WO2010089813A1 - 二次電池及び二次電池を備えた電池パック、並びに二次電池の製造方法 - Google Patents

二次電池及び二次電池を備えた電池パック、並びに二次電池の製造方法 Download PDF

Info

Publication number
WO2010089813A1
WO2010089813A1 PCT/JP2009/003367 JP2009003367W WO2010089813A1 WO 2010089813 A1 WO2010089813 A1 WO 2010089813A1 JP 2009003367 W JP2009003367 W JP 2009003367W WO 2010089813 A1 WO2010089813 A1 WO 2010089813A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
secondary battery
current collector
laminate
case
Prior art date
Application number
PCT/JP2009/003367
Other languages
English (en)
French (fr)
Inventor
渡邉耕三
村岡芳幸
佐藤俊忠
松本真美
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to US13/058,419 priority Critical patent/US20110135997A1/en
Priority to JP2010549273A priority patent/JP5232875B2/ja
Priority to EP09839591A priority patent/EP2395587A1/en
Priority to CN2009801522059A priority patent/CN102265445A/zh
Publication of WO2010089813A1 publication Critical patent/WO2010089813A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0413Large-sized flat cells or batteries for motive or stationary systems with plate-like electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0431Cells with wound or folded electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0436Small-sized flat cells or batteries for portable equipment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0404Methods of deposition of the material by coating on electrode collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/043Processes of manufacture in general involving compressing or compaction
    • H01M4/0435Rolling or calendering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0471Processes of manufacture in general involving thermal treatment, e.g. firing, sintering, backing particulate active material, thermal decomposition, pyrolysis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • H01M4/662Alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/116Primary casings, jackets or wrappings of a single cell or a single battery characterised by the material
    • H01M50/117Inorganic material
    • H01M50/119Metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/116Primary casings, jackets or wrappings of a single cell or a single battery characterised by the material
    • H01M50/121Organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/116Primary casings, jackets or wrappings of a single cell or a single battery characterised by the material
    • H01M50/124Primary casings, jackets or wrappings of a single cell or a single battery characterised by the material having a layered structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/131Primary casings, jackets or wrappings of a single cell or a single battery characterised by physical properties, e.g. gas-permeability or size
    • H01M50/133Thickness
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/547Terminals characterised by the disposition of the terminals on the cells
    • H01M50/55Terminals characterised by the disposition of the terminals on the cells on the same side of the cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/552Terminals characterised by their shape
    • H01M50/553Terminals adapted for prismatic, pouch or rectangular cells
    • H01M50/557Plate-shaped terminals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/562Terminals characterised by the material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49108Electric battery cell making
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49108Electric battery cell making
    • Y10T29/4911Electric battery cell making including sealing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49108Electric battery cell making
    • Y10T29/49115Electric battery cell making including coating or impregnating

Definitions

  • the present invention relates to a secondary battery, a battery pack including the secondary battery, and a method for manufacturing the secondary battery.
  • FIG. 11 is a cross-sectional view showing a configuration of a conventional secondary battery.
  • an electrode group 101 is enclosed in a laminate case 102 made of a laminate film, thereby forming a secondary battery 103.
  • the laminate case 102 is sealed by a welded portion 102b in which laminate films are welded to each other.
  • the laminate case 102 includes the welded portion 102b and the accommodating portion 102a that accommodates the electrode group 101 adjacent to the welded portion 102b.
  • the electrode group expands, and buckling occurs in the electrode group (particularly, the region sandwiched between the side surfaces in the thickness direction of the laminate case in the electrode group). There is a problem.
  • the inventors of the present invention diligently studied the cause of buckling in the electrode group, and found the following.
  • the positive electrode and the negative electrode expand due to charge and discharge and stress occurs in the thickness direction within the electrode group, the positive electrode cannot be deformed following the deformation of the negative electrode, and therefore the positive electrode breaks (ie, the positive electrode buckles). ).
  • the object of the present invention is to prevent the positive electrode and the negative electrode from expanding due to charge and discharge, and to prevent the positive electrode from deforming following the deformation of the negative electrode to prevent buckling in the electrode group. It is to be.
  • a secondary battery has a positive electrode mixture layer including a positive electrode active material and a binder on a positive electrode current collector in a laminate case made of a laminate film.
  • a welded portion, a non-welded portion that is provided between the housing portion and the welded portion and the laminate films are not welded to each other, and the tensile elongation of the positive electrode is 3.0% or more.
  • the non-welded portion is provided between the housing portion in the laminate case and the weld portion in the laminate case.
  • swell in the width direction can be provided in a laminate case. Therefore, even if the positive electrode and the negative electrode may expand due to charging / discharging, the electrode group can be preferentially expanded in the width direction, not in the thickness direction, so that stress is applied in the thickness direction within the electrode group. Can be prevented from occurring.
  • the tensile elongation of the positive electrode is increased to 3.0% or more.
  • the tensile elongation of the negative electrode is preferably 3.0% or more, and the tensile elongation of the porous insulating layer is preferably 3.0% or more.
  • the positive electrode is a positive current collector in which the positive electrode mixture slurry is coated and dried, after the positive electrode mixture slurry containing the positive electrode active material is applied and dried.
  • the body is preferably a positive electrode that has been heat-treated at a predetermined temperature.
  • the positive electrode current collector preferably contains iron and mainly contains aluminum.
  • the amount of iron contained in the positive electrode current collector is preferably 1.20 wt% or more and 1.70 wt% or less.
  • a battery pack according to one aspect of the present invention includes a secondary battery according to one aspect of the present invention and a pack case in which the secondary battery is accommodated. It is provided between the side surface in the thickness direction of the case and the pack case, and has a pressing portion that presses the central portion of the laminate case in the thickness direction, and between the side surface in the width direction of the pack case and the laminate case, A space is provided.
  • the positive electrode and the negative electrode may expand due to charging / discharging, the generation of stress in the thickness direction within the electrode group is suppressed, and the electrode Even if stress occurs in the group, the positive electrode can be deformed following the deformation of the negative electrode, so that buckling can be prevented from occurring in the electrode group.
  • the central portion of the laminate case can be pressed in the thickness direction by the pressing portion. Therefore, since the electrode group can be preferentially expanded in the width direction, it is possible to further suppress the occurrence of stress in the thickness direction within the electrode group. Therefore, it is possible to further prevent buckling from occurring in the electrode group.
  • a method of manufacturing a secondary battery according to one aspect of the present invention includes a positive electrode composite containing a positive electrode active material and a binder on a positive electrode current collector in a laminate case made of a laminate film.
  • the positive electrode and the negative electrode are wound or laminated via a porous insulating layer between the positive electrode and the negative electrode, thereby forming an electrode group.
  • a step (c) comprising, and a step (d) for enclosing the electrode group in a laminate case after the step (c), wherein the step (a) comprises applying a positive electrode active material on the positive electrode current collector.
  • a step (a1) of applying and drying a positive electrode mixture slurry, and a positive electrode mixture slurry The step of rolling the cloth-dried positive electrode current collector (a2), and after the step (a2), the positive electrode current collector on which the positive electrode mixture slurry is applied and dried is subjected to heat treatment at a predetermined temperature.
  • a non-welded portion where the laminate films are not welded to each other can be provided between the housing portion and the welded portion.
  • the tensile elongation of the positive electrode can be increased to 3.0% or more by heat treatment performed after rolling.
  • the predetermined temperature is preferably higher than the softening temperature of the positive electrode current collector.
  • the positive electrode current collector preferably contains iron and mainly contains aluminum.
  • the non-welded portion is provided between the housing portion in the laminate case and the weld portion in the laminate case.
  • swell in the width direction can be provided in a laminate case. Therefore, even if the positive electrode and the negative electrode may expand due to charging / discharging, the electrode group can be preferentially expanded in the width direction, not in the thickness direction, so that stress is applied in the thickness direction within the electrode group. Can be prevented from occurring.
  • the tensile elongation of the positive electrode is increased to 3.0% or more. Thereby, even if stress may be generated in the electrode group, the positive electrode can be deformed following the deformation of the negative electrode. Therefore, it is possible to suppress the occurrence of stress in the thickness direction in the electrode group and to prevent the buckling from occurring in the electrode group because the positive electrode can be deformed following the deformation of the negative electrode. it can.
  • the central portion of the laminate case can be pressed in the thickness direction by the pressing portion. Therefore, since the electrode group can be preferentially expanded in the width direction, it is possible to further suppress the occurrence of stress in the thickness direction within the electrode group. Therefore, it is possible to further prevent buckling from occurring in the electrode group.
  • FIG. 1 is a perspective view showing the configuration of the secondary battery according to the first embodiment of the present invention.
  • FIG. 2 is a cross-sectional view showing the configuration of the secondary battery according to the first embodiment of the present invention.
  • FIG. 3 is an enlarged cross-sectional view showing the configuration of the electrode group.
  • FIG. 4 is a perspective view showing a method for manufacturing a secondary battery according to the first embodiment of the present invention.
  • FIG. 5 is a cross-sectional view illustrating a method for manufacturing a secondary battery according to the first embodiment of the present invention.
  • FIGS. 6A and 6B are enlarged sectional views showing the configuration of the laminate film.
  • FIG. 7 is a cross-sectional view showing a state in which the laminate case is deformed by the electrode group that preferentially expands in the width direction.
  • FIG. 8 is a cross-sectional view showing the configuration of the battery pack according to the second embodiment of the present invention.
  • FIG. 9 is a cross-sectional view showing a method for manufacturing a battery pack according to the second embodiment of the present invention.
  • FIG. 10 is a cross-sectional view showing a configuration of a battery pack according to another example of the second embodiment of the present invention.
  • FIG. 11 is a cross-sectional view showing a configuration of a conventional secondary battery.
  • the inventors of the present invention diligently studied the cause of buckling in the electrode group, and found the following.
  • the positive electrode and the negative electrode expand due to charge and discharge and stress occurs in the thickness direction within the electrode group, the positive electrode cannot be deformed following the deformation of the negative electrode, and therefore the positive electrode breaks (ie, the positive electrode buckles). ).
  • a non-welded portion in which the laminate films are not welded to each other is provided between the welded portion in the laminate case in which the electrode group is sealed and the accommodating portion in which the electrode group in the laminate case is accommodated.
  • the positive electrode in order to prevent the occurrence of buckling in the electrode group, b) the positive electrode needs to be deformed following the deformation of the negative electrode, and it is important to easily deform the positive electrode to which stress is applied. It is.
  • the inventors of the present invention may increase the tensile elongation rate of the positive electrode to a predetermined rate (specifically, for example, 3.0%) or more, thereby generating stress in the electrode group and applying the stress to the positive electrode. However, it has been found that the positive electrode can be deformed following the deformation of the negative electrode.
  • the tensile elongation rate of the positive electrode is a ratio of the positive electrode just before being ruptured to the positive electrode before being pulled (in other words, a ratio of the positive electrode to which tensile stress is applied being deformed without being ruptured).
  • A) laminate films are welded between a welded portion in the laminate case and an accommodating portion in the laminate case.
  • B) Increase the tensile elongation of the positive electrode to 3.0% or more. Thereby, the occurrence of buckling in the electrode group is prevented.
  • the present applicant examined the method of increasing the tensile elongation rate of the positive electrode, and found the following. After rolling the positive electrode current collector on which the positive electrode mixture slurry is applied and dried on the positive electrode current collector, the positive electrode current collector on which the positive electrode mixture slurry is applied and dried is more than the softening temperature of the positive electrode current collector. By performing the heat treatment at a high temperature, the tensile elongation of the positive electrode can be increased.
  • the applicant of the present application has proposed a technology for preventing the occurrence of a short circuit inside a battery crushed by crushing by increasing the tensile elongation rate of the positive electrode to a predetermined rate or higher.
  • No. PCT / JP2008 / 0021114.
  • the tensile elongation rate of the positive electrode is increased to 3.0% or more, so that even if the battery is crushed by crushing, the positive electrode is preferentially broken. Therefore, it is possible to prevent a short circuit from occurring inside the battery.
  • the positive electrode subjected to heat treatment after rolling is pulled and stretched, the positive electrode continues to grow while generating a large number of minute cracks in the positive electrode mixture layer, and then the positive electrode breaks.
  • This factor is considered as follows.
  • the tensile stress applied to the positive electrode current collector is dispersed at the locations where many minute cracks are generated. Therefore, the influence of the occurrence of cracks on the positive electrode current collector is small, and the positive electrode current collector is not broken simultaneously with the occurrence of cracks. Therefore, the positive electrode continues to grow after the occurrence of cracks, and the positive electrode current collector breaks when the magnitude of the distributed tensile stress exceeds a certain size X, and further, the positive electrode breaks.
  • the “certain size X” means a size required for breaking a positive electrode current collector in which a positive electrode mixture layer in which a number of minute cracks are formed is formed on both surfaces.
  • a certain size X refers to a size close to the size required for breaking the positive electrode current collector when only the positive electrode current collector is pulled and stretched.
  • the positive electrode that has not been heat-treated after rolling and the positive electrode that has been heat-treated after rolling have different mechanisms of stretching and stretching.
  • the tensile elongation rate is higher than
  • the positive electrode since the positive electrode has a structure in which a positive electrode mixture layer is formed on both surfaces of the positive electrode current collector, the tensile elongation rate of the positive electrode is regulated only by the tensile elongation rate of the positive electrode current collector. It is not something.
  • the present applicant has found that the heat treatment performed for the purpose of increasing the tensile elongation of the positive electrode needs to be performed after rolling. Even if heat treatment is performed before rolling, it is possible to increase the tensile elongation rate of the positive electrode during the heat treatment, but since the tensile elongation rate of the positive electrode decreases during the subsequent rolling, eventually, The tensile elongation of the positive electrode cannot be increased.
  • the applicant examined the heat treatment performed after rolling the following was found.
  • the heat treatment temperature is high and / or the heat treatment time is long, the tensile elongation of the positive electrode can be increased to a predetermined rate or more by high-temperature heat treatment and / or long-time heat treatment. Since the positive electrode active material is covered with the melted binder, there arises a new problem that the capacity of the battery is reduced.
  • the applicant of the present invention made extensive studies on means for lowering the heat treatment temperature and / or shortening the heat treatment time, the following was found.
  • a positive electrode current collector containing iron and mainly containing aluminum as the positive electrode current collector, the heat treatment temperature required to increase the tensile elongation of the positive electrode to a predetermined rate or more is reduced, and / or The heat treatment time required to increase the tensile elongation rate of the positive electrode to a predetermined rate or more can be shortened.
  • Japanese Patent Application No. 2007-323217 discloses a technique for increasing the tensile elongation rate of the positive electrode to a predetermined rate or more while suppressing the covering of the substance.
  • FIG. 1 is a perspective view showing the configuration of the secondary battery according to the first embodiment of the present invention.
  • FIG. 2 is a cross-sectional view showing the configuration of the secondary battery according to the first embodiment of the present invention, specifically, a cross-sectional view taken along the line II-II shown in FIG.
  • the “axial direction” appearing in the present specification means a direction in which the winding axis extends in the electrode group in which the positive electrode and the negative electrode are wound through the porous insulating layer.
  • the “thickness direction” refers to a direction in which a short side extends in a flat secondary battery in which the length of one side is shorter than the length of the other side.
  • the “width direction” refers to a direction in which a long side extends in a flat secondary battery.
  • the electrode group 1 is enclosed in a laminate case 9 made of laminate films 7 and 8 to constitute a secondary battery 10.
  • the electrode group 1 is housed in a housing portion (see FIG. 2: 9 a) composed of a convex portion 7 a provided in the laminate film 7 and a concave portion 8 a provided in the laminate film 8.
  • the laminate case 9 is sealed by a welded portion 9b in which the peripheral portion of the laminate film (see FIG. 1: 7) and the peripheral portion of the laminate film (see FIG. 1: 8) are welded to each other. Has been.
  • the laminate case 9 has a structure in which the laminate films are not welded to each other between the housing portion 9 a in which the electrode group 1 is housed and the welded portion 9 b in which the laminate films are welded to each other. And a welded portion 9c.
  • the electrode group 1 is formed by winding a positive electrode and a negative electrode through a separator (porous insulating layer) between them. As shown in FIG. 1, a positive electrode lead 2a is attached to the positive electrode, and a negative electrode lead 3a is attached to the negative electrode. Tab films 5 and 6 are attached to the positive and negative leads 2a and 3a. The tab films 5 and 6 are interposed between the periphery of the laminate film 7 and the periphery of the laminate film 8 and are welded to the laminate films 7 and 8.
  • the electrode group 1 is illustrated in a simplified manner.
  • the electrode group 1 includes a positive electrode 2 having a positive electrode current collector 2 ⁇ / b> A in which a positive electrode mixture layer 2 ⁇ / b> B is formed on both surfaces.
  • the negative electrode 3 having the negative electrode current collector 3 ⁇ / b> A having the negative electrode mixture layer 3 ⁇ / b> B formed on both sides thereof, and the separator 4 interposed between the positive electrode 2 and the negative electrode 3.
  • FIG. 3 is an enlarged cross-sectional view showing the configuration of the electrode group shown in FIG.
  • the positive electrode 2 is a positive electrode that has been heat-treated after rolling. Moreover, the tensile elongation of the positive electrode 2 is 3.0% or more.
  • the positive electrode current collector 2A contains iron and mainly contains aluminum.
  • the amount of iron contained in the positive electrode current collector 2A is preferably 1.20% by weight or more and 1.70% by weight or less.
  • the positive electrode current collector that contains iron and mainly contains aluminum is a positive electrode current collector that contains iron as a subcomponent, contains aluminum as a main component, and contains more aluminum than iron.
  • the tensile elongation of the negative electrode 3 is 3.0% or more, and the tensile elongation of the separator 4 is 3.0% or more.
  • a specific example of the tensile elongation measurement method is as follows. In the measurement positive electrode having a width of 15 mm and a length of 20 mm produced using the positive electrode, one end of the measurement positive electrode is fixed, while the other end of the measurement positive electrode is pulled along the length direction at a speed of 20 mm / min. The length of the measurement positive electrode immediately before being broken is measured, and the tensile elongation is determined from the length of the measurement positive electrode before pulling (ie, 20 mm) and the length of the measurement positive electrode immediately before being broken.
  • the positive electrode mixture layer 2B constituting the positive electrode 2 includes a positive electrode active material, a binder, a conductive agent, and the like.
  • a positive electrode active material As each material of the positive electrode active material, the binder, and the conductive agent, known materials can be used.
  • a material of the negative electrode current collector 3A constituting the negative electrode 3 As a material of the negative electrode current collector 3A constituting the negative electrode 3, a known material can be used.
  • the negative electrode mixture layer 3B constituting the negative electrode 3 includes a negative electrode active material, a binder, a conductive agent, and the like.
  • known materials can be used as each material of the negative electrode active material, the binder, and the conductive agent.
  • a well-known material can be used.
  • FIGS. 4 to 5 are views showing a method for manufacturing the secondary battery according to the first embodiment of the present invention.
  • a positive electrode mixture slurry containing a positive electrode active material, a binder, a conductive agent, and the like is prepared.
  • the positive electrode mixture slurry is applied onto the positive electrode current collector and dried.
  • the positive electrode current collector coated with the positive electrode mixture slurry is rolled to obtain a positive electrode plate having a predetermined thickness.
  • heat treatment is performed at a predetermined temperature on the positive electrode plate (ie, the positive electrode current collector that has been rolled and applied and dried with the positive electrode mixture slurry).
  • the positive electrode plate is cut into a predetermined width and a predetermined length to produce a positive electrode having a predetermined thickness, a predetermined width, and a predetermined length.
  • the predetermined temperature is higher than the softening temperature of the positive electrode current collector.
  • the predetermined temperature is preferably lower than the decomposition temperature of the binder.
  • a negative electrode mixture slurry containing a negative electrode active material, a binder, and the like is prepared.
  • the negative electrode mixture slurry is applied onto the negative electrode current collector and dried.
  • the negative electrode current collector on which the negative electrode mixture slurry has been applied and dried is rolled to obtain a negative electrode plate having a predetermined thickness.
  • the negative electrode plate is cut into a predetermined width and a predetermined length to produce a negative electrode having a predetermined thickness, a predetermined width, and a predetermined length.
  • positive and negative electrode leads 2a and 3a to which tab films 5 and 6 made of PP (Polypropylene) are attached are prepared.
  • the positive electrode lead 2a is attached to the positive electrode current collector (see FIG. 3: 2A)
  • the negative electrode lead 3a is attached to the negative electrode current collector (see FIG. 3: 3A).
  • the positive electrode (refer to FIG. 3: 2) and the negative electrode (refer to FIG. 3: 3) are wound through a separator (refer to FIG. 3: 4) between them to constitute the electrode group 1.
  • the protrusion 7 a is provided on the laminate film 7 and the recess 8 a is provided on the laminate film 8 by thermoforming.
  • the laminate film 7 and the laminate film 8 are overlapped with each other so that the electrode group 1 is accommodated in the accommodating portion 9a including the convex portion 7a and the concave portion 8a.
  • a tab film (see FIGS. 4: 5 and 6) attached to the positive and negative electrode leads is interposed between the peripheral edge of the laminate film 7 and the peripheral edge of the laminate film 8.
  • the laminate film 7 and the laminate film 8 are overlapped with each other.
  • the laminate film 7 is illustrated in a simplified manner.
  • the laminate film 7 is composed of a metal thin film 7y and a lower surface of the metal thin film 7y (that is, an electrode group) by an adhesive.
  • a resin thin film 7x bonded to the upper surface of the metal thin film 7y with an adhesive.
  • the metal thin film 7y is made of, for example, an Al foil having a thickness of 40 ⁇ m.
  • the resin thin film 7x is made of PP having a thickness of 30 ⁇ m, for example.
  • the resin thin film 7z is made of nylon having a thickness of 25 ⁇ m, for example.
  • FIG. 6A is an enlarged cross-sectional view showing the configuration of the laminate film 7 shown in FIG.
  • the laminate film 8 has the same configuration as the laminate film 7. As shown in FIG. 6B, the laminate film 8 includes a metal thin film 8y, a resin thin film 8x bonded to the upper surface of the metal thin film 8y with an adhesive (that is, the surface on the electrode group side), and a metal with an adhesive. And a resin thin film 8z bonded to the lower surface of the thin film 8y.
  • the metal thin film 8y has the same configuration as the metal thin film 7y, and is made of, for example, an Al foil having a thickness of 40 ⁇ m.
  • the resin thin film 8x has the same configuration as the resin thin film 7x, and is made of PP having a thickness of 30 ⁇ m, for example.
  • the resin thin film 8z has the same configuration as the resin thin film 7z, and is made of nylon having a thickness of 25 ⁇ m, for example.
  • the total film thickness of the laminate film 8 is, for example, 120 ⁇ m.
  • FIG. 6B is an enlarged cross-sectional view showing the configuration of the laminate film 8 shown in FIG.
  • the peripheral portion of the portion where the laminate film 7 and the laminate film 8 overlap each other is heated at 190 ° C. for 5 seconds using an electrothermal heater H, 7 and 8 are welded to each other to form a welded portion (see FIG. 2: 9b).
  • a non-welded portion in which the laminate films 7, 8 are not welded to each other is formed between the housing portion (see FIG. 2: 9a) and the welded portion.
  • a tab film (see FIGS. 4: 5 and 6) interposed between the peripheral edge of the laminate film 7 and the peripheral edge of the laminate film 8 is welded to the laminate films 7 and 8.
  • the non-welded portion 9 c is provided between the housing portion 9 a in the laminate case 9 and the welded portion 9 b in the laminate case 9.
  • swell in the width direction can be provided in the laminate case 9.
  • FIG. Therefore, even if the positive electrode and the negative electrode may expand due to charge / discharge, the electrode group 1 can be expanded preferentially in the width direction, not in the thickness direction, as shown in FIG. It is possible to suppress the occurrence of stress in the thickness direction within the group.
  • the tensile elongation of the positive electrode is increased to 3.0% or more.
  • FIG. 7 is a cross-sectional view showing a state in which the laminate case is deformed by the electrode group that preferentially expands in the width direction.
  • the positive electrode is not preferentially broken even if the secondary battery is crushed by crushing. It is possible to prevent a short circuit from occurring inside the battery.
  • the tensile elongation of the negative electrode and the separator is also preferably 3.0% or more, like the positive electrode.
  • the reason is as follows. First, for example, even if the tensile elongation of the positive electrode and the separator is 3.0% or more, if the tensile elongation of the negative electrode is less than 3.0%, the negative electrode is preferential when the battery is crushed by crushing. And a short circuit occurs inside the battery. Second, for example, even if the tensile elongation of the positive electrode and the negative electrode is 3.0% or more, if the tensile elongation of the separator is less than 3.0%, the separator is preferential when the battery is crushed by crushing. And a short circuit occurs inside the battery.
  • the heat treatment temperature required to increase the tensile elongation of the positive electrode to 3.0% or more is lowered.
  • / or the heat treatment time required for increasing the tensile elongation of the positive electrode to 3.0% or more can be shortened. It can suppress that an active material is coat
  • the positive electrode current collector in order to prevent the positive electrode active material from being covered with the molten binder during the heat treatment, contains iron and mainly aluminum.
  • the positive electrode current collector including the electrode has been described as a specific example, the present invention is not limited to this.
  • a positive electrode current collector made of high-purity aluminum that does not contain iron may be used as the positive electrode current collector.
  • an electrode group in which the positive electrode and the negative electrode are wound via a separator is used as the electrode group
  • the present invention is not limited to this.
  • an electrode group in which a positive electrode and a negative electrode are stacked with a separator interposed therebetween may be used as the electrode group.
  • the effect of the present invention in addition to the effect of achieving the object of the present invention, the effect of preventing the occurrence of a short circuit inside the battery crushed by crushing, was specifically mentioned, As other effects, an effect of preventing a short circuit from occurring inside a battery in which foreign matter is mixed, or an effect of preventing the positive electrode from being cut when the positive electrode and the negative electrode are wound (or stacked) via a separator. Etc.
  • FIG. 8 is a cross-sectional view showing the configuration of the battery pack according to the second embodiment of the present invention.
  • the battery pack according to the present embodiment is a battery pack in which the secondary battery according to the first embodiment is accommodated in a pack case.
  • the secondary battery 10 in which the electrode group 1 is sealed in the laminate case 9 is accommodated in the pack case 11 to form a battery pack 13.
  • the pack case 11 is provided between the side surface in the thickness direction of the laminate case 9 and the pack case 11, and has pressing portions 11 a and 11 b that press the center portion of the laminate case 9 in the thickness direction.
  • a space portion 12 is provided between the side surface in the width direction of the pack case 11 and the laminate case 9.
  • the reason why the space 12 is provided is as follows. As shown in FIG. 7, when the electrode group 1 preferentially expands in the width direction, the non-welded portion 9 c is pushed into the space portion 12, and the laminate films in the non-welded portion 9 c are separated from each other. The case 9 can be deformed.
  • FIG. 9 is a cross-sectional view showing a method for manufacturing a battery pack according to the second embodiment of the present invention.
  • the secondary battery 10 is manufactured by the same method as in the first embodiment.
  • case parts 11A and 11B in which the pressing parts 11a and 11b are integrally formed are formed by, for example, resin molding or metal molding.
  • the case portion 11A and the case portion 11B are bonded so that the secondary battery 10 is accommodated in the accommodation portion formed between the case portion 11A and the case portion 11B. At this time, the secondary battery 10 is sandwiched between the pressing portion 11a and the pressing portion 11b.
  • the battery pack 13 in which the secondary battery 10 is accommodated in the pack case 11 including the case portions 11A and 11B is manufactured.
  • the electrode group 1 can be preferentially expanded in the width direction, so that it is possible to further suppress the occurrence of stress in the thickness direction within the electrode group. Therefore, it is possible to further prevent buckling from occurring in the electrode group.
  • the case of forming the case portions 11A and 11B in which the pressing portions 11a and 11b are integrally formed has been described as a specific example, but the present invention is not limited to this.
  • the present invention is not limited to this.
  • the secondary battery 10 may be folded between the welded portion 9b and the non-welded portion 9c in the laminate case 9 and accommodated in the pack case 11x.
  • the width W11x (see FIG. 10) in the width direction of the pack case 11x can be made smaller than the width W11 (see FIG. 8) in the width direction of the pack case 11, the battery pack 13x can be downsized. be able to.
  • Table 1 shows the relationship between the tensile elongation of the positive electrode and the short circuit that occurs inside the battery crushed by the collapse.
  • Table 1 shows the tensile elongation of the positive electrode and the result of the crush test (that is, the short-circuit depth) in each of the batteries 1 to 5.
  • the battery 5 is a battery using a positive electrode current collector that contains iron and mainly contains aluminum as a positive electrode current collector and that is not subjected to heat treatment after rolling.
  • the tensile elongation of the positive electrode was 1.5%, whereas in the case of the batteries 1 to 4 that were heat-treated after rolling, The tensile elongation of the positive electrode can be increased to 3.0% or more (battery 1: 3.0%, battery 2: 5.0%, battery 3: 6.0%, battery 4: 6.5%).
  • the short-circuit depth was 5 mm
  • the short-circuit depth was 8 mm.
  • the tensile elongation of the positive electrode can be increased to 3.0% or more by heat treatment performed after rolling, thereby preventing the occurrence of a short circuit inside the battery crushed by crushing. Can do.
  • the manufacturing method of the batteries 1 to 5 is as follows.
  • the positive electrode current collector in which the positive electrode mixture slurry was applied and dried on both sides was rolled to obtain a positive electrode plate having a thickness of 0.157 mm.
  • This positive electrode plate was heat-treated at 280 ° C. for 10 seconds with hot air subjected to a low humidity treatment of ⁇ 30 ° C.
  • this positive electrode plate was cut into a width of 57 mm and a length of 564 mm to produce a positive electrode having a thickness of 0.157 mm, a width of 57 mm, and a length of 564 mm.
  • this negative electrode plate was cut into a width of 58.5 mm and a length of 750 mm to produce a negative electrode having a thickness of 0.156 mm, a width of 58.5 mm, and a length of 750 mm.
  • the tensile elongation of the negative electrode is 5% (that is, 3.0% or more).
  • non-aqueous electrolyte As a non-aqueous solvent, 5% by weight of vinylene carbonate is added as an additive to a mixed solvent in which ethylene carbonate and dimethyl carbonate are mixed so that the volume ratio is 1: 3, and the charge / discharge efficiency of the battery is increased. LiPF 6 was dissolved so that the molar concentration with respect to the non-aqueous solvent was 1.4 mol / m 3 to prepare a non-aqueous electrolyte.
  • a positive electrode lead made of aluminum was attached to the positive electrode current collector, and a negative electrode lead made of nickel was attached to the negative electrode current collector.
  • the positive electrode and the negative electrode were wound through a polyethylene separator (a separator having a tensile elongation of 8% (that is, 3.0% or more)) therebetween to form an electrode group.
  • a polyethylene separator a separator having a tensile elongation of 8% (that is, 3.0% or more)
  • an upper insulating plate was disposed at the upper end of the electrode group, while a lower insulating plate was disposed at the lower end of the electrode group.
  • the negative electrode lead was welded to the battery case, and the positive electrode lead was welded to a sealing plate having an internal pressure actuated safety valve to accommodate the electrode group in the battery case.
  • a nonaqueous electrolytic solution was injected into the battery case by a decompression method.
  • the battery case was fabricated by sealing the opening of the battery case with
  • a battery having a positive electrode that has been heat-treated for 10 seconds at 280 ° C. (that is, a temperature higher than the softening temperature of the positive electrode current collector) is referred to as a battery 1.
  • Battery 2 In (Preparation of positive electrode), a battery was prepared in the same manner as Battery 1 except that the positive electrode plate was heat-treated at 280 ° C. for 20 seconds.
  • Battery 3 In (Preparation of positive electrode), a battery was prepared in the same manner as Battery 1 except that the positive electrode plate was heat-treated at 280 ° C. for 120 seconds.
  • Battery 4 In (Preparation of positive electrode), a battery was prepared in the same manner as Battery 1 except that the positive electrode plate was heat-treated at 280 ° C. for 180 seconds.
  • Battery 5 In (Production of positive electrode), a battery was produced in the same manner as the battery 1 except that the positive electrode plate was not heat-treated after rolling, and the produced battery is referred to as a battery 5.
  • the method for measuring the tensile elongation of the positive electrode is as follows.
  • the batteries 1 to 5 are charged at a constant current of 1.45 A until the voltage reaches 4.25 V.
  • the batteries are charged at a constant voltage until the current reaches 50 mA, and then the batteries 1 to 5 are disassembled.
  • the positive electrode was taken out.
  • the taken out positive electrode was cut into a width of 15 mm and a length of 20 mm to produce a measurement positive electrode.
  • the other end of the positive electrode for measurement was pulled along the length direction at a speed of 20 mm / min.
  • the length of the positive electrode for measurement immediately before breaking was measured, and the tensile elongation of the positive electrode was determined from this length and the length of the positive electrode for measurement before pulling (that is, 20 mm).
  • the measuring method of the short circuit depth in the crushing test is as follows.
  • ⁇ Crush test> First, the batteries 1 to 5 were charged at a constant current of 1.45 A until the voltage reached 4.25 V, and charged at a constant voltage until the current reached 50 mA. Next, a round bar with a diameter of 6 mm is brought into contact with each battery 1 to 5 under a battery temperature of 30 ° C., and the round bar is moved along the depth direction of the battery at a speed of 0.1 mm / sec. Each of the batteries 1 to 5 was crushed. Then, the amount of deformation in the depth direction when the short circuit occurred inside each of the batteries 1 to 5 crushed by crushing (that is, the short circuit depth) was obtained.
  • the present invention can prevent the occurrence of buckling in the electrode group. Therefore, the secondary battery, the battery pack including the secondary battery, and This is useful for a method for manufacturing a secondary battery.

Abstract

 本発明は、ラミネートフィルムからなるラミネートケース内に、正極集電体上に正極活物質及び結着剤を含む正極合剤層が形成された正極、負極、及び、多孔質絶縁層を有する電極群が封入された、扁平型の二次電池、その二次電池を備えた電池パック、及び、その二次電池の製造方法に関する。 前記二次電池は、従来、充放電によって正極及び負極が膨張すると、電池群内で座屈が発生するという問題があった。 本発明は、前記二次電池において、前記ラミネートケースに、前記電極群を収容する収容部と、前記ラミネートフィルム同士が互いに溶着された溶着部と、前記収容部と前記溶着部との間に、前記ラミネートフィルム同士が互いに溶着されていない非溶着部とを設けるとともに、前記正極の引っ張り伸び率を3.0%以上とすること等によって、上記問題の解決を図ったものである。

Description

二次電池及び二次電池を備えた電池パック、並びに二次電池の製造方法
 本発明は、二次電池及び二次電池を備えた電池パック、並びに二次電池の製造方法に関する。
 従来の二次電池の構成について、図11を参照しながら説明する。図11は、従来の二次電池の構成を示す断面図である。
 図11に示すように、電極群101が、ラミネートフィルムからなるラミネートケース102内に封入されて、二次電池103が構成されている。ラミネートケース102は、ラミネートフィルム同士が互いに溶着された溶着部102bにより、封止されている。このように、ラミネートケース102は、溶着部102bと、溶着部102bに隣接し電極群101を収容する収容部102aとを有する。
特開2004-234899号公報
 ところで、充放電によって正極及び負極が膨張すると、電極群が膨張し、電極群内(特に、電極群内のうちラミネートケースの厚さ方向の側面同士に挟まれた領域)で座屈が発生するという問題がある。
 本件発明者らが、電極群内で座屈が発生する要因について、鋭意検討したところ、次のことが判った。充放電によって正極及び負極が膨張し、電極群内で厚さ方向に応力が生じると、正極が負極の変形に追随して変形することができないため、正極が破断する(即ち、正極が座屈する)。
 前記に鑑み、本発明の目的は、充放電によって正極及び負極が膨張することがあっても、正極を負極の変形に追随して変形させて、電極群内で座屈が発生することを防止することである。
 前記の目的を達成するために、本発明の一側面に係る二次電池は、ラミネートフィルムからなるラミネートケース内に、正極集電体上に正極活物質及び結着剤を含む正極合剤層が形成された正極、負極、及び多孔質絶縁層を有する電極群が封入された扁平型の二次電池であって、ラミネートケースは、電極群を収容する収容部と、ラミネートフィルム同士が互いに溶着された溶着部と、収容部と溶着部との間に設けられ、ラミネートフィルム同士が互いに溶着されていない非溶着部とを有し、正極の引っ張り伸び率は、3.0%以上であることを特徴とする。
 本発明の一側面に係る二次電池によると、ラミネートケースにおける収容部と、ラミネートケースにおける溶着部との間に、非溶着部を設ける。これにより、ラミネートケース内に、電極群が、幅方向に膨張することが可能なスペース部を設けることができる。そのため、充放電によって正極及び負極が膨張することがあっても、電極群を、厚さ方向ではなく、幅方向に、優先的に膨張させることができるため、電極群内で厚さ方向に応力が生じることを抑制することができる。
 それと共に、正極の引っ張り伸び率を3.0%以上に高める。これにより、電極群内で応力が生じることがあっても、正極を負極の変形に追随して変形させることができる。
 従って、電極群内で厚さ方向に応力が生じることを抑制すると共に、正極を負極の変形に追随して変形させることができるため、電極群内で座屈が発生することを防止することができる。
 本発明の一側面に係る二次電池において、負極の引っ張り伸び率は、3.0%以上であり、多孔質絶縁層の引っ張り伸び率は、3.0%以上であることが好ましい。
 本発明の一側面に係る二次電池において、正極は、正極活物質を含む正極合剤スラリーが塗布乾燥された正極集電体を圧延した後、正極合剤スラリーが塗布乾燥された正極集電体に対し、所定温度で熱処理が施された正極であることが好ましい。
 本発明の一側面に係る二次電池において、正極集電体は、鉄を含有しアルミニウムを主に含むことが好ましい。
 このようにすると、圧延後に施す熱処理の際に溶融された結着剤によって、正極活物質が被覆されることを抑制することができる。
 本発明の一側面に係る二次電池において、正極集電体中に含有される鉄量は、1.20重量%以上1.70重量%以下であることが好ましい。
 前記の目的を達成するために、本発明の一側面に係る電池パックは、本発明の一側面に係る二次電池と、二次電池が収容されるパックケースとを備え、パックケースは、ラミネートケースの厚さ方向の側面とパックケースとの間に設けられ、ラミネートケースの中央部を厚さ方向に押圧する押圧部を有し、パックケースの幅方向の側面とラミネートケースとの間に、空間部が設けられていることを特徴とする。
 本発明の一側面に係る電池パックによると、既述の通り、充放電によって正極及び負極が膨張することがあっても、電極群内で厚さ方向に応力が生じることを抑制すると共に、電極群内で応力が生じることがあっても、正極を負極の変形に追随して変形させることができるため、電極群内で座屈が発生することを防止することができる。
 加えて、充放電によって正極及び負極が膨張することがあっても、押圧部により、ラミネートケースの中央部を厚さ方向に押圧することができる。そのため、電極群を、幅方向により優先的に膨張させることができるため、電極群内で厚さ方向に応力が生じることをさらに抑制することができる。従って、電極群内で座屈が発生することをさらに防止することができる。
 前記の目的を達成するために、本発明の一側面に係る二次電池の製造方法は、ラミネートフィルムからなるラミネートケース内に、正極集電体上に正極活物質及び結着剤を含む正極合剤層が形成された正極、負極、及び多孔質絶縁層を有する電極群が封入された扁平型の二次電池の製造方法であって、正極を準備する工程(a)と、負極を準備する工程(b)と、工程(a)及び工程(b)の後に、正極及び負極を、正極と負極との間に多孔質絶縁層を介して捲回する、又は積層することにより、電極群を構成する工程(c)と、工程(c)の後に、電極群を、ラミネートケース内に封入する工程(d)とを備え、工程(a)は、正極集電体上に、正極活物質を含む正極合剤スラリーを塗布乾燥させる工程(a1)と、正極合剤スラリーが塗布乾燥された正極集電体を圧延する工程(a2)と、工程(a2)の後に、正極合剤スラリーが塗布乾燥された正極集電体に対し、所定温度で熱処理を施すことにより、正極の引っ張り伸び率を、3.0%以上に高める工程(a3)とを含み、工程(d)は、収容部内に電極群が収容されるように、ラミネートフィルム同士を互いに重ね合わせる工程(d1)と、ラミネートフィルム同士が互いに重なり合う部分の周縁部を加熱して溶着し溶着部を形成すると共に、収容部と溶着部との間に非溶着部を形成する工程(d2)とを含むことを特徴とする。
 本発明の一側面に係る二次電池の製造方法によると、収容部と溶着部との間に、ラミネートフィルム同士が互いに溶着されていない非溶着部を設けることができる。それと共に、圧延後に施す熱処理により、正極の引っ張り伸び率を3.0%以上に高めることができる。
 本発明の一側面に係る二次電池の製造方法において、所定温度は、正極集電体の軟化温度よりも高いことが好ましい。
 本発明の一側面に係る二次電池の製造方法において、正極集電体は、鉄を含有しアルミニウムを主に含むことが好ましい。
 このようにすると、正極の引っ張り伸び率を3.0%以上に高めるのに必要とされる熱処理温度を低くする、及び/又は正極の引っ張り伸び率を3.0%以上に高めるのに必要とされる熱処理時間を短くすることができるため、圧延後に施す熱処理の際に、溶融された結着剤によって、正極活物質が被覆されることを抑制することができる。
 本発明に係る二次電池及びその製造方法によると、ラミネートケースにおける収容部と、ラミネートケースにおける溶着部との間に、非溶着部を設ける。これにより、ラミネートケース内に、電極群が、幅方向に膨張することが可能なスペース部を設けることができる。そのため、充放電によって正極及び負極が膨張することがあっても、電極群を、厚さ方向ではなく、幅方向に、優先的に膨張させることができるため、電極群内で厚さ方向に応力が生じることを抑制することができる。それと共に、正極の引っ張り伸び率を3.0%以上に高める。これにより、電極群内で応力が生じることがあっても、正極を負極の変形に追随して変形させることができる。従って、電極群内で厚さ方向に応力が生じることを抑制すると共に、正極を負極の変形に追随して変形させることができるため、電極群内で座屈が発生することを防止することができる。
 加えて、本発明に係る電池パックによると、充放電によって正極及び負極が膨張することがあっても、押圧部により、ラミネートケースの中央部を厚さ方向に押圧することができる。そのため、電極群を、幅方向により優先的に膨張させることができるため、電極群内で厚さ方向に応力が生じることをさらに抑制することができる。従って、電極群内で座屈が発生することをさらに防止することができる。
図1は、本発明の第1の実施形態に係る二次電池の構成を示す斜視図である。 図2は、本発明の第1の実施形態に係る二次電池の構成を示す断面図である。 図3は、電極群の構成を示す拡大断面図である。 図4は、本発明の第1の実施形態に係る二次電池の製造方法を示す斜視図である。 図5は、本発明の第1の実施形態に係る二次電池の製造方法を示す断面図である。 図6(a) 及び(b) は、ラミネートフィルムの構成を示す拡大断面図である。 図7は、幅方向に優先的に膨張する電極群により、ラミネートケースが変形した状態を示す断面図である。 図8は、本発明の第2の実施形態に係る電池パックの構成を示す断面図である。 図9は、本発明の第2の実施形態に係る電池パックの製造方法を示す断面図である。 図10は、本発明の第2の実施形態のその他の例に係る電池パックの構成を示す断面図である。 図11は、従来の二次電池の構成を示す断面図である。
 既述の通り、本件発明者らが、電極群内で座屈が発生する要因について、鋭意検討したところ、次のことが判った。充放電によって正極及び負極が膨張し、電極群内で厚さ方向に応力が生じると、正極が負極の変形に追随して変形することができないため、正極が破断する(即ち、正極が座屈する)。
 そのため、電極群内での座屈の発生を防止するには、a)電極群内で厚さ方向に応力が生じることを抑制することが必要であり、電極群を、厚さ方向以外の方向(例えば、幅方向)に優先的に膨張させることが重要である。
 そこで、本件発明者らが、電極群を幅方向に優先的に膨張させる手段について、鋭意検討を重ねたところ、次のことを見出した。電極群が封入されたラミネートケースにおける溶着部と、ラミネートケースにおける電極群が収容される収容部との間に、ラミネートフィルム同士が溶着されていない非溶着部を設ける。これにより、充放電によって正極及び負極が膨張することがあっても、電極群を幅方向に優先的に膨張させ、電極群内で厚さ方向に応力が生じることを抑制することができる。
 また、電極群内での座屈の発生を防止するには、b)正極を負極の変形に追随して変形させることが必要であり、応力が印加された正極を容易に変形させることが重要である。本件発明者らは、正極の引っ張り伸び率を所定率(具体的には例えば、3.0%)以上に高めることにより、電極群内で応力が生じ正極に対し応力が印加されることがあっても、正極を負極の変形に追随して変形させることができる,ことを見出した。ここで、「正極の引っ張り伸び率」とは、引っ張る前の正極に対して、破断される直前の正極が伸びた割合(言い換えれば、引っ張り応力が印加された正極が破断されずに変形した割合)をいう。
 以上のように、本発明は、ラミネートケース内に電極群が封入された二次電池において、A)ラミネートケースにおける溶着部と、ラミネートケースにおける収容部との間に、ラミネートフィルム同士が溶着されていない非溶着部を設けると共に、B)正極の引っ張り伸び率を3.0%以上に高める。これにより、電極群内での座屈の発生の防止を図るものである。
 なお、充放電の繰り返しに伴い、二次電池内にガスが発生することがあっても、ガスが正極と負極間に進入し間隙が生じることを防止することを目的に、ラミネートケースにおける電極群を覆う部分と、ラミネートケースにおける融着された部分との間に、非融着部が設けられた二次電池が提案されている(例えば特許文献1参照)。特許文献1に記載の技術では、充放電の繰り返しに伴い、二次電池内にガスが発生することがあっても、ガスはラミネートケースにおける非融着部に流入するため、ガスが正極と負極間に進入し間隙が生じることを防止する。
 ところで、本件出願人が、圧壊によって二次電池が潰された場合に電池内部で短絡が発生する要因について、検討したところ、次のことが判った。電極群を構成する正極、負極、及びセパレータのうち、引っ張り伸び率の最も小さい正極が優先的に破断するため、正極の破断部がセパレータを突き破って、正極と負極とが短絡するので、電池内部で短絡が発生する。
 そこで、本件出願人が、正極の引っ張り伸び率を高める方法について、検討したところ、次のことを見出した。正極集電体上に、正極合剤スラリーが塗布乾燥された正極集電体を圧延した後、正極合剤スラリーが塗布乾燥された正極集電体に対し、正極集電体の軟化温度よりも高い温度で熱処理を施すことにより、正極の引っ張り伸び率を高めることができる。
 本件出願人は、上記の知見に基づいて、正極の引っ張り伸び率を所定率以上に高めることにより、圧壊によって潰された電池内部で短絡が発生することを防止する技術を、特願2007-323217号(PCT/JP2008/002114)の出願明細書に開示している。特願2007-323217号に開示された技術では、正極の引っ張り伸び率を3.0%以上に高めることにより、圧壊によって電池が潰されることがあっても、正極が優先的に破断することはないため、電池内部で短絡が発生することを防止することができる。
 以下に、圧延後に熱処理を施さなかった正極、及び圧延後に熱処理を施した正極の各々が引っ張られて伸びるメカニズムについて、考察する。
 圧延後に熱処理を施さなかった正極を引っ張って伸ばした場合、正極合剤層に大きなクラックが発生すると同時に、正極が破断する。この要因は、次のように考えられる。正極が伸びるに連れて、正極合剤層に発生する引っ張り応力が増加し、正極集電体に印加される引っ張り応力が増加する。正極合剤層に大きなクラックが発生すると、正極集電体に印加される引っ張り応力が、大きなクラックの発生した箇所に集中する。そのため、クラックの発生と同時に、正極集電体が破断し、延いては、正極が破断する。
 一方、圧延後に熱処理を施した正極を引っ張って伸ばした場合、正極合剤層に多数の微小なクラックを発生しながら、正極は伸び続け、その後、正極が破断する。この要因は、次のように考えられる。正極集電体に印加される引っ張り応力が、多数の微小なクラックの発生した箇所に分散する。そのため、クラックの発生が正極集電体に及ぼす影響は小さく、クラックの発生と同時に、正極集電体が破断されることはない。そのため、クラックの発生後も、正極は伸び続け、分散した引っ張り応力の大きさが、ある大きさXを超えた時点で正極集電体が破断し、延いては、正極が破断する。ここで、「ある大きさX」とは、多数の微小なクラックが発生した正極合剤層が両面に形成された正極集電体が破断されるのに必要とされる大きさをいう。例えば、「ある大きさX」とは、正極集電体のみを引っ張って伸ばした場合に正極集電体が破断されるのに必要とされる大きさに近い大きさをいう。
 このように、圧延後に熱処理を施さなかった正極と、圧延後に熱処理を施した正極とは、引っ張られて伸びるメカニズムが異なるため、圧延後に熱処理を施した正極は、圧延後に熱処理を施さなかった正極に比べて、引っ張り伸び率が高くなる。
 また、上記から判るように、正極は、正極集電体の両面に正極合剤層が形成された構成であるため、正極の引っ張り伸び率は、正極集電体の引っ張り伸び率のみによって規制されるものではない。
 さらに、本件出願人は、正極の引っ張り伸び率を高めることを目的に行う熱処理は、圧延後に施すことが必要である,ことを見出した。圧延前に熱処理を施しても、熱処理の際に、正極の引っ張り伸び率を高めることは可能なものの、その後に行う圧延の際に、正極の引っ張り伸び率が低下するため、最終的には、正極の引っ張り伸び率を高めることはできない。
 さらに、本件出願人が、圧延後に施す熱処理について検討したところ、次のことが判った。熱処理温度が高い場合、及び/又は熱処理時間が長い場合、高温の熱処理により、及び/又は長時間の熱処理により、正極の引っ張り伸び率を所定率以上に高めることは可能なものの、熱処理の際に、溶融された結着剤によって、正極活物質が被覆されるため、電池の容量の低下を招くという問題が新たに発生する。
 そこで、本件出願人が、熱処理温度を低くする、及び/又は熱処理時間を短くする手段について、鋭意検討を重ねたところ、次のことを見出した。正極集電体として、鉄を含有しアルミニウムを主に含む正極集電体を用いることにより、正極の引っ張り伸び率を所定率以上に高めるのに必要とされる熱処理温度を低くする、及び/又は正極の引っ張り伸び率を所定率以上に高めるのに必要とされる熱処理時間を短くすることができる。
 本件出願人は、上記の知見に基づいて、正極集電体として、鉄を含有しアルミニウムを主に含む正極集電体を用いることにより、熱処理の際に溶融された結着剤によって、正極活物質が被覆されることを抑制しながら、正極の引っ張り伸び率を所定率以上に高める技術を、特願2007-323217号の出願明細書に開示している。
 以下に、本発明の実施形態について図面を参照しながら説明する。
 (第1の実施形態)
 以下に、本発明の第1の実施形態に係る二次電池について、図1~図3を参照しながら説明する。図1は、本発明の第1の実施形態に係る二次電池の構成を示す斜視図である。図2は、本発明の第1の実施形態に係る二次電池の構成を示す断面図であり、具体的には、図1に示すII-II線における断面図である。
 ここで、本明細書中に登場する「軸方向」とは、正極及び負極が多孔質絶縁層を介して捲回された電極群において、捲回軸が延びる方向をいう。「厚さ方向」とは、一方の辺の長さが他方の辺の長さよりも短い扁平型の二次電池において、短辺が延びる方向をいう。一方、「幅方向」とは、扁平型の二次電池において、長辺が延びる方向をいう。
 図1に示すように、電極群1が、ラミネートフィルム7,8からなるラミネートケース9内に封入されて、二次電池10が構成されている。電極群1は、図1に示すように、ラミネートフィルム7に設けた凸部7a、及びラミネートフィルム8に設けた凹部8aからなる収容部(図2:9a参照)内に収容されている。ラミネートケース9は、図2に示すように、ラミネートフィルム(図1:7参照)の周縁部とラミネートフィルム(図1:8参照)の周縁部とが互いに溶着された溶着部9bにより、封止されている。
 ラミネートケース9は、図2に示すように、電極群1が収容される収容部9aと、ラミネートフィルム同士が互いに溶着された溶着部9bとの間に、ラミネートフィルム同士が互いに溶着されていない非溶着部9cとを有する。
 電極群1は、正極及び負極が、それらの間にセパレータ(多孔質絶縁層)を介して捲回されてなる。図1に示すように、正極には、正極リード2aが取り付けられ、負極には、負極リード3aが取り付けられている。正極,負極リード2a,3aには、タブフィルム5,6が取り付けられている。タブフィルム5,6は、ラミネートフィルム7の周縁部と、ラミネートフィルム8の周縁部との間に介在し、ラミネートフィルム7,8に溶着されている。
 なお、図1において、電極群1を簡略的に図示したが、電極群1は、図3に示すように、両面に正極合剤層2Bが形成された正極集電体2Aを有する正極2と、両面に負極合剤層3Bが形成された負極集電体3Aを有する負極3と、正極2と負極3との間に介在するセパレータ4とを有する。図3は、図1に示す電極群の構成を示す拡大断面図である。
 正極2は、圧延後に熱処理が施された正極である。また、正極2の引っ張り伸び率は、3.0%以上である。
 正極集電体2Aは、鉄を含有しアルミニウムを主に含む。正極集電体2A中に含有される鉄量は、1.20重量%以上1.70重量%以下であることが好ましい。ここで、「鉄を含有しアルミニウムを主に含む」正極集電体とは、副成分として鉄を含み主成分としてアルミニウムを含み、鉄よりもアルミニウムを多く含む正極集電体である。
 負極3の引っ張り伸び率は、3.0%以上であり、セパレータ4の引っ張り伸び率は、3.0%以上である。
 <引っ張り伸び率>
 引っ張り伸び率の測定方法は、具体的には例えば、次に示す通りである。正極を用いて作製された幅15mm,長さ20mmの測定用正極において、測定用正極の一端を固定する一方、測定用正極の他端を長さ方向に沿って20mm/minの速度で引っ張り、破断される直前の測定用正極の長さを測定し、引っ張る前の測定用正極の長さ(即ち、20mm)と、破断される直前の測定用正極の長さとから、引っ張り伸び率を求める。
 なお、正極2を構成する正極合剤層2Bは、正極活物質、結着剤、及び導電剤等を含む。正極活物質、結着剤、及び導電剤の各材料としては、公知の材料を用いることができる。また、負極3を構成する負極集電体3Aの材料としては、公知の材料を用いることができる。負極3を構成する負極合剤層3Bは、負極活物質、結着剤、及び導電剤等を含む。負極活物質、結着剤、及び導電剤の各材料としては、公知の材料を用いることができる。また、セパレータ4の材料としては、公知の材料を用いることができる。
 以下に、本発明の第1の実施形態に係る二次電池の製造方法について、図4~図5を参照しながら説明する。図4~図5は、本発明の第1の実施形態に係る二次電池の製造方法を示す図である。
 -正極の作製-
 まず、正極活物質、結着剤、及び導電剤等を含む正極合剤スラリーを調製する。次に、正極合剤スラリーを、正極集電体上に塗布し、乾燥させる。次に、正極合剤スラリーが塗布乾燥された正極集電体を圧延し、所定厚さの正極用板を得る。次に、正極用板(即ち、圧延され、且つ正極合剤スラリーが塗布乾燥された正極集電体)に対し、所定温度で熱処理を施す。次に、正極用板を、所定幅、所定長さに裁断し、所定厚さ、所定幅、所定長さの正極を作製する。
 ここで、所定温度は、正極集電体の軟化温度よりも高い温度である。また、所定温度は、結着剤の分解温度よりも低い温度であることが好ましい。
 -負極の作製-
 まず、負極活物質、及び結着剤等を含む負極合剤スラリーを調製する。次に、負極合剤スラリーを、負極集電体上に塗布し、乾燥させる。次に、負極合剤スラリーが塗布乾燥された負極集電体を圧延し、所定厚さの負極用板を得る。次に、負極用板を、所定幅、所定長さに裁断し、所定厚さ、所定幅、所定長さの負極を作製する。
 -二次電池の作製-
 まず、図4に示すように、例えば、PP(Polypropylene)からなるタブフィルム5,6が取り付けられた正極,負極リード2a,3aを準備する。次に、正極集電体(図3:2A参照)に正極リード2aを取り付け、負極集電体(図3:3A参照)に負極リード3aを取り付ける。次に、正極(図3:2参照)と負極(図3:3参照)とを、それらの間にセパレータ(図3:4参照)を介して捲回し、電極群1を構成する。
 一方、図4に示すように、例えば、熱形成により、ラミネートフィルム7に、凸部7aを設け、ラミネートフィルム8に、凹部8aを設ける。
 次に、図5に示すように、凸部7a及び凹部8aからなる収容部9a内に電極群1が収容されるように、ラミネートフィルム7とラミネートフィルム8とを互いに重ね合わせる。このとき、図示を省略するが、ラミネートフィルム7の周縁部とラミネートフィルム8の周縁部との間に、正,負極リードに取り付けたタブフィルム(図4:5,6参照)が介在するように、ラミネートフィルム7とラミネートフィルム8とを互いに重ね合わせる。
 なお、図4において、ラミネートフィルム7を簡略的に図示したが、ラミネートフィルム7は、図6(a) に示すように、金属薄膜7yと、接着剤により金属薄膜7yの下面(即ち、電極群側の面)に貼り合わされた樹脂薄膜7xと、接着剤により金属薄膜7yの上面に貼り合わされた樹脂薄膜7zとを有する。金属薄膜7yは、例えば、厚さが40μmのAl箔からなる。樹脂薄膜7xは、例えば、厚さが30μmのPPからなる。樹脂薄膜7zは、例えば、厚さが25μmのナイロンからなる。樹脂薄膜7x、金属薄膜7y、及び樹脂薄膜7zを有し、且つ樹脂薄膜7xと金属薄膜7yとを接着する接着剤(図示せず)、及び金属薄膜7yと樹脂薄膜7zとを接着する接着剤(図示せず)を含むラミネートフィルム7の全膜厚は、例えば、120μmである。図6(a) は、図4に示すラミネートフィルム7の構成を示す拡大断面図である。
 また、ラミネートフィルム8は、ラミネートフィルム7と同様の構成を有する。ラミネートフィルム8は、図6(b) に示すように、金属薄膜8yと、接着剤により金属薄膜8yの上面(即ち、電極群側の面)に貼り合わされた樹脂薄膜8xと、接着剤により金属薄膜8yの下面に貼り合わされた樹脂薄膜8zとを有する。金属薄膜8yは、金属薄膜7yと同様の構成を有し、例えば、厚さが40μmのAl箔からなる。樹脂薄膜8xは、樹脂薄膜7xと同様の構成を有し、例えば、厚さが30μmのPPからなる。樹脂薄膜8zは、樹脂薄膜7zと同様の構成を有し、例えば、厚さが25μmのナイロンからなる。ラミネートフィルム8の全膜厚は、例えば、120μmである。図6(b) は、図4に示すラミネートフィルム8の構成を示す拡大断面図である。
 次に、図5に示すように、例えば、電熱式のヒータHを用いて、190℃の下、5秒間、ラミネートフィルム7とラミネートフィルム8とが互いに重なり合う部分の周縁部を加熱し、ラミネートフィルム7,8同士が互いに溶着された溶着部(図2:9b参照)を形成する。それと共に、収容部(図2:9a参照)と溶着部との間に、ラミネートフィルム7,8同士が互いに溶着されていない非溶着部(図2:9c参照)を形成する。このとき、図示を省略するが、ラミネートフィルム7の周縁部とラミネートフィルム8の周縁部との間に介在するタブフィルム(図4:5,6参照)が、ラミネートフィルム7,8に溶着する。
 ここで、ラミネートフィルム7とラミネートフィルム8とが互いに重なり合う部分のうち、加熱される部分(即ち、周縁部,溶着部が形成される部分)の幅方向の長さLは、例えば、
長さL=正極の引っ張り伸び率 × 電極群の幅
である。
 このようにして、ラミネートフィルム7,8からなるラミネートケース9内に、電極群1が封入された二次電池(図2:10参照)を作製する。
 本実施形態によると、ラミネートケース9における収容部9aと、ラミネートケース9における溶着部9bとの間に、非溶着部9cを設ける。これにより、ラミネートケース9内に、電極群1が、幅方向に膨張することが可能なスペース部を設けることができる。そのため、充放電によって正極及び負極が膨張することがあっても、図7に示すように、電極群1を、厚さ方向ではなく、幅方向に、優先的に膨張させることができるため、電極群内で厚さ方向に応力が生じることを抑制することができる。
 それと共に、正極の引っ張り伸び率を3.0%以上に高める。これにより、電極群内で応力が生じることがあっても、正極を負極の変形に追随して変形させることができる。
 従って、電極群内で厚さ方向に応力が生じることを抑制すると共に、正極を負極の変形に追随して変形させることができるため、電極群内で座屈が発生することを防止することができる。なお、図7は、幅方向に優先的に膨張する電極群により、ラミネートケースが変形した状態を示す断面図である。
 さらに、正極として、引っ張り伸び率が3.0%以上に高められた正極を用いることにより、圧壊によって二次電池が潰されることがあっても、正極が優先的に破断されることがないため、電池内部で短絡が発生することを防止することができる。
 ここで、負極及びセパレータの引っ張り伸び率も、正極と同様に3.0%以上であることが好ましい。その理由は、次に示す通りである。第1に例えば、正極及びセパレータの引っ張り伸び率が3.0%以上であっても、負極の引っ張り伸び率が3.0%未満であれば、圧壊によって電池が潰されると、負極が優先的に破断されて、電池内部で短絡が発生する。第2に例えば、正極及び負極の引っ張り伸び率が3.0%以上であっても、セパレータの引っ張り伸び率が3.0%未満であれば、圧壊によって電池が潰されると、セパレータが優先的に破断されて、電池内部で短絡が発生する。
 さらに、正極集電体として、鉄を含有しアルミニウムを主に含む正極集電体を用いることにより、正極の引っ張り伸び率を3.0%以上に高めるのに必要とされる熱処理温度を低くする、及び/又は正極の引っ張り伸び率を3.0%以上に高めるのに必要とされる熱処理時間を短くすることができるため、圧延後に施す熱処理の際に、溶融された結着剤によって、正極活物質が被覆されることを抑制することができる。
 なお、本実施形態では、熱処理の際に、溶融された結着剤によって、正極活物質が被覆されることを抑制することを目的に、正極集電体として、鉄を含有しアルミニウムを主に含む正極集電体を用いる場合を具体例に挙げて説明したが、本発明はこれに限定されるものではない。例えば、正極集電体として、鉄を含有せず純度の高いアルミニウムからなる正極集電体を用いてもよい。
 また、本実施形態では、電極群として、正極及び負極がセパレータを介して捲回された電極群を用いた場合を具体例に挙げて説明したが、本発明はこれに限定されるものではない。例えば、電極群として、正極及び負極がセパレータを介して積層された電極群を用いてもよい。
 なお、本発明が奏する効果として、既述の通り、本発明の目的を達成する効果の他に、圧壊によって潰された電池内部で短絡が発生することを防止する効果を、特に挙げたが、その他の効果として、異物が混入した電池内部で短絡が発生することを防止する効果、又は正極及び負極をセパレータを介して捲回する(又は積層する)際に、正極が切れることを防止する効果等を挙げることができる。
 (第2の実施形態)
 以下に、本発明の第2の実施形態に係る電池パックについて、図8を参照しながら説明する。図8は、本発明の第2の実施形態に係る電池パックの構成を示す断面図である。本実施形態に係る電池パックは、第1の実施形態に係る二次電池が、パックケース内に収容された電池パックである。
 図8に示すように、ラミネートケース9内に電極群1が封入された二次電池10が、パックケース11内に収容されて、電池パック13が構成されている。パックケース11は、ラミネートケース9の厚さ方向の側面とパックケース11との間に設けられ、ラミネートケース9の中央部を厚さ方向に押圧する押圧部11a,11bを有する。パックケース11の幅方向の側面とラミネートケース9との間には、空間部12が設けられている。
 ここで、空間部12を設けた理由は、次に示す通りである。図7に示すように、電極群1が幅方向に優先的に膨張した場合、非溶着部9cが空間部12内に押し込まれて、非溶着部9cにおけるラミネートフィルム同士を互いに離間させて、ラミネートケース9を変形させることができる。
 以下に、本発明の第2の実施形態に係る電池パックの製造方法について、図9を参照しながら説明する。図9は、本発明の第2の実施形態に係る電池パックの製造方法を示す断面図である。
 まず、第1の実施形態と同様の方法により、二次電池10を作製する。
 次に、図9に示すように、例えば、樹脂成形、又は金属成形により、押圧部11a,11bが一体化形成されたケース部11A,11Bを形成する。
 次に、ケース部11Aとケース部11Bとの間に形成された収容部内に、二次電池10が収容されるように、ケース部11Aとケース部11Bとを接着する。このとき、二次電池10は、押圧部11aと押圧部11bとの間に挟み込まれる。
 このようにして、ケース部11A,11Bからなるパックケース11内に、二次電池10が収容された電池パック13を作製する。
 本実施形態によると、第1の実施形態と同様の効果を得ることができる。
 加えて、充放電によって正極及び負極が膨張することがあっても、押圧部11a,11bにより、ラミネートケース9の中央部を厚さ方向に押圧することができる。そのため、第1の実施形態に比べて、電極群1を、幅方向により優先的に膨張させることができるため、電極群内で厚さ方向に応力が生じることをさらに抑制することができる。従って、電極群内で座屈が発生することをさらに防止することができる。
 なお、本実施形態では、押圧部11a,11bが一体化形成されたケース部11A,11Bを形成する場合を具体例に挙げて説明したが、本発明はこれに限定されるものではない。例えば、ケース部の形成後に、ケース部に押圧部を別途形成してもよい。
 また、本実施形態では、二次電池10を、ラミネートケース9における溶着部9bと非溶着部9cとの間で折り曲げずに、パックケース11内に収容する場合を具体例に挙げて説明したが、本発明はこれに限定されるものではない。
 例えば、図10に示すように、二次電池10を、ラミネートケース9における溶着部9bと非溶着部9cとの間で折り曲げて、パックケース11x内に収容してもよい。この場合、パックケース11xにおける幅方向の幅W11x(図10参照)を、パックケース11における幅方向の幅W11(図8参照)よりも小さくすることができるため、電池パック13xの小型化を図ることができる。
 以下に、正極の引っ張り伸び率と、圧壊によって潰された電池内部で発生する短絡との関係について、表1に示す。表1は、電池1~5の各々における、正極の引っ張り伸び率、及び圧壊試験の結果(即ち、短絡深さ)を示す。
 電池1~4は、正極集電体として、鉄を含有しアルミニウムを主に含む正極集電体を用い、正極として、同一温度(詳細には280℃)の下、相異なる熱処理時間(電池1:10秒,電池2:20秒,電池3:120秒,電池4:180秒)の間、圧延後に熱処理が施された正極を用いた電池である。一方、電池5は、正極集電体として、鉄を含有しアルミニウムを主に含む正極集電体を用い、圧延後に熱処理が施されなかった正極を用いた電池である。
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、圧延後に熱処理が施されなかった電池5の場合、正極の引っ張り伸び率は1.5%であるのに対し、圧延後に熱処理が施された電池1~4の場合、正極の引っ張り伸び率は3.0%以上(電池1:3.0%,電池2:5.0%,電池3:6.0%,電池4:6.5%)に高めることができる。
 表1に示すように、圧延後に熱処理が施されなかった電池5の場合、短絡深さは5mmであるのに対し、圧延後に熱処理が施された電池1~4の場合、短絡深さは8mm以上(電池1:8mm,電池2:9mm,電池3:10mm,電池4:10mm)に深めることができる。
 表1から判るように、圧延後に施す熱処理により、正極の引っ張り伸び率を3.0%以上に高めることができ、これにより、圧壊によって潰された電池内部で短絡が発生することを防止することができる。
 なお、電池1~5の作製方法は、以下に示す通りである。
 (電池1)
 (正極の作製)
 まず、平均粒子径が10μmのLiNi0.82Co0.15Al0.032を準備した。
 次に、導電剤として正極活物質100.0vol%に対して4.5vol%のアセチレンブラックと、N-メチルピロリドン(NMP)の溶剤に結着剤として正極活物質100.0vol%に対して4.7vol%のポリフッ化ビニリデン(PVDF)を溶解させた溶液と、正極活物質としてLiNi0.82Co0.15Al0.032とを混合し、正極合剤スラリーを得た。この正極合剤スラリーを、正極集電体として厚さ15μmの日本製箔株式会社製アルミニウム箔(A8021H-H18-15RK)の両面に塗布し、乾燥させた。次に、両面に正極合剤スラリーが塗布乾燥された正極集電体を圧延し、厚さ0.157mmの正極用板を得た。この正極用板に対し、280℃の下、10秒間、-30℃の低湿度処理を施した熱風により熱処理を施した。次に、この正極用板を幅57mm、長さ564mmに裁断して、厚さ0.157mm、幅57mm、長さ564mmの正極を作製した。
 (負極の作製)
 まず、平均粒子径が約20μmになるように、鱗片状人造黒鉛を粉砕及び分級した。
 次に、負極活物質として100重量部の鱗片状人造黒鉛に、結着剤としてスチレンブタジエンゴムを3重量部とカルボキシメチルセルロースを1重量%含む水溶液100重量部とを加えて混合し、負極合剤スラリーを得た。この負極合剤スラリーを、負極集電体として厚さ8μmの銅箔の両面に塗布し、乾燥させた。次に、両面に負極合剤スラリーが塗布乾燥された負極集電体を圧延し、厚さ0.156mmの負極用板を得た。この負極用板に対し、窒素雰囲気中、190℃の下、8時間、熱風により熱処理を施した。次に、この負極用板を、幅58.5mm、長さ750mmに裁断して、厚さ0.156mm、幅58.5mm、長さ750mmの負極を作製した。負極の引っ張り伸び率は5%(即ち、3.0%以上)である。
 (非水電解液の調製)
 非水溶媒として体積比が1:3となるようにエチレンカーボネートとジメチルカーボネートとを混合した混合溶媒に、電池の充放電効率を高める添加剤として5重量%のビニレンカーボネートを添加すると共に、電解質として非水溶媒に対するモル濃度が1.4mol/m3となるようにLiPF6を溶解し、非水電解液を調製した。
 (円筒型電池の作製)
 まず、正極集電体にアルミニウム製の正極リードを取り付け、負極集電体にニッケル製の負極リードを取り付けた。次に、正極と負極とを、それらの間にポリエチレン製のセパレータ(引っ張り伸び率が8%(即ち、3.0%以上)のセパレータ)を介して捲回し、電極群を構成した。次に、電極群の上端に上部絶縁板を配置する一方、電極群の下端に下部絶縁板を配置した。次に、負極リードを電池ケースに溶接すると共に、正極リードを内圧作動型の安全弁を有する封口板に溶接して、電極群を電池ケース内に収容した。次に、減圧方式により、電池ケース内に非水電解液を注液した。最後に、電池ケースの開口を、ガスケットを介して、封口板によって封口することにより、電池を作製した。
 このように、280℃(即ち、正極集電体の軟化温度よりも高い温度)の下、10秒間、熱処理が施された正極を有する電池を作製し、作製した電池を電池1と称する。
 (電池2)
 (正極の作製)において、正極用板に対し、280℃の下、20秒間、熱処理を施したこと以外は、電池1と同様に電池を作製し、作製した電池を電池2と称する。
 (電池3)
 (正極の作製)において、正極用板に対し、280℃の下、120秒間、熱処理を施したこと以外は、電池1と同様に電池を作製し、作製した電池を電池3と称する。
 (電池4)
 (正極の作製)において、正極用板に対し、280℃の下、180秒間、熱処理を施したこと以外は、電池1と同様に電池を作製し、作製した電池を電池4と称する。
 (電池5)
 (正極の作製)において、圧延後に正極用板に対し熱処理を施さなかったこと以外は、電池1と同様に電池を作製し、作製した電池を電池5と称する。
 また、正極の引っ張り伸び率の測定方法は、以下に示す通りである。
 <正極の引っ張り伸び率の測定>
 まず、各電池1~5を、1.45Aの定電流で電圧が4.25Vに至るまで充電を行い、定電圧で電流が50mAになるまで充電を行った後、各電池1~5を分解し、正極を取り出した。取り出した正極を、幅15mm,長さ20mmに裁断し、測定用正極を作製した。測定用正極の一端を固定する一方、測定用正極の他端を長さ方向に沿って20mm/minの速度で引っ張った。そして、破断される直前の測定用正極の長さを測定し、この長さと、引っ張る前の測定用正極の長さ(即ち、20mm)とから、正極の引っ張り伸び率を求めた。
 また、圧壊試験における短絡深さの測定方法は、以下に示す通りである。
 <圧壊試験>
 まず、各電池1~5を、1.45Aの定電流で電圧が4.25Vに至るまで充電を行い、定電圧で電流が50mAになるまで充電を行った。次に、電池温度が30℃の下、直径が6mmの丸棒を各電池1~5に接触させて、丸棒を0.1mm/secの速度で電池の深さ方向に沿って移動させて、各電池1~5を圧壊した。そして、圧壊によって潰された各電池1~5の内部で短絡が発生した時の深さ方向の変形量(即ち、短絡深さ)を求めた。
 本発明は、ラミネートケース内に電極群が封入された二次電池において、電極群内での座屈の発生を防止することができるため、二次電池及び二次電池を備えた電池パック、並びに二次電池の製造方法に有用である。
 1  電極群
 2  正極
 2A  正極集電体
 2B  正極合剤層
 2a  正極リード
 3  負極
 3A  負極集電体
 3B  負極合剤層
 3a  負極リード
 4  セパレータ
 5  タブフィルム
 6  タブフィルム
 7  ラミネートフィルム
 7a  凸部
 7x  樹脂薄膜
 7y  金属薄膜
 7z  樹脂薄膜
 8  ラミネートフィルム
 8a  凹部
 8x  樹脂薄膜
 8y  金属薄膜
 8z  樹脂薄膜
 9  ラミネートケース
 9a  収容部
 9b  溶着部
 9c  非溶着部
 10  二次電池
 11,11x  パックケース
 11A  ケース部
 11a,11ax  押圧部
 11B  ケース部
 11b,11bx  押圧部
 12,12x  空間部
 13,13x  電池パック
 H  ヒータ

Claims (9)

  1.  ラミネートフィルムからなるラミネートケース内に、正極集電体上に正極活物質及び結着剤を含む正極合剤層が形成された正極、負極、及び多孔質絶縁層を有する電極群が封入された扁平型の二次電池であって、
     前記ラミネートケースは、
      前記電極群を収容する収容部と、
      前記ラミネートフィルム同士が互いに溶着された溶着部と、
      前記収容部と前記溶着部との間に設けられ、前記ラミネートフィルム同士が互いに溶着されていない非溶着部とを有し、
     前記正極の引っ張り伸び率は、3.0%以上であることを特徴とする二次電池。
  2.  請求項1に記載の二次電池において、
     前記負極の引っ張り伸び率は、3.0%以上であり、
     前記多孔質絶縁層の引っ張り伸び率は、3.0%以上であることを特徴とする二次電池。
  3.  請求項1に記載の二次電池において、
     前記正極は、前記正極活物質を含む正極合剤スラリーが塗布乾燥された前記正極集電体を圧延した後、前記正極合剤スラリーが塗布乾燥された前記正極集電体に対し、所定温度で熱処理が施された正極であることを特徴とする二次電池。
  4.  請求項1に記載の二次電池において、
     前記正極集電体は、鉄を含有しアルミニウムを主に含むことを特徴とする二次電池。
  5.  請求項4に記載の二次電池において、
     前記正極集電体中に含有される鉄量は、1.20重量%以上1.70重量%以下であることを特徴とする二次電池。
  6.  請求項1に記載の二次電池と、
     前記二次電池が収容されるパックケースとを備え、
     前記パックケースは、前記ラミネートケースの厚さ方向の側面と前記パックケースとの間に設けられ、前記ラミネートケースの中央部を厚さ方向に押圧する押圧部を有し、
     前記パックケースの幅方向の側面と前記ラミネートケースとの間に、空間部が設けられていることを特徴とする電池パック。
  7.  ラミネートフィルムからなるラミネートケース内に、正極集電体上に正極活物質及び結着剤を含む正極合剤層が形成された正極、負極、及び多孔質絶縁層を有する電極群が封入された扁平型の二次電池の製造方法であって、
     前記正極を準備する工程(a)と、
     前記負極を準備する工程(b)と、
     前記工程(a)及び前記工程(b)の後に、前記正極及び前記負極を、前記正極と前記負極との間に前記多孔質絶縁層を介して捲回する、又は積層することにより、前記電極群を構成する工程(c)と、
     前記工程(c)の後に、前記電極群を、前記ラミネートケース内に封入する工程(d)とを備え、
     前記工程(a)は、
      前記正極集電体上に、前記正極活物質を含む正極合剤スラリーを塗布乾燥させる工程(a1)と、
      前記正極合剤スラリーが塗布乾燥された前記正極集電体を圧延する工程(a2)と、
      前記工程(a2)の後に、前記正極合剤スラリーが塗布乾燥された前記正極集電体に対し、所定温度で熱処理を施すことにより、前記正極の引っ張り伸び率を、3.0%以上に高める工程(a3)とを含み、
     前記工程(d)は、
      収容部内に前記電極群が収容されるように、ラミネートフィルム同士を互いに重ね合わせる工程(d1)と、
      前記ラミネートフィルム同士が互いに重なり合う部分の周縁部を加熱して溶着し溶着部を形成すると共に、前記収容部と前記溶着部との間に非溶着部を形成する工程(d2)とを含むことを特徴とする二次電池の製造方法。
  8.  請求項7に記載の二次電池の製造方法において、
     前記所定温度は、前記正極集電体の軟化温度よりも高いことを特徴とする二次電池の製造方法。
  9.  請求項7に記載の二次電池の製造方法において、
     前記正極集電体は、鉄を含有しアルミニウムを主に含むことを特徴とする二次電池の製造方法。
PCT/JP2009/003367 2009-02-05 2009-07-16 二次電池及び二次電池を備えた電池パック、並びに二次電池の製造方法 WO2010089813A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US13/058,419 US20110135997A1 (en) 2009-02-05 2009-07-16 Secondary battery, battery pack including secondary battery, and method for fabricating secondary battery
JP2010549273A JP5232875B2 (ja) 2009-02-05 2009-07-16 二次電池及び二次電池を備えた電池パック、並びに二次電池の製造方法
EP09839591A EP2395587A1 (en) 2009-02-05 2009-07-16 Secondary battery, battery pack having the secondary battery, and method for manufacturing the secondary battery
CN2009801522059A CN102265445A (zh) 2009-02-05 2009-07-16 二次电池和具备二次电池的电池包、以及二次电池的制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009024994 2009-02-05
JP2009-024994 2009-02-05

Publications (1)

Publication Number Publication Date
WO2010089813A1 true WO2010089813A1 (ja) 2010-08-12

Family

ID=42541738

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/003367 WO2010089813A1 (ja) 2009-02-05 2009-07-16 二次電池及び二次電池を備えた電池パック、並びに二次電池の製造方法

Country Status (6)

Country Link
US (1) US20110135997A1 (ja)
EP (1) EP2395587A1 (ja)
JP (1) JP5232875B2 (ja)
KR (1) KR20110049864A (ja)
CN (1) CN102265445A (ja)
WO (1) WO2010089813A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013011749A1 (ja) * 2011-07-15 2013-01-24 Necエナジーデバイス株式会社 電池モジュール
WO2014141779A1 (ja) * 2013-03-15 2014-09-18 Necエナジーデバイス株式会社 電池モジュール及びその製造方法
JP2016062876A (ja) * 2014-09-22 2016-04-25 株式会社豊田自動織機 蓄電装置
WO2016157370A1 (ja) * 2015-03-30 2016-10-06 エリーパワー株式会社 密閉型電池及び組電池
WO2018056012A1 (ja) * 2016-09-26 2018-03-29 日産自動車株式会社 単電池、および単電池とスペーサとの組立体
JP2018055820A (ja) * 2016-09-26 2018-04-05 日産自動車株式会社 単電池、および単電池とスペーサとの組立体
JP2018055818A (ja) * 2016-09-26 2018-04-05 日産自動車株式会社 単電池とスペーサとの組立体
JP2020155244A (ja) * 2019-03-19 2020-09-24 日立造船株式会社 二次電池およびその製造方法
WO2022064541A1 (ja) * 2020-09-23 2022-03-31 日立造船株式会社 二次電池およびその製造方法

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140011962A (ko) * 2012-07-20 2014-01-29 스미토모 덴키 고교 가부시키가이샤 탭 리드 및 전지
CN104584259B (zh) 2012-12-28 2017-03-15 株式会社Lg 化学 用于密封二次电池的袋状壳体的设备和方法
KR101610680B1 (ko) * 2013-09-02 2016-04-20 주식회사 엘지화학 이차전지의 전극탭 용접방법 및 이를 이용하여 제조된 전극조립체
KR20150059518A (ko) * 2013-11-22 2015-06-01 삼성에스디아이 주식회사 이차 전지
JP6292948B2 (ja) * 2014-04-02 2018-03-14 湘南Corun Energy株式会社 塗布材料付き薄板材料の製造方法、電池用極板の製造方法および製造装置
WO2016048028A1 (ko) * 2014-09-26 2016-03-31 주식회사 엘지화학 절연층을 포함하는 이차전지용 케이스 및 이를 포함하는 리튬 이차전지
WO2017002235A1 (ja) * 2015-07-01 2017-01-05 日産自動車株式会社 扁平型電池
KR102022582B1 (ko) * 2015-09-21 2019-09-18 주식회사 엘지화학 안전성이 향상된 전극 및 이를 포함하는 이차전지
KR101940150B1 (ko) 2015-12-11 2019-01-18 주식회사 엘지화학 이차전지용 실링장치
CN105762405A (zh) * 2016-05-20 2016-07-13 宁德时代新能源科技股份有限公司 电芯以及该电芯的形成方法
CN107591555B (zh) * 2016-07-06 2024-03-19 宁德时代新能源科技股份有限公司 二次电池
JP6768578B2 (ja) * 2017-03-27 2020-10-14 三洋電機株式会社 角形二次電池の製造方法
CN116666770A (zh) * 2023-08-02 2023-08-29 宁德时代新能源科技股份有限公司 电池单体及其制造方法、电池以及用电装置

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09129241A (ja) * 1995-10-31 1997-05-16 Matsushita Electric Ind Co Ltd 非水電解液二次電池
JP2000223086A (ja) * 1999-01-28 2000-08-11 Mitsubishi Chemicals Corp 二次電池
JP2002117904A (ja) * 2000-10-06 2002-04-19 Mitsubishi Chemicals Corp リチウム二次電池
JP2004234899A (ja) 2003-01-28 2004-08-19 Nec Corp 二次電池モジュール
JP2006134762A (ja) * 2004-11-08 2006-05-25 Sony Corp 二次電池
JP2006134761A (ja) * 2004-11-08 2006-05-25 Sony Corp 二次電池
JP2007323217A (ja) 2006-05-31 2007-12-13 Hitachi Omron Terminal Solutions Corp 発券処理装置および発券処理方法
JP2008002114A (ja) 2006-06-21 2008-01-10 Watanabe Pipe 独立基礎及びその構築方法
JP2008059941A (ja) * 2006-08-31 2008-03-13 Nissan Motor Co Ltd 電池モジュール
JP2008130414A (ja) * 2006-11-22 2008-06-05 Matsushita Electric Ind Co Ltd リチウム二次電池用電極の製造方法
JP2008186704A (ja) * 2007-01-30 2008-08-14 Matsushita Electric Ind Co Ltd 非水系二次電池用正極板および非水系二次電池
WO2009019861A1 (ja) * 2007-08-09 2009-02-12 Panasonic Corporation 非水電解質二次電池及びその製造方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4971276B2 (ja) * 2003-10-09 2012-07-11 昭和電工株式会社 アルミニウム硬箔電極材およびその製造方法
JP5011928B2 (ja) * 2006-10-03 2012-08-29 株式会社Gsユアサ 電池
US7947784B2 (en) * 2007-11-16 2011-05-24 Zimmer, Inc. Reactive compounding of hydrogels

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09129241A (ja) * 1995-10-31 1997-05-16 Matsushita Electric Ind Co Ltd 非水電解液二次電池
JP2000223086A (ja) * 1999-01-28 2000-08-11 Mitsubishi Chemicals Corp 二次電池
JP2002117904A (ja) * 2000-10-06 2002-04-19 Mitsubishi Chemicals Corp リチウム二次電池
JP2004234899A (ja) 2003-01-28 2004-08-19 Nec Corp 二次電池モジュール
JP2006134762A (ja) * 2004-11-08 2006-05-25 Sony Corp 二次電池
JP2006134761A (ja) * 2004-11-08 2006-05-25 Sony Corp 二次電池
JP2007323217A (ja) 2006-05-31 2007-12-13 Hitachi Omron Terminal Solutions Corp 発券処理装置および発券処理方法
JP2008002114A (ja) 2006-06-21 2008-01-10 Watanabe Pipe 独立基礎及びその構築方法
JP2008059941A (ja) * 2006-08-31 2008-03-13 Nissan Motor Co Ltd 電池モジュール
JP2008130414A (ja) * 2006-11-22 2008-06-05 Matsushita Electric Ind Co Ltd リチウム二次電池用電極の製造方法
JP2008186704A (ja) * 2007-01-30 2008-08-14 Matsushita Electric Ind Co Ltd 非水系二次電池用正極板および非水系二次電池
WO2009019861A1 (ja) * 2007-08-09 2009-02-12 Panasonic Corporation 非水電解質二次電池及びその製造方法

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013011749A1 (ja) * 2011-07-15 2013-01-24 Necエナジーデバイス株式会社 電池モジュール
JPWO2013011749A1 (ja) * 2011-07-15 2015-02-23 Necエナジーデバイス株式会社 電池モジュール
WO2014141779A1 (ja) * 2013-03-15 2014-09-18 Necエナジーデバイス株式会社 電池モジュール及びその製造方法
US10103360B2 (en) 2013-03-15 2018-10-16 Nec Energy Devices, Ltd. Battery module and method of manufacturing same
JPWO2014141779A1 (ja) * 2013-03-15 2017-02-16 Necエナジーデバイス株式会社 電池モジュール及びその製造方法
JP2016062876A (ja) * 2014-09-22 2016-04-25 株式会社豊田自動織機 蓄電装置
JPWO2016157370A1 (ja) * 2015-03-30 2018-01-25 エリーパワー株式会社 密閉型電池及び組電池
WO2016157370A1 (ja) * 2015-03-30 2016-10-06 エリーパワー株式会社 密閉型電池及び組電池
WO2018056012A1 (ja) * 2016-09-26 2018-03-29 日産自動車株式会社 単電池、および単電池とスペーサとの組立体
JP2018055820A (ja) * 2016-09-26 2018-04-05 日産自動車株式会社 単電池、および単電池とスペーサとの組立体
JP2018055818A (ja) * 2016-09-26 2018-04-05 日産自動車株式会社 単電池とスペーサとの組立体
US11251484B2 (en) 2016-09-26 2022-02-15 Envision Aesc Japan Ltd. Assembly including unit cell and spacer
JP2020155244A (ja) * 2019-03-19 2020-09-24 日立造船株式会社 二次電池およびその製造方法
WO2022064541A1 (ja) * 2020-09-23 2022-03-31 日立造船株式会社 二次電池およびその製造方法

Also Published As

Publication number Publication date
KR20110049864A (ko) 2011-05-12
CN102265445A (zh) 2011-11-30
US20110135997A1 (en) 2011-06-09
JPWO2010089813A1 (ja) 2012-08-09
EP2395587A1 (en) 2011-12-14
JP5232875B2 (ja) 2013-07-10

Similar Documents

Publication Publication Date Title
JP5232875B2 (ja) 二次電池及び二次電池を備えた電池パック、並びに二次電池の製造方法
WO2011001617A1 (ja) 捲回型電極群および電池
US20110151296A1 (en) Nonaqueous electrolyte secondary battery and method for fabricating nonaqueous electrolyte secondary battery
JPWO2017204184A1 (ja) 二次電池の製造方法
JP2010244930A (ja) ラミネート形電池の製造方法
US8337572B2 (en) Battery and method for producing the same
WO2015173623A1 (en) Method of manufacturing secondary battery
JP2012174434A (ja) 電池の製造方法
JP2011216295A (ja) 円筒型非水電解質二次電池
JP4968768B2 (ja) 筒形非水電解液電池
WO2019244818A1 (ja) 非水電解質二次電池
KR20120022773A (ko) 편평형 이차전지용 전극군 및 그 제조방법 그리고 편평형 이차전지용 전극군을 구비한 편평형 이차전지
JP2021082549A (ja) 二次電池、及びその製造方法
JP2010205429A (ja) 非水電解液二次電池および非水電解液二次電池用電極
JP6227168B1 (ja) リチウムイオン電池およびその製造方法
US20220416380A1 (en) Cylindrical non-aqueous electrolyte secondary cell
US11380940B2 (en) Method for manufacturing nonaqueous electrolyte secondary battery
WO2010084526A1 (ja) 非水電解質二次電池及びその製造方法
JP2011216276A (ja) 円筒型非水電解質二次電池
WO2019244817A1 (ja) 非水電解質二次電池
WO2020184417A1 (ja) 非水電解質二次電池及び非水電解質二次電池の製造方法
JP7430665B2 (ja) 二次電池の集電体およびその製造方法、ならびに二次電池
JP6932165B2 (ja) 非水電解質二次電池
JP7445931B2 (ja) 非水電解質二次電池
JP2011096504A (ja) 非水電解質二次電池およびその製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980152205.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09839591

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010549273

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2009839591

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13058419

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20117005457

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE