color filter and destroying the transparent counter electrode in the irradiated region. Each step will be described in detail below.
  • an organic EL panel is prepared.
  • the organic EL panel prepared in the first step is a top emission type.
  • the organic EL panel has a substrate and organic EL elements arranged in a matrix on the substrate.
  • Each organic EL element includes a pixel electrode disposed on a substrate, an organic layer disposed on the pixel electrode, a transparent counter electrode disposed on the organic layer, and a protective layer disposed on the transparent counter electrode. And a color filter disposed on the protective layer.
  • the present invention is particularly effective when manufacturing a large-screen organic EL display.
  • foreign matter such as particles may be mixed in the organic layer, so that it is necessary to prevent current leakage through the defective portion according to the present invention.
  • the organic layer in the organic EL element may be formed by a vapor deposition method or a coating method. From the viewpoint of increasing the screen size of the organic EL display, it is preferable to form the organic layer by a coating method.
  • the coating method include ink jet, dispenser, nozzle coating, spin coating, intaglio printing, letterpress printing, and the like.
  • the organic layer is formed by a vapor deposition method, foreign substances such as particles may be mixed from the metal mask. Therefore, even when the organic layer is formed by a vapor deposition method, it is effective to prevent current leakage through the defect portion according to the present invention.
  • Organic EL elements included in an organic EL panel are manufactured by laminating electrodes and organic layer thin films. Each thin film is required to have a film thickness of several tens of nm.
  • the management of the manufacturing environment and the maintenance of the manufacturing equipment are usually performed, but foreign matter may be mixed in the organic layer (see FIG. 3).
  • defect portion a method for preventing current leakage through the organic layer region (hereinafter also referred to as “defect portion”) mixed with such foreign matter will be described.
  • a defective portion in which foreign matters such as particles are mixed in the organic layer in the organic EL element is detected.
  • the method for detecting the defective portion is not particularly limited, and there are a method by appearance inspection and a method for detecting leak light emission by applying a reverse bias voltage or a forward bias voltage to the organic EL display.
  • the region on the defective portion specified in the second step in the transparent counter electrode is irradiated with laser light through a color filter, and the region on the defective portion in the transparent counter electrode is destroyed (hereinafter simply referred to as “transparent”). This is also referred to as “destructing the counter electrode”.
  • irradiating the transparent counter electrode with laser means irradiating the transparent counter electrode with laser light while focusing.
  • “Destroy the transparent counter electrode” means to destroy the function of the transparent counter electrode (that is, to prevent current from flowing).
  • FIG. 1 shows a transparent counter electrode destroyed by laser irradiation.
  • 13 indicates a transparent counter electrode
  • 14 indicates an organic layer.
  • “destroy the transparent counter electrode” means that a space X is formed between the transparent counter electrode 13 and the organic layer 14 in the region irradiated with the laser beam (FIG. 1A) or the laser beam.
  • the transparent counter electrode 13 in the region irradiated with the laser beam is denatured to form a crack (FIG. 1B), or the transparent counter electrode 13 in the region irradiated with the laser beam is crushed (FIG. 1C), and the laser beam is transmitted through the defect portion. This means that no current flows through the transparent counter electrode 13 at the irradiated location.
  • the protective layer is provided on the transparent counter electrode, when the transparent counter electrode is broken, the fragments of the transparent counter electrode are not scattered. Therefore, the transparent counter electrode fragments generated by the destruction of the transparent counter electrode do not cause further defects of the organic EL display.
  • the irradiation area of the laser beam on the transparent counter electrode is preferably 20 to 50% larger than the area of the defect portion.
  • the irradiation area of the laser light can be adjusted by a slit installed in the laser.
  • the slit is a member for freely changing the size of the laser beam spot in the vertical and horizontal directions. By using the slit, the irradiation area of the laser beam can be appropriately adjusted according to the area of the defect portion.
  • the laser light source which emits the laser beam to irradiate is not specifically limited, For example, it is a flash lamp excitation Nd: YAG laser.
  • Nd YAG laser
  • the wavelength of the laser light can be selected from a fundamental wavelength of 1064 nm, a second harmonic of 532 nm, a third harmonic of 355 nm, and a fourth harmonic of 266 nm. .
  • the wavelength of the laser beam irradiated to the transparent counter electrode is not particularly limited, but is preferably 1100 nm or less, and particularly preferably 400 nm or less. That is, in the case of an Nd: YAG laser, the third harmonic or the fourth harmonic may be used. This is because when the wavelength is 400 nm or less, the influence on the organic layer under the transparent counter electrode is small.
  • the energy of the laser beam on the transparent counter electrode is selected according to the material and thickness of the transparent counter electrode. For example, when using a Nd: YAG laser to destroy a transparent counter electrode (transparent counter electrode material: ITO, transparent counter electrode thickness: 100 nm), it is necessary to consider the influence of the color filter described later on the laser light. Then, it is preferable that the wavelength of the laser beam is the third harmonic (355 nm), and the irradiation energy density of the laser is 0.05 to 0.15 J / cm 2 .
  • the region on the defective portion of the transparent counter electrode is destroyed and current leakage through the defective portion is prevented, so that the organic EL element is repaired without damaging the organic layer or the TFT. can do.
  • the manufacturing method of the organic EL display of the present invention further includes a step of removing a region on the defective portion of the organic layer detected in the second step of the color filter (hereinafter simply referred to as “removing the color filter”). It is characterized by that.
  • the step of removing the color filter (hereinafter also referred to as “filter removal step”) may be the same step as the third step described above (see the first embodiment), or a step different from the third step (implementation). (See Forms 2 and 3).
  • the transparent counter electrode is destroyed and the color filter is also removed simultaneously by the laser light irradiation.
  • the filter removal in the filter removal step is performed by irradiating a region on the defective portion of the color filter with laser light.
  • the filter removal step may be before or after the third step, but is preferably before the third step.
  • irradiating a color filter with laser light means that the color filter is focused and irradiated with laser light.
  • removing the color filter means that the color filter in the region irradiated with the laser light is completely removed to form a through mark in the color filter (see Embodiments 1 and 2).
  • the surface of the color filter in the region irradiated with the laser light may be partially removed to make the color filter thinner (see Embodiment 3).
  • the color filter thinner, for example, it is sufficient to irradiate a laser beam having a wavelength that easily passes through the color filter or to lower the irradiation energy density of the laser, compared to the case of forming a through mark in the color filter.
  • the irradiation area of the laser beam on the color filter is preferably 30 to 60% larger than the area of the defective part.
  • the wavelength of the laser light applied to the transparent counter electrode in the third step is when the filter removal step is the same step as the third step (see Embodiment 1) or when the filter removal step is a step different from the third step (implementation). 2) and 3)).
  • the wavelength of the laser beam irradiated to the transparent counter electrode for each case will be described.
  • the filter removal step and the third step are the same step
  • the laser light applied to the transparent counter electrode has a wavelength that does not pass through the color filter. Is preferred. This is because when the filter removal step and the third step are the same step, a part of the laser light irradiated to the transparent counter electrode needs to be absorbed by the color filter.
  • the color filter has different light transmittance depending on its color. For example, a red color filter has a high transmittance of light having a wavelength of 600 nm or more; a green color filter has a high transmittance of light having a wavelength of 480 to 580 nm and a wavelength of 790 nm or more; a blue color filter has a wavelength of 430 to 500 nm and The transmittance of light of 850 nm or more is high.
  • the wavelength of the laser beam when the color filter on the defect portion is red, the wavelength of the laser beam is set to less than 600 nm; when the color filter on the defect portion is green, the wavelength of the laser beam is set to less than 480 nm or more than 580 nm to less than 790 nm.
  • the wavelength of the laser light may be set to less than 430 nm or more than 500 nm to less than 850 nm.
  • the laser light is transparent without affecting the color filter. Since it is required to destroy the counter electrode, it preferably has a wavelength that transmits the color filter. Therefore, when the color filter on the defective portion is red, the wavelength of the laser beam is set to 600 nm or more; when the color filter on the defective portion is green, the wavelength of the laser beam is set to 480 to 580 nm or 790 nm or more. However, when the color filter on the defective portion is blue, the wavelength of the laser beam may be set to 430 to 500 nm or 850 nm or more.
  • the wavelength of the laser beam can be arbitrarily set.
  • the wavelength of the laser light is preferably set to 400 nm or less, which has little influence on the organic layer.
  • the defective portion can be made a non-light emitting region without damaging the organic layer, power consumption is reduced and luminous efficiency is increased. Further, since the color filter on the defective portion is removed, the luminance of the non-light emitting region is increased, and the luminance unevenness in the organic EL display can be reduced.
  • the organic EL display of the present invention is an organic EL display manufactured by the above-described method for manufacturing an organic EL display of the present invention.
  • the organic EL display of the present invention is a top emission type, and has a substrate and organic EL elements arranged in a matrix on the substrate.
  • An organic EL element includes a pixel electrode disposed on a substrate, an organic layer disposed on the pixel electrode, a transparent counter electrode disposed on the organic layer, a protective layer disposed on the transparent counter electrode, and a protective layer. It has a color filter arranged. Further, a sealing glass may be further disposed on the color filter.
  • the substrate is an insulating plate. Further, a thin film transistor (TFT) may be built in the substrate.
  • TFT thin film transistor
  • the pixel electrode is a conductive member disposed on the substrate.
  • the pixel electrode normally functions as an anode, but may function as a cathode.
  • the pixel electrode preferably has light reflectivity. Examples of such pixel electrode materials include APC alloys (silver, palladium, copper alloys), ARA (silver, rubidium, gold alloys), MoCr (molybdenum and chromium alloys), NiCr (nickel and chromium alloys). Alloy) and the like.
  • the pixel electrode may be connected to the source electrode or drain electrode of the TFT through a contact hole.
  • the organic layer has an organic light emitting layer containing an organic light emitting material.
  • the organic light emitting material contained in the organic light emitting layer is preferably a polymer organic light emitting material that can be formed by a coating method.
  • the polymeric organic light-emitting material include polyphenylene vinylene and derivatives thereof, polyacetylene and derivatives thereof, polyphenylene and derivatives thereof, polyparaphenylene ethylene and derivatives thereof, poly 3-hexylthiophene and derivatives thereof, polyfluorene and derivatives thereof, and the like. included.
  • the organic light emitting layer emits red, green or blue light depending on the arrangement position of the organic EL element.
  • the organic layer may further have a hole injection layer, a hole transport layer, an electron transport layer, and the like.
  • the transparent counter electrode is a conductive transparent member disposed on the organic layer.
  • the counter electrode normally functions as a cathode, but may function as an anode. Examples of such transparent counter electrode materials include ITO and IZO.
  • the thickness of the transparent counter electrode is about 100 nm.
  • the organic EL display of the present invention is characterized in that a region on the defective portion of the organic layer in the transparent counter electrode is selectively destroyed.
  • the protective layer is a member for protecting the organic layer from water and oxygen.
  • Examples of the material of the protective layer include inorganic substances such as silicon nitride (SiNx) and organic substances such as UV curable resins.
  • the color of the color filter is appropriately selected depending on the color emitted by the organic EL element. Specifically, an organic EL element having an organic layer that emits red light has a red color filter, an organic EL element having an organic layer that emits green light has a green color filter, and blue The organic EL element having the organic layer that emits the light has a blue color filter.
  • the material of the color filter is, for example, a color resist.
  • the thickness of the color filter is about 1 ⁇ m.
  • the organic EL display of the present invention is characterized in that a region on the defective portion of the organic layer is selectively removed from the color filter.
  • the region on the defective portion of the color filter is removed, a decrease in luminance of the defective portion (non-light emitting region) can be suppressed.
  • the relationship between the removal of the color filter and the suppression of the decrease in the luminance of the non-light emitting region will be described with reference to the drawings.
  • FIG. 2 shows an organic EL element 100 that is included in the organic EL display of the present invention and has a defective portion.
  • the organic EL element 100 includes a substrate 16, a pixel electrode 15, an organic layer 14, a transparent counter electrode 13, a protective layer 12, a color filter 11, and a sealing glass 10.
  • the foreign material 21 is mixed in the organic layer 14.
  • the region of the organic layer 14 mixed with the foreign matter 21 constitutes the defect portion 101.
  • An arrow 50 in FIG. 2 indicates light emitted from the organic layer 14.
  • the defect portion 101 since the defect portion 101 is a non-light emitting region, the defect portion 101 does not emit light as shown in FIG. However, the light emitted from the organic layer 14 around the defect portion 101 is diffused into the region on the defect portion 101. For this reason, light can be extracted also from the defect portion 101 which is a non-light emitting region. Furthermore, in the present invention, since the color filter 11 on the defect portion 101 is removed, the light diffused in the region on the defect portion 101 does not pass through the color filter 11. For this reason, the light diffused in the region on the defective portion 101 is emitted outside without being attenuated by the color filter 11. Therefore, even if the defect portion 101 is a non-light emitting region, light diffused from the organic layer 14 around the defect portion 101 can be extracted from the defect portion 101 without being attenuated. Can be prevented from decreasing.
  • FIG. 3A is a diagram showing an organic EL element 100 having a defect portion detected by a second step (step of detecting a defect portion in an organic layer in the organic EL element) in the manufacturing method of the present invention.
  • 3A includes a substrate 16, a pixel electrode 15, an organic layer 14, a transparent counter electrode 13, a protective layer 12, a color filter 11, and a sealing glass 10.
  • the organic layer 14 has the foreign matter 21, and the region of the organic layer in which the foreign matter 21 is mixed constitutes the defect portion 101.
  • the organic EL display of the present invention also includes an organic EL element 103 having no defect as shown in FIG. 3B.
  • FIG. 4 shows the third step and the filter removal step in the first embodiment.
  • the laser device 200 used in the third step and the filter removal step includes a laser light source 31, a slit 33, and a focusing lens 34.
  • the laser beam is focused through the color filter 11 in the region on the defective portion 101 of the transparent counter electrode 13 while focusing on the transparent counter electrode 13. 32 is irradiated.
  • the wavelength of the laser beam 32 to be irradiated and the irradiation energy density of the laser are focused on the transparent counter electrode 13 and when the transparent counter electrode 13 is irradiated with the laser beam 32, the transparent counter electrode 13 is destroyed and the color filter 11 Adjustments may be made so that removal occurs simultaneously.
  • the wavelength of the laser light 32 is set to 532 nm (second harmonic), and the laser on the transparent counter electrode 13 is used.
  • the color filter 11 is green, the wavelength of the laser beam 32 is set to 355 nm (third harmonic), and the irradiation energy of the laser on the transparent counter electrode 13 is set to be higher than 0.7 J / cm 2.
  • the density may be 0.41 J / cm 2 or more; when the color filter is blue, the wavelength of the laser light 32 is set to 355 nm, and the irradiation energy density of the laser on the transparent counter electrode 13 is higher than 0.41 J / cm 2. and, or the wavelength of the laser beam 32 and 532 nm, the laser irradiation energy density on transparent counter electrode 13 0.63J / cm 2 or more and It may be Re.
  • the penetration mark 35 can be formed in the color filter 11 and the transparent counter electrode destruction part 36 can be formed.
  • the organic EL element can be repaired without damaging the organic layer and the TFT.
  • the region on the defective portion of the color filter it is possible to suppress a decrease in luminance of the defective portion (non-light emitting region), and it is possible to manufacture an organic EL display having no luminance unevenness.
  • the removal of the color filter and the destruction of the transparent counter electrode can be performed in the same step, so that the organic EL element can be repaired in a shorter time.
  • FIG. 5A is a diagram showing a filter removal step in the second embodiment
  • FIG. 5B is a diagram showing a third step in the second embodiment.
  • the laser light 32 is focused on the color filter 11, and the laser light 32 is irradiated onto the area of the color filter 11 on the defective portion 101. Then, a region on the defective portion 101 of the color filter 11 is removed to form a through mark 35. The color filter 11 is irradiated with laser light 32 having a wavelength that does not pass through the color filter.
  • the wavelength of the laser light 32 is set to 532 nm (second harmonic), and the laser on the color filter 11 is The irradiation energy density is 0.48 J / cm 2 or more, or the wavelength of the laser light 32 is 355 nm (third harmonic), and the irradiation energy density of the laser on the color filter 11 is 0.32 J / cm 2 or more.
  • the wavelength of the laser beam 32 may be 355 nm (third harmonic), and the irradiation energy density of the laser on the color filter 11 may be 0.32 J / cm 2 or more;
  • the wavelength of the laser beam 32 is set to 532 nm (second harmonic), and the laser irradiation energy on the color filter 11 is set.
  • the rugi density is set to 0.48 J / cm 2 or more, or the wavelength of the laser beam 32 is set to 355 nm (third harmonic), and the irradiation energy density of the laser on the color filter 11 is set to 0.13 J / cm 2 or more. That's fine.
  • the laser beam 32 is focused on the transparent counter electrode 13, and the region of the transparent counter electrode 13 on the defect portion 101 is irradiated with the laser beam 32 to destroy the transparent counter electrode 13 ( FIG. 5B).
  • the condition of the laser beam 32 is changed to the transparent counter electrode 13 without considering the influence of the color filter 11. It is possible to set conditions more suitable for destruction.
  • the laser light source 31 is a flash lamp-excited Nd: YAG laser
  • the wavelength of the laser light 32 is 355 nm
  • the irradiation energy density of the laser on the transparent counter electrode 13 is 0.05 to 0.15 J / cm 2 . do it.
  • the area of the removed color filter may be increased.
  • the area of the removed color filter is too large with respect to the non-light-emitting region, the proportion of light that does not pass through the color filter increases, which may affect the color reproducibility of the organic EL display.
  • the removal of the color filter and the destruction of the transparent counter electrode are performed in separate steps as in this embodiment, it is easy to appropriately select the area of the color filter to be removed. The influence on reproducibility can be suppressed.
  • FIG. 6A is a diagram showing a filter removal step in the third embodiment
  • FIG. 6B is a diagram showing a third step in the third embodiment.
  • the laser light 32 is focused on the color filter 11, and the region of the color filter 11 on the defective portion 101 is irradiated with the laser light 32.
  • the area 40 on the defective portion 101 of the color filter 11 is removed, and the color filter 11 in the area 40 is thinned.
  • the present embodiment is characterized in that the wavelength of the laser light 32 or the irradiation energy density of the laser is adjusted so that the color filter 11 irradiated with the laser light 32 is not completely removed.
  • the laser light 32 is focused on the transparent counter electrode 13, and the region of the transparent counter electrode 13 on the defect portion 101 is irradiated with the laser light 32 to destroy the transparent counter electrode 13.
  • the third step of the present embodiment is characterized in that the laser light 32 is adjusted so as not to further remove the color filter 11 that has become thinner in the filter removal step. Therefore, the wavelength of the laser beam 32 in the third step is adjusted so as to pass through the color filter 11.
  • the laser light source 31 is a flash lamp-excited Nd: YAG laser
  • the wavelength of the laser light 32 is 1064 nm, which is the fundamental wavelength
  • the irradiation energy density of the laser on the transparent counter electrode 13 is 0.42 J / cm 2 or less. It is preferable that
  • FIG. 7 shows the third step and the filter removal step of the fourth embodiment.
  • the transparent counter electrode 13 is focused, the region of the transparent counter electrode 13 on the defect portion 101 is irradiated with the laser beam 32, and the color filter 11 The region on the defective portion 101 is removed, and the region on the defective portion 101 in the transparent counter electrode 13 is destroyed.
  • the wavelength of the laser beam 32 to be irradiated and the irradiation energy density of the laser are adjusted so that when the laser beam 32 is focused and irradiated with the laser beam 32, the transparent counter electrode is destroyed and the color filter is removed simultaneously. Good.
  • the laser beam 32 passes through the protective layer 12 between the color filter 11 and the transparent counter electrode 13.
  • minute bubbles 41 are generated in the protective layer 12.
  • the minute bubbles 41 formed in the protective layer 12 can scatter light on the outer periphery of the defect portion 101 and improve the luminance of the defect portion 101.
  • the luminance of the defective portion can be further improved, so that an organic EL display with less luminance unevenness can be obtained.
  • Example 1 Preparation of Organic EL Element
  • a pixel electrode 15, a hole injection layer 17, a hole transport layer 18, an organic light emitting layer 14, an electron transport layer 19 and a transparent film having a thickness of 100 nm are formed on a glass substrate 16.
  • An organic EL element in which the counter electrode 13 (ITO) was laminated was prepared.
  • the glass plate 20 and the red, green, or blue color filter 11 are arranged on the prepared organic EL elements, and three types of organic EL elements having different color filters are prepared.
  • the material of the color filter 11 is a color resist, and the thickness of the color filter is 1 ⁇ m.
  • each prepared organic EL element is irradiated with a laser beam with a wavelength of 1064 nm at a laser irradiation energy density of 0.42 to 4.5 J / cm 2 , and a laser beam with a wavelength of 532 nm is emitted from the laser.
  • Irradiation was performed at an irradiation energy density of 0.06 to 0.71 J / cm 2 , and laser light having a wavelength of 355 nm was irradiated at a laser irradiation energy density of 0.05 to 0.41 J / cm 2 .
  • AGT-2000RT (YAG laser, manufactured by AGT Co., Ltd.) was used as the laser device.
  • the irradiation area port of the laser beam on the transparent counter electrode was 20 ⁇ m, and the pulse width was 3 to 5 ns.
  • Laser irradiation was performed by a single shot.
  • FIG. 9 is a table showing the influence on each color filter (CF) and transparent counter electrode (ITO) by laser light irradiation.
  • Laser light having a wavelength of 532 nm can remove the red color filter, and the laser irradiation energy density of 0.56 J / cm 2 or more can be used for the blue color filter. Although it can be removed, it did not affect the green color filter. Further, the laser beam having a wavelength of 532 nm could not sufficiently destroy ITO when the color filter was red. This is presumably because the laser beam having a wavelength of 532 nm was absorbed by the red color filter and the energy of the laser beam was attenuated. Therefore, when the color filter is red and the ITO is destroyed with a laser beam having a wavelength of 532 nm, it is necessary to increase the irradiation energy density of the laser beam beyond 0.63 J / cm 2 .
  • Laser light with a wavelength of 355 nm can remove the blue color filter, and the laser irradiation energy density of 0.41 J / cm 2 removes the green color filter. But did not affect the red color filter. Laser light with a wavelength of 355 nm could not destroy ITO when the color filter was blue. This is presumably because the laser light having a wavelength of 355 nm was absorbed by the blue color filter and the energy of the laser light was attenuated. Therefore, when the color filter is blue and the ITO is destroyed with a laser beam having a wavelength of 355 nm, it is necessary to increase the irradiation energy density of the laser beam to more than 0.25 J / cm 2 .
  • Example 2 Preparation of Organic EL Element
  • a pixel electrode 15, a hole injection layer 17, a hole transport layer 18, an organic light emitting layer 14, an electron transport layer 19 and a transparent film having a thickness of 100 nm are formed on a glass substrate 16.
  • An organic EL element having a counter electrode 13 (ITO) laminated thereon was prepared. In this example, no color filter was stacked on the organic EL element.
  • ITO counter electrode 13
  • the transparent counter electrode of the prepared organic EL element is irradiated with a laser beam having a wavelength of 1064 nm at a laser irradiation energy density of 0.42 to 4.5 J / cm 2 , and a laser beam having a wavelength of 532 nm is irradiated with the laser.
  • Irradiation was performed at a density of 0.06 to 0.71 J / cm 2
  • laser light having a wavelength of 355 nm was irradiated at a laser irradiation energy density of 0.05 to 0.41 J / cm 2 .
  • AGT-2000RT (YAG laser, manufactured by AGT Co., Ltd.) was used as the laser device.
  • the irradiation area port of the laser beam on the transparent counter electrode was 20 ⁇ m, and the pulse width was 3 n to 5 n seconds.
  • Laser irradiation was performed by a single shot.
  • the laser beams with wavelengths of 532 nm and 1064 nm also damaged the organic layer which is the underlayer of the transparent counter electrode (ITO).
  • the laser beam having a wavelength of 355 nm destroyed the transparent counter electrode, but did not damage the organic layer as the underlying layer. This indicates that it is preferable to use the third harmonic laser beam of the YAG laser when there is no color filter on the transparent counter electrode that irradiates the laser beam.
  • an organic EL display of the present invention since the region on the defective portion of the color filter is also removed, it is possible to suppress a decrease in luminance of the non-light emitting portion (defective portion). For this reason, an organic EL display excellent in image quality can be provided with a high yield.
  • the present invention can also be applied to the manufacture of other light-emitting devices using color filters.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

 基板と、前記基板上にマトリクス状に配置された有機EL素子を有する有機ELパネルを準備するステップであって、前記有機EL素子のそれぞれは、前記基板上に配置された画素電極、前記画素電極上に配置された有機層、前記有機層上に配置された透明対向電極、前記透明対向電極上に配置された保護層および前記保護層上に配置されたカラーフィルタを有し、前記有機EL素子内の前記有機層に存在する欠陥部を検出するステップ、前記透明対向電極のうち、前記欠陥部上の領域に、前記カラーフィルタを通してレーザ光を照射し、前記領域の透明対向電極を破壊するステップ、および前記カラーフィルタのうち、前記欠陥部上の領域を除去するステップ、を有する有機ELディスプレイの製造方法。

Description

有機ELディスプレイおよびその製造方法
 本発明は、有機ELディスプレイおよびその製造方法に関する。
 近年、次世代のフラットディスプレイパネルとして、有機ELディスプレイが期待されている。有機ELディスプレイは、自発光で視野角依存性が無く、高コントラスト、薄型、軽量、低消費電力を実現できるといったメリットを有する。
 有機ELディスプレイを構成する有機EL素子は、基本的に、画素電極および対向電極と、画素電極および対向電極との間に配置された有機層を有する。有機層は、蛍光体分子を含む発光層と、発光層を挟む電子伝導性の薄膜およびホール伝導性の薄膜とからなる。電子伝導性の薄膜に電子を注入する対向電極とホール伝導性の薄膜にホールを注入する画素電極との間に電圧を印加したとき、画素電極からホールが注入され、対向電極から電子が注入され、発光層内で電子とホールが結合し、発光層が発光する。
 有機ELディスプレイの製造方法は、厚さ数10nmの有機層や薄膜電極を積層する工程を有する。これらの積層工程は、クリーンルーム内で行われているが、有機層を形成するための機材や周辺環境からパーティクルなどの異物を完全に除去することはできない。したがって、有機ELディスプレイを製造する過程で有機層に異物が混入してしまうことがある。
 有機層中に異物が混入した場合、画素電極と対向電極との間に電圧を印加すると、異物を通して電流が電極間をリークしてしまう。電流がリークすると有機ELディスプレイの発光効率が低下し、消費電力の上昇につながる。また、異物が存在する画素においては、異物による電流リークにより、その画素における有機層(発光層)に流れる電流量が減少する。そのため、その画素全体における発光層の輝度が低下する。さらには、異物が存在する画素があると、有機ELディスプレイにおける輝度ムラが引き起こされる。
 有機層に混入した異物を通した電流のリークを停止させるための方法として、レーザリペア法が知られている。レーザリペア法とは、有機層の異物が混入した部分(以下「欠陥部」とも称する)にレーザ光を照射することで、異物を通した電流のリークを防止する方法である(例えば特許文献1~12参照)。
 特許文献1には、カラーフィルタを有する有機EL素子の欠陥部における画素電極にレーザ光を照射し、画素電極のみに多光子吸収を生じさせる方法が記載されている。これにより、カラーフィルタなどの他の部材は破壊せずに、欠陥部における画素電極のみを破壊(絶縁化)し、異物を通した画素電極と対向電極との間の電流のリークを抑えることができる。
 特許文献2~5には、欠陥部における画素電極または対向電極のいずれか一方を、レーザ照射によって除去することで、異物による電流のリークを防止する方法が開示されている。
 特許文献6には、欠陥部における電極をレーザ照射によって酸化させることで欠陥部における電極を絶縁化する方法が開示されている。欠陥部を絶縁化することで、異物による電流のリークを防止することができる。
 特許文献7~9には、レーザ照射によって欠陥部の異物自体を絶縁化し、異物による電流のリークを防止する方法が開示されている。
 特許文献10~12には、制御部およびビーム発生器を有するレーザリペア装置が開示されている。制御部によって位置が特定された有機ELディスプレイパネルにおける欠陥部に、ビーム発生器からのビームを照射することで、欠陥部を絶縁し、修復することができる。
特開2008-235178号公報 特開2009-16195号公報 特開2001-176672号公報 特開2006-278343号公報 米国特許出願公開第2004/0070336号公報 特開2002-260857号公報 特開2004-227852号公報 特開2003-178871号公報 米国特許出願公開第2002/0142697号公報 米国特許出願公開第2006/0017395号公報 米国特許出願公開第2006/0028217号公報 米国特許出願公開第2006/0076555号公報
 しかしながら、ダークスポットとなる欠陥部(非発光領域)と発光領域との輝度差が大きいと、有機ELディスプレイの画質の低下を招くおそれがある。特に、本発明者は、特許文献1に記載されたように、欠陥部上にカラーフィルタが残存していると、欠陥部(非発光領域)と発光領域との輝度差がさらに顕著になることを見出した。
 本発明は、欠陥部における輝度の低下を抑えた有機ELディスプレイの製造方法を提供することを目的とする。
 本発明者は、欠陥部上のカラーフィルタを除去すれば、欠陥部(非発光領域)での輝度の低下を抑制できることを見出し、さらに検討を加え発明を完成させた。すなわち本発明の第1は、以下に示す有機ELディスプレイの製造方法に関する。
 [1]基板と、前記基板上にマトリクス状に配置された有機EL素子を有する有機ELパネルを準備するステップであって、前記有機EL素子のそれぞれは、前記基板上に配置された画素電極、前記画素電極上に配置された有機層、前記有機層上に配置された透明対向電極、前記透明対向電極上に配置された保護層および前記保護層上に配置されたカラーフィルタを有し、前記有機EL素子内の前記有機層に存在する欠陥部を検出するステップ、前記透明対向電極のうち、前記欠陥部上の領域に、前記カラーフィルタを通してレーザ光を照射し、前記領域の透明対向電極を破壊するステップ、および前記カラーフィルタのうち、前記欠陥部上の領域を除去するステップ、を有する有機ELディスプレイの製造方法。
 [2]前記照射するレーザ光の波長は、400nm以下である、[1]に記載の有機ELディスプレイの製造方法。
 [3]前記カラーフィルタを除去するステップと、前記透明対向電極を破壊するステップとは、同一ステップである、[1]または[2]に記載の有機ELディスプレイの製造方法。
 [4]前記カラーフィルタを除去するステップと、前記透明対向電極を破壊するステップとは、異なるステップであり、前記カラーフィルタの除去は、前記カラーフィルタのうち前記欠陥部上の領域へのレーザ光の照射により行われる、[1]または[2]に記載の有機ELディスプレイの製造方法。
 [5]前記カラーフィルタを除去するステップにおいて、前記カラーフィルタに貫通痕を形成する、[1]~[4]のいずれかに記載の有機ELディスプレイの製造方法。
 [6]前記カラーフィルタを除去するステップにおいて、前記カラーフィルタを薄くする、[1]~[4]のいずれかに記載の有機ELディスプレイの製造方法。
 [7]前記レーザ光の照射により、前記保護層内に微小な気泡を形成する、[1]~[6]のいずれかに記載の有機ELディスプレイの製造方法。
 本発明の第2は以下に示す有機ELディスプレイに関する。
 [8]基板と、前記基板上にマトリクス状に配置された有機EL素子を有する有機ELディスプレイであって、前記有機EL素子のそれぞれは、前記基板上に配置された画素電極、前記画素電極上に配置された有機層、前記有機層上に配置された透明対向電極、前記透明対向電極上に配置された保護層および前記保護層上に配置されたカラーフィルタを有し、少なくとも一つの前記有機EL素子は、前記有機層に欠陥部を有し、前記透明対向電極のうち、前記欠陥部上の領域は破壊されており、前記カラーフィルタのうち前記欠陥部上の領域は除去されている、有機ELディスプレイ。
 本発明の有機ELディスプレイの製造方法によれば、非発光領域上のカラーフィルタも除去することから、非発光領域の輝度の低下を抑えることができ、有機ELディスプレイにおける輝度のムラを抑えることができる(後述)。
レーザ照射によって破壊された透明対向電極を示す図 本発明の有機ELディスプレイが発光した状態を示す図 本発明の有機ELディスプレイに含まれる有機発光素子の断面図 実施の形態1の有機ELディスプレイの製造方法の一部を示す図 実施の形態2の有機ELディスプレイの製造方法の一部を示す図 実施の形態3の有機ELディスプレイの製造方法の一部を示す図 実施の形態4の有機ELディスプレイの製造方法の一部を示す図 実施例で準備した有機EL素子 実施例1の結果を示す表
 1.本発明の有機ELディスプレイの製造方法
 本発明の有機ELディスプレイの製造方法は、1)有機ELパネルを準備する第1ステップ、2)有機ELパネルを構成する有機EL素子内の有機層における欠陥部を検出する第2ステップ、3)透明対向電極のうち欠陥部上の領域に、カラーフィルタを通してレーザ光を照射し、照射した領域の透明対向電極を破壊する第3ステップを有する。以下それぞれのステップについて詳細に説明する。
 1)第1ステップでは、有機ELパネルを準備する。第1ステップで準備する有機ELパネルは、トップエミッション型である。有機ELパネルは、基板および基板上にマトリクス状に配置された有機EL素子を有する。それぞれの有機EL素子は、基板上に配置された画素電極と、画素電極上に配置された有機層と、有機層上に配置された透明対向電極と、透明対向電極上に配置された保護層と、保護層上に配置されたカラーフィルタと、を有する。
 本発明は、特に大画面の有機ELディスプレイを製造する場合に効果を発揮する。大画面の有機ELディスプレイを製造する場合、有機層内にパーティクルなどの異物が混入する恐れがあることから、本発明によって欠陥部を通した電流のリークを防止する必要が大きい。
 また、有機EL素子における有機層は、蒸着法で形成されても、塗布法で形成されてもよい。有機ELディスプレイの大画面化の観点からは、有機層を塗布法で形成することが好ましい。塗布法の例には、インクジェット、ディスペンサー、ノズルコート、スピンコート、凹版印刷、凸版印刷などが含まれる。一方、有機層を蒸着法で形成した場合、メタルマスクからパーティクルなどの異物が混入する恐れがある。したがって、有機層を蒸着法で形成する場合であっても、本発明によって欠陥部を通した電流のリークを防止することが有効である。
