WO2010092671A1 - 金属水素化物含有排ガスの除害剤及び除害方法 - Google Patents

金属水素化物含有排ガスの除害剤及び除害方法 Download PDF

Info

Publication number
WO2010092671A1
WO2010092671A1 PCT/JP2009/052241 JP2009052241W WO2010092671A1 WO 2010092671 A1 WO2010092671 A1 WO 2010092671A1 JP 2009052241 W JP2009052241 W JP 2009052241W WO 2010092671 A1 WO2010092671 A1 WO 2010092671A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal
exhaust gas
detoxifying
metal hydride
containing exhaust
Prior art date
Application number
PCT/JP2009/052241
Other languages
English (en)
French (fr)
Inventor
靖 塩谷
賢中 金
成▲玄▼ 林
Original Assignee
ズードケミー触媒株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ズードケミー触媒株式会社 filed Critical ズードケミー触媒株式会社
Priority to JP2010550368A priority Critical patent/JP5833313B2/ja
Priority to PCT/JP2009/052241 priority patent/WO2010092671A1/ja
Publication of WO2010092671A1 publication Critical patent/WO2010092671A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/81Solid phase processes
    • B01D53/82Solid phase processes with stationary reactants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/20Reductants
    • B01D2251/206Ammonium compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/20Reductants
    • B01D2251/206Ammonium compounds
    • B01D2251/2067Urea
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/20Halogens or halogen compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/60Heavy metals or heavy metal compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/02Other waste gases
    • B01D2258/0216Other waste gases from CVD treatment or semi-conductor manufacturing

Definitions

  • the present invention relates to a detoxifying agent and detoxification method for metal hydride-containing exhaust gas, and more particularly to a detoxifying agent and detoxification method for metal hydride-containing exhaust gas generated in a semiconductor manufacturing plant, a liquid crystal manufacturing plant, or the like.
  • Exhaust gas treatment includes a wet method and a dry method, and the former is a method of cleaning exhaust gas with a chemical solution.
  • exhaust gas is circulated through a packed column of a particulate solid processing agent, and the hazardous and harmful gases are separated by chemical action of the gas to be removed and the processing agent, that is, adsorption and / or chemical reaction.
  • It is a detoxifying method and is often performed in the treatment of exhaust gas containing metal hydride or exhaust gas containing halide gas.
  • Patent Document 1 Japanese Patent Application Laid-Open Nos. 07-136451
  • Patent Document 2 Japanese Patent Application Laid-Open No. 06-319945
  • Patent Document 3 a treating agent comprising any one of solid metal hydroxide, solid metal carbonate and solid metal basic carbonate is disclosed in Japanese Patent Application Laid-Open No. 08-192024 (Patent Document 3) and Japanese Patent Application Laid-Open No. 62-152515.
  • Patent Document 4 a processing agent comprising a basic metal carbonate is disclosed in Japanese Patent No. 2604991 (Patent Document 5) and the like.
  • treatment agents made of metal hydroxide, metal carbonate or metal basic carbonate alone have excellent detoxifying ability, but all chemical reactions associated with the treatment of exhaust gas are exothermic. Therefore, in the prior art, exhaust gas treatment with metal compounds inevitably requires a temperature rise, and when exhaust gas treatment containing a high concentration of metal hydride or a large amount of exhaust gas treatment is performed, there is a possibility that a significant temperature rise will occur. is there. Therefore, the treatment agent is required not only to have high performance but also to have low heat generation. Furthermore, when using metal hydride gas in the semiconductor manufacturing process, when used in a hydrogen atmosphere, the treating agent reacts with hydrogen in the gas to be treated, that is, a very high temperature exothermic reaction due to metal reduction, so-called runaway reaction. Is likely to occur. Therefore, how to raise the temperature at which the metal of the treating agent is reduced is very important in terms of safety and is a desirable technique.
  • the present invention provides a metal hydride-containing exhaust gas that exhibits high treatment capacity in the detoxification treatment of a metal hydride-containing exhaust gas generated in a semiconductor manufacturing process, and that makes it difficult to cause a runaway reaction by increasing the temperature at which the metal is reduced.
  • An object is to provide a pesticide and a pesticide method.
  • the present inventors have found that at least one metal compound of solid metal basic carbonate, solid metal oxide, solid metal hydroxide, and solid metal carbonate has an acid. Or, by adding amines, it has excellent detoxification ability for exhaust gas containing high concentrations of metal hydride, and has a higher metal reduction temperature in hydrogen than conventional metal oxide treatment agents. I found that the runaway reaction is less likely to occur. Based on this knowledge, the present invention was completed by examining in more detail.
  • removal of exhaust gas containing metal hydride characterized by adding an acid or amines to at least one metal compound of solid metal basic carbonate, solid metal oxide, solid metal hydroxide, solid metal carbonate. It is a harmful agent.
  • the acid to be added is a metal hydride-containing exhaust gas detoxifying agent characterized in that it is any one selected from nitric acid, sulfuric acid, citric acid and acetic acid.
  • the amine to be added is a metal hydride-containing exhaust gas detoxifying agent characterized in that it is any one selected from primary, secondary or tertiary amines.
  • a metal hydride-containing exhaust gas detoxifying agent characterized by adding 0.1 to 20% by weight of an acid or amine to the metal compound.
  • the metal component of at least one metal compound of solid metal basic carbonate, solid metal oxide, solid metal hydroxide, and solid metal carbonate is selected from copper, manganese, iron, and silica, or one or two It is a metal hydride-containing exhaust gas detoxifier characterized by being a component of more than seeds.
  • the present invention is a metal hydride-containing exhaust gas detoxifying agent characterized by being molded after adding an acid or an amine to a metal compound.
  • the metal hydride-containing exhaust gas is characterized by contacting the metal hydride-containing exhaust gas with the treatment agent according to any one of claims 1 to 5.
  • the treatment agent produced by adding an acid or an amine to at least one metal compound of the solid metal basic carbonate, solid metal oxide, solid metal hydroxide, and solid metal carbonate of the present invention is a high concentration metal. It has an excellent detoxification capacity for hydride-containing exhaust gas, and the metal reduction temperature in hydrogen is higher than that of conventional metal oxide treatment agents, making it difficult for runaway reactions to occur. It is excellent in terms of operational safety without using a special device such as a cooling facility or a monitoring device.
  • the present invention relates to a treatment agent produced by adding an acid or an amine to at least one metal compound of solid metal basic carbonate, solid metal oxide, solid metal hydroxide, or solid metal carbonate. More specifically, 0.1 to 20% by weight of an acid or amine based on a dry base of at least one metal compound of solid basic copper carbonate, solid metal oxide, solid metal hydroxide, or solid metal carbonate. It is characterized by increasing the temperature at which reduction of metal compounds by hydrogen with metal compounds begins to occur, making runaway reaction difficult. More preferably, 4 to 10% by weight of acid or amine can be added on a dry basis of the metal compound.
  • the metal of the metal compound forming the main component of the treatment agent is at least one metal compound of solid metal basic carbonate, solid metal oxide, solid metal hydroxide, solid metal carbonate, which can exist stably. Any metal can be used, but copper, iron, manganese, cobalt, nickel, manganese, zinc, chromium, etc., which are usually easily available and inexpensive, are advantageously used.
  • metal compounds of the present invention commercially available carbonates, oxides, hydroxides, or basic carbonates can be used as they are, and metal salts as precursors of metal compounds are made into aqueous solutions. Then, it can also manufacture by neutralization reaction with additive component compounds, for example, alkaline compound aqueous solution. It is preferable to use sodium, potassium hydroxide, carbonate or the like as the additive component compounds, particularly alkali compounds.
  • the precipitate obtained by the neutralization reaction can be washed with water, filtered and dried and used as a raw material.
  • both commercially available and precipitated metal compounds may be used not only as a single compound but also as a mixture.
  • a compound obtained by precipitating the compound alone may be mixed, but it is preferable to obtain a precipitate containing a plurality of components by the coprecipitation method.
  • the precursors for metal compounds are powdered products, molded products, or crushed granules after molding, and are produced by a precipitation method.
  • the metal compound precursor a powdery product, a molded product thereof, or a crushed product after molding is used.
  • the additive component compounds can be dissolved in advance in an aqueous metal salt solution as a metal compound precursor produced by a precipitation method, and an acid or an amine can be added.
  • the treatment of exhaust gas containing metal hydride with metal compounds shifts from the adsorption action and / or chemical reaction immediately after the start to a chemical reaction that becomes dominant from the point in time when the treatment agent temperature has risen. After that, it is considered that the steady detoxification process of the reaction center continues until most of the metal components are consumed.
  • the reaction in the steady state is a reduction of metal compounds by metal hydride, and the hydroxide is less exothermic than the oxide as in the case of reduction of metal compounds by hydrogen. It is presumed that the same is true for basic carbonates. Therefore, in reducing exhaust gas treatment in which reduction of the metal component with hydrogen may occur, the effective metal component may be a metal hydroxide, metal carbonate, basic metal carbonate, or a mixture thereof having a low exothermic property. More preferably.
  • the kind of acid to be added is appropriately selected from acids such as nitric acid, sulfuric acid, citric acid and acetic acid.
  • the type of amines to be added is selected from primary, secondary or tertiary amines, and preferably selected from heavy coal and urea.
  • the amount of acid or amine added is 0.1 to 20% by weight, more preferably 2 to 10% by weight, based on the metal compound.
  • the detoxifying agent of the present invention is added during or after the kneading of the powdered metal compounds and additive component compounds, and is further molded by extrusion or tableting. It is said. Thereafter, the molded product is further dried or fired to finally produce a detoxifying agent.
  • the size of the molded pesticide is preferably mainly 0.1 mm to 15 mm. Further, the temperature when drying or baking after molding is preferably 50 ° C. to 300 ° C.
  • silica, alumina, magnesia, or other inorganic binders effective for improving the strength can be added to the abatement agent of the present invention as necessary in order to ensure mechanical strength that can be used.
  • the treatment method of the exhaust gas is based on circulating the gas to be treated through the treatment agent packed in the packed tower, the molding treatment is indispensable for reducing the pressure loss, and these molded products are crushed as necessary. It may be used in the form of granules.
  • Addition of amines is basically the same method as the above-mentioned acid addition, but an ammonia abatement facility is required.
  • the reduction stability of the present pesticide is treated in a hydrogen atmosphere using a thermogravimetric and differential scanning calorimeter (TG-DTA) manufactured by Rigaku Corporation (THERMO PLUS, TG8120). It can be carried out by measuring the exothermic temperature of the agent.
  • TG-DTA thermogravimetric and differential scanning calorimeter
  • the measurement apparatus, measurement conditions, and measurement operation method are as follows.
  • the present invention further includes a metal hydride as a detoxifying agent for adding an acid or amines to at least one metal compound of solid metal basic carbonate, solid metal oxide, solid metal hydroxide, solid metal carbonate.
  • a metal hydride as a detoxifying agent for adding an acid or amines to at least one metal compound of solid metal basic carbonate, solid metal oxide, solid metal hydroxide, solid metal carbonate.
  • the present invention relates to a method for removing exhaust gas containing metal hydride by contacting exhaust gas. More specifically, 0.1 to 20% by weight of acid or amine is added and molded to at least one metal compound of metal basic carbonate, metal oxide, metal hydroxide, and metal carbonate to reduce reduction stability.
  • the present invention relates to a method for removing exhaust gas containing an improved metal hydride.
  • the detoxifying agent obtained by adding an acid or an amine to at least one metal compound of the metal basic carbonate, metal oxide, metal hydroxide, metal carbonate of the present invention Packed in a flow-type packed tower and used as a fixed bed.
  • the exhaust gas containing the metal hydride is then allowed to flow into the packed tower and the metal hydride gas is detoxified by contact with a detoxifying agent.
  • the metal hydride gas that can be removed by the remover of the present invention include silane, arsine, phosphine, disilane, diborane, hydrogen selenide, germane, and dichlorosilane.
  • concentration of metal hydride gas and gas flow velocity it is generally desirable to make a flow velocity small, so that a concentration is high.
  • the contact temperature between the metal hydride gas and the detoxifying agent is preferably 100 ° C. or less, but it is usually normal temperature or room temperature, and it is not necessary to perform heating or cooling.
  • the pressure of the metal hydride gas may be any of normal pressure, reduced pressure, and increased pressure.
  • the detoxifying agent obtained in the present invention is filled into a stainless steel flow reactor, and a reducing gas containing silane, phosphine, and germane is used as a metal hydride gas in the reactor.
  • Gas hydride-containing gas at room temperature by measuring and monitoring the amount of metal hydride gas leakage in the exit gas with a break monitor (manufactured by Nippon Bionics) while measuring the temperature of the pesticide layer A detoxification performance measurement test was conducted.
  • the temperature rise of the treatment agent layer due to the runaway reaction was remarkable after the start of the test, but in the remover of the present invention, although the temperature of the packed bed was raised, intense heat generation Did not happen. Further, regarding the performance, the present invention was completed by confirming that the addition of acid or amines did not adversely affect the processing performance of the metal hydride and that the processing performance was maintained and the reduction stability was improved.
  • the performance evaluation of the treatment agent of the present invention was performed by measuring the detoxification performance of the metal hydride gas contained in the nitrogen gas.
  • the measurement is performed by a normal pressure flow type reaction apparatus, and the measurement apparatus, measurement conditions, and measurement operation method are as follows.
  • Detoxification performance measuring device Normal pressure flow reactor Reaction tube size: Inner diameter 28mm, Length 700mm Measurement conditions Amount of treating agent used: 60 cc (filling height 100 mm) GHSV: 300 hr -1 Pressure: normal pressure Reaction temperature: normal temperature Reaction gas composition: SiH 4 (silane) or PH 3 (phosphine), N 2 balance
  • acetic acid in a kneader is sufficiently mixed with 2% by weight acetic acid and an appropriate amount of pure water with respect to the commercially available basic copper carbonate, and then the diameter is 1.5 mm or 3 mm. Extruded and dried at 100 ° C. Subsequently, what was dried at 100 ° C. was used as a detoxifying agent. Table 2 shows the reduction stability (TG-DTA) results and the detoxification performance results of the obtained detoxifying agents in metal hydrides. [Example 2]
  • Example 1 a detoxifying agent was produced in the same manner as in Example 1 except that acetic acid was changed to 4% by weight.
  • Table 2 shows the reduction stability (TG-DTA) results and the detoxification performance results of the obtained detoxifying agents in metal hydrides.
  • Example 1 a detoxifying agent was produced in the same manner as in Example 1 except that acetic acid was changed to 8% by weight.
  • Table 2 shows the reduction stability (TG-DTA) result and the detoxification performance result of the obtained detoxifying agent in the hydrogen of the metal hydride.
  • Example 1 instead of commercially available basic copper carbonate as a metal compound, copper oxide-manganese oxide was used, and the tablet was molded into a size having a diameter and length of 4.5 mm and dried at 170 ° C. or 320 ° C.
  • the treating agents of Examples 4 and 5 were prepared by firing.
  • Table 2 shows the reduction stability (TG-DTA) result and the detoxification performance result of the obtained detoxifying agent in the hydrogen of the metal hydride.
  • Example 5 A detoxifying agent was produced in the same manner as in Example 5 except that urea was changed to 10% by weight.
  • Table 2 shows the reduction stability (TG-DTA) result and the detoxification performance result of the obtained detoxifying agent in the hydrogen of the metal hydride.
  • Example 1 in the preparation of the detoxifying agent, the detoxifying agent was prepared as Comparative Example 1 in which the addition of acetic acid or urea was not performed, that is, no addition of acetic acid or urea was performed in the extrusion process of basic copper carbonate. did.
  • Table 2 shows the reduction stability (TG-DTA) result and the detoxification performance result of the obtained detoxifying agent in the hydrogen of the metal hydride.
  • Comparative Example 1 was prepared in the same manner as Comparative Example 1 except that copper hydroxide was used instead of basic copper carbonate.
  • Table 2 shows the reduction stability (TG-DTA) result and the detoxification performance result of the obtained detoxifying agent in the hydrogen of the metal hydride.
  • Comparative Example 1 was prepared in the same manner as Comparative Example 1 except that copper oxide and manganese oxide were used instead of basic copper carbonate.
  • Table 2 shows the reduction stability (TG-DTA) result and the detoxification performance result of the obtained detoxifying agent in the hydrogen of the metal hydride.
  • the present invention when using a conventional detoxifying agent when detoxifying a metal hydride-containing gas generated in a semiconductor manufacturing process, reduction of the metal in which the detoxifying agent reacts with hydrogen in the gas to be treated.
  • the runaway reaction caused by the reaction can be suppressed by using the detoxifying agent of the present invention, so that the metal reduction start temperature can be increased.
  • the addition of an acid or an amine to the metal compound does not affect the performance of the detoxifying agent, so that the runaway reaction can be suppressed while maintaining the detoxifying performance. Therefore, the detoxifying agent of the present invention is very valuable for industrial use because it can achieve simple and safe gas detoxification without taking special equipment or control means for preventing runaway reaction.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Biomedical Technology (AREA)
  • Analytical Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Treating Waste Gases (AREA)
  • Liquid Crystal (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

 本発明は、半導体製造工程で発生する金属水素化物含有排ガスの除害処理において、高い処理能力を示し、かつ、金属が還元される温度を高くし暴走反応を起こり難くする金属水素化物含有排ガスの除害剤及び除害方法を提供することを目的とする。固体金属塩基性炭酸塩、固体金属酸化物、固体金属水酸化物、固体金属炭酸塩の少なくとも一種の金属化合物に酸またはアミン類を添加することにより、高濃度の金属水素化物含有排ガスに対して優れた除害処理能力を有し、しかも従来の金属酸化物系処理剤よりも水素中での金属還元温度が高くなり暴走反応を起こり難くする還元安定性をも実現できる。

Description

金属水素化物含有排ガスの除害剤及び除害方法
 本発明は金属水素化物含有排ガスの除害剤及び除害方法に関し、詳しくは、半導体製造工場、もしくは液晶製造工場などで発生する金属水素化物含有排ガスの除害剤および除害方法に関する。
 半導体製造工場では、その製造中に各種金属水素化物ガス、ハロゲン化物ガス類が使用されている。これらのガスは可燃性及び/又は有害性であることから、これらを含有する排ガスを環境保全上、大気中にそのまま放出することはできず、その危険性、有害性をなくするための処理が必要である。
 排ガス処理には湿式法と乾式法があり、前者は薬液で排ガスを洗浄処理する方法である。一方、後者は、粒状固体処理剤の充填塔に排ガスを流通させ、除害対象ガスと処理剤との化学的作用、即ち、吸着及び/又は化学反応により、危険性、有害性ガスを分離、除害する方法であり、金属水素化物含有排ガス或いはハロゲン化物ガス含有排ガスの処理で多く行われている。
 金属水素化物含有排ガス処理剤には多くの特許が見られ、例えば、金属水酸化物からなる処理剤は、特開平07-136451号公報(特許文献1)および特開平06-319945号公報(特許文献2)、固体金属水酸化物、固体金属炭酸塩および固体金属塩基性炭酸塩のいずれかからなる処理剤については特開平08-192024号公報(特許文献3)、特開昭62-152515号公報(特許文献4)、塩基性金属炭酸塩からなる処理剤については特許第2604991号公報(特許文献5)等に示されている。
 しかしながら、金属水酸化物、金属炭酸塩あるいは金属塩基性炭酸塩からなる処理剤は、単独でも優れた除害能力を有するが、上記排ガスの処理に伴う化学反応はいずれも発熱性である。従って、従来技術では金属化合物類による排ガス処理は温度上昇が必然的であり、高濃度の金属水素化物を含有する排ガス処理や大量の排ガス処理を行う場合は、大幅な温度上昇を生じる可能性がある。そのために、処理剤は高性能であるだけではなく、低発熱性であることが要求される。更に半導体製造工程で金属水素化物ガスを使用する際、水素雰囲気中で使う場合に、処理剤が被処理ガス中の水素と反応する、すなわち金属の還元による非常に高温の発熱反応、いわゆる暴走反応が起こりやすくなる。そのために処理剤の金属が還元される温度をいかに高くするかが安全面で非常に重要であり、望ましい技術である。
特開平07-136451号公報 特開平06-319945号公報 特開平08-192024号公報 特開昭62-152515号公報 特許第2604991号公報
 本発明は、半導体製造工程で発生する金属水素化物含有排ガスの除害処理において、高い処理能力を示し、かつ、金属が還元される温度を高くし暴走反応を起こり難くする金属水素化物含有排ガスの除害剤及び除害方法を提供することを目的とする。
 本発明者らは、上記の課題を解決すべく鋭意研究を続けた結果、固体金属塩基性炭酸塩、固体金属酸化物、固体金属水酸化物、固体金属炭酸塩の少なくとも一種の金属化合物に酸またはアミン類を添加することにより、高濃度の金属水素化物含有排ガスに対して優れた除害処理能力を有し、しかも従来の金属酸化物系処理剤よりも水素中での金属還元温度が高くなり暴走反応を起こり難くすることを見出した。この知見に基づき、更に詳細に検討することによって本発明を完成した。
 すなわち、固体金属塩基性炭酸塩、固体金属酸化物、固体金属水酸化物、固体金属炭酸塩の少なくとも一種の金属化合物に酸またはアミン類を添加することを特徴とする金属水素化物含有排ガスの除害剤である。
 また、添加する酸は、硝酸、硫酸、クエン酸、酢酸から選択されるいずれか一つであることを特徴とする金属水素化物含有排ガスの除害剤である。
 更に、添加するアミン類は、1級、2級または3級アミンから選択されるいずれか一つであることを特徴とする金属水素化物含有排ガスの除害剤である。
 金属化合物に対して0.1~20重量%の酸又はアミン類を添加することを特徴とする金属水素化物含有排ガスの除害剤である。
 また、固体金属塩基性炭酸塩、固体金属酸化物、固体金属水酸化物、固体金属炭酸塩の少なくとも一種の金属化合物の金属成分が、銅、マンガン、鉄、シリカから選択される1種または2種以上の成分であることを特徴とする金属水素化物含有排ガスの除害剤である。
 更に、金属化合物に酸またはアミン類を添加後成型されることを特徴とする金属水素化物含有排ガスの除害剤である。
 また、金属水素化物含有排ガスを請求項1乃至5のいずれか一項に記載の処理剤と接触させることを特徴とする金属水素化物含有排ガスの除害方法である。
 本発明の固体金属塩基性炭酸塩、固体金属酸化物、固体金属水酸化物、固体金属炭酸塩の少なくとも一種の金属化合物に酸又はアミン類を添加して製造した処理剤は、高濃度の金属水素化物含有排ガスに対して優れた除害処理能力を有し、しかも従来の金属酸化物系処理剤よりも水素中での金属還元温度が高くなり暴走反応を起こり難くすることができ、また、冷却設備等あるいは監視装置等特別な装置を用いることなく操作上の安全面においても優れている。
 以下に本発明を詳述する。
 本発明は、固体金属塩基性炭酸塩、固体金属酸化物、固体金属水酸化物、固体金属炭酸塩の少なくとも一種の金属化合物に酸又はアミン類を添加して製造した処理剤に関する発明である。より具体的には、固体塩基性炭酸銅、固体金属酸化物、固体金属水酸化物、固体金属炭酸塩の少なくとも一種の金属化合物のドライベースで0.1~20重量%の酸又はアミン類を添加し金属化合物類の金属の水素による還元が始まる温度を高くし暴走反応を起こり難くすることを特徴とする。より好適には上記金属化合物のドライベースで4~10重量%の酸又はアミン類を添加することができる。
 ここで処理剤の主体をなす金属化合物の金属としては、固体金属塩基性炭酸塩、固体金属酸化物、固体金属水酸化物、固体金属炭酸塩の少なくとも一種の金属化合物で安定に存在し得るものであればどのような金属でも使用することができるが、通常容易に入手できしかも安価な銅、鉄、マンガン、コバルト、ニッケル、マンガン、亜鉛、クロム等が有利に用いられる。
 更に、本発明の金属化合物類は市販の炭酸塩、酸化物、水酸化物、或いは塩基性炭酸塩をそのまま使用することができ、また金属化合物類の前駆体としての金属塩類を水溶液となした後、添加成分化合物類、たとえばアルカリ化合物類水溶液との中和反応によって製造することもできる。この添加成分化合物類、特にアルカリ化合物類としてはナトリウム、カリウムの水酸化物、炭酸塩等を使用するのが好ましい。中和反応によって得られた沈澱物は水洗した後、濾過、乾燥され原料として使用することもできる。
 ここで、金属化合物類は市販のもの、沈澱法によるもの共に単一化合物での使用のみならず、混合物となして使用してもよい。沈殿法による化合物類の場合、混合物としての使用においては化合物を単独で沈澱させたものを混合してもよいが、共沈法によって複数成分を含む沈澱物を得ることによる方が好ましい。
 添加成分化合物類に金属化合物類を担持する場合において、金属化合物類前駆体は、市販品を使用する場合は粉状物、その成型物、或いは成型後破砕した顆粒が使用され、沈澱法によって製造した金属化合物類前駆体の場合も同様に粉状物、その成型物、若しくは成型後の破砕物が使用される。あるいは、沈澱法によって製造した金属化合物類前駆体としての金属塩類水溶液に添加成分化合物類を予め溶解させておき、酸またはアミン類を加えることができる。これらを以下にまとめて表1に示すと次のようになる。
Figure JPOXMLDOC01-appb-T000001
 なお、金属化合物類による金属水素化物含有排ガスの処理は、開始直後の吸着作用及び/又は化学反応から、時間が経過して処理剤温度が上昇した時点より支配的になる化学反応へと移行し、それ以降は反応中心の定常的除害過程が大部分の金属成分が消費されるまで継続すると考えられる。この定常状態での反応は見方を変えれば金属化合物類の金属水素化物による還元であり、水素による金属化合物類の還元の場合と同様に水酸化物の方が酸化物よりも発熱性は小さく、また塩基性炭酸塩の場合も同様であることが推定される。従って、金属成分の水素による還元が起こる可能性がある還元性排ガス処理においては、有効金属成分としては発熱性が小さい金属水酸化物、金属炭酸塩、塩基性金属炭酸塩、若しくはこれらの混合物であることがより好ましい。
 添加する酸の種類は硝酸、硫酸、クエン酸、酢酸等の酸から適宜選択される。
 添加するアミン類の種類は1級、2級または3級アミンから選択され、好適には、重炭安、尿素から選択される。
 また、酸またはアミン類の添加量は金属化合物類に対して0.1~20重量%であり、より好適には、2~10重量%である。
 本発明の除害剤は、先ず酸の添加は混練法で加えられる場合は、粉末状の金属化合物類と添加成分化合物類の混練中または終了後に添加され、更に押出し、或いは打錠によって成型物とされる。その後、成型物を更に乾燥または焼成することによって最終的に除害剤を製造する。なお、成型された除害剤のサイズは主に0.1mm~15mmであることが好ましい。また、成型後に乾燥あるいは焼成する際の温度は、50℃~300℃であることが好ましい。
 また、本発明の除害剤には使用に耐え得る機械的強度を確保するために、必要に応じてシリカ、アルミナ、マグネシア、若しくはその他の強度改善に有効な無機バインダー類を加えることができる。
 なお、排ガスの処理方法は、充填塔に詰められた処理剤に処理対象ガスを流通することによるため、成型処理は圧力損失を低減するために必須で、必要に応じてこれら成型物は破砕処理され、顆粒状となして使用してもよい。
 アミン類の添加も基本的に上述の酸の添加と同様な方法であるがアンモニア除害施設が必要である。
 本発明の除害剤の還元安定性は、理学社製(THERMO PLUS、TG8120)の熱重量及び示差走査熱量測定装置(Thermo gravimetric and differential scanning calorimeter(TG-DTA))を使い水素雰囲気中で処理剤の発熱温度を測ることにより実施することができる。測定装置、測定条件、測定操作法は次の通りである。
 (水素雰囲気中での測定条件)
       測定温度範囲:20℃~300℃
       増温速度:10℃/分
       水素:30ml/分
       圧力:常圧
       処理剤量:5~15mg
 本発明の除害剤における還元安定性の測定結果は表2に示す。
 更に本発明は、固体金属塩基性炭酸塩、固体金属酸化物、固体金属水酸化物、固体金属炭酸塩の少なくとも一種の金属化合物に酸またはアミン類を添加する除害剤に金属水素化物を含む排ガスを接触させることによる金属水素化物を含む排ガスの除害方法に関するものである。より詳しくは、金属塩基性炭酸塩、金属酸化物、金属水酸化物、金属炭酸塩の少なくとも一種の金属化合物に0.1~20重量%の酸又はアミン類を添加成型し、還元安定性を向上させた金属水素化物を含む排ガスの除害方法に関するものである。
 実際の使用に当たり、本発明の金属塩基性炭酸塩、金属酸化物、金属水酸化物、金属炭酸塩の少なくとも一種の金属化合物に酸又はアミン類を添加したことによって得られた除害剤は、流通式の充填塔に詰められ固定床として使用される。次いで金属水素化物を含有する排ガスはこの充填塔内に流され、除害剤と接触させることによって金属水素化物ガスは除害される。本発明の除害剤によって除害できる金属水素化物ガスとしては、シラン、アルシン、ホスフィン、ジシラン、ジボラン、セレン化水素、ゲルマン、ジクロルシラン等がある。また、本発明の除害方法が適用される金属水素化物ガス類の濃度およびガスの流速に制限はないが、一般に濃度が高い程流速を小さくすることが望ましい。
 また、金属水素化物ガスと除害剤との接触温度は100℃以下が好ましいが、通常は常温ないし室温でよく、特に加熱や冷却をする必要はない。また、金属水素化物ガスの圧力についても、常圧、減圧、加圧のいずれでもよい。
 本発明においては、具体的には、本発明で得られた除害剤をステンレス製流通式反応装置に充填し、金属水素化物ガスとして、シラン、ホスフィン、ゲルマンを含有する還元性ガスを反応器に流通させ、除害剤層の温度測定を行いつつ、出口ガス中の金属水素化物ガス漏洩量をブレークモニター(日本バイオニクス社製)によって測定、監視することによって、常温における金属水素化物含有ガスの除害性能測定試験を行った。
 その結果、従来の酸化物系処理剤の場合は試験開始後、暴走反応による処理剤層の温度上昇が著しかったが、本発明の除害剤においては充填層の温度上昇があったものの激しい発熱は起こらなかった。更に、その性能に関しては、酸又はアミン類添加による金属水素化物の処理性能に悪い影響は与えず、処理性能は維持して還元安定性が向上することを確認して本発明を完成した。
 以下、本発明の内容を実施例によって更に詳細に説明するが、本発明はこれらに限定されるものではない。
 本発明処理剤の性能評価は窒素ガス中に含まれる金属水素化物ガスの除害性能を測定することによって行った。測定は常圧流通式の反応装置によって行い、その測定装置、測定条件、測定操作法は次の通りである。
 (金属水素化物ガスの除害性能測定装置、及び測定条件)
    除害性能測定装置:常圧流通式反応装置
    反応管のサイズ :内径28mm、長さ700mm
    測定条件
      使用処理剤量:60cc(充填高さ100mm)
      GHSV  :300hr-1
      圧力    :常圧
      反応温度  :常温
      反応ガス組成:SiH(シラン)、又はPH(ホスフィン)、
             N           バランス
 (金属水素化物ガスの除害性能測定操作方法及び除害性能計算法)
 除害剤60ccを充填高が100mmになるように反応管内に詰めて測定装置に設置し、次いで窒素(純度99.99%)で希釈した金属水素化物ガスを除害剤充填層に流通させた。ガス流通開始後、除害剤層の温度測定を行いつつ、反応管出口ガス中への金属水素化物ガス漏洩をブレークモニター(日本バイオニクス製)で測定、監視し、その出口濃度が5ppmに達するまでに流入したシラン、ホスフィン、ゲルマンの積算量を求め、その量を処理剤1kg当りに換算した。具体的には測定結果から次の式によって金属水素化物ガスの除害性能は計算された。
 (処理剤の金属水素化物ガス除害性能計算法)
    除害性能(L/kg)=A×(B/100)×(C/E)
    ここで、A:測定ガス流量(L/min.)
        B:金属水素化物ガス濃度(容積%)
        C:金属水素化物ガスの出口濃度が所定の濃度に達するまでの累積ガス流通時間(min.)
        E:処理剤充填量(kg)
[実施例1]
 金属化合物として市販の塩基性炭酸銅を用い、ニーダーの中で酢酸を市販塩基性炭酸銅に対して2重量%酢酸と適量の純水と充分混合した後、直径1.5mmまたは3mmのサイズに押出し成型し、100℃で乾燥した。次いで100℃で乾燥したものを除害剤とした。得られた除害剤の金属水素化物の水素中での還元安定性(TG-DTA)結果および除害性能結果を表2に示した。
[実施例2]
 実施例1において、酢酸を4重量%にした他は実施例1と全て同様にして除害剤を製造した。得られた除害剤の金属水素化物の水素中での還元安定性(TG-DTA)結果および除害性能結果を表2に示した。
[実施例3]
 実施例1において、酢酸を8重量%にした他は実施例1と全て同様にして除害剤を製造した。得られた除害剤の金属水素化物の水素中での還元安定性(TG-DTA)結果および除害性能結果を表2に示した。
[実施例4]
 実施例1において、金属化合物として市販の塩基性炭酸銅に代え、酸化銅-酸化マンガンを使用し、直径と長さが4.5mmのサイズに打錠成型し、170℃または320℃で乾燥・焼成して実施例4、5の処理剤を調製した。得られた除害剤の金属水素化物の水素中での還元安定性(TG-DTA)結果および除害性能結果を表2に示した。
[実施例5]
 金属化合物として市販の塩基性炭酸銅を用い、ニーダーの中で尿素を市販塩基性炭酸銅に対して4重量%尿素と適量の純水と充分混合した後、直径1.5mmまたは3mmのサイズに押出し成型し、110℃で乾燥した。次いで110℃で乾燥したものを除害剤とした。得られた除害剤の金属水素化物の水素中での還元安定性(TG-DTA)結果および除害性能結果を表2に示した。
[実施例6]
 実施例5において、尿素を10重量%にした他は実施例5と全て同様にして除害剤を製造した。得られた除害剤の金属水素化物の水素中での還元安定性(TG-DTA)結果および除害性能結果を表2に示した。
比較例1
 実施例1において、除害剤の調製において、塩基性炭酸銅の押出し成型段階に留め、酢酸又は尿素の添加を行わない、すなわち酸又はアミン類を含有しない比較例1として、除害剤を調製した。得られた除害剤の金属水素化物の水素中での還元安定性(TG-DTA)結果および除害性能結果を表2に示した。
比較例2
 比較例1において、塩基性炭酸銅に代えて水酸化銅を使用した以外は比較例1と全く同様にして比較例2の除害剤を調製した。得られた除害剤の金属水素化物の水素中での還元安定性(TG-DTA)結果および除害性能結果を表2に示した。
比較例3
 比較例1において、塩基性炭酸銅に代えて酸化銅と酸化マンガンを使用した以外は比較例1と全く同様にして比較例3の除害剤を調製した。得られた除害剤の金属水素化物の水素中での還元安定性(TG-DTA)結果および除害性能結果を表2に示した。
Figure JPOXMLDOC01-appb-T000002
 表2の結果より、実施例における金属酸化物、金属水酸化物、金属炭酸塩、塩基性金属炭酸塩系化合物に酸又はアミン類を添加することによって、少なくとも10℃、高くて90℃以上金属の還元が始まる温度を高めることができた。一方、金属化合物に酸またはアミンを添加していない比較例1~3は実施例に比較して還元が始まる温度が高くならず、水素中での金属の還元安定性が低かった。特に、金属化合物の中でも塩基性炭酸銅においては、酸又はアミン類添加の有無に顕著な結果の差があった。
 本発明によれば、半導体製造工程で発生する金属水素化物含有ガスを除害する際に、従来の除害剤を使用すると、除害剤と被処理ガス中の水素とが反応する金属の還元反応によって生じていた暴走反応を、本発明の除害剤を使用することで金属の還元開始温度を高めることができるため、暴走反応を抑制することが可能となる。また、金属化合物に酸またはアミン類を添加することで除害剤の性能に対して影響を与えることがないため、除害性能を維持したまま暴走反応をも抑制することができる。従って本発明の除害剤は暴走反応を防止するための特別な装置あるいは制御手段を講じることもなく、簡便で安全なガスの除害が達成できるため、工業的利用に非常に価値が高い。

Claims (7)

  1. 固体金属塩基性炭酸塩、固体金属酸化物、固体金属水酸化物、固体金属炭酸塩の少なくとも一種の金属化合物に酸またはアミン類を添加することを特徴とする金属水素化物含有排ガスの除害剤。
  2. 添加する酸は、硝酸、硫酸、クエン酸、酢酸から選択されるいずれか一つであることを特徴とする請求項1記載の金属水素化物含有排ガスの除害剤。
  3. 添加するアミン類は、1級、2級または3級アミンから選択されるいずれか一つであることを特徴とする請求項1記載の金属水素化物含有排ガスの除害剤。
  4. 金属化合物に対して0.1~20重量%の酸又はアミン類を添加することを特徴とする請求項1乃至3のいずれかに記載の金属水素化物含有排ガスの除害剤。
  5. 固体金属塩基性炭酸塩、固体金属酸化物、固体金属水酸化物、固体金属炭酸塩の少なくとも一種の金属化合物の金属成分が、銅、マンガン、鉄、シリカから選択される1種または2種以上の成分であることを特徴とする請求項1記載の金属水素化物含有排ガスの除害剤。
  6. 金属化合物に酸またはアミン類を添加後成型されることを特徴とする請求項1乃至5のいずれかに記載の金属水素化物含有排ガスの除害剤。
  7. 金属水素化物含有排ガスを請求項1乃至6のいずれか一項に記載の処理剤と接触させることを特徴とする金属水素化物含有排ガスの除害方法。
PCT/JP2009/052241 2009-02-10 2009-02-10 金属水素化物含有排ガスの除害剤及び除害方法 WO2010092671A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2010550368A JP5833313B2 (ja) 2009-02-10 2009-02-10 金属水素化物含有排ガスの除害剤及び除害方法
PCT/JP2009/052241 WO2010092671A1 (ja) 2009-02-10 2009-02-10 金属水素化物含有排ガスの除害剤及び除害方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/052241 WO2010092671A1 (ja) 2009-02-10 2009-02-10 金属水素化物含有排ガスの除害剤及び除害方法

Publications (1)

Publication Number Publication Date
WO2010092671A1 true WO2010092671A1 (ja) 2010-08-19

Family

ID=42561524

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/052241 WO2010092671A1 (ja) 2009-02-10 2009-02-10 金属水素化物含有排ガスの除害剤及び除害方法

Country Status (2)

Country Link
JP (1) JP5833313B2 (ja)
WO (1) WO2010092671A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015061725A (ja) * 2013-09-23 2015-04-02 ジエヌビエス エンジニアリング株式会社 工程廃ガス処理用スクラバ
JP2015164724A (ja) * 2015-04-03 2015-09-17 クラリアント触媒株式会社 金属水素化物含有排ガスの除害剤及び除害方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08155259A (ja) * 1994-12-07 1996-06-18 Nippon Sanso Kk 有害ガスの除害方法及び除害剤
JP2003126647A (ja) * 2001-10-22 2003-05-07 Nippon Sanso Corp 特殊ガスの除害方法及び装置
JP2009011977A (ja) * 2007-07-06 2009-01-22 Kn Lab Analysis:Kk 除害塔におけるリンの安定化方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02126936A (ja) * 1988-11-07 1990-05-15 Chiyoda Corp 水素化物系有毒ガスの吸着剤及びそれを用いる排ガスの浄化方法
JP3417398B2 (ja) * 2000-12-13 2003-06-16 栗田工業株式会社 排ガス処理剤及び排ガス処理方法
JP4545631B2 (ja) * 2005-04-21 2010-09-15 三井化学株式会社 高純度尿素水の製造方法
JP2008302338A (ja) * 2007-06-11 2008-12-18 Sud-Chemie Catalysts Inc 金属水素化物含有排ガス除害剤及び金属水素化物含有排ガス除害方法
JP4952413B2 (ja) * 2007-07-09 2012-06-13 宇部興産株式会社 エッチング排ガス処理装置及びエッチング排ガス処理方法
JP5498660B2 (ja) * 2008-03-03 2014-05-21 大陽日酸株式会社 シランの除害剤及び除害方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08155259A (ja) * 1994-12-07 1996-06-18 Nippon Sanso Kk 有害ガスの除害方法及び除害剤
JP2003126647A (ja) * 2001-10-22 2003-05-07 Nippon Sanso Corp 特殊ガスの除害方法及び装置
JP2009011977A (ja) * 2007-07-06 2009-01-22 Kn Lab Analysis:Kk 除害塔におけるリンの安定化方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015061725A (ja) * 2013-09-23 2015-04-02 ジエヌビエス エンジニアリング株式会社 工程廃ガス処理用スクラバ
JP2015164724A (ja) * 2015-04-03 2015-09-17 クラリアント触媒株式会社 金属水素化物含有排ガスの除害剤及び除害方法

Also Published As

Publication number Publication date
JP5833313B2 (ja) 2015-12-16
JPWO2010092671A1 (ja) 2012-08-16

Similar Documents

Publication Publication Date Title
AU2016288473B2 (en) Method and apparatus for removing nitrogen oxides from air flow
TWI406702B (zh) 鹵素系氣體除害劑及使用其之鹵素系氣體之除害方法
KR20210089142A (ko) 질소 산화물 흡수제 슬러리 및 이의 제조와 사용 방법
JP5833313B2 (ja) 金属水素化物含有排ガスの除害剤及び除害方法
JP6043398B2 (ja) 金属水素化物含有排ガスの除害剤及び除害方法
KR20110011858A (ko) 산성 유해가스 제거용 정화제 및 그 제조 방법
KR20010061933A (ko) 유해가스 정화제 및 정화방법
JP6006492B2 (ja) 揮発性無機水素化物含有排ガス除害剤及び揮発性無機水素化物含有排ガス除害方法
JP3838977B2 (ja) 排ガス処理剤及びその製造方法並びに排ガス処理方法
JP4430948B2 (ja) 金属水素化物含有排ガス処理剤及び金属水素化物含有排ガス処理方法
JP2691927B2 (ja) 有害成分の除去方法
JP2008302338A (ja) 金属水素化物含有排ガス除害剤及び金属水素化物含有排ガス除害方法
JP4833602B2 (ja) 排ガスの処理方法
JP3362918B2 (ja) 排ガスの浄化方法
JPS61129026A (ja) 排ガスの浄化方法
JP3292251B2 (ja) 水蒸気の精製方法
CN107648995A (zh) 一种环保型低成本烟气脱硫脱硝剂及其制备方法和应用
JP5189342B2 (ja) ガスの処理方法
JPH0417082B2 (ja)
JP3154340B2 (ja) 水素化ゲルマニウムの精製方法
JP2008119628A (ja) 有害ガスの浄化剤及び浄化方法
KR100338322B1 (ko) 반도체 제조공정에서 발생되는 불화수소 가스의 정화방법
JP2702461B2 (ja) 排ガスの浄化方法
JPH0456662B2 (ja)
JP2002355529A (ja) 特殊ガス処理用除害剤及びその使用方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09839993

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2010550368

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09839993

Country of ref document: EP

Kind code of ref document: A1