WO2005025605A1 - 歯周病と歯髄疾患の治療剤と治療方法 - Google Patents

歯周病と歯髄疾患の治療剤と治療方法 Download PDF

Info

Publication number
WO2005025605A1
WO2005025605A1 PCT/JP2004/013023 JP2004013023W WO2005025605A1 WO 2005025605 A1 WO2005025605 A1 WO 2005025605A1 JP 2004013023 W JP2004013023 W JP 2004013023W WO 2005025605 A1 WO2005025605 A1 WO 2005025605A1
Authority
WO
WIPO (PCT)
Prior art keywords
cells
bdnf
expression level
periodontal
neurotrophic factor
Prior art date
Application number
PCT/JP2004/013023
Other languages
English (en)
French (fr)
Inventor
Hidemi Kurihara
Hiroyuki Kawaguchi
Katsuhiro Takeda
Hideki Shiba
Noriyoshi Mizuno
Hiroshi Yoshino
Naohiko Hasegawa
Hiroaki Shinohara
Original Assignee
Two Cells Co. Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Two Cells Co. Ltd. filed Critical Two Cells Co. Ltd.
Priority to CN2004800311946A priority Critical patent/CN1871024B/zh
Priority to US10/571,069 priority patent/US8158752B2/en
Priority to AU2004271843A priority patent/AU2004271843B2/en
Priority to EP04787706.3A priority patent/EP1671641B1/en
Priority to JP2005513867A priority patent/JP4589233B2/ja
Publication of WO2005025605A1 publication Critical patent/WO2005025605A1/ja
Priority to US13/412,503 priority patent/US8513191B2/en
Priority to US13/422,363 priority patent/US9089606B2/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • A61K45/06Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/17Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • A61K38/18Growth factors; Growth regulators
    • A61K38/185Nerve growth factor [NGF]; Brain derived neurotrophic factor [BDNF]; Ciliary neurotrophic factor [CNTF]; Glial derived neurotrophic factor [GDNF]; Neurotrophins, e.g. NT-3
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/02Stomatological preparations, e.g. drugs for caries, aphtae, periodontitis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • A61P19/04Drugs for skeletal disorders for non-specific disorders of the connective tissue
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • A61P19/08Drugs for skeletal disorders for bone diseases, e.g. rachitism, Paget's disease
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S530/00Chemistry: natural resins or derivatives; peptides or proteins; lignins or reaction products thereof
    • Y10S530/81Carrier - bound or immobilized peptides or proteins and the preparation thereof, e.g. biological cell or cell fragment as carrier
    • Y10S530/812Peptides or proteins is immobilized on, or in, an organic carrier

Definitions

  • the present invention relates to a therapeutic agent and a treatment method for periodontal disease and pulp disease, a transplant material for periodontal tissue regeneration, and a method for regenerating periodontal tissue.
  • Periodontal tissues composed of gingiva, alveolar bone, periodontal ligament (periodontal ligament), cementum, pulp, etc. are important tissues for implanting teeth and maintaining functions such as mastication and occlusion
  • the damage and destruction lead to tooth loss.
  • the periodontal disease which is said to have about 30 million patients in Japan, is a major cause of tooth loss due to the progress of disease and the damage and destruction of periodontal tissues.
  • Various methods have been tried to treat periodontal tissue, including damaged or destroyed pulp, including drug administration and surgery, but all drugs and treatment methods include damaged or destroyed pulp. The effect of regenerating periodontal tissue is not enough.
  • Neurotrophic factors include brain-derived neurotrophic factor (BDNF), nerve growth factor (NGF), neurotrophin 3 (BDNF), brain-derived neurotrophic factor (BDNF), nerve growth factor (NGF), neurotrophin 3 (BDNF), brain-derived neurotrophic factor (BDNF), nerve growth factor (NGF), neurotrophin 3 (BDNF), brain-derived neurotrophic factor (BDNF), nerve growth factor (NGF), neurotrophin 3 (BDNF), brain-derived neurotrophic factor (BDNF), nerve growth factor (NGF), neurotrophin 3 (BDNF), neurotrophin 3 (BDNF), brain-derived neurotrophic factor (BDNF), nerve growth factor (NGF), neurotrophin 3 (BDNF), neurotrophin 3 (BDNF), brain-derived neurotrophic factor (BDNF), nerve growth factor (NGF), neurotrophin 3 (BDNF), neurotrophin 3 (BDNF), brain-derived neurotrophic factor (BDNF), nerve growth factor (NGF), neurotrophin 3 (BDNF), neurotrophin 3 (BDNF), neurotrophin 3
  • Neurotrophin 3, NT-3), and-Eurotrophin 4/5 are involved in promoting differentiation, survival, regeneration and function of neurons.
  • BDNF and NT-4 / 5 specifically bind to a high-affinity receptor called TrkB (tropomyosin receptor kinase B) ⁇ NGF is TrkA, and NT-3 is TrkC.
  • TrkB tropomyosin receptor kinase B
  • BDNF, NGF, and NT-3 are neurotrophic factors mainly present in the brain.
  • BDNF and NGF are used in various disease model animals such as motor neuropathy model, Parkinson's disease model, and Alzheimer's disease model.
  • motor neuropathy model e.g., motor neuropathy model
  • Parkinson's disease model e.g., Alzheimer's disease model
  • BDNF is exercise 'amyotrophic lateral sclerosis (ALS) as a peripheral neurological disorder, peripheral neuropathy caused by diabetes and pharmacotherapy, etc.
  • central nervous system diseases e.g., Arno, Imah's disease, Parkinson's disease, Development as a therapeutic agent for retinal related diseases is expected.
  • An object of the present invention is to provide a therapeutic agent and a treatment method for periodontal disease and pulp disease, a transplant material for periodontal tissue regeneration, and a method for regenerating periodontal tissue.
  • the present inventors have promoted the proliferation of human periodontal ligament-derived fibroblasts and promoted mRNA expression of bone-related proteins.
  • the present inventors have learned that the regeneration of periodontal tissue is promoted by using the root branching lesion model of Inu, and thus the present invention has been completed.
  • a therapeutic agent for periodontal disease comprising a neurotrophic factor as an active ingredient is provided.
  • the therapeutic agent of the present invention preferably regenerates periodontal tissue.
  • the therapeutic agent of the present invention preferably regenerates cementum, periodontal ligament, alveolar bone or pulp.
  • the therapeutic agent of the present invention prevents entry of the gingival epithelium into the root apex direction.
  • the therapeutic agent of the present invention promotes the production of repaired dentin in the dental pulp cavity. Further, it is preferable to promote the addition of the repaired dentin to the inner wall of the pulp cavity.
  • the neurotrophic factor is preferably brain-derived neurotrophic factor, nerve growth factor, neurotrophin 3 or -eurotrophin 4/5.
  • a transplant material for periodontal tissue regeneration containing a neurotrophic factor is provided.
  • the transplant material of the present invention preferably regenerates cementum, periodontal ligament, alveolar bone or pulp.
  • transplant of the present invention promotes the production of repaired dentin in the dental pulp cavity. Further, it is preferable to promote the addition of the repaired dentin to the inner wall of the pulp cavity.
  • the neurotrophic factor is preferably brain-derived neurotrophic factor, nerve growth factor, neurotrophin 3 or -eurotrophin 4/5.
  • a method for regenerating periodontal tissue using a neurotrophic factor is provided.
  • the regeneration method of the present invention preferably regenerates periodontal tissue.
  • the regeneration method of the present invention preferably regenerates cementum, periodontal ligament, alveolar bone or pulp.
  • the regeneration method of the present invention prevents entry of the gingival epithelium in the root apex direction.
  • the neurotrophic factor is preferably brain-derived neurotrophic factor, nerve growth factor, neurotrophin 3 or -eurotrophin 4/5.
  • a method for treating periodontal disease comprising administering a therapeutically effective amount of a neurotrophic factor to a subject suffering from or susceptible to such a condition.
  • a treatment for periodontal disease is provided.
  • the treatment method of the present invention preferably regenerates periodontal tissue.
  • the treatment method of the present invention preferably regenerates cementum, periodontal ligament, alveolar bone or pulp.
  • the treatment method of the present invention prevents the entry of the gingival epithelium into the root apex direction.
  • the treatment method of the present invention promotes the production of repaired dentin in the dental pulp cavity.
  • the neurotrophic factor is a brain-derived neurotrophic factor or a nerve growth factor.
  • it is a child, neurotrophin 3 or -eurotrophin 4/5.
  • a neurotrophic factor for the manufacture of a medicament for use in the treatment of periodontal disease.
  • this drug regenerates cementum, periodontal ligament, alveolar bone or pulp, which is preferable to regenerate periodontal tissue. It is preferable that this drug prevents entry of the gingival epithelium into the root apex direction. It is preferred that this agent promotes the production of repaired dentin in the pulpal cavity. In addition, it is preferable to promote the addition of the repaired dentin to the inner wall of the pulp cavity.
  • the neurotrophic factor is brain-derived neurotrophic factor, nerve growth factor, neurotrophin 3 or -eurotrophin 4/5! /.
  • a restoration dentin formation promoter comprising a neurotrophic factor as an active ingredient.
  • the neurotrophic factor is brain-derived neurotrophic factor, nerve growth factor, neurotrophin 3 or -eurotrophin 4/5. It is preferred that the repaired dentin is added to the inner wall of the pulp cavity.
  • a method for treating a dental pulp disease which promotes the formation of a repaired dentin in a subject who suffers from! Therefore, there is provided a method for treating dental pulp disease comprising administering a therapeutically effective amount of a neurotrophic factor.
  • the neurotrophic factor is preferably brain-derived neurotrophic factor, nerve growth factor, neurotrophin 3 or -Eurotophine 4/5. It is preferred that the repaired dentin is added to the inner wall of the pulp cavity.
  • the use of a neurotrophic factor to produce a medicament for use in promoting the formation of repair dentin is provided.
  • the neurotrophic factor is brain-derived neurotrophic factor, nerve growth factor, neurotrophin 3 or -eurotrophin 4Z 5. It is preferred that the repaired dentin is added to the inner wall of the pulp cavity.
  • FIG. 1 is an electrophoretogram showing mRNA expression of BDNF and TrkB in HPL cells and human periodontal ligament. The leftmost lane of each electropherogram is a marker.
  • A shows expression of mRNA (613 bp) of dalyceraldehyde-3-phosphate dehydrogenase (GAPDH) in human periodontal ligament and HPL cells.
  • B shows BDNF mRNA (438 bp) in human periodontal ligament And TrkB mRNA (434bp) expression.
  • C shows mRNA expression of BDNF and TrkB in HPL cells.
  • FIG. 2A is an electrophoretogram and graph showing the relationship between the action time of BDNF and the expression level of ALPase mRNA (381 bp) in HPL cells. All HPL cells were treated with BDNF at a final concentration of 50 ng / ml. The leftmost lane of the electropherogram is a marker. The vertical axis of the graph shows the ratio of the amount of mRNA expression at each action time when the mRNA expression level at BDNF action time 0 is 1. The horizontal axis shows the action time of BDNF. The bar in each bar graph represents the range of mean standard deviation. * Indicates a statistically significant difference with p ⁇ 0.01 (t-test).
  • FIG. 2B is an electrophoretogram and graph showing the relationship between the BDNF action time and the expression level of OPN mRNA (532 bp) in HPL cells. All HPL cells were treated with BDNF at a final concentration of 50 ng / ml. The leftmost lane of the electropherogram is a marker. The vertical axis of the graph shows the ratio of the amount of mRNA expression at each action time when the mRNA expression level at BDNF action time 0 is 1. The horizontal axis shows the action time of BDNF. The bar in each bar graph represents the range of mean standard deviation. * Indicates a statistically significant difference with p ⁇ 0.01 (t-test).
  • FIG. 2C is an electrophoretogram and graph showing the relationship between the action time of BDNF and the expression level of BMP-2 mRNA (440 bp) in HPL cells. All HPL cells were treated with BDNF at a final concentration of 50 ng / ml. The leftmost lane of the electropherogram is a marker. The vertical axis of the graph shows the ratio of the amount of mRNA expression at each action time when the mRNA expression level at BDNF action time 0 is 1. The horizontal axis shows the action time of BDNF. The bar in each bar graph represents the range of mean standard deviation. * Indicates a statistically significant difference with p ⁇ 0.01 (t-test).
  • FIG. 2D is an electrophoretogram showing the relationship between the BDNF action time and the expression level of GAPDH mRNA in HPL cells. All HPL cells were treated with BDNF at a final concentration of 50 ng / ml. The leftmost lane of the electropherogram is a marker.
  • FIG. 3A is an electrophoretogram and graph showing the relationship between the action time of BDNF and the expression level of BMP-4 mRNA (339 bp) in HPL cells. All HPL cells were treated with BDNF at a final concentration of 50 ng / ml. The leftmost lane of the electropherogram is a marker. The vertical axis of the graph shows the percentage of mRNA expression level at each action time when the mRNA expression level at BDNF action time 0 is taken as 100. The horizontal axis shows the action time of BDNF. Each bar bar is Represents the range of mean value standard deviation.
  • FIG. 3B is an electrophoretogram and graph showing the relationship between the BDNF action time and the expression level of OPG mRNA (736 bp) in HPL cells. All HPL cells were treated with BDNF at a final concentration of 50 ng / ml. The leftmost lane of the electropherogram is a marker. The vertical axis of the graph shows the percentage of mRNA expression level at each action time when the mRNA expression level at BDNF action time 0 is taken as 100. The horizontal axis shows the action time of BDNF. The bar of each bar graph represents the range of mean standard deviation.
  • FIG. 4A is an electrophoretogram and graph showing the relationship between the dose of BDNF and the expression level of ALPase mRNA in HPL cells.
  • Each concentration of BDNF was allowed to act on HPL cells for 24 hours.
  • the leftmost lane of the electropherogram is a marker.
  • the vertical axis of the graph shows the ratio of the expression level of mRNA at each dose when the mRNA expression level at BDNF dose 0 is 1.
  • the horizontal axis indicates the concentration of BDNF (ng / ml).
  • the bar of each bar graph represents the range of the mean value standard deviation. * Indicates a statistically significant difference with p ⁇ 0.01 (t-test).
  • FIG. 4B is an electrophoretogram and graph showing the relationship between the dose of BDNF and the expression level of OPN mRNA in HPL cells.
  • Each concentration of BDNF was allowed to act on HPL cells for 12 hours.
  • the leftmost lane of the electropherogram is a marker.
  • the vertical axis of the graph shows the ratio of the expression level of mRNA at each dose when the mRNA expression level at BDNF dose 0 is 1.
  • the horizontal axis indicates the concentration of BDNF (ng / ml).
  • the bar of each bar graph represents the range of the mean value standard deviation. * Indicates a statistically significant difference with p ⁇ 0.01 (t-test).
  • FIG. 4C is an electrophoretogram and graph showing the relationship between the dose of BDNF and the expression level of BMP-2 mRNA in HPL cells.
  • Each concentration of BDNF was allowed to act on HPL cells for 24 hours.
  • the leftmost lane of the electropherogram is a marker.
  • the vertical axis of the graph shows the ratio of the expression level of mRNA at each dose when the mRNA expression level at BDNF dose 0 is 1.
  • the horizontal axis indicates the concentration of BDNF (ng / ml).
  • the bar of each bar graph represents the range of the mean value standard deviation. * Indicates statistical significance of p ⁇ 0.05, ** indicates p ⁇ 0.01 (t-test).
  • FIG. 4D is an electrophoretogram showing the relationship between the dose of BDNF and the expression level of GAPDH mRNA (613 bp) in HPL cells.
  • FIG. 5 shows a relationship between the dose of BDNF and the amount of OPN secretion in HPL cells. It is fu. Each concentration of BDNF was allowed to act on HPL cells for 12 hours. The vertical axis shows OPN secretion (ng / ml), and the horizontal axis shows BDNF concentration (ng / ml).
  • (B) is a graph showing the relationship between the dose of BDNF and the amount of BMP-2 secreted in HPL cells. Each concentration of BDNF was allowed to act on HPL cells for 24 hours. The vertical axis shows BMP-2 secretion (pg / ml), and the horizontal axis shows BDNF concentration (ng / ml).
  • (C) is a graph showing the relationship between the action time of BDNF and the amount of BMP-2 secreted in HPL cells.
  • Cells were treated with BDNF at a final concentration of 50 ng / ml.
  • the vertical axis shows BMP-2 secretion (pg / ml), and the horizontal axis shows BDNF action time.
  • (C) The bar of each bar dull represents the range of the average value standard deviation. * * Indicates a statistically significant difference of p ⁇ 0.01 (t-test).
  • FIG. 6 is a graph showing the relationship between the dose of BDNF and the DNA synthesis ability of HPL cells and HGK.
  • Each concentration of BDNF was allowed to act on HPL cells and HGK for 24 hours.
  • the vertical axis of each graph shows BDNF! /, Where bFGF is not administered (that is, when BDNF concentration is 0! /, Where bFGF concentration is 0). Shows the percentage.
  • the horizontal axis shows BDNF or bFGF concentration (ng / ml).
  • the bar of each bar graph represents the range of the mean value standard deviation. * Indicates statistical significance of p ⁇ 0.05, ** indicates statistical significance of p ⁇ 0.01 (t-test;).
  • (A) shows the ability to synthesize DNA in HPL cells
  • (B) shows the ability to synthesize DNA in HGK.
  • FIG. 7 (A) is a graph showing the relationship between the dose of BDNF and the amount of type I collagen synthesized in HPL cells. Each concentration of BDNF was allowed to act on HPL cells for 24 hours. The vertical axis shows the amount of type I collagen synthesized ( ⁇ g / ml), and the horizontal axis shows the concentration of BDNF (ng / ml).
  • (B) is a graph showing the relationship between the action time of BDNF and the amount of type I collagen synthesized in HPL cells. Cells were treated with BDNF at a final concentration of 50 ng / ml. The vertical axis shows the amount of collagen type I (g / ml), and the horizontal axis shows the duration of BDNF action.
  • the bars in each bar graph in (A) and (B) represent the range of the average value standard deviation. * Indicates p ⁇ 0.05, ** indicates statistical significance p ⁇ 0.01 (t-test).
  • FIG. 8 is a graph showing the relationship between the dose of BDNF and the regeneration of cementum and alveolar bone in a third-class root bifurcation lesion model.
  • the vertical axis represents the cementum regeneration rate (%) or the bone regeneration rate (%), and the horizontal axis represents the concentration of BDNF (g / ml).
  • the bar of each bar graph is the average value The range of the standard deviation. * Indicates statistical significance of p ⁇ 0.05, ** indicates p ⁇ 0.01 (t-test).
  • (A) shows the relationship with the cement regeneration rate
  • (B) shows the relationship with the bone regeneration rate.
  • FIG. 9A An optical microscope image (magnification: 20 ⁇ ) of a hematoxylin′-eosin stained specimen of a root bifurcation bone defect site (control group), which was prepared in Example 2 and did not contain BDNF, and was filled with telplug.
  • FIG. 9B is a microscopic image (magnification 20 times) of a bone defect site in a bifurcated portion in which a graft material containing BDNF (5 / z g / ml) prepared in Example 2 is filled.
  • FIG. 10 is a partially magnified image immediately below the root branch in FIG. 9B (magnification 200 times). Immediately under the root bifurcation, the cementum with embedded collagen fibers was regenerated in almost all of the bare root surfaces, and the epithelium was also invaded.
  • FIG. 11A is a radioactivity band and graph showing the expression level of NGF mRNA in HPL cells.
  • the vertical axis of the graph indicates the ratio of the NGF mRNA expression level to the GAPDH mRNA expression level.
  • HGF indicates gingival fibroblasts
  • HPC indicates dental pulp cells
  • HSF indicates foreskin-derived fibroblasts
  • HNB indicates human neuroblastoma cells.
  • FIG. 11B is a radioactivity band and graph showing the expression level of TrkA mRNA in HPL cells.
  • the vertical axis of the graph shows the ratio of TrkA mRNA expression level to GAPDH mRNA expression level.
  • HGF indicates gingival fibroblasts
  • HPC indicates dental pulp cells
  • HSF indicates foreskin-derived fibroblasts
  • HNB indicates human neuroblastoma cells.
  • FIG. 12 is a graph showing the effect of NGF on the expression level of OPN mRNA in HPL cells.
  • A is a graph showing the results of measuring the time-dependent effects of NGF.
  • the vertical axis of the graph shows the percentage of OPN mRNA expression at each action time when the mRNA expression at NGF operation time 0 is 1. Show.
  • the horizontal axis of the graph shows NGF action time. All were treated with NGF at a final concentration of 100 ng / ml.
  • (B) is a graph which shows the measurement result of a density effect.
  • the vertical axis of the graph shows the ratio of the OPN mRNA expression level at each concentration when the mRNA expression level at NGF concentration 0 is 1.
  • the horizontal axis shows the NGF concentration (ng / ml). All NGF was allowed to act for 24 hours.
  • FIG. 13 is a graph showing the effect of NGF on the expression level of ALPase mRNA in HPL cells.
  • A is a graph showing the measurement results of the time-dependent effects of NGF, the vertical axis of the graph is The percentage of ALPase mRNA expression at each action time when the expression level of ALPase mRNA at NGF action time 0 is taken as 1 is shown.
  • the horizontal axis of the graph shows NGF action time.
  • (B) is a graph showing the measurement results of concentration effects.
  • the vertical axis of the graph shows the ratio of the ALPase mRNA expression level at each concentration when the ALPase mRNA expression level at NGF concentration 0 is 1.
  • the horizontal axis indicates NGF concentration (ng / ml).
  • FIG. 14 is a graph showing the effect of NGF on the expression level of BMP-2 mRNA in HPL cells.
  • A is a graph showing the measurement results of the time-dependent effects of NGF, and the vertical axis of the graph represents BMP-2 mRNA at each action time when the expression level of BMP-2 mRNA at NGF action time 0 is 1. The ratio of the expression level is shown.
  • the horizontal axis of the graph shows NGF action time.
  • (B) is a graph showing the measurement result of the concentration effect.
  • the vertical axis of the graph shows the ratio of the BMP-2 mRNA expression level at each concentration when the BGF-2 mRNA expression level at NGF concentration 0 is 1.
  • the horizontal axis indicates NGF concentration (ng / ml).
  • FIG. 15 is a graph showing the relationship between the dose of NGF and the DNA synthesis ability of HPL cells and HGK. Each concentration of NGF was allowed to act on HPL cells and HGK for 24 hours. The vertical axis of each graph shows the ratio of DNA synthesis capacity at each dose of NGF, assuming that DNA synthesis capacity at NGF concentration 0 is 100. The horizontal axis indicates NGF concentration (ng / ml). (A) shows DNA synthesis ability in HPL cells, and (B) shows DNA synthesis ability in HGK.
  • FIG. 16A is a radioactivity band and graph showing the expression level of NT-3 mRNA in HPL cells.
  • the vertical axis of the graph shows the ratio of the NT-3 mRNA expression level when the GAPDH mRNA expression level is 1.
  • HGF indicates gingival fibroblasts
  • HPC indicates dental pulp cells
  • HSF indicates foreskin-derived fibroblasts
  • HNB indicates human neuroblastoma cells.
  • FIG. 16B is a radioactivity band and graph showing the amount of TrkC mRNA expression in HPL cells.
  • the vertical axis of the graph shows the ratio of the TrkC mRNA expression level when the GAPDH mRNA expression level is 1.
  • HGF indicates gingival fibroblasts
  • HPC indicates dental pulp cells
  • HSF indicates foreskin-derived fibroblasts
  • HNB indicates human neuroblastoma cells.
  • FIG. 17 is a graph showing the relationship between the dose of NT-3 and ALPase activity in HPL cells.
  • the vertical axis of the graph shows ALPase activity (nmol / well), and the horizontal axis shows NT-3 concentration (ng / ml).
  • FIG. 18 shows the relationship between the dose of NT-3 and the ability of HPL cells to synthesize DNA in HPL cells. It is a graph. The vertical axis of the graph compares the DNA synthesis ability of HPL cells at different concentrations of NT-3 by absorbance. The horizontal axis shows NT-3 concentration (ng / ml).
  • FIG. 19A is an electrophoretogram and graph showing the relationship between the action time of NT-4 / 5 and the expression levels of OPN and OCN mRNA in HPL cells.
  • the final concentration of NT-4 / 5 was 50 ng / ml.
  • the leftmost lane of the electropherogram is a marker.
  • the vertical axis of each graph shows the ratio of the expression level of each mRNA at each action time when the expression level of each mRNA at the action time of NT-4 / 5 is 100.
  • the horizontal axis shows the operating time of NT-4 / 5.
  • the bar of each bar graph represents the range of the average value standard deviation. In each graph, * represents p ⁇ 0.05 and ** represents p ⁇ 0.01 (statistical test is based on t-test).
  • FIG. 19B is an electrophoretogram and graph showing the relationship between the action time of NT-4 / 5 and the expression levels of BMP-2 and BMP-7 mRNA in HPL cells.
  • the final concentration of NT-4 / 5 was 50 ng / ml.
  • the leftmost lane of the electropherogram is a marker.
  • the vertical axis of each graph shows the ratio of the expression level of each mRNA at each action time when the expression level of each mRNA at the action time of NT-4 / 5 is 100.
  • the horizontal axis shows the operating time of NT-4 / 5.
  • the bar in each bar graph represents the range of mean value standard deviation. In each graph, * represents p ⁇ 0.05, ** represents p ⁇ 0.01 (statistical test by t-test).
  • FIG. 19C Electrophoretic diagram and graph showing the relationship between the action time of NT-4 / 5 and the expression level of ALPase mRNA in HPL cells, and the relationship between the action time of NT-4 / 5 and the expression level of GAPDH FIG.
  • the final concentration of NT-4 / 5 was 50 ng / ml.
  • the leftmost lane of each electropherogram is a marker.
  • the vertical axis of the graph shows the ratio of the expression level of mRNA at each action time when the expression level of mRNA at the action time of NT-4 / 5 is 100.
  • the horizontal axis shows the operating time of NT-4 / 5.
  • the bar of each bar graph represents the range of mean value standard deviation. * Represents p ⁇ 0.05 (statistical test is t-test).
  • FIG. 20 is a graph showing the measurement result of the concentration effect of NGF on the mRNA expression of bone-related proteins (ALPase, BMP-2, DSPP, OPN, OCN) in HP cells.
  • the duration of action of NGF is 24 hours.
  • the vertical axis of each graph shows the ratio of each mRNA expression level at each concentration when the mRNA expression level at NGF concentration 0 is 1.
  • the horizontal axis shows NGF concentration (ng / ml).
  • the bar of each bar graph represents the range of the average value standard deviation.
  • 21 is a graph showing the measurement results of the concentration effect of BDNF on the mRNA expression of each bone-related protein (ALPase, BMP-2, DSPP, type I collagen, OPN, OCN) in HP cells.
  • the vertical axis of each graph shows the ratio of the mRNA expression level at each concentration when the mRNA expression level at BDNF concentration 0 is 1.
  • the horizontal axis shows BDNF concentration (ng / ml).
  • the bar of each bar graph represents the range of the average value standard deviation.
  • FIG. 22 is a graph showing the measurement results of the concentration effect of NT-3 on the mRNA expression of bone-related proteins (ALPase, BMP-2, DSPP, OPN, OCN) in HP cells.
  • the vertical axis of each graph shows the ratio of each mRNA expression level at each concentration, assuming that the mRNA expression level at NT-3 concentration is 1.
  • the horizontal axis shows NT-3 concentration (ng / ml).
  • the bar of each bar graph represents the range of mean value ⁇ standard deviation.
  • FIG. 23 is a graph showing the measurement results of the concentration effect of NT-4 / 5 on the mRNA expression of each bone-related protein (ALPase, BMP-2, DSPP, type I collagen, OPN, OCN) in HP cells.
  • the vertical axis of each graph shows the ratio of the mRNA expression level at each concentration, where the mRNA expression level at NT-4 / 5 concentration 0 is 1.
  • the horizontal axis shows NT-4 / 5 concentration (ng / ml).
  • the bar in each bar graph represents the range of the mean value standard deviation.
  • FIG. 24 is a graph showing the relationship between the dose of each neurotrophic factor (NGF, BDNF, NT-3, NT-4 / 5) and the DNA synthesis ability of HP cells. Each concentration of neurotrophic factor was allowed to act on HP cells for 24 hours.
  • the vertical axis of each graph shows the ratio of absorbance at each dose when the absorbance at non-administration of neurotrophic factor (that is, the concentration of neurotrophic factor 0) is 100.
  • the horizontal axis shows the concentration (ng / ml) of each neurotrophic factor.
  • the bar of each bar graph represents the range of the mean value standard deviation.
  • FIG. 25A is an electrophoretogram and graph showing the relationship between NGF action time and ALPase mRNA expression level in HMS cells.
  • An electropherogram showing the relationship with the expression level of GAPDH mRNA as a control is also shown. All HMS cells were treated with NGF at a final concentration of 100 ng / ml. The leftmost lane of each electropherogram is a marker.
  • the vertical axis of the graph shows the percentage of mRNA expression level at each action time when the mRNA expression level at NGF action time 0 is taken as 100%.
  • the horizontal axis shows the action time of NGF.
  • FIG. 25B shows the relationship between NGF action time and OCN mRNA expression level in HMS cells. It is an electrophoretic diagram and a graph. An electropherogram showing the relationship with the expression level of GAPDH mRNA is also shown. All HMS cells were treated with NGF at a final concentration of 100 ng / ml. The leftmost lane of each electropherogram is a marker. The vertical axis of the graph shows the percentage of the mRNA expression level at each action time when the mRNA expression level at NGF action time 0 is taken as 100%. The horizontal axis shows the action time of NGF.
  • FIG. 25C is an electrophoretogram and graph showing the relationship between NGF action time and OPN mRNA expression level in HMS cells.
  • An electropherogram showing the relationship with the expression level of GAPDH mRNA is also shown. All HMS cells were treated with NGF at a final concentration of 100 ng / ml. The leftmost lane of each electropherogram is a marker.
  • the vertical axis of the graph shows the percentage of the mRNA expression level at each action time when the mRNA expression level at NGF action time 0 is taken as 100%.
  • the horizontal axis shows the action time of NGF.
  • FIG. 25D is an electrophoretogram and graph showing the relationship between the duration of NGF action and the expression level of BSP mRNA in HMS cells.
  • An electropherogram showing the relationship with the expression level of GAPDH mRNA is also shown. All HMS cells were treated with NGF at a final concentration of 100 ng / ml. The leftmost lane of each electropherogram is a marker.
  • the vertical axis of the graph shows the percentage of the mRNA expression level at each action time when the mRNA expression level at NGF action time 0 is taken as 100%.
  • the horizontal axis shows the action time of NGF.
  • FIG. 25E is an electrophoretogram and graph showing the relationship between the action time of NGF and the expression level of type I collagen mRNA in HMS cells.
  • An electropherogram showing the relationship with the expression level of GAPDH mRNA is also shown. All HMS cells were treated with NGF at a final concentration of 100 ng / ml. The leftmost lane of each electropherogram is a marker.
  • the vertical axis of the graph shows the percentage of the mRNA expression level at each action time when the mRNA expression level at NGF action time 0 is taken as 100%.
  • the horizontal axis shows the action time of NGF.
  • FIG. 26A is an electrophoretogram and graph showing the relationship between the BDNF action time and the ALPase mRNA expression level in HMS cells.
  • An electrokinetic diagram showing the relationship with the expression level of GAPDH mRNA is also shown. All HMS cells were treated with BDNF at a final concentration of 100 ng / ml. The leftmost lane of each electropherogram is a marker.
  • the vertical axis of the graph shows the percentage of mRNA expression level at each action time when the BDNF action time 0 mRNA expression level is 100%.
  • the horizontal axis shows the action time of BDNF.
  • FIG. 26B is an electrophoretogram and graph showing the relationship between the BDNF action time and the OCN mRNA expression level in HMS cells.
  • An electrophoretic diagram showing the relationship with the expression level of GAPDH mRNA is also shown. All HMS cells were treated with BDNF at a final concentration of 100 ng / ml. The leftmost lane of each electrokinetic diagram is a marker.
  • the vertical axis of the graph shows the percentage of mRNA expression level at each action time when the BDNF action time 0 mRNA expression level is 100%.
  • the horizontal axis shows the action time of BDNF.
  • FIG. 26C is an electrophoretogram and graph showing the relationship between the BDNF action time and OPN mRNA expression level in HMS cells.
  • An electrophoretic diagram showing the relationship with the expression level of GAPDH mRNA is also shown. All HMS cells were treated with BDNF at a final concentration of 100 ng / ml. The leftmost lane of each electrokinetic diagram is a marker.
  • the vertical axis of the graph shows the percentage of mRNA expression level at each action time when the BDNF action time 0 mRNA expression level is 100%.
  • the horizontal axis shows the action time of BDNF.
  • FIG. 26D is an electrophoretogram and graph showing the relationship between the BDNF action time and the expression level of BSP mRNA in HMS cells. An electropherogram showing the relationship with the expression level of GAPDH mRNA is also shown. All HMS cells were treated with BDNF at a final concentration of 100 ng / ml. The leftmost lane of each electrophoresis diagram is a marker. The vertical axis of the graph shows the percentage of mRNA expression level at each action time when the BDNF action time 0 mRNA expression level is 100%. The horizontal axis shows the duration of BDNF action.
  • FIG. 26E is an electrophoretogram and graph showing the relationship between the BDNF action time and the expression level of type I collagen mRNA in HMS cells.
  • An electropherogram showing the relationship with the expression level of GAPDH mRNA is also shown. All HMS cells were treated with BDNF at a final concentration of 100 ng / ml. The leftmost lane of each electropherogram is a marker.
  • the vertical axis of the graph shows the percentage of the mRNA expression level at each action time when the BDNF action time 0 mRNA expression level is 100%.
  • the horizontal axis shows the action time of BDNF.
  • FIG. 27A is an electrophoretogram and graph showing the relationship between NT-3 action time and ALPase mRNA expression level in HMS cells.
  • An electrokinetic diagram showing the relationship with the expression level of GAPDH mRNA is also shown. All HMS cells were treated with NT-3 at a final concentration of 100 ng / ml. Each electricity The leftmost lane of the electropherogram is a marker.
  • the vertical axis of the graph represents the percentage of mRNA expression level at each action time, assuming that the mRNA expression level at NT-3 action time 0 is 100%.
  • the horizontal axis shows the operating time of NT-3.
  • FIG. 27B is an electrophoretogram and graph showing the relationship between NT-3 action time and OCN mRNA expression level in HMS cells.
  • An electrophoretic diagram showing the relationship with the expression level of GAPDH mRNA is also shown. All HMS cells were treated with NT-3 at a final concentration of 100 ng / ml. The leftmost lane of each electrokinetic diagram is a marker.
  • the vertical axis of the graph shows the percentage of mRNA expression level at each action time when the mRNA expression level at NT-3 action time 0 is 100%.
  • the horizontal axis shows the operating time of NT-3.
  • FIG. 27C is an electrophoretogram and graph showing the relationship between the action time of NT-3 and the expression level of OPN mRNA in HMS cells.
  • An electrophoretic diagram showing the relationship with the expression level of GAPDH mRNA is also shown. All HMS cells were treated with NT-3 at a final concentration of 100 ng / ml. The leftmost lane of each electrokinetic diagram is a marker.
  • the vertical axis of the graph shows the percentage of mRNA expression level at each action time when the mRNA expression level at NT-3 action time 0 is 100%.
  • the horizontal axis shows the operating time of NT-3.
  • FIG. 27D is an electrophoretogram and graph showing the relationship between NT-3 action time and BSP mRNA expression level in HMS cells. An electropherogram showing the relationship with the expression level of GAPDH mRNA is also shown. All HMS cells were treated with NT-3 at a final concentration of 100 ng / ml. The leftmost lane of each electrophoresis diagram is a marker. The vertical axis of the graph shows the percentage of mRNA expression level at each action time when the mRNA expression level at NT-3 action time 0 is taken as 100%. The horizontal axis shows the operating time of NT-3.
  • FIG. 27E is an electrophoretogram and graph showing the relationship between NT-3 action time and type I collagen mRNA expression level in HMS cells.
  • An electropherogram showing the relationship with the expression level of GAPDH mRNA is also shown. All HMS cells were treated with NT-3 at a final concentration of 100 ng / ml. The leftmost lane of each electropherogram is a marker.
  • the vertical axis of the graph shows the percentage of the mRNA expression level at each action time when the mRNA expression level at NT-3 action time 0 is taken as 100%.
  • the horizontal axis shows the operating time of NT-3.
  • FIG. 28 shows the effects of ascorbic acid (Aa), NGF, BDNF, and NT-3 on the proliferation of HMS cells. It is a graph to show. The vertical axis of the graph shows the percentage of absorbance of the test group relative to the control group. The bar of each bar graph represents the range of the average value standard deviation. * Represents p ⁇ 0.05, ** represents p ⁇ 0.01 (statistical test by t-test).
  • FIG. 29A is an optical microscopic image (magnification 20 times) of a bone defect part of a root bifurcation part filled with a transplant containing NGF (100 g / ml) prepared in Example 8.
  • FIG. 29B is an optical microscopic image (magnification 20 times) of a bone defect part of a root bifurcation part filled with a graft material containing NT-3 (100 g / ml) prepared in Example 8.
  • periodontal tissue means a tissue composed of gingiva, alveolar bone, periodontal ligament (periodontal ligament), and cementum.
  • Gingiva is a soft tissue covering a part of the cervical region and alveolar bone, and consists of a gingival epithelium and a gingival solid layer.
  • the "periodontal ligament” is a connective tissue that is interposed between the alveolar bone and the cementum, and is also called a periodontal ligament.
  • the "alveolar bone” is divided into a specific alveolar bone corresponding to the dense portion of the alveolar wall surrounding the root, and a sponge and a supporting alveolar bone located on the outer side of the alveolar wall. Be divided.
  • cementum is the hard tissue of the outermost layer of the tooth root, and is classified into a cellular cementum having cement cells and acellular cementum having no cement cells.
  • the "dental pulp” is a tissue that controls the vital reactions of teeth, and forms dentin in response to physiological and pathological stimuli. It consists of dental pulp cells, nerve fibers, extracellular matrix, blood vessels and so on.
  • Regeneration refers to the reconstruction and reproduction of lost, destroyed or damaged tissue, and “regeneration of periodontal and woven” It is to restore the periodontal tissue to its original state and make it function.
  • Preventing gingival epithelium from entering the root apex direction means preventing gingival epithelial cells from proliferating along the root surface toward the apical side.
  • Transplant for periodontal tissue regeneration refers to a material that promotes regeneration of periodontal tissue.
  • a neurotrophic factor such as BDNF
  • some kind of scaffold is required.
  • the transplant material of the present application is a combination of such scaffolding materials and neurotrophic factors such as BDNF.
  • Periodontal disease means an inflammatory disease of periodontal tissue caused by local bacteria or the like.
  • Repaired dentin means dentin formed as a result of external stimulation.
  • Pulp pulp disease means inflammatory diseases of the pulp, degenerative degeneration, and the like.
  • the present invention is particularly preferably applied to a warm-blooded animal such as a human being.
  • the neurotrophic factors used in the present invention such as BDNF, NGF, NT-3, NT-4 / 5, etc., are naturally produced even if they are artificially produced by genetic recombination or chemical synthesis. But ...
  • the therapeutic agent for periodontal disease of the present invention is preferably administered locally by an external preparation or the like. It may be filled into a syringe and injected into the periodontal pocket. It is also possible to administer to the damaged part of periodontal tissue during periodontal surgery. In that case, in order to act at a constant concentration for a long time, it is also preferable to absorb the therapeutic agent of the present invention in a sheet or sponge. It is preferable to administer force by removing the infected periodontal tissue.
  • the therapeutic agent of the present invention can also be administered locally by injection. For example, it may be injected into the gums of the periodontal pocket, or it may be injected into the periodontal cavity near the alveolar crest. An injection may be made near the apex.
  • the restoration dentin formation promoter of the present invention is preferably administered locally by an external preparation or the like.
  • a restoration dentin formation promoter such as liquid, cream or paste may be applied to the exposed portion of the spinal cord, or it may be applied to the extraction of the spinal cord.
  • a sheet or sponge that has absorbed the active ingredient may be applied and temporarily sealed for a certain period of time.
  • it can be applied to the apex and the like when replanting a tooth that has fallen off due to trauma or the like.
  • a dosage form of the therapeutic agent for periodontal disease and the restoration dentin formation accelerator of the present invention a cream produced using a pharmaceutically acceptable carrier or diluent, etc. according to a conventional formulation method.
  • Agent In addition to external preparations such as ointments and lotions, for example, injections mainly composed of water-based solvents can be mentioned.
  • a powder form it can be used by dissolving in a solution such as purified water just before use.
  • the dose of the therapeutic agent for periodontal disease and the agent for promoting restoration of dentin of the present invention varies depending on the age, sex, symptoms, etc. of the administration subject, but in local administration, usually as a neurotrophic factor per tooth.
  • 1 X 10- 12 g- 1 X 10- 3 g, especially 1 X 10- u g - is preferably 1 X 10- 7 g, more especially 1 X 10- 10 g- 1 X 10- 8 g.
  • the dose may be smaller than that of a topical drug.
  • graft material of the present invention per the amount used in one furcation defects, 1 X 10- 12 g- IX 10-
  • the therapeutic agent for periodontal disease, the agent for promoting restoration of dentin and the transplant material of the present invention may be used in combination with other drugs as long as the effectiveness thereof is not hindered.
  • BDNF, NGF, NT-3, NT-4 / 5 may be used in combination with each other. They may be used in combination with bone marrow-derived mesenchymal stem cells (MSC), periodontal ligament-derived fibroblasts, gingival fibroblasts, vascular endothelial cells and the like. It may be used in combination with calcium hydroxide preparations and antibacterial agents.
  • the material to be combined with the neurotrophic factor may be any material that can maintain the neurotrophic factor at the administration site and is not harmful to the living body.
  • a porous sheet, A sponge or the like is preferable.
  • Biodegradable protein materials collagen, gelatin, albumin, platelet rich plasma (PRP)
  • tissue-absorbable materials polyglycolic acid (PGA), polylactic acid (PLA), lactic glycolic acid copolymer (PLGA) ), Hyaluronic acid (HA), calcium triphosphate (TPC)
  • Terplug trade name
  • GS membrane trade name
  • Osfion trade name
  • HPL cells Human periodontal ligament cells
  • HGK human gingival keratinocyte
  • HPL cells Human periodontal ligament-derived fibroblasts
  • HPL cells were isolated from periodontal ligaments of healthy human premolars that were conveniently extracted for orthodontic treatment. Using a scalpel, a healthy periodontal ligament at the center of the root, excluding the neck and root apex of the extracted human premolars, is used to prevent contamination of other connective tissue forces around the periodontal ligament. Stripped and shredded. The minced tissue was attached to a cell culture petri dish (CORNING, NY) having a diameter of 60 mm, and cultured under a gas phase condition of 37 ° C. and 5% CO. The medium is 10% FBS (GIBCO).
  • HGK human gingival epithelial cells
  • gingival pieces were obtained from the excess gingival flap.
  • the obtained gingival pieces were treated with Dulbecco's PBS (—) (PBS (1), Nissui Pharmaceutical) containing 0.01% ethylenediamine 4 acetic acid (EDTA) and 0.025% trypsin overnight at 4 ° C. , Separated HGK.
  • PBS (1) Nissui Pharmaceutical
  • EDTA ethylenediamine 4 acetic acid
  • Ushiin (10 ⁇ g / ml) (Sigma, St.
  • RNA was reverse transcribed using oligo dT primer, and the resulting cDNA was amplified in 30 cycles of PCR reaction and then run on a 1.5% agarose gel.
  • Dalyceraldehyde-3-phosphate dehydrogenase (GAPDH) was used as a control.
  • HPL cells obtained in (1) (0) above were added to a 60 mm petri dish (SUMILON Celtite C-1) coated with ushi type I collagen at a concentration of 3.5 ⁇ 10 5 per dish, 50 ⁇ g / Incubate for 13 days at 37 ° C in 5% CO gas phase using medium A containing ml L-ascorbic acid
  • the medium used here is referred to as “medium B”).
  • the medium was changed once every two days.
  • Cells were washed twice with DMEM at 0, 3, 6, 12 or 24 hours prior to the end of culture on day 14, and BDNF (Recombinant Human BDNF, R) at final concentrations of 0, 1, 10, 50 or 100 ng / ml. & D system, Minneapolis, USA) serum-free medium (penicillin (100 units Zml), streptomycin (100 ⁇ g / ml), amphotericin ⁇ (1 ⁇ g / ml) (GIBCO), and L-ascorbic acid (DMEM supplemented with 50 ⁇ g / ml) (the medium used here is referred to as “medium D”).
  • HGK Supplemented with 50 ⁇ g / ml
  • HGK obtained in (1) (ii) above was inoculated at 2 X 10 3 / well onto a 96-well plate (SUMILON Celtite C-1 plate 96F, Sumitomo Bakelite) coated with ushi type I collagen. Then, the culture was performed using medium C at 37 ° C. and 5% CO gas phase. Change the medium once every two days
  • RNA was extracted from HPL cells treated with BDNF at a final concentration of 0, 1, 10, 50 or lOOng / ml using ISOGEN and purified in the same manner as described in (3) (0) above.
  • FIGS. 2A, 2C, 3A, and 3B The results of measuring the time-dependent effect of BDNF on the mRNA expression of each bone-related protein are shown in FIGS. 2A, 2C, 3A, and 3B, and the results of measuring the concentration effect are shown in FIGS. 4A-4C.
  • * represents p 0.05 and ** represents p 0.01 (statistical test is by t-test).
  • BDNF did not affect OPG and BMP-4 mRNA expression, but increased the expression levels of ALPase, BMP-2, and OPN in a concentration- and time-dependent manner. It was.
  • HPL cells obtained in (1) (0) were seeded at 1 X 10 4 cells / well in a 48-well plate (SUMILON Celtite C-1 plate 48F, Sumitomo Bakelite) coated with ushi type I collagen.
  • the culture medium was cultured for 13 days in medium B.
  • the medium was changed once every two days 24 days before the end of the 14th day of culture, the cells on the plate were washed twice with DMEM to obtain a final concentration of 0, 1, 10 , 25, 50 Alternatively, the medium was replaced with serum-free medium D containing lOOng / ml BDNF.
  • the supernatant was collected, and the amount of secreted OPN and secreted BMP-2 in the supernatant was measured by ELISA.
  • a sandwich ELISA kit (IBL, Gunma) was used to measure the amount of secreted OPN, and a Sandwich ELISA kit (R & D system) was used to measure the amount of secreted BMP-2.
  • FIG. 5 shows the results of measurement of BDNF with time and concentration effect on the amount of secreted OPN and secreted BMP-2 in HPL cells.
  • * represents p ⁇ 0.05
  • ** represents p ⁇ 0.01 (statistical test by t-test).
  • BDNF promoted the secretion of OPN and BMP-2 in HPL cells.
  • HPL cells obtained in the above (1) (0) were seeded with 5 x 10 3 Z-wells in a 96-well plate (SUMILON Celtite C-1 plate 96F) coated with ushi type I collagen. The cells were cultured for 10 days in medium B. The cells were washed twice with DMEM, cultured for 24 hours in medium B supplemented with 0.3% FBS instead of 10% FBS, and then BDNF was added to the same medium at a final concentration of 0.
  • HGK obtained in (l) (ii) above was cultured by the same method as in (3) (ii) above and treated with BDNF. Two hours before the end of the culture (that is, 22 hours after the addition of BDNF), proxoxyuridine (BrdU) was added to each well at a concentration of lOng / ml and incorporated into the cells.
  • FIG. (A) is a graph showing the effect on HPL cells
  • (B) is a graph showing the effect on HGK.
  • * represents p ⁇ 0.05
  • ** represents p ⁇ 0.01 (statistical test is based on t-test).
  • BDNF promoted the DNA synthesis ability of HPL cells, but did not affect the DNA synthesis ability of HGK.
  • HPL cells obtained in (1) (0) above were seeded in 48-well plates coated with ushi type I collagen, and cultured for 13 days using medium B. The medium was changed once every two days. Plates were washed twice with DMEM for 0, 3, 6, 12, or 24 hours prior to the end of day culture and serum-free with final concentrations of 0, 1, 10, 25, 50, or lOOng / ml BDNF The medium D was changed.
  • the collagen synthesis amount of HPL cells was measured by ELISA using Procollagen type I C-peptide (PIP) EIA kit (TAKARA). Using a monoclonal antibody (peroxidase-labeled) specific for type I procollagen C-terminal propeptide (PIP), the amount of collagen synthesis in the HPL cell culture supernatant was measured using an absorptiometer (MICRO PLATE READER) at a wavelength of 450 nm. It was measured.
  • PIP Procollagen type I C-peptide
  • FIG. (A) shows the result of measuring the concentration effect of BDNF on type I collagen synthesis
  • (B) shows the result of measuring the time-dependent effect.
  • BDNF increased the amount of type I collagen synthesized in HPL cells.
  • the bone regeneration rate was expressed as a ratio (percentage) of the area of the regenerated alveolar bone to the area of the bare root bifurcation defect.
  • the cementum regeneration rate was expressed as the ratio (percentage) of the length of recycled cementum to the length of the bare root surface.
  • Fig. 8 (A) shows the measurement results of the effect of BDNF on cementum regeneration
  • Fig. 8 (B) shows the measurement results of the effect of BDNF on alveolar bone regeneration
  • Fig. 9A is a hematoxylin-eosin-stained specimen of a bone defect in the root bifurcation without BDNF (control)
  • Fig. 9B is filled with a transplant containing BDNF (BDNF (5 ⁇ g / ml)).
  • BDNF BDNF (5 ⁇ g / ml)
  • RNA was recovered and purified using the same method as in Example 1 (2) above for HPL cell strength. Using the obtained total RNA as a sample, mRNA expression of NGF and TrkA was measured by Northern blotting. GAPDH was used as a control.
  • FIGS. 11A and 1IB The results are shown in FIGS. 11A and 1IB.
  • FIG. 11A shows NGF mRNA expression
  • FIG. 11B shows TrkA mRNA expression. As is apparent from the figure, it was confirmed that NGF mRNA and TrkA mRNA were expressed in HPL cells! /.
  • HPL cells were treated with NGF (Recombinant at a final concentration of 0, 5, 10, 25, 50 or 100 ng / ml.
  • the mRNA expression levels of BMP-2 and OPN were measured by the same method as in Example 1 (4) (0).
  • FIGS. 12, 13, and 14 show the results of measurement of NGF over time and concentration effect on OPN, ALPase, and BMP-2 mRNA expression, respectively.
  • * is p ⁇
  • NGF increased ALPase, BMP-2, and OPN mRNA expression levels in a concentration- and time-dependent manner.
  • HPL cells and HGK were treated in the same manner as Example 1 (5), except that NGF at a final concentration of 0, 5, 10, 25, 50 or 100 ng / ml was used instead of BDNF. . NGF treated
  • ** represents p ⁇ 0.01.
  • the test is based on t-test.
  • NGF promoted the ability of HPL cells to synthesize DNA
  • RNA was recovered and purified using the same method as in Example 1 (2) above for HPL cell strength. Using the obtained total RNA as a sample, mRNA expression of NT-3 and TrkC was measured by Northern blotting. GAPDH was used as a control.
  • FIGS. 16A and 16B show NT-3 mRNA expression and 16B shows TrkC mRNA expression. As is clear from these figures, it was confirmed that NT-3 mRNA and TrkC mRNA were expressed in HPL cells.
  • NT-3 Recombinant Human NT-3, R & D system, Minneapolis, USA
  • BDNF BDNF
  • 1 (3) Treatment was carried out in the same manner as 0, and the ALPase activity was quantified according to the Bessey-Lowry method. That is, NT-3 treated HPL cells were washed 3 times with phosphate buffer, and 10 mM Tris-HCl was allowed to relax. After adding the impulse, the sample was prepared by sonication under ice-cooling. The activity of ALPase in the sample was measured using an ALPase measurement kit (Wako Pure Chemical Industries) with acid as a substrate.
  • FIG. 17 shows the results of measuring the concentration effect of NT-3 on ALPase activity.
  • NT-3 duration is 24 hours.
  • NT-3 exerted a force with little effect on ALPase activity.
  • Example 1 HPL cells isolated in the same manner as in (1) were used in Example 1 except that NT-3 at a final concentration of 0, 1, 5, 10, 50 or lOOng / ml was used instead of BDNF.
  • the DNA was synthesized by the same method as (5), and its DNA synthesis ability was measured by the same method as in Example 1 (5).
  • HPL cells human periodontal ligament cells
  • Example 1 (1) (The HPL cells obtained in 0 were placed on a 60 mm diameter petri dish (SUMILON Celtite C-1) coated with ushi type I collagen at a concentration of 3.5 ⁇ 10 5 per petri dish, 50 Cultivated for 13 days at 37 ° C and 5% CO gas phase using a medium of g / ml.
  • ALPase, BMP- 2, OPN, osteocalcin (OCN), BMP-7, BMP-4, OPG mRNA expression level is ABI
  • FIGS. 19A, 19B, and 19C show the results of measuring the time-dependent effects of NT-4 / 5 on the mRNA expression of each bone-related protein.
  • * represents p 0.05 and ** represents p 0.01 (statistical test is t-test).
  • NT-4 / 5 promoted mRNA expression of OPN, BMP-2, ALPase, OCN and BMP-7. However, it did not affect the expression of BMP-4 and OPG (data not shown).
  • the healthy pulp obtained at the time of expedient pulp removal was cut into small pieces.
  • the minced tissue is attached to a cell culture petri dish (Cowung, NY) with a diameter of 60 mm, and cultured at 37 ° C in a 5% CO gas phase.
  • NGF, BDNF, NT-3 or NT-4 / 5 was added to medium D at final concentrations of 0, 5, 10, 25, 50, and 100 ng / ml to prepare various media containing neurotrophic factors.
  • the HP cells obtained in (2) above were added to a 60 mm diameter petri dish (SUMILON Celtite C-1) coated with ushi type I collagen, using medium B at 3.5 X 10 5 per dish. At 37 ° C, 5% CO gas phase conditions
  • ABI PRISM7700 Applied Biosystems, Tokyo
  • ALP PRISM7700 Applied Biosystems, Tokyo
  • mRNA expression levels of ALPase, BMP-2, dentin shear protein (DSPP), type I collagen (collagen), OPN and OCN The time was monitored and quantitatively analyzed (Rea ⁇ time PCR method). GAPDH was used as a control.
  • NGF , BDNF, NT-3 and NT-4 / 5 promoted ALPase BMP-2, DSPP, OPN and OCN mRNA expression in HP cells.
  • BDNF and NT-4 / 5 also promoted mRNA expression of type I collagen
  • HP cells obtained in (1) above were mixed with ushi type I collagen-coated 96-well plates (
  • SUMILON Celtite C-1 plate 96F was seeded with 5 ⁇ 10 3 Z-wells and cultured with medium B for 10 days. The cells were washed twice with DMEM, cultured for 24 hours in medium B supplemented with 0.3% FBS instead of 10% FBS, then replaced with the above-mentioned media containing various neuronal culture factors, and further cultured for 24 hours.
  • Bromoxuridine (BrdU) was added to each well at a concentration of lOng / ml 2 hours before the end of the culture (that is, 22 hours after the addition of the nerve culture factor). . Cultivation was performed at 37 ° C and 5% CO gas phase.
  • BrdU antibody was allowed to act at room temperature for 2 hours, TMB (3,3 ′, 5,5′-tetramethylbenzidine) substrate was added, and the absorbance at a wavelength of 450 nm was measured with an absorptiometer (MICRO PLATE READER, TOSOH).
  • TMB 3,3 ′, 5,5′-tetramethylbenzidine
  • HMS cells human mesenchymal stem cells
  • Isolation of HMS cells is performed according to the method of Tsutsumi et al. (S. Tsutsumi: BBRC, 26, 288 (2), 2001). It was. In other words, when the wisdom tooth was removed from a patient who obtained sufficient informed consent, the mandible was punctured into the medullary canal to obtain bone marrow fluid. The resulting bone marrow fluid is quickly mixed with Dulbecco's modified Eagle's medium (DMEM, Sigma, USA) containing sodium heparin (200 U / ml, Sigma, USA) and centrifuged (150 g, 5 min). went.
  • DMEM Dulbecco's modified Eagle's medium
  • the resulting cell components were 10% ushi fetal serum (FCS, Biological Industries, Israel), 100 units / ml penicillin (Meiji Seika, Tokyo), 100 g / ml Suspend in DMEM containing streptomycin (Meiji Seika, Tokyo), 1 ⁇ g / ml amphotericin ⁇ (Gibco, USA) so that the bone marrow fluid is 200-500 ⁇ l / dish and the medium is 10 ml / dish.
  • the cells were seeded on a petri dish for cell culture (Cowung, USA) having a diameter of 100 mm. Incubation was performed at 37 ° C and 5% CO gas phase. Thereafter, cultivated every 4 days
  • phosphate buffered saline containing 0.05% trypsin (Difco, USA), 0.02% EDTA (Katayama Chemical, Osaka), 100 units / ml penicillin, 100 ⁇ g / ml streptomycin Cells were dispersed using the solution (PBS, Nissui Pharmaceutical, Tokyo). Dispersed cells were DMEM containing 20% FCS, 10% dimethyl sulfoxide (DMSO, Katayama Chemical, Osaka), 100 units / ml penicillin, 100 g / ml streptomycin, with a cell density of 1.0 X 10 6 cells. 1 ml each was suspended in a serum tube (Sumitomo Bakelite, Tokyo), cooled at 20 ° C for 2 hours, and then at 80 ° C overnight, and then stored in liquid nitrogen.
  • DMSO dimethyl sulfoxide
  • the HMS cells obtained in (1) above were prepared as follows: 0 ⁇ 15 ⁇ 1 containing 10 3 (100 units / ml penicillin (Meiji Seika, Tokyo), 100 ⁇ g / ml streptomycin (Meiji Seika, Tokyo), Suspended in 1 ⁇ g / ml of amphotericin B (Gibco, USA) and seeded in a 6-well cell culture plate at a density of 1.0 ⁇ 10 5 cells Zwell. The cells are cultured for 1 week, and the medium is just before the cells become confluent.
  • the medium is FCS-free DMEM (100 units / ml penicillin (Meiji Seika, Tokyo), 100 g / ml streptomycin (Meiji Seika, Tokyo), 1 g / ml amphotericin B (containing Gibco, USA) was added, and NGF, BDNF, or NT-3 was allowed to act at a concentration of 100 ng / ml for 12 hours and 24 hours, respectively. After completion of the culture, total RNA was extracted using ISOGEN (trade name). [0126] (ii) mRNA expression
  • PCR was performed using primers specific for ALPase, OCN, OPN, bone shaloprotein (BSP), and type I collagen.
  • the PCR reaction was denatured at 94 ° C for 2 minutes, then repeated 94 ° C for 15 seconds, annealing for 30 seconds, 72 ° C for 50 seconds for 30 cycles (35 cycles for BSP only), then 72 ° C, This was done by extension for 7 minutes.
  • the obtained PCR product was subjected to electrophoresis using a 2% agarose gel containing 0.002% bromide zygote. The density of the band after electrophoresis was measured using NIH image.
  • NGF did not significantly affect the mRNA expression of any of ALPase, OCN, OPN, BSP, and type I collagen in HMS cells.
  • BDNF strongly promoted ALPase, OPN, BSP, and BMP-2 mRNA expression and somewhat promoted OCN gene expression.
  • NT-3 promoted ALPase and type I collagen mRNA expression.
  • HMS cells obtained in (1) above were prepared using DMEM (Nissui Pharmaceutical) containing 10% FCS (100 units / ml penicillin (Meiji Seika, Tokyo), 100 g / ml streptomycin (Meiji Seika, Tokyo) And 1 ⁇ g / ml amphotericin (Gibco, USA) and seeded on 96-well cell culture plates (Coorg, USA) at a density of 5.0 ⁇ 10 3 cells Zwell.
  • FCS 100 units / ml penicillin
  • streptomycin Meiji Seika, Tokyo
  • Amphotericin Gibco, USA
  • test group 50 ⁇ g / ml ascorbic acid (Sigma, USA), 100 ng / ml NGF (Funakoshi, Tokyo), 100 ng / ml BDNF (Funakoshi, Tokyo) 100 ng / ml NT-3 (Funakoshi, Tokyo) was added alone to the medium, and further cultured for 7 days. The medium was changed on the fourth day.
  • the control group was DMEM (manufactured by Nissui Pharmaceutical) containing 10% FCS (100 units / ml penicillin (Meiji Seika, Tokyo), 100 ⁇ g / ml streptomycin (Meiji Seika, Tokyo), 1 g / ml
  • FCS 100 units / ml penicillin
  • streptomycin 100 ⁇ g / ml streptomycin
  • amphotericin B including Gibco, USA. After culturing for 7 days, the medium is all DMEM (100 units / ml penicillin (Meiji Seika, Tokyo), 100 ⁇ g / ml streptomycin (Meiji Seika, Tokyo), 1 ⁇ g / ml amphotericin.
  • FIG. 29A is an optical microscope image of a root bifurcation bone defect portion filled with a graft material containing NGF
  • FIG. 29B is an optical microscope of a root bifurcation bone defect portion filled with a graft material containing NT-3. It is an image (magnification 20x).
  • magnification 20x As is clear from the figure, regenerative bone was observed in the third-class bifurcation lesion model of Inu by administration of NGF or NT-3.
  • the periodontal disease treatment agent, restoration dentin formation promoter, treatment method, periodontal tissue regeneration transplant, and periodontal tissue regeneration method of the present invention are effective in periodontal disease treatment and endodontic therapy. There is a possibility.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Chemical & Material Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Medicinal Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Epidemiology (AREA)
  • Biomedical Technology (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Neurology (AREA)
  • Neurosurgery (AREA)
  • Psychology (AREA)
  • Zoology (AREA)
  • Immunology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Rheumatology (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Pain & Pain Management (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Materials For Medical Uses (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

 本発明の目的は、歯周病や歯髄疾患の治療剤と治療方法、歯周組織再生用移植材、歯周組織の再生方法を提供することである。  本発明により、神経栄養因子を有効成分とする、歯周病と歯髄疾患の治療剤が提供される。

Description

明 細 書
歯周病と歯髄疾患の治療剤と治療方法
技術分野
[0001] 本発明は、歯周病や歯髄疾患の治療剤と治療方法、歯周組織再生用移植材、歯 周組織の再生方法に関するものである。
背景技術
[0002] 歯肉、歯槽骨、歯周靱帯 (歯根膜)、セメント質、歯髄等で構成される歯周組織は、 歯牙を植立させ、咀嚼や咬合等の機能を維持させるための重要な組織であり、その 損傷や破壊は歯の喪失につながる。例えば、日本国内に約 3000万人の患者が存在 するといわれる歯周病においては、病気の進行と共に歯周組織の損傷や破壊が進 み、歯を喪失する大きな原因となっている。損傷あるいは破壊された歯髄を含む歯周 組織の治療には、医薬品投与や外科手術等、様々な方法が試みられているが、い ずれの薬剤や治療方法も、損傷あるいは破壊された歯髄を含む歯周組織を再生さ せる効果は十分とは 、えな 、。
[0003] 神経栄養因子には脳由来神経栄養因子(Brain-derived neurotrophic factor, BDNF)、神経成長因子 (Nerve growth factorゝ NGF)、ニューロトロフィン 3 (
Neurotrophin 3、 NT- 3)、および-ユーロトロフィン 4/5 (Neurotrophin 4/5、 NT- 4/5) があり、神経細胞の分化促進や生存維持、再生促進、機能維持に関与する。 BDNF と NT— 4/5は TrkB (tropomyosin receptor kinase B)ゝ NGFは TrkA、 NT— 3は TrkCという 高親和性レセプターに特異的に結合する。
[0004] BDNF, NGF、 NT-3は、主として脳内に存在する神経栄養因子であり、 BDNFと NGF は運動神経障害モデル、パーキンソン病モデル、アルツハイマー病モデルなど、各 種の疾患モデル動物を用いた実験で、有効性が証明されている。中でも、 BDNFは、 運動 '末梢神経疾患として筋萎縮性側索硬化症 (ALS)、糖尿病やィ匕学療法剤による 末梢神経障害など、また中枢神経系疾患としてアルッノ、イマ一病、パーキンソン病、 網膜関連疾患などの治療薬としての開発が期待されている。
[0005] これらの神経栄養因子は、中枢神経系のみならず末梢神経系においても重要な役 割を果たしていると言われている。マウス肋骨の骨折治癒過程において BDNF、 NGF 、 NT- 3、 TrkC、 TrkAの発現が増加した(K. Asaumiら、 Bone Vol 26, No.6, 625-633, 2000)、 BDNF、 NGF, NT-3がマウス歯周靱帯細胞の増殖を促進した (Y. Tsuboiら、 J Dent Res 80, (3), 881-886, 2001)等の報告もある。し力し、歯周組織や歯髄組織に おけるこれらの神経栄養因子の働きにっ 、ての詳し 、報告はな!/、。
発明の開示
発明が解決しょうとする課題
[0006] 本発明の目的は、歯周病や歯髄疾患の治療剤と治療方法、歯周組織再生用移植 材、歯周組織の再生方法を提供することである。
課題を解決するための手段
[0007] 本発明者らは、上記課題を解決するために鋭意研究した結果、神経栄養因子が、 ヒト歯周靱帯由来線維芽細胞の増殖を促進し、骨関連タンパク質の mRNA発現を促 進すること、ィヌの根分岐部病変モデルにぉ ヽて歯周組織の再生を促進することを 知得し、本発明を完成するに至った。
[0008] すなわち、本発明によれば、神経栄養因子を有効成分とする、歯周病の治療剤が 提供される。
[0009] 本発明の治療剤が、歯周組織を再生させることが好ま ヽ。
[0010] 本発明の治療剤が、セメント質、歯周靭帯、歯槽骨または歯髄を再生させることが 好ましい。
[0011] 本発明の治療剤が、歯肉上皮の歯根面根尖方向への進入を防止することが好まし い。
[0012] 本発明の治療剤が、歯髄腔における修復象牙質の産生を促進することが好ましい 。また、歯髄腔内壁への修復象牙質の添加を促進することが好ましい。
[0013] 本発明の治療剤において、神経栄養因子が、脳由来神経栄養因子、神経成長因 子、ニューロトロフィン 3、または-ユーロトロフィン 4/5であることが好ましい。
[0014] 本発明の別の側面によれば、神経栄養因子を含有する歯周組織再生用移植材が 提供される。
[0015] 本発明の移植材カ 歯周組織を再生させることが好ましい。 [0016] 本発明の移植材が、セメント質、歯周靭帯、歯槽骨または歯髄を再生させることが 好ましい。
[0017] 本発明の移植材カ 歯肉上皮の歯根面根尖方向への進入を防止することが好まし い。
[0018] 本発明の移植材が、歯髄腔における修復象牙質の産生を促進することが好ましい 。また、歯髄腔内壁への修復象牙質の添加を促進することが好ましい。
[0019] 本発明の移植材において、神経栄養因子が、脳由来神経栄養因子、神経成長因 子、ニューロトロフィン 3、または-ユーロトロフィン 4/5であることが好ましい。
[0020] 本発明のさらに別の側面によれば、神経栄養因子を使用する歯周組織の再生方 法が提供される。
[0021] 本発明の再生方法が、歯周組織を再生させることが好ましい。
[0022] 本発明の再生方法が、セメント質、歯周靭帯、歯槽骨または歯髄を再生させること が好ましい。
[0023] 本発明の再生方法が、歯肉上皮の歯根面根尖方向への進入を防止することが好 ましい。
[0024] 本発明の再生方法において、神経栄養因子が、脳由来神経栄養因子、神経成長 因子、ニューロトロフィン 3、または-ユーロトロフィン 4/5であることが好ましい。
[0025] 本発明の別の側面によれば、歯周病の治療方法であって、そうした状態に罹患し ているまたは罹患しやすい対象に治療有効量の神経栄養因子を投与することを含む
、歯周病の治療法が提供される。
[0026] 本発明の治療法が、歯周組織を再生させることが好ましい。
[0027] 本発明の治療法が、セメント質、歯周靭帯、歯槽骨または歯髄を再生させることが 好ましい。
[0028] 本発明の治療法が、歯肉上皮の歯根面根尖方向への進入を防止することが好まし い。
[0029] 本発明の治療法が、歯髄腔における修復象牙質の産生を促進することが好ましい
。また、歯髄腔内壁への修復象牙質の添加を促進することが好ましい。
[0030] 本発明の治療法において、神経栄養因子が、脳由来神経栄養因子、神経成長因 子、ニューロトロフィン 3、または-ユーロトロフィン 4/5であることが好ましい。
[0031] 本発明のさらに別の側面によれば、歯周病の治療に使用する薬剤を製造するため の神経栄養因子の使用が提供される。
[0032] この薬剤が、歯周組織を再生させることが好ましぐセメント質、歯周靭帯、歯槽骨ま たは歯髄を再生させることが好ましい。この薬剤が、歯肉上皮の歯根面根尖方向へ の進入を防止することが好ましい。この薬剤が、歯髄腔における修復象牙質の産生 を促進することが好ましい。また、歯髄腔内壁への修復象牙質の添加を促進すること が好ましい。神経栄養因子が、脳由来神経栄養因子、神経成長因子、ニューロトロフ イン 3、または-ユーロトロフィン 4/5であることが好まし!/、。
[0033] 本発明のさらに別の側面によれば、神経栄養因子を有効成分とする、修復象牙質 の形成促進剤が提供される。神経栄養因子が、脳由来神経栄養因子、神経成長因 子、ニューロトロフィン 3、または-ユーロトロフィン 4/5であることが好ましい。修復象 牙質が歯髄腔の内壁に添加されることが好ましい。
[0034] 本発明の別の側面によれば、歯髄疾患の治療方法であって、そうした疾患に罹患 して!/ヽるまたは罹患しやす!/ヽ対象に、修復象牙質の形成を促進するために治療有効 量の神経栄養因子を投与することを含む、歯髄疾患の治療法が提供される。神経栄 養因子が、脳由来神経栄養因子、神経成長因子、ニューロトロフィン 3、または-ユー ロト口フィン 4/5であることが好ましい。修復象牙質が歯髄腔の内壁へ添加されること が好ましい。
[0035] 本発明のさらに別の側面によれば、修復象牙質の形成を促進するために使用する 薬剤を製造するための神経栄養因子の使用が提供される。神経栄養因子が、脳由 来神経栄養因子、神経成長因子、ニューロトロフィン 3、または-ユーロトロフィン 4Z 5であることが好ま 、。修復象牙質が歯髄腔の内壁へ添加されることが好ま U、。 図面の簡単な説明
[0036] [図 1]HPL細胞およびヒト歯周靭帯における、 BDNFと TrkBとの mRNA発現を示す電気 泳動図である。各電気泳動図の、左端のレーンはマーカーである。(A)は、ヒト歯周 靭帯および HPL細胞におけるダリセルアルデヒド- 3_リン酸脱水素酵素(GAPDH)の mRNA(613bp)の発現を示す。(B)は、ヒト歯周靭帯における BDNFの mRNA(438bp) と TrkBの mRNA(434bp)の発現を示す。(C)は、 HPL細胞における BDNFと TrkBとの mRNA発現を示す。
[図 2A]HPL細胞における、 BDNFの作用時間と ALPaseの mRNA (381bp)の発現量と の関係を示す電気泳動図とグラフである。 HPL細胞は、すべて最終濃度 50ng/mlの BDNFで処理した。電気泳動図の左端のレーンはマーカーである。グラフ縦軸は、 BDNF作用時間 0の mRNA発現量を 1としたときの、各作用時間における mRNAの発 現量の割合を示す。横軸は、 BDNFの作用時間を示す。各棒グラフのバーは、平均 値士標準偏差の範囲を表す。 * *は p< 0.01の統計学的有意差を示す (t-test)。
[図 2B]HPL細胞における、 BDNFの作用時間と OPNの mRNA (532bp)の発現量との 関係を示す電気泳動図とグラフである。 HPL細胞は、すべて最終濃度 50ng/mlの BDNFで処理した。電気泳動図の左端のレーンはマーカーである。グラフ縦軸は、 BDNF作用時間 0の mRNA発現量を 1としたときの、各作用時間における mRNAの発 現量の割合を示す。横軸は、 BDNFの作用時間を示す。各棒グラフのバーは、平均 値士標準偏差の範囲を表す。 * *は p< 0.01の統計学的有意差を示す (t-test)。
[図 2C]HPL細胞における、 BDNFの作用時間と、 BMP- 2の mRNA(440bp)の発現量と の関係を示す電気泳動図とグラフである。 HPL細胞は、すべて最終濃度 50ng/mlの BDNFで処理した。電気泳動図の左端のレーンはマーカーである。グラフ縦軸は、 BDNF作用時間 0の mRNA発現量を 1としたときの、各作用時間における mRNAの発 現量の割合を示す。横軸は、 BDNFの作用時間を示す。各棒グラフのバーは、平均 値士標準偏差の範囲を表す。 * *は p< 0.01の統計学的有意差を示す (t-test)。
[図 2D]HPL細胞における、 BDNFの作用時間と GAPDHの mRNAの発現量との関係を 示す電気泳動図である。 HPL細胞は、すべて最終濃度 50ng/mlの BDNFで処理した 。電気泳動図の左端のレーンはマーカーである。
[図 3A]HPL細胞における、 BDNFの作用時間と BMP-4の mRNA(339bp)の発現量と の関係を示す電気泳動図とグラフである。 HPL細胞は、すべて最終濃度 50ng/mlの BDNFで処理した。電気泳動図の左端のレーンはマーカーである。グラフ縦軸は、 BDNF作用時間 0の mRNA発現量を 100としたときの、各作用時間における mRNAの 発現量の百分率を示す。横軸は、 BDNFの作用時間を示す。各棒グラフのバーは、 平均値士標準偏差の範囲を表す。
[図 3B]HPL細胞における、 BDNFの作用時間と OPGの mRNA(736bp)の発現量との 関係を示す電気泳動図とグラフである。 HPL細胞は、すべて最終濃度 50ng/mlの BDNFで処理した。電気泳動図の左端のレーンはマーカーである。グラフ縦軸は、 BDNF作用時間 0の mRNA発現量を 100としたときの、各作用時間における mRNAの 発現量の百分率を示す。横軸は、 BDNFの作用時間を示す。各棒グラフのバーは、 平均値士標準偏差の範囲を表す。
[図 4A]HPL細胞における、 BDNFの投与量と ALPaseの mRNAの発現量との関係を示 す電気泳動図とグラフである。各濃度の BDNFを、 HPL細胞に 24時間作用させた。電 気泳動図の左端のレーンはマーカーである。グラフ縦軸は、 BDNF投与量 0のときの mRNA発現量を 1とした場合の、各投与量における mRNAの発現量の割合を示す。横 軸は、 BDNFの濃度 (ng/ml)を示す。各棒グラフのバーは、平均値士標準偏差の範 囲を表す。 * *は p< 0.01の統計学的有意差を示す (t-test)。
[図 4B]HPL細胞における、 BDNFの投与量と OPNの mRNAの発現量との関係を示す 電気泳動図とグラフである。各濃度の BDNFを、 HPL細胞に 12時間作用させた。電気 泳動図の左端のレーンはマーカーである。グラフ縦軸は、 BDNF投与量 0のときの mRNA発現量を 1とした場合の、各投与量における mRNAの発現量の割合を示す。横 軸は、 BDNFの濃度 (ng/ml)を示す。各棒グラフのバーは、平均値士標準偏差の範 囲を表す。 * *は p< 0.01の統計学的有意差を示す (t-test)。
[図 4C]HPL細胞における、 BDNFの投与量と BMP-2の mRNAの発現量との関係を示 す電気泳動図とグラフである。各濃度の BDNFを、 HPL細胞に 24時間作用させた。電 気泳動図の左端のレーンはマーカーである。グラフ縦軸は、 BDNF投与量 0のときの mRNA発現量を 1とした場合の、各投与量における mRNAの発現量の割合を示す。横 軸は、 BDNFの濃度 (ng/ml)を示す。各棒グラフのバーは、平均値士標準偏差の範 囲を表す。 *は p< 0.05、 * *は p< 0.01の統計学的有意差を示す (t-test)。
[図 4D]HPL細胞における、 BDNFの投与量と GAPDHの mRNA(613bp)発現量との関 係を示す電気泳動図である。
[図 5] (A)は、 HPL細胞における、 BDNFの投与量と OPNの分泌量の関係を示すダラ フである。各濃度の BDNFを、 HPL細胞に 12時間作用させた。縦軸に OPNの分泌量 (ng/ml)、横軸に BDNFの濃度(ng/ml)を示す。(B)は、 HPL細胞における、 BDNFの 投与量と BMP-2の分泌量の関係を示すグラフである。各濃度の BDNFを、 HPL細胞 に、 24時間作用させた。縦軸に BMP-2の分泌量 (pg/ml)、横軸に BDNFの濃度( ng/ml)を示す。(C)は、 HPL細胞における、 BDNFの作用時間と BMP- 2の分泌量の 関係を示すグラフである。細胞は最終濃度 50ng/mlの BDNFで処理した。縦軸に BMP-2の分泌量 (pg/ml)、横軸に BDNFの作用時間を示す。 (A)一 (C)の各棒ダラ フのバーは、平均値士標準偏差の範囲を表す。 * *は p< 0.01の統計学的有意差 を示す (t-test)。
[図 6]BDNFの投与量と HPL細胞および HGKの DNA合成能との関係を示すグラフで ある。各濃度の BDNFを、 HPL細胞および HGKに 24時間作用させた。各グラフの縦 軸は、 BDNFある!/、は bFGF非投与(つまり BDNF濃度 0ある!/、は bFGF濃度 0)のときの DNA合成能を 100としたときの、各投与量における DNA合成能の割合を示している。 横軸は BDNFまたは bFGF濃度 (ng/ml)を示す。各棒グラフのバーは、平均値士標準 偏差の範囲を表す。 *は p< 0.05、 * *は p< 0.01の統計学的有意差を示す (t-test ;)。(A)は HPL細胞における DNA合成能を示し、(B)は HGKにおける DNA合成能を 示す。
[図 7] (A)は、 HPL細胞における、 BDNFの投与量と I型コラーゲンの合成量との関係 を示すグラフである。各濃度の BDNFを、 HPL細胞に 24時間作用させた。縦軸に I型 コラーゲンの合成量( μ g/ml)、横軸に BDNFの濃度(ng/ml)を示す。(B)は、 HPL細 胞における、 BDNFの作用時間と I型コラーゲン合成量の関係を示すグラフである。細 胞は最終濃度 50ng/mlの BDNFで処理した。縦軸に I型コラーゲン合成量 g/ml)、 横軸に BDNFの作用時間を示す。(A)、(B)の各棒グラフのバーは、平均値士標準 偏差の範囲を表す。 *は p< 0.05、 * *は p< 0.01の統計学的有意差を示す (t-test
) o
[図 8]ィヌの 3級根分岐部病変モデルにおける、 BDNFの投与量とセメント質および歯 槽骨の再生との関係を示すグラフである。縦軸にセメント質再生率 (%)または骨再生 率(%)を示し、横軸に BDNFの濃度 g/ml)を示す。各棒グラフのバーは、平均値 士標準偏差の範囲を表す。 *は p< 0.05、 * *は p< 0.01の統計学的有意差を示す (t-test)。(A)はセメント質再生率との関係を示し、(B)は骨再生率との関係を示す。
[図 9A]実施例 2で作成された、 BDNFを含まな 、テルプラグを填塞した根分岐部骨欠 損部位 (対照群)のへマトキシリン'ェォジン染色標本の光学顕微鏡像 (倍率 20倍)で める。
[図 9B]実施例 2で作成された、 BDNF (5 /z g/ml)を含む移植材を填塞した分岐部骨 欠損部位の顕微鏡像 (倍率 20倍)である。
[図 10]図 9Bの根分岐部直下の部分拡大像である (倍率 200倍)。根分岐部直下にお いて、裸出させた歯根面のほとんどの部分でコラーゲン線維を埋入したセメント質が 再生しており、上皮の進入も見られな力つた。
[図 11A]HPL細胞における、 NGFの mRNA発現量を示す放射活性のバンドとグラフで ある。グラフ縦軸は、 GAPDHの mRNA発現量に対する NGFの mRNA発現量の割合を 示す。グラフ中、 HGFは歯肉線維芽細胞、 HPCは歯髄細胞、 HSFは包皮由来線維芽 細胞、 HNBはヒト神経芽細胞腫細胞を示す。
[図 11B]HPL細胞における、 TrkAの mRNA発現量を示す放射活性のバンドとグラフで ある。グラフ縦軸は、 GAPDHの mRNA発現量に対する TrkAの mRNA発現量の割合を 示す。グラフ中、 HGFは歯肉線維芽細胞、 HPCは歯髄細胞、 HSFは包皮由来線維芽 細胞、 HNBはヒト神経芽細胞腫細胞を示す。
[図 12]HPL細胞における OPNの mRNA発現量に及ぼす、 NGFの影響を示すグラフで ある。(A)は NGFの経時効果の測定結果を示すグラフであり、グラフ縦軸は、 NGF作 用時間 0における mRNA発現量を 1としたときの、各作用時間における OPNの mRNA 発現量の割合を示す。グラフ横軸は NGFの作用時間を示す。すべて最終濃度 100 ng/mlの NGFで処理した。(B)は濃度効果の測定結果を示すグラフである。グラフ縦 軸は、 NGF濃度 0における mRNA発現量を 1としたときの、各濃度における OPNの mRNA発現量の割合を示す。横軸は NGF濃度(ng/ml)を示す。 NGFはすべて 24時 間作用させた。
[図 13]HPL細胞における ALPaseの mRNA発現量に及ぼす、 NGFの影響を示すグラ フである。(A)は NGFの経時効果の測定結果を示すグラフであり、グラフ縦軸は、 NGF作用時間 0における ALPaseの mRNA発現量を 1としたときの、各作用時間におけ る ALPaseの mRNA発現量の割合を示す。グラフ横軸は NGFの作用時間を示す。(B) は濃度効果の測定結果を示すグラフである。グラフ縦軸は、 NGF濃度 0における ALPaseの mRNA発現量を 1としたときの、各濃度における ALPaseの mRNA発現量の 割合を示す。横軸は NGF濃度 (ng/ml)を示す。
[図 14]HPL細胞における BMP-2の mRNA発現量に及ぼす、 NGFの影響を示すグラフ である。(A)は NGFの経時効果の測定結果を示すグラフであり、グラフ縦軸は、 NGF 作用時間 0における BMP-2の mRNA発現量を 1としたときの、各作用時間における BMP-2の mRNA発現量の割合を示す。グラフ横軸は NGFの作用時間を示す。(B)は 濃度効果の測定結果を示すグラフである。グラフ縦軸は、 NGF濃度 0における BMP-2 の mRNA発現量を 1としたときの、各濃度における BMP-2の mRNA発現量の割合を示 す。横軸は NGF濃度 (ng/ml)を示す。
[図 15]NGFの投与量と HPL細胞および HGKの DNA合成能との関係を示すグラフで ある。各濃度の NGFを、 HPL細胞および HGKに 24時間作用させた。各グラフの縦軸 は、 NGF濃度 0における DNA合成能を 100としたときの、 NGF各投与量における DNA 合成能の割合を示している。横軸は NGF濃度 (ng/ml)を示す。(A)は HPL細胞にお ける DNA合成能を示し、 (B)は HGKにおける DNA合成能を示す。
[図 16A]HPL細胞における、 NT-3の mRNA発現量を示す放射活性のバンドとグラフで ある。グラフ縦軸は、 GAPDHの mRNA発現量を 1としたときの NT-3の mRNA発現量の 割合を示す。グラフ中、 HGFは歯肉線維芽細胞、 HPCは歯髄細胞、 HSFは包皮由来 線維芽細胞、 HNBはヒト神経芽細胞腫細胞を示す。
[図 16B]HPL細胞における、 TrkCの mRNA発現量を示す放射活性のバンドとグラフで ある。グラフ縦軸は、 GAPDHの mRNA発現量を 1としたときの TrkCの mRNA発現量の 割合を示す。グラフ中、 HGFは歯肉線維芽細胞、 HPCは歯髄細胞、 HSFは包皮由来 線維芽細胞、 HNBはヒト神経芽細胞腫細胞を示す。
[図 17]HPL細胞における、 NT-3の投与量と ALPase活性との関係を示すグラフである 。グラフ縦軸は ALPase活性 (nmol/ゥエル)を示し、横軸は NT-3濃度 (ng/ml)を示す。
[図 18]HPL細胞における、 NT-3の投与量と HPL細胞の DNA合成能との関係を示す グラフである。グラフの縦軸は、 NT-3各濃度における HPL細胞の DNA合成能を吸光 度で比較したものである。横軸は NT-3濃度 (ng/ml)を示す。
[図 19A]HPL細胞における、 NT-4/5の作用時間と OPN、 OCNの mRNAの発現量との 関係を示す電気泳動図とグラフである。 NT-4/5の最終濃度は 50ng/mlとした。電気 泳動図の左端のレーンはマーカーである。各グラフ縦軸は、 NT-4/5の作用時間 0の ときの各 mRNA発現量を 100としたときの、各作用時間における各 mRNAの発現量の 割合を示す。横軸は、 NT-4/5の作用時間を示す。各棒グラフのバーは、平均値士標 準偏差の範囲を表す。各グラフにおいて、 *は p< 0.05、 * *は p< 0.01を表す (統 計学的検定は t-testによる)。
[図 19B]HPL細胞における、 NT-4/5の作用時間と BMP- 2、 BMP-7の mRNAの発現量 との関係を示す電気泳動図とグラフである。 NT-4/5の最終濃度は 50ng/mlとした。電 気泳動図の左端のレーンはマーカーである。各グラフ縦軸は、 NT-4/5の作用時間 0 のときの各 mRNA発現量を 100としたときの、各作用時間における各 mRNAの発現量 の割合を示す。横軸は、 NT-4/5の作用時間を示す。各棒グラフのバーは、平均値士 標準偏差の範囲を表す。各グラフにおいて、 *は p< 0.05、 * *は p< 0.01を表す( 統計学的検定は t-testによる)。
[図 19C]HPL細胞における NT-4/5の作用時間と ALPaseの mRNAの発現量との関係 を示す電気泳動図とグラフ、および NT-4/5の作用時間と GAPDHの発現量との関係 を示す電気泳動図である。 NT-4/5の最終濃度は 50ng/mlとした。各電気泳動図の左 端のレーンはマーカーである。グラフ縦軸は、 NT-4/5の作用時間 0のときの mRNA発 現量を 100としたときの、各作用時間における mRNAの発現量の割合を示す。横軸は 、 NT-4/5の作用時間を示す。各棒グラフのバーは、平均値士標準偏差の範囲を表 す。 *は p< 0.05を表す (統計学的検定は t-testによる)。
[図 20]HP細胞の各骨関連タンパク質(ALPase、 BMP- 2、 DSPP、 OPN、 OCN)の mRNA発現に対する、 NGFの濃度効果の測定結果を示すグラフである。 NGFの作用 時間は 24時間である。各グラフ縦軸は、 NGF濃度 0における mRNA発現量を 1とした ときの、各濃度における各 mRNA発現量の割合を示す。横軸は NGF濃度 (ng/ml)を 示す。各棒グラフのバーは、平均値士標準偏差の範囲を表す。 [図 21]HP細胞の各骨関連タンパク質(ALPase、 BMP-2、 DSPP、 I型コラーゲン、 OPN 、 OCN)の mRNA発現に対する、 BDNFの濃度効果の測定結果を示すグラフである。 各グラフ縦軸は、 BDNF濃度 0における各 mRNA発現量を 1としたときの、各濃度にお ける mRNA発現量の割合を示す。横軸は BDNF濃度 (ng/ml)を示す。各棒グラフのバ 一は、平均値士標準偏差の範囲を表す。
[図 22]HP細胞の各骨関連タンパク質(ALPase、 BMP- 2、 DSPP、 OPN、 OCN)の mRNA発現に対する、 NT-3の濃度効果の測定結果を示すグラフである。各グラフ縦 軸は、 NT-3濃度 0における mRNA発現量を 1としたときの、各濃度における各 mRNA 発現量の割合を示す。横軸は NT-3濃度 (ng/ml)を示す。各棒グラフのバーは、平均 値 ±標準偏差の範囲を表す。
[図 23]HP細胞の各骨関連タンパク質(ALPase、 BMP-2、 DSPP、 I型コラーゲン、 OPN 、 OCN)の mRNA発現に対する、 NT-4/5の濃度効果の測定結果を示すグラフである 。各グラフ縦軸は、 NT-4/5濃度 0における mRNA発現量を 1としたときの、各濃度にお ける各 mRNA発現量の割合を示す。横軸は NT-4/5濃度 (ng/ml)を示す。各棒グラフ のバーは、平均値士標準偏差の範囲を表す。
[図 24]各神経栄養因子(NGF、 BDNF, NT- 3、 NT- 4/5)の投与量と HP細胞の DNA 合成能との関係を示すグラフである。各濃度の神経栄養因子を、 HP細胞に 24時間 作用させた。各グラフの縦軸は、神経栄養因子非投与 (つまり神経栄養因子の濃度 0 )のときの吸光度を 100としたときの、各投与量における吸光度の割合を示している。 横軸は各神経栄養因子の濃度 (ng/ml)を示す。各棒グラフのバーは、平均値士標準 偏差の範囲を表す。
[図 25A]HMS細胞における、 NGFの作用時間と ALPaseの mRNAの発現量との関係を 示す電気泳動図とグラフである。コントロールである GAPDHの mRNAの発現量との関 係を示す電気泳動図も示す。 HMS細胞は、すべて最終濃度 100 ng/mlの NGFで処 理した。各電気泳動図の左端のレーンはマーカーである。グラフ縦軸は、 NGF作用 時間 0の mRNA発現量を 100%としたときの、各作用時間における mRNAの発現量の百 分率を示す。横軸は、 NGFの作用時間を示す。
[図 25B]HMS細胞における、 NGFの作用時間と OCNの mRNAの発現量との関係を示 す電気泳動図とグラフである。 GAPDHの mRNAの発現量との関係を示す電気泳動図 も示す。 HMS細胞は、すべて最終濃度 100 ng/mlの NGFで処理した。各電気泳動図 の左端のレーンはマーカーである。グラフ縦軸は、 NGF作用時間 0の mRNA発現量を 100%としたときの、各作用時間における mRNAの発現量の百分率を示す。横軸は、 NGFの作用時間を示す。
[図 25C]HMS細胞における、 NGFの作用時間と OPNの mRNAの発現量との関係を示 す電気泳動図とグラフである。 GAPDHの mRNAの発現量との関係を示す電気泳動図 も示す。 HMS細胞は、すべて最終濃度 100 ng/mlの NGFで処理した。各電気泳動図 の左端のレーンはマーカーである。グラフ縦軸は、 NGF作用時間 0の mRNA発現量を 100%としたときの、各作用時間における mRNAの発現量の百分率を示す。横軸は、 NGFの作用時間を示す。
[図 25D]HMS細胞における、 NGFの作用時間と BSPの mRNAの発現量との関係を示 す電気泳動図とグラフである。 GAPDHの mRNAの発現量との関係を示す電気泳動図 も示す。 HMS細胞は、すべて最終濃度 100 ng/mlの NGFで処理した。各電気泳動図 の左端のレーンはマーカーである。グラフ縦軸は、 NGF作用時間 0の mRNA発現量を 100%としたときの、各作用時間における mRNAの発現量の百分率を示す。横軸は、 NGFの作用時間を示す。
[図 25E]HMS細胞における、 NGFの作用時間と I型コラーゲンの mRNAの発現量との 関係を示す電気泳動図とグラフである。 GAPDHの mRNAの発現量との関係を示す電 気泳動図も示す。 HMS細胞は、すべて最終濃度 100 ng/mlの NGFで処理した。各電 気泳動図の左端のレーンはマーカーである。グラフ縦軸は、 NGF作用時間 0の mRNA 発現量を 100%としたときの、各作用時間における mRNAの発現量の百分率を示す。 横軸は、 NGFの作用時間を示す。
[図 26A]HMS細胞における、 BDNFの作用時間と ALPaseの mRNAの発現量との関係 を示す電気泳動図とグラフである。 GAPDHの mRNAの発現量との関係を示す電気泳 動図も示す。 HMS細胞は、すべて最終濃度 100 ng/mlの BDNFで処理した。各電気 泳動図の左端のレーンはマーカーである。グラフ縦軸は、 BDNF作用時間 0の mRNA 発現量を 100%としたときの、各作用時間における mRNAの発現量の百分率を示す。 横軸は、 BDNFの作用時間を示す。
[図 26B]HMS細胞における、 BDNFの作用時間と OCNの mRNAの発現量との関係を 示す電気泳動図とグラフである。 GAPDHの mRNAの発現量との関係を示す電気泳動 図も示す。 HMS細胞は、すべて最終濃度 100 ng/mlの BDNFで処理した。各電気泳 動図の左端のレーンはマーカーである。グラフ縦軸は、 BDNF作用時間 0の mRNA発 現量を 100%としたときの、各作用時間における mRNAの発現量の百分率を示す。横 軸は、 BDNFの作用時間を示す。
[図 26C]HMS細胞における、 BDNFの作用時間と OPNの mRNAの発現量との関係を 示す電気泳動図とグラフである。 GAPDHの mRNAの発現量との関係を示す電気泳動 図も示す。 HMS細胞は、すべて最終濃度 100 ng/mlの BDNFで処理した。各電気泳 動図の左端のレーンはマーカーである。グラフ縦軸は、 BDNF作用時間 0の mRNA発 現量を 100%としたときの、各作用時間における mRNAの発現量の百分率を示す。横 軸は、 BDNFの作用時間を示す。
[図 26D]HMS細胞における、 BDNFの作用時間と BSPの mRNAの発現量との関係を示 す電気泳動図とグラフである。 GAPDHの mRNAの発現量との関係を示す電気泳動図 も示す。 HMS細胞は、すべて最終濃度 100 ng/mlの BDNFで処理した。各電気泳動 図の左端のレーンはマーカーである。グラフ縦軸は、 BDNF作用時間 0の mRNA発現 量を 100%としたときの、各作用時間における mRNAの発現量の百分率を示す。横軸 は、 BDNFの作用時間を示す。
[図 26E]HMS細胞における、 BDNFの作用時間と I型コラーゲンの mRNAの発現量との 関係を示す電気泳動図とグラフである。 GAPDHの mRNAの発現量との関係を示す電 気泳動図も示す。 HMS細胞は、すべて最終濃度 100 ng/mlの BDNFで処理した。各 電気泳動図の左端のレーンはマーカーである。グラフ縦軸は、 BDNF作用時間 0の mRNA発現量を 100%としたときの、各作用時間における mRNAの発現量の百分率を 示す。横軸は、 BDNFの作用時間を示す。
[図 27A]HMS細胞における、 NT-3の作用時間と ALPaseの mRNAの発現量との関係 を示す電気泳動図とグラフである。 GAPDHの mRNAの発現量との関係を示す電気泳 動図も示す。 HMS細胞は、すべて最終濃度 100 ng/mlの NT-3で処理した。各電気 泳動図の左端のレーンはマーカーである。グラフ縦軸は、 NT-3作用時間 0の mRNA 発現量を 100%としたときの、各作用時間における mRNAの発現量の百分率を示す。 横軸は、 NT-3の作用時間を示す。
[図 27B]HMS細胞における、 NT-3の作用時間と OCNの mRNAの発現量との関係を 示す電気泳動図とグラフである。 GAPDHの mRNAの発現量との関係を示す電気泳動 図も示す。 HMS細胞は、すべて最終濃度 100 ng/mlの NT-3で処理した。各電気泳 動図の左端のレーンはマーカーである。グラフ縦軸は、 NT-3作用時間 0の mRNA発 現量を 100%としたときの、各作用時間における mRNAの発現量の百分率を示す。横 軸は、 NT-3の作用時間を示す。
[図 27C]HMS細胞における、 NT-3の作用時間と OPNの mRNAの発現量との関係を 示す電気泳動図とグラフである。 GAPDHの mRNAの発現量との関係を示す電気泳動 図も示す。 HMS細胞は、すべて最終濃度 100 ng/mlの NT-3で処理した。各電気泳 動図の左端のレーンはマーカーである。グラフ縦軸は、 NT-3作用時間 0の mRNA発 現量を 100%としたときの、各作用時間における mRNAの発現量の百分率を示す。横 軸は、 NT-3の作用時間を示す。
[図 27D]HMS細胞における、 NT-3の作用時間と BSPの mRNAの発現量との関係を示 す電気泳動図とグラフである。 GAPDHの mRNAの発現量との関係を示す電気泳動図 も示す。 HMS細胞は、すべて最終濃度 100 ng/mlの NT-3で処理した。各電気泳動 図の左端のレーンはマーカーである。グラフ縦軸は、 NT-3作用時間 0の mRNA発現 量を 100%としたときの、各作用時間における mRNAの発現量の百分率を示す。横軸 は、 NT-3の作用時間を示す。
[図 27E]HMS細胞における、 NT-3の作用時間と I型コラーゲンの mRNAの発現量との 関係を示す電気泳動図とグラフである。 GAPDHの mRNAの発現量との関係を示す電 気泳動図も示す。 HMS細胞は、すべて最終濃度 100 ng/mlの NT-3で処理した。各 電気泳動図の左端のレーンはマーカーである。グラフ縦軸は、 NT-3作用時間 0の mRNA発現量を 100%としたときの、各作用時間における mRNAの発現量の百分率を 示す。横軸は、 NT-3の作用時間を示す。
[図 28]HMS細胞の増殖に及ぼすァスコルビン酸 (Aa)、 NGF、 BDNF、 NT-3の効果を 示すグラフである。グラフの縦軸は、対照群に対する試験群の吸光度の百分率を示 す。各棒グラフのバーは、平均値士標準偏差の範囲を表す。 *は p< 0.05、 * *は p < 0.01を表す (統計学的検定は t- testによる)。
[図 29A]実施例 8で作成された、 NGF(100 g/ml)を含む移植材を填塞した根分岐部 骨欠損部の光学顕微鏡像 (倍率 20倍)である。
[図 29B]実施例 8で作成された、 NT- 3(100 g/ml)を含む移植材を填塞した根分岐部 骨欠損部の光学顕微鏡像 (倍率 20倍)である。
発明を実施するための最良の形態
[0037] 以下、本発明のより具体的な態様、並びに本発明を実施するための方法につき説 明する。
[0038] 本明細書において「歯周組織」とは、歯肉、歯槽骨、歯周靱帯 (歯根膜)、セメント質 で構成される組織を意味する。
[0039] 「歯肉」とは、歯頸部と歯槽骨の一部を被覆している軟組織で、歯肉上皮と歯肉固 有層とからなる。
[0040] 「歯周靭帯」とは、歯槽骨とセメント質の間に介在している結合組織のことであり、歯 根膜とも呼ばれる。
[0041] 「歯槽骨」は、歯根を取り巻いている歯槽壁の緻密質の部分に相当する固有歯槽 骨と、さらにその外側に位置する海綿質と緻密質の部分力 なる支持歯槽骨とに区 分される。
[0042] 「セメント質」は、歯根の最表層の硬組織であり、セメント細胞を有する有細胞性セメ ント質とセメント細胞を有さない無細胞性セメント質とに区分される。
[0043] 「歯髄」は、歯の生活反応を司る組織で、生理的、病的刺激に反応して、象牙質を 形成する。歯髄細胞、神経線維、細胞外基質、血管などから構成される。
[0044] 「再生 (regeneration)」とは、喪失組織、破壊された組織や損傷組織の再構成 ( reconstruction)および再構築(reproduction)のことであり、「歯周糸且織の再生」とは、 歯周組織を元の状態に回復させ機能させることである。
[0045] 「修復 (repair)」とは、創傷部の構造と機能が!/、まだ完全な状態では回復して 、な!/ヽ 組織の治癒のことであり、「歯周組織の修復」には、歯根表面への上皮性付着などが 含まれる。
[0046] 「歯肉上皮の歯根面根尖方向への進入を防止する」とは、歯肉上皮細胞が歯根面 に沿って根尖側に向かって増殖していくことを防ぐことを意味する。
[0047] 「歯周組織再生用移植材」とは、歯周組織の再生を促す材料のことである。 BDNF 等の神経栄養因子を所定の生体部位 (歯槽骨の欠損部位など)に一定の濃度で作 用させるためには、何らかの足場 (scaffold)が必要である。こうした足場となる材料と BDNF等の神経栄養因子を組合わせたものが本願の移植材である。
[0048] 「歯周病」とは、局所の細菌等を原因として起こる歯周組織の炎症性疾患を意味す る。
[0049] 「修復象牙質」とは、外来刺激を受けた結果形成された象牙質を意味する。
[0050] 「歯髄疾患」とは、歯髄の炎症性疾患、退行変性などを意味する。
[0051] 本発明は、ヒトなどの温血動物において、特に好ましくはヒトに適用される。
[0052] 本発明に使用する神経栄養因子、 BDNF、 NGF、 NT-3、 NT-4/5等は、遺伝子組換 えやィ匕学合成などで人工的に製造したものでも天然型 (native)でもよ 、。
[0053] 本発明の歯周病治療剤は、外用剤などによる局所投与が好ましい。シリンジ等に充 填し、歯周ポケット内に注入してもよい。また、歯周外科治療の際に、歯周組織の欠 損部に投与することも可能である。その場合には、長時間一定の濃度で作用させる ために、本発明の治療剤をシートやスポンジなどに吸収させて使用することも好まし い。感染した歯周組織を除去して力も投与することが好ましい。本発明の治療剤は注 射により局所投与することも可能である。例えば、歯周ポケット部の歯肉に注射しても よいし、歯槽骨頂付近の歯根膜腔に注射してもよい。根尖部付近に注射してもよい。
[0054] 本発明の修復象牙質形成促進剤は、外用剤などによる局所投与が好ましい。例え ば、露髄部に、液状、クリーム状、ペースト状などの修復象牙質形成促進剤を適用し ても良いし、断髄ゃ抜髄に適用しても良い。活性成分を吸収させたシートやスポンジ を適用し、一定期間仮封しても良い。あるいは外傷等で脱落した歯牙を再植する際 に根尖部等に適用しても良 、。
[0055] 本発明の歯周病治療剤と修復象牙質形成促進剤の剤型としては、通常の製剤方 法により、製剤的に許容しうる担体または希釈剤などを使用して製造されるクリーム剤 、軟膏剤、ローション剤等の外用剤の他、例えば水系の溶剤を主成分とした注射剤 などが挙げられる。粉末状の剤型として、使用直前に精製水などの溶解液に溶解し て使用することも可能である。
[0056] 本発明の歯周病治療剤と修復象牙質形成促進剤の投与量は、投与対象の年齢、 性別、症状等により異なるが、局所投与においては、通常 1歯あたり、神経栄養因子 として 1 X 10— 12g— 1 X 10— 3 g、特に 1 X 10— ug— 1 X 10— 7 g、さらに特に 1 X 10— 10g— 1 X 10— 8 gであることが好ましい。一般に、注射で局所投与する場合は外用薬よりも少 ない投与量でよい。
[0057] 本発明の移植材は、 1つの根分岐部欠損に使用する量あたり、 1 X 10— 12g— I X 10—
3 g、特に 1 X 10— ng— 1 X 10— 8 g、さらに特に 1 X 10"log-l X 10— 9 gの神経栄養因子を 含むことが好ましい。
[0058] 本発明の歯周病治療剤、修復象牙質形成促進剤や移植材は、その有効性を妨げ ない限り、他の薬剤と組合わせて使用してもよい。 BDNF、 NGF、 NT- 3、 NT-4/5を互 いに組合わせて使用してもよい。骨髄由来間葉系幹細胞 (MSC)、歯周靱帯由来線 維芽細胞、歯肉線維芽細胞、血管内皮細胞等と組み合わせて使用してもよい。水酸 化カルシウム製剤、抗菌剤などと併用してもよい。
[0059] 本発明の移植材にお 、て神経栄養因子と組合わせる材料としては、神経栄養因子 を投与局所に維持できる生体為害性のない材料であればよいが、例えば、多孔性の シートやスポンジなどが好ましい。生体分解性タンパク材料 (コラーゲン、ゼラチン、ァ ルブミン、プレートレット ·リッチ ·プラズマ (PRP) )や組織吸収性材料 (ポリグリコール酸 (PGA)、ポリ乳酸(PLA)、乳酸グリコール酸共重合体(PLGA)、ヒアルロン酸(HA)、 三リン酸カルシウム (TPC) )であれば、後に摘出する必要がな 、ためさらに好まし!/、。 例えば、テルプラグ (商品名) (テルモ株式会社)、ジーシ一メンブレン (商品名)(株式 会社ジーン一)、ォスフヱリオン (商品名)(ォリンパス株式会社)等がある。
実施例
[0060] 以下の実施例により本発明をさらに詳細に説明する。
[0061] (実施例 1)
ヒト歯周靱帯由来線維芽細胞 (human periodontal ligament cell, HPL細胞)およびヒ ト歯肉上皮細胞(human gingival keratinocyte, HGK)に及ぼす BDNFの影響を検討し た。
[0062] ( 1)使用細胞
(0ヒト歯周靱帯由来線維芽細胞 (HPL細胞)
矯正治療のために便宜的に抜歯された健全なヒト小臼歯の歯周靭帯から、 HPL細 胞を分離した。歯周靭帯周囲の他の結合組織力ゝらの細胞の混入を防ぐため、抜去ヒ ト小臼歯の歯頸部、根尖部を除く歯根中央部の健康な歯周靭帯を、メスを用いて剥 離し、細切した。細切した組織を、直径 60mmの細胞培養用シャーレ(CORNING、 NY )に貼り付け、 37°C、 5%CO気相条件で培養した。培地は、 10%FBS (GIBCO
2 、
Buffalo、 NY)、ペニシリン(100ユニット Zml) (明治製菓、東京)、ストレプトマイシン( 100 μ g/ml) (明治製菓)、およびアンホテリシン B (1 μ g/ml) (GIBCO)を添加したダ ルべッコ変法イーグル培地 (DMEM、 日水製薬、東京)を使用した (ここで使用した培 地を「培地 A」と記す)。 4一 8代継代した HPL細胞を以下の実験に供した。
[0063] GOヒト歯肉上皮細胞 (HGK)
ヒト培養細胞を用いた実験の必要性および歯肉の使用目的などを患者に十分説明 し、患者の同意を得た後に、歯肉の提供を受けた。智歯周囲炎の患者から、原因と なった智歯を抜歯する際に、余剰の歯肉弁から歯肉片を獲得した。得られた歯肉片 を、 4°Cで一昼夜、 0.01%エチレンジァミン 4酢酸(EDTA)と 0.025%トリプシンを含むダ ルべッコ PBS (—) (PBS (一) , 日水製薬)で処理して、 HGKを分離した。ゥシインシユリ ン(10 μ g/ml) (Sigma, St. Rouis, MO, USA)、ヒトトランスフェリン(5 μ g/ml) (Sigma )、 2-メルカプトエタノール(10 μ Μ)、 2-アミノエタノール(10 μ Μ)、亜セレン酸ナトリウ ム(10 Μ)、牛下垂体抽出液(50 gZml)、ペニシリン(100ユニット Zml)、ストレプト マイシン(100 μ g/ml)およびアンホテリシン B (50ng/ml)を含む MCDB153培地( Sigma)で初代培養を行った (ここで使用した培地を「培地 C」と記す)。培養は、ゥシ I 型コラーゲンがコートされた直径 60mmのシャーレ(SUMILONセルタイト C- 1、住友べ 一クライト、東京)を用いて、 37°C、 5%CO気相条件で行った。 3— 4代継代した HGK
2
を以下の実験に供した。
[0064] (2) HPL細胞における BDNFとそのレセプターの発現 HPL細胞およびヒト歯周靭帯における BDNFと TrkBの mRNA発現を、 1st Strand cDNA Synthesis Kit for RT- PCR(Roche、 Indianapolis)を使用して、逆転写 PCR法で 調べた。
[0065] 上記(1) (0で得られた HPL細胞がコンフルェントになった時点で細胞を回収し、 ISOGEN (二ツボンジーン、東京)にて細胞を溶解させた後、クロ口ホルムを加えて遠 心分離し、得られた水相にイソプロパノールを加えて総 RNAを抽出した。
[0066] 上記(1) (0で得られたヒト歯周靭帯を ISOGEN中でホモジナイズした後、クロロホノレ ムを加えて遠心分離し、得られた水相にイソプロパノールを加えて総 RNAを抽出した
[0067] 精製した総 RNAのうち 1 μ gの各 RNAを、オリゴ dTプライマーを用いて逆転写し、得ら れた cDNAを PCR反応 30サイクルにて増幅させた後、 1.5%ァガロースゲルに泳動し た。コントロールとしてはダリセルアルデヒド- 3-リン酸脱水素酵素(GAPDH)を使用し た。
[0068] 結果を図 1に示す。コントロールとしてはダリセルアルデヒド- 3-リン酸脱水素酵素( GAPDH)を使用した。図から明らかなように、ヒト歯周靭帯において BDNFと TrkBの mRNAの発現がみられ、そのヒト歯周靱帯より分離、培養した HPL細胞においても、 BDNFと TrkBの mRNAが発現していることが確認された。
[0069] (3)細胞の BDNFでの処理
(0 HPL細胞
上記(1) (0で得られた HPL細胞を、ゥシ I型コラーゲンがコートされた直径 60mmの シャーレ(SUMILONセルタイト C- 1)に、 1シャーレあたり 3.5 X 105個で、 50 μ g/mlの L-ァスコルビン酸を含む培地 Aを用いて、 37°C、 5%CO気相条件で 13日間培養し
2
た (ここで使用した培地を「培地 B」と記す)。培地は 2日に 1回交換した。 14日目の培 養終了前 0、 3、 6、 12または 24時間において、細胞を DMEMで 2回洗浄し、最終濃度 0 、 1、 10、 50または 100ng/mlの BDNF(Recombinant Human BDNF, R & D system, Minneapolis, USA)を含む無血清培地(ペニシリン(100ユニット Zml)、ストレプトマイ シン(100 μ g/ml)、アンホテリシン Β (1 μ g/ml) (GIBCO)、および L-ァスコルビン酸 (50 μ g/ml)を添カ卩した DMEM) (ここで使用した培地を「培地 D」と記す)に交換した。 [0070] (ii) HGK
上記(1) (ii)で得られた HGKを、ゥシ I型コラーゲンがコートされた 96穴プレート( SUMILONセルタイト C- 1プレート 96F、住友ベークライト)に、 2 X 103個/ゥエルで接 種し、 37°C、 5%CO気相条件で、培地 Cを用いて培養した。培地は 2日に 1回交換し
2
た。細胞増殖期にあたる培養 4一 5日目に、プレートの細胞を MCDB153培地で 2回洗 浄し、最終濃度 0、 1、 10、 25、 50または lOOng/mlの BDNFを含む培地(牛下垂体抽出 液を含まないこと以外は培地 Cと同一の組成の培地)に交換し、 24時間培養した。
[0071] (4) HPL細胞における骨関連タンパク質の発現
(0 mRNAの発現
上記(3) (0に記載の方法と同様にして、最終濃度 0、 1、 10、 50または lOOng/mlの BDNFで処理した HPL細胞から、 ISOGENを用いて総 RNAを抽出し、精製した。アル カリホスファターゼ (ALPase)、骨形成タンパク- 2 (bone morphogenetic protein- 2、 BMP- 2)、骨形成タンパク- 4 (bone morphogenetic protein- 4、 BMP- 4)、ォステオポン チン(osteopontin、 OPN)、ォステオプロテジエリン(osteoprotegerin、 OPG)の mRNA 発現量は、 ABI PRISM7700 (Applied Biosystems,東京)を用いて、 PCRプロダクトの 生成過程をリアルタイムでモニタリングし、定量的に解析した(Rea卜 time PCR法)。コ ントロールとしては GAPDHを使用した。
[0072] 各骨関連タンパク質の mRNA発現に対する、 BDNFの経時効果測定の結果を図 2A 一 2C、 3A、 3Bに、濃度効果測定の結果を図 4A— 4Cに示す。各グラフにおいて、 *は pく 0.05、 * *は pく 0.01を表す(統計学的検定は t- testによる)。
[0073] これらの図から明らかなように、 BDNFは OPG、 BMP-4の mRNA発現に影響を及ぼさ なかったが、 ALPase、 BMP-2、 OPNの mRNA発現量を濃度および時間依存的に増加 させた。
[0074] (ii) タンパク質の発現
上記(1) (0で得られた HPL細胞を、ゥシ I型コラーゲンがコートされた 48穴プレート( SUMILONセルタイト C-1プレート 48F、住友ベークライト)に、 1 X 104個/ゥエルで 播種し、培地 Bを用いて 13日間培養した。培地は 2日に 1回交換した。 14日目の培養 終了 24時間前に、プレートの細胞を DMEMで 2回洗浄し、最終濃度 0、 1、 10、 25、 50 または lOOng/mlの BDNFを含む無血清培地 Dに交換した。培養終了後に、上清を回 収し、上清中の分泌 OPN量、分泌 BMP-2量を、 ELISA法で測定した。分泌 OPN量の 測定にはサンドイッチ ELISAキット(IBL、群馬)を、分泌 BMP-2量の測定にはサンドィ ツチ ELISAキット(R & D system)を使用した。
[0075] 図 5に、 HPL細胞の分泌 OPN量と分泌 BMP- 2量に対する、 BDNFの経時効果測定 および濃度効果測定の結果を示す。各グラフにおいて、 *は p< 0.05、 * *は p< 0.01を表す (統計学的検定は t-testによる)。図 5から明らかなように、 BDNFは、 HPL 細胞における OPNと BMP-2の分泌を促進した。
[0076] (5) HPL細胞と HGKの増殖
HPL細胞と HGKの DNA合成能に及ぼす BDNFの影響を、 Cell Proliferation ELISA system, version 2 (アマシャムフアルマシアバイオテク)を用いて、 ELISA法で測定した
[0077] 上記(1) (0で得られた HPL細胞を、ゥシ I型コラーゲンがコートされた 96穴プレート( SUMILONセルタイト C-1プレート 96F)に、 5 X 103個 Zゥエルで播種し、培地 Bを用い て 10日間培養した。細胞を DMEMで 2回洗浄し、 10%FBSの代わりに 0.3%FBSを添 加した培地 Bで 24時間培養した後、同じ培地に BDNFを最終濃度 0、 1、 10、 25、 50又 は lOOng/mlとなるように添加して調製した培地と交換し、さらに 24時間培養した。培養 終了の 2時間前(つまりに BDNF添カ卩の 22時間後)に、ブロモデォキシゥリジン (BrdU) を lOng/mlの濃度で各ゥエルに添カ卩して、細胞に取り込ませた。培養は 37°C、 5%CO
2気相条件下で行った。
[0078] 上記(l) (ii)で得られた HGKを、上記(3) (ii)と同一の方法で培養し、 BDNFで処理し た。培養終了の 2時間前(つまりに BDNF添加の 22時間後)に、プロモデォキシゥリジ ン (BrdU)を lOng/mlの濃度で各ゥエルに添加して、細胞に取り込ませた。
[0079] 培養終了後、 HPL細胞と HGKを固定した後、ブロッキングを行い、ペルォキシダー ゼ標識抗 BrdU抗体を室温で 2時間作用させ、 TMB (3,3',5,5'-テトラメチルベンシジン )基質を加え、波長 450nmにおける吸光度を吸光度計 (MICRO PLATE READER, TOSOH)で測定した。コントロールとして、塩基性線維芽細胞成長因子 (bFGF)を最 終濃度 0、 0.3、 1、 3、 5、 lOng/mlで 24時間作用させた細胞を同様に処理して、 DNA合 成能を測定した。
[0080] 結果を図 6に示す。(A)は HPL細胞に対する効果を示すグラフであり、(B)は HGK に対する効果を示すグラフである。なお、各グラフにおいて、 *は p< 0.05、 * *は p < 0.01を表す (統計学的検定は t- testによる)。
[0081] 図 6から明らかなように、 BDNFは HPL細胞の DNA合成能を促進させたのに対し、 HGKの DNA合成能には影響を及ぼさなかった。
[0082] (6) HPL細胞のコラーゲン合成
上記(1) (0で得られた HPL細胞をゥシ I型コラーゲンをコートした 48穴プレートに播 種し、培地 Bを用いて 13日間培養した。培地は 2日に 1回交換した。 14日目の培養終 了前 0、 3、 6、 12または 24時間、プレートの細胞を DMEMで 2回洗浄し、最終濃度 0、 1 、 10、 25、 50または lOOng/mlの BDNFを含む無血清培地 Dに交換した。
[0083] Procollagen type I C- peptide (PIP)EIA kit (TAKARA)を使用して、 ELISA法で HPL 細胞のコラーゲン合成量を測定した。 I型プロコラーゲン C末端プロペプチド (PIP)に 特異的なモノクローナル抗体 (ペルォキシダーゼ標識)を用いて、 HPL細胞培養上清 中のコラーゲン合成量を、波長 450nmにおける吸光度を吸光度計 (MICRO PLATE READER)で測定した。
[0084] 結果を図 7に示す。(A)は BDNFの I型コラーゲン合成への濃度効果測定の結果を 示し、(B)は経時効果測定の結果を示す。図 7から明らかなように、 BDNFは HPL細胞 の I型コラーゲン合成量を増加させた。
(実施例 2)
ビーグル犬の 3級根分岐部病変モデルにおける BDNFの効果を検討した。
[0085] 直径 8mm X 5mmのテルプラグ(商品名)(テルモ)に、濃度 5、 25、 50 μ g/mlの BDNF 溶液 (滅菌生理食塩液中)の 25 μ 1をしみこませ、移植材とした。
[0086] 7頭の雌ビーグル犬(12— 20力月齢、体重 10— 14kg)を、ドミトール(明治製菓)筋注 による鎮静下に、全顎的にハンドスケーラーでスケーリングを行った。以後 2日に 1回 の割合でブラッシングとポビドンョードを有効成分とする含嗽薬であるイソジン (商品 名)(明治製菓)による口腔清掃とを 1力月行い、臨床的に健康な歯周組織の状態を 確立した。 [0087] これらのビーグル犬に、ペントバルビタール系麻酔剤の静脈内注射により、全身麻 酔を施し、左右両側下顎頰側歯肉に浸潤麻酔を行い、第一小臼歯遠心から第一大 臼歯近心にかけての歯肉溝切開を行い、歯肉を剥離し粘膜骨膜弁を形成した。次い で、左右両側第二、第三、第四小臼歯の根分岐部歯槽骨をラウンドバーと骨ノミで削 除し、根分岐部 3級 (Lindhe & Nymanの分類による)の骨欠損を作成した。骨欠損の 大きさは、未処置の根分岐部直下から約 4mm根尖側寄りまでとした。
[0088] 露出させた歯根面の残存セメント質をノヽンドスケーラーで除去した後、根分岐部骨 欠損内を生理食塩液で十分洗浄して削片を洗い流し、 1力所あたり直径 8mm X 5mm のテルプラグ移植材を填塞した。 BDNFを含まない、滅菌生理食塩液 25 μ 1のみをし みこませた直径 8mm X 5mmのテルプラグ移植材を填塞して、コントロールとした。
[0089] 手術 6週間後に、ペントバルビタール系麻酔剤の静脈内注射による全身麻酔下で 、 4%パラホルムアルデヒドで全身を灌流固定した。灌流固定後、下顎を切断し、処理 した歯及び歯周組織を一塊として摘出した。得られた標本を、 4%パラホルムアルデヒ ドで 1日浸漬固定後、 10%EDTAにて脱灰を行い、通法に従いアルコール脱水しパラ フィンに包埋した。この標本から、近遠心方向に歯軸と平行な切片 (厚さ約 5 m)を 作製し、へマトキシリン'ェォジン染色を施した。
[0090] 作成した組織標本のなかで、近遠心方向歯軸に平行でし力ゝも根中央付近で薄切さ れた標本を選択し、光学顕微鏡 (ECLIPSE E600、 NIKON)で組織観察と計測を行つ た。骨再生率は、裸出させた根分岐部欠損の面積に対する再生歯槽骨の面積の割 合 (百分率)として表した。セメント質再生率は、裸出させた歯根面の長さに対する、 再生セメント質の長さの割合 (百分率)として表した。
[0091] 結果を図 8、 9A、 9B、 10に示す。図 8の(A)はセメント質再生への BDNFの効果の 測定結果を示し、図 8の(B)は歯槽骨再生への BDNFの効果の測定結果を示す。図 9Aは BDNF非投与(コントロール)の根分岐部骨欠損部のへマトキシリン ·ェォジン染 色標本であり、図 9Bは、 BDNFを投与した (BDNF (5 μ g/ml)を含む移植材を填塞)根 分岐部骨欠損部の光学顕微鏡像である (倍率 20倍)。図 10は図 9Bの根分岐部直下 の部分拡大像である (倍率 200倍)。
[0092] 図 8から明らかなように、 BDNFの投与により、ィヌの 3級根分岐部病変モデルにお いて、セメント質の再生と歯槽骨の再生が認められた。
[0093] 図 9Aのコントロール標本にお!、ては、セメント質、歯槽骨、歯周靱帯の再生が 、く らカ観察されたものの、骨欠損底部力も歯冠側方向のほぼ 1Z2に留まっていた。根 分岐部直下の欠損部にはセメント質再生、歯槽骨再生は認められず、上皮の進入も 認められ、線維芽細胞、コラーゲン線維、血管を主体とした結合組織で埋めつくされ ていた。
[0094] 図 9Bおよび図 10の BDNFを投与した根分岐部骨欠損部の標本では、裸出させた 歯根面のほとんどの部分でセメント質が再生しており、上皮の進入も見られな力つた 。また、再生セメント質と再生歯槽骨の間には一定の幅を維持した歯周靱帯も観察さ れた。
(実施例 3)
HPL細胞および HGKに及ぼす NGFの影響を検討した。
[0095] (1) HPL細胞における NGFとそのレセプターの発現
上記実施例 1 (2)と同一の方法で HPL細胞力も総 RNAを回収し、精製した。得られ た総 RNAを試料として、 NGFと TrkAとの mRNA発現をノーザンブロット法で測定した。 コントロールとしては GAPDHを使用した。
[0096] 結果を図 11 A、 1 IBに示す。図 11Aは NGFの mRNA発現を示し、図 11Bは TrkAの mRNA発現を示す。図から明らかなように、 HPL細胞において NGFの mRNAと TrkAの mRNAとが発現して!/、ることが確認された。
[0097] (2) HPL細胞における骨関連タンパク質の発現
HPL細胞の骨関連タンパク質の mRNA発現に及ぼす NGFの影響を測定した。
[0098] HPL細胞を、最終濃度 0、 5、 10、 25、 50または 100ng/mlの NGF(Recombinant
Human NGF、 R & D system, Minneapolis, USA)を BDNFの代わりに使用すること以 外は、実施例 1 (4) (0と同一の方法で処理した。 NGF処理した HPL細胞の ALPase、
BMP-2、 OPNの各 mRNA発現量を、実施例 1 (4) (0と同一の方法で測定した。
[0099] 図 12、 13、 14に、それぞれ、 OPN、 ALPase、 BMP- 2の mRNA発現に対する、 NGF の経時効果測定および濃度効果測定の結果を示す。各グラフにおいて、 *は p<
0.05、 * *は p< 0.01を表す。検定は t- testによる。 [0100] 図 12、 13、 14から明らかなように、 NGFは、 ALPase、 BMP— 2、 OPNの mRNA発現量 を濃度および時間依存的に増加させた。
[0101] (3) HPL細胞と HGKの増殖
HPL細胞と HGKの DNA合成能に及ぼす NGFの影響を測定した。
[0102] HPL細胞と HGKを、最終濃度 0、 5、 10、 25、 50または 100ng/mlの NGFを BDNFの代 わりに使用すること以外は、実施例 1 (5)と同一の方法で処理した。 NGF処理した
HPL細胞と HGKの DNA合成能を、実施例 1 (5)と同一の方法で測定した。
[0103] 結果を図 15に示す。 NGF作用時間はすべて 24時間である。(A)は HPL細胞に対 する効果を示し、(B)は HGKに対する効果を示す。各グラフにおいて、 *は p< 0.05
、 * *は p< 0.01を表す。検定は t- testによる。
[0104] 図 15から明らかなように、 NGFは HPL細胞の DNA合成能を促進させたのに対し、
HGKの DNA合成能を低下させた。
(実施例 4)
HPL細胞および HGKに及ぼす NT-3の影響を検討した。
[0105] (l) HPL細胞における NT-3とそのレセプターの発現
上記実施例 1 (2)と同一の方法で HPL細胞力も総 RNAを回収し、精製した。得られ た総 RNAを試料として、 NT-3と TrkCの mRNA発現を、ノーザンブロット法で測定した。 コントロールとしては GAPDHを使用した。
[0106] 結果を図 16A、 16Bに示す。図 16Aは NT-3の mRNA発現を示し、 16Bは TrkCの mRNA発現を示す。これらの図から明らかなように、 HPL細胞において NT-3の mRNA と TrkCの mRNAとが発現していることが確認された。
[0107] (2) HPL細胞における骨関連タンパク質の発現
HPL細胞の ALPase活性に及ぼす NT-3の影響を測定した。
[0108] HPL細胞を、最終濃度 0、 1、 10または 50ng/mlの NT- 3(Recombinant Human NT- 3 、 R & D system, Minneapolis, USA)を BDNFの代わりに使用すること以外は実施例 1 ( 3) (0と同一の方法で処理し、その ALPase活性を Bessey-Lowry法に従って定量した。 すなわち、 NT-3処理した HPL細胞をリン酸緩衝液で 3回洗浄し、 10mMトリス塩酸緩 衝液を加えた後、氷冷下で超音波処理を行い、試料を調製した。 ρ-ニトロフエ-ルリ ン酸を基質とする ALPase測定キット (和光純業)を使用して、試料中の ALPaseの活性 を測定した。
[0109] 図 17に、 ALPase活性に対する NT-3の濃度効果測定の結果を示す。 NT-3作用時 間はすべて 24時間である。図から明らかなように、 NT-3は、 ALPase活性に対してそ れほど影響が見られな力つた。
[0110] (3) HPL細胞の増殖
実施例 1 (1)と同一の方法で分離した HPL細胞を、最終濃度 0、 1、 5、 10、 50または lOOng/mlの NT-3を BDNFの代わりに使用すること以外は、実施例 1 (5)と同一の方法 で処理し、その DNA合成能を、実施例 1 (5)と同一の方法で測定した。
[0111] 結果を図 18に示す。 NT-3作用時間はすべて 24時間である。本グラフにおいて、 * は pく 0.05、 * *は pく 0.01を表す。検定は t- testによる。図から明らかなように、 NT-3は HPL細胞の DNA合成能を促進させた。
(実施例 5)
ヒト歯周靱帯由来線維芽細胞 (human periodontal ligament cell, HPL細胞)におけ る NT-4/5による骨関連タンパク質の mRNA発現を調べた。
[0112] (l) HPL細胞の NT-4/5での処理
上記実施例 1 (1) (0で得られた HPL細胞を、ゥシ I型コラーゲンがコートされた直径 60mmのシャーレ(SUMILONセルタイト C- 1)に、 1シャーレあたり 3.5 X 105個で、 50 g/mlの培地 Βを用いて、 37°C、 5%CO気相条件で 13日間培養した。培地は 2日に 1
2
回交換した。 14日目の培養終了前 0、 3、 6、 12または 24時間において、細胞を DMEM で 2回洗浄し、最終濃度 50ng/mlの NT-4/5 (R&D)を含む培地 Dに交換した。
[0113] (2) HPL細胞における mRNAの発現
上記(3) (0に記載の方法と同様にして、最終濃度 50ng/mlの NT-4/5で処理した HPL細胞から、 ISOGENを用いて総 RNAを抽出し、精製した。 ALPase、 BMP-2、 OPN 、ォステオカルシン (OCN)、 BMP- 7、 BMP- 4、 OPGの mRNA発現量は、 ABI
PRISM7700 (Applied Biosystems、東京)を用いて、 PCRプロダクトの生成過程をリアル タイムでモニタリングし、定量的に解析した(Rea卜 time PCR法)。コントロールとしては GAPDHを使用した。 [0114] 各骨関連タンパク質の mRNA発現に対する、 NT-4/5の経時効果測定の結果を図 1 9A、 19B、 19Cに示す。各グラフにおいて、 *は pく 0.05、 * *は pく 0.01を表す( 統計学的検定は t-testによる)。図から明らかなように、 HPL細胞において、 NT-4/5 は、 OPN、 BMP- 2、 ALPase、 OCN、 BMP- 7の mRNA発現を促進した。し力し、 BMP- 4 、 OPGの発現には影響を与えな力つた (データは示さず)。
(実施例 6)
ヒト歯髄細胞 (human pulp cell, HP細胞)に及ぼす NGF、 BDNF、 NT- 3、 NT- 4/5の 影響を検討した。
[0115] (1)使用細胞
便宜的歯髄除去時に得られた健全歯髄を細切した。細切した組織を、直径 60mm の細胞培養用シャーレ(コーユング、 NY)に貼り付け、 37°C、 5%CO気相条件で培
2
地 Aにて培養した。 4一 8代継代した HP細胞を以下の実験に供した。
[0116] (2)細胞の NGF、 BDNF、 NT- 3、 NT- 4/5での処理
NGF、 BDNF、 NT-3または NT-4/5を培地 Dに最終濃度 0、 5、 10、 25、 50、 100ng/ml で加えて、各種濃度の神経栄養因子含有培地を用意した。上記(2)で得られた HP 細胞を、ゥシ I型コラーゲンがコートされた直径 60mmのシャーレ(SUMILONセルタイト C-1)に、 1シャーレあたり 3.5 X 105個で、培地 Bを用いて、 37°C、 5%CO気相条件で
2
13日間培養した。培地は 2日に 1回交換した。 14日目の培養終了前 24時間において 、細胞を DMEMで 2回洗浄し、いずれかの神経栄養因子含有培地に交換した。
[0117] (3) HP細胞における mRNAの発現
上記(1)で、各濃度の NGF、 BDNF、 NT-3,または NT-4/5で 24時間処理した HP細 胞から、 ISOGENを用いて総 RNAを抽出し、精製した。 ALPase、 BMP-2、象牙質シァ 口タンパク (DSPP)、 I型コラーゲン(collagen)、 OPN、 OCNの mRNA発現量は、 ABI PRISM7700 (Applied Biosystems、東京)を用いて、 PCRプロダクトの生成過程をリアル タイムでモニタリングし、定量的に解析した(Rea卜 time PCR法)。コントロールとしては GAPDHを使用した。
[0118] NGF、 BDNF、 NT- 3、 NT-4/5の各骨関連タンパク質の mRNA発現に対する濃度効 果の測定結果を、それぞれ、図 20、 21、 22、 23に示す。図から明らかなように、 NGF 、 BDNF、 NT- 3、 NT- 4/5は、 HP細胞において、 ALPaseゝ BMP- 2、 DSPP、 OPN、 OCN の mRNA発現を促進した。 BDNFと NT-4/5は、 I型コラーゲンの mRNA発現も促進した
[0119] (4) HP細胞の増殖
HP細胞の DNA合成能に及ぼす NGF、 BDNF, NT- 3、 NT- 4/5の影響を、 Cell P roliferation ELISA system, version 2(アマシャムファノレマシアバイオテク)を用いて、 ELISA法で測定した。
[0120] NGF、 BDNF, NT- 3、 NT- 4/5のそれぞれを、 10%FBSの代わりに 0.3%FBSを添カロ した培地 Bに、最終濃度 0、 5、 10、 25、 50又は lOOng/mlとなるように添カ卩して、各種神 経培養因子含有培地を調製した。
[0121] 上記(1)で得られた HP細胞を、ゥシ I型コラーゲンがコートされた 96穴プレート(
SUMILONセルタイト C-1プレート 96F)に、 5 X 103個 Zゥエルで播種し、培地 Bを用い て 10日間培養した。細胞を DMEMで 2回洗浄し、 10%FBSの代わりに 0.3%FBSを添 カロした培地 Bで 24時間培養した後、上記の各種神経培養因子含有培地と交換し、さ らに 24時間培養した。培養終了の 2時間前(つまりに神経培養因子添加の 22時間後) に、ブロモデォキシゥリジン (BrdU)を lOng/mlの濃度で各ゥエルに添カ卩して、細胞に 取り込ませた。培養は 37°C、 5%CO気相条件下で行った。
2
[0122] 培養終了後、 HP細胞を固定後、ブロッキングを行 、、ペルォキシダーゼ標識抗
BrdU抗体を室温で 2時間作用させ、 TMB (3,3',5,5'-テトラメチルベンシジン)基質を 加え、波長 450nmにおける吸光度を吸光度計(MICRO PLATE READER, TOSOH) で測定した。
[0123] 結果を図 24に示す。図から明らかなように、 NGF、 BDNF, NT- 3、 NT-4/5は HP細 胞の DNA合成能を促進させた。
(実施例 7)
ヒト間葉系幹細胞(human mesenchymal stem cell, HMS細胞)に及ぼす NGF、 BDNF, NT- 3、ァスコルビン酸の影響を検討した。
[0124] (1)使用細胞
HMS細胞の分離は堤ら(S.Tsutsumi: BBRC, 26, 288(2), 2001)の方法に準じて行つ た。すなわち、十分なインフォームドコンセントを得た患者の智歯抜去時に下顎骨骨 髄腔へ穿刺し、骨髄液を得た。得られた骨髄液をへパリンナトリウム(200 U/ml,シグ マ、米国)を含むダルベッコ変法イーグル培地(DMEM、シグマ、米国)と速やかに混 合し,遠心分離(150g, 5 min)を行った。遠心分離後、上清を除去し、得られた細胞 成分を 10%のゥシ胎児血清(FCS, Biological Industries,イスラエル)、 100 units/mlの ペニシリン (明治製菓、東京)、 100 g/mlのストレプトマイシン (明治製菓,東京)、 1 μ g/mlのアンホテリシン Β (ギブコ、米国)を含む DMEMに懸濁し、骨髄液が 200— 500 μ l/dish、培地が 10 ml/dishとなるように、直径 100 mmの細胞培養用シャーレ(コー ユング、米国)に播種した。培養は 37°C, 5%CO気相条件で行った。以後 4日毎に培
2
地交換を行った。増殖した細胞がコンフルェントに達する直前に、 0.05%トリプシン( ディフコ、米国)、 0.02% EDTA (片山化学、大阪)、 100 units/mlのペニシリン, 100 μ g/mlのストレプトマイシンを含むリン酸緩衝生理食塩液 (PBS, 日水製薬,東京)を用 いて細胞を分散させた。分散させた細胞は 20% FCS、 10%のジメチルスルホキシド( DMSO,片山化学,大阪)、 100 units/mlのペニシリン、 100 g/mlのストレプトマイシ ンを含む DMEMに、細胞密度が 1.0 X 106細胞/ mlとなるよう懸濁し、セラムチューブ( 住友ベークライト,東京)に 1 mlずつ分注した後に 20°Cで 2時間、 80°Cで通夜冷却 した後に、液体窒素中に保存した。
(2) HMS細胞における骨関連タンパク質の mRNAの発現
(0 細胞の NGF、 BDNF、 NT-3での処理
上記(1)で得られた HMS細胞を、 10 じ3を含む0\15\1 (100 units/mlのペニシリン( 明治製菓、東京)、 100 μ g/mlのストレプトマイシン (明治製菓,東京)、 1 μ g/mlのァ ンホテリシン B (ギブコ、米国)を含む)に懸濁し、 1.0 X 105細胞 Zゥエルの密度で 6穴 細胞培養プレートに播種した。細胞を 1週間培養し、細胞がコンフルェントになる直前 の時点で培地を FCSを含まない DMEM (100 units/mlのペニシリン(明治製菓、東京) 、 100 g/mlのストレプトマイシン(明治製菓,東京)、 1 g/mlのアンホテリシン B (ギ ブコ、米国)を含む)に交換し、 NGF、 BDNF、 NT-3のいずれかをそれぞれ 100 ng/ml の濃度で 12時間および 24時間作用させた。培養終了後, ISOGEN (商品名)を用いて 総 RNAの抽出を行った。 [0126] (ii) mRNAの発現
ALPase、 OCN、 OPN、骨シァロタンパク (BSP)、 I型コラーゲンに特異的なプライマー を用いて PCRを行った。 PCR反応は、 94°Cで 2分間変性を行った後、 94°C、 15秒間、 アニーリング 30秒間、 72°C、 50秒間を 30サイクル(BSPのみ 35サイクル)繰り返し、その 後 72°C、 7分間の伸長によって行った。得られた PCR産物は 0.002%臭化工チジゥムを 含む 2%ァガロースゲルを用いて電気泳動を行った。電気泳動後のバンドの濃さを NIH imageを用いて測定した。
[0127] 結果を図 25A— E、 26A— E27および 27A— Eに示す。図から明らかなように、 NG Fについては、 HMS細胞の ALPase、 OCN、 OPN、 BSP、 I型コラーゲンのいずれの mRNA発現に対しても著明な作用は認められなかった。 BDNFは、 ALPase、 OPN、 BSP、 BMP-2の mRNA発現を強く促進させ、 OCNの遺伝子発現をいくらか促進させた 。 NT-3は、 ALPaseおよび I型コラーゲンの mRNA発現を促進させた。
[0128] (3) HMS細胞の増殖に及ぼすァスコルビン酸、 NGF、 BDNF, NT-3の影響
上記(1)で得られた HMS細胞を、 10%FCSを含む DMEM (日水製薬製)(100 units/mlのペニシリン(明治製菓、東京)、 100 g/mlのストレプトマイシン(明治製菓 ,東京)、 1 μ g/mlのアンホテリシン Β (ギブコ、米国)を含む)に懸濁し、 96穴細胞培養 プレート(コ一-ング、米国)上に 5.0 X 103細胞 Zゥエルの密度で播種した。試験群 については、培養開始 24時間後から 50 μ g/mlのァスコルビン酸 (シグマ、米国)、 100 ng/mlの NGF (フナコシ,東京)、 100 ng/mlの BDNF (フナコシ,東京)、あるいは 100 ng/mlの NT-3 (フナコシ、東京)をそれぞれ単独で培地に添カ卩し、さらに 7日間培 養した。培地交換は 4日目に行った。対照群は 10%FCSを含む DMEM (日水製薬製で す)(100 units/mlのペニシリン(明治製菓、東京)、 100 μ g/mlのストレプトマイシン( 明治製菓,東京)、 1 g/mlのアンホテリシン B (ギブコ、米国)を含む)で培養したもの とした。 7日間培養後、培地を全て 10%FCSを含む DMEM (100 units/mlのペニシリン( 明治製菓、東京)、 100 μ g/mlのストレプトマイシン (明治製菓,東京)、 1 μ g/mlのァ ンホテリシン B (ギブコ、米国)を含む)に交換し、 CellTiter 96 (商品名) AQueous One Solution Cell Proliferation Assay Kit (Promega,米国)を用いて 490 nmにおける吸光 度を測定することにより、生細胞数を計測した。 [0129] 結果を図 28に示す。グラフの縦軸は、対照群に対する試験群の吸光度の百分率を 示す。 *は p< 0.05、 * *は p< 0.01を表す (統計学的検定は t-testによる)。図から 明らかなように、ァスコルビン酸、 NGF、 BDNF、 NT-3のいずれかを添カ卩した培地で培 養した HMS細胞は、コントロールと比べて有意に高い細胞増殖を示した。特に、ァス コルビン酸、 BDNF、 NT-3の増殖促進作用は NGFに比べ強かった。
(実施例 8)
ビーグル犬の 3級根分岐部病変モデルにおける NGFと NT-3の効果を検討した。
[0130] 直径 8mm X 5mmのテルプラグに、濃度 5、 25、 50 μ g/mlの BDNF溶液(滅菌生理食 塩液中)の 25 μ 1の代わりに濃度 100 g/mlの NGF溶液 (滅菌生理食塩液中)の 25 μ 1 をしみこませたものと、濃度 100 g/mlの ΝΤ-3溶液 (滅菌生理食塩液中)の 25 1をし みこませたものを、移植材として用いたこと以外は、実施例 2と同様に実験を行った。 作成した組織標本 (へマトキシリン ·ェォジン染色)から、近遠心方向歯軸に平行でし 力ゝも根中央付近で薄切された標本を選択し、光学顕微鏡 (ECLIPSE E600、 NIKON) で観察した。
[0131] 図 29Aは NGFを含む移植材を填塞した根分岐部骨欠損部の光学顕微鏡像であり 、図 29Bは、 NT-3を含む移植材を填塞した根分岐部骨欠損部の光学顕微鏡像であ る(倍率 20倍)。図から明らかなように、 NGFあるいは NT-3の投与により、ィヌの 3級根 分岐部病変モデルにぉ ヽて再生骨が観察された。
産業上の利用可能性
[0132] 本発明の歯周病治療剤、修復象牙質形成促進剤、治療方法、歯周組織再生用移 植材、歯周組織の再生方法は、歯周病治療や歯内療法において有効と成り得る可 能性がある。

Claims

請求の範囲
[1] 神経栄養因子を有効成分とする、歯周病の治療剤。
[2] 歯周組織を再生させることを特徴とする、請求項 1記載の治療剤。
[3] セメント質を再生させることを特徴とする、請求項 1または 2に記載の治療剤。
[4] 歯周靭帯を再生させることを特徴とする、請求項 1一 3の何れか 1項に記載の治療 剤。
[5] 歯槽骨を再生させることを特徴とする、請求項 1一 4の何れか 1項に記載の治療剤。
[6] 歯肉上皮の歯根面根尖方向への進入を防止することを特徴とする、請求項 1一 5の 何れか 1項に記載の治療剤。
[7] 歯髄を再生させることを特徴とする、請求項 1一 6の何れか 1項に記載の治療剤。
[8] 歯髄腔における修復象牙質の産生を促進することを特徴とする、請求項 1一 7の何 れか 1項に記載の治療剤。
[9] 神経栄養因子力 脳由来神経栄養因子、神経成長因子、ニューロトロフィン 3、また は-ユーロトロフィン 4Z5である、請求項 1一 8の何れか 1項に記載の治療剤。
[10] 神経栄養因子を含有する歯周組織再生用移植材。
[11] セメント質を再生するために使用する、請求項 10に記載の歯周組織再生用移植材
[12] 歯周靭帯を再生するために使用する、請求項 10または 11に記載の歯周組織再生 用移植材。
[13] 歯槽骨を再生するために使用する、請求項 10— 12の何れか 1項に記載の歯周組 織再生用移植材。
[14] 歯肉上皮の歯根面根尖方向への進入を防止するために使用する、請求項 10— 13 の何れか 1項に記載の歯周組織再生用移植材。
[15] 歯髄を再生するために使用する、請求項 10— 14の何れか 1項に記載の歯周組織 再生用移植材。
[16] 歯髄腔における修復象牙質の産生を促進するために使用する、請求項 10— 15の 何れカゝ 1項に記載の歯周組織再生用移植材。
[17] 神経栄養因子力 脳由来神経栄養因子、神経成長因子、ニューロトロフィン 3、また は-ユーロトロフィン 4Z5である、請求項 10— 16の何れか 1項に記載の治療剤。
[18] 神経栄養因子を使用する歯周組織の再生方法。
[19] セメント質を再生させることを特徴とする、請求項 18に記載の再生方法。
[20] 歯周靭帯を再生させることを特徴とする、請求項 18に記載の再生方法。
[21] 歯槽骨を再生させることを特徴とする、請求項 18に記載の再生方法。
[22] 歯肉上皮の歯根面根尖方向への進入を防止することを特徴とする、請求項 18に記 載の再生方法。
[23] 歯髄を再生させることを特徴とする、請求項 18に記載の再生方法。
[24] 歯髄腔における修復象牙質の産生を促進することを特徴とする、請求項 18に記載 の再生方法。
[25] 神経栄養因子が脳由来神経栄養因子、神経成長因子、ニューロトロフィン 3、また は-ユーロトロフィン 4Z5である請求項 18— 24の何れ力 1項に記載の再生方法。
[26] 神経栄養因子を有効成分とする、修復象牙質の形成促進剤。
[27] 神経栄養因子力 脳由来神経栄養因子、神経成長因子、ニューロトロフィン 3、また は-ユーロトロフィン 4Z5である、請求項 26記載の修復象牙質の形成促進剤。
[28] 歯髄疾患の治療方法であって、そうした疾患に罹患して 、るまたは罹患しやす!/ヽ対 象に、修復象牙質の形成を促進するために治療有効量の神経栄養因子を投与する ことを含む、歯髄疾患の治療法。
[29] 神経栄養因子力 脳由来神経栄養因子、神経成長因子、ニューロトロフィン 3、また は-ユーロトロフィン 4Z5である、請求項 28記載の方法。
PCT/JP2004/013023 2003-09-09 2004-09-08 歯周病と歯髄疾患の治療剤と治療方法 WO2005025605A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
CN2004800311946A CN1871024B (zh) 2003-09-09 2004-09-08 牙周病和牙髓疾病的治疗剂以及治疗方法
US10/571,069 US8158752B2 (en) 2003-09-09 2004-09-08 Therapeutic agent and therapeutic method for periodontal diseases and pulpal diseases
AU2004271843A AU2004271843B2 (en) 2003-09-09 2004-09-08 Therapeutic agent and therapeutic method for periodontal diseases and pulpal diseases
EP04787706.3A EP1671641B1 (en) 2003-09-09 2004-09-08 Remedy and therapeutic method for periodontal diseases and pulpal diseases
JP2005513867A JP4589233B2 (ja) 2003-09-09 2004-09-08 歯周病と歯髄疾患の治療剤と治療方法
US13/412,503 US8513191B2 (en) 2003-09-09 2012-03-05 Therapeutic agent and therapeutic method for periodontal diseases and pulpal diseases
US13/422,363 US9089606B2 (en) 2003-09-09 2012-03-16 Brain-derived neurotrophic factor or neurotrophin-4/5 to treat periodontal diseases and pulpal diseases

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003-316719 2003-09-09
JP2003316719 2003-09-09

Related Child Applications (3)

Application Number Title Priority Date Filing Date
US10/571,069 A-371-Of-International US8158752B2 (en) 2003-09-09 2004-09-08 Therapeutic agent and therapeutic method for periodontal diseases and pulpal diseases
US13/412,503 Division US8513191B2 (en) 2003-09-09 2012-03-05 Therapeutic agent and therapeutic method for periodontal diseases and pulpal diseases
US13/422,363 Continuation US9089606B2 (en) 2003-09-09 2012-03-16 Brain-derived neurotrophic factor or neurotrophin-4/5 to treat periodontal diseases and pulpal diseases

Publications (1)

Publication Number Publication Date
WO2005025605A1 true WO2005025605A1 (ja) 2005-03-24

Family

ID=34308464

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/013023 WO2005025605A1 (ja) 2003-09-09 2004-09-08 歯周病と歯髄疾患の治療剤と治療方法

Country Status (8)

Country Link
US (3) US8158752B2 (ja)
EP (3) EP1671641B1 (ja)
JP (2) JP4589233B2 (ja)
CN (3) CN102526706B (ja)
AU (1) AU2004271843B2 (ja)
RU (1) RU2336089C2 (ja)
TW (1) TW200513264A (ja)
WO (1) WO2005025605A1 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8113837B2 (en) 2007-11-26 2012-02-14 Peter John Zegarelli Oral appliance for delivering a medicament
CN102300592B (zh) * 2009-01-28 2014-03-12 株式会社器官再生工学 牙齿的制造方法
US8470303B2 (en) * 2010-02-02 2013-06-25 James C. Richards Automated method and system for introducing molecular iodine into drinking water
RU2449760C1 (ru) * 2011-01-12 2012-05-10 Светлана Минифаритовна Алетдинова Способ лечения хронических верхушечных периодонтитов
US11273022B2 (en) 2018-02-13 2022-03-15 Emanate Biomedical, Inc. Oral appliance in a blockchain system
US20200405916A1 (en) * 2018-03-20 2020-12-31 University Of Pittsburgh - Of The Commonwealth System Of Higher Education Regeneration of vital tooth pulp
CN112220966A (zh) * 2020-11-23 2021-01-15 北京大学口腔医学院 一种注射剂、注射剂的制备方法及其在牙髓再生中的应用

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5229500A (en) * 1989-08-30 1993-07-20 Regeneron Pharmaceuticals, Inc. Brain derived neurotrophic factor
US5372503A (en) * 1993-04-27 1994-12-13 Dental Marketing Specialists, Inc. Method for installation of a dental implant
CA2187355C (en) * 1994-04-08 2009-10-13 Richard L. Dunn An adjunctive polymer system for use with medical device
JPH11506659A (ja) * 1995-06-06 1999-06-15 オステオジェニックス・インコーポレーテッド 生物学的互換ヒドロキシアパタイト製剤及びその使用

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
HARADA F. ET AL.: "The involvement of brain-derived neurotrophic factor (BDNF) in the regeneration of periodontal Ruffini endings following transection of the inferior alveolar nerve", ARCHIVES OF HISTOLOGY AND CYTOLOGY, vol. 66, no. 2, 2003, pages 183 - 194, XP002985759 *
KURIHARA H. ET AL.: "Neurotrophins in cultured cells from periodontal tissues", JOURNAL OF PERIDONTOLOGY, vol. 74, no. 1, 2003, pages 76 - 84, XP002985758 *
See also references of EP1671641A4 *
TSUBOI Y. ET AL.: "Mitogenic effects of neurotrophins on a periodontal ligament cell line", JOURNAL OF DENTAL RESEARCH, vol. 80, no. 3, 2001, pages 881 - 886, XP002985760 *
YOSHINO H.: "saikin no wadai shishu soshiki to neurotrophin", HIRODAI SHISHI, vol. 30, 1998, pages 236, XP002985761 *

Also Published As

Publication number Publication date
US20070071693A1 (en) 2007-03-29
US8158752B2 (en) 2012-04-17
JP2010215661A (ja) 2010-09-30
RU2006111465A (ru) 2007-10-27
CN102526706A (zh) 2012-07-04
JP5313209B2 (ja) 2013-10-09
CN102526706B (zh) 2014-07-30
AU2004271843A1 (en) 2005-03-24
EP1671641A4 (en) 2009-08-19
JPWO2005025605A1 (ja) 2007-11-08
US20120165255A1 (en) 2012-06-28
RU2336089C2 (ru) 2008-10-20
CN1871024A (zh) 2006-11-29
EP2460529A1 (en) 2012-06-06
AU2004271843B2 (en) 2010-04-08
JP4589233B2 (ja) 2010-12-01
CN102600455B (zh) 2015-04-15
EP2460528B1 (en) 2014-03-19
US8513191B2 (en) 2013-08-20
TW200513264A (en) 2005-04-16
US9089606B2 (en) 2015-07-28
EP1671641A1 (en) 2006-06-21
EP2460529B1 (en) 2014-08-20
CN1871024B (zh) 2012-03-28
CN102600455A (zh) 2012-07-25
EP2460528A1 (en) 2012-06-06
EP1671641B1 (en) 2013-11-06
US20120214738A1 (en) 2012-08-23

Similar Documents

Publication Publication Date Title
Jin et al. Gene therapy of bone morphogenetic protein for periodontal tissue engineering
Simion et al. Vertical ridge augmentation by means of deproteinized bovine bone block and recombinant human platelet-derived growth factor-BB: a histologic study in a dog model.
Kao et al. The use of biologic mediators and tissue engineering in dentistry.
JP5313209B2 (ja) 歯周病と歯髄疾患の治療剤と治療方法
WO2009125859A1 (ja) 薬剤、歯科材料、及びスクリーニング方法
Conte et al. Tissue engineering for periodontal regeneration
JP2004331557A (ja) 歯胚の再生方法
JP7212144B2 (ja) 非細胞性根管充填材および非細胞性歯組織再生促進キット
RU2812019C2 (ru) Неклеточный наполнитель корневого канала и неклеточный набор, стимулирующий регенерацию тканей зуба
Sauerbier et al. Effect of gabapentin-lactam and gamma-aminobutyric acid/lactam analogs on proliferation and phenotype of ovine mesenchymal stem cells.
RU2368338C1 (ru) Способ восстановления тканей пародонта
Hsu et al. Differential effects of parathyroid hormone, parathyroid hormone-related protein, and abaloparatide on collagen 1 expression by mouse cementoblasts and mouse tooth root density
Surisaeng The use of modified mRNA encoding platelet-derived growth factor-BB as an innovation in periodontal regeneration
D'Souza et al. The bioengineering of dental tissues
Kaur Periodontal tissue engineering
Sarment et al. Signaling molecules for periodontal tissue engineering
Suj State of the Art Tissue Engineering: N Therap
Parimala Comparative evaluation of bovine porous bone mineral (Bio-Oss) bone craft with and without platelet rich plasma (PRP) in the treatment of periodontal intrabony defects: a clinical study

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200480031194.6

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BW BY BZ CA CH CN CO CR CU CZ DK DM DZ EC EE EG ES FI GB GD GE GM HR HU ID IL IN IS JP KE KG KP KZ LC LK LR LS LT LU LV MA MD MK MN MW MX MZ NA NI NO NZ PG PH PL PT RO RU SC SD SE SG SK SY TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SZ TZ UG ZM ZW AM AZ BY KG MD RU TJ TM AT BE BG CH CY DE DK EE ES FI FR GB GR HU IE IT MC NL PL PT RO SE SI SK TR BF CF CG CI CM GA GN GQ GW ML MR SN TD TG

DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2004271843

Country of ref document: AU

Ref document number: 2005513867

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 2004271843

Country of ref document: AU

Date of ref document: 20040908

Kind code of ref document: A

WWP Wipo information: published in national office

Ref document number: 2004271843

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 2004787706

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2006111465

Country of ref document: RU

WWP Wipo information: published in national office

Ref document number: 2004787706

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2007071693

Country of ref document: US

Ref document number: 10571069

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 10571069

Country of ref document: US