 有機ELパネルに含まれる有機EL素子は、電極および有機層の薄膜を積層することで製造される。それぞれの薄膜には、数10nmレベルの膜厚の管理が要求される。有機EL素子の製造の際には、通常、製造環境の管理や製造設備のメンテナンスが実施されているが、有機層内に異物が混入してしまうことがある(図3参照)。
 以下の第2ステップおよび第3ステップでは、このような異物が混入した有機層の領域(以下「欠陥部」とも称する)を通した電流のリークを防止する方法について説明する。
 2)第2ステップでは、有機EL素子内の有機層にパーティクルなどの異物が混入した欠陥部(図3参照)を検出する。欠陥部を検出する方法は、特に限定されないが、外観検査による方法や、有機ELディスプレイに逆バイアスまたは順バイアスの電圧を印加し、リーク発光を検出する方法がある。
 3)第3ステップでは、透明対向電極のうち第2ステップで特定した欠陥部上の領域にカラーフィルタを通してレーザ光を照射し、透明対向電極のうち欠陥部上の領域を破壊(以下単に「透明対向電極を破壊」とも称する)する。ここで、「透明対向電極にレーザを照射する」とは、透明対向電極に焦点を合わせてレーザ光を照射することを意味する。また、「透明対向電極を破壊する」とは、透明対向電極の機能を破壊すること(つまり電流が流れないようにすること)を意味する。
 図1は、レーザ照射によって破壊された透明対向電極を示す。図1では13は透明対向電極を示し、14は有機層を示す。図1に示されるように「透明対向電極を破壊する」とは、レーザ光を照射した領域の透明対向電極13と有機層14との間に空間Xを形成するか(図1A)、レーザ光を照射した領域の透明対向電極13を変性させ、クラックを形成するか(図1B)、レーザ光を照射した領域の透明対向電極13を破砕して(図1C)、欠陥部を通じて、レーザ光を照射した箇所の透明対向電極13に電流が流れないようにすることを意味する。
 また、本発明では、透明対向電極上に保護層を設けていることから、透明対向電極を破壊した際に、透明対向電極の破片が飛散することはない。したがって、透明対向電極の破壊によって生じた透明対向電極の破片が、有機ELディスプレイのさらなる不良の原因となることはない。
 透明対向電極のうち欠陥部上の領域を破壊することで、欠陥部を通した電流のリークが防止され、欠陥部が非発光領域となるが、有機EL素子としての機能は修復される。
 透明対向電極上のレーザ光の照射面積は、欠陥部の面積よりも20~50%大きいことが好ましい。レーザ光の照射面積は、レーザに設置されたスリットなどによって調節されることができる。スリットとは、レーザ光のスポットのサイズを縦方向、横方向自由に変えるための部材である。スリットを用いることで、欠陥部の面積に応じて、レーザ光の照射面積を適宜調節することができる。
 照射するレーザ光を発するレーザ光源は、特に限定されないが、例えば、フラッシュランプ励起Nd:YAGレーザである。Nd:YAGレーザを用いた場合、レーザ光の波長を、基本波長である1064nm、第二高調波である532nm、第三高調波である355nm、第四高調波である266nmから選択することができる。
 透明対向電極に照射するレーザ光の波長は特に限定されないが、1100nm以下であることが好ましく、400nm以下であることが特に好ましい。つまりNd:YAGレーザであれば、第三高調波または第四高調波を用いればよい。波長が400nm以下である場合、透明対向電極の下にある有機層に与える影響が少ないからである。
 透明対向電極上のレーザ光のエネルギ(レーザの照射エネルギ密度)は、透明対向電極の材料や厚さなどよって選択される。例えば、Nd:YAGレーザを用いて、透明対向電極(透明対向電極の材料:ITO、透明対向電極の厚さ:100nm)を破壊する場合、後述するカラーフィルタによるレーザ光への影響を考慮しないとすると、レーザ光の波長を第三高調波(355nm)とし、レーザの照射エネルギ密度を、0.05~0.15J/cmとすることが好ましい。
 このように本発明では、透明対向電極のうち欠陥部上の領域を破壊して、欠陥部を通した電流のリークを防止するので、有機層やTFTにダメージを与えることなく有機EL素子を修復することができる。
 本発明の有機ELディスプレイの製造方法は、さらにカラーフィルタのうち第2ステップで検出された有機層の欠陥部上の領域を除去する(以下単に「カラーフィルタを除去する」とも称する)ステップを有することを特徴とする。カラーフィルタを除去するステップ(以下「フィルタ除去ステップ」とも称する)は、上述した第3ステップと同一ステップであってもよいし(実施の形態1参照)、第3ステップとは異なるステップ(実施の形態2および3参照)であってもよい。
 フィルタ除去ステップと第3ステップとが同一ステップである場合、レーザ光の照射によって、透明対向電極を破壊すると同時にカラーフィルタも除去する。
 一方、フィルタ除去ステップと第3ステップとが異なるステップである場合、フィルタ除去ステップにおけるフィルタの除去は、カラーフィルタのうち欠陥部上の領域にレーザ光を照射することにより行われる。フィルタ除去ステップと第3ステップとが異なるステップである場合、フィルタ除去ステップは、第3ステップの前であっても後であってもよいが、第3ステップの前であることが好ましい。ここで、「カラーフィルタにレーザ光を照射する」とは、カラーフィルタに焦点を合わせてレーザ光を照射することを意味する。
 ここで、「カラーフィルタを除去する」とは、レーザ光を照射した領域のカラーフィルタを完全に除去し、カラーフィルタに貫通痕を形成すること(実施の形態1および2参照)を意味してもよいし、およびレーザ光を照射した領域のカラーフィルタの表面を部分的に除去し、カラーフィルタを薄くすること(実施の形態3参照)を意味してもよい。
 カラーフィルタを薄くするには、例えば、カラーフィルタに貫通痕を形成する場合よりも、カラーフィルタを透過しやすい波長のレーザ光を照射したり、レーザの照射エネルギ密度を低下させたりすればよい。
 カラーフィルタ上のレーザ光の照射面積は、欠陥部の面積よりも30~60%大きいことが好ましい。
 このように本発明では、カラーフィルタのうち、欠陥部上の領域を除去することで、欠陥部(非発光領域)の輝度の低下を抑えることができる。カラーフィルタを除去することと、非発光領域の輝度の低下を抑えることとの関係は、後述する「2.本発明の有機ELディスプレイ」の説明において詳細に説明する。
 第3ステップで透明対向電極に照射するレーザ光の波長は、フィルタ除去ステップが、第3ステップと同一ステップである場合(実施の形態1参照)と、第3ステップと異なるステップである場合(実施の形態2および3参照)とで異なる。以下、場合ごとに透明対向電極に照射するレーザ光の波長について説明する。
 (1)フィルタ除去ステップと第3ステップとが同一ステップである場合
 フィルタ除去ステップと第3ステップとが同一ステップである場合、透明対向電極に照射するレーザ光はカラーフィルタを透過しない波長を有することが好ましい。フィルタ除去ステップと第3ステップとが同一ステップである場合、透明対向電極に照射されるレーザ光の一部がカラーフィルタにも吸収される必要があるからである。
 カラーフィルタはその色によって光の透過率が異なる。例えば赤色のカラーフィルタは、波長600nm以上の光の透過率が高く;緑色のカラーフィルタは、波長480~580nmおよび790nm以上の光の透過率が高く;青色のカラーフィルタは、波長430~500nmおよび850nm以上の光の透過率が高い。したがって、欠陥部上のカラーフィルタが赤色の場合、レーザ光の波長を、600nm未満に設定し;欠陥部上のカラーフィルタが緑色の場合、レーザ光の波長を、480nm未満または580nm超~790nm未満に設定し;欠陥部上のカラーフィルタが青色の場合、レーザ光の波長を、430nm未満または500nm超~850nm未満に設定すればよい。
 (2)フィルタ除去ステップと第3ステップとが異なるステップである場合
 フィルタ除去ステップと第3ステップとが異なるステップである場合、i)レーザ光を照射する領域の透明対向電極上にカラーフィルタがある場合(実施の形態3参照)と、ii)レーザ光を照射する領域の透明対向電極上にカラーフィルタがない場合(実施の形態2参照)とで、レーザ光の波長がさらに異なる。例えばi)フィルタ除去ステップの前に第3ステップを行う場合であるか、またはフィルタ除去ステップでカラーフィルタを薄くした後に、第3ステップを行う場合には、レーザ光を照射する領域の透明対向電極上にカラーフィルタがある。一方、ii)例えば、フィルタ除去ステップでカラーフィルタに貫通痕を形成した後に、第3ステップを行う場合には、レーザ光を照射する領域の透明対向電極上にカラーフィルタがない。
 i)レーザ光を照射する領域の透明対向電極上にカラーフィルタがある場合
 レーザ光を照射する領域の透明対向電極上にカラーフィルタがある場合、レーザ光はカラーフィルタに影響を与えずに、透明対向電極を破壊することが求められることから、カラーフィルタを透過する波長を有することが好ましい。したがって、欠陥部上のカラーフィルタが赤色の場合、レーザ光の波長を、600nm以上に設定し;欠陥部上のカラーフィルタが緑色の場合、レーザ光の波長を、480~580nmまたは790nm以上に設定し;欠陥部上のカラーフィルタが青色の場合、レーザ光の波長を、430~500nmまたは850nm以上に設定すればよい。
 ii)レーザ光を照射する領域の透明対向電極上にカラーフィルタがない場合
 レーザ光を照射する領域の透明対向電極上にカラーフィルタがない場合、レーザ光がカラーフィルタに与える影響を考慮しなくてよいため、レーザ光の波長を任意に設定することができる。レーザ光の波長は、有機層に与える影響が少ない、400nm以下に設定することが好ましい。
 このように本発明の有機ELディスプレイの製造方法によれば、有機層にダメージを与えることなく欠陥部を非発光領域にすることができるので、消費電力が低下し、発光効率が上昇する。
 また、欠陥部上のカラーフィルタを除去することから、非発光領域の輝度が上昇し、有機ELディスプレイにおける輝度ムラを低減することができる。
 2.本発明の有機ELディスプレイ
 本発明の有機ELディスプレイは、上述した本発明の有機ELディスプレイの製造方法によって製造された有機ELディスプレイである。本発明の有機ELディスプレイは、トップエミッション型であり、基板および基板上にマトリクス状に配置された有機EL素子を有する。
 有機EL素子は、基板上に配置された画素電極、画素電極上に配置された有機層、有機層上に配置された透明対向電極、透明対向電極上に配置された保護層および保護層上に配置されたカラーフィルタを有する。また、カラーフィルタ上にはさらに封止ガラスが配置されていてもよい。
 基板は、絶縁性の板である。また、基板には薄膜トランジスタ(TFT)が内蔵されていてもよい。
 画素電極は、基板上に配置される導電性の部材である。画素電極は通常、陽極として機能するが陰極として機能してもよい。また、画素電極は光反射性を有することが好ましい。このような画素電極の材料の例には、APC合金(銀、パラジウム、銅の合金)やARA(銀、ルビジウム、金の合金)、MoCr(モリブデンとクロムの合金)、NiCr(ニッケルとクロムの合金)などが含まれる。
 また画素電極は、コンタクトホールを通してTFTのソース電極またはドレイン電極に接続されていてもよい。
 有機層は、有機発光材料を含む有機発光層を有する。有機発光層に含まれる有機発光材料は塗布法で形成することができる高分子有機発光材料であることが好ましい。高分子有機発光材料の例には、ポリフェニレンビニレンおよびその誘導体、ポリアセチレンおよびその誘導体、ポリフェニレンおよびその誘導体、ポリパラフェニレンエチレンおよびその誘導体、ポリ3-ヘキシルチオフェンおよびその誘導体、ポリフルオレンおよびその誘導体などが含まれる。
 また有機発光層は、有機EL素子の配置位置によって、赤、緑または青のいずれかの光を発する。有機層は、さらに正孔注入層、正孔輸送層、電子輸送層などを有していてもよい。
 透明対向電極は、有機層上に配置される導電性の透明部材である。対向電極は通常、陰極として機能するが陽極として機能してもよい。このような透明対向電極の材料の例には、ITOやIZOなどが含まれる。透明対向電極の厚さは約100nmである。本発明の有機ELディスプレイでは、透明対向電極のうち、有機層の欠陥部上の領域が選択的に破壊されていることを特徴とする。
 保護層は、有機層を水や酸素から保護するための部材である。保護層の材料の例には、窒化シリコン(SiNx)などの無機物やUV硬化樹脂などの有機物が含まれる。
 カラーフィルタの色は、有機EL素子が発する色によって適宜選択される。具体的には、赤色の光を発する有機層を有する有機EL素子は、赤色のカラーフィルタを有し、緑色の光を発する有機層を有する有機EL素子は、緑色のカラーフィルタを有し、青色の光を発する有機層を有する有機EL素子は、青色のカラーフィルタを有する。カラーフィルタの材料は、例えば、カラーレジストである。またカラーフィルタの厚さは約1μmである。本発明の有機ELディスプレイでは、カラーフィルタのうち、有機層の欠陥部上の領域が選択的に除去されていることを特徴とする。
 このように、本発明の有機ELディスプレイでは、カラーフィルタのうち欠陥部上の領域が除去されているので、欠陥部(非発光領域)の輝度の低下が抑えられる。以下、図面を用いてカラーフィルタが除去されていることと、非発光領域の輝度の低下が抑えられることとの関係を説明する。
 図2は、本発明の有機ELディスプレイに含まれ、かつ欠陥部を有する有機EL素子100を示す。有機EL素子100では、透明対向電極のうち、欠陥部上の領域が破壊され、カラーフィルタのうち、欠陥部上の領域が除去されている。有機EL素子100は、基板16、画素電極15、有機層14、透明対向電極13、保護層12、カラーフィルタ11および封止ガラス10を有する。
 また、有機層14には異物21が混入している。異物21が混入した有機層14の領域は欠陥部101を構成する。図2中の矢印50は、有機層14から発せられた光を示す。
 上述のように欠陥部101は非発光領域なので、図2に示されるように欠陥部101は光を発しない。しかし、欠陥部101の周囲の有機層14から発せられた光が、欠陥部101上の領域にも拡散する。このため、非発光領域である欠陥部101からも光を取り出すことができる。さらに本発明では、欠陥部101上のカラーフィルタ11が除去されていることから、欠陥部101上の領域に拡散した光は、カラーフィルタ11を通過しない。このため、欠陥部101上の領域に拡散した光は、カラーフィルタ11によって減衰されることなく外部に発せられる。したがって、たとえ欠陥部101が非発光領域であったとしても、欠陥部101の周辺の有機層14から拡散した光を減衰させることなく、欠陥部101から取り出すことができるので、欠陥部101の輝度の低下が抑えられる。
 以下、本発明の有機ELディスプレイの製造方法の実施の形態について、図面を参照しながら説明する。また、実施の形態では、上述した有機EL素子内の有機層における欠陥部を検出する第2ステップ後の、第3ステップ(透明対向電極を破壊するステップ)およびカラーフィルタの除去ステップについて説明する。
 (実施の形態1)
 実施の形態1では、第3ステップとカラーフィルタを除去するステップ(フィルタ除去ステップ)が同一ステップである例について説明する。
 図3Aは、本発明の製造方法における第2ステップ(有機EL素子内の有機層における欠陥部を検出するステップ)によって検出された、欠陥部を有する有機EL素子100を示す図である。
 図3Aの有機EL素子100は、基板16、画素電極15、有機層14、透明対向電極13、保護層12、カラーフィルタ11および封止ガラス10を有する。有機層14は異物21を有し、異物21が混入した有機層の領域は欠陥部101を構成する。
 一方、本発明の有機ELディスプレイは、図3Bに示されたような欠陥部を有しない有機EL素子103も含む。
 図4は、実施の形態1における第3ステップおよびフィルタ除去ステップを示した図である。図4に示されたように第3ステップおよびフィルタ除去ステップで用いられるレーザ装置200は、レーザ光源31、スリット33および集束レンズ34を有する。
 図4に示されるように、本実施の形態の第3ステップでは、透明対向電極13上に焦点を合わせて、透明対向電極13のうち欠陥部101上の領域に、カラーフィルタ11を通して、レーザ光32を照射する。
 照射するレーザ光32の波長およびレーザの照射エネルギ密度は、透明対向電極13に焦点を合わせて、透明対向電極13にレーザ光32を照射したときに、透明対向電極13の破壊およびカラーフィルタ11の除去が同時に起こるように調整すればよい。
 たとえば、レーザ光源31がフラッシュランプ励起のNd:YAGレーザである場合であってカラーフィルタ11が赤色の場合、レーザ光32の波長を532nm(第二高調波)とし、透明対向電極13上のレーザの照射エネルギ密度を0.7J/cmより高くすればよく;カラーフィルタ11が緑色の場合、レーザ光32の波長を355nm(第三高調波)とし、透明対向電極13上のレーザの照射エネルギ密度を0.41J/cm以上とすればよく;カラーフィルタが青色の場合、レーザ光32の波長を355nmとし、透明対向電極13上のレーザの照射エネルギ密度を0.41J/cmより高くし、またはレーザ光32の波長を532nmとし、透明対向電極13上のレーザの照射エネルギ密度を0.63J/cm以上とすればよい。
 レーザ光32を透明対向電極13に焦点を合わせて照射することで、カラーフィルタ11に貫通痕35を形成し、透明対向電極破壊部36を形成することができる。
 このように、本実施の形態によれば、欠陥部上の透明対向電極を破壊することで欠陥部を通した電流のリークを防止することができる。このため、有機層やTFTにダメージを与えることなく、有機EL素子を修復することができる。また、カラーフィルタのうち欠陥部上の領域を除去することで、欠陥部(非発光領域)の輝度の低下を抑えることができ、輝度ムラのない有機ELディスプレイを製造することができる。さらに本実施の形態では、カラーフィルタの除去および透明対向電極の破壊を同一のステップで行うことができることから、より短時間で有機EL素子を修復することができる。
(実施の形態2)
 実施の形態1では、第3ステップとフィルタ除去ステップとが同一ステップである例について説明した。実施の形態2では、第3ステップとフィルタ除去ステップとが異なるステップである例について説明する。
 図5Aは、実施の形態2におけるフィルタ除去ステップを示した図であり、図5Bは、実施の形態2における第3ステップを示した図である。
 図5Aに示されるように、本実施の形態のフィルタ除去ステップでは、まずカラーフィルタ11上にレーザ光32の焦点を合わせ、カラーフィルタ11のうち、欠陥部101上の領域にレーザ光32を照射し、カラーフィルタ11のうち欠陥部101上の領域を除去し貫通痕35を形成する。カラーフィルタ11には、カラーフィルタを透過しない波長を有するレーザ光32を照射する。
 例えば、レーザ光源31がフラッシュランプ励起のNd:YAGレーザである場合であってカラーフィルタ11が赤色の場合、レーザ光32の波長を532nm(第二高調波)とし、カラーフィルタ11上のレーザの照射エネルギ密度を0.48J/cm以上とするか、またはレーザ光32の波長を355nm(第三高調波)とし、カラーフィルタ11上のレーザの照射エネルギ密度を0.32J/cm以上とすればよく;カラーフィルタ11が緑色の場合、レーザ光32の波長を355nm(第三高調波)とし、カラーフィルタ11上のレーザの照射エネルギ密度を0.32J/cm以上とすればよく;カラーフィルタが青色の場合、レーザ光32の波長を532nm(第二高調波)とし、カラーフィルタ11上のレーザの照射エネルギ密度を0.48J/cm以上とするか、またはレーザ光32の波長を355nm(第三高調波)とし、カラーフィルタ11上のレーザの照射エネルギ密度を0.13J/cm以上とすればよい。
 その後、第3ステップでは、透明対向電極13にレーザ光32の焦点を合わせて、透明対向電極13のうち、欠陥部101上の領域にレーザ光32を照射し、透明対向電極13を破壊する(図5B)。実施の形態1と異なり、本実地の形態の第3ステップでは、カラーフィルタ11が既に除去されていることから、カラーフィルタ11による影響を考慮せず、レーザ光32の条件を透明対向電極13を破壊するためにより適した条件に設定することができる。例えば、レーザ光源31がフラッシュランプ励起のNd:YAGレーザである場合、レーザ光32の波長を355nmとし、透明対向電極13上のレーザの照射エネルギ密度を0.05~0.15J/cmとすればよい。
 また、実施の形態1のようにカラーフィルタの除去と透明対向電極の破壊とを同一のステップで行う場合、除去するカラーフィルタの面積が大きくなってしまうおそれがある。非発光領域に対して、除去されたカラーフィルタの面積が大きすぎる場合、カラーフィルタを通過しない光の割合が増加し、有機ELディスプレイの色再現性などに影響を与えるおそれがある。一方、本実施の形態のように、カラーフィルタの除去と透明対向電極の破壊とが別々のステップで行われる場合、除去されるカラーフィルタの面積を、適宜選択することが容易であるため、色再現性への影響を抑えることができる。
(実施の形態3)
 実施の形態1および実施の形態2では、レーザ光を照射した箇所のカラーフィルタを完全に除去し、カラーフィルタに貫通痕を形成する例について説明した。実施の形態3では、レーザ光を照射した箇所のカラーフィルタを完全に除去しない例について説明する。
 図6Aは、実施の形態3におけるフィルタ除去ステップを示した図であり、図6Bは、実施の形態3における第3ステップを示した図である。
 図6Aに示されるように、本実施の形態のフィルタ除去ステップでは、まずカラーフィルタ11上にレーザ光32の焦点を合わせ、カラーフィルタ11のうち欠陥部101上の領域にレーザ光32を照射し、カラーフィルタ11のうち欠陥部101上の領域40を除去し、領域40のカラーフィルタ11を薄くする。本実施の形態では、レーザ光32を照射したカラーフィルタ11が完全に除去されないようにレーザ光32の波長またはレーザの照射エネルギ密度を調整することを特徴とする。
 その後、本実施の第3ステップでは、透明対向電極13にレーザ光32の焦点を合わせて、透明対向電極13のうち欠陥部101上の領域にレーザ光32を照射し、透明対向電極13を破壊する(図6B)。本実施の形態の第3ステップでは、レーザ光32が、フィルタ除去ステップで薄くなったカラーフィルタ11をさらに除去しないように調節されることを特徴とする。したがって、第3ステップにおけるレーザ光32は、カラーフィルタ11を透過するように波長を調節される。例えば、レーザ光源31がフラッシュランプ励起のNd:YAGレーザである場合、レーザ光32の波長を基本波長である1064nmとし、透明対向電極13上のレーザの照射エネルギ密度を0.42J/cm以下とすることが好ましい。
 このように、本実施の形態では、欠陥部上に薄いカラーフィルタを残すため、実施の形態1の効果に加えて、色再現性の低下を抑えることができる。
(実施の形態4)
 実施の形態4では、レーザ光32またはUV光を照射すると微小な気泡が発生する材料を保護層に用いた例について説明する。
 図7は、実施の形態4の第3ステップおよびフィルタ除去ステップを示した図である。
 図7に示されるように、本実施の形態では、透明対向電極13に焦点を合わせて、透明対向電極13のうち、欠陥部101上の領域にレーザ光32を照射し、カラーフィルタ11のうち欠陥部101上の領域を除去し、透明対向電極13のうち欠陥部101上の領域を破壊する。
 照射するレーザ光32の波長およびレーザの照射エネルギ密度は、透明対向電極に焦点を合わせてレーザ光32を照射したときに、透明対向電極の破壊およびカラーフィルタの除去が同時に起こるように調整すればよい。
 このときカラーフィルタ11と透明対向電極13との間の保護層12にレーザ光32が通過する。保護層12にレーザ光32が通過すると、保護層12に微小な気泡41が発生する。保護層12に形成された微小な気泡41は、欠陥部101の外周部の光を散乱させ、欠陥部101の輝度を向上させることができる。
 また、本実施の形態では、レーザ光32またはUV光を照射すると微小な気泡41が発生する材料を保護層に用いた例について説明したが、例えば、レーザ光32またはUV光を照射すると光の屈折率が変化する材料を保護層に用いてもよい。
 このように、本実施の形態によれば実施の形態1の効果に加えて、欠陥部の輝度をさらに向上させることができるので、より輝度ムラの少ない有機ELディスプレイを得ることができる。
 以下本発明の実施例について説明する。以下の実施例は、本発明の範囲を限定するものではない。
 (実施例1)
 有機EL素子の準備
 図8に示されたような、ガラス基板16上に画素電極15、正孔注入層17、正孔輸送層18、有機発光層14、電子輸送層19および厚さ100nmの透明対向電極13(ITO)を積層した有機EL素子を準備した。さらに、準備した有機EL素子上に、ガラス板20および赤、緑または青のカラーフィルタ11を配置し、カラーフィルタの色が異なる3種類の有機EL素子を準備した。カラーフィルタ11の材料はカラーレジストであり、カラーフィルタの厚さは、1μmとした。
 レーザの照射
 準備したそれぞれの有機EL素子の透明対向電極に、波長が1064nmのレーザ光をレーザの照射エネルギ密度0.42~4.5J/cmで照射し、波長532nmのレーザ光をレーザの照射エネルギ密度0.06~0.71J/cmで照射し、波長355nmのレーザ光をレーザの照射エネルギ密度0.05~0.41J/cmで照射した。レーザ装置にはAGT-2000RT(YAGレーザ、株式会社AGT製)を用いた。レーザ光の透明対向電極上における照射面積口は20μmとし、パルス幅を3~5n秒とした。また、レーザ照射はシングルショットで行った。
 図9は、レーザ光の照射によるそれぞれのカラーフィルタ(CF)および透明対向電極(ITO)への影響を示した表である。
 図9に示されるように、波長1064nmのレーザ光(レーザの照射エネルギ密度0.42J/cm)を照射した場合、全ての色のカラーフィルタには影響を与えることなく透明対向電極のみを破壊することができた。
 波長532nmのレーザ光(レーザの照射エネルギ密度0.63J/cm)は、赤色のカラーフィルタを除去することができ、レーザの照射エネルギ密度0.56J/cm以上で、青色のカラーフィルタを除去することができるが、緑色のカラーフィルタには影響を与えなかった。また、波長532nmのレーザ光は、カラーフィルタが赤色の場合に、ITOを充分に破壊することはできなかった。これは、波長532nmのレーザ光が、赤色のカラーフィルタに吸収されレーザ光のエネルギが減衰したことによるものと考えられる。したがって、カラーフィルタが赤色の場合であって、かつ波長532nmのレーザ光で、ITOを破壊する場合、レーザ光の照射エネルギ密度を0.63J/cmよりも増加させる必要がある。
 波長355nmのレーザ光(レーザの照射エネルギ密度0.25J/cm)は、青色のカラーフィルタを除去することができ、レーザの照射エネルギ密度0.41J/cmで、緑色のカラーフィルタを除去することができるが、赤色のカラーフィルタには影響を与えなかった。波長355nmのレーザ光は、カラーフィルタが青色の場合、ITOを破壊することはできなかった。これは、波長355nmのレーザ光が、青色のカラーフィルタに吸収されレーザ光のエネルギが減衰したことによるものと考えられる。したがって、カラーフィルタが青色の場合であって、かつ波長355nmのレーザ光で、ITOを破壊する場合、レーザ光の照射エネルギ密度を0.25J/cmよりも増加させる必要がある。
 これらの結果は、カラーフィルタの色に応じてレーザ光の波長を選択することによって、カラーフィルタを除去したり、ITOを破壊したりできることを示唆する。
 (実施例2)
 有機EL素子の準備
 図8に示されたような、ガラス基板16上に画素電極15、正孔注入層17、正孔輸送層18、有機発光層14、電子輸送層19および厚さ100nmの透明対向電極13(ITO)を積層した、有機EL素子を準備した。本実施例では有機EL素子にカラーフィルタを積層しなかった。
 レーザの照射
 準備した有機EL素子の透明対向電極に、波長が1064nmのレーザ光をレーザの照射エネルギ密度0.42~4.5J/cmで照射し、波長532nmのレーザ光をレーザの照射エネルギ密度0.06~0.71J/cmで照射し、波長355nmのレーザ光をレーザの照射エネルギ密度0.05~0.41J/cmで照射した。レーザ装置にはAGT-2000RT(YAGレーザ、株式会社AGT製)を用いた。レーザ光の透明対向電極上における照射面積口は20μmとし、パルス幅3n~5n秒とした。また、レーザ照射はシングルショットで行った。
 結果
 波長532nmおよび1064nmのレーザ光は、透明対向電極(ITO)の下地層である有機層にもダメージを与えた。一方、波長355nmのレーザ光は、透明対向電極を破壊するが、下地層の有機層には、ダメージを与えなかった。これは、レーザ光を照射する透明対向電極上にカラーフィルタがない場合、YAGレーザの第3高調波のレーザ光を用いることが好ましいことを示す。
 本出願は、2009年2月10日出願の特願2009-028435に基づく優先権を主張する。当該出願明細書に記載された内容は、すべて本願明細書に援用される。
 また、本発明の有機ELディスプレイの製造方法によれば、カラーフィルタのうち欠陥部上の領域も除去することから、非発光部(欠陥部)の輝度の低下を抑えることができる。このため、画質に優れた有機ELディスプレイを高い歩留まりで提供することができる。また、本発明は、カラーフィルタを利用した他の発光デバイスの製造にも適用することができる。
 10 封止ガラス
 11 カラーフィルタ
 12 保護層
 13 透明対向電極
 14 有機層
 15 画素電極
 16 基板
 17 正孔注入層
 18 正孔輸送層
 19 電子輸送層
 20 ガラス板
 21 異物
 31 レーザ光源
 32 レーザ光
 33 スリット
 34 集束レンズ
 35 貫通痕
 36 透明対向電極破壊部
 40 カラーフィルタの薄い領域
 41 気泡
 100 有機EL素子
 101 欠陥部
 200 レーザ装置
 
 

Claims (14)

  1.  基板と、前記基板上にマトリクス状に配置された有機EL素子を有する有機ELパネルを準備するステップであって、前記有機EL素子のそれぞれは、前記基板上に配置された画素電極、前記画素電極上に配置された有機層、前記有機層上に配置された透明対向電極、前記透明対向電極上に配置された保護層および前記保護層上に配置されたカラーフィルタを有し、
     前記有機EL素子内の前記有機層に存在する欠陥部を検出するステップ、
     前記透明対向電極のうち、前記欠陥部上の領域に、前記カラーフィルタを通してレーザ光を照射し、前記領域の透明対向電極を破壊するステップ、および
     前記カラーフィルタのうち、前記欠陥部上の領域を除去するステップ、
     を有する有機ELディスプレイの製造方法。
  2.  前記照射するレーザ光の波長は、400nm以下である、請求項1に記載の有機ELディスプレイの製造方法。
  3.  前記カラーフィルタを除去するステップと、前記透明対向電極を破壊するステップとは、同一ステップである、請求項1に記載の有機ELディスプレイの製造方法。
  4.  前記除去されるカラーフィルタは赤色であり、前記透明対向電極に照射する前記レーザ光の波長は、600nm未満である、請求項3に記載の有機ELディスプレイの製造方法。
  5.  前記除去されるカラーフィルタは緑色であり、前記透明対向電極に照射する前記レーザ光の波長は、480nm未満または580nm超790nm未満である、請求項3に記載の有機ELディスプレイの製造方法。
  6.  前記除去されるカラーフィルタは青色であり、前記透明対向電極に照射する前記レーザ光の波長は、430nm未満または500nm超850nm未満である、請求項3に記載の有機ELディスプレイの製造方法。
  7.  前記カラーフィルタを除去するステップと、前記透明対向電極を破壊するステップとは、異なるステップであり、前記カラーフィルタの除去は、前記カラーフィルタのうち前記欠陥部上の領域へのレーザ光の照射により行われる、請求項1に記載の有機ELディスプレイの製造方法。
  8.  前記除去されるカラーフィルタは赤色であり、前記透明対向電極に照射する前記レーザ光の波長は、600nm以上である、請求項7に記載の有機ELディスプレイの製造方法。
  9.  前記除去されるカラーフィルタは緑色であり、前記透明対向電極に照射する前記レーザ光の波長は、480nm~580nmまたは790nm以上である、請求項7に記載の有機ELディスプレイの製造方法。
  10.  前記除去されるカラーフィルタは青色であり、前記透明対向電極に照射する前記レーザ光の波長は、430nm~500nmまたは850nm以上である、請求項7に記載の有機ELディスプレイの製造方法。
  11.  前記カラーフィルタを除去するステップにおいて、前記カラーフィルタに貫通痕を形成する、請求項1に記載の有機ELディスプレイの製造方法。
  12.  前記カラーフィルタを除去するステップにおいて、前記カラーフィルタを薄くする、請求項1に記載の有機ELディスプレイの製造方法。
  13.  前記レーザ光の照射により、前記保護層内に微小な気泡を形成する、請求項1に記載の有機ELディスプレイの製造方法。
  14.  基板と、前記基板上にマトリクス状に配置された有機EL素子を有する有機ELディスプレイであって、前記有機EL素子のそれぞれは、前記基板上に配置された画素電極、前記画素電極上に配置された有機層、前記有機層上に配置された透明対向電極、前記透明対向電極上に配置された保護層および前記保護層上に配置されたカラーフィルタを有し、
     少なくとも一つの前記有機EL素子は、前記有機層に欠陥部を有し、
     前記透明対向電極のうち、前記欠陥部上の領域は破壊されており、前記カラーフィルタのうち前記欠陥部上の領域は除去されている、有機ELディスプレイ。
     
     
     
PCT/JP2010/000337 2009-02-10 2010-01-21 有機elディスプレイおよびその製造方法 WO2010092749A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201080003173.9A CN102210193B (zh) 2009-02-10 2010-01-21 有机电致发光显示器及其制造方法
EP10741029.2A EP2378841B1 (en) 2009-02-10 2010-01-21 Organic el display and method for manufacturing same
JP2010521249A JP4673447B2 (ja) 2009-02-10 2010-01-21 有機elディスプレイおよびその製造方法
US13/133,352 US8772052B2 (en) 2009-02-10 2010-01-21 Repaired organic EL display and method for manufacturing same including repairing process

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009028435 2009-02-10
JP2009-028435 2009-02-10

Publications (1)

Publication Number Publication Date
WO2010092749A1 true WO2010092749A1 (ja) 2010-08-19

Family

ID=42561598

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/000337 WO2010092749A1 (ja) 2009-02-10 2010-01-21 有機elディスプレイおよびその製造方法

Country Status (5)

Country Link
US (1) US8772052B2 (ja)
EP (1) EP2378841B1 (ja)
JP (1) JP4673447B2 (ja)
CN (1) CN102210193B (ja)
WO (1) WO2010092749A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120196388A1 (en) * 2011-01-31 2012-08-02 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing light-emitting device and manufacturing apparatus of light-emitting device
CN102738415A (zh) * 2011-04-15 2012-10-17 松下电器产业株式会社 有机电致发光显示器的制造方法
WO2012143974A1 (ja) * 2011-04-20 2012-10-26 パナソニック株式会社 有機エレクトロルミネッセンス素子の製造方法および有機エレクトロルミネッセンス素子
WO2023032848A1 (ja) * 2021-09-01 2023-03-09 凸版印刷株式会社 光学装置及びその製造方法

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8557614B2 (en) * 2010-12-28 2013-10-15 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing lighting device
US9112187B2 (en) * 2011-06-08 2015-08-18 Joled Inc. Organic el device and method of manufacturing organic EL device
WO2013186961A1 (ja) * 2012-06-14 2013-12-19 パナソニック株式会社 欠陥検出方法、有機el素子のリペア方法、および有機el表示パネル
KR102047922B1 (ko) * 2013-02-07 2019-11-25 삼성디스플레이 주식회사 플렉서블 기판, 플렉서블 기판의 제조 방법, 플렉서블 표시 장치, 및 플렉서블 표시 장치 제조 방법
KR102120892B1 (ko) * 2013-04-25 2020-06-10 삼성디스플레이 주식회사 박막봉지의 유기막 손상 측정방법 및 측정장치
KR20150033152A (ko) * 2013-09-23 2015-04-01 삼성디스플레이 주식회사 유기 발광 표시 장치의 수리 방법
CN104779264A (zh) * 2014-01-10 2015-07-15 上海和辉光电有限公司 混色型掩膜开口缺陷的有机发光二极管显示屏修补方法
CN104091901A (zh) * 2014-06-24 2014-10-08 京东方科技集团股份有限公司 一种oled制备方法
JP2017069030A (ja) * 2015-09-30 2017-04-06 住友化学株式会社 有機el素子の製造方法
CN107526191A (zh) * 2016-11-09 2017-12-29 惠科股份有限公司 液晶面板、液晶显示器和液晶面板的修补方法
JP2018170129A (ja) * 2017-03-29 2018-11-01 株式会社ジャパンディスプレイ 表示装置、及び表示装置の製造方法

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001118684A (ja) * 1999-10-19 2001-04-27 Tohoku Pioneer Corp 発光ディスプレイ及びその製造方法
JP2001176672A (ja) 1999-12-20 2001-06-29 Toray Ind Inc 有機電界発光装置およびその製造方法
JP2002260857A (ja) 2000-12-28 2002-09-13 Semiconductor Energy Lab Co Ltd 発光装置の作製方法および薄膜形成装置
US20020142697A1 (en) 2000-12-28 2002-10-03 Hirokazu Yamagata Method of manufacturing a light emitting device and thin film forming apparatus
JP2003178871A (ja) 2001-12-11 2003-06-27 Sony Corp 有機エレクトロルミネッセンスディスプレイの製造方法及びその装置
JP2004227852A (ja) 2003-01-21 2004-08-12 Sanyo Electric Co Ltd El表示装置のレーザーリペア方法
US20060017395A1 (en) 2004-07-21 2006-01-26 Ritdisplay Corporation System and method for detecting and repairing
US20060028217A1 (en) 2004-07-15 2006-02-09 Ritdisplay Corporation System of detection and repair and method thereof
US20060076555A1 (en) 2004-09-30 2006-04-13 Meng-Chieh Liao Detection and repair system and method
JP2006278343A (ja) 2006-05-19 2006-10-12 Tohoku Pioneer Corp 発光ディスプレイの製造方法
JP2008235178A (ja) 2007-03-23 2008-10-02 Sharp Corp 有機elディスプレイの製造方法及び有機elディスプレイ
JP2009016195A (ja) 2007-07-05 2009-01-22 Canon Inc 有機発光装置のリペア方法及びそれを用いた有機発光装置の製造方法
JP2009028435A (ja) 2007-07-30 2009-02-12 Max Co Ltd 湯水噴出装置および湯水噴出空調装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006269108A (ja) * 2005-03-22 2006-10-05 Hitachi Displays Ltd 有機発光表示装置及びその欠陥画素の修復方法
JP4924192B2 (ja) * 2007-05-09 2012-04-25 大日本印刷株式会社 透明導電性膜付きカラーフィルタ基板の欠陥修正方法および透明導電性膜付きカラーフィルタ基板
WO2008156284A1 (en) * 2007-06-18 2008-12-24 Cowindst Co., Ltd. Method of repairing flat pannel display

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001118684A (ja) * 1999-10-19 2001-04-27 Tohoku Pioneer Corp 発光ディスプレイ及びその製造方法
US20040070336A1 (en) 1999-10-19 2004-04-15 Tohoku Pioneer Corporation Luminescent display and a method producing the same
JP2001176672A (ja) 1999-12-20 2001-06-29 Toray Ind Inc 有機電界発光装置およびその製造方法
JP2002260857A (ja) 2000-12-28 2002-09-13 Semiconductor Energy Lab Co Ltd 発光装置の作製方法および薄膜形成装置
US20020142697A1 (en) 2000-12-28 2002-10-03 Hirokazu Yamagata Method of manufacturing a light emitting device and thin film forming apparatus
JP2003178871A (ja) 2001-12-11 2003-06-27 Sony Corp 有機エレクトロルミネッセンスディスプレイの製造方法及びその装置
JP2004227852A (ja) 2003-01-21 2004-08-12 Sanyo Electric Co Ltd El表示装置のレーザーリペア方法
US20060028217A1 (en) 2004-07-15 2006-02-09 Ritdisplay Corporation System of detection and repair and method thereof
US20060017395A1 (en) 2004-07-21 2006-01-26 Ritdisplay Corporation System and method for detecting and repairing
US20060076555A1 (en) 2004-09-30 2006-04-13 Meng-Chieh Liao Detection and repair system and method
JP2006278343A (ja) 2006-05-19 2006-10-12 Tohoku Pioneer Corp 発光ディスプレイの製造方法
JP2008235178A (ja) 2007-03-23 2008-10-02 Sharp Corp 有機elディスプレイの製造方法及び有機elディスプレイ
JP2009016195A (ja) 2007-07-05 2009-01-22 Canon Inc 有機発光装置のリペア方法及びそれを用いた有機発光装置の製造方法
JP2009028435A (ja) 2007-07-30 2009-02-12 Max Co Ltd 湯水噴出装置および湯水噴出空調装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2378841A4

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120196388A1 (en) * 2011-01-31 2012-08-02 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing light-emitting device and manufacturing apparatus of light-emitting device
CN102738415A (zh) * 2011-04-15 2012-10-17 松下电器产业株式会社 有机电致发光显示器的制造方法
US20120270460A1 (en) * 2011-04-15 2012-10-25 Panasonic Corporation Method of manufacturing organic el display
JP2012226849A (ja) * 2011-04-15 2012-11-15 Panasonic Corp 有機elディスプレイの製造方法
US8647163B2 (en) * 2011-04-15 2014-02-11 Panasonic Corporation Method of manufacturing organic EL display
WO2012143974A1 (ja) * 2011-04-20 2012-10-26 パナソニック株式会社 有機エレクトロルミネッセンス素子の製造方法および有機エレクトロルミネッセンス素子
US9040968B2 (en) 2011-04-20 2015-05-26 Joled Inc Method for manufacturing organic electroluminescence device and organic electroluminescence device
JP5805181B2 (ja) * 2011-04-20 2015-11-04 株式会社Joled 有機エレクトロルミネッセンス素子の製造方法
WO2023032848A1 (ja) * 2021-09-01 2023-03-09 凸版印刷株式会社 光学装置及びその製造方法

Also Published As

Publication number Publication date
CN102210193A (zh) 2011-10-05
US20110278603A1 (en) 2011-11-17
EP2378841A1 (en) 2011-10-19
JP4673447B2 (ja) 2011-04-20
JPWO2010092749A1 (ja) 2012-08-16
EP2378841B1 (en) 2013-07-31
CN102210193B (zh) 2014-12-10
US8772052B2 (en) 2014-07-08
EP2378841A4 (en) 2012-07-18

Similar Documents

Publication Publication Date Title
JP4673447B2 (ja) 有機elディスプレイおよびその製造方法
JP4733235B2 (ja) 有機elディスプレイおよびその製造方法
US7964416B2 (en) Manufacturing method of organic EL display
JP5310773B2 (ja) 有機elディスプレイの製造方法
JP2008235178A (ja) 有機elディスプレイの製造方法及び有機elディスプレイ
JP5642277B2 (ja) 有機エレクトロルミネッセンス素子の製造方法および有機エレクトロルミネッセンス素子
JP2008235177A (ja) 有機elディスプレイの製造方法及び有機elディスプレイ
US20080233826A1 (en) Method of producing organic light emitting device
JP2005032576A (ja) 多色有機発光表示素子の修復方法および修復装置
WO2012143974A1 (ja) 有機エレクトロルミネッセンス素子の製造方法および有機エレクトロルミネッセンス素子
GB2494957A (en) Repairing short circuit manufacturing defects in OLED displays
JP2001176672A (ja) 有機電界発光装置およびその製造方法
WO2009157591A1 (en) Organic electroluminescence display apparatus and manufacturing method therefor
JP2008268880A (ja) 有機発光装置の製造方法
JP2004119243A (ja) 有機エレクトロルミネッセント素子の欠陥除去方法
JP2013197298A (ja) 有機エレクトロルミネッセンス素子
KR20110113089A (ko) 유기 발광 표시 장치의 리페어 방법
WO2012117656A1 (ja) 有機elパネルおよびその製造方法
KR101848502B1 (ko) 유기전계발광표시장치의 리페어방법
JP2011113733A (ja) 有機elディスプレイの製造方法
JP2012204105A (ja) 表示基板の欠陥修正方法
JP2010267420A (ja) 有機el素子検査リペア方法および装置
KR20120004000A (ko) 유기 발광 표시 장치의 리페어 방법
JP2007066562A (ja) 表示装置及び表示装置の製造方法
JP2011228227A (ja) 有機elディスプレイの製造方法、及び有機elディスプレイ

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080003173.9

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2010521249

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10741029

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010741029

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13133352

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE