WO2010075810A1 - 电极浆料及利用其制造的电极和它们的制造方法以及具有该电极的pdp显示屏 - Google Patents

电极浆料及利用其制造的电极和它们的制造方法以及具有该电极的pdp显示屏 Download PDF

Info

Publication number
WO2010075810A1
WO2010075810A1 PCT/CN2009/076374 CN2009076374W WO2010075810A1 WO 2010075810 A1 WO2010075810 A1 WO 2010075810A1 CN 2009076374 W CN2009076374 W CN 2009076374W WO 2010075810 A1 WO2010075810 A1 WO 2010075810A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
silver powder
black
glass
pigment
Prior art date
Application number
PCT/CN2009/076374
Other languages
English (en)
French (fr)
Inventor
王伟
刘斌
Original Assignee
四川虹欧显示器件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 四川虹欧显示器件有限公司 filed Critical 四川虹欧显示器件有限公司
Publication of WO2010075810A1 publication Critical patent/WO2010075810A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/14Conductive material dispersed in non-conductive inorganic material
    • H01B1/16Conductive material dispersed in non-conductive inorganic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J11/00Gas-filled discharge tubes with alternating current induction of the discharge, e.g. alternating current plasma display panels [AC-PDP]; Gas-filled discharge tubes without any main electrode inside the vessel; Gas-filled discharge tubes with at least one main electrode outside the vessel
    • H01J11/10AC-PDPs with at least one main electrode being out of contact with the plasma
    • H01J11/12AC-PDPs with at least one main electrode being out of contact with the plasma with main electrodes provided on both sides of the discharge space
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J11/00Gas-filled discharge tubes with alternating current induction of the discharge, e.g. alternating current plasma display panels [AC-PDP]; Gas-filled discharge tubes without any main electrode inside the vessel; Gas-filled discharge tubes with at least one main electrode outside the vessel
    • H01J11/20Constructional details
    • H01J11/22Electrodes, e.g. special shape, material or configuration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J9/00Apparatus or processes specially adapted for the manufacture, installation, removal, maintenance of electric discharge tubes, discharge lamps, or parts thereof; Recovery of material from discharge tubes or lamps
    • H01J9/02Manufacture of electrodes or electrode systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2211/00Plasma display panels with alternate current induction of the discharge, e.g. AC-PDPs
    • H01J2211/20Constructional details
    • H01J2211/22Electrodes
    • H01J2211/225Material of electrodes

Definitions

  • the invention relates to an electrode paste and a method of fabricating the same, and more particularly to a PDP display Photosensitive silver electrode paste of the device and a preparation method thereof.
  • the present invention also relates to an electrode fabricated using the electrode paste, a method of manufacturing the same, and a PDP display panel having the electrode.
  • BACKGROUND OF THE INVENTION In recent years, flat panel display technology has become increasingly mature. Large size, high definition and low power consumption are the development direction of flat panel displays. In particular, plasma flat panel displays have become the mainstream of large-sized flat panel displays due to their high brightness, high contrast and low cost, and ease of large size.
  • the plasma display is mainly composed of two glass substrates with Penning gas in the middle, and red, green and blue phosphors in each square display unit.
  • the address electrodes on the rear substrate define the light-emitting unit, and the ITO electrode discharges the ionized gas, thereby exciting the phosphors in the back-plate barrier to emit light.
  • the performance of the bus electrodes on the front substrate is important for reducing the power of the plasma display, the ignition voltage, and increasing the number of pixels that can be fabricated on the glass substrate.
  • Chinese patent CN1424738A describes a process for producing silver electrodes by screen printing.
  • a photosensitive paste containing conductive particles such as silver is printed, in which a high-shear density spherical powder is used, and such a material can form a pattern having a conductivity of 4 ⁇ to realize an ionization discharge of the inert gas at a certain voltage.
  • Both of these pastes contain UV-active components, which are ultimately lithographically and sintered to form patterns with good conductivity, contrast and resolution.
  • the silver electrode is formed by the method of exposing the photosensitive paste cloth, which has the advantage of forming a high-precision pattern.
  • this process and the corresponding materials have obvious disadvantages: it is necessary to separately print two layers of slurry, one layer of black slurry and one layer of 4 pulverized pulp, two printings and two drying processes respectively, and then one-time sintering. Thereby forming a high conductivity electrode.
  • This process has a problem that the amount of material is too large, and it is necessary to increase the large equipment such as a printing machine and a drying furnace, which greatly increases the process of the front substrate glass, thereby making the production cost high.
  • the conventional BUS electrode has a sintering temperature of 550-560. C, if it is lower than this temperature, there will be a serious phenomenon that the conductivity is seriously degraded.
  • An object of the present invention is to provide an electrode paste which can obtain a photosensitive silver electrode having high electrical conductivity by using only one layer of slurry and performing a drying and sintering process.
  • the electrode paste of the present invention comprises 4 ⁇ powder, black glass pigment, glass powder of a melting point, and an organic component.
  • the black low-melting glass powder comprises a black glass pigment and a low-melting glass powder
  • the silver powder comprises 40-70 wt% of high-density spherical silver powder and 5-10 wt% of microcrystalline silver powder
  • the organic component comprises a polymer copolymer, light Initiators, solvents, defoamers, surfactants, pH adjusters, etc.
  • the high tap density spherical silver powder in the silver powder used in the electrode slurry of the present invention has a particle size of 1-5 ⁇ m and a tap density of more than 3.5 g/cm 3 ; the crystal grain size of the microcrystalline silver powder is 0.05-0.6 ⁇ m, and the tap density is greater than 0.6 g/cm 3 .
  • the black glass pigment used in the electrode slurry of the present invention is a graphite black pigment, a Ru-based oxide black pigment, a Co-based oxide black pigment, a Cu-based oxide pigment, a Fe-Cr-based oxide pigment, and a Mn-series oxide. , and any combination of them.
  • the black glass pigment is used in an amount of 5 wt% to 20 wt% based on the total weight of the electrode paste.
  • Another object of the present invention is to provide a method for preparing an electrode slurry, the method comprising: sufficiently mixing a high-shear density spherical silver powder with a microcrystalline silver powder; mixing a black glass pigment with a low-melting glass powder and performing smelting After the glass liquid is cooled, it is processed into a black glass powder; the silver powder is mixed with the black glass powder, and a resin, a crosslinking agent, a photoinitiator and a solvent are added thereto; the above components are thoroughly mixed using a stirrer, and then used. The rolling mill was ground to obtain the electrode slurry.
  • the present invention also provides an electrode prepared by using the above electrode paste and a method of manufacturing the same, the method comprising: coating an electrode slurry of the present invention on a glass substrate; and coating the electrode paste with ultraviolet light
  • the glass substrate is subjected to photolithography; the glass substrate is spray-washed with a 0.2% to 1% dilute alkaline solution to form a precise electrode pattern coated with 4 ⁇ powder; finally, the exposed and developed glass substrate is subjected to Dry and sintered.
  • the present invention also provides a PDP display having the electrode.
  • the manufacturing process of the photosensitive silver electrode can be simplified, and only one layer of the slurry can be used to achieve the function of the two-layer slurry in the prior art, that is, only one printing and one thousand are required. Dry and then sinter.
  • the addition of silver powder can reduce the sintering temperature of the conductive paste, thereby greatly reducing the chemical reaction between silver and glass at high temperatures, inhibiting the migration of silver ions, and thereby reducing the yellowing phenomenon caused by the diffusion of silver ions into the glass.
  • the conductive paste of the present invention can be co-sintered by the addition of the microcrystalline silver powder and the conventional spherical silver powder, so that the sintering temperature can be remarkably lowered, and the conductive paste still has a high electrical conductivity.
  • the conductive paste of the present invention has a sintering temperature of less than 550 as compared with the prior art conductive paste. C, preferably 30-50. C.
  • the conductive paste of the present invention forms an electrode pattern after exposure and development, and the pattern may be in the range of 400 to 600. The firing is carried out in a wide temperature range of C.
  • the electrode paste of the present invention comprises 4 ⁇ powder, black glass pigment, glass powder and organic component, wherein the silver powder comprises 40-70 wt% of high-density density spherical silver powder and 5-10 based on the total weight of the conductive paste. Wt% of microcrystalline silver powder.
  • the organic component includes a polymer copolymer, a photoinitiator, a solvent, an antifoaming agent, a surfactant, a pH adjuster, and the like.
  • the high tap density spherical silver powder in the silver powder used in the electrode paste of the present invention has a particle size of 1 to 5 ⁇ m; and the microcrystalline silver powder has a particle size of 0.05 to 0.6 ⁇ m.
  • the black glass pigment used in the electrode slurry of the present invention is a graphite black pigment, a Ru-based oxide black pigment, a Co-based oxide black pigment, a Cu-based oxide pigment, a Fe-Cr-based oxide pigment, and a Mn-series oxide. , and any combination of them.
  • the black glass pigment is used in an amount of 5 wt% to 20 wt% based on the total weight of the electrode paste.
  • the low-melting glass frit used in the present invention may be a combination of oxides of one or more elements selected from the group consisting of Si, B, Pb, Bi, Al, Zn, Ca, Ba, P, Na, K, Li, Sr, and the like. .
  • the low-melting glass is mixed with a black glass pigment and co-sintered and pulverized to form a black low-melting glass frit having a glass transition temperature of 300-500 ° C and a softening point of 400-600. C.
  • the polymer copolymer used in the electrode slurry of the present invention contains an unsaturated double bond, and the polymer copolymer has a weight average molecular weight of 10,000 to 50,000, and preferably the polymer copolymer has an acid value of 50 to 200.
  • the amount of the high molecular copolymer is from 3 wt% to 20 wt% based on the total weight of the electrode paste.
  • the high molecular copolymer resin is a copolymer of methyl methacrylate and methacrylic acid.
  • the photoinitiator used in the electrode paste of the present invention includes, but is not limited to, benzophenone, ⁇ -dimethoxy- ⁇ -phenylacetophenone, ⁇ , ⁇ -diethoxyacetophenone, 2-hydroxy-2-methyl-1-phenylacetone, 2-phenyl-2-dimethylamino-1-(4-morpholinylphenyl)-butanone-1, 1-hydroxy-cyclohexyl benzophenone ⁇ -Aminoalkylbenzene
  • dibenzoylphenylphosphine oxide tetramethylmethanolone, 4,4,-diphenoxybenzophenone.
  • 2-phenyl-2-dimethylamino-1-(4-morpholinylphenyl)-butanone-1 and a combined photoinitiator comprising the same are used as photoinitiators Agent.
  • the photoinitiators used in the electrode paste of the present invention may be used singly or in combination of two or more kinds.
  • the photoinitiator is used in an amount of from 1 wt% to 6 wt%, based on the total weight of the electrode paste.
  • Solvents used in the electrode paste of the present invention include, but are not limited to, styrene, butyl acrylate, ethyl acetate, 1,6-hexanediol diacrylate, bis/tripropylene glycol diacrylate , Bis / Triethylene glycol diacrylate, ethoxy ⁇ ⁇ double face A diacrylate and polyethylene glycol diacrylate.
  • the above solvents may be used singly or in combination of two or more kinds.
  • the solvent is used in an amount of from 3 wt% to 15 wt%, based on the total weight of the electrode paste.
  • the pH adjusting agent used in the present invention is an acidic or basic ester.
  • FIG. 1 to 3 are flow charts showing a method of manufacturing a black BUS electrode using the electrode paste of the present invention.
  • an electrode slurry of the present invention is coated on a glass substrate 1 having an ITO electrode 2 thereon, and the electrode paste completely covers the surface of the glass substrate 1 and the ITO electrode 2.
  • the glass substrate 1 coated with the electrode paste is photolithographically irradiated by ultraviolet light using a template to complete the exposure process; and then exposed to 0.2%-1% of a dilute alkaline solution.
  • the glass substrate 1 is subjected to spray washing to form a precise electrode pattern coated with silver powder; finally, the exposed and developed glass substrate is dried and sintered to form a silver electrode 3 on the ITO electrode 2 (see FIG. 3).
  • Example 1 High-vibration density spherical silver powder: A spherical silver powder having a tap density of 4.2 g/cm 3 and a particle size of 1.5 ⁇ m was used. The high-vibration density spherical silver powder was used in an amount of 59 wt%, i.e., 590 g, based on the total weight of the conductive paste.
  • Microcrystalline silver powder A high crystallinity microcrystalline silver powder having a tap density of 1.8 g/cm 3 and a particle size of 0.4 ⁇ m. The amount of the microcrystalline silver powder was 6 wt%, i.e., 60 g, based on the total weight of the conductive paste. The high-vibration solid spherical silver powder and the microcrystalline silver powder are then thoroughly mixed in a blender.
  • Black low-melting glass frit The black glass pigment and the low-melting glass frit were mixed and smelted according to the formulation shown in Table 1, to obtain a molten glass solution.
  • the black low-melting glass frit is used in an amount of 10% by weight, that is, 100 g, based on the total weight of the conductive paste.
  • Table 1 Distribution ratio of black low melting glass powder
  • Polymer Copolymer A methyl methacrylate-methacrylic acid copolymer resin having a weight average molecular weight of 12,000 and an acid value of 112 mg KOH/g. The amount of the resin was 7.2 wt%, i.e., 70.2 g, based on the total weight of the conductive paste.
  • Photoinitiator Irgacure 651 manufactured by Ciba Corporation was used as a photoinitiator. The photoinitiator was used in an amount of 2 wt% based on the total weight of the conductive paste.
  • Crosslinking agent Trimethylolpropane triacrylate was used as a crosslinking agent, and the amount of the crosslinking agent was 8 wt% based on the total weight of the conductive paste.
  • Solvent Using Texanol alcohol ester, the solvent was used in an amount of 7.8 wt%, i.e., 70.8 g, based on the total weight of the conductive paste.
  • the above ingredients were thoroughly mixed using a planetary mixer, and a small amount of a pH adjuster was added, followed by grinding using a triaxial roll mill. The particle size of the slurry was measured using a squeegee fineness meter until the squeegee particle size of the slurry was less than 5 microns.
  • Example 2 In addition to using 52 wt% (520 g) of a tap density of 4.5 g/cm 3 , a particle size of 1.8 ⁇ m high tap density spherical silver powder and a 13 wt% (130 g) tap density of 2.0 g/cm 3 Example 2 was carried out in the same manner as in Example 1 except that the particle size was 0.6 ⁇ m high crystallinity microcrystalline silver powder and it was thoroughly mixed. The results are shown in Table 2.
  • Example 3 In addition to using 48 wt% (480 g) of a tap density of 3.8 g/cm 3 , a particle size of 1.2 ⁇ m high tap density spherical silver powder and a 13 wt% (130 g) tap density of 1.6 g/cm 3 , the granularity is 0.6
  • Example 3 was carried out in the same manner as in Example 1 except that the high crystallinity microcrystalline silver powder was thoroughly mixed and the amount of the black low-melting glass powder was 17 wt%. The results are shown in Table 2. Comparison of conductive paste of the invention with conventional slurry
  • the present invention adds high crystallinity microcrystalline silver powder to the high-vibration density spherical silver powder of the conventional method, it actually functions as a flux of silver powder.
  • the sintering temperature of the electroconductive paste of the present invention is 550-560 than that of the conventional slurry.
  • C is 30-50 lower. C, but not limited to this.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Plasma & Fusion (AREA)
  • Dispersion Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Gas-Filled Discharge Tubes (AREA)
  • Conductive Materials (AREA)
  • Glass Compositions (AREA)

Description

电极浆料及利用其制造的电极和它们的 制造方法以及具有该电极的 PDP显示屏 技术领域 本发明涉及一种电极浆料及其制备方法, 更具体地, 本发明涉及一种用 于 PDP显示器件的感光性银电极浆料及其制备方法。本发明还涉和利用该电 极浆料制造的电极及其制造方法以及具有该电极的 PDP显示屏。 背景技术 近年来, 平板显示技术日趋成熟。 大尺寸、 高清晰度和低功耗是平板显 示器的发展方向。 特别是等离子平板显示器由于具有高亮度、 高对比度和低 成本, 以及易于大尺寸化的特点, 而逐渐成为大尺寸平板显示器的主流。 等 离子显示器主要由两块玻璃基板组成, 中间充有潘宁气体, 在每个方格型的 显示单元中有红、 绿、 蓝三色荧光粉。 前基板上有透明的 ITO电极, 在 ITO 电极上有用于增加电导率的银汇流电极。 当显示器工作时, 后基板上的寻址 电极确定发光单元, ITO电极放电电离气体, 从而激发后板障壁中的荧光粉 发光。 对于降低等离子显示器的功率、点火电压和提高玻璃基板上可制作象素 的数量, 前基板上的汇流电极的性能十分重要。 中国专利 CN1424738A介绍 了利用丝网印刷法制作银电极的工艺。 但是这种工艺的不足之处是不能形成 高精度的电极图形, 而且随着印刷次数的增加, 丝网容易产生非弹性形变, 使电极图形达不到精度要求。 于是有人提出了釆用感光性浆料制作汇流电极图形的新方法。该工艺是 在整个玻璃基板上图布两层浆料, 下层是黑色的玻璃浆料, 上层是银浆料, 然后经过光刻与烧结工艺在前玻璃基板形成电极图形。 目前, 这种方法已经 成为主流工艺, 代表性的产品例如杜邦公司的 FODEL材料。 这类材料的专 矛]见于 美 国 专 矛] US005851732A 、 US006075319A 以 及中 国 专 矛】 CN1983030A, CN101031845A等。 这些专利在制备 BUS 电极的工艺中均使用了两种浆料, 首先使用一种 黑色玻璃浆料作为衬底, 其作用是使整个前玻璃基板呈现黑色, 形成高的对 比度, 并且防止了银与玻璃在烧结过程中产生的固相化学反应, 阻止黄变现 象的发生。 然后印刷一层含有银等导电颗粒的感光性浆料, 其中使用了高振 实密度球形粉体, 这类材料可以形成电导率 4艮高的图形, 以实现在一定电压 之下能够激发惰性气体电离放电的功用。 这两种浆料中均含有紫外光活性成 分, 最终经过光刻和烧结工艺形成电导率、 对比度和分辨率良好的图形。 使 用感光浆料图布曝光的方法制作银电极, 其优点是可以形成高精度的图形。 但是,这种工艺及相应的材料存在明显的缺点:必须分别印刷两层浆料, 一层黑色浆料和一层 4艮浆, 分别两次印刷及两次千燥过程, 然后一次性的烧 结, 从而形成高电导率的电极。 这种工艺具有材料用量过大、 必须增加印刷 机和千燥炉等大型设备的问题, 这使得前基板玻璃的工艺过程大大增加, 因 而使得生产成本高昂。 而且, 传统 BUS电极的烧结温度为 550-560。C, 如果 低于此温度, 将会发生电导率严重下降的不良现象。 因此, 研制一种适用于 PDP显示器件的具有良好感度、粘附性和分辨率, 电导率高且制造工艺简单, 成本低廉的电极浆料已经成为发展趋势。 发明内容 本发明的一个目的是提供一种电极浆料,仅使用一层浆料并进行一次千 燥和烧结过程, 就能够得到具有高的电导率的感光性银电极。 本发明的电极浆料包括 4艮粉、 黑色玻璃颜料、 氏熔点玻璃粉和有机物成 分。 其中, 黑色低熔点玻璃粉包括黑色玻璃颜料和低熔点玻璃粉; 银粉包括 40-70 wt%的高振实密度球形银粉和 5-10 wt%的微晶银粉; 以及有机物成分 包括高分子共聚物、 光引发剂、 溶剂、 消泡剂、 表面活性剂和 pH调节剂等。 本发明的电极浆料所使用的银粉中的高振实密度球形银粉的粒度为 1-5 微米且其振实密度大于 3.5g/cm3; 微晶银粉的粒度为 0.05-0.6微米, 振实密 度大于 0.6 g/cm3。 本发明的电极浆料所使用的黑色玻璃颜料是石墨系黑色颜料、 Ru 系氧 化物黑色颜料、 Co系氧化物黑色颜料、 Cu系氧化物颜料、 Fe-Cr系氧化物颜 料、 Mn 系列氧化物, 以及它们的任意组合。 基于电极浆料的总重量, 该黑 色玻璃颜料的用量是 5 wt%-20 wt%。 本发明的另一个目的是提供一种用于制备电极浆料的方法, 该方法包 括: 将高振实密度球形银粉与微晶银粉进行充分的混合; 将黑色玻璃颜料与 低熔点玻璃粉混合并进行熔炼,待玻璃液冷却后将其加工成为黑色玻璃粉体; 将银粉与黑色玻璃粉体混合, 向其中加入树脂、 交联剂、 光引发剂和溶剂; 使用搅拌器将上述成分充分混合, 然后使用辊轧机进行研磨, 从而得到该电 极浆料。 本发明还提供了一种利用上述电极浆料制备的电极及其制造方法,该方 法包括: 将本发明的电极浆料涂布在玻璃基板上; 用紫外光对涂布有电极浆 料的所述玻璃基板实施光刻; 用 0.2%- 1%的稀碱性溶液对玻璃基板进行喷淋 洗涤, 以形成涂布有 4艮粉的精确电极图形; 最后, 对经过曝光和显影的玻璃 基板进行千燥和烧结。 本发明还提供了一种具有该电极的 PDP显示屏。 釆用本发明的电极浆料, 可以简化感光性银电极的制造工艺, 仅需使用 一层该浆料就能达到现有技术中两层浆料的功能, 即仅需进行一次印刷和一 次千燥, 然后进行烧结。 加入银粉可以降低导电浆料的烧结温度, 从而大大 降低银与玻璃在高温下发生的化学反应, 抑制银离子的迁移, 从而减少由于 银离子向玻璃扩散而形成的黄变现象。 而且, 本发明的导电浆料由于加入了 微晶银粉, 并与传统的球形银粉实现共同烧结,从而可以明显降低烧结温度, 同时导电浆料仍然具有很高的电导率。 与现有技术的导电浆料相比, 本发明 的导电浆料的烧结温度低于 550。C, 优选 30-50。C, 同时, 本发明的导电浆料 在经过曝光和显影之后形成电极图案, 该图案可以在 400-600。C的较宽温度 范围内进行烧成。 通过使用本发明导电浆料能够得到具有高的电导率电极的 性能优良的气体放电显示器件, 同时使基板呈现黑色, 从而使显示器具有很 高的明室对比度。 附图说明 附图构成本说明书的一部分, 用于进一步理解本发明。 附图示出了优选 实施例, 并与说明书一起用来说明本发明的实施方式。 图 1至图 3为利用本发明的电极浆料制造黑色 BUS电极的方法的流程 图。 具体实施方式 除了上文所描述的目的、 特征和优点之外, 本发明还有其他的目的、 特 征和优点。 下面将参照附图, 对本发明的其他的目的、 特征和效果作进一步 详细的说明。 应该指出, 以上说明和以下详细说明都是例示性的, 旨在对所要求的本 发明提供进一步的说明。 除非另有指明, 本文使用的所有技术和科学术语具 有与本发明所属技术领域的普通技术人员通常理解的相同含义。 本发明的电极浆料包括 4艮粉、 黑色玻璃颜料、 氏熔点玻璃粉和有机物成 分, 其中, 基于导电浆料的总重量计, 银粉包括 40-70 wt%的高振实密度球 形银粉和 5-10 wt%的微晶银粉。 有机物成分包括高分子共聚物、 光引发剂、 溶剂、 消泡剂、 表面活性剂和 pH调节剂等。 本发明的电极浆料所使用的银粉中的高振实密度球形银粉的粒度为 1-5 微米; 微晶银粉的粒度为 0.05-0.6微米。 本发明的电极浆料所使用的黑色玻璃颜料是石墨系黑色颜料、 Ru 系氧 化物黑色颜料、 Co系氧化物黑色颜料、 Cu系氧化物颜料、 Fe-Cr系氧化物颜 料、 Mn 系列氧化物, 以及它们的任意组合。 基于电极浆料的总重量, 该黑 色玻璃颜料的用量是 5 wt%-20 wt%。 本发明所使用的低熔点玻璃粉可以由选自 Si、 B、 Pb、 Bi、 Al、 Zn、 Ca、 Ba、 P、 Na、 K、 Li、 Sr 等一种或多种元素的氧化物的组合。 将该低熔点玻 璃分与黑色玻璃颜料混合并共同烧结、 粉碎以形成黑色低熔点玻璃粉, 其玻 璃化转化温度在 300-500°C, 软化点为 400-600。C。 本发明的电极浆料所使用的高分子共聚物中含有不饱和双键,该高分子 共聚物的重均分子量为 10,000-50,000, 优选高分子共聚物的酸值为 50-200。 基于电极浆料的总重量, 该高分子共聚物的量为 3 wt%至 20 wt%。 在本发明 的一种优选实施方式中, 该高分子共聚物树脂为甲基丙烯酸甲酯和甲基丙烯 酸的共聚物。 本发明的电极浆料所使用的光引发剂包括, 但不限于, 二苯甲酮、 α- 二甲氧基 -α-苯基苯乙酮、 α,α-二乙氧基苯乙酮、 2-羟基 -2-甲基 -1-苯基丙酮、 2-苯基 -2-二甲氨基 -1-(4-吗啉苯基) -丁酮 -1、 1-羟基-环己基苯酮、 α-胺烷基苯 酉同、 双苯甲酰基苯基氧化膦、 四甲基米蚩酮、 4,4,-二苯氧基二苯甲酮。 在本 发明的一种优选实施方式中, 使用 2-苯基 -2-二甲氨基 -1-(4-吗啉苯基) -丁酮 -1 以及包含它的组合光 I发剂作为光引发剂。 本发明的电极浆料所使用的光引 发剂可以单独使用或两种或多种组合使用。 基于电极浆料的总重量, 光引发 剂的用量为 1 wt%至 6 wt%。 本发明的电极浆料所使用的溶剂包括,但不限于,苯乙烯、 丙烯酸丁酯、 醋酸乙婦酯、 1,6-己二醇双丙烯酸酯、 二缩 /三缩丙二醇双丙稀酸酯、 二缩 / 三缩乙二醇双丙稀酸酯、 乙氧^ ^双臉 A双丙烯酸酯和聚乙二醇双丙烯酸酯。 上述溶剂可以单独使用或两种或多种组合使用。 基于电极浆料的总重量, 溶 剂的用量为 3 wt%至 15 wt%。 本发明所使用的 pH调节剂是酸性或碱性的酯类。 图 1至图 3为利用本发明的电极浆料制造黑色 BUS电极的方法流程图。 请参见图 1 , 将本发明的电极浆料涂布在其上具有 ITO电极 2的玻璃基板 1 上, 电极浆料完全覆盖玻璃基板 1的表面和 ITO电极 2。 接着, 请参见图 2, 利用模板在紫外光的照射下对涂布有电极浆料的玻璃基板 1实施光刻, 从而 完成曝光过程; 然后用 0.2%-1%的稀碱性溶液对曝光后的玻璃基板 1进行喷 淋洗涤, 以形成涂布有银粉的精确电极图形; 最后, 对经过曝光和显影的玻 璃基板进行千燥和烧结, 从而在 ITO电极 2上形成银电极 3 (参见图 3 )。 可通过参考下面的实施例更好地理解本发明,这些实施例用于说明的目 的而不能理解为以任何方式限制本发明的范围, 本发明的范围由所附权利要 求限定。 实施例 实施例 1 : 高振实密度球形银粉: 釆用振实密度达到 4.2 g/cm3、 粒度为 1.5微米的 球形银粉。 基于导电浆料的总重量, 高振实密度球形银粉的用量为 59 wt%, 即 590克。 微晶银粉: 釆用振实密度达到 1.8 g/cm3、 粒度为 0.4微米的高结晶度微 晶银粉。 基于导电浆料的总重量, 微晶银粉的用量为 6 wt%, 即 60克。 然后 将高振实密度球形银粉和微晶银粉在搅拌机中进行充分的混合。 黑色低熔点玻璃粉:将黑色玻璃颜料与低熔点玻璃粉按照表 1所示的配 方混合并进行熔炼, 得到熔融态的玻璃液。 待玻璃液冷却后, 将其加工成粒 径为 D50=0.5微米, D90=1.8微米的黑色玻璃粉体。 基于导电浆料的总重量, 黑色低熔点玻璃粉的用量为 10 wt%, 即 100克。 表 1: 黑色低熔点玻璃粉的成分配比
Figure imgf000008_0001
高分子共聚物: 釆用甲基丙烯酸甲酯 -甲基丙烯酸共聚物树脂, 其重均 分子量为 12,000, 酸值为 112 mg KOH/g。 基于导电浆料的总重量, 树脂的用 量为重量的 7.2 wt% , 即 70.2克。 光引发剂: 使用 Ciba公司生产的 Irgacure 651作为光引发剂。 基于导电 浆料的总重量, 光引发剂的用量为 2 wt%。 交联剂: 使用三羟甲基丙烷三丙烯酸酯作为交联剂,基于导电浆料的总 重量, 交联剂的用量为 8 wt%。 溶剂: 使用 Texanol醇酯, 基于导电浆料的总重量, 溶剂的用量为 7.8 wt%, 即 70.8克。 使用行星式搅拌器将以上成分充分混合, 并加入少量 pH调节剂, 然后 使用三轴辊轧机进行研磨。 利用刮板细度计测量浆料的粒度, 直至浆料的刮 板粒度小于 5 微米时停止研磨。 将磨制好的浆料进行印刷-千燥-曝光-显影- 烧结等一系列工序并进行验证实验。 结果如表 2所示。 实施例 2: 除了使用 52 wt% ( 520克)的振实密度为 4.5 g/cm3、 粒度为 1.8微米高 振实密度球形银粉与 13 wt% ( 130克) 的振实密度为 2.0 g/cm3、 粒度为 0.6 微米高结晶度微晶银粉并将其充分混合之外, 实施例 2与实施例 1以相同方 式进行。 其结果在表 2中示出。 实施例 3: 除了使用 48 wt% ( 480克)的振实密度为 3.8 g/cm3、 粒度为 1.2微米高 振实密度球形银粉与 13 wt% ( 130克) 的振实密度为 1.6 g/cm3、 粒度为 0.6 的高结晶度微晶银粉并将其充分混合, 以及黑色低熔点玻璃粉的用量为 17 wt%之外, 实施例 3与实施例 1 以相同方式进行。 其结果在表 2中示出。 本发明的导电浆料与传统浆料的对比
Figure imgf000009_0001
由表 2可以看出,由于本发明在传统方法的高振实密度球形银粉中加入 高结晶度微晶银粉, 实际上起到了助熔银粉的作用。 从而使本发明的导电浆 料的烧结温度比传统浆料的 550-560。C低 30-50。C, 但不限于此。 本发明的 浆料经过烧结后, 能够形成电阻率≤5 μΩ·^η, 黑色对比度良好的电极, 并防 止了玻璃黄变现象的发生。 虽然已经参照特定的具体实施方式详细地描述了本发明的精神,但其仅 用于说明目的而并不限制本发明。 应当理解, 本领域技术人员可以在不背离 本发明的范围和精神的情况下, 对具体实施方式进行改变或修改。

Claims

权 利 要 求 书
1. 一种电极浆料, 其特征在于, 所述电极浆料包括银粉、 黑色玻璃颜料、 低熔点玻璃粉和有机物成分, 其中
基于所述电极浆料的总重量, 所述银粉包括 40-70 wt%的高振实 密度球形银粉和 5-10 wt%的微晶银粉。
2. 根据权利要求 1所述的电极浆料, 其特征在于, 所述高振实密度球形 银粉的粒度为 0.8-5微米。
3. 根据权利要求 1所述的电极浆料, 其特征在于, 所述高振实密度球形 银粉的振实密度大于 3.5 g/cm3
4. 根据权利要求 1所述的电极浆料, 其特征在于, 所述微晶银粉的粒度 为 0.05-0.6 ^啟米, 振实密度大于 0.6 g/cm3
5. 根据权利要求 1所述的电极浆料, 其特征在于, 所述黑色玻璃颜料是 石墨系黑色颜料、 Ru系氧化物黑色颜料、 Co 系氧化物黑色颜料、 Cu 系氧化物颜料、 Fe-Cr系氧化物颜料、 Mn系列氧化物, 以及它们的任 意组合。
6. 根据权利要求 5所述的电极浆料, 其特征在于, 基于所述电极浆料的 总重量, 所述黑色玻璃颜料的用量是 5-20 wt%。
7. 一种用于制备 1至 6任一项所述的电极浆料的方法, 其特征在于, 所 述方法包括:
按照预定配比, 将高振实密度球形银粉与微晶银粉进行充分的混 合;
按照预定配比,将黑色玻璃颜料与低熔点玻璃粉混合并进行熔炼, 待得到的玻璃液冷却后将其加工成为黑色玻璃粉体;
按照预定配比,将银粉与所述黑色玻璃粉体混合,向其中加入树脂、 交联剂、 光引发剂、 溶剂和 pH调节剂; 以及
使用搅拌器将上述成分充分混合, 然后使用辊轧机进行研磨, 得 到所述电极浆料。
8. 根据权利要求 7所述的制备电极浆料的方法, 其中, 所述树脂为甲基 丙烯酸甲酯和甲基丙烯酸的共聚物; 所述 pH调节剂选自酸性或碱性 的酯类; 所述光引发剂选自二苯甲酮、 α-二甲氧基 -α-苯基苯乙酮、 α,α- 二乙氧基苯乙酮、 2-羟基 -2-甲基 -1-苯基丙酮、 2-苯基 -2-二甲氨基 -1 -(4- 吗啉苯基) -丁酮 -1、 1-羟基-环己基苯酮、 α-胺烷基苯酮、 双苯甲酰基苯 基氧化膦、 四甲基米蚩酮、 4,4,-二苯氧基二苯甲酮; 所述溶剂选自苯 乙烯、 丙烯酸丁酯、 醋酸乙烯酯、 1,6-己二醇双丙烯酸酯、 二缩 /三缩 丙二醇双丙稀酸酯、 二缩 /三缩乙二醇双丙稀酸酯、 乙氧化双臉 Α双丙 烯酸酯和聚乙二醇双丙烯酸酯及它们的组合。
9. 一种电极, 其特征在于, 所述电极为利用根据权利要求 1至 6中任一 项所述的电极浆料制备的感光性银电极。
10. —种用于制造电极的方法, 包括:
将才艮据权利要求 1至 6中任一项所述电极浆料涂布在玻璃基板上; 用紫外光对涂布有所述电极浆料的所述玻璃基板实施光刻; 用稀碱性溶液对所述玻璃基板进行喷淋洗涤,以形成涂布有银粉的 奇确电极图形; 以及
对经过曝光和显影的所述玻璃基板进行千燥和烧结。
11. 一种等离子显示屏, 其特征在于, 所述等离子显示屏为具有根据权利 要求 1至 6中任一项所述的电极浆料制备的感光性银电极的等离子显 示展。
PCT/CN2009/076374 2009-01-05 2009-12-31 电极浆料及利用其制造的电极和它们的制造方法以及具有该电极的pdp显示屏 WO2010075810A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN 200910076503 CN101728148B (zh) 2009-01-05 2009-01-05 电极浆料及利用其制造的电极和它们的制造方法以及具有该电极的pdp显示屏
CN200910076503.6 2009-01-05

Publications (1)

Publication Number Publication Date
WO2010075810A1 true WO2010075810A1 (zh) 2010-07-08

Family

ID=42309836

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2009/076374 WO2010075810A1 (zh) 2009-01-05 2009-12-31 电极浆料及利用其制造的电极和它们的制造方法以及具有该电极的pdp显示屏

Country Status (2)

Country Link
CN (1) CN101728148B (zh)
WO (1) WO2010075810A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114615798A (zh) * 2022-04-01 2022-06-10 广州三则电子材料有限公司 一种零收缩填孔导电浆料及其制备方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103794263A (zh) * 2011-12-31 2014-05-14 四川虹欧显示器件有限公司 等离子显示屏用电极浆料、制备方法及由其制得的电极
CN103762010A (zh) * 2011-12-31 2014-04-30 四川虹欧显示器件有限公司 导电银浆料、制备方法及由其制得的电极
CN103794262A (zh) * 2011-12-31 2014-05-14 四川虹欧显示器件有限公司 等离子显示屏用电极浆料、制备方法及由其制得的电极
CN103146107B (zh) * 2013-03-28 2015-04-08 南通市鸿瑞化工有限公司 喷水浆料的生产方法
CN104779334B (zh) * 2015-04-04 2017-08-22 福建永德吉灯业股份有限公司 玻璃基板电极结构及其应用
CN115020002A (zh) * 2022-07-25 2022-09-06 上海怡上电子科技有限公司 一种可优化触摸屏细线镭雕银浆及其制备方法
CN116092722B (zh) * 2022-12-30 2023-11-10 上海匠聚新材料有限公司 一种片式电阻正面电极浆料及其制备方法及片式电阻

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11339554A (ja) * 1998-03-19 1999-12-10 Toray Ind Inc 導電性粉末および導電ペ―ストならびにプラズマディスプレイおよびその基板
JP2001084833A (ja) * 1999-09-09 2001-03-30 Jsr Corp 導電性樹脂組成物および電極形成用転写フィルム
JP2001118861A (ja) * 1999-10-15 2001-04-27 Sumitomo Bakelite Co Ltd 導電性樹脂ペースト及びこれを用いた半導体装置
CN1690852A (zh) * 2004-04-26 2005-11-02 太阳油墨股份有限公司 银浆用玻璃组合物、使用该组合物的感光性银浆、电极图形和等离子体显示板
JP2007018884A (ja) * 2005-07-07 2007-01-25 Noritake Co Ltd 導電性ペースト
CN1988182A (zh) * 2005-12-21 2007-06-27 E.I.内穆尔杜邦公司 太阳能电池电极的糊料、太阳能电池电极制造方法、以及太阳能电池

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050122498A (ko) * 2004-06-24 2005-12-29 삼성에스디아이 주식회사 감광성 페이스트 조성물, 이를 이용하여 제조된 pdp전극, 및 이를 포함하는 pdp
CN1290121C (zh) * 2005-03-08 2006-12-13 东南大学 汇流电极用感光性银浆料及其制备方法
KR100899197B1 (ko) * 2007-04-18 2009-05-26 제일모직주식회사 착색 유리프릿을 포함하는 전극 형성용 페이스트 조성물 및이를 이용하여 제조된 전극을 포함하는 플라즈마디스플레이 패널

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11339554A (ja) * 1998-03-19 1999-12-10 Toray Ind Inc 導電性粉末および導電ペ―ストならびにプラズマディスプレイおよびその基板
JP2001084833A (ja) * 1999-09-09 2001-03-30 Jsr Corp 導電性樹脂組成物および電極形成用転写フィルム
JP2001118861A (ja) * 1999-10-15 2001-04-27 Sumitomo Bakelite Co Ltd 導電性樹脂ペースト及びこれを用いた半導体装置
CN1690852A (zh) * 2004-04-26 2005-11-02 太阳油墨股份有限公司 银浆用玻璃组合物、使用该组合物的感光性银浆、电极图形和等离子体显示板
JP2007018884A (ja) * 2005-07-07 2007-01-25 Noritake Co Ltd 導電性ペースト
CN1988182A (zh) * 2005-12-21 2007-06-27 E.I.内穆尔杜邦公司 太阳能电池电极的糊料、太阳能电池电极制造方法、以及太阳能电池

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114615798A (zh) * 2022-04-01 2022-06-10 广州三则电子材料有限公司 一种零收缩填孔导电浆料及其制备方法

Also Published As

Publication number Publication date
CN101728148A (zh) 2010-06-09
CN101728148B (zh) 2011-09-14

Similar Documents

Publication Publication Date Title
WO2010075810A1 (zh) 电极浆料及利用其制造的电极和它们的制造方法以及具有该电极的pdp显示屏
CN100587888C (zh) 黑色导电厚膜组合物,黑电极以及其制造方法
US20060164011A1 (en) Photosensitive paste composition, PDP electrode manufactured using the composition, and PDP including the PDP electrode
JP5108239B2 (ja) 黒色導電性組成物、黒色電極、およびその形成方法
TW200811810A (en) Electrode composition for offset printing, method of preparing electrode using the same, and plasma display panel comprising the electrode
KR100705888B1 (ko) 비감광성 흑색층용 조성물과 그 조성물로부터 형성된흑색층을 포함하는 플라즈마 디스플레이 패널 및 그제조방법
JP2010536154A (ja) プラズマディスプレイパネル用電極ペーストおよびプラズマディスプレイパネル用黒色バス電極
KR101099183B1 (ko) 흑색 버스 전극용 전도성 조성물 및 플라즈마 디스플레이 패널의 전방 패널
CN101816047B (zh) 黑色汇流电极用导电组合物以及等离子显示屏的前面板
CN111145935B (zh) 一种银电极浆料及其制备方法和应用
US20090115334A1 (en) Conductive composition for black bus electrode, and front panel of plasma display panel
WO2009143685A1 (zh) 黑色导电浆料和使用该浆料的等离子显示器
US7696692B2 (en) Plasma display panel having an electrode structure including blackened dielectric layer and method of fabricating same
CN101819380A (zh) 一种用于等离子显示屏的黑色光成像电极的浆料
JP2001084912A (ja) プラズマディスプレイパネル
US20100167032A1 (en) Front electrode for pdp
JP2003016928A (ja) プラズマディスプレイパネルおよびその製造方法
CN101719445B (zh) 形成等离子显示屏黑色障壁层的方法及其组合物
JP2014063705A (ja) Pdpバス電極の製造方法
WO2013080504A1 (ja) プラズマディスプレイパネルおよびその製造方法
KR20080090634A (ko) 플라즈마 디스플레이의 다층전극 및 그 제조방법
JP2013131362A (ja) プラズマディスプレイパネル
JP2013131361A (ja) プラズマディスプレイパネル
JP2013125726A (ja) プラズマディスプレイパネル
JP2009070807A (ja) プラズマディスプレイパネル

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09836097

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09836097

Country of ref document: EP

Kind code of ref document: A1