WO2010082260A1 - 非水系電池用電極群およびその製造方法並びに円筒形非水系二次電池およびその製造方法 - Google Patents
非水系電池用電極群およびその製造方法並びに円筒形非水系二次電池およびその製造方法 Download PDFInfo
- Publication number
- WO2010082260A1 WO2010082260A1 PCT/JP2009/006126 JP2009006126W WO2010082260A1 WO 2010082260 A1 WO2010082260 A1 WO 2010082260A1 JP 2009006126 W JP2009006126 W JP 2009006126W WO 2010082260 A1 WO2010082260 A1 WO 2010082260A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- negative electrode
- electrode plate
- active material
- groove
- material layer
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims description 37
- 238000004519 manufacturing process Methods 0.000 title claims description 24
- 239000011162 core material Substances 0.000 claims abstract description 110
- 230000001681 protective effect Effects 0.000 claims abstract description 73
- 239000011149 active material Substances 0.000 claims abstract description 51
- 239000007773 negative electrode material Substances 0.000 claims description 88
- 239000000463 material Substances 0.000 claims description 49
- 239000011248 coating agent Substances 0.000 claims description 32
- 238000000576 coating method Methods 0.000 claims description 32
- 238000004804 winding Methods 0.000 claims description 24
- 239000011255 nonaqueous electrolyte Substances 0.000 claims description 12
- 239000007774 positive electrode material Substances 0.000 claims description 10
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 8
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims description 6
- 229910052809 inorganic oxide Inorganic materials 0.000 claims description 4
- 238000007789 sealing Methods 0.000 claims description 4
- 239000000377 silicon dioxide Substances 0.000 claims description 4
- 239000008151 electrolyte solution Substances 0.000 description 47
- 238000002347 injection Methods 0.000 description 32
- 239000007924 injection Substances 0.000 description 32
- 238000012545 processing Methods 0.000 description 26
- 239000003792 electrolyte Substances 0.000 description 21
- 238000005470 impregnation Methods 0.000 description 19
- 239000007788 liquid Substances 0.000 description 14
- 230000008569 process Effects 0.000 description 14
- 230000000694 effects Effects 0.000 description 13
- 238000003754 machining Methods 0.000 description 12
- 238000006243 chemical reaction Methods 0.000 description 10
- 230000007423 decrease Effects 0.000 description 9
- 229910052744 lithium Inorganic materials 0.000 description 9
- 230000002093 peripheral effect Effects 0.000 description 9
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 8
- KMTRUDSVKNLOMY-UHFFFAOYSA-N Ethylene carbonate Chemical compound O=C1OCCO1 KMTRUDSVKNLOMY-UHFFFAOYSA-N 0.000 description 6
- 239000000919 ceramic Substances 0.000 description 6
- 230000000052 comparative effect Effects 0.000 description 6
- 239000000203 mixture Substances 0.000 description 6
- 238000012360 testing method Methods 0.000 description 6
- 239000011230 binding agent Substances 0.000 description 5
- 238000012856 packing Methods 0.000 description 5
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 4
- 229910052782 aluminium Inorganic materials 0.000 description 4
- 239000002131 composite material Substances 0.000 description 4
- 238000005520 cutting process Methods 0.000 description 4
- 238000009826 distribution Methods 0.000 description 4
- 230000020169 heat generation Effects 0.000 description 4
- 239000002245 particle Substances 0.000 description 4
- 238000003466 welding Methods 0.000 description 4
- 239000002033 PVDF binder Substances 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 239000007864 aqueous solution Substances 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 238000004891 communication Methods 0.000 description 3
- 239000000470 constituent Substances 0.000 description 3
- 238000001035 drying Methods 0.000 description 3
- 230000005611 electricity Effects 0.000 description 3
- 238000001704 evaporation Methods 0.000 description 3
- 230000008020 evaporation Effects 0.000 description 3
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 3
- 238000003825 pressing Methods 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- VAYTZRYEBVHVLE-UHFFFAOYSA-N 1,3-dioxol-2-one Chemical compound O=C1OC=CO1 VAYTZRYEBVHVLE-UHFFFAOYSA-N 0.000 description 2
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 2
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- WGLPBDUCMAPZCE-UHFFFAOYSA-N Trioxochromium Chemical compound O=[Cr](=O)=O WGLPBDUCMAPZCE-UHFFFAOYSA-N 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 230000000996 additive effect Effects 0.000 description 2
- 229910021383 artificial graphite Inorganic materials 0.000 description 2
- 238000005452 bending Methods 0.000 description 2
- 239000001768 carboxy methyl cellulose Substances 0.000 description 2
- 235000010948 carboxy methyl cellulose Nutrition 0.000 description 2
- 239000008112 carboxymethyl-cellulose Substances 0.000 description 2
- 229910000423 chromium oxide Inorganic materials 0.000 description 2
- 239000011889 copper foil Substances 0.000 description 2
- 238000000354 decomposition reaction Methods 0.000 description 2
- IEJIGPNLZYLLBP-UHFFFAOYSA-N dimethyl carbonate Chemical compound COC(=O)OC IEJIGPNLZYLLBP-UHFFFAOYSA-N 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- 238000004090 dissolution Methods 0.000 description 2
- 229920001971 elastomer Polymers 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 238000009413 insulation Methods 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 238000004898 kneading Methods 0.000 description 2
- 229910001416 lithium ion Inorganic materials 0.000 description 2
- RSNHXDVSISOZOB-UHFFFAOYSA-N lithium nickel Chemical compound [Li].[Ni] RSNHXDVSISOZOB-UHFFFAOYSA-N 0.000 description 2
- GLXDVVHUTZTUQK-UHFFFAOYSA-M lithium;hydroxide;hydrate Chemical compound [Li+].O.[OH-] GLXDVVHUTZTUQK-UHFFFAOYSA-M 0.000 description 2
- BFDHFSHZJLFAMC-UHFFFAOYSA-L nickel(ii) hydroxide Chemical compound [OH-].[OH-].[Ni+2] BFDHFSHZJLFAMC-UHFFFAOYSA-L 0.000 description 2
- 238000013021 overheating Methods 0.000 description 2
- 239000012466 permeate Substances 0.000 description 2
- 230000009993 protective function Effects 0.000 description 2
- 239000005060 rubber Substances 0.000 description 2
- 229920006395 saturated elastomer Polymers 0.000 description 2
- 238000004513 sizing Methods 0.000 description 2
- 239000000779 smoke Substances 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 229920003048 styrene butadiene rubber Polymers 0.000 description 2
- 239000002562 thickening agent Substances 0.000 description 2
- 230000032258 transport Effects 0.000 description 2
- 238000012795 verification Methods 0.000 description 2
- BQCIDUSAKPWEOX-UHFFFAOYSA-N 1,1-Difluoroethene Chemical compound FC(F)=C BQCIDUSAKPWEOX-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 229910012851 LiCoO 2 Inorganic materials 0.000 description 1
- 229910013716 LiNi Inorganic materials 0.000 description 1
- 229910002995 LiNi0.8Co0.15Al0.05O2 Inorganic materials 0.000 description 1
- 229910013870 LiPF 6 Inorganic materials 0.000 description 1
- 229910017238 Ni0.8Co0.15Al0.05(OH)2 Inorganic materials 0.000 description 1
- 241000080590 Niso Species 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 238000005299 abrasion Methods 0.000 description 1
- 239000006230 acetylene black Substances 0.000 description 1
- 239000012670 alkaline solution Substances 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 239000003125 aqueous solvent Substances 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 239000003575 carbonaceous material Substances 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 238000010292 electrical insulation Methods 0.000 description 1
- 238000003411 electrode reaction Methods 0.000 description 1
- 238000010294 electrolyte impregnation Methods 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 238000010147 laser engraving Methods 0.000 description 1
- FUJCRWPEOMXPAD-UHFFFAOYSA-N lithium oxide Chemical compound [Li+].[Li+].[O-2] FUJCRWPEOMXPAD-UHFFFAOYSA-N 0.000 description 1
- 229910001947 lithium oxide Inorganic materials 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- 239000012046 mixed solvent Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- CQDGTJPVBWZJAZ-UHFFFAOYSA-N monoethyl carbonate Chemical compound CCOC(O)=O CQDGTJPVBWZJAZ-UHFFFAOYSA-N 0.000 description 1
- 238000009782 nail-penetration test Methods 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 1
- 238000009783 overcharge test Methods 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- -1 polyethylene Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000000634 powder X-ray diffraction Methods 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 238000007639 printing Methods 0.000 description 1
- 238000010298 pulverizing process Methods 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 229910052723 transition metal Inorganic materials 0.000 description 1
- 150000003624 transition metals Chemical class 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
- 239000002492 water-soluble polymer binding agent Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/058—Construction or manufacture
- H01M10/0587—Construction or manufacture of accumulators having only wound construction elements, i.e. wound positive electrodes, wound negative electrodes and wound separators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/46—Separators, membranes or diaphragms characterised by their combination with electrodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/133—Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/04—Construction or manufacture in general
- H01M10/0431—Cells with wound or folded electrodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/04—Construction or manufacture in general
- H01M10/0436—Small-sized flat cells or batteries for portable equipment
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/42—Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
- H01M10/4235—Safety or regulating additives or arrangements in electrodes, separators or electrolyte
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/52—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
- H01M4/525—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/64—Carriers or collectors
- H01M4/70—Carriers or collectors characterised by shape or form
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/64—Carriers or collectors
- H01M4/70—Carriers or collectors characterised by shape or form
- H01M4/80—Porous plates, e.g. sintered carriers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/10—Primary casings; Jackets or wrappings
- H01M50/102—Primary casings; Jackets or wrappings characterised by their shape or physical structure
- H01M50/107—Primary casings; Jackets or wrappings characterised by their shape or physical structure having curved cross-section, e.g. round or elliptic
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/409—Separators, membranes or diaphragms characterised by the material
- H01M50/431—Inorganic material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/489—Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
- H01M50/491—Porosity
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/50—Current conducting connections for cells or batteries
- H01M50/531—Electrode connections inside a battery casing
- H01M50/538—Connection of several leads or tabs of wound or folded electrode stacks
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/50—Current conducting connections for cells or batteries
- H01M50/572—Means for preventing undesired use or discharge
- H01M50/584—Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries
- H01M50/586—Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries inside the batteries, e.g. incorrect connections of electrodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/60—Arrangements or processes for filling or topping-up with liquids; Arrangements or processes for draining liquids from casings
- H01M50/609—Arrangements or processes for filling with liquid, e.g. electrolytes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M2004/021—Physical characteristics, e.g. porosity, surface area
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M2004/025—Electrodes composed of, or comprising, active material with shapes other than plane or cylindrical
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M2004/026—Electrodes composed of, or comprising, active material characterised by the polarity
- H01M2004/027—Negative electrodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/131—Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T29/00—Metal working
- Y10T29/49—Method of mechanical manufacture
- Y10T29/49002—Electrical device making
- Y10T29/49108—Electric battery cell making
- Y10T29/49115—Electric battery cell making including coating or impregnating
Definitions
- the present invention mainly relates to a non-aqueous battery electrode group and a manufacturing method thereof, and a cylindrical non-aqueous secondary battery and a manufacturing method thereof.
- lithium secondary batteries which are widely used as drive power sources for portable electronic devices and communication devices, generally use a carbonaceous material capable of occluding and releasing lithium for the negative electrode plate, and for the positive electrode plate.
- a composite oxide of a transition metal such as LiCoO 2 and lithium is used as an active material, which makes a secondary battery with a high potential and a high discharge capacity.
- a high-capacity lithium secondary battery for example, by increasing the occupied volume of the positive electrode plate and the negative electrode plate in the battery case and reducing the space other than the electrode plate space in the battery case, High capacity can be achieved.
- a mixture paste obtained by coating the constituent materials of the positive electrode plate and the negative electrode plate is applied and dried on a current collecting core material to form an active material layer. By compressing to a thickness and increasing the packing density of the active material, the capacity can be further increased.
- the relatively viscous non-aqueous electrolyte injected into the battery case is densely laminated or spirally interposed between the positive electrode plate and the negative electrode plate via a separator. Since it becomes difficult to penetrate into the small gaps of the wound electrode group, there is a problem that it takes a long time to impregnate a predetermined amount of the non-aqueous electrolyte.
- the packing density of the active material of the electrode plate is increased, the porosity in the electrode plate is reduced and the electrolyte does not easily permeate, so the impregnation property of the non-aqueous electrolyte into the electrode group is significantly worse. As a result, there is a problem that the distribution of the non-aqueous electrolyte in the electrode group becomes non-uniform.
- the non-aqueous electrolyte is infiltrated into the entire negative electrode, thereby increasing the width and depth of the groove.
- the impregnation time can be shortened, but conversely, since the amount of the active material is reduced, the charge / discharge capacity is reduced or the reaction between the electrode plates is uneven and the battery characteristics are reduced.
- a method has been proposed in which the width and depth of the groove are set to predetermined values (see, for example, Patent Document 1).
- the groove formed on the surface of the negative electrode active material layer can cause the electrode plate to break when the electrode plate is wound to form an electrode group. Therefore, as a method for preventing breakage of the electrode plate while improving the impregnation property, the electrode plate is wound by forming a groove on the surface of the electrode plate so as to form an inclination angle with respect to the longitudinal direction of the electrode plate.
- a method for preventing breakage of the electrode plate while improving the impregnation property the electrode plate is wound by forming a groove on the surface of the electrode plate so as to form an inclination angle with respect to the longitudinal direction of the electrode plate.
- a method has been proposed in which the tension acting in the longitudinal direction of the electrode plate can be dispersed, thereby preventing the electrode plate from breaking (for example, see Patent Document 2).
- a surface of the positive electrode plate or the surface facing the negative electrode plate is provided with a porous film having a partially convex portion, By holding more non-aqueous electrolyte than other parts in the gap formed between the convex part of the porous membrane and the electrode plate, the overcharge reaction is intensively advanced in this part, so that the whole battery
- a method is also proposed in which the progress of overcharging is suppressed and overheating due to overcharging is suppressed (see, for example, Patent Document 3).
- the injection time can be shortened compared to an electrode plate without a groove, but since the groove is formed only on one side of the electrode plate, the effect of reducing the injection time is greatly increased. Since the injection time is not improved, the effect of suppressing the evaporation amount of the electrolytic solution to a minimum is low, and it is difficult to reduce a significant loss of the electrolytic solution. Further, since the groove on only one side is formed, stress is applied to the electrode plate, and there is a problem that the groove tends to be rounded on the side without the groove.
- a pair of rollers having a plurality of protrusions formed on the surface are respectively disposed above and below the electrode plate,
- the groove portion is processed by rotating and moving the roller while pressing the roller on both surfaces of the electrode plate (hereinafter referred to as “roll press processing”), since a plurality of groove portions can be simultaneously formed on both surfaces of the electrode plate. Excellent in mass productivity.
- the inventors of the present application form grooves on both sides of the active material layer using roll press processing for the purpose of improving the impregnation property of the electrolytic solution based on the conventional techniques shown in Patent Documents 4 and 5 described above.
- the inventors have found that there are the following problems.
- FIG. 8A to 8D are perspective views showing the manufacturing process of the electrode plate 103.
- FIG. 8A a double-sided coating portion 114 in which an active material layer 113 is formed on both sides of a strip-shaped current collecting core material 112, and a negative electrode active material only on one surface of the current collecting core material 112.
- An electrode plate hoop material 111 having an electrode plate constituting portion 119 composed of a single-side coated portion 117 on which the material layer 113 is formed and a core material exposed portion 118 on which the active material layer 113 is not formed is formed.
- FIG. 8B the surface of the active material layer 113 is covered with a porous protective film 128.
- the electrode plate hoop material 111 is cut along the boundary between the double-side coated portion 114 and the core material exposed portion 118, and then the current collecting lead 120 is joined to the core material exposed portion 118, whereby the negative electrode plate 103 is formed.
- the electrode plate hoop material 111 is cut along the boundary between the double-side coated portion 114 and the core material exposed portion 118, the core material exposed portion 118 and the subsequent single-side coated portion 117. This causes a problem of large deformation in a curved shape.
- the negative electrode active material layer 113 is extended by forming the groove portion 110, while the double-sided coating portion 114 extends the active material layer 113 on both sides to the same extent, whereas the single-sided coating portion 117 Since the active material layer 113 is extended only on one side, it is considered that the single-side coated portion 117 is greatly curved and deformed to the side where the active material layer 113 is not formed due to the tensile stress of the active material layer 113. .
- the electrode plate 103 When the end of the electrode plate 103 (the core material exposed portion 118 and the one-side coated portion 117 following this) is deformed into a curved shape by cutting the electrode plate hoop material 111, the electrode plate 103 is wound to form an electrode group. When doing so, there is a risk of causing winding slippage. Further, even when the electrode group is configured by stacking the electrode plates 103, there is a possibility that bending or the like may occur. Further, when the electrode plate 103 is transported, the end of the electrode plate 103 cannot be surely chucked, and there is a possibility that the transport may fail or the active material may fall off. Therefore, not only productivity is lowered, but also reliability of the battery may be lowered.
- the present invention has been made in view of the above-described conventional problems, and has a nonaqueous battery electrode group excellent in impregnation of an electrolytic solution and having high productivity and reliability, a method for manufacturing the same, and a cylindrical nonaqueous system. It aims at providing a secondary battery and its manufacturing method.
- the electrode group for a non-aqueous battery according to the present invention is an electrode group in which a positive electrode plate and a negative electrode plate are wound via a separator, and the positive electrode plate has positive electrode active material layers on both surfaces of a positive electrode current collecting core.
- the negative electrode plate includes a double-side coated portion in which a negative electrode active material layer and a porous protective film are formed on both surfaces of a negative electrode current collecting core, and a negative electrode An end portion of the current collecting core material, the core material exposed portion in which the negative electrode active material layer and the porous protective film are not formed, and between the double-side coated portion and the core material exposed portion, And a single-side coated part in which a negative electrode active material layer and a porous protective film are formed only on one side of the current collecting core, both sides of the double-sided coated part of the negative electrode plate A plurality of grooves are formed, and no grooves are formed on the single-side coated portion of the negative electrode plate, and the grooves extend from the surface of the porous protective film to the surface of the active material layer
- the impregnation property of the electrolyte can be improved, so that the impregnation time can be shortened.
- the shape of the electrode group can be made close to a perfect circle, the distance between the electrode plates between the negative electrode plate and the positive electrode plate in the electrode group becomes uniform, and the cycle characteristics can be improved.
- the current collecting lead of the positive electrode is located at the center in the longitudinal direction of the positive electrode plate, it is possible to improve the current collecting effect of electricity generated at both ends of the positive electrode plate due to the battery reaction.
- the insulating property of the negative electrode plate can be enhanced by the porous protective film, the occurrence of an internal short circuit can be suppressed.
- the porous protective film is preferably made of a material mainly composed of an inorganic oxide.
- the insulation of a negative electrode plate can be improved more.
- the inorganic oxide that is the main component of the porous protective film is preferably composed mainly of alumina and / or silica. Thereby, a more reliable high-insulating negative electrode plate having excellent heat resistance and resistance to dissolution in an electrolytic solution can be obtained.
- the grooves formed on both sides of the double-side coated portion of the negative electrode plate have symmetrical phases. Thereby, damage to the negative electrode plate when forming the groove in the negative electrode plate can be minimized, and the negative electrode plate can be prevented from breaking when the negative electrode plate is wound to form the electrode group. It becomes possible.
- the depth of the groove formed on both surfaces of the double-side coated portion of the negative electrode plate is preferably in the range of 4 ⁇ m to 20 ⁇ m.
- the grooves formed on both surfaces of the double-side coated portion of the negative electrode plate are formed at a pitch of 100 ⁇ m to 200 ⁇ m along the longitudinal direction of the negative electrode plate. This makes it possible to minimize damage to the negative electrode plate when the groove is formed in the negative electrode plate. Moreover, it is preferable that the groove part formed in both surfaces of the double-sided coating part of the negative electrode plate penetrates from one end surface to the other end surface with respect to the width direction of the negative electrode plate. Thereby, it becomes easy to impregnate electrolyte solution from the end surface of an electrode group, Therefore It becomes possible to shorten impregnation time.
- the grooves formed on both surfaces of the double-side coated portion of the negative electrode plate are formed to be inclined at an angle of 45 ° in different directions with respect to the longitudinal direction of the negative electrode plate, and three-dimensionally intersect with each other at right angles. It is preferable. Thereby, since it can avoid forming a groove part in the direction in which a negative electrode plate is easy to fracture
- the negative electrode current collector lead and the active material layer and the porous protective film in the single-side coated portion of the negative electrode plate are located on opposite sides of the current collector core material. It is preferable. Thereby, since the shape of the electrode group can be made close to a perfect circle, the distance between the electrode plates between the negative electrode plate and the positive electrode plate becomes uniform in the electrode group, and thus the cycle characteristics can be improved.
- the method for producing an electrode group for a non-aqueous battery according to the present invention includes a step of winding the positive electrode plate and the negative electrode plate through a separator, and in the step of winding the positive electrode plate and the negative electrode plate, the core of the negative electrode plate The negative electrode plate is wound using the exposed material portion as a winding end.
- the cylindrical non-aqueous secondary battery of the present invention contains a non-aqueous battery electrode group of the present invention in a battery case, and a predetermined amount of non-aqueous electrolyte is injected into the battery case.
- the part is sealed in a sealed state.
- the method for producing a cylindrical non-aqueous secondary battery of the present invention includes a step of producing the electrode group for a non-aqueous battery of the present invention, and the electrode group and the non-aqueous electrolyte are accommodated in the battery case to seal the battery case. And a process of performing.
- grooves are formed on both surfaces of the double-side coated portion from the surface of the porous protective film to the surface of the active material layer, and no groove is formed on the single-side coated portion. Therefore, the impregnation property of the electrolytic solution can be improved, and the core material exposed portion of the negative electrode plate and the subsequent single-side coated portion can be prevented from being greatly deformed into a curved shape.
- the negative electrode active material layer positioned on the outer peripheral side when the electrode group is configured is battery It is eliminated as a useless part that does not contribute to the reaction, and thereby, the space volume in the battery case can be used effectively, and the capacity of the battery can be increased accordingly.
- the negative electrode current collecting lead does not protrude on the innermost peripheral side of the electrode group, the shape of the formed electrode group can be made close to a perfect circle. Thereby, in the electrode group, the distance between the electrode plates between the positive electrode and the negative electrode becomes uniform, so that the cycle characteristics can be improved.
- the current collecting lead of the positive electrode is located at the center in the longitudinal direction of the positive electrode plate, it is possible to improve the current collecting effect of electricity generated at both ends of the positive electrode plate by the battery reaction.
- the insulation of the negative electrode plate can be improved, so that the occurrence of internal short circuit can be suppressed. it can.
- the longitudinal cross-sectional view which showed the structure of the cylindrical non-aqueous secondary battery in one embodiment of this invention (A) The perspective view which applied the negative electrode active material to the core material for current collection of the manufacturing process of the negative electrode plate for batteries in one embodiment of the present invention, (b) The surface of the negative electrode active material layer in the same step is porous The perspective view which showed the state which formed the protective film, (c) The perspective view which formed the groove part in the double-sided coating part of the process, (d) The perspective view which showed the negative electrode plate cut away from the negative electrode hoop of the process The perspective view which showed the positive electrode plate for batteries in one embodiment of this invention
- the partial cross section figure of the battery electrode group in one embodiment of this invention The partially expanded plan view of the negative electrode plate for batteries in one embodiment of the present invention Enlarged cross-sectional view along the line AA in FIG.
- the perspective view which showed the method of forming a groove part in the surface of the double-sided coating part in one embodiment of this invention (A) The perspective view which apply
- FIG. 1 is a longitudinal sectional view schematically showing a cylindrical non-aqueous secondary battery according to an embodiment of the present invention.
- a positive electrode plate 2 using a composite lithium oxide as an active material and a negative electrode plate 3 using a material capable of holding lithium as an active material are a porous insulator therebetween.
- An electrode group 1 wound in a spiral shape with a separator 4 interposed therebetween is provided.
- the electrode group 1 is accommodated in a bottomed cylindrical battery case 7, and an electrolyte solution (not shown) made of a predetermined amount of a non-aqueous solvent is injected into the battery case 7 and impregnated in the electrode group 1. ing.
- the opening of the battery case 7 is sealed in a sealed state by bending the opening of the battery case 7 inward in the radial direction with the sealing plate 9 having the gasket 8 attached to the periphery thereof inserted therein. ing.
- a large number of groove portions 10 are formed on both surfaces of the negative electrode plate 3 so as to cross each other three-dimensionally. The impregnation of 1 is improved.
- the porous protective film 28 the occurrence of internal short circuit is suppressed.
- FIG. 2A shows the negative electrode plate hoop material 11 before being divided into individual negative electrode plates 3, and on both sides of a current collecting core material 12 made of a long strip of copper foil having a thickness of 10 ⁇ m, After applying and drying the negative electrode mixture paste, the negative electrode active material layer 13 is formed by pressing and compressing so that the total thickness becomes 200 ⁇ m, and this is slit to have a width of about 60 mm. is there.
- the negative electrode mixture paste is, for example, made into a paste with an appropriate amount of water using artificial graphite as an active material, a styrene-butadiene copolymer rubber particle dispersion as a binder, and carboxymethyl cellulose as a thickener. Used.
- the single-side coated portion 17 and the core exposed portion 18 in which the negative electrode active material layer 13 is not formed on the current collecting core 12 constitute one electrode plate constituting portion 19, and this electrode plate constitution
- the part 19 is formed continuously in the longitudinal direction.
- the electrode plate structure part 19 in which the negative electrode active material layer 13 is partially provided can be easily formed by coating and forming the negative electrode active material layer 13 by a known intermittent coating method.
- FIG. 2B shows a porous protective film obtained by applying a coating agent obtained by adding a small amount of a water-soluble polymer binder to an inorganic additive and kneading it on the surface of the negative electrode active material layer 13 and then drying it. It is the figure which showed the state in which 28 was formed.
- the porous protective film 28 is not formed in the core exposed portion 18 that does not contribute to the battery reaction.
- the battery capacity is increased by the absence of the porous protective film 28, and when the current collector lead 20 is attached to the core material exposed portion 18 by welding in a process described later (see FIG. 2D).
- the step of peeling the porous protective film 28 from the location where the current collecting lead 20 of the core material exposed portion 18 is welded can be omitted, and the productivity is improved.
- the porous protective film 28 exhibits a protective function for suppressing the occurrence of an internal short circuit in the battery having the configuration shown in FIG. 1 and is porous, so that the original function of the battery, that is, in the electrolyte solution, is provided.
- the electrode reaction with the electrolyte ions is not hindered.
- As the binder it is preferable to use polo vinylidene fluoride.
- FIG. 2C shows the surface of the negative electrode active material layer 13 on both sides in the double-side coated portion 14 without forming the groove 10 in the negative electrode active material layer 13 of the single-side coated portion 17 with respect to the negative electrode plate hoop material 11. The state which formed the groove part 10 only in FIG.
- the thickness of the porous protective film 28 is not particularly limited, but is preferably smaller than the depth of the groove 10 described later.
- the depth of the groove 10 the depth of the groove including both the porous protective film 28 and the negative electrode active material layer 13
- the thickness of the porous protective film 28 is 2 to 4 ⁇ m. It is preferable to do.
- a film thickness of less than 2 ⁇ m is not preferable because a protective function for preventing an internal short circuit is insufficient.
- the current collector lead 20 is attached to the current collecting core 12 of the core material exposed portion 18 by welding the negative electrode plate hoop material 11 having the groove 10 formed thereon. Is coated with the insulating tape 21, and then the core exposed portion 18 adjacent to the double-side coated portion 14 is cut with a cutter and separated into electrode plate constituent portions 19 to form the negative electrode plate 3 of the cylindrical non-aqueous secondary battery. It ’s done.
- the negative electrode plate 3 produced in this way is a double-sided coating in which a negative electrode active material layer 13 and a porous protective film 28 are formed on both surfaces of a negative electrode current collecting core 12.
- a working part 14 a single-side coated part 17 in which a negative electrode active material layer 13 and a porous protective film 28 are formed only on one side of a negative electrode current collecting core 12, and a core exposed part 18; .
- the groove portion 10 is not formed in the single-side coated portion 17.
- the core material exposed portion 18 is positioned at an end portion of the negative electrode plate 3 (specifically, an end portion in the longitudinal direction of the negative electrode plate 3), and the negative electrode current collecting lead 20 is connected to the core material exposed portion 18. ing.
- FIG. 3 is a perspective view showing the positive electrode plate 2
- FIG. 4 is a partial cross-sectional view of the electrode group 1.
- the porous protective film 28 formed on the surface of the negative electrode active material layer 13 is omitted.
- the positive electrode plate 2 is produced according to the following method.
- a positive electrode hoop material (not shown) is produced in the same process as the negative electrode plate 3.
- the current collecting lead 70 is welded to the current collecting core material 72 of the core material exposed portion 78, and then the current collecting lead 70 is covered with the insulating tape 71.
- the double-sided coating part 74 is cut into a predetermined length with a cutter and separated for each electrode plate constituting part 79.
- the positive electrode plate 2 produced in this way has a double-sided coating part 74 and a core material exposed part 78, as shown in FIG.
- the core material exposed portion 78 is located at the center in the longitudinal direction of the positive electrode plate 2, and the positive electrode current collecting lead 70 is connected to the core material exposed portion 78.
- the separator 4 is interposed between the positive electrode plate 2 and the negative electrode plate 3 and then wound in the direction of arrow Y (see FIG. 2D and FIG. 3) in a spiral shape.
- the electrode group 1 in the form can be formed.
- the groove part 10 was formed in the surface of the negative electrode active material layer 13, and the negative electrode by which the groove part 10 was formed after that.
- the process of forming the porous protective film 28 on the surface of the active material layer 13 is also conceivable, in this case, the groove 10 formed on the surface of the negative electrode active material layer 13 is buried by the porous protective film 28, and the groove Since the substantial depth of 10 becomes small, the impregnation of the electrolytic solution cannot be sufficiently improved.
- the electrode group 1 when the electrode group 1 is configured by winding the negative electrode plate 3 and the positive electrode plate 2 in a spiral shape with the separator 4 interposed therebetween, as shown in FIG.
- the surface where the negative electrode active material layer 13 does not exist in the single-side coated portion 17 of the negative electrode plate 3 is arranged as the outer peripheral surface. Since the outer peripheral surface of the single-side coated portion 17 is a portion that does not contribute to the battery reaction when functioning as a battery, by eliminating the waste of forming the negative electrode active material layer 13 in such a portion, The space volume can be used effectively, and the capacity of the battery can be increased accordingly.
- the negative electrode plate 3 is cut in the cutting of the negative electrode plate hoop material 11 shown in FIG. It is possible to prevent the core material exposed portion 18 and the subsequent single-side coated portion 17 from being greatly deformed into a curved shape. Thereby, the winding shift
- the negative electrode current collecting lead 20 joined to the core material exposed portion 18 of the negative electrode plate 3 was positioned on the opposite surface of the single-side coated portion 17 to the surface on which the negative electrode active material layer 13 was formed, and was used as a winding end.
- the wound shape can be made close to a perfect circle, and it is easy to store even when configured as the electrode group 1 in the battery case 7, Since the inter-electrode distance between the negative electrode plate 3 and the positive electrode plate 2 becomes uniform, the cycle characteristics can be improved.
- the same effect can be obtained also when the electrode group 1 is formed by stacking the core material exposed portion of the negative electrode plate in a zigzag manner with the stacking end.
- the negative current collecting lead 20 is positioned on the outermost peripheral surface of the electrode group 1, the tip of the current collecting lead 20 is bent when the negative current collecting lead 20 is welded to the bottom surface of the battery case 7.
- the negative electrode current collecting lead 20 and the negative electrode plate 3 can be prevented from peeling off. Therefore, the negative current collecting lead 20 can be welded to the bottom surface of the battery case 7 without applying much stress to the welded portion between the negative current collecting lead 20 and the current collecting core 12.
- the core material exposed portion 78 of the positive electrode plate 2 is located at the center in the longitudinal direction of the positive electrode plate 2. Therefore, the distance between the both end portions in the longitudinal direction of the positive electrode plate 2 and the current collecting lead 70 of the positive electrode 2 is shortened as compared with the case where the core material exposed portion of the positive electrode plate is located at the end portion in the longitudinal direction of the positive electrode plate. be able to. Therefore, current can be collected effectively. For example, the current collection effect of electricity generated at both ends of the positive electrode plate due to the battery reaction can be improved. Therefore, the current collection effect can be improved.
- FIG. 5 is a partially enlarged plan view of the negative electrode plate 3 in the embodiment.
- the grooves 10 formed in the porous protective film 28 and the negative electrode active material layer 13 on both sides of the double-side coated portion 14 are inclined at 45 ° in different directions on both sides with respect to the longitudinal direction of the negative electrode plate 3. They are formed at an angle ⁇ and intersect each other at right angles. Further, both the groove portions 10 on both sides are formed at the same pitch and arranged in parallel with each other, and any groove portion 10 is formed in the width direction (with respect to the longitudinal direction) of the porous protective film 28 and the negative electrode active material layer 13. It penetrates from one end surface (in the orthogonal direction) to the other end surface.
- the other groove portion 10 may not communicate with the other end face.
- the inclination angle ⁇ is not limited to 45 °, and may be in the range of 30 ° to 90 °.
- the groove portions 10 formed on both surfaces of the double-side coated portion 14 are three-dimensionally crossed with the phases being symmetrical to each other.
- FIG. 6 is an enlarged cross-sectional view taken along the line AA in FIG. 5 and shows the cross-sectional shape and arrangement pattern of the groove 10.
- the grooves 10 are formed at a pitch P of 170 ⁇ m on any surface of the double-side coated portion 14.
- the groove part 10 is formed in a substantially inverted trapezoidal cross-sectional shape.
- the groove portion 10 in this embodiment has a depth D of 8 ⁇ m, the walls of the groove portions 10 on both sides are inclined at an angle ⁇ of 120 °, and the bottom corner of the groove portion 10 that is the boundary between the bottom surface and the walls of the groove portions 10 on both sides
- the part has an arcuate cross-sectional shape having a curvature R of 30 ⁇ m.
- the pitch P of the groove portion 10 When the pitch P of the groove portion 10 is smaller, the number of groove portions 10 formed is increased, the total cross-sectional area of the groove portion 10 is increased, and the pouring property of the electrolytic solution is improved.
- three types of negative electrode plates 3 each having a groove portion 10 having a depth D of 8 ⁇ m and a pitch P of 80 ⁇ m, 170 ⁇ m and 260 ⁇ m are formed, and three types of electrodes using these negative electrode plates 3 are used.
- the group 1 was accommodated in the battery case 7, and the injection time of electrolyte solution was compared.
- the injection time when the pitch P is 80 ⁇ m is about 20 minutes
- the injection time when the pitch P is 170 ⁇ m is about 23 minutes
- the injection time when the pitch P is 260 ⁇ m is about 30 minutes. It was found that the smaller the pitch P of 10, the better the pouring property of the electrolytic solution into the electrode group 1.
- the pitch P of the groove portion 10 is set to less than 100 ⁇ m, the pouring property of the electrolytic solution is improved, but the number of compressed portions of the negative electrode active material layer 13 by the many groove portions 10 is increased, and the packing density of the active material is high.
- the pitch P of the groove portions 10 is set to a size exceeding 200 ⁇ m, the current collecting core material 12 is extended, and a large stress is applied to the negative electrode active material layer 13 and the active material current collecting core material 12 is applied. The peel strength from the sheet is reduced, and the active material is easily removed.
- the groove machining ridges 22a and 23a are mutually offset when the loads by the groove machining ridges 22a and 23a are simultaneously received at the same position.
- the three-dimensionally intersecting portions in other words, only the portions where the grooves 10 formed on the surface of the double-side coated portion 14 are three-dimensionally intersected with each other, and the other portions collect the load by the groove machining ridges 22a and 23a. It will be received by the core material 12 only.
- the pitch P of the groove portions 10 when the groove portions 10 of the double-side coated portion 14 are formed so as to be orthogonal to each other, when the pitch P of the groove portions 10 is increased, the span that receives the load from the groove machining ridges 22a and 23a becomes longer, and the current collection is performed. Since the burden on the core material 12 is increased, the current collecting core material 12 is extended. As a result, the active material is peeled off in the negative electrode active material layer 13 or the active material is collected. The peeling resistance strength with respect to the current collecting core 12 of the negative electrode active material layer 13 decreases.
- the negative electrode plate 3 in which the groove portions 10 were formed with a long pitch P of 260 ⁇ m showed that the current collecting core 12 was bent It was confirmed that the part was slightly peeled off from the current collecting core 12 and floated.
- the pitch P of the groove 10 is set within a range of 100 ⁇ m to 200 ⁇ m.
- the groove portion 10 is formed so as to three-dimensionally intersect with each other in the double-side coating portion 14, when the groove processing protrusions 22 a and 23 a bite into the porous protective film 28 and the negative electrode active material layer 13, the porous protection portion 22 is formed. There is an advantage that strains generated in the film 28 and the negative electrode active material layer 13 are canceled each other. Further, when the groove portions 10 are formed at the same pitch P, the distance between the adjacent groove portions 10 at the three-dimensional intersection of each groove portion 10 is the shortest, so that the burden on the current collecting core material 12 can be reduced. The peel strength of the substance from the current collecting core 12 is increased, and the active material can be effectively prevented from falling off.
- the groove portion 10 is formed in a pattern in which the phases are symmetrical with each other in the double-side coated portion 14, the elongation of the porous protective film 28 and the negative electrode active material layer 13 generated by forming the groove portion 10 is It occurs equally in each porous protective film 28 and negative electrode active material layer 13 on both sides, and no distortion remains after the groove 10 is formed.
- the groove portions 10 are formed on both surfaces of the double-side coated portion 14, a larger cycle life can be obtained because a larger amount of electrolyte can be held uniformly than when the groove portions 10 are formed only on one surface. Can be secured.
- the depth D of the groove 10 will be described with reference to FIG.
- the pouring property and impregnation property of the electrolytic solution into the electrode group 1 are improved as the depth D of the groove portion 10 is increased.
- three types of grooves 10 having a pitch P of 170 ⁇ m and a depth D of 3 ⁇ m, 8 ⁇ m, and 25 ⁇ m were formed on the porous protective film 28 and the negative electrode active material layer 13 of the double-side coated part 14, respectively.
- the negative electrode plate 3 is formed, and the negative electrode plate 3 and the positive electrode plate 2 are wound around the separator 4 to produce three types of electrode groups 1.
- the electrode groups 1 are accommodated in the battery case 7.
- the injection times for the electrolyte to permeate the electrode group 1 were compared.
- the negative electrode plate 3 having a depth D of 3 ⁇ m in the groove 10 has a liquid injection time of about 45 minutes
- the negative electrode plate 3 having a depth D of 8 ⁇ m in the groove 10 has a liquid injection time of about 23 minutes.
- the injection time was about 15 minutes.
- the depth D of the groove portion 10 when the depth D of the groove portion 10 is increased, the pouring property of the electrolytic solution is improved, but the active material in the portion where the groove portion 10 is formed is abnormally compressed, so that lithium ions cannot freely move. As a result, the acceptability of lithium ions is deteriorated and lithium metal is likely to be deposited. Further, when the depth D of the groove portion 10 is increased, the thickness of the negative electrode plate 3 is increased accordingly, and the extension of the negative electrode plate 3 is increased. Therefore, the porous protective film 28 and the negative electrode active material layer 13 are collected by the current collector. It becomes easy to peel off from the core material 12 for use.
- the porous protective film 28 and the negative electrode active material layer 13 are peeled off from the current collecting core 12, or the electrode group 1 is removed from the battery.
- production troubles such as the electrode group 1 whose diameter increases with the increase in the thickness of the negative electrode plate 3 rubs against the opening end face of the battery case 7 and is difficult to insert.
- the porous protective film 28 and the negative electrode active material layer 13 are easily peeled off from the current collecting core 12, the conductivity is deteriorated and the battery characteristics are impaired.
- the peel strength of the porous protective film 28 and the negative electrode active material layer 13 from the current collecting core 12 decreases as the depth D of the groove 10 increases. That is, as the depth D of the groove portion 10 increases, the thickness of the negative electrode active material layer 13 increases. This increase in thickness is in the direction of peeling the active material from the current collecting core 12. Since a large force acts, the peel strength decreases.
- the peel strength was about 4 N / m, about 5 N / m, about 6 N / m, and about 7 N / m in the descending order of the depth D, and as the depth D of the groove portion 10 increased. It has been demonstrated that the peel strength decreases.
- the depth D of the groove portion 10 needs to be set within a range of 4 ⁇ m or more and 20 ⁇ m or less, preferably within a range of 5 to 15 ⁇ m, more preferably within a range of 6 to 10 ⁇ m.
- the negative electrode plate 3 in which the groove portion 10 having a depth D of 8 ⁇ m is formed on both surfaces of the double-side coated portion 14 at a pitch P of 170 ⁇ m, and the negative electrode plate 3 in which the groove portion 10 is formed only on one surface Three types of negative electrode plates 3 each having no groove 10 formed on both surfaces are formed, and a plurality of batteries each containing three types of electrode groups 1 configured using these negative electrode plates 3 in a battery case 7 are produced. Then, each battery was injected with a predetermined amount of electrolyte and impregnated in a vacuumed state, and then each battery was disassembled and the state of impregnation of the electrolyte into the negative electrode plate 3 was observed.
- the groove portion 10 when the groove portion 10 was not formed on both sides immediately after the injection, the area where the negative electrode plate 3 was impregnated with the electrolytic solution remained at 60% of the whole, and the groove portion 10 was formed only on one side. In the case where the groove portion 10 was formed, the area impregnated with the electrolyte solution was 100% of the entire surface. On the surface where the groove portion 10 was not formed, the area impregnated with the electrolyte solution was the entire area. It was about 80%. On the other hand, when the groove part 10 was formed on both surfaces, the area where the electrolyte solution was impregnated on both surfaces was 100% of the whole.
- each battery was disassembled and observed every hour in order to grasp the time until the electrolytic solution was impregnated into the entire negative electrode plate 3.
- the electrolyte solution is 100% impregnated on both surfaces immediately after injection, whereas in the negative electrode plate 3 in which the groove portions 10 are formed on only one surface, the groove portions 10 are formed.
- 100% of the electrolyte was impregnated after 2 hours.
- the electrolyte solution was impregnated 100% on both surfaces after 5 hours. The liquid was unevenly distributed.
- the negative electrode plate 3 in which the groove part 10 is formed on both surfaces is completely impregnated with the electrolyte as compared with the negative electrode plate 3 in which the groove part 10 is formed only on one side. It can be confirmed that the time until the battery is shortened to about 1 ⁇ 2 and the cycle life as a battery is increased.
- the battery in the cycle test was disassembled, and the distribution of the electrolyte solution was examined with respect to the negative electrode plate 3 in which the groove 10 was formed only on one side, and EC (ethylene carbonate), which is the main component of the nonaqueous electrolyte solution, was the electrode plate.
- the cycle life was verified based on how much was extracted per unit area. As a result, regardless of the sampling site, the surface on which the groove portion 10 was formed had about 0.1 to 0.15 mg more EC than the surface on which the groove portion 10 was not formed.
- the EC is present most on the surface of the electrode plate and is uniformly impregnated without uneven distribution of the electrolyte, but on the surface where the groove portions 10 are not formed, the electrolyte solution As the amount of liquid decreases, the internal resistance increases and the cycle life is shortened.
- the groove 10 is formed in a penetrating shape that leads from one end surface in the width direction of the porous protective film 28 and the negative electrode active material layer 13 to the other end surface, so that the pouring property of the electrolytic solution into the electrode group 1 is remarkably increased.
- the injection time can be greatly shortened.
- the impregnation property of the electrolytic solution into the electrode group 1 is remarkably improved, it is possible to effectively suppress the occurrence of the liquid withdrawing phenomenon at the time of charging and discharging as a battery. It is possible to suppress the uneven distribution of the electrolytic solution.
- the groove portion 10 is formed at an angle inclined with respect to the longitudinal direction of the negative electrode plate 3, the impregnation property of the electrolytic solution into the electrode group 1 is improved, and stress is generated in the winding process for forming the electrode group 1. Can be suppressed, and the electrode plate of the negative electrode plate 3 can be effectively prevented from being cut.
- a current collecting lead 70 is attached to a current collecting core 72 of the core material exposed portion 78 by welding to a positive electrode hoop (not shown) manufactured in the same process as the negative electrode plate 3. Is coated with the insulating tape 71, the center part of the double-sided coating part 74 is cut to a predetermined length with a cutter and separated into electrode plate constituent parts 79, and the positive electrode plate 2 of the cylindrical non-aqueous secondary battery. Is completed.
- the electrode group 1 is constituted by winding the negative electrode plate 3 and the positive electrode plate 2 in a spiral shape in the arrow Y direction with a separator 4 interposed therebetween.
- the core material exposed portion 78 of the positive electrode active material layer 73 is provided from the current collecting lead 70 attached to the core material exposed portion 78 by positioning the core material exposed portion 78 of the positive electrode plate 2 at the center of the positive electrode plate 2. Since the distance to the end portion of the positive electrode plate 2 at a position facing the portion where the current is present is closer than when the core material exposed portion 78 is provided at the end portion of the positive electrode plate 2, current collection is more effective. Therefore, the current collection effect can be improved.
- a pair of grooving rollers 22 and 23 are arranged at a predetermined gap, and the negative electrode plate hoop material 11 shown in FIG. 2A is passed through the gap between the grooving rollers 22 and 23.
- the groove 10 having a predetermined shape can be formed in the porous protective film 28 and the negative electrode active material layer 13 on both sides of the double-side coated portion 14 in the negative electrode plate hoop material 11.
- the grooving rollers 22 and 23 are both the same, and a large number of grooving ridges 22a and 23a are formed in a direction having a twist angle of 45 ° with respect to the axial direction.
- the grooving ridges 22a and 23a are formed so that a ceramic layer is formed by spraying chromium oxide on the entire surface of the iron roller base to form a ceramic layer, and then the laser is irradiated to the ceramic layer to form a predetermined pattern. By partially melting, it can be formed easily and with high accuracy.
- the grooving rollers 22 and 23 are substantially the same as what are generally called ceramic laser engraving rollers used in printing.
- the hardness is HV1150 or more, and since it is a fairly hard material, it is resistant to sliding and abrasion, and is several tens of times that of an iron roller. The above lifetime can be secured.
- the negative electrode plate hoop material 11 is passed through the gap between the groove processing rollers 22 and 23 on which a large number of groove forming protrusions 22a and 23a are formed, as shown in FIG. 5, the negative electrode plate hoop material is provided. 11 can be formed in the porous protective film 28 and the negative electrode active material layer 13 on both sides of the double-side coated portion 14.
- the groove machining ridges 22a and 23a are cross-sectional shapes capable of forming the groove portion 10 having the cross-sectional shape shown in FIG. 6, that is, an arc shape having a tip portion angle ⁇ of 120 ° and a curvature R of 30 ⁇ m. It has a cross-sectional shape.
- the reason why the angle ⁇ of the tip is set to 120 ° is that the ceramic layer is easily damaged when set to a small angle of less than 120 °.
- the reason why the curvature R of the tips of the groove machining ridges 22a and 23a is set to 30 ⁇ m is that the groove machining ridges 22a and 23a are pressed against the porous protective film 28 and the negative electrode active material layer 13 to form the groove portion.
- the height of the groove machining protrusions 22a and 23a is set to about 20 to 30 ⁇ m because the most preferable depth D of the groove 10 to be formed is in the range of 6 to 10 ⁇ m.
- the rotational drive of the grooving rollers 22 and 23 is such that a rotational force from a servo motor or the like is transmitted to one of the grooving rollers 22, and the rotation of the grooving roller 23 is applied to the respective roller shafts of the grooving rollers 22 and 23. It is transmitted to the other grooving roller 23 through a pair of gears 24, 27 that are axially engaged and meshed with each other, so that the grooving rollers 22, 23 rotate at the same rotational speed.
- the negative electrode plate hoop is formed without forming the groove portion 10 on the porous protective film 28 and the negative electrode active material layer 13 of the single-side coated portion 17 in the negative electrode plate hoop material 11. It is necessary to allow the material 11 to pass through the gap between the groove processing rollers 22 and 23. This can be dealt with by providing a stopper between the grooving rollers 22 and 23 and holding the grooving roller 22 in a non-pressed state with respect to the single-side coated portion 17.
- the “non-pressed state” means a state (including a non-contact state) in which the groove 10 is not formed on the single-side coated portion 17.
- the thickness of the double-side coated portion 14 is only about 200 ⁇ m, and when forming the groove portion 10 having a depth D of 8 ⁇ m in such a thin double-side coated portion 14, It is necessary to improve the processing accuracy of the groove formation. Therefore, the bearing portions of the groove processing rollers 22 and 23 are only gaps necessary for the bearing to rotate, and the roller shaft and the bearing are fitted to each other so that there is no gap, and the bearings and the bearings that hold the bearings are retained. It is preferable to configure in a fitting form in which no gap exists between the holder and the holder. As a result, the groove processing rollers 22 and 23 can pass the negative electrode hoop material 11 through the gaps without causing backlash. While forming the groove part 10 in the negative electrode active material layer 13 with high accuracy, it is possible to smoothly pass each gap without forming the groove part 10 in the single-side coated part 17.
- the electrode group 1 As mentioned above, although this invention has been demonstrated by suitable embodiment, such description is not a limitation matter and, of course, various modifications are possible.
- the electrode group 1 a configuration in which the positive electrode plate 2 and the negative electrode plate 3 are wound via the separator 4 is used, but the positive electrode plate 2 and the negative electrode plate 3 are interposed via the separator 4. The same effect can be obtained also for the electrode group 1 configured to be stacked in a zigzag manner.
- the negative electrode active material is 100 parts by weight of artificial graphite, and the binder is a styrene-butadiene copolymer rubber particle dispersion (solid content: 40% by weight) with respect to 100 parts by weight of the active material.
- 1 part by weight in terms of solid content of the dressing), 1 part by weight of carboxymethyl cellulose as a thickener with respect to 100 parts by weight of the active material, and an appropriate amount of water are stirred in a kneader to produce a negative electrode mixture paste did.
- This negative electrode mixture paste is applied to and dried on a current collecting core 12 made of a copper foil having a thickness of 10 ⁇ m, pressed to a total thickness of about 200 ⁇ m, and then an alumina having a particle diameter of about 1.2 ⁇ m.
- a material obtained by adding a small amount of a binder to a material and kneading it is coated on the surface of the negative electrode active material layer 13 to a thickness of about 5 ⁇ m using a roller type intermittent coating device, and then dried to make the material porous.
- a protective film 28 was formed.
- the negative electrode hoop material 11 was produced by cutting into a width of about 60 mm, which is the width of the negative electrode plate 3 of the cylindrical lithium secondary battery having a nominal capacity of 2550 mAh, a diameter of 18 mm, and a height of 65 mm, using a slitter machine.
- groove ridges 22a and 23a having a tip angle of 120 ° and a height H of 25 ⁇ m are formed on the ceramic outer peripheral surface of the roller body having a roller outer diameter of 100 mm. What was formed with a pitch of 170 ⁇ m in an arrangement in which the twist angle with respect to the circumferential direction is 45 ° was used.
- the negative electrode plate hoop material 11 was passed between the groove processing rollers 22 and 23 to form the groove portions 10 on both surfaces of the double-side coated portion 14 of the negative electrode plate hoop material 11.
- the groove processing roller 22 was pressurized by an air cylinder, and the depth D of the groove portion 10 formed by adjusting the air pressure of the air cylinder was adjusted. At this time, the stopper prevents the groove processing roller 22 from approaching the groove processing roller 23 beyond 100 ⁇ m set as the minimum gap between the groove processing rollers 22 and 23, and the groove portion 10 is not formed in the one-side coated portion 17. I did it.
- the adjustment of the stopper was set so that the gap between the groove processing rollers 22 and 23 was 100 ⁇ m.
- the pressure applied to the groove processing roller 22 was adjusted so that the air pressure of the air cylinder was 30 kgf per 1 cm in the width direction of the negative electrode plate hoop material 11 so that the depth D of the groove portion 10 was 8 ⁇ m.
- the speed at which the negative electrode plate hoop material 11 transports the gap between the groove processing rollers 22 and 23 was 5 m / min.
- the crack of the negative electrode active material layer 13 was confirmed using the laser microscope, the crack was not seen at all.
- the increase in the thickness of the negative electrode plate 3 was about 0.5 ⁇ m, and the longitudinal extension per cell was about 0.1%.
- a lithium nickel composite oxide represented by the composition formula LiNi 8 Co 0.1 A1 0.05 O 2 was used as the positive electrode active material.
- a predetermined ratio of Co and Al sulfuric acid was added to the NiSO 4 aqueous solution to prepare a saturated aqueous solution. While stirring this saturated aqueous solution, an alkaline solution in which sodium hydroxide is dissolved is slowly dropped and neutralized to neutralize the ternary nickel hydroxide Ni 0.8 Co 0.15 Al 0.05 (OH) 2 . Produced by precipitation. The precipitate was filtered, washed with water, and dried at 80 ° C. The obtained nickel hydroxide had an average particle size of about 10 ⁇ m.
- lithium hydroxide hydrate was added so that the ratio of the sum of the number of Ni, Co, and Al atoms to the number of Li atoms was 1: 1.03, and heat treatment was performed in an oxygen atmosphere at 800 ° C. for 10 hours. by performing, to obtain a LiNi 0.8 Co 0.15 Al 0.05 O 2 of interest.
- the obtained lithium nickel composite oxide was confirmed by powder X-ray diffraction to have a single-phase hexagonal phase structure, and Co and Al were dissolved. And it was set as the positive electrode active material powder through the process of grinding
- PVdF polyvinylidene fluoride
- NMP N-methylpyrrolidone
- the bipolar plate hoop material is wound in a dry air room in a state where it is overlapped with the separator 4 made of a polyethylene microporous film having a thickness of about 30 ⁇ m.
- the electrode group 1 was configured by turning.
- the negative electrode plate hoop material 11 cuts the core material exposed portion 18 in the middle between the double-side coated portion 14 and the single-side coated portion 17, but the grooving rollers 22 and 23 are disposed on the single-side coated portion.
- the current collection lead 20 was attached before winding in the state of the negative electrode hoop material 11 using the welding part with which the winding machine is equipped.
- the grooving roller 30 is replaced with a flat roller having no grooving protrusions, the gap between the grooving roller 31 and the grooving roller 30 is set to 100 ⁇ m, and the width of the negative electrode plate 3 is 1 cm.
- the groove part 10 having a depth D of about 8 ⁇ m is formed only in the negative electrode active material layer 13 on one side in the double-side coated part 14 by adjusting so that a load of 31 kg per unit is applied, and a negative electrode plate (Comparative Example 1) is produced. did.
- the negative electrode plate (Comparative Example 2) which does not form a groove part in both the negative electrode active material layers 13 on both sides of the double-side coated part 14 was produced.
- the electrolyte solution was injected to verify the liquid injection property.
- the pouring property of the electrolytic solution When evaluating the pouring property of the electrolytic solution, a pouring method in which about 5 g of the electrolytic solution was supplied to the battery case 7 and impregnated by drawing a vacuum was adopted.
- the electrolytic solution may be supplied into the battery case 7 in several times.
- the electrolyte solution is simultaneously supplied to the battery case 7 of a plurality of cells, vacuumed at a vacuum degree of -85 kpa, degassed, and then released to the atmosphere so that the electrolyte solution is contained in the electrode group.
- the method of forcibly infiltrating the electrolyte and terminating the electrolyte injection was adopted.
- the completion of the injection is determined by looking into the battery case 7 from directly above, and the electrolyte is completely removed from the top of the electrode group. Let time be data that can be used for production.
- the verification results are as shown in Table 1.
- a method of injecting a predetermined amount of electrolyte into the electrode group through a process of releasing a vacuum and releasing it to the atmosphere was adopted.
- the injection time was shortened, the evaporation of the electrolyte in the injection can be reduced, and the injection time is greatly shortened by improving the injection property.
- the amount of evaporation of the battery case can be suppressed to a minimum, and the opening of the battery case can be sealed with a sealing member. This indicates that it has become possible to significantly reduce the loss of the electrolytic solution as the pouring and impregnating properties of the electrolytic solution are improved.
- the electrode group 1 constituted by using the negative electrode plate 3 provided with the groove portion 10 on the surface of the porous protective film 28 is accommodated in a battery case 7, and EC (ethylene carbonate), DMC (dimethyl carbonate, MEC (methyl).
- EC ethylene carbonate
- DMC dimethyl carbonate
- MEC methyl
- electrolyte solution in which 1M LiPF 6 and 3 parts by weight of VC (vinylene carbonate) were dissolved in a mixed solvent of ethyl carbonate
- the battery case 7 was sealed, and the nominal capacity was 2550 mAh.
- a cylindrical lithium battery having a voltage of 3.7 V, a battery diameter of 18 mm, and a height of 65 mm was produced.
- the battery electrode group of the present invention is excellent in the impregnation of the electrolytic solution, and has high productivity and high reliability in which the occurrence of an internal short circuit is suppressed.
- a cylindrical non-aqueous system constituted by using this electrode group The secondary battery is useful as a drive power source for portable electronic devices and communication devices.
- Electrode plate component part DESCRIPTION OF SYMBOLS 1 Electrode group 2 Positive electrode plate 3 Negative electrode plate 4 Separator 7 Battery case 8 Gasket 9 Sealing plate 10 Groove part 11 Negative electrode plate hoop material 12 Current collecting core material 13 Negative electrode active material layer 14 Double-side coating part 17 Single-sided coating part 18 Core material Exposed portion 19 Electrode plate forming portion 20 Current collecting lead 21 Insulating tape 22, 23 Groove processing roller 22a, 23a Groove processing protrusion 24, 27 Gear 28 Porous protective film 70 Current collecting lead 71 Insulating tape 72 Core material for current collecting 73 Positive electrode active material layer 74 Double-sided coating part 78 Core material exposed part 79 Electrode plate component part
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Inorganic Chemistry (AREA)
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Connection Of Batteries Or Terminals (AREA)
Abstract
Description
2 正極板
3 負極板
4 セパレータ
7 電池ケース
8 ガスケット
9 封口板
10 溝部
11 負極板フープ材
12 集電用芯材
13 負極活物質層
14 両面塗工部
17 片面塗工部
18 芯材露出部
19 極板構成部
20 集電リード
21 絶縁テープ
22,23 溝加工ローラ
22a,23a 溝加工用突条
24,27 ギヤ
28 多孔性保護膜
70 集電リード
71 絶縁テープ
72 集電用芯材
73 正極活物質層
74 両面塗工部
78 芯材露出部
79 極板構成部
Claims (12)
- 正極板および負極板がセパレータを介して巻回されてなる非水系電池用電極群であって、
前記正極板は、
正極の集電用芯材の両面に正極活物質層が形成された両面塗工部と、
前記正極の集電用芯材の長手方向における中央部であって、前記正極活物質層が形成されていない芯材露出部と
を有し、
前記正極板の前記芯材露出部には、正極の集電リードが接続されており、
前記負極板は、
負極の集電用芯材の両面に負極活物質層および多孔性保護膜が形成された両面塗工部と、
前記負極の集電用芯材の端部であって、前記負極活物質層および多孔性保護膜が形成されていない芯材露出部と、
前記両面塗工部と前記芯材露出部との間であって、前記負極の集電用芯材の片面にのみ前記負極活物質層および多孔性保護膜が形成された片面塗工部と
を有し、
前記負極板の前記両面塗工部の両面に複数の溝部が形成され、かつ、前記負極板の前記片面塗工部には溝部が形成されておらず、
前記溝部は、前記多孔性保護膜の表面から前記活物質層の表面に及んで該活物質層表面にも形成され、かつ、前記多孔性保護膜の膜厚は、前記溝部の深さよりも小さく、
前記負極板の前記芯材露出部には、負極の集電リードが接続されており、
前記負極板の前記芯材露出部を巻き終端として前記負極板が巻回されていることを特徴とする非水系電池用電極群。 - 前記多孔性保護膜は、無機酸化物を主成分とする材料からなることを特徴とする請求項1に記載の非水系電池用電極群。
- 前記多孔性保護膜の主成分である無機酸化物は、アルミナおよび/またはシリカを主成分とすることを特徴とする請求項2に記載の非水系電池用電極群。
- 前記両面塗工部の両面に形成された溝部は、位相が対称になっていることを特徴とする請求項1に記載の非水系電池用電極群。
- 前記負極板の両面塗工部の両面に形成された溝部の深さは、4μm~20μmの範囲にあることを特徴とする請求項1に記載の非水系電池用電極群。
- 前記負極板の両面塗工部の両面に形成された溝部は、前記負極板の長手方向に沿って、100μm~200μmのピッチで形成したことを特徴とする請求項1に記載の非水系電池用電極群。
- 前記負極板の両面塗工部の両面に形成された溝部は、前記負極板の幅方向に対して、一端面から他端面に貫通して形成されていることを特徴とする請求項1に記載の非水系電池用電極群。
- 前記負極板の両面塗工部の両面に形成された溝部は、前記負極板の長手方向に対して、互いに異なる方向に45°の角度に傾斜して形成され、且つ、互いに直角に立体交差していることを特徴とする請求項1に記載の非水系電池用電極群。
- 前記負極の集電リードと前記負極板の片面塗工部における前記活物質層および多孔性保護膜とは、前記集電用芯材に対して互いに反対側に位置していることを特徴とする請求項1に記載の非水系電池用電極群。
- 請求項1に記載の非水系電池用電極群を製造する方法であって、
前記セパレータを介して前記正極板および前記負極板を捲回する工程を備え、
前記正極板と前記負極板とを捲回する工程では、前記負極板の前記芯材露出部を巻き終端として前記負極板を捲回することを特徴とする非水系電池用電極群の製造方法。 - 電池ケース内に、請求項1に記載の前記電極群が収容されるとともに、所定量の非水電解液が注液され、かつ、前記電池ケースの開口部が密閉状態に封口されていることを特徴とする円筒形非水系二次電池。
- 請求項11に記載の円筒形非水系二次電池の製造方法であって、
請求項9に記載の方法に従って前記電極群を作製する工程と、
前記電池ケース内に前記電極群および前記非水電解液を収容して、前記電池ケースを封口する工程とを備えていることを特徴とする円筒形非水系二次電池の製造方法。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/933,071 US7951487B2 (en) | 2009-01-16 | 2009-11-16 | Electrode group for nonaqueous battery and method for producing the same, and cylindrical nonaqueous secondary battery and method for producing the same |
CN2009801153482A CN102017272A (zh) | 2009-01-16 | 2009-11-16 | 非水系电池用电极组及其制造方法、以及圆筒形非水系二次电池及其制造方法 |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009-007408 | 2009-01-16 | ||
JP2009007408 | 2009-01-16 | ||
JP2009259090A JP4527191B1 (ja) | 2009-01-16 | 2009-11-12 | 非水系電池用電極群およびその製造方法並びに円筒形非水系二次電池およびその製造方法 |
JP2009-259090 | 2009-11-12 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2010082260A1 true WO2010082260A1 (ja) | 2010-07-22 |
Family
ID=42339530
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2009/006126 WO2010082260A1 (ja) | 2009-01-16 | 2009-11-16 | 非水系電池用電極群およびその製造方法並びに円筒形非水系二次電池およびその製造方法 |
Country Status (5)
Country | Link |
---|---|
US (1) | US7951487B2 (ja) |
JP (1) | JP4527191B1 (ja) |
KR (1) | KR20100112644A (ja) |
CN (1) | CN102017272A (ja) |
WO (1) | WO2010082260A1 (ja) |
Families Citing this family (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4672079B2 (ja) * | 2009-01-14 | 2011-04-20 | パナソニック株式会社 | 非水系電池用負極板、非水系電池用電極群およびその製造方法、並びに、円筒形非水系二次電池およびその製造方法 |
JP2010186740A (ja) * | 2009-01-16 | 2010-08-26 | Panasonic Corp | 非水系電池用電極群およびその製造方法並びに円筒形非水系二次電池およびその製造方法 |
US8972228B2 (en) | 2011-05-03 | 2015-03-03 | Medtronic, Inc. | Assessing intra-cardiac activation patterns |
TW201304245A (zh) * | 2011-07-15 | 2013-01-16 | Growin Automation Co Ltd | 將極群組合於外殼的製程 |
JP5935265B2 (ja) * | 2011-08-29 | 2016-06-15 | Tdk株式会社 | 巻回型電気化学デバイス |
JP6070067B2 (ja) | 2012-10-30 | 2017-02-01 | ソニー株式会社 | 電池、電極、電池パック、電子機器、電動車両、蓄電装置および電力システム |
EP3279982B1 (en) | 2016-08-05 | 2019-05-15 | Robert Bosch GmbH | Current collector with an improved security behavior and battery cell comprising the same |
EP3279974A1 (en) | 2016-08-05 | 2018-02-07 | Lithium Energy and Power GmbH & Co. KG | Electrode with an improved security behavior and battery cell comprising the same |
CN110431692B (zh) * | 2017-03-31 | 2022-10-04 | 松下知识产权经营株式会社 | 二次电池 |
KR102315719B1 (ko) * | 2017-04-12 | 2021-10-21 | 주식회사 엘지에너지솔루션 | 전극 합제층의 접착력이 불균일한 전극조립체 및 이의 제조 장치 |
CN109524606B (zh) * | 2018-11-05 | 2022-07-26 | 宁德新能源科技有限公司 | 极片、电芯及电池 |
US12023503B2 (en) | 2020-07-30 | 2024-07-02 | Medtronic, Inc. | ECG belt systems to interoperate with IMDs |
US11813464B2 (en) | 2020-07-31 | 2023-11-14 | Medtronic, Inc. | Cardiac conduction system evaluation |
WO2024181039A1 (ja) * | 2023-02-27 | 2024-09-06 | パナソニックエナジー株式会社 | 円筒形電池 |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001023612A (ja) * | 1999-07-09 | 2001-01-26 | Matsushita Electric Ind Co Ltd | 非水電解液二次電池 |
JP2004006275A (ja) * | 2002-04-12 | 2004-01-08 | Toshiba Corp | 非水電解液二次電池 |
JP2005285607A (ja) * | 2004-03-30 | 2005-10-13 | Matsushita Electric Ind Co Ltd | 非水系二次電池およびその製造方法 |
WO2005117167A1 (ja) * | 2004-05-25 | 2005-12-08 | Matsushita Electric Industrial Co., Ltd. | リチウムイオン二次電池およびその製造方法 |
JP2006107853A (ja) * | 2004-10-04 | 2006-04-20 | Sony Corp | 非水電解質二次電池及びその製造方法 |
JP2008234855A (ja) * | 2007-03-16 | 2008-10-02 | Matsushita Electric Ind Co Ltd | 非水電解質二次電池 |
WO2009011123A1 (ja) * | 2007-07-17 | 2009-01-22 | Panasonic Corporation | 二次電池および二次電池の製造方法 |
WO2009013889A1 (ja) * | 2007-07-20 | 2009-01-29 | Panasonic Corporation | 電池用電極板、電池用極板群、リチウム二次電池、電池用電極板の製造方法、及び電池用電極板の製造装置 |
WO2009013890A1 (ja) * | 2007-07-20 | 2009-01-29 | Panasonic Corporation | 電池用電極板、電池用極板群、リチウム二次電池、及び電池用電極板の製造方法 |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3371301B2 (ja) | 1994-01-31 | 2003-01-27 | ソニー株式会社 | 非水電解液二次電池 |
JPH09298057A (ja) | 1996-04-30 | 1997-11-18 | Sanyo Electric Co Ltd | リチウムイオン電池 |
JP4149543B2 (ja) | 1997-11-19 | 2008-09-10 | 株式会社東芝 | 非水電解液電池 |
JP2001176558A (ja) | 1999-12-20 | 2001-06-29 | Toshiba Corp | 非水電解液二次電池 |
JP2001222993A (ja) * | 2000-02-07 | 2001-08-17 | Yuasa Corp | 電 池 |
JP2001357836A (ja) | 2000-06-12 | 2001-12-26 | Gs-Melcotec Co Ltd | 電 池 |
JP2002042789A (ja) | 2000-07-21 | 2002-02-08 | Matsushita Electric Ind Co Ltd | 電池用電極の製造方法および製造装置 |
CN1321477C (zh) * | 2003-10-28 | 2007-06-13 | 比亚迪股份有限公司 | 锂离子二次电池 |
EP1667255B1 (en) | 2003-09-18 | 2011-04-20 | Panasonic Corporation | Lithium-ion secondary battery |
JP4657001B2 (ja) | 2004-05-25 | 2011-03-23 | パナソニック株式会社 | リチウムイオン二次電池およびその製造方法 |
CN101315993A (zh) * | 2007-05-28 | 2008-12-03 | 东莞新能源电子科技有限公司 | 一种叠片式锂离子电池的制造方法 |
CN101675544A (zh) | 2007-07-17 | 2010-03-17 | 松下电器产业株式会社 | 二次电池和二次电池的制造方法 |
JP4362539B2 (ja) | 2007-07-20 | 2009-11-11 | パナソニック株式会社 | 電池用電極板、電池用極板群、リチウム二次電池、電池用電極板の製造方法、及び電池用電極板の製造装置 |
-
2009
- 2009-11-12 JP JP2009259090A patent/JP4527191B1/ja not_active Expired - Fee Related
- 2009-11-16 KR KR1020107019949A patent/KR20100112644A/ko active IP Right Grant
- 2009-11-16 WO PCT/JP2009/006126 patent/WO2010082260A1/ja active Application Filing
- 2009-11-16 CN CN2009801153482A patent/CN102017272A/zh active Pending
- 2009-11-16 US US12/933,071 patent/US7951487B2/en active Active
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001023612A (ja) * | 1999-07-09 | 2001-01-26 | Matsushita Electric Ind Co Ltd | 非水電解液二次電池 |
JP2004006275A (ja) * | 2002-04-12 | 2004-01-08 | Toshiba Corp | 非水電解液二次電池 |
JP2005285607A (ja) * | 2004-03-30 | 2005-10-13 | Matsushita Electric Ind Co Ltd | 非水系二次電池およびその製造方法 |
WO2005117167A1 (ja) * | 2004-05-25 | 2005-12-08 | Matsushita Electric Industrial Co., Ltd. | リチウムイオン二次電池およびその製造方法 |
JP2006107853A (ja) * | 2004-10-04 | 2006-04-20 | Sony Corp | 非水電解質二次電池及びその製造方法 |
JP2008234855A (ja) * | 2007-03-16 | 2008-10-02 | Matsushita Electric Ind Co Ltd | 非水電解質二次電池 |
WO2009011123A1 (ja) * | 2007-07-17 | 2009-01-22 | Panasonic Corporation | 二次電池および二次電池の製造方法 |
WO2009013889A1 (ja) * | 2007-07-20 | 2009-01-29 | Panasonic Corporation | 電池用電極板、電池用極板群、リチウム二次電池、電池用電極板の製造方法、及び電池用電極板の製造装置 |
WO2009013890A1 (ja) * | 2007-07-20 | 2009-01-29 | Panasonic Corporation | 電池用電極板、電池用極板群、リチウム二次電池、及び電池用電極板の製造方法 |
Also Published As
Publication number | Publication date |
---|---|
US7951487B2 (en) | 2011-05-31 |
US20110014510A1 (en) | 2011-01-20 |
JP2010186741A (ja) | 2010-08-26 |
JP4527191B1 (ja) | 2010-08-18 |
CN102017272A (zh) | 2011-04-13 |
KR20100112644A (ko) | 2010-10-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4527190B1 (ja) | 非水系電池用正極板、非水系電池用電極群およびその製造方法、並びに、角形非水系二次電池およびその製造方法 | |
JP4527191B1 (ja) | 非水系電池用電極群およびその製造方法並びに円筒形非水系二次電池およびその製造方法 | |
JP4672079B2 (ja) | 非水系電池用負極板、非水系電池用電極群およびその製造方法、並びに、円筒形非水系二次電池およびその製造方法 | |
JP4355356B2 (ja) | 電池用電極板、電池用極板群、リチウム二次電池、及び電池用電極板の製造方法 | |
JP4362539B2 (ja) | 電池用電極板、電池用極板群、リチウム二次電池、電池用電極板の製造方法、及び電池用電極板の製造装置 | |
JP4359331B2 (ja) | 二次電池および二次電池の製造方法 | |
WO2010082258A1 (ja) | 非水系電池用電極群およびその製造方法並びに円筒形非水系二次電池およびその製造方法 | |
WO2010082256A1 (ja) | 非水系電池用負極板、非水系電池用電極群およびその製造方法、並びに、円筒形非水系二次電池およびその製造方法 | |
JP4527189B1 (ja) | 非水系電池用正極板、非水系電池用電極群およびその製造方法、並びに、角形非水系二次電池およびその製造方法 | |
CN114365306B (zh) | 使用激光制造二次电池的电极的设备和方法及通过其制造的二次电池的电极 | |
JP2009272055A (ja) | 非水電解液二次電池の製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 200980115348.2 Country of ref document: CN |
|
ENP | Entry into the national phase |
Ref document number: 20107019949 Country of ref document: KR Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 09838230 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 12933071 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 09838230 Country of ref document: EP Kind code of ref document: A1 |