WO2010087118A1 - 歯の製造方法 - Google Patents
歯の製造方法 Download PDFInfo
- Publication number
- WO2010087118A1 WO2010087118A1 PCT/JP2010/000180 JP2010000180W WO2010087118A1 WO 2010087118 A1 WO2010087118 A1 WO 2010087118A1 JP 2010000180 W JP2010000180 W JP 2010000180W WO 2010087118 A1 WO2010087118 A1 WO 2010087118A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- cell
- tooth
- length
- support carrier
- aggregate
- Prior art date
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61C—DENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
- A61C13/00—Dental prostheses; Making same
- A61C13/08—Artificial teeth; Making same
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
- A61L27/36—Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix
- A61L27/38—Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix containing added animal cells
- A61L27/3886—Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix containing added animal cells comprising two or more cell types
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
- A61L27/36—Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix
- A61L27/38—Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix containing added animal cells
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
- A61L27/36—Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix
- A61L27/38—Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix containing added animal cells
- A61L27/3804—Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix containing added animal cells characterised by specific cells or progenitors thereof, e.g. fibroblasts, connective tissue cells, kidney cells
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
- A61L27/36—Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix
- A61L27/38—Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix containing added animal cells
- A61L27/3839—Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix containing added animal cells characterised by the site of application in the body
- A61L27/3843—Connective tissue
- A61L27/3865—Dental/periodontal tissues
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N5/00—Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
- C12N5/06—Animal cells or tissues; Human cells or tissues
- C12N5/0602—Vertebrate cells
- C12N5/0652—Cells of skeletal and connective tissues; Mesenchyme
Definitions
- the present invention relates to a method for manufacturing a tooth having a desired size.
- a tooth is an organ having a hard tissue of enamel in the outermost layer and dentin in the inner layer, and further having odontoblasts producing dentin inside and a pulp in the center. Teeth may be lost due to dental caries or periodontal disease, but the presence or absence of teeth greatly affects the appearance and taste of food, so interest in tooth regeneration technology is increasing. In addition, interest in tooth regeneration technology is increasing in order to maintain health and maintain a high quality of life. Teeth are functional units formed by the induction of developmental processes in the fetal period and constructed by multiple cell types.
- Teeth are not generated by stem cell systems that generate cell types from stem cells such as hematopoietic stem cells and mesenchymal stem cells in adults, so only stem cell transfer currently being promoted by regenerative medicine (stem cell transfer therapy) ) Cannot regenerate teeth.
- stem cell transfer therapy stem cell transfer therapy
- the present inventors have heretofore established that the inside of a support carrier made of collagen gel or the like consists essentially of only one of mesenchymal cells and epithelial cells, at least one of which is derived from a tooth germ. 1 cell aggregate and a second cell aggregate consisting essentially of only the other are placed in contact with each other, and the first and second cell aggregates are cultured inside the support carrier, thereby It has been found that the differentiation of the tooth is effectively induced, and a regenerated tooth embryo and a regenerated tooth having a specific cell arrangement and direction can be produced (for example, see Patent Document 1).
- epithelial cells and their primary cultured cells are used as epithelial cells (for example, see Patent Document 2)
- amnion-derived cells are used as mesenchymal cells (for example, see Patent Document 3)
- mesenchymal cells for example, see Patent Document 3
- mesenchymal cells for example, see Patent Document 4
- the size of the tooth varies depending on the part, and there are individual differences in the size. From the viewpoint of regenerating a tooth that matches the lost tooth part, It is important to control.
- a method for controlling the size of the regenerated tooth is not studied.
- an aggregate of regenerated teeth may be obtained.
- the individual teeth are separated from the aggregate and used as a graft.
- a dental germ cell mixture containing a dental pulp-derived mesenchymal cell that forms a tooth papilla and dentin and an epithelial cell that contributes to enamel formation
- a biodegradable polymer composed of a glycolic acid-polyacetic acid copolymer or the like is seeded in a solidified scaffold and transplanted into an animal body to form a tooth.
- an attempt is made to control the shape of the teeth by using a scaffold of a predetermined shape.
- regenerated teeth are derived from a tooth germ composed of an epithelial cell layer and a mesenchymal cell layer, and the tooth germ grows while undergoing temporal epithelial-mesenchymal interaction that occurs between the epithelial cell layer and the mesenchymal cell layer. It is known to do. Therefore, there is an opinion that the use of the scaffold is not desirable because a sufficient cell-cell interaction cannot be obtained when the scaffold is used (see, for example, Non-Patent Document 1). In addition, since the rate at which teeth are formed is faster than the time at which the scaffold breaks down, teeth that involve the scaffold may be formed, and the reproducibility of cell placement and tooth shape is not necessarily high. It is expected that.
- the correct shape of the tooth is not obtained even by reconfiguration by combining the epithelial cell aggregate and the mesenchymal cell aggregate.
- the correct form can be made if the mesenchymal tissue can be used. It only shows that the restriction of having to use leaf cells is partially eliminated by increasing the number of cells.
- Non-patent Document 2 the final size of teeth and apex is determined by intrinsic factors of mesenchymal and epithelial tissues, respectively, ie mesenchymal and epithelial cells We conclude that we have an intrinsic memory of the final size of the cusps.
- the present inventors used epithelial cells when producing reconstructed tooth germs using epithelial cell assemblies and mesenchymal cell assemblies.
- a method of using an epithelial tissue including the same number of regions constituting enamel nodules as a desired number of teeth was found (Patent Document 5).
- Patent Document 5 a method of using an epithelial tissue including the same number of regions constituting enamel nodules as a desired number of teeth.
- an aggregate of teeth including a desired number of teeth can be obtained.
- control of the size of a tooth is not examined.
- the tooth has a size and shape suitable for its function depending on the place where it grows, and the size and shape of the same molar differs depending on the location. There are also individual differences in the size of teeth. Therefore, when producing a regenerated tooth embryo or a regenerated tooth for the treatment of a lost tooth, it is important to control the size so as to perform an appropriate function in the individual to be transplanted. In addition, according to the inventors' experience, the size of the regenerated tooth germ can vary depending on various conditions, and it is not possible to obtain a tooth of the same size with good reproducibility by cell-specific “memory”. Absent.
- an object of the present invention is to provide a method for producing a tooth having a desired size, particularly a tooth having a desired width of a crown.
- the width of the crown of the regenerated tooth is a contact in a predetermined direction between the mesenchymal cell aggregate and the epithelial cell aggregate in the support carrier. It has been found that it depends on the length and not on the number of cells, and therefore the width of the crown of the regenerated tooth can be controlled by adjusting the contact length. Furthermore, when the aggregates of mesenchymal cells and epithelial cells are each formed into a substantially columnar shape, teeth having a desired length in one direction can be obtained by controlling the axial contact length of the columns.
- a regenerated tooth having the desired length can be obtained; the number of tooth cusps as the tooth size is controlled.
- the inventors have found that a single tooth can be obtained by setting the contact length to be equal to or less than a predetermined value, and have completed the present invention.
- the present invention [1] A method for producing a tooth having a desired length in one direction, Placing the first cell aggregate and the second cell aggregate, each of which is constituted by either mesenchymal cells or epithelial cells, in close contact with each other inside the support carrier; Culturing the first and second cell aggregates inside the support carrier, Adjusting the size of the teeth by adjusting a predetermined one-way contact length between the first cell aggregate and the second cell aggregate; [2] A method for producing a tooth having a desired length in one direction, A structure in which a first cell assembly and a second cell assembly, each of which is configured by either a mesenchymal cell or an epithelial cell, are disposed in close contact with each other inside the support carrier, Changing the contact length in one predetermined direction between the cell aggregate and the second cell aggregate to produce a plurality of types; Culturing each of the plurality of types of components inside the support carrier; Measuring the length in one direction of the tooth produced in the previous step, and determining
- the contact length of the column is the length calculated in the previous step, and the step of closely contacting and arranging so that the axial direction of each column is parallel, Culturing the first and second cell aggregates inside the support carrier; [5] A method for producing a tooth having a desired length in one direction, A substantially columnar first cell assembly and a second cell assembly each configured with either a mesenchymal cell or an epithelial cell inside the support carrier, the axial directions of the columns are parallel to each other.
- the step of arranging the first and second cell aggregates inside the support carrier includes the steps of: Producing a plurality of components in which the first and second cell aggregates are arranged inside the support carrier; Measuring the axial contact length of the first and second cell aggregates; Selecting the construct whose measured contact length is about ⁇ 25% of the desired length; and the method of [5] above; [7] A method of manufacturing a single tooth, Placing the first cell aggregate and the second cell aggregate, each of which is constituted by either mesenchymal cells or epithelial cells, in close contact with each other inside the support carrier; Culturing the first and second cell aggregates inside the support carrier, A maximum contact length between the first cell aggregate and the second cell aggregate is a predetermined value or less; [8] The method according to any one of [1] to [7] above
- the method for determining the contact length includes: A structure in which a first cell assembly and a second cell assembly, each of which is configured by either a mesenchymal cell or an epithelial cell, are disposed in close contact with each other inside the support carrier, Changing the contact length in one predetermined direction between the cell aggregate and the second cell aggregate to produce a plurality of types; Culturing each of the plurality of types of components inside the support carrier; Measuring the length in one direction of the tooth manufactured in the previous step, and obtaining a correlation between the contact length and the length in one direction of the tooth; Calculating a contact length of the first and second cell aggregates necessary for obtaining a tooth having a desired length in the one direction based on the correlation; [15] A method of designing a method of manufacturing a single tooth under a predetermined condition, The above design method is used in the case where the first cell
- a method for determining the maximum contact length of both cell assemblies required to produce a single tooth is: A structure in which a first cell assembly and a second cell assembly, each of which is configured by either a mesenchymal cell or an epithelial cell, are disposed in close contact with each other inside the support carrier, Changing the maximum contact length between the cell aggregate and the second cell aggregate to produce a plurality of types; Culturing each of the plurality of types of components inside the support carrier; Measuring the number of teeth produced in the previous step and determining the maximum contact length of the first and second cell aggregates to obtain a single tooth; and [16] The method according to [14] or [15] above, wherein at least one of the mesenchymal cells and the epithelial cells is derived from a tooth germ.
- the contact length in a predetermined direction between the mesenchymal cell and the epithelial cell is adjusted.
- the width of the crown in the contact length direction can be controlled in the produced regenerated tooth embryo and regenerated tooth.
- teeth having a desired length in the axial direction are formed by controlling the axial contact length of the column. can do.
- the design of the tooth manufacturing method including the determination of the contact length capable of manufacturing a tooth of a desired size can be performed according to the present invention.
- a tooth having a desired length can be produced if a predetermined contact length can be obtained regardless of the number of cells contained in each cell aggregate. Can be achieved. Furthermore, in the present invention, by making the contact length between each cell set equal to or less than a predetermined value, it can be obtained as a single tooth instead of a set of multiple teeth, and therefore undergoes a separation step. However, it can be used as it is as a graft.
- FIG. 5 is a schematic diagram showing the width of a crown region to be a future crown, measured as an index indicating the size of a regenerated tooth germ on day 7 of organ culture.
- 3 is a bar graph showing the relationship between the contact length of epithelial cell aggregates and mesenchymal cell aggregates at the time of preparation of reconstructed tooth germ and the size of regenerated tooth germ on day 7 of organ culture.
- 3 is a graph showing the relationship between the contact length of epithelial cell aggregates and mesenchymal cell aggregates at the time of preparation of reconstructed tooth germs and the size of regenerated tooth germs on day 7 of organ culture.
- It is a schematic diagram which shows the width
- the stereomicroscope image of is shown. Arrow heads in the figure indicate both ends of the crown. 6 is a bar graph showing the relationship between the contact length of epithelial cell aggregates and mesenchymal cell aggregates at the time of preparation of reconstructed tooth embryos and the crown width of regenerated teeth on the 21st day of subrenal transplantation.
- FIG. 6 is a graph showing the relationship between the contact length of epithelial cell aggregates and mesenchymal cell aggregates at the time of preparation of a reconstructed tooth embryo and the width of the crown of a regenerated tooth on the 21st day after subrenal transplantation. Regeneration on the 21st day after transplantation under the renal capsule when the contact length between the epithelial cell assembly and the mesenchymal cell assembly is 450 ⁇ m or less, 450 ⁇ m to 900 ⁇ m, 900 ⁇ m to 1500 ⁇ m at the time of preparation of the reconstructed tooth germ It is a CT image of a tooth.
- FIG. 6 is a graph showing the relationship between the contact length of epithelial cell aggregates and mesenchymal cell aggregates at the time of preparation of a reconstructed tooth embryo and the number of regenerated tooth tips 21 days after transplantation under the renal capsule.
- the result of measuring the width of the crown is shown.
- the teeth of regenerated teeth obtained when the contact length between the columnar epithelial cell assembly and the mesenchymal cell assembly is within a certain range in the reconstructed tooth embryo and the number of cells contained in each assembly is changed.
- the result of measuring the number of cusps is shown.
- a first cell aggregate and a second cell aggregate each formed of either a mesenchymal cell or an epithelial cell are provided in a support carrier. And adjusting the contact length in one direction of the first and second cell aggregates, and the step of culturing the first and second cell aggregates inside the support carrier. It is characterized by adjusting the size of the teeth.
- the term “tooth” refers to a tissue having a dentin layer on the inside and an enamel layer on the outside in a continuous manner, and means a tissue having a direction having a crown and a root.
- the directionality of teeth can be specified by the arrangement of crowns and roots.
- the crown and root can be visually confirmed based on the shape and tissue staining.
- the crown refers to a portion having a layer structure of enamel and dentin, and there is no enamel layer in the tooth root.
- Dentin and enamel can be easily identified morphologically by those skilled in the art by tissue staining or the like. Enamel can be identified by the presence of enamel blasts, and the presence of enamel blasts can be confirmed by the presence or absence of amelogenin. On the other hand, dentin can be identified by the presence of odontoblasts, and the presence of odontoblasts can be confirmed by the presence or absence of dentin sialoprotein. Confirmation of amelogenin and dentin sialoprotein can be easily carried out by methods well known in the art, and examples thereof include in situ hybridization and antibody staining.
- tooth germ and “tooth germ” are expressions used when specifically referring to those distinguished based on the stage of development.
- the tooth germ in this case is an early embryo of a tooth that has been determined to become a future tooth, from the rod stage (Bud stage) to the bell stage (Bell stage) commonly used in the tooth development stage. It is a tissue in which accumulation of dentin and enamel, which is a feature of a dental hard tissue, is not recognized.
- tooth germ refers to a tissue after the stage of “dental germ” used in the present invention, and from the stage where accumulation of dentin and enamel, which is a feature of the hard tissue of the tooth, has started.
- the development from the tooth germ to the tooth is performed through the stages of the rod-like stage, the cap-like stage, the bell-like stage and the following.
- the epithelial cells are invaded so as to thicken into mesenchymal cells
- the cap phase the epithelial cells are invaded so as to wrap the mesenchymal cells.
- the epithelial cell portion becomes the outer enamel, and the mesenchymal cell portion forms dentin inside.
- the development of tooth germ is controlled by cell-cell interaction between epithelial cells and mesenchymal cells via cytokines and the like, and teeth are formed.
- a “mesenchymal cell” means a cell derived from a mesenchymal tissue and a cell obtained by culturing the cell
- an “epithelial cell” means a cell derived from an epithelial tissue and a cell thereof. It means the resulting cell.
- periodontal tissue refers to alveolar bone and periodontal ligament formed mainly in the outer layer of the tooth. The alveolar bone and periodontal ligament can be easily identified morphologically by those skilled in the art by tissue staining or the like.
- the step of placing the first cell aggregate and the second cell aggregate, each of which is constituted by either a mesenchymal cell or an epithelial cell, in close contact with each other inside the support carrier hereinafter referred to as“the support cell carrier ”.
- the support cell carrier may also be referred to as “arrangement step”), for example, in Patent Documents 1 to 5, the disclosure of which is incorporated herein by reference in its entirety.
- the first cell aggregate and the second cell aggregate are substantially composed of only mesenchymal cells or epithelial cells, respectively.
- “Substantially composed only of mesenchymal cells” means that in the present invention, a certain cell aggregate performs the same function as when composed of only mesenchymal cells, This refers to a state that contains as little as possible cells other than cells that become systemic cells. The same applies to the case of “substantially only epithelial cells”.
- the cell aggregate refers to a state in which the cells are in close contact, and may be a tissue or a cell aggregate prepared from discrete cells. Using tissue has the advantage that it is easy to obtain teeth with the correct cell arrangement and shape, but the amount available can be limited. Cell aggregates are preferable because they are relatively easy to obtain because cultured cells can also be used. According to the method of the present invention, it is possible to obtain a regenerative tooth having a correct cell arrangement and shape even if a cell aggregate is used.
- the mesenchymal cells and epithelial cells constituting the cell assembly may be derived from any tissue in the living body as long as regenerated teeth are generated from the reconstructed tooth germ formed using them.
- at least one of them is derived from a tooth germ from the viewpoint of effectively forming a tooth having a specific structure and direction by reproducing cell arrangement in a living body.
- the mesenchymal cells and epithelial cells are all derived from tooth germ.
- the tooth germ is preferably one in the saddle stage to the cap stage.
- mesenchymal cells derived from other than the tooth germ cells derived from other mesenchymal tissues in the living body can also be used.
- bone marrow cells and mesenchymal cells that do not contain blood cells more preferably oral mesenchymal cells, bone marrow cells in the jawbone, mesenchymal cells derived from head neural crest cells, and these mesenchymal cells
- mesenchymal progenitor cells and stem cells that can be differentiated into systemic cells.
- Patent Document 3 An example of using an amnion-derived cell as a mesenchymal cell is described in Patent Document 3, and an example of using a cell in which differentiation of a totipotent stem cell is induced is described in Patent Document 4, the disclosure of which is generally incorporated herein by reference. Incorporated.
- epithelial cells derived from other than tooth germ cells derived from other epithelial tissues in the living body can also be used.
- epithelial cells of the skin and oral mucosa and gingiva more preferably immature epithelial progenitor cells that can differentiate into differentiated, eg, keratinized or keratinized epithelial cells, such as skin and mucous membranes,
- differentiated eg, keratinized or keratinized epithelial cells
- non-keratinized epithelial cells and stem cells thereof for example, non-keratinized epithelial cells and stem cells thereof.
- Tooth germs and other tissues include mammalian primates (eg, humans, monkeys, etc.), ungulates (eg, pigs, cows, horses, etc.), small mammalian rodents (eg, mice, rats, rabbits, etc.) In addition, it can be collected from jawbones of various animals such as dogs and cats.
- the conditions usually used for the collection of tissues may be applied as they are, and they may be taken out in a sterile state and stored in an appropriate preservation solution.
- Examples of human tooth germs include fetal tooth germs as well as third molars, so-called wisdom tooth germs, but it is preferable to use wisdom tooth germs from the viewpoint of use of autologous tissue. In the case of mice, it is preferable to use tooth embryos with a fetal age of 10 to 16 days.
- Preparation of mesenchymal cells and epithelial cells from tooth germ is performed by first separating tooth germ isolated from surrounding tissue into tooth germ mesenchymal tissue and tooth germ epithelial tissue according to the shape.
- an enzyme may be used for easy separation. Examples of the enzyme include dispase, collagenase, trypsin and the like.
- the cell aggregate in the present invention means an aggregate of cells derived from mesenchymal tissue or epithelial tissue, a cell obtained by dispersing mesenchymal tissue or epithelial tissue apart, or the primary or subculture of the cell. It can be prepared by aggregating cells obtained by culture.
- the culture medium used for the culture is generally a medium used for culturing animal cells, such as Dulbecco. Modified Eagle's medium (DMEM) or the like can be used. Serum for promoting cell growth may be added, or as a substitute for serum, cell growth factors such as FGF, EGF, and PDGF, and known serum components such as transferrin may be added.
- DMEM Modified Eagle's medium
- concentration at the time of adding serum can be suitably changed according to the culture state at that time, it can usually be about 10%.
- normal culture conditions for example, culture in an incubator with a temperature of about 37 ° C. and a concentration of 5% CO 2 are applied.
- what added antibiotics, such as streptomycin, may be used suitably.
- the cell suspension may be centrifuged.
- the cell aggregates of mesenchymal cells and epithelial cells are preferably kept in a high density state so as to ensure cell interaction when they are brought into close contact.
- the high density state means that it is equivalent to the density at the time of composing the tissue. For example, 5 ⁇ 10 7 pieces / ml to 1 ⁇ 10 9 pieces / ml, preferably 1 ⁇ 10 8 pieces / ml 1 ⁇ 10 9 pieces / ml, most preferably 2 ⁇ 10 8 pieces / ml to 8 ⁇ 10 8 pieces / ml.
- the method for increasing the density of the cell aggregate is not particularly limited, and for example, it can be performed by a method in which cells are aggregated and precipitated by centrifugation. Centrifugation is preferable because it can be easily densified without impairing cell activity. Centrifugation may be performed at a rotational speed that gives a centrifugal force of 300 ⁇ g to 1200 ⁇ g, preferably 500 ⁇ g to 1000 ⁇ g, for 3 minutes to 10 minutes. Centrifugation lower than 300 ⁇ g tends to prevent the cell density from becoming sufficiently high, while centrifugation higher than 1200 ⁇ g can damage cells.
- the cell suspension When preparing high-density cell agglomerates by centrifugation, the cell suspension is usually prepared in a tube or other container used to centrifuge cells, and then centrifuged to obtain a precipitate. The supernatant may be removed as much as possible while leaving the cells. At this time, it is preferable that components other than the target cell (for example, a culture solution, a buffer solution, etc.) are equal to or less than the volume of the cell, and most preferable that the component other than the target cell is not included. If such a high-density cell aggregate is brought into close contact within the support carrier by the method described later, the cells come into close contact with each other, and cell-cell interactions are effectively exhibited.
- components other than the target cell for example, a culture solution, a buffer solution, etc.
- the support carrier used in the present invention may be any support carrier capable of culturing cells therein, and is preferably a mixture with the above medium.
- the material of the support carrier is not particularly limited.
- collagen, agarose gel, carboxymethylcellulose, gelatin, agar, hydrogel, cell matrix (trade name), meviol gel (trade name), matrigel (trade name), elastin, fibrin examples include laminin, extracellular matrix mixture, polyglycolic acid (PGA), polylactic acid (PLA), and lactic acid / glycolic acid copolymer (PLGA).
- These support carriers only need to have a hardness that can maintain the arrangement position when the cell aggregate is arranged inside, and examples thereof include gel, fiber, and solid. it can.
- the hardness capable of maintaining the position of the cells may be, for example, a hardness that can be adapted to three-dimensional culture, that is, a hardness that can maintain the arrangement of the cells and does not inhibit the enlargement due to proliferation. Can be easily determined.
- the support carrier used in the present invention has a holding force capable of holding the close contact state of the cell aggregate without the cells being dispersed.
- the close contact state means that the above-described high-density mesenchymal cell and epithelial cell aggregates maintain the same high density near the contact surface between mesenchymal cells and epithelial cells. Means the state.
- the support carrier capable of maintaining the close contact state is a final concentration of 2 mg / ml to 3 mg / ml, that is, a method based on JIS-K6503-1996 (press down 4 mm with a 12.7 mm diameter plunger.
- support carriers are also preferably used as the support carrier of the present invention if they have the same strength by the same evaluation method. Moreover, you may obtain the support carrier of the hardness corresponding to the target jelly strength by mixing 1 type or multiple types of support carriers.
- the method of disposing the first and second cell aggregates in the support carrier is not particularly limited.
- the cell aggregate is a cell aggregate
- the precipitate obtained by the above-mentioned centrifugation is collected with a microsyringe or the like. It can be placed in a support carrier.
- the cell aggregate is a tissue, it can be placed at any position in the support carrier using the tip of a syringe needle or the like.
- the method for arranging the first and second cell aggregates in close contact with the support carrier is not particularly limited.
- the other cell aggregate is By arranging so as to press against it, both can be brought into close contact with each other. More specifically, one cell aggregate can be pressed against the other cell aggregate by appropriately changing the position of the tip of the syringe needle in the support carrier.
- an epithelial tissue or mesenchymal tissue is used as a cell aggregate, the surface of the original tooth germ in contact with the mesenchymal tissue or epithelial tissue is used as the other cell aggregate. It is preferable to arrange so that it contacts. It is also preferable to provide a step of solidifying the support carrier after the placement.
- a cell can further aggregate and it can be set as a higher density state.
- a cell can be solidified by allowing it to stand for several minutes to several tens of minutes at the culture temperature. At this time, the smaller the components other than the cells in the cell aggregate, the higher the density state is realized.
- the step of culturing the first and second cell aggregates inside the support carrier (hereinafter sometimes referred to as“ culturing step ”) is described in, for example, Patent Documents 1 to 5. The disclosure of which is incorporated herein by reference in its entirety.
- the culture period varies depending on the number of cells arranged in the support carrier, the state of the cell aggregate, the culture conditions, the animal species, etc., and can be appropriately selected by those skilled in the art.
- it is preferably cultured for at least one day, and more preferably three days or more.
- the formation of reconstructed tooth germs can be further promoted, such as the accumulation of dentin and enamel, the formation of crowns, and the formation of roots.
- the culture may be performed for 6 days or more, 30 days or more, 50 days or more, 100 days or more, or 300 days or more, and the medium and culture conditions may be changed during the culture. it can.
- the support carrier enclosing the first and second cell aggregates may be cultured alone, or may be cultured in the presence of other animal cells or the like.
- the culture conditions can be those used for culturing general animal cells.
- mammal-derived serum may be added to the culture, and various cellular factors known to be effective for the growth and differentiation of these cells may be added. Examples of such cellular factors include FGF and BMP.
- organ culture generally, a porous membrane is floated on a medium suitable for the growth of animal cells, and a support carrier containing the first and second cell aggregates is placed on the membrane and cultured.
- the porous membrane used here preferably has a large number of pores of about 0.3 to 5 ⁇ m, and examples thereof include a cell culture insert (trade name) and an isopore filter (trade name).
- teeth having a specific cell arrangement can be formed at an early stage due to the action of various cytokines from the animal cells.
- it may be cultivated in vitro using isolated cells or cultured cells, and the supporting carrier enclosing the first and second cell aggregates may be in vivo. It may be transplanted and cultured.
- culture carried out by transplantation in a living body is preferable because formation of teeth and / or periodontium can be performed at an early stage.
- the animal used as the living body include mammals, preferably non-human mammals such as pigs and mice, and the same species as the tooth germ tissue is particularly preferable.
- the animal that has been modified to be immunodeficient it is preferable to use an animal that has been modified to be immunodeficient.
- Suitable biological sites for in vivo growth are preferably under the renal capsule, mesentery, subcutaneous, etc. in order to generate organs and tissues of animal cells as normally as possible.
- the culture period after transplantation varies depending on the size of the teeth at the time of transplantation and the size of the teeth to be generated, but can be generally 3 days to 400 days.
- the culture period after transplantation varies depending on the size of the teeth at the time of transplantation and the size of the teeth to be generated, but can be generally 3 days to 400 days.
- it is preferably about 7 to 60 days.
- pre-culture When transplanted and cultured in a living body, pre-culture may be performed in vitro. Pre-culture can strengthen the bond between cells and the bond between the first and second cell aggregates, thereby further strengthening the cell-cell interaction. As a result, the interaction between cells can be strengthened, and the whole growth period can be shortened.
- the period of pre-culture is not particularly limited, but for example, by setting it to 3 days or more, preferably 7 days or more, it is possible to grow from a tooth germ to a tooth bud, so that the culture period after transplantation can be shortened.
- the organ culture is preferably performed for 1 to 7 days.
- Teeth obtained by the above-described placement and culturing steps have a tooth-specific cell arrangement (structure) of dentin on the inside and enamel on the outside, preferably the tooth tip (crown) and root are correct It also has directionality at the position, and sufficiently functions as a tooth. Therefore, it can be widely used as a substitute for teeth. It can also be used as a useful research tool for research to elucidate the developmental process of teeth.
- periodontal tissues such as alveolar bone and periodontal ligament that support and fix the teeth on the jawbone can be formed.
- the utility of the teeth after transplantation can be further enhanced. It is also possible to use only the periodontal tissue separately.
- the present invention adjusts the unidirectional length of the obtained tooth by adjusting the contact length of the first cell aggregate and the second cell aggregate in one predetermined direction in the arrangement step. It is characterized by.
- the contact length can be adjusted by the size, shape, position, etc. of the cell aggregate disposed in the support carrier. For example, when a cell aggregate is placed in a support carrier with a microsyringe, the diameter of the needle of the syringe is changed, or the tip of the needle is moved in the support carrier while extruding the cell aggregate.
- the size, shape, and position of the body can be appropriately changed, and the contact length in any direction between the two cell aggregates can be adjusted.
- mesenchymal tissue and epithelial tissue as a cell aggregate, adjust the shape and size of the tissue before placing it in the support carrier, and adjust the position where it is placed in the support carrier. By this, the contact length of the two cell aggregates can be adjusted.
- a plurality of components in which the first and second cell aggregates are placed in close contact with each other in the support carrier are prepared, the contact lengths of both cell aggregates are measured, and the measured contact length is the target length.
- a reconstructed tooth germ having a desired contact length can also be obtained by selecting a construct that is, and such a step is also included in “control of contact length” in the present invention.
- the contact length can be measured, for example, by observing with a phase contrast microscope.
- the length in one direction of the tooth means the width of the crown in an arbitrary direction.
- Direction) width is preferably employed, but is not limited thereto. A person skilled in the art can appropriately measure the width of the crown.
- the contact length is usually the same as that of the generated tooth crown. The length of the direction is adjusted.
- One aspect of a method for producing a tooth having a desired length in one direction is a structure in which a first cell aggregate and a second cell aggregate are placed in close contact with each other inside a support carrier. Changing the contact length in one predetermined direction between the first cell aggregate and the second cell aggregate to produce a plurality of types, and culturing the plurality of types of structures in the support carrier, respectively.
- a step of measuring a length in one direction of the tooth manufactured in the step, obtaining a correlation between the contact length and the length in one direction of the tooth, and a desired length in one direction based on the correlation Calculating a contact length between the first cell aggregate and the second cell aggregate necessary for obtaining a tooth having a thickness.
- the step of producing a plurality of types by modification and culturing the plurality of types of constructs inside the support carrier can be performed according to the description of the arrangement step, the culture step, and the method for adjusting the contact length described above.
- the correlation between the contact length and the length in one direction of the tooth can be obtained according to a known method or a similar method. For example, various graphs representing the relationship between the contact length and the tooth length (crown width) may be created, or an expression representing the relationship between the contact length and the tooth length may be created. Alternatively, the contact length distribution giving a certain tooth length may be examined to determine the range of the contact length giving a predetermined tooth size.
- the step of calculating the contact length between the first cell aggregate and the second cell aggregate necessary for obtaining a tooth having a desired length in one direction based on the obtained correlation is, for example, the above formula or It can be determined by inserting the desired tooth size into the graph.
- the first cell aggregate and the second cell aggregate are placed in the support carrier under substantially the same conditions as in the arrangement step for the plurality of components.
- the teeth having a desired size can be obtained by arranging them so as to be in close contact with each other and culturing them under substantially the same conditions as the culture conditions for the plurality of components.
- substantially the same condition means a condition where teeth having the same length in one direction can be obtained with good reproducibility when the contact length is the same.
- the type of support carrier for example, the type of support carrier, temperature, medium composition
- the culture conditions such as the place of culture (organ culture or in vivo culture) are preferably the same.
- the contact length of the portion that is supposed to have a desired length in the tooth that will be generated in the future is calculated as described above. It is preferable to set the length as described above.
- a person skilled in the art can appropriately determine which direction of the contact surfaces of the first and second cell aggregates corresponds to which direction in the future tooth.
- the contact surface of the first and second cell aggregates is made to be substantially rectangular, and the longer one May be arranged so that the side of the contact has a contact length giving a length A in the near-centrifugal direction.
- another aspect of the method for producing a tooth having a desired length in one direction is an outline in which either a mesenchymal cell or an epithelial cell is formed inside a support carrier.
- a step of producing a plurality of types by changing the contact length in the axial direction, a step of culturing a plurality of types of components in the support carrier, and a length of the tooth produced in the previous step in the one direction A step of measuring and obtaining a correlation between the length and the contact length, and based on the correlation, the first and second cell aggregates necessary for obtaining a tooth having a desired length in one direction Calculating a contact length.
- the step of producing a plurality of types of constructs having different contact lengths and the subsequent culturing step can be performed according to the description of the above-described arrangement step, culturing step, contact length adjusting method, and the like.
- the correlation between the contact length and the length in one direction of the tooth can be expressed by an equation, a graph, or the like, and the range of the contact length that gives a predetermined tooth length can also be determined.
- the contact lengths of the first and second cell aggregates necessary for obtaining a tooth having a desired length in one direction can be obtained.
- substantially columnar means an elongated shape extending in one direction such as a substantially columnar shape or a substantially prismatic shape.
- the tissue may be formed into a substantially columnar shape and then placed in the support carrier.
- the cell aggregate is a cell aggregate, for example, the tip of the needle of the microsyringe is disposed in the support carrier, and the cells are pushed out while moving the tip of the needle, thereby forming a substantially cylindrical shape in the support carrier. Cell aggregates can be placed.
- the substantially columnar first cell aggregate and the second cell aggregate are formed in the support carrier under substantially the same conditions as the arrangement step for the plurality of components.
- a tooth having a desired length in one direction can be obtained by arranging the layers so as to be in close contact with the contact length and culturing under substantially the same conditions as the culture conditions for the plurality of components.
- Another aspect of the method for producing a tooth according to the present invention is a method for producing a molar tooth having a desired length in the near-distal direction and / or the buccal tongue direction, wherein a mesenchymal cell is formed inside the support carrier. And a columnar first cell assembly and a second cell assembly, each of which is configured by either one of the epithelial cells or the epithelial cells, in close contact with each other so that the axial directions of the columns are parallel to each other.
- a step of changing the contact length in the axial direction and / or the direction perpendicular to the axis of the first cell aggregate and the second cell aggregate to produce a plurality of types, and a plurality of types of components inside the support carrier And measuring the length of the molars manufactured in the previous step in the near distal direction and / or the buccal tongue direction, the axial contact length and the length of the molar in the near distal direction, and / or Determining the correlation between the contact length in the direction perpendicular to the axis and the length in the buccal tongue direction of the molar.
- the width of the crown in the near-distal direction is controlled by controlling the contact length in the axial direction. It is possible to control the width of the crown in the buccal tongue direction by controlling the contact length in the direction perpendicular to the axis.
- the contact length in the axial direction and the contact length perpendicular to the axis may be changed by any method.
- the length and diameter of the columnar cell aggregate, the distance between the axes of both cell aggregates Etc. can be performed by changing the above.
- the cell assembly is a tissue
- the axial contact length is perpendicular to the axis by shaping to the desired diameter and length and adjusting the position within the support carrier prior to placement in the support carrier.
- the contact length in the direction can be changed.
- the diameter of the cell aggregate can be changed by changing the diameter of the needle
- the axial length of the cell aggregate can be changed by changing the distance to move the tip of the needle within the support carrier.
- the distance between the axes of both cell aggregates can be changed by adjusting the position where another cell aggregate is arranged. By placing the shafts closer together and pressing them together, the contact surface of the cell aggregate is generally larger, thereby changing the axial contact length and the contact length perpendicular to the shaft.
- the first substantially columnar shape is formed in the support carrier under substantially the same conditions as the arrangement step for the plurality of components.
- the cell aggregate and the second cell aggregate are arranged in close contact so as to have the contact length, and cultured under substantially the same conditions as the culture conditions for the plurality of constructs, A molar having a desired length in the buccal tongue direction can be obtained.
- the first and second cell aggregates are substantially columnar and the axis of each column
- the first and second cell aggregates are arranged in close contact so that their directions are parallel, and the axial contact length is ⁇ 25%, preferably ⁇ 10% of the desired length.
- the present inventors placed a substantially cylindrical mesenchymal cell aggregate and an epithelial cell aggregate in close contact so that the axial direction of the cylinder is parallel, in the support carrier, It has been found that the length of the teeth to be produced depends on the axial contact length of the cylinder. Furthermore, it has been found that by setting the contact length to about ⁇ 25%, preferably about ⁇ 10% of the desired length, it is possible to obtain a tooth having a desired crown width in the near-distal direction. .
- the first and second cell aggregates are substantially columnar, and the axial contact length is 0.75 X ⁇ m to
- the thickness may be about 1.25 X ⁇ m, preferably about 0.9 X ⁇ m to 1.1 X ⁇ m.
- the method for controlling the contact length between the substantially columnar first and second cell aggregates can be performed according to the method described above.
- a plurality of constructs in which the substantially columnar first and second cell aggregates are arranged in close contact with each other in a support carrier are prepared,
- the contact length in the axial direction of both cell aggregates may be measured, a construct having the measured contact length of the target length may be selected, and the construct may be subjected to the culturing step.
- the contact length can be measured, for example, by observing with a phase contrast microscope.
- the method for producing a single tooth according to the present invention includes a first cell aggregate and a second cell, each of which is constituted by either a mesenchymal cell or an epithelial cell inside a support carrier.
- the length is not more than a predetermined value.
- the inventors of the present invention have sometimes obtained an unintended tooth aggregate in the method of Patent Document 1, but by controlling the contact length of the first and second cell aggregates, the size of the tooth is controlled. It was found that a single tooth can be obtained with good reproducibility by controlling. This is considered to be because one or more first enamel nodules that define the number of teeth formed in the tooth germ are not formed within a predetermined distance. If a single tooth can be produced, it is useful because the resulting tooth does not need to be separated prior to implantation.
- the “maximum contact length” is the longest of arbitrary straight lines included in the contact surfaces of the first cell aggregate and the second cell aggregate. This means the length of the straight line.
- the contact length of the first and second cell aggregates is preferably 3000 ⁇ m or less, and preferably 1500 ⁇ m or less. Further preferred.
- the contact length is preferably 100 ⁇ m or more, and more preferably 200 ⁇ m or more.
- the contact length can be controlled in accordance with the above description.
- a single tooth refers to a configuration that can be transplanted into a living body as a single tooth, and includes a series of crowns, roots, dental pulp, and dentin, and a root bone around each tooth. And alveolar bone is formed.
- a person skilled in the art can easily identify the number of teeth produced.
- the method for repairing a tooth defect in the oral cavity according to the present invention includes a step of transplanting the tooth manufactured by the method for manufacturing a tooth according to the present invention into the defect. According to this method, it is possible to manufacture and transplant a tooth that matches the size of the defect.
- any stage of tooth germ or tooth produced by the method according to the present invention can be transplanted.
- the formation of a crown is already recognized, it is preferable to arrange the crown so that it is inside the oral cavity.
- the epithelial cell layer corresponding to the crown or the epithelial cell layer of the reconstructed tooth germ so as to be inside the oral cavity.
- the reconstructed tooth germ so that the open part of the epithelial / mesenchymal cell layer is opposite to the inside of the oral cavity.
- the missing part means a part provided in the gingiva by tooth extraction or the like, and the shape is not particularly limited. As long as the regenerated tooth germ or tooth can be embedded, the location of the defect and the type of target tooth are not particularly limited.
- the defect is usually located in the jaw bone, the alveolar bone of the oral cavity, or the like.
- the GTR method guided tissue regeneration
- Bone regeneration may be performed by a method to increase bone mass. After placing the tooth germ or tooth in the hole, it is preferable to perform suturing or the like according to a normal process.
- the transplant target is preferably the same species as the animal from which the tooth germ used for the production of the tooth is removed, and the same individual as the individual from which the tooth germ has been removed. More preferably. Examples of animals include mammals including humans, cows, horses, pigs, dogs, cats, mice and the like. A non-human mammal is also preferred.
- the present invention also provides a method for designing a method for producing a tooth having a desired length in one direction under predetermined conditions.
- the predetermined condition means a condition in which a support carrier, a culture medium, a culture method and the like are specified.
- the desired length is achieved in one direction.
- the first cell aggregate and the second cell aggregate each of which is constituted by either a mesenchymal cell or an epithelial cell, are brought into close contact with each other inside the support carrier.
- the method for determining the contact length is such that the first cell aggregate and the second cell aggregate, each of which is constituted by either a mesenchymal cell or an epithelial cell, are closely attached inside the support carrier.
- Forming a plurality of types of the structures arranged by changing the contact length in one predetermined direction between the first cell aggregate and the second cell aggregate, and the plurality of types of the structures A step of culturing each inside the support carrier, a step of measuring the length of one direction of the tooth manufactured in the previous step, and obtaining a correlation between the contact length and the size of the tooth, and based on the correlation Calculating a contact length of the first and second cell aggregates necessary for obtaining a tooth having a desired length in one direction.
- the present invention also provides a method for designing a method for producing a single tooth under predetermined conditions.
- the first cell aggregate and the second cell aggregate each constituted by either a mesenchymal cell or an epithelial cell are arranged in close contact with each other inside the support carrier.
- the method for determining the maximum contact length is such that the first cell aggregate and the second cell aggregate, each of which is composed of either a mesenchymal cell or an epithelial cell, are closely attached to the inside of the support carrier.
- a plurality of types of the structures arranged by changing the maximum contact length of the first cell aggregate and the second cell aggregate, and culturing the plurality of types of structures inside the support carrier. And measuring the number of teeth manufactured in the previous step and determining the maximum contact length of the first and second cell aggregates to obtain a single tooth.
- Embodiments of the present invention may be described with reference to schematic diagrams, but in the case of schematic diagrams, they may be exaggerated for clarity of explanation.
- terms such as first, second, etc. are used to represent various elements, it is understood that these elements should not be limited by those terms. These terms are only used to distinguish one element from another, for example, the first element is referred to as the second element, and similarly, the second element is the first element. Can be made without departing from the scope of the present invention.
- mesenchymal cells and epithelial cells may be derived from any tissue in the living body as long as regenerated teeth are generated from reconstructed tooth germs formed using them.
- at least one of them is derived from a tooth germ, more preferably both are derived from a tooth germ.
- tooth germ epithelial cell and tooth germ mesenchymal cell To reconstruct the tooth, the tooth germ was reconstructed. A mouse was used as an experimental model. Mandibular molar tooth germ tissue was excised from a fetal day 14.5 day old embryo of C57BL / 6N mice (purchased from Japan SLC) under a microscope by a conventional method.
- Mandibular molar tooth germ tissue was washed with Ca 2+ , Mg 2+ -free phosphate buffer (PBS (-)), and dispase (BD, Massachusetts, USA) with a final concentration of 50 U / mL was added to PBS (-) After being treated with the enzyme solution at room temperature for 2 minutes, it was washed 3 times with DMEM (Sigma, St. Louis, MO) supplemented with 10% FBS (Invitrogen, Carlsbad, Calif.).
- DNase I solution (Takara, Shiga, Japan) was added to a final concentration of 70 U / mL to disperse the tooth germ tissue, and the tooth germ epithelial tissue was surgically treated using a 25 G needle (Terumo, Tokyo, Japan). And tooth germ mesenchymal tissue were isolated. Tooth germ epithelial tissue was washed 3 times with PBS (-) and treated with enzyme solution in which collagenase I (Worthington, Lakewood, NJ) at a final concentration of 100 U / mL was dissolved in PBS (-) at 37 ° C for 30 minutes. Was repeated twice.
- the cells collected by precipitation by centrifugation were further treated with an enzyme solution in which Trypsin (Sigma) having a final concentration of 0.25% was dissolved in PBS ( ⁇ ) at 37 ° C. for 10 minutes. After washing the cells 3 times with 10% FBS (Invitrogen) -added DMEM (Sigma), add DNase I (Takara) solution with a final concentration of 70 U / mL to the cells, and separate the tooth germs separated by pipetting A suspension of epithelial cells was obtained.
- the tooth germ mesenchymal tissue was washed 3 times with PBS (-) and treated with enzyme solution in which collagenase I (Worthington) at a final concentration of 100 U / mL was dissolved in PBS (-) at 37 ° C for 20 minutes. Went. Furthermore, it was treated with PBS ( ⁇ ) containing 0.25% trypsin (Sigma) and 100 U / mL collagenase I (Worthington) for 10 minutes. 70 U / mL DNase I (Takara) was added to obtain a suspension of tooth germ mesenchymal cells separated by pipetting.
- tooth germ reconstruction was performed using the tooth germ epithelial cells and tooth germ mesenchymal cells prepared above. Place tooth germ epithelial cells or tooth germ mesenchymal cells suspended in DMEM (Sigma) supplemented with 10% FBS (Invitrogen) into a 1.5 mL microtube (Eppendorf, Hamburg, Germany) coated with silicone grease. Cells were collected as a precipitate by centrifugation at xg for 3 minutes. Remove the supernatant of the culture solution after centrifugation as much as possible, centrifuge again at 600 xg for 3 minutes, and observe the culture solution remaining around the cell pellet with a GELoader Tip 0.5-20 ⁇ L (eppendorf ) To completely remove.
- Tooth germ epithelial cells were arranged by the same method to form cell aggregates, and reconstructed tooth germs were prepared. Thereafter, the collagen gel drop was solidified by allowing it to stand at 37 ° C. for 20 minutes, thereby further strengthening the binding of the two cell aggregates.
- the solidified reconstructed tooth germ is placed on the membrane of the cell culture insert in a culture vessel set so that the cell culture insert (PET membrane with a pore size of 0.4 micron; BD) is in contact with DMEM (Sigma) supplemented with 10% FBS (Invitrogen) Then, organ culture was performed at 37 ° C., 95% RH, 5% CO 2 by a conventional method on a cell culture insert.
- the measurement site is indicated by an arrowhead in the photograph on the seventh day in FIG.
- the measurement results are shown in FIG.
- the contact length was 450 ⁇ m or less
- the width of the crown region was 366 ⁇ 103.1 ⁇ m
- 450 to 900 ⁇ m was 584.0 ⁇ 103.3 ⁇ m
- 900 to 1500 ⁇ m was 934.9 ⁇ 239.8 ⁇ m. From this, it was shown that the longer the contact length between the epithelial cell assembly and the mesenchymal cell assembly at the time of the formation of the reconstructed tooth germ, the more the regenerative tooth germ having a wider crown area is formed.
- FIG. 7 shows the width of the crown of the obtained tooth.
- FIG. 11 shows the width of the crown region of the regenerated tooth embryo
- FIG. 12 shows the width of the crown of the regenerated tooth
- FIG. 13 shows the number of tooth cusps in the regenerated tooth. Even when the number of cells was changed with the contact length within a certain range, there was no significant change in the morphology of the regenerated tooth embryo and the regenerated tooth.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Chemical & Material Sciences (AREA)
- Zoology (AREA)
- General Health & Medical Sciences (AREA)
- Epidemiology (AREA)
- Veterinary Medicine (AREA)
- Cell Biology (AREA)
- Public Health (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Animal Behavior & Ethology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Dermatology (AREA)
- Botany (AREA)
- Transplantation (AREA)
- Urology & Nephrology (AREA)
- Vascular Medicine (AREA)
- Organic Chemistry (AREA)
- Biotechnology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Genetics & Genomics (AREA)
- Wood Science & Technology (AREA)
- Rheumatology (AREA)
- General Engineering & Computer Science (AREA)
- Biochemistry (AREA)
- Microbiology (AREA)
- Dentistry (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Materials For Medical Uses (AREA)
Abstract
Description
歯は、胎児期の発生過程の誘導によって形成され、複数の細胞種によって構築された機能単位である。歯は、成体内の造血幹細胞や間葉系幹細胞のような幹細胞から細胞種が発生する幹細胞システムによって発生するのではないため、現在、再生医療によって進められている幹細胞の移入のみ(幹細胞移入療法)では歯を再生することはできない。歯の発生過程で特異的に発現する遺伝子を同定し、歯胚を人為的に誘導することによる歯の再生も検討されているが、遺伝子を特定しただけでは、歯の再生を完全に誘導することはできない。
また、発明者らの経験によれば、再生歯胚の大きさは種々の条件によって変化し得るものであり、細胞固有の「記憶」によって、再現性よく同じ大きさの歯が得られるものではない。
即ち、本発明は、
〔1〕一方向に所望の長さを有する歯を製造する方法であって、
支持担体の内部に、間葉系細胞と上皮系細胞のいずれか一方でそれぞれ構成された第1の細胞集合体と第2の細胞集合体を密着させて配置する工程と、
前記第1及び第2の細胞集合体を前記支持担体の内部で培養する工程と、を含み、
前記第1の細胞集合体と前記第2の細胞集合体の所定の一方向の接触長さを調節することによって歯の大きさを調節する、方法;
〔2〕一方向に所望の長さを有する歯を製造する方法であって、
支持担体の内部に、間葉系細胞と上皮系細胞のいずれか一方でそれぞれ構成された第1の細胞集合体と第2の細胞集合体を密着させて配置した構成体を、前記第1の細胞集合体と前記第2の細胞集合体の所定の一方向の接触長さを変更して複数種類作製する工程と、
前記複数種類の構成体を前記支持担体の内部でそれぞれ培養する工程と、
前工程で製造された歯の前記一方向の長さを測定し、該長さと前記接触長さとの相関関係を求める工程と、
前記相関関係に基づいて、一方向に所望の長さを有する歯を得るために必要な前記第1及び第2の細胞集合体の接触長さを算出する工程と、
支持担体の内部に、間葉系細胞と上皮系細胞のいずれか一方でそれぞれ構成された第1の細胞集合体と第2の細胞集合体を、前工程で算出された接触長さを有するように密着させて配置する工程と、
前記第1及び第2の細胞集合体を前記支持担体の内部で培養する工程と、を含む方法;
〔3〕一方向に所望の長さを有する歯を製造する方法であって、
支持担体の内部に、間葉系細胞と上皮系細胞のいずれか一方でそれぞれ構成された略柱状の第1の細胞集合体と第2の細胞集合体を、各柱の軸方向が平行になるように密着させて配置した構成体を、前記第1の細胞集合体と前記第2の細胞集合体の軸方向の接触長さを変更して複数種類作製する工程と、
前記複数種類の構成体を前記支持担体の内部でそれぞれ培養する工程と、
前工程で製造された歯の前記一方向の長さを測定し、該長さと前記接触長さとの相関関係を求める工程と、
前記相関関係に基づいて、一方向に所望の長さを有する歯を得るために必要な前記第1及び第2の細胞集合体の接触長さを算出する工程と、
支持担体の内部に、間葉系細胞と上皮系細胞のいずれか一方でそれぞれ構成された略柱状の第1の細胞集合体と第2の細胞集合体を、軸方向の接触長さが前工程で算出された長さとなるように、かつ、各柱の軸方向が平行になるように密着させて配置する工程と、
前記第1及び第2の細胞集合体を前記支持担体の内部で培養する工程と、を含む方法;
〔4〕近遠心方向及び/又は頬舌方向に所望の長さを有する臼歯を製造する方法であって、
支持担体の内部に、間葉系細胞と上皮系細胞のいずれか一方でそれぞれ構成された略柱状の第1の細胞集合体と第2の細胞集合体を、各柱の軸方向が平行になるように密着させて配置した構成体を、前記第1の細胞集合体と前記第2の細胞集合体の軸方向及び/又は軸と垂直方向の接触長さを変更して複数種類作製する工程と、
前記複数種類の構成体を前記支持担体の内部でそれぞれ培養する工程と、
前工程で製造された臼歯の近遠心方向及び/又は頬舌方向の長さを測定し、前記軸方向の接触長さと臼歯の近遠心方向の長さ、及び/又は、前記軸と垂直方向の接触長さと臼歯の頬舌方向の長さの相関関係を求める工程と、
前記相関関係に基づいて近遠心方向及び/又は頬舌方向に所望の長さを有する臼歯を得るために必要な前記第1の細胞集合体と第2の細胞集合体の軸方向及び/又は軸と垂直方向の接触長さを算出する工程と、
支持担体の内部に、間葉系細胞と上皮系細胞のいずれか一方でそれぞれ構成された略柱状の第1の細胞集合体と第2の細胞集合体を、軸方向及び/又は軸と垂直方向の接触長さが前工程で算出された長さとなるように、かつ、各柱の軸方向が平行となるように密着させて配置する工程と、
前記第1及び第2の細胞集合体を前記支持担体の内部で培養する工程と、を含む方法;
〔5〕一方向に所望の長さを有する歯を製造する方法であって、
支持担体の内部に、間葉系細胞と上皮系細胞のいずれか一方でそれぞれ構成された略柱状の第1の細胞集合体と第2の細胞集合体を、各柱の軸方向が平行になるように密着させ、該第1及び第2の柱状細胞集合体の軸方向の接触長さが前記所望の長さの約±25%となるように配置する工程と、
前記第1及び第2の細胞集合体を前記支持担体の内部で培養する工程と、を含む方法;
〔6〕前記支持担体内部に前記第1及び第2の細胞集合体を配置する工程は、
前記支持担体内部に前記第1及び第2の細胞集合体を配置した構成体を複数作製する工程と、
前記第1及び第2の細胞集合体の軸方向の接触長さを測定する工程と、
前記測定した接触長さが、前記所望の長さの約±25%である構成体を選択する工程と、を含む、上記〔5〕に記載の方法;
〔7〕単一の歯を製造する方法であって、
支持担体の内部に、間葉系細胞と上皮系細胞のいずれか一方でそれぞれ構成された第1の細胞集合体と第2の細胞集合体を密着させて配置する工程と、
前記第1及び第2の細胞集合体を前記支持担体の内部で培養する工程と、を含み、
前記第1の細胞集合体と前記第2の細胞集合体の最大接触長さを所定の値以下とする、方法;
〔8〕前記細胞集合体が、いずれも細胞凝集塊である、上記〔1〕から〔7〕のいずれか1項に記載の方法;
〔9〕前記間葉系細胞及び前記上皮系細胞の少なくとも一方が歯胚由来である、上記〔1〕から〔8〕のいずれか1項に記載の方法;
〔10〕口腔内の歯の欠損部の修復方法であって、
上記〔1〕から〔9〕のいずれか1項に記載の方法で得られた歯を、前記欠損部に移植する工程を含む、方法;
〔11〕上記〔1〕から〔9〕のいずれか1項に記載の方法で得られた歯を、2個以上に分割することなくそのまま前記欠損部に移植する、上記〔10〕に記載の方法;
〔12〕前記間葉系細胞及び前記上皮系細胞は、前記欠損部を有する個体由来である、上記〔10〕又は〔11〕に記載の方法;
〔13〕前記口腔内が、非ヒト哺乳動物の口腔内である、上記〔10〕から〔12〕のいずれか1項に記載の方法;
〔14〕所定の条件下で、一方向に所望の長さを有する歯を製造する方法を設計する方法であって、
上記設計方法は、支持担体の内部に、間葉系細胞と上皮系細胞のいずれか一方でそれぞれ構成された第1の細胞集合体と第2の細胞集合体を、密着させて配置する場合に、所望の大きさの歯を製造するために必要な両細胞集合体の所定の一方向の接触長さを決定する方法を含み、
さらに、前記接触長さを決定する方法は、
支持担体の内部に、間葉系細胞と上皮系細胞のいずれか一方でそれぞれ構成された第1の細胞集合体と第2の細胞集合体を密着させて配置した構成体を、前記第1の細胞集合体と前記第2の細胞集合体の所定の一方向の接触長さを変更して複数種類作製する工程と、
前記複数種類の構成体を前記支持担体の内部でそれぞれ培養する工程と、
前工程で製造された歯の前記一方向の長さを測定し、前記接触長さと歯の一方向の長さとの相関関係を求める工程と、
前記相関関係に基づいて、前記一方向に所望の長さを有する歯を得るために必要な前記第1及び第2の細胞集合体の接触長さを算出する工程と、を含む方法;
〔15〕所定の条件下で、単一の歯を製造する方法を設計する方法であって、
上記設計方法は、支持担体の内部に、間葉系細胞と上皮系細胞のいずれか一方でそれぞれ構成された第1の細胞集合体と第2の細胞集合体を、密着させて配置する場合に、単一の歯を製造するために必要な両細胞集合体の最大接触長さを決定する方法を含み、
さらに、前記最大接触長さを決定する方法は、
支持担体の内部に、間葉系細胞と上皮系細胞のいずれか一方でそれぞれ構成された第1の細胞集合体と第2の細胞集合体を密着させて配置した構成体を、前記第1の細胞集合体と前記第2の細胞集合体の最大接触長さを変更して複数種類作製する工程と、
前記複数種類の構成体を前記支持担体の内部でそれぞれ培養する工程と、
前工程で製造された歯の数を測定し、単一の歯を得るための前記第1及び第2の細胞集合体の最大接触長さを求める工程と、を含む方法;及び
〔16〕前記間葉系細胞及び前記上皮系細胞の少なくとも一方が歯胚由来である、上記〔14〕又は〔15〕に記載の方法、に関する。
特に、間葉系細胞集合体と上皮系細胞集合体を略柱状に形成した場合、その柱の軸方向の接触長さを制御することによって、当該軸方向に所望の長さを有する歯を形成することができる。
また、所望の大きさの歯を製造できる接触長さの決定を含む歯の製造方法の設計も本発明に従って行うことができる。
また、本発明の方法によれば、各細胞集合体に含まれる細胞数にかかわらず、所定の接触長さを得られれば所望の長さを有する歯を製造できることから、少ない細胞で効率よく所望の大きさを達成することが可能である。
さらに、本発明において、各細胞集合間の接触長さを所定の値以下とすることによって、複数の歯の集合体ではなく、単一の歯として得ることができるので、分離する工程を経ることなく、そのまま移植片として用いることが可能である。
また、本発明において「歯周組織」とは、歯の主として外層に形成された歯槽骨及び歯根膜をいう。歯槽骨及び歯根膜は、当業者が、組織染色などによって形態的に容易に特定することができる。
ここで、細胞集合体とは、細胞が密着した状態をいい、組織であっても、ばらばらの細胞から調製された細胞凝集塊であってもよい。組織を用いれば、細胞配置や形状の正しい歯が得られやすいという利点があるが、入手できる量に制約がある場合もある。細胞凝集塊は、培養細胞も用いることができるので、比較的入手しやすく好ましい。本発明に係る方法によれば、細胞凝集塊を用いても、細胞配置や形状の正しい再生歯を得ることができる。
また、配置した後に、支持担体を固化する工程を設けることも好ましい。これにより、細胞がさらに凝集して、より高密度な状態とすることができる。例えば、コラーゲンゲルの場合、培養温度下で数分~数十分間静置することによって固化することができる。このとき、細胞集合体内に細胞以外の成分が少なければ少ないほど、より高密度な状態が実現される。
培養期間を長くすることによって、象牙質及びエナメル質の蓄積、歯冠の形成、及び歯根の形成のように、再構成歯胚の形成をより進行させることができる。所望の状態を得るために、例えば、6日以上、30日以上、50日以上、100日以上、又は300日以上培養してもよく、培養の途中で、培地や培養条件を変更することもできる。
支持担体を単独で培養する場合、培養条件は、一般的な動物細胞の培養に用いられる条件とすることができる。また、培養には、哺乳動物由来の血清を添加してもよく、またこれらの細胞の増殖や分化に有効であることが知られている各種細胞因子を添加してもよい。このような細胞因子としては、FGF、BMP等を挙げることができる。
移植後の培養期間は、移植時の歯の大きさと発生させる歯の大きさによって異なるが、一般に3日~400日とすることができる。例えば、腎皮膜下に移植する場合、移植する歯胚の大きさと再生させる歯の大きさによっても異なるが、7日~60日程度が好ましい。
前培養の期間は特に限定されないが、例えば、3日以上、好ましくは7日以上とすることにより、歯胚から歯芽に成長させることができるので、移植後の培養期間を短縮することができる。例えば、腎皮膜下に移植して培養を行い、その前培養として器官培養を行う場合、当該器官培養は1~7日とすることが好ましい。
接触長さは、支持担体内に配置する細胞集合体の大きさ、形状、位置等によって調節することができる。例えば、支持担体内にマイクロシリンジで細胞凝集塊を配置する場合、シリンジの針の径を変更したり、細胞凝集塊を押し出しながら針の先端を支持担体内で移動させたりすることによって、細胞集合体の大きさ、形状、位置を適宜変更することができ、2つの細胞集合体の任意の方向の接触長さを調節できる。細胞集合体として間葉系組織と上皮系組織を用いる場合には、支持担体内に配置する前に当該組織の形状や大きさを調節し、これを支持担体内に配置する位置を調節することによって、2つの細胞集合体の接触長さを調節することができる。
また、支持担体内に第1及び第2の細胞集合体を配置する際には、将来発生する歯において所望の長さを有するべき部位となることが想定される部分の接触長さを上記算出された長さとすることが好ましい。第1及び第2の細胞集合体の接触面のいずれの方向が、将来発生する歯においていずれの方向になるかは、当業者が適宜決定することができる。例えば、近遠心方向の長さAが頬舌方向の長さBより長い臼歯を製造する際には、第1及び第2の細胞集合体の接触面が略長方形となるようにし、その長い方の辺が近遠心方向の長さAを与える接触長さとなるように配置すればよい。
また、軸方向に目的の長さを有する細胞集合体を用意するのではなく、支持担体内に略柱状の第1及び第2の細胞集合体を密接させて配置した構成体を複数作製し、両細胞集合体の軸方向の接触長さを測定し、測定した接触長さが目的の長さである構成体を選択し、当該構成体を培養工程に供してもよい。接触長さの測定は、例えば位相差顕微鏡で観察することによって行うことができる。
欠損部は、通常、顎骨、口腔の歯槽骨などに位置する。また歯の喪失に伴って歯槽骨量が低下している場合には、欠損部位に対してGTR法(guided tissue regeneration:組織再生誘導法)など、インプラントの埋設のために臨床で用いられる公知の方法により骨の再生を行って骨量を増加させてもよい。歯胚または歯を孔部へ配置した後は、通常の処理に従って、縫合等を行うことが好ましい。
本発明に係る上記設計方法は、支持担体の内部に、間葉系細胞と上皮系細胞のいずれか一方でそれぞれ構成された第1の細胞集合体と第2の細胞集合体を、密着させて配置する場合に、一方向に所望の長さを有する歯を製造するために必要な両細胞集合体の接触長さを決定する方法を含む。
ここで、接触長さを決定する方法は、支持担体の内部に、間葉系細胞と上皮系細胞のいずれか一方でそれぞれ構成された第1の細胞集合体と第2の細胞集合体を密着させて配置した構成体を、前記第1の細胞集合体と前記第2の細胞集合体の所定の一方向の接触長さを変更して複数種類作製する工程と、その複数種類の構成体を前記支持担体の内部でそれぞれ培養する工程と、前工程で製造された歯の一方向の長さを測定し、接触長さと歯の大きさとの相関関係を求める工程と、その相関関係に基づいて、一方向に所望の長さを有する歯を得るために必要な第1及び第2の細胞集合体の接触長さを算出する工程と、を含む。
本発明の上記設計方法は、支持担体の内部に、間葉系細胞と上皮系細胞のいずれか一方でそれぞれ構成された第1の細胞集合体と第2の細胞集合体を、密着させて配置する場合に、単一の歯を製造するために必要な両細胞集合体の最大接触長さを決定する方法を含む。
さらに、最大接触長さを決定する方法は、支持担体の内部に、間葉系細胞と上皮系細胞のいずれか一方でそれぞれ構成された第1の細胞集合体と第2の細胞集合体を密着させて配置した構成体を、第1の細胞集合体と第2の細胞集合体の最大接触長さを変更して複数種類作製する工程と、複数種類の構成体を支持担体の内部でそれぞれ培養する工程と、前工程で製造された歯の数を測定し、単一の歯を得るための前記第1及び第2の細胞集合体の最大接触長さを求める工程と、を含む。
また、本明細書において用いられる「含む」との用語は、文脈上明らかに異なる理解をすべき場合を除き、記述された事項(部材、ステップ、要素、数字など)が存在することを意図するものであり、それ以外の事項(部材、ステップ、要素、数字など)が存在することを排除しない。
異なる定義が無い限り、ここに用いられるすべての用語(技術用語及び科学用語を含む。)は、本発明が属する技術の当業者によって広く理解されるのと同じ意味を有する。ここに用いられる用語は、異なる定義が明示されていない限り、本明細書及び関連技術分野における意味と整合的な意味を有するものとして解釈されるべきであり、理想化され、又は、過度に形式的な意味において解釈されるべきではない。
本発明の実施態様は模式図を参照しつつ説明される場合があるが、模式図である場合、説明を明確にするために、誇張されて表現されている場合がある。
第一の、第二のなどの用語が種々の要素を表現するために用いられるが、これらの要素はそれらの用語によって限定されるべきではないことが理解される。これらの用語は一つの要素を他の要素と区別するためのみに用いられているのであり、 例えば、第一の要素を第二の要素と記し、同様に、第二の要素は第一の要素と記すことは、本発明の範囲を逸脱することなく可能である。
歯の形成を行うために歯胚の再構築を行った。実験モデルとしてマウスを用いた。
C57BL/6Nマウス(日本エスエルシーから購入)の胎齢14.5日の胎仔から下顎臼歯歯胚組織を顕微鏡下で常法により摘出した。下顎臼歯歯胚組織をCa2+,Mg2+不含リン酸緩衝液(PBS(-))で洗浄し、PBS(-)に最終濃度50U/mLのディスパーゼ(BD, Massachusetts, USA)を添加した酵素液で室温にて2分間処理した後、10%FBS(Invitrogen, Carlsbad, CA)を添加したDMEM(Sigma, St. Louis, MO)で3回洗浄した。さらにDNase I溶液 (Takara, Shiga, Japan)を最終濃度70U/mLになるよう添加し、歯胚組織を分散させ、25G注射針 (Terumo, Tokyo, Japan)を用いて外科的に歯胚上皮組織と歯胚間葉組織を分離した。
歯胚上皮組織は、PBS(-)で3回洗浄し、PBS(-)に最終濃度100U/mLのCollagenase I(Worthington, Lakewood, NJ)を溶解した酵素液で37℃にて30分間の処理を2回繰り返した。遠心分離によって沈殿回収した細胞を、さらにPBS(-)に最終濃度0.25%のTrypsin (Sigma)を溶解した酵素液で37℃、10分間処理した。10%FBS(Invitrogen)添加DMEM(Sigma)で、細胞を3回洗浄した後、細胞に最終濃度70U/mLのDNase I(Takara)溶液を添加して、ピペッティングによりばらばらに分離された歯胚上皮系細胞の懸濁液を得た。
一方、歯胚間葉組織は、PBS(-)で3回洗浄し、PBS(-)に最終濃度100U/mLのコラーゲナーゼI(Worthington)を溶解した酵素液で37℃にて20分間の処理を行った。さらに、0.25%のトリプシン(Sigma)と100U/mLのコラーゲナーゼI(Worthington)を含むPBS(-)で10分間処理した。70U/mLのDNase I(Takara)を添加して、ピペッティングによりばらばらに分離された歯胚間葉系細胞の懸濁液を得た。
次に、上記で調製された歯胚上皮系細胞及び歯胚間葉系細胞を用いて、歯胚再構築を行った。シリコングリースを塗布した1.5 mLマイクロチューブ (Eppendorf, Hamburg, Germany)に、10%FBS(Invitrogen) 添加DMEM(Sigma)で懸濁した歯胚上皮系細胞、あるいは歯胚間葉系細胞を入れ、600×gで3分間の遠心分離により細胞を沈殿として回収した。遠心後の培養液の上清をできる限り除去し、再度600×gで3分間の遠心操作を行い、実体顕微鏡で観察しながら細胞の沈殿周囲に残存する培養液をGELoader Tip 0.5-20μL(eppendorf)を用いて完全に除去した。
シリコングリースを塗布したペトリディッシュにCellmatrix type I-A (Nitta gelatin, Osaka, Japan) を30μL滴下して支持担体としてのコラーゲンゲルドロップを作製した。この溶液に、歯胚間葉系細胞の遠心後の沈殿を、ハミルトンシリンジ(7105KH PT-3, HAMILTON, Reno, NV)を用いて、定量的に配置して、円柱状の細胞集合体としての細胞凝集塊を作製した。次いで、先に作製した歯胚間葉系細胞の円柱状の細胞凝集塊と軸方向が平行になるように、且つ、お互いの側面が密着するように、歯胚間葉系細胞と等量の歯胚上皮系細胞を同様の方法により配置して細胞凝集塊とし、再構成歯胚を作製した。
その後、37℃にて20分間静置することでコラーゲンゲルドロップを固化させ、2つの細胞凝集塊の結合をより強固にした。固形化した再構成歯胚は、10%FBS(Invitrogen) 添加DMEM(Sigma)にセルカルチャーインサート(ポアサイズが0.4ミクロンのPETメンブレン;BD)が接するようにセットした培養容器のセルカルチャーインサートの膜上に移して、セルカルチャーインサート上での常法により37℃、95%RH、5%CO2にて器官培養を行った。
上皮系細胞と間葉系細胞のそれぞれの円柱状の細胞凝集塊が、それぞれ450μm以下、450μmから900μm、900μmから1500μmの長さで密接している3グループの再構成歯胚を作製して、器官培養により再生歯胚を形成させた(図1)。細胞凝集塊同士が密接している長さの測定は位相差顕微鏡で行った。
再生歯胚の歯冠領域の幅を解析するために、図2の矢印の頭で挟まれた将来歯冠になる歯冠領域の幅を、器官培養7日目の再生歯胚において位相差顕微鏡を用いて測定した。測定部位は、図1の7日目の写真にも矢頭で示している。
測定結果を図3に示す。接触長さが450μm以下のものは歯冠領域の幅が366±103.1μm、450μmから900μmのものは584.0±103.3μm、900μmから1500μmのものは934.9±239.8μmであった。これより、再構成歯胚の形成時の上皮系細胞集合体と間葉系細胞集合体の接触長さが長いほど、歯冠領域の幅が大きい再生歯胚が形成されることが示された。
また、図4は、接触長さと歯冠領域の幅の測定値の散布図であり、図中の直線は最小二乗法により線形近似したものである。直線を表す式は、y = 0.7114x + 133.95であった。
深麻酔下において8週齢C57BL/6マウスの、腎臓の上に位置する背中の毛を剃毛し、皮膚と腹膜を約1 cmほど切開してリングピンセット (Natsume, Tokyo, Japan)を用いて腎臓を引き出した。腎皮膜を剃刀 (Feather, Tokyo, Japan)を用いて 2~3 mmほど切開して、腎臓と腎皮膜の間に実施例(2)で示した接触長さの異なる3グループの再構成歯胚をコラーゲンゲルごと押し込み、腎臓を中に戻し、筋層と皮膚をそれぞれ縫合した。
腎皮膜下移植後21日目に再生歯を摘出した。摘出した再生歯を図6に示す。図6の矢印の頭で挟まれた部分を歯冠の幅として実体顕微鏡を用いて測定した。
測定結果を表1に示す。
また、上記測定結果を接触長さが450μm以下、450μmから900μm、900μmから1500μmのものに分類した場合に、得られた歯の歯冠の幅を図7に示す。接触長さが450μm以下のものは歯冠の幅が497±118.0μmであり、450μmから900μmのものは727.0±271.4μm、900μmから1500μmのものは1073.9±186.0μmであった。これより、再構成歯胚の形成時に上皮系細胞集合体と間葉系細胞集合体が密着した長さが長いほど、歯冠の幅が大きい再生歯が形成されることが明らかになった。
また、図8は、接触長さと歯冠の幅の測定値の散布図であり、図中の直線は最小二乗法により線形近似したものである。直線を表す式は、y = 0.7257x + 272.15であった。
実験動物用3DマイクロX線CT(RIGAKU,Tokyo,Japan)を用いて、電圧90.0 kv,電流150.0 A,10μm/Pixelにて、(4)に示す方法で発生させた再生歯を撮影した。結果を図9に示す。
次いで、i-View (RIGAKU,Tokyo,Japan)を用いて画像を解析し、再生歯の三次元画像を取得して、再生歯の歯尖の数を計測した。再構成歯胚の作製時における上皮系細胞と間葉系細胞の細胞凝集塊の接触長さと、腎皮膜下で発生した再生歯の歯尖の数をプロットして相関係数を算定すると、再構成時の接触長さと再生歯の歯尖の数の間には、強い相関関係があることが明らかとなった(R2=0.658)(図10)。この結果より、再構成時の上皮系細胞と間葉系細胞が接触長さが長いほど、歯尖の数が多い再生歯が形成されることが確認された。
細胞凝集塊同士の接触長さを300-500μmの範囲内とした。実施例(2)で用いた内径が0.330 mmのハミルトンシリンジ (7105KH PT-3, HAMILTON, Reno, NV)にて容積約0.05μlの細胞懸濁液を用いた細胞凝集体を作製し、内径が0.203 mmのハミルトンシリンジ (7002KH PT-3, Hamilton)にて容積約0.02μlの細胞懸濁液を用いた細胞凝集体を作製することによって、細胞凝集塊に用いる細胞数を変化させた再構成歯胚を作製した。この再構成歯胚から形成される再生歯胚、および再生歯の形態を、実施例(3)、(4)、(5)に示した方法によって解析した。
再生歯胚の歯冠領域の幅を図11に、再生歯の歯冠の幅を図12に、再生歯における歯尖の数を図13に示す。接触長さを一定範囲内として細胞数を変化させても再生歯胚および再生歯の形態に有意な変化は認められなかった。
Claims (16)
- 一方向に所望の長さを有する歯を製造する方法であって、
支持担体の内部に、間葉系細胞と上皮系細胞のいずれか一方でそれぞれ構成された第1の細胞集合体と第2の細胞集合体を密着させて配置する工程と、
前記第1及び第2の細胞集合体を前記支持担体の内部で培養する工程と、を含み、
前記第1の細胞集合体と前記第2の細胞集合体の所定の一方向の接触長さを調節することによって歯の大きさを調節する、方法。 - 一方向に所望の長さを有する歯を製造する方法であって、
支持担体の内部に、間葉系細胞と上皮系細胞のいずれか一方でそれぞれ構成された第1の細胞集合体と第2の細胞集合体を密着させて配置した構成体を、前記第1の細胞集合体と前記第2の細胞集合体の所定の一方向の接触長さを変更して複数種類作製する工程と、
前記複数種類の構成体を前記支持担体の内部でそれぞれ培養する工程と、
前工程で製造された歯の前記一方向の長さを測定し、該長さと前記接触長さとの相関関係を求める工程と、
前記相関関係に基づいて、一方向に所望の長さを有する歯を得るために必要な前記第1及び第2の細胞集合体の接触長さを算出する工程と、
支持担体の内部に、間葉系細胞と上皮系細胞のいずれか一方でそれぞれ構成された第1の細胞集合体と第2の細胞集合体を、前工程で算出された接触長さを有するように密着させて配置する工程と、
前記第1及び第2の細胞集合体を前記支持担体の内部で培養する工程と、を含む方法。 - 一方向に所望の長さを有する歯を製造する方法であって、
支持担体の内部に、間葉系細胞と上皮系細胞のいずれか一方でそれぞれ構成された略柱状の第1の細胞集合体と第2の細胞集合体を、各柱の軸方向が平行になるように密着させて配置した構成体を、前記第1の細胞集合体と前記第2の細胞集合体の軸方向の接触長さを変更して複数種類作製する工程と、
前記複数種類の構成体を前記支持担体の内部でそれぞれ培養する工程と、
前工程で製造された歯の前記一方向の長さを測定し、該長さと前記接触長さとの相関関係を求める工程と、
前記相関関係に基づいて、一方向に所望の長さを有する歯を得るために必要な前記第1及び第2の細胞集合体の接触長さを算出する工程と、
支持担体の内部に、間葉系細胞と上皮系細胞のいずれか一方でそれぞれ構成された略柱状の第1の細胞集合体と第2の細胞集合体を、軸方向の接触長さが前工程で算出された長さとなるように、かつ、各柱の軸方向が平行になるように密着させて配置する工程と、
前記第1及び第2の細胞集合体を前記支持担体の内部で培養する工程と、を含む方法。 - 近遠心方向及び/又は頬舌方向に所望の長さを有する臼歯を製造する方法であって、
支持担体の内部に、間葉系細胞と上皮系細胞のいずれか一方でそれぞれ構成された略柱状の第1の細胞集合体と第2の細胞集合体を、各柱の軸方向が平行になるように密着させて配置した構成体を、前記第1の細胞集合体と前記第2の細胞集合体の軸方向及び/又は軸と垂直方向の接触長さを変更して複数種類作製する工程と、
前記複数種類の構成体を前記支持担体の内部でそれぞれ培養する工程と、
前工程で製造された臼歯の近遠心方向及び/又は頬舌方向の長さを測定し、前記軸方向の接触長さと臼歯の近遠心方向の長さ、及び/又は、前記軸と垂直方向の接触長さと臼歯の頬舌方向の長さの相関関係を求める工程と、
前記相関関係に基づいて近遠心方向及び/又は頬舌方向に所望の長さを有する臼歯を得るために必要な前記第1の細胞集合体と第2の細胞集合体の軸方向及び/又は軸と垂直方向の接触長さを算出する工程と、
支持担体の内部に、間葉系細胞と上皮系細胞のいずれか一方でそれぞれ構成された略柱状の第1の細胞集合体と第2の細胞集合体を、軸方向及び/又は軸と垂直方向の接触長さが前工程で算出された長さとなるように、かつ、各柱の軸方向が平行となるように密着させて配置する工程と、
前記第1及び第2の細胞集合体を前記支持担体の内部で培養する工程と、を含む方法。 - 一方向に所望の長さを有する歯を製造する方法であって、
支持担体の内部に、間葉系細胞と上皮系細胞のいずれか一方でそれぞれ構成された略柱状の第1の細胞集合体と第2の細胞集合体を、各柱の軸方向が平行になるように密着させ、該第1及び第2の柱状細胞集合体の軸方向の接触長さが前記所望の長さの約±25%となるように配置する工程と、
前記第1及び第2の細胞集合体を前記支持担体の内部で培養する工程と、を含む方法。 - 前記支持担体内部に前記第1及び第2の細胞集合体を配置する工程は、
前記支持担体内部に前記第1及び第2の細胞集合体を配置した構成体を複数作製する工程と、
前記第1及び第2の細胞集合体の軸方向の接触長さを測定する工程と、
前記測定した接触長さが、前記所望の長さの約±25%である構成体を選択する工程と、を含む、請求項5に記載の方法。 - 単一の歯を製造する方法であって、
支持担体の内部に、間葉系細胞と上皮系細胞のいずれか一方でそれぞれ構成された第1の細胞集合体と第2の細胞集合体を密着させて配置する工程と、
前記第1及び第2の細胞集合体を前記支持担体の内部で培養する工程と、を含み、
前記第1の細胞集合体と前記第2の細胞集合体の最大接触長さを所定の値以下とする、方法。 - 前記細胞集合体が、いずれも細胞凝集塊である、請求項1から7のいずれか1項に記載の方法。
- 前記間葉系細胞及び前記上皮系細胞の少なくとも一方が歯胚由来である、請求項1から8のいずれか1項に記載の方法。
- 口腔内の歯の欠損部の修復方法であって、
請求項1から9のいずれか1項に記載の方法で得られた歯を、前記欠損部に移植する工程を含む、方法。 - 請求項1から9のいずれか1項に記載の方法で得られた歯を、2個以上に分割することなくそのまま前記欠損部に移植する、請求項10に記載の方法。
- 前記間葉系細胞及び前記上皮系細胞は、前記欠損部を有する個体由来である、請求項10又は11に記載の方法。
- 前記口腔内が、非ヒト哺乳動物の口腔内である、請求項10から12のいずれか1項に記載の方法。
- 所定の条件下で、一方向に所望の長さを有する歯を製造する方法を設計する方法であって、
上記設計方法は、支持担体の内部に、間葉系細胞と上皮系細胞のいずれか一方でそれぞれ構成された第1の細胞集合体と第2の細胞集合体を、密着させて配置する場合に、所望の大きさの歯を製造するために必要な両細胞集合体の所定の一方向の接触長さを決定する方法を含み、
さらに、前記接触長さを決定する方法は、
支持担体の内部に、間葉系細胞と上皮系細胞のいずれか一方でそれぞれ構成された第1の細胞集合体と第2の細胞集合体を密着させて配置した構成体を、前記第1の細胞集合体と前記第2の細胞集合体の所定の一方向の接触長さを変更して複数種類作製する工程と、
前記複数種類の構成体を前記支持担体の内部でそれぞれ培養する工程と、
前工程で製造された歯の前記一方向の長さを測定し、前記接触長さと歯の一方向の長さとの相関関係を求める工程と、
前記相関関係に基づいて、前記一方向に所望の長さを有する歯を得るために必要な前記第1及び第2の細胞集合体の接触長さを算出する工程と、を含む方法。 - 所定の条件下で、単一の歯を製造する方法を設計する方法であって、
上記設計方法は、支持担体の内部に、間葉系細胞と上皮系細胞のいずれか一方でそれぞれ構成された第1の細胞集合体と第2の細胞集合体を、密着させて配置する場合に、単一の歯を製造するために必要な両細胞集合体の最大接触長さを決定する方法を含み、
さらに、前記最大接触長さを決定する方法は、
支持担体の内部に、間葉系細胞と上皮系細胞のいずれか一方でそれぞれ構成された第1の細胞集合体と第2の細胞集合体を密着させて配置した構成体を、前記第1の細胞集合体と前記第2の細胞集合体の最大接触長さを変更して複数種類作製する工程と、
前記複数種類の構成体を前記支持担体の内部でそれぞれ培養する工程と、
前工程で製造された歯の数を測定し、単一の歯を得るための前記第1及び第2の細胞集合体の最大接触長さを求める工程と、を含む方法。 - 前記間葉系細胞及び前記上皮系細胞の少なくとも一方が歯胚由来である、請求項14又は15に記載の方法。
Priority Applications (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010548392A JP5492791B2 (ja) | 2009-01-28 | 2010-01-14 | 歯の製造方法 |
EP10735590.1A EP2392356A4 (en) | 2009-01-28 | 2010-01-14 | METHOD FOR THE PRODUCTION OF A TOOTH |
SG2011052008A SG173037A1 (en) | 2009-01-28 | 2010-01-14 | Method for producing tooth |
AU2010209265A AU2010209265B2 (en) | 2009-01-28 | 2010-01-14 | Method for producing tooth |
CN201080005943.3A CN102300592B (zh) | 2009-01-28 | 2010-01-14 | 牙齿的制造方法 |
US13/146,029 US8927284B2 (en) | 2009-01-28 | 2010-01-14 | Method for producing tooth |
RU2011135807/15A RU2523559C2 (ru) | 2009-01-28 | 2010-01-14 | Способ создания зуба |
CA2750072A CA2750072A1 (en) | 2009-01-28 | 2010-01-14 | Method for producing tooth |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009017387 | 2009-01-28 | ||
JP2009-017387 | 2009-01-28 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2010087118A1 true WO2010087118A1 (ja) | 2010-08-05 |
Family
ID=42395384
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2010/000180 WO2010087118A1 (ja) | 2009-01-28 | 2010-01-14 | 歯の製造方法 |
Country Status (11)
Country | Link |
---|---|
US (1) | US8927284B2 (ja) |
EP (1) | EP2392356A4 (ja) |
JP (1) | JP5492791B2 (ja) |
KR (1) | KR20110123248A (ja) |
CN (1) | CN102300592B (ja) |
AU (1) | AU2010209265B2 (ja) |
CA (1) | CA2750072A1 (ja) |
RU (1) | RU2523559C2 (ja) |
SG (1) | SG173037A1 (ja) |
TW (1) | TW201031386A (ja) |
WO (1) | WO2010087118A1 (ja) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6188578B2 (ja) * | 2012-02-01 | 2017-08-30 | 株式会社オーガンテクノロジーズ | 歯科用インプラントおよびその製造方法 |
RU2605630C1 (ru) * | 2015-11-10 | 2016-12-27 | Сергей Владимирович Сирак | Способ аутотрансплантации зуба с сохранением жизнеспособности его пульпы |
CN111197027A (zh) * | 2018-11-16 | 2020-05-26 | 中国科学院广州生物医药与健康研究院 | 分离牙胚单细胞的方法及应用 |
KR20240036890A (ko) * | 2022-09-14 | 2024-03-21 | 연세대학교 산학협력단 | 줄기세포의 경조직으로의 분화 방법 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2006129672A1 (ja) * | 2005-05-30 | 2006-12-07 | Tokyo University Of Science Educational Foundation Administrative Organization | 歯の製造方法、歯の集合体及び組織の製造方法 |
JP2008029756A (ja) | 2006-07-31 | 2008-02-14 | Tokyo Univ Of Science | 歯の製造方法 |
JP2008029757A (ja) | 2006-07-31 | 2008-02-14 | Tokyo Univ Of Science | 歯の製造方法 |
JP2008126005A (ja) * | 2006-11-24 | 2008-06-05 | Osaka Industrial Promotion Organization | 細胞組織体−ハイドロキシアパタイト複合体の安全な調製法 |
JP2008200033A (ja) | 2007-01-22 | 2008-09-04 | Tokyo Univ Of Science | 間葉系細胞の製造方法、歯の製造方法及び歯形成用間葉系細胞 |
JP2008206500A (ja) | 2007-02-28 | 2008-09-11 | Tokyo Univ Of Science | 歯の製造方法及びこれにより得られた歯 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3657413B2 (ja) | 1997-12-02 | 2005-06-08 | 慶彦 清水 | 人工歯及びその製造方法 |
AU2003243781A1 (en) * | 2002-06-24 | 2004-01-06 | Amniotech, Inc. | Amniotic membrane mediated delivery of bioactive molecules |
WO2005025605A1 (ja) * | 2003-09-09 | 2005-03-24 | Two Cells Co. Ltd. | 歯周病と歯髄疾患の治療剤と治療方法 |
RU2265445C1 (ru) * | 2004-05-14 | 2005-12-10 | ЗАО "РеМеТэкс" | Биотрансплантат, способ его получения (варианты) и способ лечения заболеваний пародонта |
US20060024249A1 (en) * | 2004-07-16 | 2006-02-02 | Yelick Pamela C | Methods and compositions for bioengineering a tooth |
-
2010
- 2010-01-14 CN CN201080005943.3A patent/CN102300592B/zh not_active Expired - Fee Related
- 2010-01-14 JP JP2010548392A patent/JP5492791B2/ja not_active Expired - Fee Related
- 2010-01-14 CA CA2750072A patent/CA2750072A1/en not_active Abandoned
- 2010-01-14 AU AU2010209265A patent/AU2010209265B2/en not_active Ceased
- 2010-01-14 SG SG2011052008A patent/SG173037A1/en unknown
- 2010-01-14 RU RU2011135807/15A patent/RU2523559C2/ru not_active IP Right Cessation
- 2010-01-14 KR KR1020117019698A patent/KR20110123248A/ko not_active Application Discontinuation
- 2010-01-14 WO PCT/JP2010/000180 patent/WO2010087118A1/ja active Application Filing
- 2010-01-14 US US13/146,029 patent/US8927284B2/en not_active Expired - Fee Related
- 2010-01-14 EP EP10735590.1A patent/EP2392356A4/en not_active Withdrawn
- 2010-01-25 TW TW099101966A patent/TW201031386A/zh unknown
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2006129672A1 (ja) * | 2005-05-30 | 2006-12-07 | Tokyo University Of Science Educational Foundation Administrative Organization | 歯の製造方法、歯の集合体及び組織の製造方法 |
JP2008029756A (ja) | 2006-07-31 | 2008-02-14 | Tokyo Univ Of Science | 歯の製造方法 |
JP2008029757A (ja) | 2006-07-31 | 2008-02-14 | Tokyo Univ Of Science | 歯の製造方法 |
JP2008126005A (ja) * | 2006-11-24 | 2008-06-05 | Osaka Industrial Promotion Organization | 細胞組織体−ハイドロキシアパタイト複合体の安全な調製法 |
JP2008200033A (ja) | 2007-01-22 | 2008-09-04 | Tokyo Univ Of Science | 間葉系細胞の製造方法、歯の製造方法及び歯形成用間葉系細胞 |
JP2008206500A (ja) | 2007-02-28 | 2008-09-11 | Tokyo Univ Of Science | 歯の製造方法及びこれにより得られた歯 |
Non-Patent Citations (2)
Title |
---|
HU ET AL., TISSUE ENGINEERING, vol. 12, no. 8, 2006, pages 2069 - 2075 |
See also references of EP2392356A4 * |
Also Published As
Publication number | Publication date |
---|---|
JPWO2010087118A1 (ja) | 2012-08-02 |
US20110306135A1 (en) | 2011-12-15 |
CA2750072A1 (en) | 2010-08-05 |
RU2523559C2 (ru) | 2014-07-20 |
CN102300592B (zh) | 2014-03-12 |
TW201031386A (en) | 2010-09-01 |
US8927284B2 (en) | 2015-01-06 |
SG173037A1 (en) | 2011-08-29 |
EP2392356A4 (en) | 2014-03-26 |
CN102300592A (zh) | 2011-12-28 |
JP5492791B2 (ja) | 2014-05-14 |
RU2011135807A (ru) | 2013-03-10 |
KR20110123248A (ko) | 2011-11-14 |
EP2392356A1 (en) | 2011-12-07 |
AU2010209265A1 (en) | 2011-08-04 |
AU2010209265B2 (en) | 2014-01-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4991531B2 (ja) | 歯の製造方法、歯の集合体及び組織の製造方法 | |
RU2462256C2 (ru) | Способ получения зуба и зуб, полученный указанным способом | |
JP5069572B2 (ja) | 間葉系細胞の製造方法、歯の製造方法及び歯形成用間葉系細胞 | |
JP4991203B2 (ja) | 歯の製造方法 | |
JP5868845B2 (ja) | 再生歯ユニットの移植による歯槽骨の回復方法 | |
JP5492791B2 (ja) | 歯の製造方法 | |
TW201014912A (en) | Method for repairing a lost portion of a tooth and method for preparing a repair material used in the same | |
JP4991204B2 (ja) | 歯の製造方法 | |
JP5868844B2 (ja) | 再生歯ユニットの製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201080005943.3 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10735590 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2010548392 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2010209265 Country of ref document: AU |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2750072 Country of ref document: CA |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2010209265 Country of ref document: AU Date of ref document: 20100114 Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 5996/CHENP/2011 Country of ref document: IN |
|
REEP | Request for entry into the european phase |
Ref document number: 2010735590 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2010735590 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 20117019698 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011135807 Country of ref document: RU |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13146029 Country of ref document: US |