WO2010074115A1 - 内燃機関用スパークプラグ - Google Patents

内燃機関用スパークプラグ Download PDF

Info

Publication number
WO2010074115A1
WO2010074115A1 PCT/JP2009/071384 JP2009071384W WO2010074115A1 WO 2010074115 A1 WO2010074115 A1 WO 2010074115A1 JP 2009071384 W JP2009071384 W JP 2009071384W WO 2010074115 A1 WO2010074115 A1 WO 2010074115A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass powder
resistor
spark plug
internal combustion
combustion engine
Prior art date
Application number
PCT/JP2009/071384
Other languages
English (en)
French (fr)
Inventor
柴田 勉
敬太 中川
Original Assignee
日本特殊陶業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本特殊陶業株式会社 filed Critical 日本特殊陶業株式会社
Priority to CN2009801442514A priority Critical patent/CN102204042B/zh
Priority to JP2010519042A priority patent/JP5200106B2/ja
Priority to US13/140,099 priority patent/US8492962B2/en
Priority to EP09834913.7A priority patent/EP2381546B1/en
Publication of WO2010074115A1 publication Critical patent/WO2010074115A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01TSPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
    • H01T13/00Sparking plugs
    • H01T13/20Sparking plugs characterised by features of the electrodes or insulation
    • H01T13/34Sparking plugs characterised by features of the electrodes or insulation characterised by the mounting of electrodes in insulation, e.g. by embedding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C17/00Apparatus or processes specially adapted for manufacturing resistors
    • H01C17/06Apparatus or processes specially adapted for manufacturing resistors adapted for coating resistive material on a base
    • H01C17/065Apparatus or processes specially adapted for manufacturing resistors adapted for coating resistive material on a base by thick film techniques, e.g. serigraphy
    • H01C17/06506Precursor compositions therefor, e.g. pastes, inks, glass frits
    • H01C17/06513Precursor compositions therefor, e.g. pastes, inks, glass frits characterised by the resistive component
    • H01C17/0652Precursor compositions therefor, e.g. pastes, inks, glass frits characterised by the resistive component containing carbon or carbides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C17/00Apparatus or processes specially adapted for manufacturing resistors
    • H01C17/06Apparatus or processes specially adapted for manufacturing resistors adapted for coating resistive material on a base
    • H01C17/065Apparatus or processes specially adapted for manufacturing resistors adapted for coating resistive material on a base by thick film techniques, e.g. serigraphy
    • H01C17/06506Precursor compositions therefor, e.g. pastes, inks, glass frits
    • H01C17/06513Precursor compositions therefor, e.g. pastes, inks, glass frits characterised by the resistive component
    • H01C17/06533Precursor compositions therefor, e.g. pastes, inks, glass frits characterised by the resistive component composed of oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C7/00Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material
    • H01C7/003Thick film resistors

Definitions

  • the present invention relates to a spark plug used for an internal combustion engine.
  • the spark plug for an internal combustion engine is attached to an internal combustion engine (engine) and used for ignition of an air-fuel mixture in a combustion chamber.
  • a spark plug is provided on the outer periphery of an insulator having an axial hole, a center electrode inserted through the front end of the axial hole, a terminal electrode inserted through the rear end of the axial hole, and the insulator.
  • the metal shell includes a metal shell and a ground electrode that is provided on a front end surface of the metal shell and forms a spark discharge gap with the center electrode.
  • a resistor is provided in the shaft hole between the center electrode and the terminal electrode for suppressing radio noise generated by the operation of the engine, and both electrodes are electrically connected via the resistor.
  • the resistor is formed by compressing and sintering a resistor composition mainly containing a conductive material, glass powder, and ceramic particles, disposed between the center electrode and the terminal electrode. Is done. Further, in the resistor, the conductive material exists so as to cover the surface of the glass powder and ceramic particles, and the conductive material forms a large number of conductive paths that electrically connect both electrodes. .
  • the glass powder crushed glass powder is generally used.
  • the shape of the crushed powder can vary greatly, so that the glass powder after sintering in the resistor for each spark plug manufactured.
  • a large difference can occur in the arrangement of (sintered glass powder).
  • the number, thickness, length, and the like of the conductive paths formed between the sintered glass powders are also relatively different, and as a result, the resistance value of the resistor greatly increases or decreases for each manufactured spark plug.
  • the above technique it is very difficult to set the resistance value of the resistor more accurately and without variation, and the spark plug that requires the setting of the resistance value in a relatively narrow range described above is required.
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to accurately set the resistance value of the resistor according to the desired resistance value without variation and to improve the yield.
  • An object of the present invention is to provide a spark plug for an internal combustion engine.
  • the spark plug for an internal combustion engine of this configuration includes a substantially cylindrical insulator having an axial hole penetrating in the axial direction; A center electrode inserted on one end side of the shaft hole; A terminal electrode inserted on the other end side of the shaft hole; A substantially cylindrical metal shell provided on the outer periphery of the insulator; A resistor that electrically connects the center electrode and the terminal electrode is formed by sintering a resistor composition containing a conductive material, glass powder, and ceramic particles other than glass in the shaft hole.
  • a spark plug for an internal combustion engine comprising a body, Of the sintered glass powder that is the glass powder after sintering in the cross section of the resistor along the direction perpendicular to the axis, 50% or more of sintered glass powder having a circularity of 0.8 or more is present.
  • circularity means that after calculating the circumference of a circle having an area equal to the cross-sectional area of the sintered glass powder, the calculated circumference of the circle is the circumference of the cross-section of the sintered glass powder. The value obtained by dividing by length. Therefore, it can be said that the closer the circularity is to 1, the closer the shape of the sintered glass powder is to a sphere.
  • the said structure 1 among the sintered glass powder in the cross section of the resistor along the direction orthogonal to an axis, it is comprised so that 50% or more of sintered glass powder with a circularity of 0.8 or more may exist. . Therefore, the variation in the arrangement state of the sintered glass powder in the resistor can be reduced as compared with the case where crushed glass powder is used as the glass powder. As a result, the number of conductive paths formed between the sintered glass powders, the thickness, the length, etc., can be suppressed as much as possible from one plug to another. The resistance value of the resistor can be set more accurately without variation. As a result, the yield can be dramatically improved.
  • the spark plug for an internal combustion engine of this configuration is the above-described configuration 1, in which the sintered glass powder having a circularity of 0.8 or more among the sintered glass powder in the cross section of the resistor along the direction orthogonal to the axis. It is characterized by the presence of 60% or more.
  • the resistance value of the resistor can be set more accurately without further variation.
  • the spark plug for an internal combustion engine of the present configuration is the above-described configuration 1 or 2, wherein the sintered glass powder is B 2 O 3 —SiO 2 type, BaO—B 2 O 3 type, SiO 2 —B 2 O 3 —BaO. It is characterized by comprising any one of the glass materials of the system and SiO 2 —ZnO—B 2 O 3 system.
  • the sintered glass powder is made of B 2 O 3 —SiO 2 , BaO—B 2 O 3 , SiO 2 —B 2 O 3 —BaO, and SiO 2 —ZnO—B. of glass material 2 O 3 system, it may be configured to include any one. In this case, the same effects as those of the configuration 1 and the like are achieved.
  • the spark plug for an internal combustion engine of this configuration includes a substantially cylindrical insulator having an axial hole penetrating in the axial direction; A center electrode inserted on one end side of the shaft hole; A terminal electrode inserted on the other end side of the shaft hole; A substantially cylindrical metal shell provided on the outer periphery of the insulator; A resistor that electrically connects the center electrode and the terminal electrode is formed by sintering a resistor composition containing a conductive material, glass powder, and ceramic particles other than glass in the shaft hole. With body, The resistor includes 0.5% to 10% by mass of the conductive material, 60% to 90% by mass of glass, and 5% to 30% by mass of the ceramic particles.
  • a spark plug for an internal combustion engine having an average particle size of the glass powder of 50 ⁇ m or more and 500 ⁇ m or less, 50% by mass or more of the glass powder in the resistor composition is spherical.
  • the cross-sectional shape of the glass powder may be somewhat oval, oval, teardrop, or the like.
  • a technique described in Japanese Patent Application Laid-Open No. 52-42512 and the like a technique in which molten glass is dispersed by spraying a high-speed fluid onto molten glass, and the glass powder is made spherical by utilizing the surface tension of the dispersed glass particles )
  • the glass powder formed by the method can be referred to as a spherical glass powder.
  • the glass powder contained in the resistor composition the glass powder of 50% by mass or more is spherical.
  • the number of conductive paths formed between the sintered glass powders, the thickness, the length, and the like can be suppressed as much as possible for each plug. .
  • the resistance value of the resistor can be set more accurately without variation, and the yield can be improved.
  • the average particle diameter of the glass powder is less than 50 ⁇ m, workability when preparing the resistor composition or filling the resistor composition into the shaft hole of the insulator is reduced. There is a fear.
  • the average particle size of the glass powder exceeds 500 ⁇ m, voids are likely to exist between the sintered glass powders of the resistor, and sufficient load life performance cannot be ensured for the resistor. There is a fear.
  • the spark plug for an internal combustion engine according to this configuration is characterized in that, in the above configuration 4, 80% by mass or more of the glass powder is spherical.
  • the spark plug for an internal combustion engine of this configuration is characterized in that, in the above configuration 4 or 5, the glass powder has an average particle size of 50 ⁇ m or more and 200 ⁇ m or less.
  • the average particle diameter of the glass powder is 200 ⁇ m or less, the formation of pores between the sintered glass powders of the resistor can be effectively suppressed. As a result, even better load life performance can be ensured.
  • the spark plug for an internal combustion engine of this configuration is any one of the above configurations 4 to 6, wherein the glass powder is made of B 2 O 3 —SiO 2 , BaO—B 2 O 3 , SiO 2 —B 2 O 3 —. It is characterized by including any one of BaO-based and SiO 2 —ZnO—B 2 O 3 -based glass materials.
  • the glass powder is made of B 2 O 3 —SiO 2 , BaO—B 2 O 3 , SiO 2 —B 2 O 3 —BaO, and SiO 2 —ZnO—B 2 O. It is good also as comprising including any 1 type among 3 type
  • FIG. 1 It is a partially broken front view which shows the structure of the spark plug in this embodiment. It is an expanded sectional view for showing the shape etc. of the sintered glass powder in a resistor. It is a partial expanded sectional view for showing the composition of a conduction course. It is an expanded sectional schematic diagram for demonstrating the processing method of the welded sintered glass powder in determining the ratio of the sintered glass powder with a circularity of 0.8 or more.
  • (A)-(c) is sectional drawing, such as a spark plug, for showing one process of the manufacturing method of the spark plug in this embodiment.
  • FIG. 1 is a partially broken front view showing a spark plug (hereinafter referred to as “spark plug”) 1 for an internal combustion engine.
  • spark plug a spark plug 1 for an internal combustion engine.
  • the direction of the axis CL ⁇ b> 1 of the spark plug 1 is the vertical direction in the drawing, the lower side is the front end side of the spark plug 1 and the upper side is the rear end side.
  • the spark plug 1 includes an insulator 2 as a cylindrical insulator, a cylindrical metal shell 3 that holds the insulator 2, and the like.
  • the insulator 2 is formed by firing alumina or the like, and in its outer portion, a rear end side body portion 10 formed on the rear end side, and a front end than the rear end side body portion 10.
  • a large-diameter portion 11 that protrudes radially outward on the side, a middle body portion 12 that is smaller in diameter than the large-diameter portion 11, and a tip portion that is more distal than the middle body portion 12.
  • a leg length part 13 formed with a smaller diameter than this is provided.
  • most of the large diameter portion 11, the middle trunk portion 12, and the leg long portion 13 are accommodated inside the metal shell 3.
  • a tapered first step portion 14 that tapers toward the distal end side is formed at the connecting portion between the leg length portion 13 and the middle trunk portion 12, and the insulator 2 is the metal shell at the step portion 14. 3 is locked. Further, a tapered second step portion 15 that is tapered toward the distal end side is formed at the connecting portion between the middle body portion 12 and the large diameter portion 11.
  • a shaft hole 4 is formed through the insulator 2 along the axis CL1.
  • the shaft hole 4 has a small diameter portion 16 formed at the tip thereof, and a large diameter portion 17 having a diameter larger than that of the small diameter portion 16 on the rear end side of the small diameter portion 16.
  • a tapered step portion 18 is formed between the small diameter portion 16 and the large diameter portion 17.
  • the center electrode 5 is inserted and fixed to the tip end side (small diameter portion 16) of the shaft hole 4. More specifically, a bulging portion 19 that bulges toward the outer peripheral side is formed at the rear end portion of the center electrode 5, and the bulging portion 19 is locked to the stepped portion 18. Thus, the center electrode 5 is fixed.
  • the center electrode 5 is composed of an inner layer 5A made of copper or a copper alloy and an outer layer 5B made of a Ni alloy containing nickel (Ni) as a main component.
  • the center electrode 5 has a rod shape (cylindrical shape) as a whole, and its tip end surface is formed flat and protrudes from the tip of the insulator 2.
  • the terminal electrode 6 is inserted and fixed to the rear end side (large diameter portion 17) of the shaft hole 4 in a state of protruding from the rear end of the insulator 2.
  • a cylindrical resistor 7 is disposed between the center electrode 5 and the terminal electrode 6 of the shaft hole 4.
  • the resistor 7 is formed by compressing and sintering carbon black or glass powder as a conductive material.
  • both ends of the resistor 7 are electrically connected to the center electrode 5 and the terminal electrode 6 via glass seal layers 8 and 9 as conductive seal layers, respectively.
  • the metal shell 3 is formed in a cylindrical shape from a metal such as low carbon steel, and a threaded portion (male threaded portion) 21 for attaching the spark plug 1 to the engine head is formed on the outer peripheral surface thereof.
  • a seat portion 22 is formed on the outer peripheral surface of the rear end side of the screw portion 21, and a ring-shaped gasket 24 is fitted on the screw neck 23 at the rear end of the screw portion 21.
  • a tool engaging portion 25 having a hexagonal cross section for engaging a tool such as a wrench when the metal shell 3 is attached to the engine head is provided.
  • a caulking portion 26 for holding the insulator 2 is provided on the rear end side of the metal shell 3.
  • a tapered metal step 27 for locking the insulator 2 is provided on the front end side of the inner peripheral surface of the metal shell 3.
  • the insulator 2 is inserted from the rear end side to the front end side of the metal shell 3, and the metal shell 3 is engaged with the first step portion 14 of the insulator 2 being locked to the metal step portion 27 of the metal shell 3. It is fixed by caulking the opening on the rear end side radially inward, that is, by forming the caulking portion 26.
  • An annular plate packing 28 is interposed between the first step portion 14 and the metal step portion 27.
  • annular ring members 31 and 32 are interposed between the metal shell 3 and the insulator 2 on the rear end side of the metal shell 3, and the ring member 31. , 32 is filled with powder of talc 33. That is, the metal shell 3 holds the insulator 2 via the plate packing 28, the ring members 31 and 32, and the talc 33.
  • a ground electrode 35 is joined to the tip 34 of the metal shell 3. More specifically, the ground electrode 35 is welded at its proximal end to the distal end portion 34 of the metal shell 3, the distal end side is bent back, and its side surface is the distal end portion of the center electrode 5 (the noble metal tip described later). 41).
  • the ground electrode 35 has a two-layer structure including an outer layer 35A and an inner layer 35B.
  • the outer layer 35A is made of a Ni alloy [for example, Inconel 600 and Inconel 601 (both are registered trademarks)].
  • the inner layer 35B is made of a copper alloy or pure copper, which is a better heat conductive metal than the Ni alloy.
  • a columnar noble metal tip 41 made of a noble metal alloy (for example, a platinum alloy or an iridium alloy) is joined to the distal end surface of the stop electrode 5.
  • a spark discharge gap 42 is formed between the tip surface of the noble metal tip 41 and the surface of the ground electrode 35 facing the noble metal tip 41.
  • the resistor 7 which is a feature of the present invention will be described.
  • the resistor 7 is subjected to a heat treatment which will be described later, as shown in FIG. 2 (the figure shows an enlarged cross section of the resistor 7 along the direction orthogonal to the axis CL1).
  • a heat treatment which will be described later, as shown in FIG. 2 (the figure shows an enlarged cross section of the resistor 7 along the direction orthogonal to the axis CL1).
  • the conductive path 52 is composed of the carbon black 53 (parts with a dotted pattern in FIG.
  • the resistor 7 includes 60% by mass or more and 90% by mass or less (for example, 80% by mass) of sintered glass powder 51 and 0.5% by mass or more and 10% by mass or less (for example, 2% by mass). %) Carbon black 53 and 5 to 30% by mass (for example, 18% by mass) ceramic particles 54.
  • the sintered glass powder 51 has a role of bonding the resistor 7 to the glass seal layers 8 and 9 in a dense state. Further, in the present embodiment, among the sintered glass powders 51 in the cross section of the resistor 7 along the direction orthogonal to the axis CL1, the sintered glass powder 51 having a circularity of 0.8 or more is 50% or more ( (For example, 60%).
  • the “circularity” means that the circumference of a circle having an area equal to the cross-sectional area of the sintered glass powder 51 is calculated, and the circumference of the circle is the cross-section of the sintered glass powder 51.
  • a reflected electron image of the cross section of the resistor 7 is obtained using an SEM (scanning electron microscope). After obtaining, the reflected electron image can be judged by performing image processing and analyzing it.
  • sintered glass powder 51 can be welded by passing through heat processing.
  • the remaining sintered powder powder 51 after excluding those in the welded state. It is good also as judging the glass powder 51 as object. Further, as shown in FIG. 4 (the figure shows a part partitioned by a one-dot chain line in FIG. 2), the circularity is 0 after performing the process of separating the sintered glass powder 51 at the welded part. It may be determined whether or not 50% or more of sintered glass powder of 8 or more is present.
  • the metal shell 3 is processed in advance. That is, a cylindrical metal material (for example, an iron-based material such as S17C or S25C or a stainless steel material) is formed by forming a through-hole by cold forging to produce a rough shape. Thereafter, the outer shape is adjusted by cutting to obtain a metal shell intermediate.
  • a cylindrical metal material for example, an iron-based material such as S17C or S25C or a stainless steel material
  • a ground electrode 35 made of a Ni-based alloy or the like is resistance-welded to the tip surface of the metal shell intermediate.
  • so-called “sag” is generated.
  • the threaded portion 21 is formed by rolling at a predetermined portion of the metal shell intermediate body.
  • the metal shell 3 to which the ground electrode 35 is welded is galvanized or nickel plated.
  • the surface may be further subjected to chromate treatment.
  • the insulator 2 is molded separately from the metal shell 3.
  • a raw material powder mainly composed of alumina and containing a binder or the like a green granulated material for molding is prepared, and rubber press molding is used to obtain a cylindrical molded body.
  • the obtained molded body is ground and shaped.
  • the insulator 2 is obtained by putting the shape
  • the center electrode 5 is manufactured separately from the metal shell 3 and the insulator 2. That is, the center electrode 5 is produced by forging a Ni alloy in which a copper alloy for improving heat dissipation is arranged at the center. And the noble metal tip 41 mentioned above is joined to the front-end
  • a powdery resistor composition for forming the resistor 7 is prepared. More specifically, first, carbon black 53, ceramic particles 54, and a predetermined binder are blended and mixed using water as a medium. Then, the slurry obtained by mixing is dried, and a resistor composition is obtained by mixing and stirring this with glass powder made of a B 2 O 3 —SiO 2 glass material.
  • glass powder 50% by mass or more is spherical.
  • the glass powder has an average particle size of 50 ⁇ m to 500 ⁇ m (for example, 50 ⁇ m to 200 ⁇ m).
  • the molten glass may be dispersed by spraying a high-speed fluid on the molten glass, and a spherical glass powder may be formed by utilizing the surface tension of the dispersed glass particles (for example, JP-A-52-42512). No. publication etc.). Further, a spherical glass powder may be formed by mixing an abrasive or a polishing aid in a glass cullet and then kneading the mixture (see, for example, JP-A-11-228156). .
  • the insulator 2 and the center electrode 5, the resistor 7, and the terminal electrode 6 obtained as described above are sealed and fixed by the glass seal layers 8 and 9. More specifically, first, as shown in FIG. 5 (a), the insulator 2 is supported by supporting the second step portion 15 with the tip surface of a support cylinder 51 made of metal and having a cylindrical shape. The The center electrode 5 is inserted into the small diameter portion 16 of the shaft hole 4. At this time, the bulging portion 19 of the center electrode 5 is locked to the stepped portion 18 of the shaft hole 4.
  • the conductive glass powder 55 generally prepared by mixing borosilicate glass and metal powder is filled into the shaft hole 4, and the filled conductive glass powder 55. Is pre-compressed.
  • the resistor composition 56 is filled into the shaft hole 4 and preliminarily compressed in the same manner.
  • the conductive glass powder 57 is filled and preliminarily compressed. Then, in a state where the terminal electrode 6 is pressed into the shaft hole 4 from the opposite side of the center electrode 5, heating is performed at a predetermined temperature (800 ° C. to 950 ° C. in the present embodiment) above the glass softening point in the firing furnace. .
  • the resistor composition 56 and the conductive glass powders 55 and 57 in the laminated state are compressed and sintered to become the resistor 7 and the glass seal layers 8 and 9.
  • the insulator 2 and the center electrode 5, the resistor 7, and the terminal electrode 6 are sealed and fixed by the glass seal layers 8 and 9.
  • drum 10 of the insulator 2 and it is good also as forming a glaze layer in advance.
  • the insulator 2 including the center electrode 5 and the resistor 7 and the like and the metal shell 3 including the ground electrode 35 respectively assembled as described above are assembled. More specifically, it is fixed by caulking the opening on the rear end side of the metal shell 3 formed relatively thin inward in the radial direction, that is, by forming the caulking portion 26.
  • the glass powder of 50% by mass or more has a spherical shape, and along with this, the axis CL1 and In the cross section of the resistor 7 along the orthogonal direction, the sintered glass powder 51 having a circularity of 0.8 or more is configured to be 50% or more. Therefore, the variation in the arrangement state of the sintered glass powder 51 in the resistor 7 can be reduced, and the number, thickness, length, etc. of the conductive paths 52 formed between the sintered glass powders 51 can be reduced. It is possible to suppress as much as possible the situation that changes every time. As a result, the resistance value of the resistor 7 can be set more accurately and consistently for each manufactured spark plug, and the yield can be dramatically improved.
  • the average particle diameter of the glass powder is 50 ⁇ m or more, the workability when the resistor composition 56 is prepared or when the resistor composition 56 is filled in the shaft hole 4 of the insulator 2 is improved. Can be improved.
  • the average particle diameter of the glass powder is 500 ⁇ m or less, the formation of pores between the sintered glass powders 51 of the resistor 7 can be suppressed as much as possible, and the load life sufficient for the resistor 7 is achieved. Performance can be ensured.
  • the “process capability index” is a value obtained by dividing the standard width by 6 times the standard deviation (6 ⁇ ). Table 1 shows the mixing ratio of the spherical glass powder in the resistor composition, the ratio of the sintered glass powder having a circularity of 0.8 or more in the resistor section, and the evaluation for each standard width in each sample.
  • the glass powder in the resistor composition has a spherical shape, and the ratio of sintered glass powder having a circularity of 0.8 or more exists in the resistor cross section.
  • the process capability index is 1.33 or higher even when the standard width is extremely small, 2 k ⁇ , and the resistance value of the resistors is set more accurately and without variation. It became clear that it could be done.
  • sample 1 and 2 a sample in which 80% by mass or more of the glass powder in the resistor composition has a spherical shape and a ratio of sintered glass powder having a circularity of 0.8 or more in the resistor cross section exists (sample) 1 and 2), it was found that even when the standard width was 2 k ⁇ , the process capability index was 1.67 or more, and the resistance value of the resistor could be set more accurately without variation.
  • a resistor is formed by using a resistor composition in which 50% by mass or more of the glass powder is spherical, and the formed resistor is along a direction orthogonal to the axis.
  • the ratio of the sintered glass powder having a circularity of 0.8 or more is configured to be 50% or more, thereby suppressing variation in the resistance value of the resistor, and making the resistance value more It can be said that it is very significant in terms of setting accurately.
  • the resistor is formed by using a resistor composition in which 80% by mass or more of the glass powder forms a spherical shape. It is very effective to configure the resistor so that the ratio of the sintered glass powder having a circularity of 0.8 or more is 60% or more in the resistor cross section along the direction orthogonal to the axis. You can say that.
  • the glass powder is made of a B 2 O 3 —SiO 2 glass material, but the glass powder forming material is not limited to this. Therefore, for example, glass powder is made of any one of BaO—B 2 O 3 , SiO 2 —B 2 O 3 —BaO, and SiO 2 —ZnO—B 2 O 3 glass materials. It is good also as comprising with the material to contain.
  • the noble metal tip 41 is provided at the tip of the center electrode 5.
  • the noble metal tip is provided at the tip of the ground electrode 35 so as to face the noble metal tip 41 on the center electrode 5 side. It is good also as providing. Further, a configuration in which either one of the noble metal tip 41 on the center electrode 5 side or the noble metal tip on the ground electrode 35 side may be adopted, or both of the noble metal tips may be omitted.
  • ZrO 2 particles and TiO 2 particles are exemplified as the ceramic particles 54, but other ceramic particles may be used.
  • aluminum oxide (Al 2 O 3 ) particles or the like may be used.
  • the tool engagement portion 25 has a hexagonal cross section, but the shape of the tool engagement portion 25 is not limited to such a shape.
  • it may be a Bi-HEX (deformed 12-angle) shape [ISO 22777: 2005 (E)].

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Spark Plugs (AREA)
  • Glass Compositions (AREA)

Abstract

 抵抗体の抵抗値をばらつきなく、所望する抵抗値により正確に設定することができ、ひいては歩留まりの向上を図る。スパークプラグ(1)は、軸線(CL1)方向に延びる軸孔(4)を有する絶縁碍子(2)と、中心電極(5)と、端子電極(6)とを備える。また、軸孔(4)内には、カーボンブラック(53)等の導電性材料、ガラス粉末(51)、及び、ガラス以外のセラミックス粒子(54)を含んでなる抵抗体組成物(56)が焼結されることで抵抗体(7)が設けられる。軸線(CL1)と直交する方向に沿った抵抗体(7)の断面における焼結後のガラス粉末である焼結ガラス粉末(51)のうち、円形度0.8以上の焼結ガラス粉末(51)が50%以上存在する。

Description

内燃機関用スパークプラグ
 本発明は、内燃機関に使用されるスパークプラグに関する。
 内燃機関用スパークプラグは、内燃機関(エンジン)に取付けられ、燃焼室内の混合気への着火のために用いられるものである。一般的にスパークプラグは、軸孔を有する絶縁体と、当該軸孔の先端側に挿通される中心電極と、軸孔の後端側に挿通される端子電極と、絶縁体の外周に設けられる主体金具と、主体金具の先端面に設けられ、中心電極との間で火花放電間隙を形成する接地電極とを備える。また、軸孔内であって、前記中心電極及び端子電極の間には、エンジンの動作に伴い発生する電波雑音を抑制するための抵抗体が設けられ、当該抵抗体を介して両電極が電気的に接続される(例えば、特許文献1等参照)。
 ここで、前記抵抗体は、主として導電性材料、ガラス粉末、及び、セラミックス粒子が含有されてなる抵抗体組成物を、中心電極及び端子電極間に配置した上で圧縮・焼結することによって形成される。また、抵抗体中においては、ガラス粉末やセラミックス粒子表面を覆うようにして導電性材料が存在することとなり、当該導電性材料によって両電極間を電気的に接続する多数の導電経路が形成される。尚、前記ガラス粉末としては、ガラスの破砕粉が一般的に用いられる。
特開平9-306636号公報
 ところで、近年、コンピュータを用いて内燃機関の動作を複雑に制御することが行われている。そのため、コンピュータの誤作動等をより確実に防止すべく、前記抵抗体については一層優れた電波雑音の抑制効果が求められている。一方で、電波雑音の抑制効果を高めるにあたっては、抵抗体の抵抗値を増大させることが有効であるが、当該抵抗値の増大に伴い、火花放電のためのエネルギーが減少してしまい、着火性の低下を招いてしまうおそれがある。従って、電波雑音の抑制効果を十分に発揮しつつ、火花放電のためのエネルギーの低下を極力抑制するためには、抵抗体の抵抗値を比較的狭い範囲内において正確に設定することが必要となる。
 ところが、上述のように、ガラス粉末としてガラスの破砕粉を用いた場合には、破砕粉の形状がそれぞれ大きく異なり得ることから、製造されるスパークプラグ毎に抵抗体中における焼結後のガラス粉末(焼結ガラス粉末)の配置に大きな違いが生じ得る。従って、焼結ガラス粉末間に形成される導電経路の数や太さ、長さ等についても比較的大きく異なってしまい、ひいては製造されるスパークプラグ毎に抵抗体の抵抗値が大きく増減してしまうおそれがある。すなわち、上記技術を用いた場合には、抵抗体の抵抗値をより正確に、ばらつきなく設定することが非常に難しく、上述した比較的狭い範囲での抵抗値の設定が必要となるスパークプラグを製造するに際しては、歩留まりの低下が懸念される。
 本発明は、上記事情を鑑みてなされたものであり、その目的は、抵抗体の抵抗値をばらつきなく、所望する抵抗値により正確に設定することができ、ひいては歩留まりの向上を図ることができる内燃機関用スパークプラグを提供することにある。
 以下、上記目的を解決するのに適した各構成につき、項分けして説明する。なお、必要に応じて対応する構成に特有の作用効果を付記する。
 構成1.本構成の内燃機関用スパークプラグは、軸線方向に貫通する軸孔を有する略筒状の絶縁体と、
 前記軸孔の一端側に挿設された中心電極と、
 前記軸孔の他端側に挿設された端子電極と、
 前記絶縁体の外周に設けられた略筒状の主体金具と、
 前記軸孔内において、導電性材料、ガラス粉末、及び、ガラス以外のセラミックス粒子を含む抵抗体組成物が焼結されることで形成され、前記中心電極及び前記端子電極を電気的に接続する抵抗体と
を備える内燃機関用スパークプラグであって、
 前記軸線と直交する方向に沿った前記抵抗体の断面における焼結後の前記ガラス粉末である焼結ガラス粉末のうち、円形度0.8以上の焼結ガラス粉末が50%以上存在することを特徴とする。
 尚、「円形度」とあるのは、焼結ガラス粉末の断面積と等しい面積を有する円の周長を算出した上で、当該算出した円の周長を前記焼結ガラス粉末の断面の周長により除算することで得られた値をいう。従って、円形度が1に近ければ近いほど、焼結ガラス粉末の形状は球体に近いものであると言うことができる。
 上記構成1によれば、軸線と直交する方向に沿った抵抗体の断面における焼結ガラス粉末のうち、円形度0.8以上の焼結ガラス粉末が50%以上存在するように構成されている。そのため、ガラス粉末としてガラスの破砕粉を用いる場合と比較して、抵抗体中における焼結ガラス粉末の配置状態のばらつきを少なくすることができる。これにより、各焼結ガラス粉末間に形成される導電経路の数や太さ、長さ等について、プラグ毎に大きく変化してしまうといった事態を極力抑制することができ、製造される各スパークプラグについて、抵抗体の抵抗値をばらつきなく、より正確に設定することができる。その結果、歩留まりの飛躍的な向上を図ることができる。
 構成2.本構成の内燃機関用スパークプラグは、上記構成1において、前記軸線と直交する方向に沿った前記抵抗体の断面における前記焼結ガラス粉末のうち、円形度0.8以上の焼結ガラス粉末が60%以上存在することを特徴とする。
 上記構成2によれば、抵抗体の抵抗値を一層ばらつきなく、より一層正確に設定することができる。
 構成3.本構成の内燃機関用スパークプラグは、上記構成1又は2において、前記焼結ガラス粉末は、B23-SiO2系、BaO-B23系、SiO2-B23-BaO系、及び、SiO2-ZnO-B23系のガラス材料のうち、いずれか1種を含んで構成されることを特徴とする。
 上記構成3のように、前記焼結ガラス粉末を、B23-SiO2系、BaO-B23系、SiO2-B23-BaO系、及び、SiO2-ZnO-B23系のガラス材料のうち、いずれか1種を含んで構成することとしてもよい。この場合、上記構成1等と同様の作用効果が奏されることとなる。
 構成4.本構成の内燃機関用スパークプラグは、軸線方向に貫通する軸孔を有する略筒状の絶縁体と、
 前記軸孔の一端側に挿設された中心電極と、
 前記軸孔の他端側に挿設された端子電極と、
 前記絶縁体の外周に設けられた略筒状の主体金具と、
 前記軸孔内において、導電性材料、ガラス粉末、及び、ガラス以外のセラミックス粒子を含む抵抗体組成物が焼結されることで形成され、前記中心電極及び前記端子電極を電気的に接続する抵抗体とを備え、
 前記抵抗体は、前記導電性材料を0.5質量%以上10質量%以下、ガラスを60質量%以上90質量%以下、前記セラミックス粒子を5質量%以上30質量%以下含有するとともに、
 前記ガラス粉末の平均粒径が50μm以上500μm以下の内燃機関用スパークプラグであって、
 前記抵抗体組成物中における前記ガラス粉末のうち、その50質量%以上が球状をなすことを特徴とする。
 尚、「球状」とあるのは、必ずしも厳密な球体に限定されるという意味ではない。従って、ガラス粉末の断面形状が、幾分、楕円形状や長円形状、涙形状等をなしていてもよい。例えば、特開昭52-42512号公報等に記載の技術(溶融ガラスに高速流体を吹き付けることで、溶融ガラスを分散させ、分散したガラス粒子の表面張力を利用してガラス粉末を球状とする手法)により形成したガラス粉末や、特開平11-228156号公報等に記載の技術(ガラスのカレットに研磨材や研磨助剤を混合した上で、その混合物を混練して、球状のガラス粉末を得る手法)により形成したガラス粉末は、球状のガラス粉末ということができる。
 上記構成4によれば、抵抗体組成物に含有されるガラス粉末のうち、50質量%以上のガラス粉末については球状をなしている。このため、上記構成1と同様に、各焼結ガラス粉末間に形成される導電経路の数や太さ、長さ等について、プラグ毎に大きく変化してしまうといった事態を極力抑制することができる。その結果、抵抗体の抵抗値をばらつきなく、より正確に設定することができ、歩留まりの向上を図ることができる。
 尚、前記ガラス粉末の平均粒径が50μm未満である場合には、抵抗体組成物を調製する際や、絶縁体の軸孔に抵抗体組成物を充填する際における作業性が低下してしまうおそれがある。一方で、ガラス粉末の平均粒径が500μmを超える場合には、抵抗体の焼結ガラス粉末間に空孔が存在しやすくなってしまい、抵抗体について十分な負荷寿命性能を確保することができないおそれがある。
 構成5.本構成の内燃機関用スパークプラグは、上記構成4において、前記ガラス粉末のうち、その80質量%以上が球状をなすことを特徴とする。
 上記構成5によれば、抵抗体の抵抗値のばらつきをより一層抑制することができ、その抵抗値を一層正確に設定することができる。
 尚、抵抗体の抵抗値をばらつきなく、より一層正確に設定するという観点からは、ガラス粉末のうち、その90質量%以上が球状をなすように構成することが好ましく、ガラス粉末の全てについて球状をなすように構成することが最も好ましい。
 構成6.本構成の内燃機関用スパークプラグは、上記構成4又は5において、前記ガラス粉末の平均粒径を50μm以上200μm以下としたことを特徴とする。
 上記構成6によれば、ガラス粉末の平均粒径が200μm以下とされるため、抵抗体の焼結ガラス粉末間における空孔の形成を効果的に抑制することができる。その結果、一層優れた負荷寿命性能を確保することができる。
 構成7.本構成の内燃機関用スパークプラグは、上記構成4乃至6のいずれかにおいて、前記ガラス粉末は、B23-SiO2系、BaO-B23系、SiO2-B23-BaO系、及び、SiO2-ZnO-B23系のガラス材料のうち、いずれか1種を含んで構成されることを特徴とする。
 上記構成7のように、前記ガラス粉末を、B23-SiO2系、BaO-B23系、SiO2-B23-BaO系、及び、SiO2-ZnO-B23系のガラス材料のうち、いずれか1種を含んで構成することとしてもよい。この場合、上記構成4等と同様の作用効果が奏されることとなる。
本実施形態におけるスパークプラグの構成を示す一部破断正面図である。 抵抗体中における焼結ガラス粉末の形状等を示すための拡大断面図である。 導電経路の構成を示すための部分拡大断面図である。 円形度0.8以上の焼結ガラス粉末の割合を判断する際における、溶着した焼結ガラス粉末の処理の方法を説明するための拡大断面模式図である。 (a)~(c)は、本実施形態におけるスパークプラグの製造方法の一過程を示すためのスパークプラグ等の断面図である。
 以下に、一実施形態について図面を参照して説明する。図1は、内燃機関用スパークプラグ(以下、「スパークプラグ」と称す)1を示す一部破断正面図である。なお、図1では、スパークプラグ1の軸線CL1方向を図面における上下方向とし、下側をスパークプラグ1の先端側、上側を後端側として説明する。
 スパークプラグ1は、筒状をなす絶縁体としての絶縁碍子2、これを保持する筒状の主体金具3などから構成されるものである。
 絶縁碍子2は、周知のようにアルミナ等を焼成して形成されており、その外形部において、後端側に形成された後端側胴部10と、当該後端側胴部10よりも先端側において径方向外向きに突出形成された大径部11と、当該大径部11よりも先端側においてこれよりも細径に形成された中胴部12と、当該中胴部12よりも先端側においてこれより細径に形成された脚長部13とを備えている。絶縁碍子2のうち、大径部11、中胴部12、及び、脚長部13の大部分は、主体金具3の内部に収容されている。そして、脚長部13と中胴部12との連接部には、先端側に向けて先細るテーパ状の第1段部14が形成されており、当該段部14にて絶縁碍子2が主体金具3に係止されている。また、前記中胴部12と大径部11との連接部には、先端側に向けて先細るテーパ状の第2段部15が形成されている。
 さらに、絶縁碍子2には、軸線CL1に沿って軸孔4が貫通形成されている。当該軸孔4には、その先端部において小径部16が形成されているとともに、当該小径部16の後端側において、小径部16より径の大きい大径部17が形成されている。また、前記小径部16及び大径部17の間には、テーパ状の段差部18が形成されている。
 加えて、軸孔4の先端部側(小径部16)には中心電極5が挿入、固定されている。より詳しくは、中心電極5の後端部には、外周側に向けて膨出する膨出部19が形成されており、当該膨出部19が前記段差部18に対して係止された状態で、中心電極5が固定されている。また、中心電極5は、銅又は銅合金からなる内層5Aと、ニッケル(Ni)を主成分とするNi合金からなる外層5Bとにより構成されている。尚、中心電極5は、全体として棒状(円柱状)をなし、その先端面が平坦に形成されるとともに、絶縁碍子2の先端から突出している。
 また、軸孔4の後端部側(大径部17)には、絶縁碍子2の後端から突出した状態で端子電極6が挿入、固定されている。
 さらに、軸孔4の中心電極5と端子電極6との間には、円柱状の抵抗体7が配設されている。当該抵抗体7は、後に詳述するが、導電性材料としてのカーボンブラックやガラス粉末等が圧縮・焼結されることで形成されている。加えて、抵抗体7の両端部は、導電性のシール層としてのガラスシール層8,9を介して、中心電極5と端子電極6とにそれぞれ電気的に接続されている。
 加えて、前記主体金具3は、低炭素鋼等の金属により筒状に形成されており、その外周面にはスパークプラグ1をエンジンヘッドに取付けるためのねじ部(雄ねじ部)21が形成されている。また、ねじ部21の後端側の外周面には座部22が形成され、ねじ部21後端のねじ首23にはリング状のガスケット24が嵌め込まれている。さらに、主体金具3の後端側には、主体金具3をエンジンヘッドに取付ける際にレンチ等の工具を係合させるための断面六角形状の工具係合部25が設けられるとともに、後端部において絶縁碍子2を保持するための加締め部26が設けられている。
 また、主体金具3の内周面の先端側には、絶縁碍子2を係止するためのテーパ状の金具段部27が設けられている。そして、絶縁碍子2は、主体金具3の後端側から先端側に向かって挿入され、自身の第1段部14が主体金具3の金具段部27に係止された状態で、主体金具3の後端側の開口部を径方向内側に加締めること、つまり上記加締め部26を形成することによって固定される。尚、前記第1段部14、及び、金具段部27間には、円環状の板パッキン28が介在されている。これにより、燃焼室内の気密性を保持し、燃焼室内に晒される絶縁碍子2の脚長部13と主体金具3の内周面との隙間に入り込む燃料空気が外部に漏れないようになっている。
 さらに、加締めによる密閉をより完全なものとするため、主体金具3の後端側においては、主体金具3と絶縁碍子2との間に環状のリング部材31,32が介在され、リング部材31,32間にはタルク(滑石)33の粉末が充填されている。すなわち、主体金具3は、板パッキン28、リング部材31,32及びタルク33を介して絶縁碍子2を保持している。
 また、主体金具3の先端部34には、接地電極35が接合されている。より詳しくは、接地電極35は、前記主体金具3の先端部34に対しその基端部が溶接されるとともに、先端側が曲げ返されて、その側面が中心電極5の先端部(後述する貴金属チップ41)と対向するように配置されている。加えて、接地電極35は、外層35A及び内層35Bからなる2層構造となっている。本実施形態において、前記外層35AはNi合金〔例えば、インコネル600やインコネル601(いずれも登録商標)〕によって構成されている。一方、前記内層35Bは、前記Ni合金よりも良熱導電性金属である銅合金又は純銅によって構成されている。
 加えて、中止電極5の先端面には、貴金属合金(例えば、白金合金やイリジウム合金等)からなる円柱状の貴金属チップ41が接合されている。そして、当該貴金属チップ41の先端面と、前記接地電極35の貴金属チップ41と対向する面との間に、火花放電間隙42が形成されている。
 次いで、本発明の特徴である抵抗体7について説明する。本実施形態において、抵抗体7は、図2(同図は、前記軸線CL1と直交する方向に沿った抵抗体7の拡大断面を示す)に示すように、後に説明する加熱処理を経ることにより形成された、焼結後のガラス粉末である焼結ガラス粉末51と、当該焼結ガラス粉末51を覆うようにして存在する導電経路52(図2中、散点模様を付した部位)とから構成されている。また、前記導電経路52は、図3に示すように、前記カーボンブラック53(図3中、散点模様を付した部位)と、ガラス以外のセラミックス粒子〔例えば、酸化ジルコニウム(ZrO2)粒子や酸化チタン(TiO2)粒子等〕54とから構成されている。尚、本実施形態において、抵抗体7は、60質量%以上90質量%以下(例えば、80質量%)の焼結ガラス粉末51と、0.5質量%以上10質量%以下(例えば、2質量%)のカーボンブラック53と、5質量%以上30質量%以下(例えば、18質量%)のセラミックス粒子54とを含んでいる。
 前記焼結ガラス粉末51は、抵抗体7をガラスシール層8,9に対して緻密な状態で接合する等の役割を有している。さらに、本実施形態においては、前記軸線CL1と直交する方向に沿った抵抗体7の断面における焼結ガラス粉末51のうち、円形度が0.8以上の焼結ガラス粉末51が50%以上(例えば、60%)存在するように構成されている。
 ここで、「円形度」とあるのは、焼結ガラス粉末51の断面積と等しい面積を有する円の周長を算出した上で、当該円の周長を前記焼結ガラス粉末51の断面の周長によって除算して得られた値をいう。また、円形度が0.8以上の焼結ガラス粉末が50%以上存在するか否かの判断については、例えば、SEM(走査電子顕微鏡)を用いて、抵抗体7の断面の反射電子像を得た上で、当該反射電子像に対して画像処理を施し、解析することで判断することができる。尚、加熱処理を経ることで、焼結ガラス粉末51同士が溶着し得る。そこで、円形度が0.8以上の焼結ガラス粉末が50%以上存在するか否かの判断については、焼結ガラス粉末51のうち溶着状態にあるものを除外した上で、残った焼結ガラス粉末51を対象として判断することとしてもよい。また、図4(同図は、図2中において、一点鎖線で区画した部位を示す)に示すように、溶着部分において焼結ガラス粉末51を分離する処理を行った上で、円形度が0.8以上の焼結ガラス粉末が50%以上存在するか否かを判断することとしてもよい。
 次に、上記のように構成されてなるスパークプラグ1の製造方法について説明する。まず、主体金具3を予め加工しておく。すなわち、円柱状の金属素材(例えばS17CやS25Cといった鉄系素材やステンレス素材)を冷間鍛造加工により貫通孔を形成し、概形を製造する。その後、切削加工を施すことで外形を整え、主体金具中間体を得る。
 続いて、主体金具中間体の先端面に、Ni系合金等からなる接地電極35が抵抗溶接される。当該溶接に際してはいわゆる「ダレ」が生じるので、その「ダレ」を除去した後、主体金具中間体の所定部位にねじ部21が転造によって形成される。これにより、接地電極35の溶接された主体金具3が得られる。接地電極35の溶接された主体金具3には、亜鉛メッキ或いはニッケルメッキが施される。尚、耐食性向上を図るべく、その表面に、さらにクロメート処理が施されることとしてもよい。
 一方、前記主体金具3とは別に、絶縁碍子2を成形加工しておく。例えば、アルミナを主体としバインダ等を含む原料粉末を用い、成型用素地造粒物を調製し、これを用いてラバープレス成形を行うことで、筒状の成形体が得られる。得られた成形体に対し、研削加工が施され整形される。そして、整形されたものが焼成炉へ投入され焼成されることで、絶縁碍子2が得られる。
 また、前記主体金具3、絶縁碍子2とは別に、中心電極5を製造しておく。すなわち、中央部に放熱性向上を図るための銅合金を配置したNi合金を鍛造加工して中心電極5を作製する。そして、その先端部には、上述した貴金属チップ41が抵抗溶接やレーザ溶接等により接合される。
 さらに、抵抗体7を形成するための粉末状の抵抗体組成物を調製しておく。より詳しくは、まず、カーボンブラック53と、セラミックス粒子54と、所定のバインダとをそれぞれ配合し、水を媒体として混合する。そして、混合して得られたスラリーを乾燥させ、これにB23-SiO2系のガラス材料からなるガラス粉末とを混合攪拌することで、抵抗体組成物が得られる。尚、本実施形態においては、前記ガラス粉末として、その50質量%以上が球状をなすものが用いられている。また、前記ガラス粉末の平均粒径は、50μm以上500μm以下(例えば、50μm以上200μm以下)とされている。
 尚、ガラス粉末を球状に形成するにあたっては、例えば、次のような手法を用いることができる。すなわち、溶融ガラスに高速流体を吹き付けることで、溶融ガラスを分散させ、分散したガラス粒子の表面張力を利用することで球状のガラス粉末を形成することとしてもよい(例えば、特開昭52-42512号公報等参照)。また、ガラスのカレットに研磨材や研磨助剤を混合した上で、その混合物を混練することで、球状のガラス粉末を形成することとしてもよい(例えば、特開平11-228156号公報等参照)。
 次に、上記のようにして得られた絶縁碍子2及び中心電極5と、抵抗体7と、端子電極6とが、ガラスシール層8,9によって封着固定される。より詳しくは、まず、図5(a)に示すように、金属製で筒状をなす支持筒51の先端面で、前記第2段部15を支持することにより、前記絶縁碍子2が支持される。そして、軸孔4の小径部16に対して、中心電極5が挿入される。このとき、中心電極5の膨出部19が軸孔4の段差部18に対して係止される。
 次いで、図5(b)に示すように、一般的にホウ珪酸ガラスと金属粉末とが混合されて調製された導電性ガラス粉末55を軸孔4内に充填し、充填した導電性ガラス粉末55を予備圧縮する。次に、抵抗体組成物56を軸孔4に充填して同様に予備圧縮をし、さらに、導電性ガラス粉末57を充填し、同じく予備圧縮を行う。そして、端子電極6を軸孔4内へと中心電極5の反対側から押圧した状態で、焼成炉内においてガラス軟化点以上の所定温度(本実施形態では、800℃~950℃)で加熱する。
 これにより、図5(c)に示すように、積層状態にある抵抗体組成物56及び導電性ガラス粉末55,57は、圧縮、焼結されて、抵抗体7及びガラスシール層8,9となり、絶縁碍子2及び中心電極5と、抵抗体7と、端子電極6とが、ガラスシール層8,9によって封着固定されることとなる。尚、焼成炉内における加熱に際して、絶縁碍子2の後端側胴部10の表面に釉薬層を同時に焼成することとしてもよいし、事前に釉薬層を形成することとしてもよい。
 その後、上記のようにそれぞれ作成された中心電極5や抵抗体7等を備える絶縁碍子2と、接地電極35を備える主体金具3とが組付けられる。より詳しくは、比較的薄肉に形成された主体金具3の後端側の開口部を径方向内側に加締めること、つまり上記加締め部26を形成することによって固定される。
 そして、最後に、接地電極35を屈曲させることで、中心電極5の先端に設けられた貴金属チップ41及び接地電極35間の前記火花放電間隙42を調整する加工が実施され、スパークプラグ1が得られる。
 以上詳述したように、本実施形態によれば、抵抗体組成物56に含有されるガラス粉末のうち、50質量%以上のガラス粉末については球状をなしており、これに伴い、軸線CL1と直交する方向に沿った抵抗体7の断面において、円形度0.8以上の焼結ガラス粉末51が50%以上存在するように構成されている。従って、抵抗体7中における焼結ガラス粉末51の配置状態のばらつきを少なくすることができ、各焼結ガラス粉末51間に形成される導電経路52の数や太さ、長さ等について、プラグ毎に大きく変化してしまうといった事態を極力抑制することができる。その結果、製造される各スパークプラグについて、抵抗体7の抵抗値をばらつきなく、より正確に設定することができ、歩留まりの飛躍的な向上を図ることができる。
 また、前記ガラス粉末の平均粒径が50μm以上とされているため、抵抗体組成物56を調製する際や、絶縁碍子2の軸孔4に抵抗体組成物56を充填する際における作業性を向上させることができる。その一方で、ガラス粉末の平均粒径は500μm以下とされているため、抵抗体7の焼結ガラス粉末51間における空孔の形成を極力抑制することができ、抵抗体7について十分な負荷寿命性能を確保することができる。
 次に、本実施形態における作用効果を確認すべく、ガラス粉末中における球状ガラス粉末と破砕ガラス粉末との混合割合を種々変更することで、軸線と直交する方向に沿った抵抗体の断面における円形度0.8以上の焼結ガラス粉末の割合を種々変更したスパークプラグのサンプルを複数作製し、各サンプルについて抵抗体の抵抗値の標準偏差の3倍(3σ)を測定した。また、抵抗体の抵抗値について許容できる幅(規格幅)を種々設定した上で、各規格幅についての工程能力指数(Cp)を算出した。そして、工程能力指数(Cp)が、1.67以上の場合には、「◎」の評価を下し、工程能力指数(Cp)が1.33以上の場合には、「○」の評価を下すこととした。一方で、工程能力指数(Cp)が、1.33未満の場合には、「×」の評価を下すこととした。尚、「工程能力指数」とは、規格幅を標準偏差の6倍(6σ)で除算することにより得られる値である。表1に、各サンプルにおける、抵抗体組成物中の球状のガラス粉末の混合割合、抵抗体断面における円形度0.8以上の焼結ガラス粉末の割合、及び、規格幅ごとの評価を示す。
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、抵抗体組成物中のガラス粉末のうち、その50質量%以上が球状をなし、抵抗体断面において円形度0.8以上の焼結ガラス粉末の割合が50%以上存在するサンプル(サンプル1,2,3)については、規格幅を2kΩと極めて小さくした場合であっても、工程能力指数が1.33以上となり、抵抗体の抵抗値をばらつきなく、より正確に設定することができることが明らかとなった。これは、球状のガラス粉末の混合割合を比較的大きくしたこと等により、抵抗体中における焼結ガラス粉末の配置状態のばらつきを抑制することができたため、導電経路の数や太さ、長さ等について、プラグ毎に大きく変化してしまうといった事態を抑制できたことによると考えられる。
 また特に、抵抗体組成物中のガラス粉末のうち、その80質量%以上が球状をなし、抵抗体断面において円形度0.8以上の焼結ガラス粉末の割合が60%以上存在するサンプル(サンプル1,2)については、規格幅を2kΩとした場合であっても、工程能力指数が1.67以上となり、抵抗体の抵抗値をばらつきなく、より一層正確に設定できることがわかった。
 以上のように、ガラス粉末のうち、その50質量%以上が球状をなす抵抗体組成物を用いて抵抗体を形成したり、また、形成される抵抗体については、軸線と直交する方向に沿った抵抗体断面において、円形度0.8以上の焼結ガラス粉末の割合が50%以上となるように構成したりすることが、抵抗体の抵抗値のばらつきを抑制し、当該抵抗値をより正確に設定するという点において非常に有意であるといえる。また、抵抗体の抵抗値のばらつきを一層抑制するという観点からは、ガラス粉末のうち、その80質量%以上が球状をなす抵抗体組成物を用いて抵抗体を形成したり、また、形成される抵抗体については、軸線と直交する方向に沿った抵抗体断面において、円形度0.8以上の焼結ガラス粉末の割合が60%以上となるように構成したりすることが非常に効果的であるといえる。
 尚、上記実施形態の記載内容に限定されず、例えば次のように実施してもよい。勿論、以下において例示しない他の応用例、変更例も当然可能である。
 (a)上記実施形態において、前記ガラス粉末は、B23-SiO2系のガラス材料によって形成されているが、ガラス粉末の形成材料は、これに限定されるものではない。従って、例えば、ガラス粉末を、BaO-B23系、SiO2-B23-BaO系、及び、SiO2-ZnO-B23系のガラス材料のうち、いずれか1種を含む材料によって構成することとしてもよい。
 (b)上記実施形態では、中心電極5の先端部に貴金属チップ41が設けられているが、当該中心電極5側の貴金属チップ41と対向するようにして、接地電極35の先端部に貴金属チップを設けることとしてもよい。また、中心電極5側の貴金属チップ41や接地電極35側の貴金属チップのいずれか一方を省略する構成を採用することとしてもよいし、両貴金属チップのいずれについても省略することとしてもよい。
 (c)上記実施形態では、セラミックス粒子54としてZrO2粒子やTiO2粒子を例示しているが、他のセラミックス粒子を用いることとしてもよい。例えば、酸化アルミニウム(Al23)粒子等を用いることとしてもよい。
 (d)上記実施形態では、主体金具3の先端に、接地電極35が接合される場合について具体化しているが、主体金具の一部(又は、主体金具に予め溶接してある先端金具の一部)を削り出すようにして接地電極を形成する場合についても適用可能である(例えば、特開2006-236906号公報等)。
 (e)上記実施形態では、工具係合部25は断面六角形状とされているが、工具係合部25の形状に関しては、このような形状に限定されるものではない。例えば、Bi-HEX(変形12角)形状〔ISO22977:2005(E)〕等とされていてもよい。
 1…スパークプラグ(内燃機関用スパークプラグ)
 2…絶縁碍子(絶縁体)
 3…主体金具
 4…軸孔
 5…中心電極
 6…端子電極
 7…抵抗体
 51…焼結ガラス粉末
 53…カーボンブラック(導電性材料)
 54…セラミックス粒子
 56…抵抗体組成物

Claims (7)

  1.  軸線方向に貫通する軸孔を有する略筒状の絶縁体と、
     前記軸孔の一端側に挿設された中心電極と、
     前記軸孔の他端側に挿設された端子電極と、
     前記絶縁体の外周に設けられた略筒状の主体金具と、
     前記軸孔内において、導電性材料、ガラス粉末、及び、ガラス以外のセラミックス粒子を含む抵抗体組成物が焼結されることで形成され、前記中心電極及び前記端子電極を電気的に接続する抵抗体と
    を備える内燃機関用スパークプラグであって、
     前記軸線と直交する方向に沿った前記抵抗体の断面における焼結後の前記ガラス粉末である焼結ガラス粉末のうち、円形度0.8以上の焼結ガラス粉末が50%以上存在することを特徴とする内燃機関用スパークプラグ。
  2.  前記軸線と直交する方向に沿った前記抵抗体の断面における前記焼結ガラス粉末のうち、円形度0.8以上の焼結ガラス粉末が60%以上存在することを特徴とする請求項1に記載の内燃機関用スパークプラグ。
  3.  前記焼結ガラス粉末は、B23-SiO2系、BaO-B23系、SiO2-B23-BaO系、及び、SiO2-ZnO-B23系のガラス材料のうち、いずれか1種を含んで構成されることを特徴とする請求項1又は2に記載の内燃機関用スパークプラグ。
  4.  軸線方向に貫通する軸孔を有する略筒状の絶縁体と、
     前記軸孔の一端側に挿設された中心電極と、
     前記軸孔の他端側に挿設された端子電極と、
     前記絶縁体の外周に設けられた略筒状の主体金具と、
     前記軸孔内において、導電性材料、ガラス粉末、及び、ガラス以外のセラミックス粒子を含む抵抗体組成物が焼結されることで形成され、前記中心電極及び前記端子電極を電気的に接続する抵抗体とを備え、
     前記抵抗体は、前記導電性材料を0.5質量%以上10質量%以下、ガラスを60質量%以上90質量%以下、前記セラミックス粒子を5質量%以上30質量%以下含有するとともに、
     前記ガラス粉末の平均粒径が50μm以上500μm以下の内燃機関用スパークプラグであって、
     前記抵抗体組成物中における前記ガラス粉末のうち、その50質量%以上が球状をなすことを特徴とする内燃機関用スパークプラグ。
  5.  前記ガラス粉末のうち、その80質量%以上が球状をなすことを特徴とする請求項4に記載の内燃機関用スパークプラグ。
  6.  前記ガラス粉末の平均粒径を50μm以上200μm以下としたことを特徴とする請求項4又は5に記載の内燃機関用スパークプラグ。
  7.  前記ガラス粉末は、B23-SiO2系、BaO-B23系、SiO2-B23-BaO系、及び、SiO2-ZnO-B23系のガラス材料のうち、いずれか1種を含んで構成されることを特徴とする請求項4乃至6のいずれか1項に記載の内燃機関用スパークプラグ。
PCT/JP2009/071384 2008-12-24 2009-12-24 内燃機関用スパークプラグ WO2010074115A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN2009801442514A CN102204042B (zh) 2008-12-24 2009-12-24 内燃机用火花塞
JP2010519042A JP5200106B2 (ja) 2008-12-24 2009-12-24 内燃機関用スパークプラグ
US13/140,099 US8492962B2 (en) 2008-12-24 2009-12-24 Spark plug for internal combustion engine
EP09834913.7A EP2381546B1 (en) 2008-12-24 2009-12-24 Spark plug for internal combustion engine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008327199 2008-12-24
JP2008-327199 2008-12-24

Publications (1)

Publication Number Publication Date
WO2010074115A1 true WO2010074115A1 (ja) 2010-07-01

Family

ID=42287722

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/071384 WO2010074115A1 (ja) 2008-12-24 2009-12-24 内燃機関用スパークプラグ

Country Status (5)

Country Link
US (1) US8492962B2 (ja)
EP (1) EP2381546B1 (ja)
JP (1) JP5200106B2 (ja)
CN (1) CN102204042B (ja)
WO (1) WO2010074115A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013095621A (ja) * 2011-10-28 2013-05-20 Nippon Soken Inc 絶縁材料及びこれを用いた点火プラグ

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8217563B2 (en) * 2008-06-18 2012-07-10 Ngk Spark Plug Co., Ltd. Spark plug for internal combustion engine and method of manufacturing the same
CN102610344B (zh) * 2012-02-10 2014-04-23 株洲湘渌特种陶瓷有限责任公司 电阻体及其制备方法、火花塞及其制备方法
JP5276742B1 (ja) * 2012-08-09 2013-08-28 日本特殊陶業株式会社 点火プラグ
US10354782B2 (en) 2014-02-13 2019-07-16 Fram Group IP, LLC Composition for and method of making an insulator for a spark plug
JP6657977B2 (ja) * 2015-02-12 2020-03-04 株式会社デンソー 内燃機関用のスパークプラグ
DE102017217265A1 (de) * 2017-09-28 2019-03-28 Robert Bosch Gmbh Zündkerzen-Widerstandselement mit feineren nicht-leitenden Partikeln
US10992112B2 (en) * 2018-01-05 2021-04-27 Fram Group Ip Llc Fouling resistant spark plugs

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5242512A (en) 1975-09-30 1977-04-02 Nippon Electric Glass Co Method of production of glass bead
JPH03269908A (ja) * 1990-03-16 1991-12-02 Hitachi Ltd 厚膜組成物及びそれを用いた厚膜ハイブリッドic
JPH09306636A (ja) 1996-05-13 1997-11-28 Ngk Spark Plug Co Ltd スパークプラグ
JPH11228156A (ja) 1998-02-05 1999-08-24 Akio Henmi ガラスビーズの製造方法およびその装置
JP2005327743A (ja) * 1997-04-23 2005-11-24 Ngk Spark Plug Co Ltd 抵抗体入りスパークプラグ、スパークプラグ用抵抗体組成物及び抵抗体入りスパークプラグの製造方法
JP2006236906A (ja) 2005-02-28 2006-09-07 Ngk Spark Plug Co Ltd スパークプラグの製造方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3341314A (en) * 1963-05-09 1967-09-12 Horizons Inc Glass bead making apparatus
JPS55149289U (ja) 1979-04-13 1980-10-27
US4601848A (en) * 1984-01-18 1986-07-22 Ngk Spark Plug Co., Ltd. Resistor compositions for producing a resistor in resistor-incorporated spark plugs
DE3546922C2 (de) * 1984-01-18 1997-09-04 Ngk Spark Plug Co Pulvermischungen zur Herstellung eines elektrischen Widerstands in Zündkerzen und ihre Verwendung
JP3819586B2 (ja) * 1997-04-23 2006-09-13 日本特殊陶業株式会社 抵抗体入りスパークプラグ、スパークプラグ用抵抗体組成物及び抵抗体入りスパークプラグの製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5242512A (en) 1975-09-30 1977-04-02 Nippon Electric Glass Co Method of production of glass bead
JPH03269908A (ja) * 1990-03-16 1991-12-02 Hitachi Ltd 厚膜組成物及びそれを用いた厚膜ハイブリッドic
JPH09306636A (ja) 1996-05-13 1997-11-28 Ngk Spark Plug Co Ltd スパークプラグ
JP2005327743A (ja) * 1997-04-23 2005-11-24 Ngk Spark Plug Co Ltd 抵抗体入りスパークプラグ、スパークプラグ用抵抗体組成物及び抵抗体入りスパークプラグの製造方法
JPH11228156A (ja) 1998-02-05 1999-08-24 Akio Henmi ガラスビーズの製造方法およびその装置
JP2006236906A (ja) 2005-02-28 2006-09-07 Ngk Spark Plug Co Ltd スパークプラグの製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2381546A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013095621A (ja) * 2011-10-28 2013-05-20 Nippon Soken Inc 絶縁材料及びこれを用いた点火プラグ

Also Published As

Publication number Publication date
US8492962B2 (en) 2013-07-23
JPWO2010074115A1 (ja) 2012-06-21
EP2381546A1 (en) 2011-10-26
CN102204042A (zh) 2011-09-28
EP2381546B1 (en) 2017-02-15
CN102204042B (zh) 2013-10-23
US20110248620A1 (en) 2011-10-13
EP2381546A4 (en) 2014-03-05
JP5200106B2 (ja) 2013-05-15

Similar Documents

Publication Publication Date Title
JP5200106B2 (ja) 内燃機関用スパークプラグ
EP2020713B1 (en) Spark plug for internal combustion engine and method of manufacturing the same
JP5134633B2 (ja) 内燃機関用スパークプラグ及びその製造方法
JP4648476B1 (ja) 内燃機関用スパークプラグ
EP2028736B1 (en) Spark plug for internal combustion engine
WO2011036871A1 (ja) スパークプラグ
JP2007122879A (ja) スパークプラグ
WO2014024345A1 (ja) 点火プラグ
EP2846425B1 (en) Spark plug
WO2009119544A1 (ja) スパークプラグ用絶縁体及びその製造方法、並びに、スパークプラグ及びその製造方法
JP5616858B2 (ja) 点火プラグ
JP2010153393A (ja) 内燃機関用スパークプラグ
JP2010073684A (ja) スパークプラグの製造方法
JP5238003B2 (ja) スパークプラグ
WO2011030845A1 (ja) 内燃機関用スパークプラグ

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980144251.4

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2010519042

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09834913

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13140099

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2009834913

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2009834913

Country of ref document: EP