WO2010087066A1 - アキシャルギャップ型モータ - Google Patents

アキシャルギャップ型モータ Download PDF

Info

Publication number
WO2010087066A1
WO2010087066A1 PCT/JP2009/069748 JP2009069748W WO2010087066A1 WO 2010087066 A1 WO2010087066 A1 WO 2010087066A1 JP 2009069748 W JP2009069748 W JP 2009069748W WO 2010087066 A1 WO2010087066 A1 WO 2010087066A1
Authority
WO
WIPO (PCT)
Prior art keywords
axial gap
type motor
rotation axis
gap type
motor according
Prior art date
Application number
PCT/JP2009/069748
Other languages
English (en)
French (fr)
Inventor
恵一 山本
Original Assignee
本田技研工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=42395333&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2010087066(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 本田技研工業株式会社 filed Critical 本田技研工業株式会社
Priority to BRPI0924160A priority Critical patent/BRPI0924160A2/pt
Priority to RU2011135822/07A priority patent/RU2011135822A/ru
Priority to DE112009004300T priority patent/DE112009004300T5/de
Priority to CN200980155539.1A priority patent/CN102301565B/zh
Priority to US13/145,779 priority patent/US8304949B2/en
Publication of WO2010087066A1 publication Critical patent/WO2010087066A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
    • H02K21/24Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets axially facing the armatures, e.g. hub-type cycle dynamos
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2793Rotors axially facing stators
    • H02K1/2795Rotors axially facing stators the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2796Rotors axially facing stators the rotor consisting of two or more circumferentially positioned magnets where both axial sides of the rotor face a stator

Definitions

  • the present invention relates to an axial gap type motor.
  • a pair of stators arranged opposite to each other so as to sandwich a rotor from both sides in the rotation axis direction is provided, and a magnetic flux loop via a pair of stators is formed with respect to a field magnetic flux generated by a permanent magnet of the rotor.
  • An axial gap type rotating electrical machine is known (for example, see Patent Document 1).
  • the axial gap motor 100 described in Patent Document 1 is disposed so as to face a rotor 101 that can rotate around a rotation axis, with the rotor 101 sandwiched from both sides in the rotation axis direction.
  • the rotor 101 includes a pair of stators 102, 102, and the rotor 101 is disposed between magnet pole portions 103,..., 103 disposed at predetermined intervals in the circumferential direction and magnet pole portions 103, 103 adjacent in the circumferential direction. ., 104 and the magnetic material poles 104,..., 104 are housed in a rotor frame 105.
  • each magnet pole portion 103 is composed of one magnet piece magnetized in the direction of the rotation axis, the arrow in FIG. As shown in Fig. 1, a closed loop of magnetic flux is formed. For this reason, the magnetic flux which goes to each stator 102 from the magnet pole part 103 short-circuits, and there exists a possibility that the generated torque of a motor may reduce or efficiency may fall. In order to avoid this, it is necessary to increase the thickness of the spoke 106 of the rotor frame 105. However, if the thickness of the spoke 106 is increased, the magnet pole portion 103 and the magnetic material pole portion 104 must be reduced. The torque could not be improved.
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to provide an axial gap type motor that can suppress a short circuit of magnetic flux and suppress a decrease in torque generated by the motor and a decrease in efficiency. is there.
  • a rotor rotatable around a rotation axis An axial gap type motor comprising a pair of stators arranged opposite to each other with the rotor sandwiched from both sides in the rotation axis direction,
  • the rotor is Magnet pole portions arranged at predetermined intervals in the circumferential direction;
  • a magnetic material pole portion disposed between the magnet pole portions adjacent in the circumferential direction,
  • the magnet pole portion is A main magnet piece magnetized in the direction of the rotation axis, and arranged on one side of the rotation axis direction and on both sides in the circumferential direction of the main magnet piece, and magnetized in a direction perpendicular to the rotation axis direction and the radial direction, respectively.
  • each of the sub magnet pieces has a tapered portion whose thickness gradually decreases toward a substantially central portion of the main magnet piece. A central portion is exposed to the pair of stators.
  • the main magnet piece, the pair of sub magnet pieces arranged on one side in the rotation axis direction, and the other side in the rotation axis direction are arranged.
  • the pair of sub-magnet pieces are integrated by an adhesive or by sintering.
  • the magnetic material electrode portion is formed of a magnetic member made of a laminate of silicon steel plates or a soft magnetic material, and is magnetic in the rotation axis direction. It has a saliency.
  • the magnetic member has a through-hole penetrating in the rotation axis direction.
  • the rotor includes a plurality of spokes arranged between the magnet pole portion and the magnetic material pole portion and extending in the radial direction,
  • a non-magnetic rotor frame having a shaft portion and a rim portion respectively provided on an inner diameter side and an outer diameter side of a plurality of spokes is provided.
  • the rotor frame includes a plurality of spokes arranged between the magnet pole portion and the magnetic material pole portion and extending in a radial direction, and an inner diameter side of the plurality of spokes And a first frame and a second frame each having a shaft portion and a rim portion respectively provided on the outer diameter side, and the first and second frames are assembled in the axial direction. To do.
  • a holding portion that holds the magnetic material pole portion on the outer side in the rotation axis direction of the shaft portion and the rim portion of the first and second frames is provided.
  • the magnetic material pole portion is provided with a clearance groove extending in a circumferential direction to be engaged with the holding portion.
  • a claw portion for fixing the magnet pole portion is provided on the outer side in the rotation axis direction of the spoke of the first and second frames. It is characterized by that.
  • the magnet pole portion is provided with a radially extending escape groove that engages with the claw portion of the spoke.
  • the plate thickness of the spoke is larger than a gap formed between the rotor and the stator.
  • an insulating layer is provided on the surface of the spoke.
  • the spoke is extended along the inner diameter side extending portion extending along the shaft portion and the rim portion.
  • the inner diameter side extending portion and the outer diameter side extending portion are joined to the shaft portion and the rim portion, respectively, by welding.
  • an outer peripheral ring is fitted to the rim portions of the first and second rotor frames.
  • the spoke is formed by press molding together with the claw portion.
  • the shaft portion and the rim portion are each formed by press molding together with the holding portion.
  • each stator is linked.
  • the effective magnetic flux to be increased relatively increases, and magnetic fluxes other than the magnetic flux toward each stator converge inside the magnet pole portion. Therefore, it is possible to suppress a short circuit of the magnetic flux between the magnetic material pole portions adjacent to each other in the circumferential direction, and thereby it is possible to suppress a decrease in torque generated by the motor and a decrease in efficiency.
  • the magnet pole portion is composed of an integrated magnet having a substantially Halbach arrangement in which a pair of sub magnet pieces are arranged on one side and the other side of the main magnet piece in advance, the attachment to the rotor frame is improved and the manufacturing process is improved. Can be simplified.
  • the polar arc angle can be easily adjusted by adjusting the inclination of the tapered portion. Can be adjusted.
  • magnetic saliency can be easily imparted to the magnetic member by forming the through hole.
  • the assemblability can be improved by dividing the rotor frame in the axial direction.
  • the magnetic material pole can be reliably held in the rotor frame.
  • the clearance between the rotor and the stator can be set to a minimum by using the engaging portion that engages with the holding portion as a relief groove.
  • the magnet pole portion can be securely held in the rotor frame.
  • the gap between the rotor and the stator can be set to a minimum by using the engaging portion that engages with the claw portion as a relief groove.
  • board thickness of a spoke is made thicker than the space
  • the rotor frame is cut out from one member (solid material having a columnar shape or a cylindrical shape) by press-molding a flat plate material of the spoke and welding it to the shaft portion and the rim portion. Compared with the case of processing, the manufacturing time can be shortened.
  • the rigidity of the rotor frame can be increased by fitting the outer ring to the rim portion, and the rim portion can be thinned and can be easily manufactured by press molding. .
  • the strength can be increased by work hardening by press molding.
  • FIG. 1 is an overall perspective view of an embodiment of an axial gap motor according to the present invention. It is a disassembled perspective view of the axial gap type motor shown in FIG. It is a disassembled perspective view of the axial gap type motor shown in FIG. (A) is a front view of the rotor, (b) is a sectional view taken along line IVB-IVB in (a), and (c) is a sectional view taken along line IVC-IVC. It is a whole perspective view of the integrated magnet which comprises a magnet pole part. It is a whole perspective view of the magnetic member which comprises a magnetic material pole part. It is a fragmentary perspective view of the 1st frame which constitutes a rotor frame.
  • FIG. 1 is a perspective view of an axial gap type motor described in Patent Document 1.
  • FIG. It is the figure which looked at the axial gap type motor of FIG. 15 from the circumferential direction.
  • the axial gap type motor 10 includes a substantially annular rotor 11 that is rotatably provided around the rotation axis O of the axial gap type motor 10, and a rotation axis O direction.
  • a pair of stators 12 and 12 each having a plurality of phase stator windings that generate a rotating magnetic field that rotates the rotor 11 are arranged so as to sandwich the rotor 11 from both sides.
  • the axial gap type motor 10 is mounted as a drive source in a vehicle such as a hybrid vehicle or an electric vehicle, for example, and an output shaft is connected to an input shaft of a transmission (not shown), whereby the driving force of the axial gap type motor 10 is obtained. Is transmitted to drive wheels (not shown) of the vehicle via a transmission.
  • the axial gap type motor 10 when the driving force is transmitted from the driving wheel side to the axial gap type motor 10 during deceleration of the vehicle, the axial gap type motor 10 functions as a generator to generate a so-called regenerative braking force, and the kinetic energy of the vehicle body is electrically converted. Recover as energy (regenerative energy). Further, for example, in a hybrid vehicle, when the rotating shaft of the axial gap type motor 10 is connected to the crankshaft of an internal combustion engine (not shown), the axial gap type motor 10 is also axially transmitted. The gap type motor 10 functions as a generator and generates power generation energy.
  • Each stator 12 faces the rotor 11 along the direction of the rotation axis O from a substantially annular plate-shaped yoke portion 21 and a position at a predetermined interval in the circumferential direction on the facing surface of the yoke portion 21 facing the rotor 11.
  • a plurality of teeth 22,..., 22 that protrude and extend in the radial direction, and stator windings (not shown) mounted between the appropriate teeth 22, 22 are configured.
  • Each stator 12 is, for example, a 6N type having six main poles (for example, U +, V +, W +, U ⁇ , V ⁇ , W ⁇ ), and each U +, V +, W + pole of one stator 12.
  • the U-, V-, and W-poles of the other stator 12 are set to face each other in the direction of the rotation axis O.
  • the rotor 11 includes a plurality of magnet pole portions 31,..., A plurality of magnetic material pole portions 32,... 32, a rotor frame 33 made of a non-magnetic material, as shown in FIGS.
  • the magnet pole portions 31 and the magnetic material pole portions 32 are accommodated in the rotor frame 33 to which the outer ring 50 is mounted in a state of being alternately arranged in the circumferential direction. Yes.
  • the magnet pole portion 31 includes a substantially fan-shaped main permanent magnet piece 41 and a pair of ones arranged on one side of the rotation axis O direction and on both sides in the circumferential direction of the main permanent magnet piece 41.
  • the first secondary permanent magnet pieces 42, 42 and a pair of second secondary permanent magnet pieces 43, 43 disposed on the other side in the rotation axis O direction and on both sides in the circumferential direction of the main permanent magnet piece 41, for example, It is comprised from the integrated magnet 44 integrally formed by the adhesive material or sintering.
  • the main permanent magnet piece 41 is magnetized in the direction of the rotation axis O, and the magnetization directions of the main permanent magnet pieces 41 and 41 of the magnet pole portions 31 and 31 adjacent in the circumferential direction with the magnetic material pole portion 32 interposed therebetween are different from each other. It is set to become.
  • the secondary permanent magnet pieces 42 (43) each have a substantially fan-shaped plate shape with a circumferential length of half or less of that of the main permanent magnet piece 41.
  • a tapered surface 421 (431) whose thickness gradually decreases toward the central portion 410 of the main permanent magnet piece 41 is formed on the opposing side surface of the pair of sub permanent magnet pieces 42, 42 (43, 43).
  • An escape groove 422 (432) having a substantially L-shaped cross section extending in the radial direction is formed at a corner portion that does not contact the main permanent magnet piece 41 on the surface opposite to the surface 421 (431).
  • the pair of sub permanent magnet pieces 42, 42 (43, 43) are provided symmetrically with respect to the magnet center line P of the main permanent magnet piece 41.
  • the distance from the center line P to the tapered surface 421 (431) is d and the angle of the tapered surface is ⁇ , d> 0 and 0 ⁇ ⁇ 90 ° are set.
  • the distance d may be set so as to gradually increase from the inner diameter side to the outer diameter side as shown in FIG. 5, or may be constant.
  • the area of the central portion 410 of the main permanent magnet piece 41 increases as the volume of the teeth 22 of the stator 12 increases, so that the magnetic flux can be made uniform. Magnetic flux can be exchanged efficiently.
  • the magnet amount of the sub permanent magnet pieces 42 and 42 (43, 43) can be reduced.
  • the first sub permanent magnet pieces 42 and 42 are magnetized in a direction (substantially circumferential direction) orthogonal to the rotation axis direction and the radial direction, respectively, and the first sub permanent magnet pieces 42 and 42 are the main permanent magnet pieces 41.
  • the second sub permanent magnet pieces 43 and 43 are magnetized in a direction (substantially circumferential direction) perpendicular to the rotation axis direction and the radial direction, respectively, so that the same magnetic pole as the magnetic pole on one side of the rotation axis direction faces each other.
  • the second sub permanent magnet pieces 43, 43 are arranged so that the magnetic poles of the same polarity as the magnetic poles on the other side in the rotation axis direction of the main permanent magnet pieces 41 face each other.
  • Reference numeral 42 denotes a pair of second sub-permanent magnet pieces 43 and 43 which are arranged so that their N poles face each other in the circumferential direction and are arranged on the other side in the rotation axis O direction. It arrange
  • the magnetic flux of the main permanent magnet piece 41 and the sub permanent magnet pieces 42, 42, 43, 43 is converged at the central portion 410 of the main permanent magnet piece 41 due to the magnetic flux lens effect by the so-called Halbach arrangement of so-called permanent magnets,
  • the effective magnetic flux linked to the stators 12 and 12 is relatively increased.
  • each of the sub permanent magnet pieces 42, 42, 43, 43 is different from the main permanent magnet piece 41 so as to be different from the magnetic pole of the main permanent magnet piece 41 on the circumferential end side of the main permanent magnet piece 41. It faces in the direction of the rotation axis O. That is, for example, with respect to the main permanent magnet piece 41 in which one side in the rotation axis O direction is an N pole and the other side is an S pole, each first sub permanent magnet piece 42, 42 arranged on one side in the rotation axis O direction.
  • the magnetic fluxes of the main permanent magnet piece 41 and the sub permanent magnet pieces 42, 42, 43, 43 converge within the integrated magnet 44.
  • the magnetic material pole portion 32 is composed of a magnetic member 45 having a plurality of slits 450,..., 450 penetrating in a direction parallel to the rotation axis O direction. And a plurality of silicon steel plates are laminated, or a soft magnetic material such as iron powder is formed and sintered.
  • the slit 450 has a cross-sectional shape with respect to the rotation axis O direction as a long hole whose longitudinal direction is the radial direction, and a plurality (four in this case) are arranged at predetermined intervals in the circumferential direction.
  • clearance grooves 451 and 452 having an L-shaped cross section extending in the circumferential direction are formed at the inner peripheral corner and the outer peripheral corner of the magnetic member 45.
  • the rotor frame 33 includes a plurality of spokes 35,..., 35 disposed between the magnet pole portion 31 and the magnetic material pole portion 32 adjacent in the circumferential direction and extending in the radial direction.
  • 35,..., 35 are connected to the inner peripheral side annular shaft portion 36, the outer peripheral side annular rim portion 37, and an external drive shaft (for example, a vehicle transmission) formed on the inner peripheral portion of the shaft portion 36.
  • an external drive shaft for example, a vehicle transmission
  • a connecting portion connected to an input shaft or the like.
  • the rotor frame 33 includes a pair of spokes extending in the radial direction and disposed between the shaft portion 36a (36b) and the rim portion 37a (37b), and between the shaft portion 36a (36b) and the rim portion 37a (37b).
  • First and second frames 33A and 33B having a plurality of spoke forming members 38a,..., 38a (38b,..., 38b) (see FIG. 7) having 35a, 35a (35b, 35b) are opposed in the axial direction.
  • the shaft portion 36a of the first frame 33A and the shaft portion 36b of the second frame 33B constitute the shaft portion 36 of the rotor frame 33, and the rim portion 37a of the first frame 33A and the second frame 33B.
  • the rim portion 37 of the rotor frame 33 is configured by the shaft portion 37b of the first frame 33A. 35a and the spokes 35 of the rotor frame 33 by spokes 35b of the second frame 33B, ..., 35 are configured.
  • the shaft portion 36a (36b), the rim portion 37a (37b), and the plurality of spoke forming members 38a,..., 38a (38b,..., 38b) are each formed from a thin plate material by press molding.
  • the integrated magnet 44 and the magnetic member 45 are arranged so as to be adjacent to each other in the circumferential direction via the spoke 35, and are sandwiched between the shaft portion 36 and the rim portion 37 from both sides in the radial direction.
  • a magnetic material is provided at both ends of the shaft portion 36 in the rotation axis O direction, that is, at one end portion in the rotation axis O direction of the shaft portion 36a and the other end portion in the rotation axis O direction of the shaft portion 36b.
  • Holding portions 361 and 361 extending outward in the radial direction are provided at positions where the magnetic member 45 of the pole portion 32 is accommodated, and engage with escape grooves 451 and 451 formed in the magnetic member 45.
  • the magnetic member of the magnetic material pole portion 32 is provided at both ends of the rim portion 37 in the rotation axis O direction, that is, at one end portion of the rim portion 37a in the rotation axis O direction and at the other end portion of the rim portion 37b in the rotation axis O direction.
  • Holding portions 371 and 371 extending inward in the radial direction are provided at positions for accommodating 45, and engage with escape grooves 452 and 452 formed in the magnetic member 45.
  • the magnetic member 45 is positioned in the direction of the rotation axis O in the rotor frame 33 by the holding portions 361 and 371 and is securely held in the rotor frame 33.
  • the magnetic member 45 and the holding portions 361 and 371 are configured to be flush with each other in a cross-sectional view in the direction perpendicular to the axis (see FIGS. 12 to 14).
  • the holding portions 361 and 371 are formed by press molding together with the shaft portion 36a (36b) and the rim portion 37a (37b), respectively.
  • the spoke forming member 38a (38b) has a substantially fan-shaped shape in a cross-sectional view perpendicular to the axis so as to surround the integrated magnet 44 from the circumferential direction and the radial direction, and has a substantially central shape on the outer diameter side.
  • An opening 381 is formed in the part. That is, the spoke forming member 38a (38b) includes a pair of spokes 35a, 35a (35b, 35b) provided on both sides in the circumferential direction, and a shaft portion 36a (36b) from the inner diameter side of the spokes 35a, 35a (35b, 35b).
  • An inner diameter side extending portion 382 that extends along the rim and connects the pair of spokes 35a, 35a (35b, 35b) to each other, and along the rim portion 37a from the outer diameter side of the pair of spokes 35a, 35a (35b, 35b).
  • the outer diameter side extending portions 383 and 383 are provided so as to face each other across the opening 381.
  • the shaft portion 36a (36b) and the inner diameter side extending portion 382 are joined by welding at both ends of the inner diameter side extending portion 382, and the rim portion 37a (37b) and the outer diameter side extending portions 383 and 383 are welded. Are joined together.
  • the spokes 35a, 35a of the spoke forming member 38a have one end on the one side in the rotational axis O direction and the spoke 35b, 35b of the spoke forming member 38b on the other end on the other side in the rotational axis O, that is, in the circumferential direction.
  • Claw portions 351 and 351 that are bent toward the magnetized magnet 44 are provided, and are engaged with escape grooves 422, 422, 432, and 432 formed in the sub permanent permanent magnet pieces 42, 42, 43, and 43 of the integrated magnet 44. Match.
  • the integrated magnet 44 is positioned in the direction of the rotation axis O in the rotor frame 33 by the claw portions 351 and 351 and is securely held in the rotor frame 33.
  • the sub permanent magnet pieces 42, 42, 43, 43 and the claw portions 351, 351, 351, 351 are configured to be flush with each other in a cross-sectional view in the direction perpendicular to the axis.
  • claw part 351 is formed by press molding with the spoke 35a (35b).
  • the plate thickness (circumferential length) of the spoke 35a is thicker than the gap between the rotor 11 and the stator 12, and an insulating layer may be provided on the surface of the spoke 35a (35b).
  • the outer peripheral ring 50 is made of, for example, a nonmagnetic material such as a stainless steel plate, and is attached to the outer peripheral surface of the rim portion 37 of the rotor frame 33 so as to generate a compressive stress in the rotor frame 33.
  • the attachment method should just be attached so that a compressive stress may generate
  • a method for assembling the rotor 11 of the axial gap type motor 10 of this embodiment will be described.
  • a plurality of spoke forming members 38a,..., 38a are arranged at predetermined intervals on the outer peripheral side of the shaft portion 36a, and welded at both ends of each inner diameter side extending portion 382 to the outer peripheral surface of the shaft portion 36a.
  • the shaft portion 36a and the spoke forming members 38a, ..., 38a are joined.
  • the holding portion 361 formed on the shaft portion 36a and the claw portion 351 formed on the spoke 35 are joined so as to be on the same side in the rotation axis O direction.
  • FIG. 10 a plurality of spoke forming members 38a,..., 38a are arranged at predetermined intervals on the outer peripheral side of the shaft portion 36a, and welded at both ends of each inner diameter side extending portion 382 to the outer peripheral surface of the shaft portion 36a.
  • the shaft portion 36a and the spoke forming members 38a, ..., 38a are joined.
  • the first frame 33A is manufactured by arranging the rim portion 37a so as to be on the same side and welding the outer diameter side extending portions 383 and 383 to join the rim portion 37a to the spoke forming members 38a,.
  • the first grooves 422 and 422 formed in the auxiliary permanent magnet piece 42 of the integrated magnet 44 are engaged with the claws 351 and 351 formed in the spoke 35a.
  • the integrated magnets 44, ..., 44 are mounted in the spoke forming members 38a, ..., 38a of the frame 33A, respectively.
  • the clearance grooves 451 and 452 formed on the magnetic member 45 are engaged with the holding portion 361 formed on the shaft portion 36 and the holding portion 371 formed on the rim portion 37a.
  • the magnetic members 45,..., 45 are respectively mounted between the spoke forming members 38a, 38a adjacent in the circumferential direction.
  • the second frame 33B manufactured in the same manner as the first frame 33A is attached to the first frame 33A from the opposite side to the rotation axis O direction, and as shown in FIG. 14, the rim portion 37a.
  • the outer peripheral ring 50 is press-fitted into the outer peripheral surface of 37b.
  • a pair of sub permanent magnet pieces 42, 42, 43, 43 are arranged on one side and the other side of the main permanent magnet piece 41, respectively.
  • the pole portion 31 is constituted by the integrated magnet 44 having a substantially Halbach arrangement, the effective magnetic flux linked to the stators 12 and 12 is relatively increased, and magnetic fluxes other than the magnetic fluxes directed to the stators 12 and 12 are magnet poles. It converges inside the integrated magnet 44 constituting the part 31. Therefore, a short circuit of the magnetic flux with the magnetic member 45 of the magnetic material pole portion 32 adjacent in the circumferential direction can be suppressed, and thereby a reduction in torque generated by the motor and a reduction in efficiency can be suppressed.
  • the magnet pole portion 31 is configured by the integrated magnet 44 having a substantially Halbach arrangement in which a pair of sub permanent magnet pieces 42, 42, 43, 43 are arranged on one side and the other side of the main permanent magnet piece 41 in advance, The attachment property to the rotor frame 33 is improved, and the manufacturing process can be simplified.
  • the sub permanent magnet pieces 42 and 42 are tapered surfaces 421 whose thickness gradually decreases toward the substantially central portion 410 of the main permanent magnet piece 41. Since (431) is included, the polar arc angle can be easily adjusted by adjusting the inclination of the tapered surface 421 (431).
  • the main permanent magnet piece 41 and the sub permanent magnet pieces 42, 42, 43, 43 are integrated by an adhesive or by sintering, so that they can be easily integrated.
  • the magnetized magnet 44 can be manufactured.
  • the magnetic member 45 constituting the magnetic material electrode portion 32 can be manufactured easily by laminating silicon steel plates, or by forming and sintering with a soft magnetic material. By forming 450, magnetic saliency can be easily imparted to the magnetic member 45.
  • the assemblability can be improved by dividing the rotor frame 33 for transmitting the rotational torque in the axial direction.
  • the holding portion 361 that holds the magnetic member 45 of the magnetic material pole portion 32 on the outer side in the rotation axis O direction of the shaft portion 36a (36b) and the rim portion 37a (37b).
  • 371 and clearance grooves 451 and 452 that engage with the holding portions 361 and 371 are provided in the magnetic member 45, so that the magnetic member 45 can be reliably held in the rotor frame 33.
  • the clearance between the rotor 11 and the stator 12 can be set to a minimum by making the engaging portions engaging with the holding portions 361 and 371 into the escape grooves 451 and 452.
  • the shaft portion 36a (36b) and the rim portion 37a (37b) are formed by press molding together with the holding portions 361 and 371, respectively, the strength can be increased by work hardening by press molding.
  • the claw part 351 which fixes the integrated magnet 44 of the magnet pole part 31 is provided in the rotating shaft O direction outer side of the spoke 35a (35b), and an integrated magnet Since the clearance grooves 422 and 432 that engage with the claw portions 351 and 351 are provided in the shaft 44, the integrated magnet 44 can be reliably held in the rotor frame 33. Moreover, the clearance between the rotor 11 and the stator 12 can be set to a minimum by making the engaging portions that engage with the claw portions 351 into the escape grooves 451 and 452. Furthermore, since the spoke 35a (35b) is formed by press molding together with the claw portion 351, the strength can be increased by work hardening by press molding.
  • board thickness of the spoke 35a (35b) is set thicker than the space
  • the spokes 35a (35b) are provided along the inner diameter side extending portion 382 and the rim portion 37a (37b) extending along the shaft portion 36a (36b).
  • the inner diameter side extending portion 382 and the outer diameter side extending portion 383, 383 are joined to the shaft portion 36a (36b) and the rim portion 37a (37b) by welding, respectively. Therefore, the spoke 35a (35b), the shaft portion 36a (36b), and the rim portion 37a (37b) can be manufactured by press working, and the rotor frame 33 can be formed from one member (solid material having a columnar shape or a cylindrical shape). Manufacturing time can be shortened compared with the case of cutting and processing.
  • spokes 35a and 35a (35b and 35b) adjacent in the circumferential direction are integrated by the inner diameter side extending portion 382 and / or the outer diameter side extending portions 383 and 383, and the spoke forming member 38a (38b) is formed from one flat plate. ), The number of parts can be reduced, and the assembly process can be simplified.
  • the rigidity of the rotor frame 33 can be increased by fitting the outer ring 50 to the rim portion 37 of the rotor frame 33, and the rim portion 37 is made thin. Can be easily manufactured by press molding.
  • the tapered surface 421 (431) is formed on the sub permanent magnet pieces 42 and 42 (43, 43), the tapered surface 421 (431) is not necessarily formed.
  • the spokes 35a, 35a (35b, 35b) adjacent in the circumferential direction are connected to each other by the inner diameter side extending portion 382 of the spoke forming member 38a (38b), but are connected by the outer diameter side extending portion 383.
  • the inner diameter side extending portion 382 and the outer diameter side extending portion 383 may be connected to each other, and the spokes 35a and 35b may be provided independently.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)
  • Permanent Magnet Type Synchronous Machine (AREA)

Abstract

 磁石極部31は、回転軸方向に磁化された主永久磁石片41と、回転軸方向一方側であって主永久磁石片41の周方向両側に配置され、それぞれ回転軸方向および径方向に直交する方向に磁化され主永久磁石片41の回転軸方向一方側の磁極と同極の磁極が対向する一対の副永久磁石片42、42と、回転軸方向他方側であって主永久磁石片41の周方向両側に配置され、それぞれ回転軸方向および径方向に直交する方向に磁化され主永久磁石片41の回転軸方向他方側の磁極と同極の磁極が対向する一対の副永久磁石片43、43と、が一体となった一体化磁石44から構成され、主永久磁石片41の一部が一対のステータ12、12に露出する。

Description

アキシャルギャップ型モータ
 本発明は、アキシャルギャップ型モータに関する。
 従来、例えば回転軸方向の両側からロータを挟み込むようにして対向配置された1対のステータを備え、ロータの永久磁石による界磁磁束に対して、1対のステータを介した磁束ループを形成するアキシャルギャップ型の回転電機が知られている(例えば、特許文献1参照)。
 図15及び図16に示すように、上記特許文献1に記載のアキシャルギャップ型モータ100は、回転軸周りに回転可能なロータ101と、回転軸方向の両側からロータ101を挟んで対向配置される一対のステータ102、102と、を備え、ロータ101は、周方向に所定の間隔で配置される磁石極部103,…,103と、周方向で隣り合う磁石極部103、103間に配置される磁性材極部104と、を備え、これら磁石極部103,…,103と磁性材極部104,…,104がロータフレーム105に収容されて構成されている。
日本国特開2001-136721号公報
 しかしながら、このアキシャルギャップ型モータ100においては、各磁石極部103が回転軸方向に磁化された1つの磁石片から構成されるため、隣り合う磁性材極部104との間で、図16中矢印で示すように磁束の閉ループを形成する。このため、磁石極部103から各ステータ102に向かう磁束が短絡し、モータの発生トルクが減少したり効率が低下するおそれがあった。なお、これを回避するためには、ロータフレーム105のスポーク106の厚さを厚くする必要があるが、スポーク106の厚さを厚くすると、磁石極部103と磁性材極部104を小さくせざるを得ずトルクを向上することができなかった。
 本発明は、上記した事情に鑑みてなされたもので、その目的は、磁束の短絡を抑制し、モータの発生トルクの減少や効率低下を抑制することができるアキシャルギャップ型モータを提供することにある。
 上記目的は、以下の構成により達成される。
(1)回転軸周りに回転可能なロータと、
 回転軸方向の両側から前記ロータを挟んで対向配置される一対のステータと、を備えるアキシャルギャップ型モータであって、
 前記ロータは、
 周方向に所定の間隔で配置される磁石極部と、
 周方向で隣り合う前記磁石極部間に配置される磁性材極部と、を備え、
 前記磁石極部は、
 回転軸方向に磁化された主磁石片と、回転軸方向一方側であって前記主磁石片の周方向両側に配置され、それぞれ回転軸方向および径方向に直交する方向に磁化され前記主磁石片の回転軸方向一方側の磁極と同極の磁極が対向する一対の副磁石片と、回転軸方向他方側であって前記主磁石片の周方向両側に配置され、それぞれ回転軸方向および径方向に直交する方向に磁化され前記主磁石片の回転軸方向他方側の磁極と同極の磁極が対向する一対の副磁石片と、が一体となった一体化磁石から構成され、前記主磁石片の一部が前記一対のステータに露出する、ことを特徴とする。
(2)(1)に記載の構成に加えて、前記副磁石片は、それぞれ前記主磁石片の略中央部に向かって次第に厚さが漸減するテーパ部を有し、前記主磁石片の略中央部が前記一対のステータに露出する、ことを特徴とする。
(3)(1)又は(2)に記載の構成に加えて、前記主磁石片と、回転軸方向一方側に配置された前記一対の副磁石片と、回転軸方向他方側に配置された前記一対の副磁石片とは、接着材により、又は焼結により一体化される、ことを特徴とする。
(4)(1)~(3)のいずれかに記載の構成に加えて、前記磁性材極部は、珪素鋼板を積層した、又は軟磁性体の磁性部材で構成され、回転軸方向に磁気突極性を有する、ことを特徴とする。
(5)(4)に記載の構成に加えて、前記磁性部材は、回転軸方向に貫通する貫通孔を有する、ことを特徴とする。
(6)(1)~(5)のいずれかに記載の構成に加えて、前記ロータは、前記磁石極部と前記磁性材極部間に配置されて径方向に延びる複数のスポークと、前記複数のスポークの内径側及び外径側にそれぞれ設けられるシャフト部及びリム部と、を有する非磁性のロータフレームを備える、ことを特徴とする。
(7)(6)に記載の構成に加えて、前記ロータフレームは、前記磁石極部と前記磁性材極部間に配置されて径方向に延びる複数のスポークと、前記複数のスポークの内径側及び外径側にそれぞれ設けられるシャフト部及びリム部と、をそれぞれ有する第1及び第2フレームから構成され、前記第1及び第2フレームを軸方向に組付けて構成される、ことを特徴とする。
(8)(7)に記載の構成に加えて、前記第1及び第2フレームの前記シャフト部及び前記リム部の回転軸方向外側に前記磁性材極部を保持する保持部を有する、ことを特徴とする。
(9)(8)に記載の構成に加えて、前記磁性材極部には、前記保持部と係合する周方向に伸びる逃げ溝が設けられる、ことを特徴とする。
(10)(7)~(9)のいずれかに記載の構成に加えて、前記第1及び第2フレームの前記スポークの回転軸方向外側には前記磁石極部を固定する爪部が設けられる、ことを特徴とする。
(11)(10)に記載の構成に加えて、前記磁石極部には、前記スポークの爪部と係合する径方向に伸びる逃げ溝が設けられる、ことを特徴とする。
(12)(1)~(11)のいずれかに記載の構成に加えて、 前記スポークの板厚は、前記ロータと前記ステータ間に形成される空隙よりも厚い、ことを特徴とする。
(13)(6)~(12)のいずれかに記載の構成に加えて、 前記スポークの表面に絶縁層を設けた、ことを特徴とする。
(14)(6)~(13)のいずれかに記載の構成に加えて、 前記スポークは、前記シャフト部に沿って延設された内径側延設部と前記リム部に沿って延設された外径側延設部と一体に構成され、前記内径側延設部と前記外径側延設部は、それぞれ前記シャフト部及び前記リム部に溶接により接合される、ことを特徴とする。
(15)(6)~(14)のいずれかに記載の構成に加えて、前記第1及び第2ロータフレームのリム部には、外周リングが嵌合される、ことを特徴とする。
(16)(10)に記載の構成に加えて、前記スポークは前記爪部とともにプレス成形により形成される、ことを特徴とする。    
(17)(8)に記載の構成に加えて、前記シャフト部及び前記リム部はそれぞれ前記保持部とともにプレス成形により形成される、ことを特徴とする。
(18)(1)~(17)のいずれかに記載の構成のアキシャルギャップ型モータが車両に用いられる、ことを特徴とする。
 (1)の構成によれば、主磁石片の一方側と他方側にそれぞれ一対の副磁石片を配置して磁石極部を略ハルバッハ配置の一体化磁石で構成したので、各ステータに鎖交する有効磁束が相対的に増大するとともに、各ステータに向かう磁束以外の磁束が磁石極部内部で収束する。従って、周方向で隣り合う磁性材極部との磁束の短絡を抑制することができ、これによりモータの発生トルクの減少や効率低下を抑制することができる。
 また、各ステータに向かう磁束以外の磁束が磁石極部内部で収束するため、ロータフレームのスポーク部の厚さを薄くすることができ、磁石極部及び磁性材極部の占有率を向上させてモータの発生トルクを増大させることができる。
 さらに、磁石極部を予め主磁石片の一方側と他方側にそれぞれ一対の副磁石片を配置した略ハルバッハ配置の一体化磁石で構成したので、ロータフレームへの取付け性が向上し、製造工程を簡略化することができる。
 (2)の構成によれば、副磁石片は主磁石片の略中央部に向かって次第に厚さが漸減するテーパ部を有するので、テーパ部の傾きを調整することで極弧角を容易に調整することができる。
 (3)の構成によれば、容易に主磁石片と副磁石片を一体化した一体化磁石を製造することができる。
 (4)の構成によれば、容易に磁性材極部を構成する磁性部材を製造することができる。
 (5)の構成によれば、貫通孔を形成することで磁性部材に容易に磁気突極性を付与することができる。
 (6)の構成によれば、ロータの回転トルクがロータフレームを介してシャフトに伝達される。
 (7)の構成によれば、ロータフレームを軸方向に分割することで組付け性を向上させることができる。
 (8)の構成によれば、磁性材極部をロータフレーム内に確実に保持することができる。
 (9)の構成によれば、保持部と係合する係合部を逃げ溝とすることでロータとステータ間の空隙を最小限に設定することができる。
 (10)の構成によれば、磁石極部をロータフレーム内に確実に保持することができる。
 (11)の構成によれば、爪部と係合する係合部を逃げ溝とすることでロータとステータ間の空隙を最小限に設定することができる。
 (12)の構成によれば、スポークの板厚は、前記ロータと前記一対のステータ間に形成される空隙よりも厚くすることで、周方向で隣り合う磁石極部と磁性材極部との磁束流れを抑制することができる。
 (13)の構成によれば、スポークの表面に絶縁層を設けることにより、周方向で隣り合う磁石極部と磁性材極部間で渦電流を抑制することができる。
 (14)の構成によれば、スポークを平板状の板材をプレス成形してシャフト部とリム部に溶接することで、ロータフレームを一部材(円柱又は円筒形状からなる無垢材)から削り出して加工する場合に比べ、製造時間を短縮することができる。
 (15)の構成によれば、リム部に外周リングを嵌合することでロータフレームの剛性を高くすることができるとともに、リム部を薄くすることができ容易にプレス成形で製造することができる。
 (16)及び(17)の構成によれば、プレス成形による加工硬化で強度を高くすることができる。
 (18)の構成によれば、効率の良いモータを小型化することができ、車両搭載性に優れる。
本発明に係るアキシャルギャップ型モータの一実施形態の全体斜視図である。 図1に示すアキシャルギャップ型モータの分解斜視図である。 図1に示すアキシャルギャップ型モータの分解斜視図である。 (a)はロータの正面図、(b)は(a)のIVB-IVB線断面図であり、(c)はIVC-IVC線断面図である。 磁石極部を構成する一体化磁石の全体斜視図である。 磁性材極部を構成する磁性部材の全体斜視図である。 ロータフレームを構成する第1フレームの部分斜視図である。 ロータフレーム内に収容された磁石極部と磁性材極部を周方向から見た図である。 ロータの組付け方法を説明する説明図であり、(a)はロータの正面図、(b)は(a)のIXB-IXB線断面図である。 ロータの組付け方法を説明する説明図であり、(a)はロータの正面図、(b)は(a)のXB-XB線断面図である。 ロータの組付け方法を説明する説明図であり、(a)はロータの正面図、(b)は(a)のXIB-XIB線断面図である。 ロータの組付け方法を説明する説明図であり、(a)はロータの正面図、(b)は(a)のXIIB-XIIB線断面図である。 ロータの組付け方法を説明する説明図であり、(a)はロータの正面図、(b)は(a)のXIIIB-XIIIB線断面図である。 ロータの組付け方法を説明する説明図であり、(a)はロータの正面図、(b)は(a)のXIVB-XIVB線断面図である。 特許文献1に記載のアキシャルギャップ型モータの斜視図である。 図15に記載のアキシャルギャップ型モータを周方向から見た図である。
 以下、本発明に係るアキシャルギャップ型モータの一実施形態について、添付図面に基づいて詳細に説明する。なお、図面は符号の向きに見るものとする。
 本実施の形態によるアキシャルギャップ型モータ10は、例えば図1に示すように、このアキシャルギャップ型モータ10の回転軸O周りに回転可能に設けられた略円環状のロータ11と、回転軸O方向両側からロータ11を挟みこむようにして対向配置され、ロータ11を回転させる回転磁界を発生する複数相の各固定子巻線を有する1対のステータ12,12とを備えて構成されている。 
 このアキシャルギャップ型モータ10は、例えばハイブリッド車両や電動車両等の車両に駆動源として搭載され、出力軸がトランスミッション(図示略)の入力軸に接続されることで、アキシャルギャップ型モータ10の駆動力がトランスミッションを介して車両の駆動輪(図示略)に伝達されるようになっている。 
 また、車両の減速時に駆動輪側からアキシャルギャップ型モータ10に駆動力が伝達されると、アキシャルギャップ型モータ10は発電機として機能していわゆる回生制動力を発生し、車体の運動エネルギーを電気エネルギー(回生エネルギー)として回収する。さらに、例えばハイブリッド車両においては、アキシャルギャップ型モータ10の回転軸が内燃機関(図示略)のクランクシャフトに連結されると、内燃機関の出力がアキシャルギャップ型モータ10に伝達された場合にもアキシャルギャップ型モータ10は発電機として機能して発電エネルギーを発生する。 
 各ステータ12は、略円環板状のヨーク部21と、ロータ11に対向するヨーク部21の対向面上で周方向に所定間隔をおいた位置から回転軸O方向に沿ってロータ11に向かい突出すると共に径方向に伸びる複数のティース22,…,22と、適宜のティース22,22間に装着される固定子巻線(図示略)とを備えて構成されている。 
 各ステータ12は、例えば主極が6個(例えば、U+,V+,W+,U-,V-,W-)とされた6N型であって、一方のステータ12の各U+,V+,W+極に対して、他方のステータ12の各U-,V-,W-極が回転軸O方向で対向するように設定されている。例えば回転軸O方向で対向する1対のステータ12,12に対し、U+,V+,W+極およびU-,V-,W-極の一方に対応する一方のステータ12の3個のティース22,22,22と、U+,V+,W+極およびU-,V-,W-極の他方に対応する他方のステータ12の3個のティース22,22,22とが、回転軸O方向で対向するように設定され、回転軸O方向で対向する一方のステータ12のティース22と、他方のステータ12のティース22とに対する通電状態が電気角で反転状態となるように設定されている。 
 ロータ11は、例えば図2~図4に示すように、複数の磁石極部31,…,31と、複数の磁性材極部32,…,32と、非磁性材からなるロータフレーム33と、外周リング50と、を備えて構成され、磁石極部31と磁性材極部32とは、周方向において交互に配置された状態で、外周リング50が装着されたロータフレーム33内に収容されている。 
 磁石極部31は、図5に示すように、略扇形板状の主永久磁石片41と、回転軸O方向一方側であってこの主永久磁石片41の周方向両側に配置された一対の第1副永久磁石片42、42と、回転軸O方向他方側であってこの主永久磁石片41の周方向両側に配置された一対の第2副永久磁石片43、43とが、例えば、接着材又は焼結により一体形成された一体化磁石44から構成されている。
 主永久磁石片41は回転軸O方向に磁化され、磁性材極部32を挟んで周方向で隣り合う磁石極部31,31の各主永久磁石片41,41は、磁化方向が互いに異方向となるように設定されている。
 副永久磁石片42(43)は、それぞれ主永久磁石片41の半分以下の周方向長さの略扇形板状を有する。一対の副永久磁石片42、42(43、43)の対向側面には、主永久磁石片41の中央部410に向かって次第に厚さが漸減するテーパ面421(431)が形成され、テーパ面421(431)とは反対側の面の主永久磁石片41と接しない角部には径方向に伸びる断面略L字形状の逃げ溝422(432)が形成されている。そして、一対の副永久磁石片42、42(43、43)は主永久磁石片41の磁石中心線Pを挟んで左右対称に設けられている。ここで、中心線Pからテーパ面421(431)までの距離をdとし、テーパ面の角度をθとすると、d>0、0<θ<90°に設定されている。なお、距離dは図5に示すように内径側から外径側に向かって次第に長くなるように設定してもよく、一定としてもよい。距離dを内径側から外径側に向かって次第に長くすることで、ステータ12のティース22のボリュームが大きくなるに従って主永久磁石片41の中央部410の面積も広がるため磁束が均一化でき、より効率的に磁束のやりとりを行うことができる。また、副永久磁石片42、42(43、43)の磁石量を低減することができる。一方、距離dを一定にして主永久磁石片41の中央部410の面積をステータ12のティース22、22間に形成されるスロットの形状と対応させることで、発電量や駆動力の制御を簡易に行なうことができる。
 第1副永久磁石片42、42は、それぞれ回転軸方向および径方向に直交する方向(略周方向)に磁化されるとともに、第1副永久磁石片42、42同士が主永久磁石片41の回転軸方向一方側の磁極と同極の磁極が対向するように配置され、第2副永久磁石片43、43は、それぞれ回転軸方向および径方向に直交する方向(略周方向)に磁化されるとともに、第2副永久磁石片43、43同士が主永久磁石片41の回転軸方向他方側の磁極と同極の磁極が対向するように配置されている。
 つまり、例えば回転軸O方向の一方側がN極かつ他方側がS極とされた主永久磁石片41に対して、回転軸O方向の一方側に配置された一対の第1副永久磁石片42,42は、互いのN極が周方向で対向するように配置され、回転軸O方向の他方側に配置された一対の第2副永久磁石片43,43は、互いのS極が周方向で対向するように配置されている。 これにより、所謂永久磁石の略ハルバッハ配置による磁束レンズ効果により主永久磁石片41および各副永久磁石片42、42、43、43の各磁束が主永久磁石片41の中央部410で収束し、各ステータ12,12に鎖交する有効磁束が相対的に増大するようになっている。 
 また、各副永久磁石片42、42、43、43は、主永久磁石片41の周方向端部側で主永久磁石片41の磁極に対して異極となるように主永久磁石片41と回転軸O方向で対向している。つまり、例えば回転軸O方向の一方側がN極かつ他方側がS極とされた主永久磁石片41に対して、回転軸O方向の一方側に配置された各第1副永久磁石片42,42は、主永久磁石片41の周方向端部側でS極が、主永久磁石片41と回転軸O方向で対向し、回転軸O方向の他方側に配置された各第2副永久磁石片43,43は、主永久磁石片41の周方向端部側でN極が、主永久磁石片41と回転軸O方向で対向している。これにより、一体化磁石44内部で主永久磁石片41と各副永久磁石片42、42、43、43の磁束が収束するようになっている。
 磁性材極部32は、図6に示すように、回転軸O方向と平行な方向に貫通する複数のスリット450,…,450を備えた磁性部材45から構成され、磁性部材45は、周方向において一様幅を有し、複数の珪素鋼板が積層されて、又は鉄粉などの軟磁性体を成形・焼結して製作される。スリット450は、例えば回転軸O方向に対する断面形状が径方向を長手方向とする長穴状とされ、周方向に所定間隔をおいて複数(ここでは4本)配置されている。また、磁性部材45の内周側角部及び外周側角部には周方向に伸びる断面L字形状の逃げ溝451、452が形成されている。
 ロータフレーム33は、例えば図3及び図4に示すように周方向で隣り合う磁石極部31と磁性材極部32間に配置され径方向に伸びる複数のスポーク35,…,35と、このスポーク35,…,35によって接続された内周側円環状のシャフト部36と外周側円環状のリム部37と、シャフト部36の内周部に形成された外部の駆動軸(例えば、車両のトランスミッションの入力軸等)に接続される接続部と、を備えて構成されている。
 より具体的に、ロータフレーム33は、それぞれシャフト部36a(36b)とリム部37a(37b)と、シャフト部36a(36b)とリム部37a(37b)間に配置され径方向に伸びる一対のスポーク35a、35a(35b、35b)を有する複数のスポーク形成部材38a,…,38a(38b,…,38b)と(図7参照)、を備える第1及び第2フレーム33A、33Bが軸方向で対向するように組み合わせて構成され、第1フレーム33Aのシャフト部36aと第2フレーム33Bのシャフト部36bによりロータフレーム33のシャフト部36が構成され、第1フレーム33Aのリム部37aと第2フレーム33Bのシャフト部37bによりロータフレーム33のリム部37が構成され、第1フレーム33Aのスポーク35aと第2フレーム33Bのスポーク35bによりロータフレーム33のスポーク35,…,35が構成されている。ここで、シャフト部36a(36b)とリム部37a(37b)と複数のスポーク形成部材38a,…,38a(38b,…,38b)は、それぞれ薄板状の板材からプレス成形により形成される。
 そして、一体化磁石44と磁性部材45がスポーク35を介して周方向で隣り合うように配置され、径方向両側からシャフト部36とリム部37とにより挟み込まれている。
 シャフト部36の回転軸O方向両端部、即ちシャフト部36aの回転軸O方向一方側端部とシャフト部36bの回転軸O方向他方側端部には、例えば図7に示すように、磁性材極部32の磁性部材45を収容する位置に径方向外側に伸びる保持部361、361が設けられ、磁性部材45に形成された逃げ溝451、451に係合する。同様にリム部37の回転軸O方向両端部、即ちリム部37aの回転軸O方向一方側端部とリム部37bの回転軸O方向他方側端部には、磁性材極部32の磁性部材45を収容する位置に径方向内側に伸びる保持部371、371が設けられ、磁性部材45に形成された逃げ溝452、452に係合する。これにより、磁性部材45は保持部361、371によりロータフレーム33内で回転軸O方向の位置決めがなされ、ロータフレーム33内に確実に保持される。このとき、磁性部材45と保持部361、371は軸直交方向の断面視で面一となるように構成されている(図12~14参照)。なお、保持部361、371はそれぞれシャフト部36a(36b)、リム部37a(37b)とともにプレス成形により形成される。
 スポーク形成部材38a(38b)は、例えば図7に示すように、一体化磁石44を周方向及び径方向から囲うように軸直交方向断面視で略扇型形状を有し、外径側略中央部に開口381が形成されている。すなわち、スポーク形成部材38a(38b)は、周方向両側に設けられた一対のスポーク35a、35a(35b、35b)と、スポーク35a、35a(35b、35b)の内径側からシャフト部36a(36b)に沿って延設され一対のスポーク35a、35a(35b、35b)を互いに接続する内径側延設部382と、一対のスポーク35a、35a(35b、35b)の外径側からリム部37aに沿って延設され開口381を挟んで互いに対向する外径側延設部383、383を備えて構成されている。そして、シャフト部36a(36b)と内径側延設部382が内径側延設部382の両端で溶接して接合されるとともにリム部37a(37b)と外径側延設部383、383が溶接して接合される。
 また、スポーク形成部材38aのスポーク35a、35aの回転軸O方向一方側端部とスポーク形成部材38bのスポーク35b、35bの回転軸O方向他方側端部には、周方向内側、即ち収容する一体化磁石44に向かって折り曲げられた爪部351、351が設けられ、一体化磁石44の各副永久磁石片42、42、43、43に形成された逃げ溝422、422、432、432に係合する。これにより、一体化磁石44は爪部351、351によりロータフレーム33内で回転軸O方向の位置決めがなされ、ロータフレーム33内で確実に保持される。このとき、副永久磁石片42、42、43、43と爪部351、351、351、351は軸直交方向の断面視で面一となるように構成されている。なお、爪部351はスポーク35a(35b)とともにプレス成形により形成される。スポーク35aの板厚(周方向長さ)はロータ11とステータ12との空隙より厚く、さらにスポーク35a(35b)の表面には絶縁層を設けてもよい。これにより周方向で隣り合う磁石極部31と磁性材極部32間の磁束流れを抑制するとともに、渦電流を抑制することができる。
 外周リング50は、例えば、ステンレス鋼板などの非磁性材料からなり、ロータフレーム33のリム部37の外周面に装着され、ロータフレーム33に圧縮応力が発生するように取り付けられている。なお、装着方法は、ロータフレーム33に圧縮応力が発生するように取り付けられればよく、圧入や焼きばめ等により取り付けられる。
 次に本実施形態のアキシャルギャップ型モータ10のロータ11の組付け方法について説明する。図9に示すように、シャフト部36aの外周側に所定の間隔で複数のスポーク形成部材38a,…,38aを配置し、シャフト部36aの外周面に各内径側延設部382の両端で溶接してシャフト部36aとスポーク形成部材38a,…,38aを接合する。このとき、シャフト部36aに形成された保持部361とスポーク35に形成された爪部351が回転軸O方向で同じ側となるように接合する。続いて、図10に示すように、スポーク形成部材38a,…,38aの外径側にリム部37aに形成された保持部371がシャフト部36aに形成された保持部361と回転軸O方向で同じ側となるようにリム部37aを配置し、外径側延設部383、383で溶接してスポーク形成部材38a,…,38aにリム部37aを接合して第1フレーム33Aを製造する。
 続いて、図11に示すように、一体化磁石44の副永久磁石片42に形成された逃げ溝422、422がスポーク35aに形成された爪部351、351と係合するように、第1フレーム33Aのスポーク形成部材38a,…,38a内にそれぞれ一体化磁石44,…,44を装着する。続いて、図12に示すように、磁性部材45に形成された逃げ溝451、452がシャフト部36に形成された保持部361とリム部37aに形成された保持部371と係合するように、周方向で隣り合うスポーク形成部材38a、38a間にそれぞれ磁性部材45,…,45を装着する。
 そして、図13に示すように、第1フレーム33Aと同様に製造された第2フレーム33Bを第1フレーム33Aに対し回転軸O方向反対側から装着し、図14に示すように、リム部37a、37bの外周面に外周リング50を圧入する。
 以上説明したように、本実施形態のアキシャルギャップ型モータ10によれば、主永久磁石片41の一方側と他方側にそれぞれ一対の副永久磁石片42、42、43、43を配置して磁石極部31を略ハルバッハ配置の一体化磁石44で構成したので、各ステータ12,12に鎖交する有効磁束が相対的に増大するとともに、各ステータ12,12に向かう磁束以外の磁束が磁石極部31を構成する一体化磁石44内部で収束する。従って、周方向で隣り合う磁性材極部32の磁性部材45との磁束の短絡を抑制することができ、これによりモータの発生トルクの減少や効率低下を抑制することができる。
 また、各ステータ12、12に向かう磁束以外の磁束が一体化磁石44内部で収束するため、ロータフレーム33のスポーク35の厚さを薄くすることができ、磁石極部31及び磁性材極部32の占有率を向上させてモータの発生トルクを増大させることができる。
 さらに、磁石極部31を予め主永久磁石片41の一方側と他方側にそれぞれ一対の副永久磁石片42、42、43、43を配置した略ハルバッハ配置の一体化磁石44で構成したので、ロータフレーム33への取付け性が向上し、製造工程を簡略化することができる。
 また、本実施形態のアキシャルギャップ型モータ10によれば、副永久磁石片42、42(43、43)は主永久磁石片41の略中央部410に向かって次第に厚さが漸減するテーパ面421(431)を有するので、テーパ面421(431)の傾きを調整することで極弧角を容易に調整することができる。
 また、本実施形態のアキシャルギャップ型モータ10によれば、主永久磁石片41と副永久磁石片42、42、43、43を接着材により、又は焼結により一体化することで、容易に一体化磁石44を製造することができる。また、磁性材極部32を構成する磁性部材45は、珪素鋼板を積層、又は軟磁性体で成形・焼結して製造することで、磁性部材45を容易に製造することができ、さらにスリット450を形成することで、磁性部材45に容易に磁気突極性を付与することができる。
 また、本実施形態のアキシャルギャップ型モータ10によれば、回転トルクを伝達するロータフレーム33を軸方向に分割することで組付け性を向上することができる。
 また、本実施形態のアキシャルギャップ型モータ10によれば、シャフト部36a(36b)及びリム部37a(37b)の回転軸O方向外側に磁性材極部32の磁性部材45を保持する保持部361、371を設け、磁性部材45に保持部361、371と係合する逃げ溝451、452を設けたので、磁性部材45をロータフレーム33内に確実に保持することができる。また、保持部361、371と係合する係合部を逃げ溝451、452とすることでロータ11とステータ12間の空隙を最小限に設定することができる。さらに、シャフト部36a(36b)及びリム部37a(37b)はそれぞれ保持部361、371とともにプレス成形により形成されるので、プレス成形による加工硬化で強度を高くすることができる。
 また、本実施形態のアキシャルギャップ型モータ10によれば、スポーク35a(35b)の回転軸O方向外側には磁石極部31の一体化磁石44を固定する爪部351が設けられ、一体化磁石44に爪部351、351と係合する逃げ溝422、432を設けたので、一体化磁石44をロータフレーム33内に確実に保持することができる。また、爪部351と係合する係合部を逃げ溝451、452とすることでロータ11とステータ12間の空隙を最小限に設定することができる。さらに、スポーク35a(35b)は爪部351とともにプレス成形により形成されるので、プレス成形による加工硬化で強度を高くすることができる。
 また、本実施形態のアキシャルギャップ型モータ10によれば、スポーク35a(35b)の板厚をロータ11とステータ12間に形成される空隙よりも厚く設定しているので、周方向で隣り合う磁石極部31の一体化磁石44と磁性材極部32の磁性部材45との磁束流れを抑制することができる。また、スポーク35a(35b)の表面に絶縁層を設けることで渦電流の発生を抑制することができる。
 また、本実施形態のアキシャルギャップ型モータ10によれば、スポーク35a(35b)はシャフト部36a(36b)に沿って延設された内径側延設部382とリム部37a(37b)に沿う外径側延設部383、383と一体に構成され、内径側延設部382と外径側延設部383、383は、それぞれシャフト部36a(36b)及びリム部37a(37b)に溶接により接合されるので、スポーク35a(35b)、シャフト部36a(36b)及びリム部37a(37b)をプレス加工で製造することができ、ロータフレーム33を一部材(円柱又は円筒形状からなる無垢材)から削り出して加工する場合に比べ、製造時間を短縮することができる。
 さらに、周方向で隣り合うスポーク35a、35a(35b、35b)を内径側延設部382及び/又は外径側延設部383、383で一体化し、一枚の平板からスポーク形成部材38a(38b)として形成することにより部品点数を削減することができ、組付け工程を簡易化することができる。
 また、本実施形態のアキシャルギャップ型モータ10によれば、ロータフレーム33のリム部37に外周リング50が嵌合することでロータフレーム33の剛性を高くすることができるとともに、リム部37を薄くすることができ容易にプレス成形で製造することができる。
 なお、本発明は、上記実施形態に例示したものに限定されるものではなく、本発明の要旨を逸脱しない範囲において適宜変更可能である。
 例えば、副永久磁石片42、42(43、43)にテーパ面421(431)を形成したが、必ずしもテーパ面421(431)を形成する必要はない。
 また、周方向で隣り合うスポーク35a、35a(35b、35b)は、スポーク形成部材38a(38b)の内径側延設部382によって互いに接続されているが、外径側延設部383によって接続されても、内径側延設部382と外径側延設部383の両方によって接続されていてもよく、また、各スポーク35a、35bはそれぞれ独立に設けられていてもよい。
  10  アキシャルギャップ型モータ
  11  ロータ
  12  ステータ
  31  磁石極部
  32  磁性材極部
  33  ロータフレーム
  33A 第1フレーム
  33B 第2フレーム
  35、35a、35b  スポーク
  351 爪部
  36、36a、36b  シャフト部
  361 保持部
  37、37a、37b  リム部
  371 保持部
  38a、38b スポーク形成部材
  382 内径側延設部
  383 外径側延設部
  41  主永久磁石片(主磁石片)
  410 中央部
  42  副永久磁石片(副磁石片)
  421 テーパ面(テーパ部)
  422 逃げ溝
  43  副永久磁石片(副磁石片)
  431 テーパ面(テーパ部)
  432 逃げ溝
  44  一体化磁石
  45  磁性部材
  450 スリット(貫通孔)
  451 逃げ溝
  452 逃げ溝
  50  外周リング
  O  回転軸

Claims (18)

  1.  回転軸周りに回転可能なロータと、
     回転軸方向の両側から前記ロータを挟んで対向配置される一対のステータと、を備える
    アキシャルギャップ型モータであって、
     前記ロータは、
     周方向に所定の間隔で配置される磁石極部と、
     周方向で隣り合う前記磁石極部間に配置される磁性材極部と、を備え、
     前記磁石極部は、
     回転軸方向に磁化された主磁石片と、回転軸方向一方側であって前記主磁石片の周方向両側に配置され、それぞれ回転軸方向および径方向に直交する方向に磁化され前記主磁石片の回転軸方向一方側の磁極と同極の磁極が対向する一対の副磁石片と、回転軸方向他方側であって前記主磁石片の周方向両側に配置され、それぞれ回転軸方向および径方向に直交する方向に磁化され前記主磁石片の回転軸方向他方側の磁極と同極の磁極が対向する一対の副磁石片と、が一体となった一体化磁石から構成され、前記主磁石片の一部が前記一対のステータに露出する、
     ことを特徴とするアキシャルギャップ型モータ。
  2.  前記副磁石片は、それぞれ前記主磁石片の略中央部に向かって次第に厚さが漸減するテーパ部を有し、
     前記主磁石片の略中央部が前記一対のステータに露出する、
     ことを特徴とする請求項1に記載のアキシャルギャップ型モータ。
  3.  前記主磁石片と、回転軸方向一方側に配置された前記一対の副磁石片と、回転軸方向他方側に配置された前記一対の副磁石片とは、接着材により、又は焼結により一体化される、
     ことを特徴とする請求項1に記載のアキシャルギャップ型モータ。
  4.  前記磁性材極部は、珪素鋼板を積層した、又は軟磁性体の磁性部材で構成され、回転軸方向に磁気突極性を有する、
     ことを特徴とする請求項1に記載のアキシャルギャップ型モータ。
  5.  前記磁性部材は、回転軸方向に貫通する貫通孔を有する、
     ことを特徴とする請求項4に記載のアキシャルギャップ型モータ。
  6.  前記ロータは、前記磁石極部と前記磁性材極部間に配置されて径方向に延びる複数のスポークと、前記複数のスポークの内径側及び外径側にそれぞれ設けられるシャフト部及びリム部と、を有する非磁性のロータフレームを備える、
     ことを特徴とする請求項1に記載のアキシャルギャップ型モータ。
  7.  前記ロータフレームは、前記磁石極部と前記磁性材極部間に配置されて径方向に延びる複数のスポークと、前記複数のスポークの内径側及び外径側にそれぞれ設けられるシャフト部及びリム部と、をそれぞれ有する第1及び第2フレームから構成され、前記第1及び第2フレームを軸方向に組付けて構成される
     ことを特徴とする請求項6に記載のアキシャルギャップ型モータ。
  8.  前記第1及び第2フレームの前記シャフト部及び前記リム部の回転軸方向外側に前記磁性材極部を保持する保持部を有する、
     ことを特徴とする請求項7に記載のアキシャルギャップ型モータ。
  9.  前記磁性材極部には、前記保持部と係合する周方向に伸びる逃げ溝が設けられる、
     ことを特徴とする請求項8に記載のアキシャルギャップ型モータ。
  10.  前記第1及び第2フレームの前記スポークの回転軸方向外側には前記磁石極部を固定する爪部が設けられる、
     ことを特徴とする請求項7に記載のアキシャルギャップ型モータ。
  11.  前記磁石極部には、前記スポークの爪部と係合する径方向に伸びる逃げ溝が設けられる、ことを特徴とする請求項10に記載のアキシャルギャップ型モータ。
  12.  前記スポークの板厚は、前記ロータと前記ステータ間に形成される空隙よりも厚い、
     ことを特徴とする請求項1に記載のアキシャルギャップ型モータ。
  13.  前記スポークの表面に絶縁層を設けた、
     ことを特徴とする請求項6に記載のアキシャルギャップ型モータ。
  14.  前記スポークは、前記シャフト部に沿って延設された内径側延設部と前記リム部に沿って延設された外径側延設部と一体に構成され、
     前記内径側延設部と前記外径側延設部は、それぞれ前記シャフト部及び前記リム部に溶接により接合される、
     ことを特徴とする請求項6に記載のアキシャルギャップ型モータ。
  15.  前記第1及び第2ロータフレームのリム部には、外周リングが嵌合される、
     ことを特徴とする請求項6に記載のアキシャルギャップ型モータ。
  16.  前記スポークは前記爪部とともにプレス成形により形成される、
     ことを特徴とする請求項10に記載のアキシャルギャップ型モータ。
  17.  前記シャフト部及び前記リム部はそれぞれ前記保持部とともにプレス成形により形成される、
     ことを特徴とする請求項8に記載のアキシャルギャップ型モータ。
  18.  車両に用いられることを特徴とする請求項1に記載のアキシャルギャップ型モータ。
PCT/JP2009/069748 2009-01-28 2009-11-20 アキシャルギャップ型モータ WO2010087066A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
BRPI0924160A BRPI0924160A2 (pt) 2009-01-28 2009-11-20 motor com entreferro axial
RU2011135822/07A RU2011135822A (ru) 2009-01-28 2009-11-20 Двигатель с осевым зазором
DE112009004300T DE112009004300T5 (de) 2009-01-28 2009-11-20 Axialspaltmotor
CN200980155539.1A CN102301565B (zh) 2009-01-28 2009-11-20 轴向间隙型电机
US13/145,779 US8304949B2 (en) 2009-01-28 2009-11-20 Axial gap motor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009017042A JP5046051B2 (ja) 2009-01-28 2009-01-28 アキシャルギャップ型モータ
JP2009-017042 2009-01-28

Publications (1)

Publication Number Publication Date
WO2010087066A1 true WO2010087066A1 (ja) 2010-08-05

Family

ID=42395333

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/069748 WO2010087066A1 (ja) 2009-01-28 2009-11-20 アキシャルギャップ型モータ

Country Status (7)

Country Link
US (1) US8304949B2 (ja)
JP (1) JP5046051B2 (ja)
CN (1) CN102301565B (ja)
BR (1) BRPI0924160A2 (ja)
DE (1) DE112009004300T5 (ja)
RU (1) RU2011135822A (ja)
WO (1) WO2010087066A1 (ja)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100134678A (ko) * 2008-03-19 2010-12-23 회가내스 아베 자속 집중 극체를 구비한 영구 자석 회전자
BRPI0913261A2 (pt) * 2008-12-03 2019-09-24 Honda Motor Co Ltd motor do tiop de entreferro axial e método de fabricação de rotor do motor
JP5027169B2 (ja) * 2009-01-30 2012-09-19 本田技研工業株式会社 アキシャルギャップ型モータ及びそのロータ製造方法
EP2490319B1 (en) * 2009-10-16 2020-06-17 National University Corporation Hokkaido University Axial gap motor
CA2842947C (en) * 2011-07-14 2016-11-22 Jean I. TCHERVENKOV Wheel assembly defining a motor/generator
JP5596646B2 (ja) * 2011-09-20 2014-09-24 和明 小林 回転電機
TWI483514B (zh) * 2012-11-09 2015-05-01 Ind Tech Res Inst 軸向磁通集磁轉子結構
JP2015061394A (ja) * 2013-09-18 2015-03-30 富士重工業株式会社 回転電機
JP6255231B2 (ja) * 2013-12-11 2017-12-27 株式会社ダイナックス アキシャルギャップモータ
GB2525582B (en) * 2014-02-26 2018-06-27 Yasa Ltd Asymmetric machines
DE102015207915A1 (de) * 2015-04-29 2016-11-03 Robert Bosch Gmbh Ringmagnet mit Schlitzen zur Aufnahme von Fremdpartikeln, sowie eine elektrische Maschine beinhaltend einen solchen, sowie Verfahren zur Herstellung eines solchen
US10141822B2 (en) 2015-05-04 2018-11-27 Launchpoint Technologies, Inc. Axial flux brushless permanent magnet electrical machine rotor
GB2538515B (en) * 2015-05-19 2021-09-29 Time To Act Ltd Improved rotor for permanent magnet generator
US10075030B2 (en) * 2015-08-11 2018-09-11 Genesis Robotics & Motion Technologies Canada, Ulc Electric machine
DE102017104076A1 (de) 2016-02-26 2017-08-31 Kongsberg Automotive Inc. Gebläseeinheit für einen Fahrzeugsitz
KR101904872B1 (ko) 2017-01-31 2018-10-08 엘지전자 주식회사 축방향 공극형 모터
US10374477B2 (en) * 2017-03-17 2019-08-06 General Electric Company Electric machine with separable magnet carrier
US10804762B2 (en) * 2018-02-06 2020-10-13 General Electric Company Electric machine
CN109462318A (zh) * 2018-11-06 2019-03-12 东南大学 一种永磁体结构轴向定子无铁芯电机
CN113131644A (zh) * 2019-12-31 2021-07-16 日本电产株式会社 转子铁芯以及具有该转子铁芯的马达
US11428160B2 (en) 2020-12-31 2022-08-30 General Electric Company Gas turbine engine with interdigitated turbine and gear assembly

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001136721A (ja) * 1999-08-26 2001-05-18 Toyota Motor Corp 軸方向間隙型永久磁石同期機
JP2006217771A (ja) * 2005-02-07 2006-08-17 Oita Univ 永久磁石可動電機
JP2006345627A (ja) * 2005-06-08 2006-12-21 Nissan Motor Co Ltd 回転電機のロータ構造
JP2009011023A (ja) * 2007-06-26 2009-01-15 Honda Motor Co Ltd アキシャルギャップ型モータ

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7737594B2 (en) * 2006-12-01 2010-06-15 Honda Motor Co., Ltd. Axial gap type motor
JP4394115B2 (ja) * 2006-12-26 2010-01-06 本田技研工業株式会社 アキシャルギャップ型モータ
JP2008271640A (ja) * 2007-04-17 2008-11-06 Honda Motor Co Ltd アキシャルギャップ型モータ
JP4961302B2 (ja) * 2007-08-29 2012-06-27 本田技研工業株式会社 アキシャルギャップ型モータ
JP4729551B2 (ja) * 2007-10-04 2011-07-20 本田技研工業株式会社 アキシャルギャップ型モータ
US7977843B2 (en) * 2007-10-04 2011-07-12 Honda Motor Co., Ltd. Axial gap type motor
US7906883B2 (en) * 2008-06-02 2011-03-15 Honda Motor Co., Ltd. Axial gap motor
US8049389B2 (en) * 2008-06-02 2011-11-01 Honda Motor Co., Ltd. Axial gap motor
JP4678549B2 (ja) * 2008-10-09 2011-04-27 本田技研工業株式会社 アキシャルギャップ型モータ
BRPI0913261A2 (pt) * 2008-12-03 2019-09-24 Honda Motor Co Ltd motor do tiop de entreferro axial e método de fabricação de rotor do motor
JP5027169B2 (ja) * 2009-01-30 2012-09-19 本田技研工業株式会社 アキシャルギャップ型モータ及びそのロータ製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001136721A (ja) * 1999-08-26 2001-05-18 Toyota Motor Corp 軸方向間隙型永久磁石同期機
JP2006217771A (ja) * 2005-02-07 2006-08-17 Oita Univ 永久磁石可動電機
JP2006345627A (ja) * 2005-06-08 2006-12-21 Nissan Motor Co Ltd 回転電機のロータ構造
JP2009011023A (ja) * 2007-06-26 2009-01-15 Honda Motor Co Ltd アキシャルギャップ型モータ

Also Published As

Publication number Publication date
RU2011135822A (ru) 2013-03-10
CN102301565A (zh) 2011-12-28
US8304949B2 (en) 2012-11-06
JP5046051B2 (ja) 2012-10-10
CN102301565B (zh) 2014-01-15
BRPI0924160A2 (pt) 2016-02-10
DE112009004300T5 (de) 2012-10-04
JP2010178472A (ja) 2010-08-12
US20110273034A1 (en) 2011-11-10

Similar Documents

Publication Publication Date Title
JP5046051B2 (ja) アキシャルギャップ型モータ
JP4961302B2 (ja) アキシャルギャップ型モータ
JP4394115B2 (ja) アキシャルギャップ型モータ
JP4729551B2 (ja) アキシャルギャップ型モータ
JP4678549B2 (ja) アキシャルギャップ型モータ
JP4707696B2 (ja) アキシャルギャップ型モータ
JP2008271640A (ja) アキシャルギャップ型モータ
JP5083826B2 (ja) アキシャルギャップ型モータ
JP4500843B2 (ja) アキシャルギャップ型モータ
JP4605480B2 (ja) アキシャルギャップ型モータ
JP5292953B2 (ja) アキシャルギャップ型モータ
JP2009095089A (ja) アキシャルギャップ型モータ
JP5317621B2 (ja) アキシャルギャップ型モータ
JP4960749B2 (ja) アキシャルギャップ型モータ
JP5280788B2 (ja) アキシャルギャップ型モータ
JP4896690B2 (ja) アキシャルギャップ型モータ
JP5017045B2 (ja) アキシャルギャップ型モータ
JP4911637B2 (ja) アキシャルギャップ型モータ
JP2010028993A (ja) アキシャルギャップ型モータ
JP2010110163A (ja) アキシャルギャップ型モータ及びそのロータ製造方法
JP5126584B2 (ja) アキシャルギャップ型モータ
JP2010017009A (ja) アキシャルギャップ型モータ
JP4453051B2 (ja) アキシャルギャップ型モータ
JP2009131113A (ja) アキシャルギャップ型モータ
JP2010148317A (ja) アキシャルギャップ型モータ

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980155539.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09839255

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13145779

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 5473/CHENP/2011

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 112009004300

Country of ref document: DE

Ref document number: 1120090043003

Country of ref document: DE

WWE Wipo information: entry into national phase

Ref document number: 2011135822

Country of ref document: RU

122 Ep: pct application non-entry in european phase

Ref document number: 09839255

Country of ref document: EP

Kind code of ref document: A1

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: PI0924160

Country of ref document: BR

ENP Entry into the national phase

Ref document number: PI0924160

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20110727