JP2009272055A - 非水電解液二次電池の製造方法 - Google Patents

非水電解液二次電池の製造方法 Download PDF

Info

Publication number
JP2009272055A
JP2009272055A JP2008118921A JP2008118921A JP2009272055A JP 2009272055 A JP2009272055 A JP 2009272055A JP 2008118921 A JP2008118921 A JP 2008118921A JP 2008118921 A JP2008118921 A JP 2008118921A JP 2009272055 A JP2009272055 A JP 2009272055A
Authority
JP
Japan
Prior art keywords
separator
separators
secondary battery
electrolyte secondary
aqueous electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008118921A
Other languages
English (en)
Inventor
Akihiro Maeda
明宏 前田
Hiroshi Matsuno
博 松野
Takamoto Morikawa
敬元 森川
Hiroki Saito
弘樹 齊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2008118921A priority Critical patent/JP2009272055A/ja
Publication of JP2009272055A publication Critical patent/JP2009272055A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Cell Separators (AREA)
  • Secondary Cells (AREA)

Abstract

【課題】正極と負極とをセパレータを介して捲回する際のセパレータの破断やめくれが確実に抑制される非水電解液二次電池の製造方法を提供する。
【解決手段】非水電解液二次電池の製造方法は、帯状のセパレータを幅方向に沿って湾曲させる工程(1)と、工程(1)で幅方向に沿って湾曲させたセパレータの2枚を、セパレータの湾曲により形成された凹面が対向するように重ね合わせた後、2枚のセパレータを一対の巻芯で挟む工程(2)と、2枚のセパレータの間に帯状の正極および負極のうちのいずれか一方を配置し、2枚のセパレータのうちのいずれか一方の外側に、正極および負極の他方を配置し、積層体を構成する工程(3)と、一対の巻芯を中心に回転させて積層体を捲回し、電極群を得る工程(4)と、を含む。
【選択図】図3

Description

本発明は、非水電解液二次電池の製造方法に関し、特に電極群の製造方法に関する。
近年、AV機器やパソコン等の電子機器のコードレス化やポータブル化に伴い、電子機器の電源として、リチウムイオン二次電池に代表される高エネルギー密度を有する非水電解液二次電池が広く用いられている。
非水電解液二次電池の製造工程は、正極、負極、およびセパレータからなる電極群を作製する工程と、電極群を電槽に挿入した後、電槽内に電解液を注液する工程と、電槽の開口部を電池蓋で覆い封口する工程とを含む。これらの工程のなかでも、発電部である電極群を作製する工程は、非常に重要である。電極群の作製方法としては、帯状の正極と負極とを、帯状のセパレータを介して、平板状の巻芯に捲回する方法が提案されている(例えば、特許文献1)。
以下、捲回方法を具体的に説明する。2枚の帯状のセパレータを一対の平板状の巻芯で挟む。2枚のセパレータ間に正極および負極のうちのいずれか一方を配置し、2枚のセパレータのうちのいずれか一方の外側に正極および負極の他方を配置して積層体を構成する。一対の巻芯を中心に回転させて積層体を捲回する。生産性の観点から、通常は、巻芯を、セパレータの幅方向に沿って、セパレータの主面と対向する位置まで移動させて、2枚のセパレータを一対の巻芯で挟む。このとき、一対の巻芯を同方向からセパレータの主面と対向する位置まで移動させてもよく、一対の巻芯を互いに反対方向からセパレータの主面と対向する位置まで移動させてもよい。
特開平6−96801号公報
しかしながら、上記のようなセパレータの幅方向に沿って、一対のセパレータの外側の面にそれぞれ対向する位置まで一対の巻芯を移動させて、一対の巻芯で2枚のセパレータを挟む際に、巻芯がセパレータの端部に接触して、セパレータの破断およびめくれ等の不具合を生じる場合がある。
これを防ぐ方法としては、巻芯の間隔を広くする、または巻芯を厚くすることが考えられる。しかし、電池構成時のデッドスペースが大きくなり、電極の厚みを減らす必要があり、電池容量が減少する。
そこで、本発明は、上記従来の問題を解決するため、正極と負極とをセパレータを介して捲回する際のセパレータの破断やめくれが確実に抑制される非水電解液二次電池の製造方法を提供することを目的とする。
本発明の非水電解液二次電池の製造方法は、帯状のセパレータを幅方向に沿って湾曲させる工程(1)と、前記工程(1)で幅方向に沿って湾曲させたセパレータの2枚を、前記セパレータの湾曲により形成された凹面が対向するように重ね合わせた後、前記2枚のセパレータを一対の巻芯で挟む工程(2)と、前記2枚のセパレータの間に帯状の正極および負極のうちのいずれか一方を配置し、前記2枚のセパレータのうちのいずれか一方の外側に、前記正極および負極の他方を配置し、積層体を構成する工程(3)と、前記一対の巻芯を中心に回転させて前記積層体を捲回し、電極群を得る工程(4)と、を含むことを特徴とする。
前記工程(1)のセパレータは、複数の帯状の単位層を積層した多層体からなり、前記複数の単位層のうち少なくとも2つは互いに幅方向の熱収縮率が異なるのが好ましい。
前記複数の単位層のうち少なくとも1つの単位層は、セラミックスおよび樹脂を含む層であるのが好ましい。
前記多層体の最外側に配される単位層は、球状のポリエチレン粒子および球状のポリテトラフルオロエチレン粒子の混合物層からなるのが好ましい。
前記工程(1)において湾曲した前記セパレータの幅方向の湾曲度は0.5mm以上であるのが好ましい。
前記工程(1)において、前記多層体を熱処理するのが好ましい。
本発明によれば、正極と負極とをセパレータを介して捲回する際のセパレータの破断やめくれを確実に抑制することができる。これにより、電極群作製時のセパレータの破断やめくれにより生じる内部短絡を防止することができ、高信頼性および高容量を有する非水電解液二次電池が得られる。また、薄型の巻芯を使用できるため、電池内部のデッドスペースが減少し、電池の高容量化が可能となる。
本発明は、帯状のセパレータを幅方向に沿って湾曲させる工程(1)と、前記工程(1)で幅方向に沿って湾曲させたセパレータの2枚を、前記セパレータの湾曲により形成された凹面が対向するように重ね合わせた後、前記2枚のセパレータを一対の巻芯で挟む工程(2)と、前記2枚のセパレータの間に帯状の正極および負極のうちのいずれか一方を配置し、前記2枚のセパレータのうちのいずれか一方の外側に、前記正極および負極の他方を配置し、積層体を構成する工程(3)と、前記一対の巻芯を中心に回転させて前記積層体を捲回し、電極群を得る工程(4)と、を含む非水電解液二次電池の製造方法に関する。
これにより、一対の巻芯でセパレータを挟持する際のセパレータの破断やめくれを容易かつ確実に抑制することができ、工程不良を低減することができる。
この電極群を用いた電池では、電極群作製時のセパレータの破断やめくれに起因する内部短絡の発生が抑制される。さらに、薄型の巻芯を使用できるため、電池内部のデッドスペースが減少し、電池の高容量化が可能となる。したがって、電池の信頼性向上および高容量化を同時に実現することができる。
なお、電極群を組立てた後の工程(電池の組立て工程)については、従来の工程を採用すればよい。電池の組立て工程は、例えば、電極群を電池ケースに収納した後、電池ケース内に非水電解液を注液する工程、および電池ケースを密閉する工程を含む。
(A)工程(1)
工程(1)では、帯状のセパレータを幅方向に沿って湾曲させる。セパレータには、例えば、複数の帯状の単位層からなり、複数の単位層のうち少なくとも2つは互いに幅方向の熱収縮率が異なる多層体が用いられる。そして、電極群を作製する前に、多層体のセパレータを熱処理することにより、セパレータを幅方向に沿って効率よく容易に湾曲させることができる。
上記多層体を熱処理すると、多層体中において相対的に熱収縮率の高い単位層の熱収縮によりセパレータが幅方向に沿って湾曲する。具体的には、セパレータは、熱収縮率が高い単位層から近い方の表面が幅方向に沿って凹面を形成するように湾曲する。セパレータの厚み方向の中心よりどちらか一方の側が幅方向の熱収縮率が高くなるように複数の単位層を配置すればよい。各単位層において、長手方向の熱収縮率は同じでもよく、互いに異なっていてもよい。単位層の幅方向の熱収縮率は、単位層に用いる材料に応じて容易に変えることができる。また、同じ材料を用いる場合、多層体の片側から熱を加えて熱収縮量を調整することにより幅方向の熱収縮率を変えることができる。
セパレータの厚みは、例えば、5〜50μmである。単位層の厚みは、例えば、1〜49μmである。単位層は、例えば、多孔度20〜80%の多孔質樹脂層からなる。樹脂材料には、例えば、ポリエチレン、ポリプロピレン、アラミド樹脂が用いられる。
例えば、セパレータがポリエチレン層およびアラミド層の積層体からなる場合、熱収縮率が大きいアラミド層側が凹面を形成するように、セパレータが湾曲する。湾曲(湾曲度)は、熱処理温度および時間を変えることにより容易に制御できる。
上記の複数の単位層のうち少なくとも一つの単位層は、耐熱性を有するセラミックスおよび樹脂を含む層(以下、セラミックス含有樹脂層と表す。)であるのが好ましい。セラミックス含有樹脂層中のセラミックス含有量は樹脂100重量部あたり10〜100重量部であるのが好ましい。電極群に異物が混入して内部短絡を生じた場合、セラミックス含有樹脂層が絶縁層として短絡箇所に残るため、電池温度の大幅な上昇が抑制される。セラミックス含有樹脂層としては、例えば、セラミックス粒子が分散したアラミド樹脂層が挙げられる。セラミックスとしては、アルミナ、シリカ、二酸化チタン、または酸化ジルコニウムが挙げられ、これらを単独で用いてもよく、2種以上を組み合わせて用いてもよい。
上記多層体の最外側に配される単位層は、球状のポリエチレン粒子、球状のポリテトラフルオロエチレン粒子、またはこれらの混合物からなる層であるのが好ましい。巻芯でセパレータを挟持する際に、セパレータと巻芯との間の摩擦が低減されるため、巻芯がセパレータ端部に接触することによるセパレータの破断やめくれの発生が大幅に抑制される。
巻芯でセパレータを挟持する際のセパレータの破断やめくれの発生が大幅に抑制されるため、セパレータの幅方向の湾曲度が0.5mm以上であるのが好ましい。また、電極フープ巻出しからの走行ライン上のローラーによるセパレータの折れ曲がりが大幅に抑制されるため、セパレータの幅方向の湾曲度は3.0mm以下であるのがより好ましい。
ここで、湾曲度の測定手順を、図1および2を参照しながら説明する。図1は湾曲度の測定時の構成を示す斜視図である。図2は、図1におけるセパレータ4の一部(セパレータ4の2つの丸棒15の中央部付近から錘16付近まで)を示す図1の要部斜視図である。図1に示すように、同じ大きさ(例えば、直径30mm)の2つの丸棒15を所定の間隔(例えば、60mm)をあけて水平に設置する。2つの丸棒15上にセパレータ4を配置し、セパレータ4の端の一方を壁面に固定する。セパレータ4の端の他方に所定重量(例えば、150g)の錘16を取り付ける。このとき、図2に示すように、セパレータ4における2つの丸棒15の中央に位置する部分の反り量(図2中の距離L)を測定する。この測定値を湾曲度とする。
(B)工程(2)
工程(2)では、上記工程(1)で湾曲させたセパレータの2枚を、セパレータの湾曲により形成された凹面が対向するように重ね合わせた後、2枚のセパレータを一対の巻芯で挟む。工程(2)で用いられる、幅方向に沿って湾曲した2枚のセパレータの湾曲度は、異なっていてもよいが、生産性の観点から、湾曲度は同じであるのが好ましく、同じセパレータを2枚用いるのがより好ましい。
ここで、工程(2)の一例を、図3を参照しながら説明する。図3は、工程(2)の一例を示す縦断面図である。
図3に示すように、幅方向に湾曲する2枚のセパレータ4を、凹面が対向するように重ね合わせる。そして、一対の平板状の巻芯13を、セパレータ4を挟むことができるように間隔をあけて平行に配置し、2枚のセパレータの幅方向(図3中に示す矢印の方向)に沿ってセパレータの外側の凸面に対向する位置まで移動させる。そして、一対の巻芯13でセパレータを挟む。
上記のようにセパレータ4は外側に凸面が向くように配置されている。このため、巻芯13でセパレータ4を挟む際に、巻芯13がセパレータ4の外面(凸面)側における幅方向の中央付近で接触することはあっても、巻芯13がセパレータ4の端部付近に対向する位置まで移動した時点でセパレータ4の端部に引っかかることなく、セパレータ4の外面側を幅方向に沿って移動し、セパレータ4の端部の破断やめくれを生じることがない。したがって、電極群作製時において、セパレータ端部の破断やめくれによる工程不良の発生を確実に防ぐことができる。
また、図3に示すように、一対の巻芯13は傾斜部13aを有する。傾斜部13aはセパレータ4から離れるほど巻芯13の進行方向(図3中の矢印の方向)側に傾斜し、かつ巻芯13の進行方向に傾斜部13aが向くように、一対の巻芯13が配置される。セパレータ4の端部付近に対向する位置に巻芯13が移動する際、巻芯13の傾斜部13aが、セパレータ4の湾曲した面の端部に対応する。このため、巻芯端部がセパレータ端部と接触して、セパレータ端部の破断やめくれを生じることがさらに抑制される。
(C)工程(3)および(4)
工程(3)では、2枚のセパレータの間に、正極および負極のうちのいずれか一方を配置し、2枚のセパレータのうちのいずれか一方の外側に、正極および負極の他方を配置して、積層体を構成する。工程(4)では、一対の巻芯を中心にこの積層体を捲回し、電極群を得る。
ここで、工程(3)および(4)の一例を、図4を参照しながら説明する。図4は、工程(3)および(4)の一例を示す縦断面図である。図4に示すように、2枚のセパレータ4の間に、正極2を配置し、2枚のセパレータ4の外側に、負極3を配置して、積層体を構成する。一対の平板状の巻芯13を中心にしてこの積層体を捲回する。このようにして、電極群を作製する。
薄型の平板状の巻芯13を用いるため、電池内部のデッドスペースが減少し、電池の高容量化が可能となる。したがって、この電極群を用いた電池では、信頼性向上および高容量化を同時に実現することができる。
幅方向に湾曲する2枚のセパレータを、凹面同士が対向するように配置する場合、一対の巻芯で2枚のセパレータを挟持した際にセパレータの湾曲は解消され、セパレータの見かけの厚みが薄くなるため、正負極を配置しやすい。すなわち、正負極を配置する際にセパレータの端部に正負極が接触し、セパレータ端部のめくれまたは破損を生じることがない。
帯状の正極は、正極集電体および正極集電体上に形成された正極活物質層からなる。正極活物質層は、例えば、正極活物質、結着剤、および導電材を含む。正極集電体には、アルミニウム箔等の金属箔が用いられる。正極活物質には、例えば、コバルト酸リチウムのようなリチウム含有複合酸化物が用いられる。例えば、正極活物質はLimCox1-x2(Mは、Ni、Mn、Cr、Fe、Mg、およびAlから選ばれる少なくとも1種を含み、m=0.95〜1.10、x=0〜1.0である。)が用いられる。
正極は、例えば、正極活物質、結着剤、増粘剤、導電材、および溶媒等を加えて正極スラリーを得、この正極スラリーを正極集電体に塗布した後、乾燥して、正極集電体上に正極活物質層を形成することにより得られる。
結着剤は、正極作製時に使用する溶媒や非水電解質に対して安定な材料であればよく、特に限定されない。例えば、ポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン(PTFE)、スチレン・ブタジエンゴム(SBR)、イソプロピレンゴム、ブタジエンゴム、またはエチレンプロピレンジエタンポリマー(EPDM)が挙げられる。
増粘剤としては、例えば、カルボシキメチルセルロース(CMC)、メチルセルロース(MC)、ヒドロキシメチルセルロース(HMC)、エチルセルロース、ポリビニルアルコール(PVA)、酸化スターチ、リン酸化スターチ、またはガゼインが挙げられる。
導電材としては、例えば、銅(Cu)やニッケル(Ni)のような金属材料、グラファイト、またはカーボンブラックのような炭素材料が挙げられる。
帯状の負極は、例えば、負極集電体および負極集電体上に形成された負極活物質層からなる。負極活物質層は、例えば、負極活物質および結着剤を含む。負極集電体には、銅箔等の金属箔が用いられる。負極活物質には、例えば、黒鉛が用いられる。好ましくは、人造黒鉛、天然黒鉛、またはこれらの黒鉛にピッチを含む種々の表面処理を施した材料が用いられる。また、負極活物質に、上記黒鉛と、リチウムを吸蔵・放出可能な他の負極材料との混合物を用いてもよい。他の負極材料としては、例えば、難黒鉛性炭素もしくは低温焼成炭素のような非黒鉛系炭素材料、酸化錫もしくは酸化珪素のような金属酸化物材料、リチウム金属、またはリチウム合金が挙げられる。これらの負極材料を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
負極集電体には、例えば、銅箔、ニッケル箔、またはステンレス鋼(SUS)箔等の金属箔が用いられるが、これらの中でも、薄膜に加工しやすく、低コストであることから、銅箔が好ましい。
負極は、例えば、負極活物質、結着剤、導電材、および溶媒等を加えて負極スラリーを得、この負極スラリーを負極集電体に塗布した後、乾燥して、負極集電体上に負極活物質層を形成することにより得られる。
以下、本発明の実施例を詳細に説明するが、本発明はこれらの実施例に限定されない。
《実施例1》
以下の手順で、本発明の製造方法により図5〜7に示す角形リチウムイオン二次電池を作製した。図5は角形リチウムイオン二次電池の概略斜視図、図6は図5のA−A断面図、および図7は図5のB−B断面図である。
(1)正極の作製
正極活物質としてLiCo0.98Mg0.022の96重量部と、導電材としてアセチレンブラック2重量部と、結着剤としてPVDF2重量部と、溶剤として適量のN−メチル−2−ピロリドン(以下、NMPと略す)とを加えて、正極スラリーを得た。正極スラリーを、厚み15μmのAl箔からなる正極集電体の両面に塗布した後、120℃で乾燥してNMPを除去した。このようにして、正極集電体の両面に正極活物質層が形成された正極を得た。その後、ロールプレスを用いて正極板を圧延し、所定の寸法に切断し、帯状の正極2(厚み0.155mm、幅43.4mm)を得た。
(2)負極の作製
負極活物質として精製天然黒鉛にピッチを含む表面処理を施した材料100重量部と、増粘剤としてCMC2重量部と、結着剤としてSBR2重量部と、溶剤として適量の水とを混合し、負極スラリーを得た。この負極スラリーを厚み10μmの銅箔からなる負極集電体の両面に塗布した後、200℃で乾燥して、水を除去した。このようにして、負極集電体の両面に負極活物質層が形成された負極板を得た。その後、ロールプレスを用いて負極板を圧延し、所定の寸法に切断して、帯状の負極3(厚み0.160mm、幅44.7mm)を得た。
(3)セパレータの作製
基材層としての多孔質ポリエチレン膜(厚み0.013mm、多孔度48%)の片面に、アラミド樹脂溶液に耐熱性を有するセラミックスとして酸化アルミニウム粉末(平均粒径0.001mm)をアラミド樹脂100重量部あたり50重量部分散させたスラリーを塗布した後、有機溶媒を除去し、基材層上にセラミックス含有アラミド樹脂層(厚み0.003mm)を形成した。
さらに、樹脂層上に、球状のポリテトラフルオロエチレン粒子(平均粒径0.3μm)と、球状のポリエチレン粒子(平均粒径0.01μm)との混合物(混合比1:1)を水中に分散させたものを塗布した後、乾燥させて混合物層(厚み0.3μm)を形成した。
このようにして、基材層、セラミックス含有アラミド樹脂層、および混合物層の多層体からなるセパレータ4(厚み0.0165mm、幅47.5mm)を得た。セパレータを80℃で4時間熱処理した。このとき、アラミド樹脂層は熱収縮率が大きいため、セパレータ4は、アラミド樹脂層側が凹面を形成するように幅方向に沿って湾曲した。
セパレータ4の幅方向の湾曲度を以下の方法により測定した。図1に示すように、直径30mmの2つの丸棒15を60mmの間隔をあけて水平に設置した。2つの丸棒15上にセパレータ4を配置し、セパレータ4の端の一方を壁面に固定した。セパレータ4の端の他方に150gの錘16を取り付けた。このとき、図2に示すように、セパレータ4における2つの丸棒15の中央に位置する部分の反り量(図2中の距離L)を測定し、この測定値を湾曲度とした。その結果、セパレータ4の湾曲度は0.74mmであった。
(4)電極群の作製
上記で得られたセパレータを2枚準備し、湾曲により形成された凹面が対向するように、2枚のセパレータを重ね合わせた。その後、2枚のセパレータを一対の平板状の巻芯(厚み2.0mm)で挟んだ。2枚のセパレータの間に、上記で得られた帯状の正極を配置し、2枚のセパレータの外側(正極側の面と反対側の面)に、上記で得られた帯状の負極を配置し、積層体を構成した。一対の巻芯を中心に回転させて積層体を捲回し、電極群を得た。
(5)電池の組立て
上記で得られた電極群を、有底角筒状のアルミニウム製電池ケース6に収容した。電池ケース6の開口端部を、負極端子となる突起部7を備えた封口板8の周縁部とレーザー溶接して、電池ケース6の開口部を封口板8で覆い密閉した。突起部7と封口板8との間には絶縁部材12が配されている。このとき、負極3から引き出された負極リード9を、枠体10の開口部に通過させ、突起部7にレーザー溶接した。また、正極2から引き出された正極リード11を、枠体10と電池ケース6との間に通過させ、正極端子となる封口板8にレーザー溶接した。このようにして、電池容量が970mAhである角形リチウムイオン二次電池A1(縦50mm、横34mm、幅5mm)を作製した。
《比較例1》
電極群作製時において、一方のセパレータの凸面と、他方のセパレータの凹面とが対向するように、すなわち2枚のセパレータの湾曲の向きが同じになるように、2枚のセパレータを配置した以外、実施例1と同様の方法により電池B1を作製した。
《実施例2》
セパレータ作製時に、樹脂層上にポリテトラフルオロエチレン粒子およびポリエチレン粒子の混合物を塗布しない以外、実施例1と同様の方法により電池A2を作製した。
《実施例3》
セパレータの熱処理時間を1時間とした以外、実施例1と同様の方法によりセパレータを作製した。このとき、セパレータの湾曲度は0.51mmであった。上記セパレータを用いた以外、実施例1と同様の方法により電池A3を作製した。
《実施例4》
セパレータの熱処理時間を0.5時間とした以外、実施例1と同様の方法によりセパレータを作製した。このとき、セパレータの湾曲度は0.48mmであった。上記セパレータを用いた以外、実施例1と同様の方法により電池A3を作製した。
[評価]
電池A1〜A4および電池B1をそれぞれ1000個ずつ作製した後、内部短絡を起こした電池の数を調べた。具体的には、電池の正負極端子間の抵抗を測定し、抵抗値が10Ω未満の場合、内部短絡を生じたと判断した。
その結果を表1に示す。
Figure 2009272055
実施例1〜4の方法により得られた電池A1〜A4では、比較例1の方法により得られた電極群を用いた電池B1と比べて、内部短絡発生率が大幅に低下した。特に、実施例1〜3の電池A1〜A3では内部短絡発生率が0%であった。
電池B1では、電極群作製時において、2枚のセパレータのうちのいずれか一方の凸面と、他方の凹面が対向するように、2枚のセパレータを配置したため、セパレータの見かけの厚みが大きくなり、巻芯配置時にセパレータの端面に巻芯が引っかかり、セパレータの破断やめくれを生じたため、内部短絡を生じたと考えられる。
実施例4の方法により得られた電池A4では、電極群作製時におけるセパレータの湾曲度が0.48mmと小さく、湾曲による効果が小さくなったため、内部短絡した電池がわずかにみられた。このことから、湾曲度は0.5mm以上が好ましいことがわかった。
巻芯でセパレータを挟む際に、巻芯がセパレータ端面に接触し、セパレータの破断やめくれが発生するのを抑制するためには、セパレータの見かけの厚みに対応するように、一対の巻芯間の隙間を大きくする方法が考えられる。しかし、この方法では、巻芯の隙間を大きくすると電極群が大きくなるため、無駄な体積が増大し、高容量化には不利となる。
これに対して、本発明では、薄型の巻芯を用いることができるため、従来よりもデッドスペースを減らし、高容量化することが可能である。
また、本実施例では、熱収縮率の大きいアラミド樹脂層を含むセパレータを熱処理して、セパレータを湾曲させたが、アラミド樹脂層以外でも熱収縮率の大きい樹脂層を設けることにより上記と同様の効果が得られる。
本発明の製造方法により得られた非水電解液二次電池は、携帯電話やノート型パソコン等の民生用モバイルツールの主電源、電動ドライバー等のパワーツールの主電源、およびEV自動車の主電源に好適に用いられる。
本発明の非水電解液二次電池の製造方法に用いられるセパレータの湾曲度の測定時の構成を示す斜視図である。 図1の要部斜視図である。 本発明の非水電解液二次電池の製造方法における工程(2)の一例を示す図である。 本発明の非水電解液二次電池の製造方法における工程(3)および(4)の一例を示す図である。 本発明の実施例の非水電解質二次電池の概略斜視図である。 図5のA−A断面図である。 図5のB−B断面図である。
符号の説明
1 電池
2 正極
3 負極
4 セパレータ
5 電極群
6 電池ケース
7 突起部
8 封口板
9 負極リード
10 枠体
11 正極リード
12 絶縁部材
13 巻芯
13a 傾斜部
15 丸棒
16 錘

Claims (6)

  1. 帯状のセパレータを幅方向に沿って湾曲させる工程(1)と、
    前記工程(1)で幅方向に沿って湾曲させたセパレータの2枚を、前記セパレータの湾曲により形成された凹面が対向するように重ね合わせた後、前記2枚のセパレータを一対の巻芯で挟む工程(2)と、
    前記2枚のセパレータの間に帯状の正極および負極のうちのいずれか一方を配置し、前記2枚のセパレータのうちのいずれか一方の外側に、前記正極および負極の他方を配置し、積層体を構成する工程(3)と、
    前記一対の巻芯を中心に回転させて前記積層体を捲回し、電極群を得る工程(4)と、
    を含む非水電解液二次電池の製造方法。
  2. 前記工程(1)のセパレータは、複数の帯状の単位層を積層した多層体からなり、前記複数の単位層のうち少なくとも2つは互いに幅方向の熱収縮率が異なる請求項1記載の非水電解液二次電池の製造方法。
  3. 前記複数の単位層のうち少なくとも1つの単位層は、セラミックスおよび樹脂を含む層である請求項2記載の非水電解液二次電池の製造方法。
  4. 前記多層体の最外側に配される単位層は、球状のポリエチレン粒子、球状のポリテトラフルオロエチレン粒子、またはこれらの混合物を含む層である請求項2または3記載の非水電解液二次電池の製造方法。
  5. 前記工程(1)において湾曲した前記セパレータの幅方向の湾曲度は0.5mm以上である請求項1記載の非水電解液二次電池の製造方法。
  6. 前記工程(1)において、前記多層体を熱処理する請求項2記載の非水電解液二次電池の製造方法。


JP2008118921A 2008-04-30 2008-04-30 非水電解液二次電池の製造方法 Pending JP2009272055A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008118921A JP2009272055A (ja) 2008-04-30 2008-04-30 非水電解液二次電池の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008118921A JP2009272055A (ja) 2008-04-30 2008-04-30 非水電解液二次電池の製造方法

Publications (1)

Publication Number Publication Date
JP2009272055A true JP2009272055A (ja) 2009-11-19

Family

ID=41438450

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008118921A Pending JP2009272055A (ja) 2008-04-30 2008-04-30 非水電解液二次電池の製造方法

Country Status (1)

Country Link
JP (1) JP2009272055A (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012182046A (ja) * 2011-03-02 2012-09-20 Toyota Motor Corp 電極捲回体の製造方法
JP2012182045A (ja) * 2011-03-02 2012-09-20 Toyota Motor Corp 電極捲回体の製造方法
JP2013251201A (ja) * 2012-06-01 2013-12-12 Gs Yuasa Corp 蓄電素子、電極体、捲回方法および捲回装置
WO2016047165A1 (ja) * 2014-09-26 2016-03-31 旭化成イーマテリアルズ株式会社 蓄電デバイス用セパレータ

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012182046A (ja) * 2011-03-02 2012-09-20 Toyota Motor Corp 電極捲回体の製造方法
JP2012182045A (ja) * 2011-03-02 2012-09-20 Toyota Motor Corp 電極捲回体の製造方法
JP2013251201A (ja) * 2012-06-01 2013-12-12 Gs Yuasa Corp 蓄電素子、電極体、捲回方法および捲回装置
WO2016047165A1 (ja) * 2014-09-26 2016-03-31 旭化成イーマテリアルズ株式会社 蓄電デバイス用セパレータ
CN106104850A (zh) * 2014-09-26 2016-11-09 旭化成株式会社 蓄电装置用分隔件
JPWO2016047165A1 (ja) * 2014-09-26 2017-04-27 旭化成株式会社 蓄電デバイス用セパレータ
CN106104850B (zh) * 2014-09-26 2018-12-25 旭化成株式会社 蓄电装置用分隔件
US10361415B2 (en) 2014-09-26 2019-07-23 Asahi Kasei Kabushiki Kaisha Separator for electricity storage device

Similar Documents

Publication Publication Date Title
JP6202347B2 (ja) 非水電解液二次電池
JP5843116B2 (ja) 非水電解質二次電池
JP5751454B2 (ja) 非水電解質二次電池
JP6318882B2 (ja) 非水電解質二次電池
JP4581547B2 (ja) 非水電解液二次電池
WO2013031012A1 (ja) 非水電解質二次電池
US8088517B2 (en) Lithium ion secondary battery and production method thereof
KR20170057446A (ko) 비수 전해질 이차 전지, 상기 비수 전해질 이차 전지에 사용되는 전극체, 및 상기 전극체의 제조방법
JP2010102868A (ja) リチウム二次電池
JP4952314B2 (ja) 非水系二次電池用セパレータおよびこれを備えた非水系二次電池
JP7321158B2 (ja) 非水電解質二次電池
JP2011216295A (ja) 円筒型非水電解質二次電池
JP2008198408A (ja) 非水電解質二次電池
JP5999433B2 (ja) 非水電解液二次電池及びその製造方法
US20190214686A1 (en) Nonaqueous electrolyte secondary battery, and method for producing a nonaqueous electrolyte secondary battery
JP2013073787A (ja) 非水電解質二次電池およびその製造方法
KR20160027364A (ko) 이차전지용 전극조립체
JP2009272055A (ja) 非水電解液二次電池の製造方法
JP6008188B2 (ja) 非水電解液二次電池
US7927729B2 (en) Secondary battery
JP2010205429A (ja) 非水電解液二次電池および非水電解液二次電池用電極
JP2016081763A (ja) 電池用セパレータ、積層セパレータ、リチウムイオン二次電池および組電池
JP6020929B2 (ja) 非水電解液二次電池
JP2013243031A (ja) 非水電解液二次電池
JP2011216276A (ja) 円筒型非水電解質二次電池