CN109524606B - 极片、电芯及电池 - Google Patents
极片、电芯及电池 Download PDFInfo
- Publication number
- CN109524606B CN109524606B CN201811309302.1A CN201811309302A CN109524606B CN 109524606 B CN109524606 B CN 109524606B CN 201811309302 A CN201811309302 A CN 201811309302A CN 109524606 B CN109524606 B CN 109524606B
- Authority
- CN
- China
- Prior art keywords
- section
- protective layer
- current collector
- cell
- disposed
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/64—Carriers or collectors
- H01M4/66—Selection of materials
- H01M4/665—Composites
- H01M4/667—Composites in the form of layers, e.g. coatings
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/42—Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
- H01M10/4235—Safety or regulating additives or arrangements in electrodes, separators or electrolyte
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/058—Construction or manufacture
- H01M10/0583—Construction or manufacture of accumulators with folded construction elements except wound ones, i.e. folded positive or negative electrodes or separators, e.g. with "Z"-shaped electrodes or separators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/058—Construction or manufacture
- H01M10/0587—Construction or manufacture of accumulators having only wound construction elements, i.e. wound positive electrodes, wound negative electrodes and wound separators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/409—Separators, membranes or diaphragms characterised by the material
- H01M50/449—Separators, membranes or diaphragms characterised by the material having a layered structure
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/50—Current conducting connections for cells or batteries
- H01M50/531—Electrode connections inside a battery casing
- H01M50/534—Electrode connections inside a battery casing characterised by the material of the leads or tabs
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/50—Current conducting connections for cells or batteries
- H01M50/531—Electrode connections inside a battery casing
- H01M50/536—Electrode connections inside a battery casing characterised by the method of fixing the leads to the electrodes, e.g. by welding
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Composite Materials (AREA)
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Connection Of Batteries Or Terminals (AREA)
- Cell Electrode Carriers And Collectors (AREA)
Abstract
本申请公开了一种极片、电芯及电池。极片包括集流体和保护层。集流体包括设置在集流体的表面上的活性物质层和未设置活性物质层的空箔区。保护层设置在空箔区的至少部分表面上,保护层的孔隙率为0‑95%。根据本申请的极片,通过在集流体上设置保护层,可以增大极片短路时的接触阻抗,降低电芯内部短路时的放电功率,降低电芯热失控概率,从而提升电芯的安全性能。
Description
技术领域
本申请涉及电化学装置领域,尤其是涉及一种极片、电芯及电池。
背景技术
锂离子电池在适应终端设备智能化发展的过程中,体积能量密度不断提升,随之带来的安全性问题日益凸显,如因为电池内部短路或因拆解时刺破电芯而导致的爆炸事件。关于如何有效防止电芯内部短路时不引起剧烈的热失控,进而导致电芯爆炸,目前行业内暂无成熟的解决方案。
发明内容
本申请旨在至少解决现有技术中存在的技术问题之一。为此,本申请的一个方面在于提出了一种极片。
根据本申请实施例的极片,包括集流体和保护层。集流体包括设置在所述集流体的表面上的活性物质层和未设置所述活性物质层的空箔区。保护层设置在所述空箔区的至少部分表面上,其中,所述保护层的孔隙率为0-95%。
在一些实施例中,所述保护层的电导率为0-3.5×107S/m,所述保护层的材料包括无机氧化物、高分子聚合物或非金属单质中的至少一种。
本申请的另一个方面还提出了一种电芯,该电芯可有效降低其内部短路点,提高其安全性能。
根据本申请实施例的电芯,包括第一极片、第二极片和隔膜。第一极片包括第一集流体,在所述第一集流体的至少一个表面上设置有第一活性物质层和未设置所述第一活性物质层的第一空箔区。第二极片包括第二集流体,在所述第二集流体的至少一个表面上设置有第二活性物质层和未设置所述第二活性物质层的第二空箔区。隔膜设置在所述第一极片与所述第二极片之间。所述电芯通过将所述第一极片、所述隔膜和所述第二极片依序卷绕或堆叠而成。其中,所述第一空箔区和所述第二空箔区中的至少一者的表面上设置有保护层,所述保护层的孔隙率为0-95%。
根据本申请实施例的电芯,通过在集流体上设置保护层,可以增大该电芯发生内部短路时极片的接触阻抗,降低电芯内部短路时的放电功率,降低电芯热失控概率,从而提升电芯的安全性能。此外,还可在隔膜上设置保护层,可改善隔膜的热收缩,进一步提高电芯的安全性能。
在一些实施例中,所述保护层的电导率为0-3.5×107S/m,所述保护层的材料包括无机氧化物、高分子聚合物或非金属单质中的至少一种。
在一些实施例中,所述电芯通过卷绕而成,所述第一集流体包括:第一起始段、第一弯折段、第一平直段、第二弯折段、第二平直段和第三弯折段。第一弯折段与所述第一起始段连接,与所述第一起始段和所述第一弯折段相对的集流体为第一集流体。第一弯折段设置在所述第一起始段与所述第一平直段之间。所述第二弯折段设置在所述第一平直段与所述第二平直段之间。第三弯折段与所述第二平直段连接,且与所述第一弯折段相对。在背离所述电芯中心的方向上,所述第一平直段至所述第三弯折段之间的表面上设置有所述第一活性物质层。所述第二集流体包括第二起始段,所述第二起始段的两个表面设置有所述第二活性物质层,且在沿着所述电芯的卷绕方向上,所述第二起始段设置在所述第一弯折段与所述第二弯折段之间。
在一些实施例中,所述保护层设置在所述第一起始段的所述第一空箔区的两个表面上,所述保护层设置在所述第一弯折段的所述第一空箔区的两个表面上,且在面向所述电芯中心的方向上,所述保护层设置在所述第一起始段至所述第三弯折段之间的所述第一空箔区的至少部分表面上。
在一些实施例中,所述保护层还设置在所述隔膜的至少部分表面上。
在一些实施例中,所述保护层与所述第一集流体的厚度比值大于等于0.5,小于等于20;所述保护层与所述第一活性物质层的厚度比值大于等于0.25,小于等于1。
在一些实施例中,所述保护层与所述隔膜的厚度比值大于等于0.4,小于等于1.5。
在一些实施例中,所述第二集流体包括第四弯折段、第三平直段、第五弯折段、第四平直段、第六弯折段和第二收尾段。第三平直段设置在所述第四弯折段与所述第五弯折段之间。第六弯折段与所述第四弯折段相对,所述第四平直段设置在所述第五弯折段与所述第六弯折段之间。第二收尾段与所述第六弯折段连接。所述第一集流体包括第一收尾段,所述第一收尾段的两个表面设置有所述第一活性物质层,且在沿着所述电芯的卷绕方向上,所述第一收尾段设置在所述第五弯折段与所述第六弯折段之间。
在一些实施例中,在背离所述电芯中心的方向上,所述保护层设置在所述第四弯折段至所述第二收尾段之间的所述第二空箔区的至少部分表面上。
在一些实施例中,在面向所述电芯中心的方向上,所述保护层设置在所述第六弯折段至所述第二收尾段之间的所述第二空箔区的至少部分表面上。
在一些实施例中,所述保护层与所述第一集流体的厚度比值大于等于0.05,小于等于20;所述保护层与所述第一活性物质层的厚度比值大于等于0.0025,小于等于1。
在一些实施例中,所述电芯还包括:第一极耳和第二极耳。第一活性物质层设置有第一凹槽,所述第一极耳设置在所述第一凹槽或者所述第一空箔区的表面上。所述第二活性物质层设置有第二凹槽,所述第二极耳设置在所述第二凹槽或者所述第二空箔区的表面上。
在一些实施例中,所述第二集流体还包括延伸部,所述延伸部与所述第二起始段连接,在所述电芯的卷绕方向上,所述延伸部延伸至所述第一起始段内。
在一些实施例中,所述电芯通过多个所述第一极片、多个所述隔膜和多个所述第二极片依序堆叠而成,所述第一极片设置在所述电芯的最外侧,且所述第一集流体在朝向所述电芯的最外侧的表面上设置有所述第一空箔区,所述保护层设置在所述第一空箔区的至少部分表面上。
本申请的又一个方面还提出了一种电池,该电池具有较好的安全性能。
根据本申请实施例的电池,包括包装壳和电芯,所述电芯设置在所述包装壳内,其中,所述电芯包括第一极片、第二极片和隔膜。第一极片包括第一集流体,在所述第一集流体的至少一个表面上设置有第一活性物质层和未设置所述第一活性物质层的第一空箔区。第二极片包括第二集流体,在所述第二集流体的至少一个表面上设置有第二活性物质层和未设置所述第二活性物质层的第二空箔区。隔膜设置在所述第一极片与所述第二极片之间。所述电芯通过将所述第一极片、所述隔膜和所述第二极片依序卷绕或堆叠而成,其中,所述第一空箔区和所述第二空箔区中的至少一者的表面上设置有保护层,所述保护层的孔隙率为0-95%。
根据本申请实施例的电池,通过在极片的集流体上设置保护层,可以增大电池发生内部短路时极片的接触阻抗,降低电池内部短路时的放电功率,降低电池的热失控概率,从而提升该电池的安全性能。此外,还可在隔膜上设置保护层,可改善隔膜的热收缩,进一步提高该电池的安全性能。
附图说明
本申请的上述和/或附加的方面和优点从结合下面附图对实施例的描述中将变得明显和容易理解,其中:
图1示出了根据本申请一实施例的极片的结构示意图;
图2示出了根据本申请一实施例的电芯的结构示意图;
图3示出了根据本申请另一实施例的电芯的结构示意图;
图4示出了根据本申请另一实施例的电芯的结构示意图;
图5示出了根据本申请另一实施例的电芯的结构示意图;
图6示出了根据本申请另一实施例的电芯的结构示意图;
图7示出了根据本申请另一实施例的电芯的结构示意图;
图8示出了根据本申请另一实施例的电芯的结构示意图;
图9示出了根据本申请另一实施例的电芯的结构示意图;
图10示出了根据本申请另一实施例的电芯的结构示意图;
图11示出了根据本申请另一实施例的电芯的结构示意图;
图12示出了根据本申请另一实施例的电芯的结构示意图;
图13示出了根据本申请另一实施例的电芯的结构示意图;
图14示出了根据本申请另一实施例的电芯的结构示意图;
图15示出了根据本申请另一实施例的电芯的结构示意图;
图16示出了根据本申请另一实施例的电芯的结构示意图;
图17示出了根据本申请另一实施例的电芯的结构示意图;
图18示出了根据本申请另一实施例的电芯的结构示意图;
图19示出了根据本申请另一实施例的电芯的结构示意图;
图20示出了根据本申请另一实施例的电芯的结构示意图。
附图标记:
极片100,集流体110,活性物质层111,空箔区112,保护层120,
电芯200,第一极片210,第一集流体220,
第一起始段221,第一弯折段222,第一平直段223,第二弯折段224,第二平直段225,第三弯折段226,第一收尾段227,第一活性物质层228,第一空箔区229,
第二极片230,第二集流体240,
第二起始段241,第四弯折段242,第三平直段243,第五弯折段244,第四平直段245,第六弯折段246,第二收尾段247,延伸部248,
第二活性物质层250,第二空箔区251,
隔膜260,
第一极耳270,第一凹槽271,第二极耳280,第二凹槽281。
具体实施方式
下面详细描述本申请的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,仅用于解释本申请,而不能理解为对本申请的限制。
下面参考附图描述根据本申请实施例的极片、电芯200及电池300。
如图2所示,根据本申请实施例的极片100包括集流体110和保护层120。其中,集流体110包括设置在集流体110的表面上的活性物质层111和未设置活性物质层的空箔区112。保护层120设置在空箔区112的至少部分表面上,保护层120也可以设置在空箔区112的所有表面上,其中,保护层120的孔隙率为0-95%。
根据本申请实施例的极片100,通过在集流体110上设置保护层120,可以增大由该极片卷绕或堆叠而成的电芯200发生内部短路时极片的接触阻抗,降低该电芯200内部短路时的放电功率,降低电芯200的热失控概率,从而提升电芯200的安全性能。
根据本申请的一些实施例,保护层120的孔隙率可以为0%-50%,换言之,保护层120的孔隙率可以为大于等于0且小于等于50%。需要说明的是,当保护层120的孔隙率的取值范围是0-50%时,可以更好地增大该电芯发生内部短路时的接触阻抗,降低电芯200内部短路时的放电功率,降低电芯200热失控概率,从而能够更好的提升电芯200 的安全性能。在一些实施例中,保护层120的孔隙率可以为0%-50%。在一些实施例中,保护层120的孔隙率可以为0%-19%。在一些实施例中,保护层120的孔隙率可以为 0%-15%。在一些实施例中,保护层120的孔隙率可以为0%-10%。随着保护层120的孔隙率的降低,电芯的安全性能越好。
根据本申请的一些实施例,保护层120的电导率可以为0-3.5×107S/m。换言之,保护层120的电导率的取值范围可以为大于等于0,且小于等于3.5×107S/m。进一步地,当保护层120的电导率的取值范围为0-9.9×105S/m时,可以更好地增大电芯发生内部短路时极片的接触阻抗,降低电芯200内部短路时的放电功率,降低电芯200热失控概率,从而能够更好的提高电芯的安全性能。在一些实施例中,保护层120的电导率可以为0-4×105S/m。在一些实施例中,保护层120的电导率可以为0-9×10-14S/m。在一些实施例中,保护层120的电导率可以为0-4×10-14S/m。
根据本申请的一些实施例,保护层120的材料包括无机氧化物、高分子聚合物或非金属单质中的至少一种。需要理解的是,在一些实施例中,保护层120的材料可以是无机氧化物和高分子聚合物的组合,也可以是无机氧化物和非金属单质的组合。在一些实施例中,无机氧化物可以是氧化镁、氧化钙、氧化硅、钴酸锂或勃姆石中的至少一种。在一些实施例中,高分子聚合物可以是聚丙烯、聚氯乙烯、聚乙烯、环氧树脂、聚丙烯酸酯或聚氨酯橡胶中的至少一种。在一些实施例中,非金属单质可以是石墨。此外,在一些实施例中,保护层也可以为胶纸,胶纸的主要成分为聚对苯二甲酸乙二酯、丁基橡胶、氧化铝等组成的混合物,也可以是其他高分子、无机氧化物、非金属单质等组成的混合物,如聚丙烯、聚氯乙烯、聚乙烯、环氧树脂、聚丙烯酸酯、聚氨酯橡胶、氧化镁、氧化钙、氧化硅、勃姆石、石墨等中的二种或二种以上组成的混合物。
如图2至图20所示,示出了采用图1所述的极片结构所制备的多种不同结构的电芯,该电芯200包括第一极片210、第二极片230和隔膜260。第一极片210和第二极片230中的至少一者采用如图1所示的具有保护层120的极片结构。具体而言,如图2 所示,第一极片210包括第一集流体220,在第一集流体220的至少一个表面上设置有第一活性物质层228和未设置第一活性物质层228的第一空箔区229。第二极片230包括第二集流体240,在第二集流体240的至少一个表面上设置有第二活性物质层250和未设置第二活性物质层250的第二空箔区251。隔膜260设置在第一极片210与第二极片230之间。其中,在第一空箔区229和第二空箔区251中的至少一者的表面上设置有保护层120,保护层120的孔隙率为0-95%。在一些实施例中,保护层120的孔隙率为 0-19%。
电芯200可以通过将第一极片210、隔膜260和第二极片230依序卷绕或堆叠而成。例如,如图2所示,电芯200可以通过将第一极片210、隔膜260和第二极片230依序卷绕而成;再如,如图20所示,电芯200通过将第一极片210、隔膜260和第二极片 230依序堆叠而成。
根据本申请实施例的电芯200,通过在第一空箔区229和第二空箔区251中的至少一者的表面设置保护层120,可以增大电芯200发生内部短路时极片的接触阻抗,降低电芯200内部短路时的放电功率,降低电芯200的热失控概率,从而提升电芯200的安全性能。
根据本申请的一些实施例,保护层120的电导率可以为0-3.5×107S/m。保护层120的电导率越低,电芯200发生内短路时极片100的接触阻抗越大,电芯200的热失控概率越低,从而电芯200的安全性能越高。根据本申请的一些实施例,保护层120的材料包括无机氧化物、高分子聚合物或非金属单质中的至少一种,保护层的材料可包括如上所述的材料。在一些实施例中,保护层120的孔径范围为1nm~100μm。在一些实施例中,保护层120的孔径范围为1nm~50μm。
在一些实施例中,保护层120的厚度可以为0.1-200μm。当保护层120的厚度大于200μm时,会对电芯的能量密度产生较大的影响;当保护层120的厚度小于0.1μm时,对电芯的安全性能的提升将不明显。保护层的厚度越厚,极片的集流体参与内部短路的概率越小,电芯的安全性能越高。在一些实施例中,保护层120的厚度可以为0.5-100μm。在一些实施例中,保护层120的厚度可以为5-50μm。其中,集流体厚度/20≤保护层厚度≤活性物质层厚度,此时,不会影响电芯的能量密度。
在一些实施例中,集流体110的厚度可以为5-13μm。根据本申请的一些实施例,保护层120的厚度与集流体110的厚度的比值范围为0.05-20,此处的集流体可以理解为第一集流体220或者第二集流体240,保护层为在相应的集流体上的保护层。在一些实施例中,保护层120的厚度与集流体110的厚度的比值范围为0.5-10。根据本申请的一些实施例,保护层120的厚度与活性物质层111的厚度的比值范围为0.0025-1,此处的活性物质层可以理解为第一活性物质层228或第二活性物质层250,保护层为设置在与活性物质层相同的集流体上的保护层。在一些实施例中,保护层120的厚度与活性物质层111的厚度的比值范围为0.1-1。在一些实施例中,保护层120的厚度与活性物质层111的厚度的比值范围为0.25-1。
在一些实施例中,如图2至图20所示的电芯结构,保护层120还可设置在隔膜260的至少部分表面或者全部表面上(未示出)。可以理解的是,该保护层120可设置在隔膜260的一个表面的至少部分表面或者全部表面上,也可设置在隔膜260的两个表面的至少部分表面或者全部表面上。通过在隔膜260的至少部分表面上设置保护层120,能够改善隔膜260的热收缩,可进一步提高该电芯200的安全性能。在一些实施例中,隔膜260上的保护层120的厚度与隔膜260的厚度的比值范围为0.4-1.5。若比值小于0.4,对隔膜热收缩的改善不明显,内部短路点不能有效减少,对电芯的针刺(nail)性能没有改善;若比值大于1.5时,会影响电芯的体积能量密度,同时增大了Li+(锂离子)的传输距离,影响电芯的放电性能。在一些实施例中,隔膜260的厚度为3-10μm。在一些实施例中,隔膜260上的保护层120的厚度与隔膜260的厚度的比值范围为0.4-1。隔膜上的保护层的厚度越厚,其电芯的安全性能越高。
在本申请的一些实施例中,如图2所示,电芯200可以通过卷绕而成,沿着第一集流体220的卷绕方向,第一集流体220可以包括依次连接的第一起始段221、第一弯折段222、第一平直段223、第二弯折段224、第二平直段225和第三弯折段226。第一弯折段222与第一起始段221连接,与第一起始段221和第一弯折段222相对的集流体为第一集流体220,即在电芯200的内部没有第一集流体220和第二集流体240的相对区。换言之,第一集流体220卷绕的第一起始段221和第一弯折段222卷绕完成后,第二集流体240的第二起始段241开始卷绕,此时,第一集流体220与第二集流体240共同卷绕,在卷绕至第一集流体220的第二平直段225和第三弯折段226时,第二平直段225 的部分结构与第一起始段221相对,第三弯折段226与第一弯折段222相对。采用这一结构,可使得第一集流体220和第二集流体240之间不会发生内部短路,同时可以省掉多层隔膜,不仅能够提高电芯200的安全性能,还可提高电芯200的能量密度。
如图2所示,第一弯折段222设置在第一起始段221与第一平直段223之间,第二弯折段224设置在第一平直段223与第二平直段225之间,第三弯折段226与第二平直段225连接,且第三弯折段226与第一弯折段222相对。在背离电芯200中心的方向上,第一平直段223至第三弯折段226之间的表面上设置有第一活性物质层228。第二集流体240可以包括第二起始段241,第二起始段241的两个表面设置有第二活性物质层250,且在沿着电芯200的卷绕方向上,第二起始段241设置在第一弯折段222与第二弯折段 224之间。其中,保护层120可以设置在第一起始段221至第三弯折段226之间的第一空箔区229的至少部分表面上。
在一些实施例中,如图2所示,保护层120设置在第一起始段221的第一空箔区 229的两个表面上,保护层120设置在第一弯折段222的第一空箔区229的两个表面上,且第一平直段223和第二弯折段224在朝向电芯200中心的表面上均设有保护层120。图3示出了保护层120的另一种设置方式,与图2不同的是第二平直段225和第三弯折段226在朝向电芯200中心的表面上还设置有保护层120。
根据本申请的一些实施例,在第二集流体240的卷绕方向上,第二集流体240可以包括依次连接的第四弯折段242、第三平直段243、第五弯折段244、第四平直段245、第六弯折段246和第二收尾段247。其中,第三平直段243设置在第四弯折段242与第五弯折段244之间,第六弯折段246与第四弯折段242相对,第四平直段245设置在第五弯折段244与第六弯折段246之间,第二收尾段247与第六弯折段246连接,第一集流体220包括第一收尾段227,第一收尾段227的两个表面设置有第一活性物质层228,且在沿着电芯200的卷绕方向上,第一收尾段227设置在第五弯折段244与第六弯折段 246之间。其中,保护层120可以设置在第四弯折段242至第二收尾段247之间的第二空箔区251的至少部分表面上。当发生尖物(如钢钉)刺破电芯200时,该保护层可避免钢钉与第二集流体240和第一活性物质层228之间的直接接触短路,可降低内短路的放电功率,避免热失控,从而可提高电芯200的安全性能。在一些实施例中,第二活性物质层227的收尾端和第二收尾段247的端部可以设置有绝缘胶以提高电芯200的安全性能。
在一些实施例中,如图4所示,在背离电芯200中心的方向上,第五弯折段244至第六弯折段246之间的第二空箔区251的表面上设置有保护层120。在一些实施例中,图5示出了保护层120的另一种设置方式,与图4不同的是在背离电芯200中心的方向上,保护层120还设置在第四弯折段242的第二空箔区251的表面上。在一些实施例中,图6示出了保护层120的另一种设置方式,与图5不同的是在背离电芯200中心的方向上,保护层120还设置在第三平直段243和第二收尾段247的第二空箔区251的表面上。在一些实施例中,图7示出了保护层120的另一种设置方式,与图6不同的是,在面向电芯200中心的方向上,保护层120还设置在第六弯折段246的第二空箔区251的表面上。
在一些实施例中,保护层120还可以同时设置在第一空箔区229和第二空箔区251的表面上以进一步提高电芯200的安全性能。例如,保护层120可以设置在第一起始段 221至第三弯折段226之间的第一空箔区229的至少部分表面上;同时,保护层120还可以设置在第四弯折段242至第二收尾段247之间的第二空箔区251的至少部分表面上。保护层120在第一空箔区229和第二空箔区251的表面上设置得越多,相应的集流体参与内部短路的机率就越少,电芯的安全性能就越高。
具体的,如图8所示,保护层120设置在第一起始段221和第一弯折段222的第一空箔区229的两个表面上,且第一平直段223和第二弯折段224在朝向电芯200中心的表面上也设有保护层120;同时,在背离电芯200中心的方向上,第五弯折段244至第六弯折段246之间的第二空箔区251的表面上还设置有保护层120。
在一些实施例中,图9示出了保护层120的另一种设置方式,与图8不同的是在背离电芯200中心的方向上,保护层120还设置在第四弯折段242的第二空箔区251的表面上。图10示出了保护层120的另一种设置方式,与图9不同的是在背离电芯200中心的方向上,保护层120还设置在第三平直段243和第二收尾段247的第二空箔区251 的表面上。图11示出了保护层120的另一种设置方式,与图10不同的是,在面向电芯 200中心的方向上,保护层120还设置在第六弯折段246的第二空箔区251的表面上。
在一些实施例中,图12示出了保护层120的另一种设置方式,与图8不同的是在朝向电芯200中心的方向上,保护层120还设置第二平直段225和第三弯折段226的第一空箔区229的表面上。图13示出了保护层120的另一种设置方式,与图12不同的是在背离电芯200中心的方向上,保护层120还设置在第四弯折段242的第二空箔区251 的表面上。图14示出了保护层120的另一种设置方式,与图13不同的是在背离电芯200 中心的方向上,保护层120还设置在第三平直段243和第二收尾段247的第二空箔区251 的表面上。图15示出了保护层120的另一种设置方式,与图14不同的是,在面向电芯 200中心的方向上,保护层120还设置在第六弯折段246的第二空箔区251的表面上。
根据本申请的一些实施例,保护层120与第一集流体220的厚度比值大于等于0.5,且小于等于20。在一些实施例中,保护层120与第一活性物质层228的厚度比值大于等于0.25,且小于等于1。在一些实施例中,设置在隔膜260的保护层120与隔膜260的厚度比值大于等于0.4,小于等于1.5。
根据本申请的一些实施例,电芯200还可以包括第一极耳270和第二极耳280,可如图16-图19所示。在一些实施例中,第一活性物质层228设置有第一凹槽271,第一极耳270设置在第一凹槽271内以提高电芯200的能量密度,或者第一极耳270也可以设置在第一空箔区229的表面上。在一些实施例中,第二活性物质层250设置有第二凹槽281,第二极耳280设置在第二凹槽281以提高电芯200的能量密度,或者第二极耳 280也可以设置在第二空箔区251的表面上。
具体的,如图16所示,第一极耳270设置在第一活性物质层228在第一平直段223处的第一凹槽271内,第二极耳280设置在第二活性物质层250在第二起始段241的第二凹槽281内。在一些实施例中,如图17所示,第一极耳270设置在第一活性物质层 228在其它位置处的第一凹槽271内,第二极耳280设置在第二活性物质层250在第二起始段241的第二凹槽281内。在一些实施例中,如图18所示,第一极耳270设置在第一活性物质层228在第一平直段223处的第一凹槽271内,第二极耳280设置在第二活性物质层250在其它位置处的第二凹槽281内。图1至图15所述的电芯200可根据实际需求来选择图16至图20中任一种的极耳设置方式。
第一极耳270和第二极耳280还可采用如下的设置方式,如图19所示,第二集流体240还可以包括延伸部248,延伸部248与第二起始段241连接,在电芯200的卷绕方向上(与沿着电芯卷绕方向相反的方向上),延伸部248延伸至第一起始段221内。第一极耳270设置在第一起始段221的表面上,第二极耳280可设置在该延伸部的表面上。
由此,可以根据电芯200的阻抗设计可任意移动极耳的设置位置,同时还可以保证极耳的厚度,使极耳的厚度小于隔膜的厚度,从而可以避免极耳受压,进而降低极耳受压后焊接毛刺刺穿隔膜导致内短路的风险,可显著减少极耳的短路点,提升电芯200的安全性能。另外,极耳还可以通过集流体裁切而成,最后在电芯头部焊接引出来,由此可以避免极耳受压,可显著减少极耳的短路点,提升电芯200的安全性能。极耳采用这两种设置方式,可显著降低电芯的内阻,弥补电芯的放电性能,做到改善安全的同时,电芯放电性能不恶化。
根据本申请的一些实施例,如图20所示,电芯200通过多个第一极片210、多个隔膜260和多个第二极片230依序堆叠而成,每个第一极片210上设有第一极耳270,每个第二极片230上设有第二极耳280,多个第一极耳270转接焊形成一个第一极耳,多个第二极耳280转接焊形成一个第二极耳。第二极片230设置在电芯200的最外侧,且第二集流体240在朝向电芯200的最外侧的表面上设置有第二空箔区251,保护层120 设置在第二空箔区251的至少部分表面上。在一些实施例中,保护层120可设置在电芯 200的最上侧表面和最下侧表面。第二极片可以为阴极极片,也可以为阳极极片。
在一些实施例中,本申请还公开了一种电池,该包括包装壳和电芯200,电芯200设置在包装壳内,其中,电芯200包括:第一极片210、第二极片230和隔膜260。第一极片210包括第一集流体220,在第一集流体220的至少一个表面上设置有第一活性物质层228和未设置第一活性物质层228的第一空箔区229。第二极片230包括第二集流体240,在第二集流体240的至少一个表面上设置有第二活性物质层250和未设置第二活性物质层250的第二空箔区251。隔膜260设置在第一极片210与第二极片230之间。电芯200通过将第一极片210、隔膜260和第二极片230依序卷绕或堆叠而成。其中,第一空箔区229和第二空箔区251中的至少一者的表面上设置有保护层120,保护层120的孔隙率为0-95%。
根据本申请实施例的电池,通过在第一空箔区229和第二空箔区251中的至少一者的表面设置保护层120,可以增大电芯发生内部短路时极片的接触阻抗,降低电芯200 内部短路时的放电功率,降低电芯200的热失控概率,从而提升电芯200及其电池的安全性能。此外,还可通过在隔膜260上设置上述的保护层120,可改善电芯200的隔膜热收缩,可进一步提高该电池的安全性能。
接下来,给出了一些具体实施例来详细阐述本申请,以第一集流体220为铜箔,第一极耳270为Ni极耳,第二集流体240为铝箔,第二极耳280为Al极耳为例,下述各实施例中的保护层厚度/集流体厚度、保护层厚度/活性物质层厚度是指设置在第一集流体或第二集流体的空箔区上的保护层,该保护层与第一集流体或第二集流体、第一活性物质层或第二活性物质层的厚度比。
实施例1
采用如图2所示的电芯结构,经过封装、注液和化成后,制成电芯。其中,保护层120为氧化铝层,其孔隙率为19%,厚度为20μm,电导率8×10-14S/m,保护层厚度/集流体厚度为200%,保护层厚度/活性物质层厚度为10%,在隔膜260的一个表面上设置有保护层,该保护层厚度/隔膜厚度比例为50%。
实施例2
保护层120的参数与实施例1相同,不同的是采用如图3所示的电芯结构。
实施例3
保护层120的参数与实施例1相同,不同的是采用如图4所示的电芯结构。
实施例4
保护层120的参数与实施例1相同,不同的是采用如图5所示的电芯结构。
实施例5
保护层120的参数与实施例1相同,不同的是采用如图6所示的电芯结构。
实施例6
保护层120的参数与实施例1相同,不同的是采用如图7所示的电芯结构。
实施例7
保护层120的参数与实施例1相同,不同的是采用如图8所示的电芯结构。
实施例8
保护层120的参数与实施例1相同,不同的是采用如图9所示的电芯结构。
实施例9
保护层120的参数与实施例1相同,不同的是采用如图10所示的电芯结构。
实施例10
保护层120的参数与实施例1相同,不同的是采用如图11所示的电芯结构。
实施例11
保护层120的参数与实施例1相同,不同的是采用如图12所示的电芯结构。
实施例12
保护层120的参数与实施例1相同,不同的是采用如图13所示的电芯结构。
实施例13
保护层120的参数与实施例1相同,不同的是采用如图14所示的电芯结构。
实施例14
保护层120的参数与实施例1相同,不同的是采用如图15所示的电芯结构。
实施例15
保护层120的参数与实施例1相同,不同的是采用如图16所示的电芯结构。
实施例16
保护层120的参数与实施例1相同,不同的是采用如图17所示的电芯结构。
实施例17
保护层120的参数与实施例1相同,不同的是采用如图18所示的电芯结构。
实施例18
与实施例14相同,不同的是保护层120为氧化镁层,其导电率为7×10-14S/m。
实施例19
与实施例14相同,不同的是保护层120为钴酸锂层,其导电率为6×10-2S/m。
实施例20
与实施例14相同,不同的是保护层120为石墨层,其导电率为4×105S/m。
实施例21
与实施例8相同,不同的是保护层120为胶纸,胶纸的主要成份为聚对苯二甲酸乙二酯、丁基橡胶和氧化铝组成的混合物,其孔隙率为0%,厚度为20μm,电导率为9×10-14S/m。
实施例22
与实施例8相同,不同的是保护层120为勃姆石层,其孔隙率为5%,电导率为5×10-14S/m。
实施例23
与实施例22相同,不同的是保护层120的孔隙率为10%。
实施例24
与实施例22相同,不同的是保护层120的孔隙率为15%。
实施例25
与实施例22相同,不同的是保护层120的孔隙率为19%。
实施例26
与实施例22相同,不同的是保护层120的孔隙率为50%。
实施例27
与实施例22相同,不同的是保护层120的孔隙率为70%。
实施例28
与实施例22相同,不同的是保护层120的孔隙率为95%。
实施例29
与实施例8相同,不同的是保护层120为氧化锆层,其孔隙率为15%,厚度为20μm,电导率为6×10-14S/m。
实施例30
与实施例29相同,不同的是保护层120为氧化硅层,其电导率为4×10-14S/m。
实施例31
与实施例29相同,不同的是保护层120为氧化钙层,其电导率为7×10-14S/m。
实施例32
采用如图8所示的电芯结构,经过封装、注液和化成后,制成电芯。其中,保护层120为勃姆石层,其孔隙率为19%,厚度为0.5μm,电导率5×10-14S/m,保护层厚度/集流体厚度为5%,保护层厚度/活性物质层厚度为0.25%,隔膜260上的保护层厚度/隔膜厚度比例为50%。
实施例33
与实施例32相同,不同的是,保护层120的厚度为5μm,保护层厚度/集流体厚度为50%,保护层厚度/活性物质层厚度为2.5%,隔膜260上的保护层厚度/隔膜厚度比例为50%。
实施例34
与实施例32相同,不同的是,保护层120的厚度为10μm,保护层厚度/集流体厚度为100%,保护层厚度/活性物质层厚度为5%,隔膜260上的保护层厚度/隔膜厚度比例为50%。
实施例35
与实施例32相同,不同的是保护层120的厚度为20μm,保护层厚度/集流体厚度为200%,保护层厚度/活性物质层厚度为10%,隔膜260上的保护层厚度/隔膜厚度比例为50%。
实施例36
与实施例32相同,不同的是保护层120的厚度为50μm,保护层厚度/集流体厚度为500%,保护层厚度/活性物质层厚度为25%,隔膜260上的保护层厚度/隔膜厚度比例为50%。
实施例37
与实施例32相同,不同的是保护层120的厚度为100μm,保护层厚度/集流体厚度为1000%,保护层厚度/活性物质层厚度为50%,隔膜260上的保护层厚度/隔膜厚度比例为50%。
实施例38
与实施例32相同,不同的是保护层120的厚度为200μm,保护层厚度/集流体厚度为2000%,保护层厚度/活性物质层厚度为100%,隔膜260上的保护层厚度/隔膜厚度比例为50%。
实施例39
与实施例3相同,不同的是隔膜260上的保护层厚度/隔膜厚度比例为40%。
实施例40
与实施例3相同,不同的是隔膜260上的保护层厚度/隔膜厚度比例为60%。
实施例41
与实施例3相同,不同的是隔膜260上的保护层厚度/隔膜厚度比例为80%。
实施例42
与实施例3相同,不同的是隔膜260上的保护层厚度/隔膜厚度比例为100%。
实施例43
与实施例3相同,不同的是隔膜260上的保护层厚度/隔膜厚度比例为150%。
实施例44
保护层120的参数与实施例1相同,不同的是采用如图19所示的电芯结构。
实施例45
保护层120的参数与实施例1相同,不同的是采用如图20所示的电芯结构。
实施例46
与实施例15相同,不同的是在隔膜上没有设置保护层。
实施例47
与实施例44相同,不同的是在隔膜上没有设置保护层。
实施例48
与实施例45相同,不同的是在隔膜上没有设置保护层。
对比例1
与实施例1相同,即采用如图2所示的电芯结构,不同的是没有设置保护层。
对比例2
与实施例18相同,即采用如图19所示的电芯结构,不同的是没有设置保护层。
对比例3
与实施例45相同,即采用如图20所示的电芯结构,不同的是没有设置保护层。
对上述实施例1至实施例48、对比例1至对比例3所制得的电芯进行性能测试,包括Nail通过率、着火比例、放电比率、电芯内阻、能量密度(ED)等,各性能可参考如下的测试方法进行测试。
Nail通过率的测试方法和判断条件:①充电流程:采用0.7C的恒定电流对电芯充电至4.4V,采用4.4V的恒定电压对电芯充电至充电电流为0.02C;②穿钉过程:在温度 25℃下,采用直径为4mm的钢钉以30mm/s的速度刺穿电芯表面中心;③统计电芯燃烧情况:若电芯不燃烧,记为通过;反之,则即为失效。
加压循环(Cycle)导致电芯着火的测试方法和判断条件:①将电芯放在两个平板玻璃间,同时对其施加0.3MPa压力;②充放电流程:采用0.7C的恒定电流对电芯充电至4.4V,采用4.4V的恒定电压对电芯充电至充电电流为0.02C,静置5min,以恒定的放电电流0.5C对该电池放电至3V,重复此充放电过程20次(cycle);③统计电芯燃烧情况。
放电倍率的测试方法:①充电过程:采用0.7C的恒定电流对电芯充电至4.4V,采用4.4V的恒定电压对电芯充电至充电电流为0.02C;②放电过程:以恒定的放电电流 0.2C对该电池放电至3V,记录放电容量,记为第一放电容量;③充电过程:采用0.7C 的恒定电流对电芯充电至4.4V,采用4.4V的恒定电压对电芯充电至充电电流为0.02C;④放电过程:以恒定的放电电流0.2C对该电池放电至3V,记录放电容量,记为第二放电容量;⑤2C放电比率计算:放电比率=第二放电容量/第一放电容量。
电芯内阻(阻抗)的测试方法:采用电池内阻测试仪(AT520L)对电芯施加1000Hz和50mA的扰动,得到电芯的交流内阻。
电导率的测试方法:采用四线两端子法,即在5t压力下,测量待测物质的两端电压及电流,确定电阻R,通过如下公式计算得到电导率:
能量密度(ED)的计算方法:用电池测厚仪测量电芯厚度,计算电芯能量密度(见如下公式):
按上述的测试方法对各实施例和各对比例的电芯进行性能测试后,将测试结果列于下表1中。
表1各实施例和各对比例的电芯的性能测试结果
从表1的实施例1-48、对比例1-3可以看出,在集流体的空箔区上设置保护层,或者在空箔区和隔膜的表面上都设置保护层,可提高电芯的Nail通过率,即可提高电芯的安全性能。从表1的实施例1-45与实施例46-48相比较,可以看出保护层在空箔区和隔膜的表面上都涂覆的电芯的Nail通过率比保护层只涂覆在空箔区的表面上的电芯的 Nail通过率高,即在空箔区和隔膜的表面上涂覆保护层的电芯的安全性能比只在空箔区的表面上涂覆保护层的安全性能高。
从表1的实施例1-14可以看出,保护层在空箔区和隔膜的表面上涂覆得越多,电芯的Nail通过率越高,即电芯的安全性能越高。从表1的实施例18-20可以看出,保护层的电导率越低,电芯的Nail通过率越高,即电芯的安全性能越高。从表1的实施例21-28 可以看出,保护层的孔隙率越低,电芯的Nail通过率越高,即电芯的安全性能越高。从表1的实施例32-38可以看出,保护层在空箔区的表面上涂覆得越厚,电芯的Nail通过率越高,即电芯的安全性能越高。从表1的实施例39-43可以看出,保护层在隔膜的表面上涂覆得越厚,电芯的Nail通过率越高,即电芯的安全性能越高。
在本申请的描述中,需要理解的是,术语“中心”、“厚度”、“上”、“下”、“内”、“外”、等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。在本申请的描述中,“多个”的含义是两个或两个以上。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示意性实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本申请的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
尽管已经示出和描述了本申请的实施例,本领域的普通技术人员可以理解:在不脱离本申请的原理和宗旨的情况下可以对这些实施例进行多种变化、修改、替换和变型,本申请的范围由权利要求及其等同物限定。
Claims (11)
1.一种电芯,包括:
第一极片,包括第一集流体,在所述第一集流体的至少一个表面上设置有第一活性物质层和未设置所述第一活性物质层的第一空箔区;
第二极片,包括第二集流体,在所述第二集流体的至少一个表面上设置有第二活性物质层和未设置所述第二活性物质层的第二空箔区;
隔膜,设置在所述第一极片与所述第二极片之间;
所述电芯通过所述第一极片、所述隔膜和所述第二极片依序卷绕而成;
其中,所述第一空箔区和所述第二空箔区中的至少一者的表面上设置有保护层,所述保护层的孔隙率为0-19%;
所述第一集流体包括:
第一起始段;
第一弯折段,与所述第一起始段连接,与所述第一起始段和所述第一弯折段相对的集流体为第一集流体;
第一平直段,所述第一弯折段设置在所述第一起始段与所述第一平直段之间;
第二弯折段;
第二平直段,所述第二弯折段设置在所述第一平直段与所述第二平直段之间;
第三弯折段,与所述第二平直段连接,且与所述第一弯折段相对;
在背离所述电芯中心的方向上,所述第一平直段至所述第三弯折段之间的表面上设置有所述第一活性物质层;以及
所述第二集流体包括:
第二起始段,所述第二起始段的两个表面设置有所述第二活性物质层,且在沿着所述电芯的卷绕方向上,所述第二起始段设置在所述第一弯折段与所述第二弯折段之间,所述第二起始段在所述第一起始段和所述第一弯折段卷绕完成后开始卷绕;
第四弯折段;
第三平直段;
第五弯折段,所述第三平直段设置在所述第四弯折段与所述第五弯折段之间;
第四平直段;
第六弯折段,与所述第四弯折段相对,所述第四平直段设置在所述第五弯折段与所述第六弯折段之间;
第二收尾段,与所述第六弯折段连接;以及
所述第一集流体包括第一收尾段,所述第一收尾段的两个表面设置有所述第一活性物质层,且在沿着所述电芯的卷绕方向上,所述第一收尾段设置在所述第五弯折段与所述第六弯折段之间。
2.如权利要求1所述的电芯,其中,所述保护层的电导率为0-3.5×107S/m,所述保护层的材料包括无机氧化物、高分子聚合物或非金属单质中的至少一种。
3.如权利要求2所述的电芯,其中,所述保护层设置在所述第一起始段的所述第一空箔区的两个表面上,所述保护层设置在所述第一弯折段的所述第一空箔区的两个表面上,且在面向所述电芯中心的方向上,所述保护层设置在所述第一起始段至所述第三弯折段之间的所述第一空箔区的至少部分表面上。
4.如权利要求3所述的电芯,其中,所述保护层还设置在所述隔膜的至少部分表面上。
5.如权利要求3所述的电芯,其中,所述保护层与所述第一集流体的厚度比值大于等于0.05,小于等于20;
所述保护层与所述第一活性物质层的厚度比值大于等于0.0025,小于等于1。
6.如权利要求1所述的电芯,其中,在背离所述电芯中心的方向上,所述保护层设置在所述第四弯折段至所述第二收尾段之间的所述第二空箔区的至少部分表面上。
7.如权利要求6所述的电芯,其中,在面向所述电芯中心的方向上,所述保护层设置在所述第六弯折段至所述第二收尾段之间的所述第二空箔区的至少部分表面上。
8.如权利要求6或7所述的电芯,其中,所述保护层还设置在所述隔膜的至少部分表面上。
9.如权利要求6或7所述的电芯,其中,所述保护层与所述第一集流体的厚度比值大于等于0.05,小于等于20;
所述保护层与所述第一活性物质层的厚度比值大于等于0.0025,小于等于1。
10.如权利要求6或7所述的电芯,其中,所述电芯还包括:
第一极耳,所述第一活性物质层设置有第一凹槽,所述第一极耳设置在所述第一凹槽或者所述第一空箔区的表面上;和
第二极耳,所述第二活性物质层设置有第二凹槽,所述第二极耳设置在所述第二凹槽或者所述第二空箔区的表面上。
11.一种电池,包括包装壳和如权利要求1-10任一 所述的电芯,所述电芯设置在所述包装壳内。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201811309302.1A CN109524606B (zh) | 2018-11-05 | 2018-11-05 | 极片、电芯及电池 |
US16/365,449 US20200144624A1 (en) | 2018-11-05 | 2019-03-26 | Electrode sheet, battery cell and battery |
EP19194249.9A EP3648202A1 (en) | 2018-11-05 | 2019-08-29 | Electrode sheet, battery cell and battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201811309302.1A CN109524606B (zh) | 2018-11-05 | 2018-11-05 | 极片、电芯及电池 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN109524606A CN109524606A (zh) | 2019-03-26 |
CN109524606B true CN109524606B (zh) | 2022-07-26 |
Family
ID=65773503
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201811309302.1A Active CN109524606B (zh) | 2018-11-05 | 2018-11-05 | 极片、电芯及电池 |
Country Status (3)
Country | Link |
---|---|
US (1) | US20200144624A1 (zh) |
EP (1) | EP3648202A1 (zh) |
CN (1) | CN109524606B (zh) |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021146870A1 (zh) * | 2020-01-20 | 2021-07-29 | 宁德新能源科技有限公司 | 电极组件和电池 |
CN111525194B (zh) * | 2020-04-28 | 2022-05-20 | 宁德新能源科技有限公司 | 电化学装置以及包括所述电化学装置的电子装置 |
JP2023516411A (ja) | 2020-08-21 | 2023-04-19 | 寧徳時代新能源科技股▲分▼有限公司 | 電極組立体、電池セル、電池並びに電極組立体の製造方法及び装置 |
CN112186273B (zh) * | 2020-10-29 | 2022-03-29 | 珠海冠宇电池股份有限公司 | 一种能够降低内部温升的卷绕式锂离子电池用卷芯 |
CN112331927B (zh) * | 2020-11-10 | 2022-05-20 | 珠海冠宇电池股份有限公司 | 一种电池叠片电芯及电池 |
CN114520303B (zh) * | 2020-11-19 | 2024-10-18 | 宁德新能源科技有限公司 | 一种电化学装置以及电子装置 |
CN112768623A (zh) * | 2020-12-31 | 2021-05-07 | Oppo广东移动通信有限公司 | 电池及其电芯 |
WO2022147732A1 (zh) * | 2021-01-07 | 2022-07-14 | 宁德时代新能源科技股份有限公司 | 电极组件、电池单体、电池及制造电极组件的方法和设备 |
CN116868402A (zh) * | 2021-10-14 | 2023-10-10 | 宁德时代新能源科技股份有限公司 | 一种极片、电极组件、电池单体、电池以及用电设备 |
EP4439772A1 (en) * | 2021-11-26 | 2024-10-02 | Ningde Amperex Technology Ltd. | Electrode assembly, and battery and electronic device comprising same |
CN115295762A (zh) * | 2022-10-09 | 2022-11-04 | 宁德新能源科技有限公司 | 电化学装置及用电装置 |
CN116435714B (zh) * | 2023-06-09 | 2024-02-02 | 宁德时代新能源科技股份有限公司 | 电极组件、制造方法、电池单体、电池及用电设备 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101894937A (zh) * | 2010-07-02 | 2010-11-24 | 东莞新能源科技有限公司 | 锂离子电池及其正极片 |
CN102388485A (zh) * | 2009-04-10 | 2012-03-21 | 株式会社Lg化学 | 包含多孔涂层的隔膜、制备该隔膜的方法以及包含该隔膜的电化学装置 |
CN105322213A (zh) * | 2014-07-30 | 2016-02-10 | 三星Sdi株式会社 | 可再充电电池及其制造方法 |
CN106058296A (zh) * | 2016-08-05 | 2016-10-26 | 东莞新能源科技有限公司 | 一种二次电池电芯 |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4245429B2 (ja) * | 2003-08-11 | 2009-03-25 | 三洋電機株式会社 | 渦巻状電極群を備えた電池 |
KR100601548B1 (ko) * | 2004-05-25 | 2006-07-19 | 삼성에스디아이 주식회사 | 이차전지 |
JP4878800B2 (ja) * | 2004-09-22 | 2012-02-15 | 三星エスディアイ株式会社 | リチウム二次電池 |
JP4599314B2 (ja) * | 2006-02-22 | 2010-12-15 | 株式会社東芝 | 非水電解質電池、電池パック及び自動車 |
KR100911999B1 (ko) * | 2008-01-28 | 2009-08-14 | 주식회사 엘지화학 | 절연특성이 향상된 전지 |
JP4527191B1 (ja) * | 2009-01-16 | 2010-08-18 | パナソニック株式会社 | 非水系電池用電極群およびその製造方法並びに円筒形非水系二次電池およびその製造方法 |
CN202434660U (zh) * | 2011-11-25 | 2012-09-12 | 深圳市比亚迪锂电池有限公司 | 一种锂离子电池极芯及锂离子电池 |
WO2014203424A1 (ja) * | 2013-06-21 | 2014-12-24 | Necエナジーデバイス株式会社 | 二次電池と電極の製造方法 |
CN107112494B (zh) * | 2015-06-09 | 2020-11-06 | 株式会社村田制作所 | 电池、电池组、电子仪器、电动汽车、电力存储装置以及电力系统 |
CN205355186U (zh) * | 2015-12-29 | 2016-06-29 | 宁德新能源科技有限公司 | 一种卷绕结构的电池 |
CN116581395A (zh) * | 2016-03-31 | 2023-08-11 | 宁德新能源科技有限公司 | 卷绕式电芯 |
CN112042030A (zh) * | 2018-04-27 | 2020-12-04 | 株式会社村田制作所 | 电池 |
-
2018
- 2018-11-05 CN CN201811309302.1A patent/CN109524606B/zh active Active
-
2019
- 2019-03-26 US US16/365,449 patent/US20200144624A1/en active Pending
- 2019-08-29 EP EP19194249.9A patent/EP3648202A1/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102388485A (zh) * | 2009-04-10 | 2012-03-21 | 株式会社Lg化学 | 包含多孔涂层的隔膜、制备该隔膜的方法以及包含该隔膜的电化学装置 |
CN101894937A (zh) * | 2010-07-02 | 2010-11-24 | 东莞新能源科技有限公司 | 锂离子电池及其正极片 |
CN105322213A (zh) * | 2014-07-30 | 2016-02-10 | 三星Sdi株式会社 | 可再充电电池及其制造方法 |
CN106058296A (zh) * | 2016-08-05 | 2016-10-26 | 东莞新能源科技有限公司 | 一种二次电池电芯 |
Also Published As
Publication number | Publication date |
---|---|
US20200144624A1 (en) | 2020-05-07 |
EP3648202A1 (en) | 2020-05-06 |
CN109524606A (zh) | 2019-03-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109524606B (zh) | 极片、电芯及电池 | |
CN109473729B (zh) | 电化学装置 | |
US10665843B2 (en) | Separator-integrated electrode plate and capacitor element | |
US20130177787A1 (en) | Current collector and nonaqueous secondary battery | |
EP2615665B1 (en) | Separator, manufacturing method thereof, and electrochemical device comprising the same | |
KR20080112134A (ko) | 전지용 전극 및 그 제조 방법과, 리튬 이온 전지 및 이를이용한 조전지와, 리튬 이온 전지를 탑재한 차량 | |
KR101629499B1 (ko) | 전극조립체 및 이를 포함하는 이차전지 | |
JP5708934B2 (ja) | 二次電池 | |
JP2012169576A (ja) | 電気化学デバイス | |
JP5899495B2 (ja) | 円筒形リチウムイオン電池 | |
JP6777737B2 (ja) | 非水電解質二次電池 | |
CN101931103A (zh) | 用于具有导电片层的蓄电池和锂离子蓄电池的单体电池 | |
EP2866275A1 (en) | Pouch-type secondary cell and method for manufacturing same | |
KR20120079515A (ko) | 비대칭 코팅된 분리막을 포함하는 전극조립체 및 상기 전극조립체를 포함하는 전기화학소자 | |
JP2017224496A (ja) | 非水電解質電池、電池モジュール及び車両 | |
JP7304380B2 (ja) | 電極集電体および二次電池 | |
US20240106018A1 (en) | Battery cell including electrolyte ion concentration measurement unit and method for measuring electrolyte concentration using same | |
CN114068944A (zh) | 极片及其制备方法和应用 | |
WO2023035669A1 (zh) | 电极组件、电池单体、电池以及用电装置 | |
CN113328133B (zh) | 一种电池 | |
JP2011258798A (ja) | 電気化学デバイス | |
JP2004296325A (ja) | 非水系二次電池 | |
JP2005123058A (ja) | 非水電解質二次電池 | |
JP2021103623A (ja) | 円筒形電池 | |
EP3933995A1 (en) | Non-aqueous electrolyte secondary battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |