WO2010073951A1 - 船舶用排熱回収システムの制御方法及び制御装置 - Google Patents
船舶用排熱回収システムの制御方法及び制御装置 Download PDFInfo
- Publication number
- WO2010073951A1 WO2010073951A1 PCT/JP2009/070993 JP2009070993W WO2010073951A1 WO 2010073951 A1 WO2010073951 A1 WO 2010073951A1 JP 2009070993 W JP2009070993 W JP 2009070993W WO 2010073951 A1 WO2010073951 A1 WO 2010073951A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- heat
- exhaust gas
- amount
- power
- exhaust
- Prior art date
Links
- 238000011084 recovery Methods 0.000 title claims abstract description 45
- 238000000034 method Methods 0.000 title claims abstract description 32
- 238000001514 detection method Methods 0.000 claims abstract description 9
- 238000005338 heat storage Methods 0.000 claims description 37
- 238000010248 power generation Methods 0.000 claims description 31
- 239000013589 supplement Substances 0.000 claims description 4
- 230000003247 decreasing effect Effects 0.000 claims description 3
- 230000008859 change Effects 0.000 abstract description 22
- 230000004044 response Effects 0.000 abstract description 2
- 239000007789 gas Substances 0.000 description 118
- 230000000875 corresponding effect Effects 0.000 description 13
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 11
- 230000007423 decrease Effects 0.000 description 10
- 239000000498 cooling water Substances 0.000 description 7
- 230000005855 radiation Effects 0.000 description 7
- 230000008569 process Effects 0.000 description 6
- 238000002485 combustion reaction Methods 0.000 description 5
- 230000009467 reduction Effects 0.000 description 5
- 230000017525 heat dissipation Effects 0.000 description 3
- 230000002265 prevention Effects 0.000 description 3
- 230000036962 time dependent Effects 0.000 description 3
- 239000002918 waste heat Substances 0.000 description 3
- 230000002159 abnormal effect Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 239000002826 coolant Substances 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 244000144972 livestock Species 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000010792 warming Methods 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01K—STEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
- F01K23/00—Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
- F01K23/02—Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
- F01K23/06—Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
- F01K23/10—Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02C—GAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
- F02C6/00—Plural gas-turbine plants; Combinations of gas-turbine plants with other apparatus; Adaptations of gas-turbine plants for special use
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B63—SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
- B63H—MARINE PROPULSION OR STEERING
- B63H21/00—Use of propulsion power plant or units on vessels
- B63H21/12—Use of propulsion power plant or units on vessels the vessels being motor-driven
- B63H21/14—Use of propulsion power plant or units on vessels the vessels being motor-driven relating to internal-combustion engines
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B63—SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
- B63H—MARINE PROPULSION OR STEERING
- B63H21/00—Use of propulsion power plant or units on vessels
- B63H21/32—Arrangements of propulsion power-unit exhaust uptakes; Funnels peculiar to vessels
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B63—SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
- B63J—AUXILIARIES ON VESSELS
- B63J3/00—Driving of auxiliaries
- B63J3/02—Driving of auxiliaries from propulsion power plant
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D15/00—Adaptations of machines or engines for special use; Combinations of engines with devices driven thereby
- F01D15/10—Adaptations for driving, or combinations with, electric generators
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01K—STEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
- F01K15/00—Adaptations of plants for special use
- F01K15/02—Adaptations of plants for special use for driving vehicles, e.g. locomotives
- F01K15/04—Adaptations of plants for special use for driving vehicles, e.g. locomotives the vehicles being waterborne vessels
- F01K15/045—Control thereof
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B41/00—Engines characterised by special means for improving conversion of heat or pressure energy into mechanical power
- F02B41/02—Engines with prolonged expansion
- F02B41/10—Engines with prolonged expansion in exhaust turbines
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02C—GAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
- F02C9/00—Controlling gas-turbine plants; Controlling fuel supply in air- breathing jet-propulsion plants
- F02C9/16—Control of working fluid flow
- F02C9/18—Control of working fluid flow by bleeding, bypassing or acting on variable working fluid interconnections between turbines or compressors or their stages
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02G—HOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
- F02G5/00—Profiting from waste heat of combustion engines, not otherwise provided for
- F02G5/02—Profiting from waste heat of exhaust gases
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B63—SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
- B63J—AUXILIARIES ON VESSELS
- B63J2/00—Arrangements of ventilation, heating, cooling, or air-conditioning
- B63J2/12—Heating; Cooling
- B63J2002/125—Heating; Cooling making use of waste energy
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/12—Improving ICE efficiencies
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T70/00—Maritime or waterways transport
- Y02T70/50—Measures to reduce greenhouse gas emissions related to the propulsion system
Definitions
- the present invention relates to a control method and a control device for an exhaust heat recovery system for a ship, and in particular, a control method for an exhaust heat recovery system for a ship that changes the operating state of an auxiliary generator based on the amount of heat stored in an exhaust gas economizer. And a control device.
- the exhaust heat recovery system Since the exhaust heat recovery system generates power from the exhaust heat of the ship's main drive (engine) and covers the power in the ship, if the load (inboard power demand) decreases rapidly, the generated power becomes surplus. . Therefore, there is a risk that the rotation of the steam turbine and the gas turbine will rise and be damaged. On the other hand, if the engine stops suddenly, power will be insufficient, and in the worst case, the ship will be blacked out.
- the exhaust gas of the ship's main drive diesel engine
- the surplus steam generated by the exhaust gas economizer is discharged to the condenser as it is.
- the backup diesel generator can be cut off by cutting off the low-necessity power load against the sudden drop in power generation. Is waiting to start up and start supplying power.
- the amount of power generated by the exhaust heat recovery system decreases before the power supply by the diesel generator is started, there is a problem that a power failure is inevitable.
- Fig. 7 shows changes over time in ship power due to a sudden stop of the main drive (engine).
- Inboard power is supplied by a shaft generator driven by the power of the main drive (engine), a generator (main generator) driven by the power of the gas turbine and steam turbine, and a backup diesel generator (auxiliary generator).
- a shaft generator driven by the power of the main drive (engine)
- main generator driven by the power of the gas turbine and steam turbine
- auxiliary generator auxiliary generator
- FIG. 7 shows the main drive machine (the main generator is also stopped because it is driven by the exhaust gas of the main drive).
- the state of power reduction in the ship after the stop is shown in time series
- ST in the figure I the change in power generation amount of the main generator corresponding to the rotation speed of the steam turbine
- GT is the change in power generation amount of the main generator corresponding to the rotation speed of the gas turbine
- DG is the backup diesel generator (change in the start power generation amount of the DG)
- the decrease in the amount of power generated by the generator (main generator) driven by the power of the gas turbine and the steam turbine is faster for the gas turbine (GT), but slower for the steam turbine (ST).
- heat storage amount the amount of heat stored in the exhaust gas economizer (hereinafter referred to as heat storage amount) varies depending on the operating conditions in general control. Therefore, if the amount of heat stored above a certain level is stored when a sudden drop in the amount of power generated by the generator (main generator) occurs, the backup diesel generator (DG) The required power generation amount can be maintained until the start-up, that is, the rise time of the backup diesel generator indicated by arrow S (the time S until load operation that contributes to the power generation of the auxiliary generator), but the amount of livestock heat Q is small. If this happens, the necessary power generation amount (the power generation amount corresponding to the minimum required power amount in the ship necessary for safety to avoid power failure) will be interrupted, and the power failure will occur.
- Patent Document 1 Japanese Patent No. 3804693 discloses an invention that controls and suppresses the occurrence of control delay by paying attention to the coolant temperature associated with increase or decrease in the amount of exhaust heat recovery.
- a load-side circulating water temperature sensor that is provided downstream of the exhaust heat recovery load of the load-side circulating pipe and measures the temperature of the load-side circulating water flowing therethrough, and the load-side circulating water temperature sensor.
- a waste heat recovery amount detecting means for comparing the temperature of the load side circulating water and the first set temperature and outputting a heat radiation signal when the temperature of the load side circulating water is equal to or higher than the first set temperature;
- a flow state detection means provided in the circulation pipe for detecting whether the flow state of the load side circulating water is a predetermined flow state or an abnormal flow state other than that and outputting a heat radiation signal along with the detection of the abnormal flow state; Based on the heat dissipation signal, the cooling water temperature sensor A holding means for outputting a heat radiation signal until the measured temperature of the cooling water by the heater becomes lower than the second set temperature, and the engine rated the valve opening degree of the heat radiation amount changing means in response to the heat radiation signal.
- the preset valve opening is set to an opening smaller than the valve opening through which the amount of cooling water to be supplied to the heat dissipation heat exchanger flows.
- the heat radiation amount changing means is controlled so that the heat radiation amount increases as the measured temperature increases.
- Feedback side control means for outputting a control output and the control output from the feedforward side control means and the control output from the feedback side control means are added by the control output. It is configured to control the heat dissipation amount changing means.
- Patent Document 1 the exhaust heat recovery system disclosed in Patent Document 1 is controlled by paying attention to the temperature of the cooling water, and does not focus on the amount of heat (heat storage amount) stored in the exhaust gas economizer of the ship. .
- the present invention has an object to provide a control method and a control device for an exhaust heat recovery system capable of preventing a power outage in a ship against a sudden load change of a main drive machine. To do.
- an exhaust gas economizer in which exhaust gas generated in a ship's main drive (engine) is guided through a supercharger, and a steam turbine that obtains power from the steam generated in the exhaust gas economizer
- a gas turbine that drives the generator together with the steam turbine, and an auxiliary generator that supplements the ship's power with the amount of power generated by the generator, and supplies a part of the exhaust gas generated by the main drive to the gas turbine
- the current heat storage amount Q and the reference heat amount Qmin are compared, and the operation state of the auxiliary generator is stopped, standby or
- the exhaust gas economizer is a device unique to a ship, for example, installed in a chimney of a ship, for example, a dense heat exchange pipe is installed in the chimney, water is passed through it, and work is performed in the main drive engine.
- This is a device that exchanges heat of exhaust gas that has been generated to generate steam or heat water.
- the current heat storage amount Q of the exhaust gas economizer is “cooling water (amount, temperature) injected into the exhaust gas economizer from the cooler (reference numeral 20 in FIG. 1), exhaust gas (amount, temperature) from the supercharger 22”.
- Auxiliary generator refers to an auxiliary generator body that is directly or indirectly connected to a drive machine (for example, a diesel engine) for driving the auxiliary generator body.
- Stopping the machine and waiting for the auxiliary generator means a state in which the connection between the drive machine and the auxiliary generator body is released (idling operation), and further, the drive operation of the auxiliary generator means the drive machine and the auxiliary power generation. This means that the machine main body is connected and the energy on the drive machine side is transmitted to the auxiliary generator main body side.
- the current heat storage amount Q and the reference heat amount Qmin are compared, and based on the comparison result, the heat amount Q stored in the exhaust gas economizer is increased so as to be larger than the reference heat amount Qmin.
- the auxiliary generator can be started before interrupting the necessary power even if the output of the main drive suddenly drops. Necessary power generation amount (power generation amount corresponding to the minimum necessary power amount in the ship necessary for safety in order to avoid power outage) can be secured, and power outage (blackout) in the ship can be avoided.
- the current heat storage amount Q is larger than the reference heat amount Qmin, and further, a time from when the main drive stops to when the auxiliary generator is stopped can be secured.
- the first specific example is that the auxiliary generator is stopped when the current heat quantity Q stored in the exhaust gas economizer is larger than the heat storage quantity Q stop that can be performed (Q ⁇ Q stop > Q min ). As a result, the necessary power generation amount can be maintained without surplus power in the ship, so that the auxiliary generator is prevented from being wasted.
- the amount of heat Q stored in the exhaust gas economizer is less than the amount of stored heat Q stop , and the time required until the main drive stops and the auxiliary generator is ready to generate power can be secured.
- the auxiliary generator is set in a standby state when the heat storage amount Q stby is greater than the allowable amount. (Q stop > Q ⁇ Q stby > Q min ) In this way, the rise time can be shortened by placing the auxiliary generator in the standby state, so that a power failure in the ship can be avoided even if the output of the main drive machine suddenly drops.
- a third specific example is that the auxiliary generator is operated when the amount of heat Q stored in the exhaust gas economizer is lower than the stored heat amount Q stop and lower than the stored heat amount Q stby .
- the auxiliary generator is immediately operated from a standby state to avoid a power failure in the ship.
- the basic invention is 1. Even if the main drive stops (rapid reduction of the main generator due to a sudden reduction in exhaust gas energy), power generation corresponding to the minimum required power in the ship necessary for safety can be obtained quickly in order to avoid power outages In addition, it is possible to control the operation of the auxiliary generator during normal operation of the main drive machine (before sudden stop) so that the amount of heat Q stored in the exhaust gas economizer does not become “Q min ⁇ Q”. This is the gist of the invention. In this case, the amount of heat Q stored in the exhaust gas economizer is calculated or estimated during normal operation of the main drive machine, and it is determined whether the calculated or estimated Q is in the following 2 to 4 states. And 2.
- the basic invention further includes a bypass line that bypasses the gas turbine and supplies a part of the exhaust gas generated by the main drive to the exhaust gas economizer without passing through the gas turbine, and the bypass line is disposed in the bypass line.
- a bypass valve for increasing or decreasing the flow rate of the exhaust gas and adding an invention for adjusting the opening degree of the bypass valve so that the heat quantity Q stored in the exhaust gas economizer is larger than the reference heat quantity Qmin (second) Invention).
- the amount of heat Q stored in the exhaust gas economizer is larger than the amount of heat stored Q stop that can secure the time from when the main drive stops to when the auxiliary generator is stopped to a state where power generation is possible.
- Sometimes lowering the opening of the bypass valve is a specific example of the second invention. Thereby, required electric power can be maintained, without making inboard electric power surplus.
- the amount of heat Q stored in the exhaust gas economizer is smaller than the amount of heat stored Q stop that can secure the time from when the main drive stops to when the auxiliary generator is stopped to the state where power generation is possible.
- Increasing the degree of opening of the bypass valve is a second specific example of the second invention.
- the amount of heat Q stored in the exhaust gas economizer can be increased to increase the heat recovery in the steam turbine. This increases the time during which the main drive can be stopped, resulting in fuel saving.
- An exhaust gas economizer in which exhaust gas generated in a ship's main drive is guided through a supercharger, a steam turbine that obtains power from steam generated in the exhaust gas economizer, and a generator is driven together with the steam turbine
- a gas turbine and an auxiliary generator that supplements the ship's power with the amount of power generated by the generator, and a part of the exhaust gas generated by the main drive unit is supplied to the gas turbine, and the exhaust gas discharged from the gas turbine
- the means for obtaining the reference heat quantity Qmin required to maintain the operation state of the auxiliary generator is stopped, standby or operated so that the heat quantity
- the auxiliary generator control means includes a bypass valve adjusting means for adjusting an opening degree of the bypass valve so that a heat quantity Q stored in the exhaust gas economizer is larger than the reference heat quantity Qmin.
- a bypass valve adjusting means is provided for adjusting the opening degree of the bypass valve so that the heat quantity Q stored in the exhaust gas economizer is larger than the reference heat quantity Qmin.
- the heat storage amount of the exhaust gas economizer is kept constant so that the ship does not power out. It is possible to provide a control method and a control apparatus for an exhaust heat recovery system that can be maintained as described above (paragraph change) and can prevent a power outage in the ship against a sudden load change of the main drive.
- FIG. 3 is a flowchart illustrating a control logic operation according to the first embodiment.
- FIG. 1 is a block diagram showing the configuration of the power system of a ship incorporating the exhaust heat recovery system, to which Embodiments 1 and 2 of the present invention are applied.
- the exhaust heat recovery system shown in FIG. 1 includes an engine 18 that propels a ship, a shaft generator 16 that is started by the engine 18, a propeller 14 that is rotated by the output of the engine 18, and an air that compresses air supplied to the engine 18.
- the power generator 22 includes a cooler 20 that cools air from the supercharger 22, and an inboard power 2 that is supplemented by the shaft generator 16, the generator 6, and the auxiliary generator 4.
- the exhaust heat recovery system of the present invention may have a configuration in which the shaft generator 16 is not provided.
- the present invention includes an exhaust gas economizer 24, and supplies exhaust gas discharged from the engine 18 to the exhaust gas economizer 24 via the supercharger 22 or the gas turbine 10, and is generated in the exhaust gas economizer 24.
- the steam turbine 8 is driven by steam, and the generator 6 is rotated together with the power of the gas turbine 10.
- a broken line in FIG. 1 is a steam / water line.
- the steam is returned to water by a condenser 12 provided at the rear stage of the steam turbine 8, and the water cools the heat of the cooler 20 and the wall of the engine 18. After warming with heat, it is supplied to the exhaust gas economizer 24 to evaporate to produce steam.
- the auxiliary generator 4 functions as a backup diesel generator (DG) in which the diesel internal combustion engine is connected to the generator main body, and is in a stop operation state in which the diesel internal combustion engine is stopped, and the connection between the generator main body and the diesel internal combustion engine is released. And only the diesel internal combustion engine is driven and the generator main body does not rotate (generally, idle operation at a low speed), and a standby operation state in which the generator main body and the diesel internal combustion engine are connected to generate power. There is. During the actual driving operation of the auxiliary generator 4, the minimum required power amount in the ship necessary for safety or more in order to avoid a power failure is generated and output.
- DG backup diesel generator
- a Q estimation circuit 32 that estimates the current heat storage amount Q of the exhaust gas economizer 24 from the temperature Tg, a comparator 33 that compares the current heat storage amount Q and the reference heat amount Q min, and a comparison result from the comparator 33 is a determination circuit. 3, and a predetermined driving state is selected by the auxiliary generator operation control means 35 and the bypass valve opening degree control means 36 under the control of the determination circuit 3.
- the auxiliary generator operation control means 35 controls the operation of the auxiliary generator during normal operation of the main drive machine (before sudden stop), and the amount of heat Q stored in the exhaust gas economizer becomes “Q min ⁇ Q”.
- the operation state of the auxiliary generator 4 is selected from stop, standby or operation, and a detection sensor (not shown) for detecting whether or not the main drive engine (engine 18) is suddenly stopped is provided on the engine side.
- the auxiliary generator is forcibly activated (actual drive) at the time of switching to a sudden stop based on the detection signal.
- the bypass valve opening control means 36 looks at the demand from the ship's electric power and fully opens / or controls the opening of the bypass valve 11 to control the main drive (diesel engine) of the ship.
- the exhaust gas is bypassed to escape, and the current heat storage amount Q estimated at that time is compared with Q stop and the control described later shown in FIG. 6 is performed.
- P min Minimum required amount of power in ship necessary for safety to avoid power outage
- S stop State in which power can be generated from the state where the auxiliary generator is stopped (starting and reaching the driving load corresponding to required power Pmin)
- S stby Time until the auxiliary generator reaches a state where it can generate power from the idling state (from the idle state until it reaches the driving load corresponding to the required power Pmin after actual driving)
- Q stop the amount of heat storage that can be secured for S stop or more after the engine is stopped until the power generation amount P s of the steam turbine interrupts
- P min Q stby the power generation amount P s of the steam turbine after the engine stops The amount of heat that can be stored for S stby or more until min is interrupted
- the auxiliary generator is a backup diesel generator (DG)
- the vertical axis is the backup time of the auxiliary generator
- the horizontal axis is the heat storage amount of the exhaust gas economizer
- FIG. 3 shows the change over time in ship power due to the sudden stop of the engine according to the first embodiment (more specifically, the figure shows the state of reduction in ship power after the main drive (main generator) is stopped in time series.
- ST is a change in the amount of power generated by the main generator corresponding to the steam turbine speed
- GT is a change in the amount of power generated by the main generator corresponding to the gas turbine speed
- DG is a backup diesel generator (starting power generation of DG)
- the inboard power is supplied by a shaft generator driven by engine power, a generator driven by the power of a gas turbine and a steam turbine, and a backup diesel generator (auxiliary generator).
- auxiliary generator auxiliary generator
- control is performed so as to advance the rise time of the auxiliary generator (DG) indicated by the arrow S in FIG. Specifically, in order to start up the auxiliary generator before interrupting the minimum required power capacity Pmin in the ship necessary for safety in order to avoid a power outage, control is performed by paying attention to the heat storage amount Q stored in the exhaust gas economizer .
- the calculation or estimation method of the heat storage amount Q has been described above.
- Q the amount of heat stored in the exhaust gas economizer (heat storage amount)
- Q min the amount of heat required to maintain the required power (P min ) until the auxiliary generator start-up time.
- step S1 the current heat storage amount Q of the exhaust gas economizer is estimated from the steam temperature Ts or the exhaust gas outlet temperature Tg.
- the steam temperature Ts and the exhaust gas outlet temperature Tg are temperatures measured on the outlet side of the exhaust gas economizer 24 as shown in FIG.
- the current heat storage amount Q may be estimated by measuring the metal temperature of the exhaust gas economizer pipe or the like.
- step S2 the current heat storage amount Q estimated in step S1 as compared with Q stop, when satisfying Q> Q stop, stopping the auxiliary generator at step S3.
- the time is counted in step S4, and then the process returns to step S1.
- step S5 If Q> Q stop is not satisfied in step S2, Q and Q stby are compared in step S5.
- the auxiliary generator is set in an idling state in step S6, the time is counted in step S4, and then the process returns to step S1.
- the auxiliary generator is caused to generate power in step S7, time is counted in step S4, and then the process returns to step S1.
- the exhaust heat recovery system in the present embodiment is shown in FIG. 1, the description of the configuration is omitted as in the first embodiment. Since power is generated from the exhaust heat of the ship's main drive (engine) to cover the power in the ship, if the load (inboard power demand) decreases rapidly, the generated power becomes surplus. Therefore, there is a risk that the rotation of the gas turbine will rise and be damaged. Therefore, regarding the above-described surplus prevention of the generated electric power, the bypass valve opening control means 36 looks at the demand from the ship's electric power and fully opens / or controls the opening of the bypass valve 11 to control the main drive (diesel engine) of the ship.
- FIG. 5 shows the change over time of the inboard power due to the sudden stop of the engine.
- ST in the figure is a change in the power generation amount of the main generator corresponding to the steam turbine speed, GT.
- DG is a backup diesel generator (a change in the amount of start-up generated power of the DG)
- the steam turbine is a gas turbine for the amount of heat stored in the exhaust gas economizer. Therefore, in this embodiment, control is performed so that the required power P min is maintained until the rise time of the auxiliary generator indicated by the arrow S in FIG.
- the amount of heat (heat storage amount) stored in the exhaust gas economizer is Q
- the amount of heat necessary to maintain the necessary power Pmin until the start-up time of the auxiliary generator is Qmin .
- Q min is obtained from the power load in the ship and the standby state of the auxiliary generator such as stop and idling.
- step S11 the current heat storage amount Q of the exhaust gas economizer is estimated from the steam temperature Ts or the exhaust gas outlet temperature Tg.
- step S12 the current heat storage amount Q estimated in step S11 is compared with Q stop, when satisfying Q> Q stop, reducing the bypass valve opening at step S13.
- the bypass valve is the gas turbine bypass valve 11 shown in FIG. 1, and is a bypass valve provided to supply exhaust gas discharged from the engine 18 to the exhaust gas economizer 24 without passing through the gas turbine 10.
- the auxiliary generator is stopped in step S14, the time is counted in step S15, and the process returns to step S11.
- step S12 If Q> Q stop is not satisfied in step S12, Q and Q stby are compared in step S16.
- Q stop > Q> Q stby is satisfied in step S16, it is determined in step S17 whether or not the gas turbine bypass valve 11 is fully opened. If the gas turbine bypass valve 11 is fully open, the auxiliary generator is set in an idling state in step S18, the time Sstby is counted in step S15, and the process returns to step S11 to reach the necessary power generation amount Pmin. .
- step S19 it is determined in step S19 whether the gas turbine bypass valve 11 is fully opened. If the gas turbine bypass valve 11 is fully open, after the auxiliary generator is driven in step S20 (driving the backup diesel engine and connected to the generator body) to generate power, and after counting the time S stop in step S15 Returning to step S11, the required power generation amount Pmin is reached. On the other hand, if the gas turbine bypass valve 11 is not fully opened in step S17 and step S19, the bypass valve opening is increased in step S21, the time is counted in step S15, and then the process returns to step S11 to reach the required power generation amount Pmin.
- the operation state of the auxiliary generator is changed to stop, standby, and power generation operation so that Q> Q min .
- the opening of the gas turbine bypass valve is opened to increase the heat recovery in the steam turbine, and the power generation amount of the gas turbine and the steam turbine is increased. Increase the ratio. Therefore, as shown in FIG. 5, the required power until the auxiliary generator rises can be maintained, and a power failure in the ship can be avoided. Moreover, since the time which can stop an auxiliary generator increases, it becomes fuel-saving.
- the present invention it is possible to prevent a power failure in the ship against a sudden load change of the main drive machine, which is beneficial when applied to a control method and a control device of an exhaust heat recovery system.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Ocean & Marine Engineering (AREA)
- Physics & Mathematics (AREA)
- Fluid Mechanics (AREA)
- Engine Equipment That Uses Special Cycles (AREA)
- Control Of Eletrric Generators (AREA)
Abstract
Description
一方、エンジンが急停止すると電力が不足し、最悪の場合は船内が停電(ブラックアウト)する。
前記排ガスエコノマイザーの熱エネルギ検知信号に基づいて推定若しくは演算された現在蓄熱量Qと、 前記補助発電機の運転状態と船内の負荷電力に基づいて該補助発電機の起動時間まで必要電力を維持するのに必要な基準熱量Qminとを求めた後に、前記現在蓄熱量Qと前記該基準熱量Qminとを比較し、該比較結果に基づいて前記補助発電機の運転状態を停止、待機若しくは駆動運転の何れかから選択することを特徴とする。
ここで排ガスエコノマイザーは船舶特有の装置で例えば船の煙突の中に取り付けられており、例えば煙突の中に密集した熱交換パイプを設置し、その中に水を通し、主駆動機関で仕事が済んだ排気ガスの熱量を熱交換させて、蒸気を発生させたり、水を加熱させたりする装置である。
そして排ガスエコノマイザーの現在蓄熱量Qは、「冷却器(図1の符号20)より排ガスエコノマイザーに注入された冷却水(量,温度)、過給器22よりの排ガス(量,温度)」の入力エネルギ、エコノマイザーの伝熱効率、エコノマイザーより蒸気として排出される排出蒸気(量,温度)及びエコノマイザーより排ガスとして排気される出口(量,温度)から演算より求められるが、蒸気出口温度Ts及び/又は排ガス出口温度Tgから排ガス エコノマイザーの現在蓄熱量Qを推定する推定式を用いてもよく、又排ガスエコノマイザーの配管等の金属温度を測定して推定しても良い。
又補助発電機とは、補助発電機本体に、これを駆動するための駆動機(例えばデイーゼルエンジン)が直接若しくは間接的に連結したものを指し、補助発電機の運転状態を停止するとは、駆動機を停止すること、補助発電機の待機とは、駆動機と補助発電機本体との連結を解除する(アイドリング運転)状態を指し、更に補助発電機の駆動運転とは、駆動機と補助発電機本体とが連結されており、駆動機側のエネルギが補助発電機本体側に伝達される状態をさす。
これにより、船内電力を余剰にすることなく必要発電量を維持することができるため、補助発電機を無駄に運転することを防ぐ。
このようにして、補助発電機を待機状態にして立ち上がり時間を短くすることができるため、急激な主駆動機の出力低下が発生しても船内の停電を回避することができる。
前記排ガスエコノマイザーに蓄えられる熱量Qが前記蓄熱量Qstopを下回り、且つ前記蓄熱量Qstbyを下回るときは、補助発電機を直ちに待機状態から運転させ、船内の停電を回避させる。(Qstop>stby≧Q≧Qmin)
1.主駆動機が停止(排ガスエネルギの急低減による主発電機の急速出力低減)しても停電を回避するために保安上必要な船内の最低必要電力量に対応する発電量が迅速に得られるように、主駆動機(が急停止する前)の通常運転中に前記補助発電機を運転制御して、排ガスエコノマイザーに蓄えられる熱量Qが「Qmin≧Q」にならないようにする事が本発明の要旨である。
この場合において、主駆動機の通常運転中に前記排ガスエコノマイザーに蓄えられる熱量Qを演算若しくは推定して、その演算若しくは推定したQが、下記2~4のいずれの状態にあるのかを判断して、
2.(Qstop>Qstby≧Q≧Qmin)→駆動運転継続
3.(Qstop>Q≧Qstby>Qmin)→休止運転(アイドル運転)
4.(Q≧Qstop>Qmin)→停止運転
のいずれかの運転状態を選択するものである。
これにより、急激な主駆動機の出力低下が発生しても「排ガスエコノマイザーに蓄えられる熱量Q」を増加させて、結果として補助発電機の立ち上がりまで必要電力を維持することができるため、船内の停電を防ぐことができる。
これにより、船内電力を余剰にすることなく必要電力を維持することができる。
これにより、前記排ガスエコノマイザーに蓄えられる熱量Qの値を大きくして蒸気タービンでの熱回収を大きくすることができるため、主駆動機を停止させることができる時間が増え、省燃費となる。
船の主駆動機にて発生した排ガスが過給機を介して導かれる排ガスエコノマイザーと、該排ガスエコノマイザーにて発生した蒸気から動力を得る蒸気タービンと、該蒸気タービンとともに発電機を駆動するガスタービンと、該発電機の発電量により船内電力を補う補助発電機とを備え、前記主駆動機にて発生した排ガスの一部を前記ガスタービンに供給し該ガスタービンで排出される排ガスの熱量を前記排ガスエコノマイザーへ導く構成とした排熱回収システムの制御装置において、
前記排ガスエコノマイザーの熱エネルギ検知信号に基づいて推定若しくは演算により現在蓄熱量Qを求める手段と
前記補助発電機の運転状態と船内の負荷電力に基づいて該補助発電機の起動時間まで必要電力を維持するのに必要な基準熱量Qminを求める手段と、前記排ガスエコノマイザーに蓄えられる熱量Qが該基準熱量Qminよりも大きくなるように補助発電機の運転状態を停止、待機若しくは運転の何れかから選択する補助発電機制御手段とを備えたことを特徴とする。
これにより、上記した方法発明と同様に、補助発電機の立ち上がり時間を早くしたり、補助発電機の立ち上がりまで必要電力を維持したりして急激な主駆動機の負荷変化に対して船内の停電を防止することができる。
図1中の破線は蒸気と水のラインであり、蒸気タービン8の後段に設けられる復水器12で蒸気は水に戻され、この水を冷却器20の熱やエンジン18の壁を冷却する熱で温めた後、排ガスエコノマイザー24へ供給して蒸発させ蒸気を生成する。
そして補助発電機4の実駆動運転時には、停電を回避するために保安上必要な船内の最低必要電力量若しくはそれ以上が発電出力される。
30は前記補助発電機の制御回路で、
前記補助発電機の運転状態と船内保守に必要な設定電力(以下必要電力という)に基づいて補助発電機の起動時間を設定し、該設定された起動時間の間主発電機を駆動させるに必要な蒸気タービンの駆動蒸気エネルギを得るのに必要な前記排ガスエコノマイザーの基準蓄基準熱量Qminを求める演算回路31、前記排ガスエコノマイザーの蒸気出口温度Ts及び/又は(該エコノマイザーよりの)排ガス出口温度Tgから排ガスエコノマイザー24の現在蓄熱量Qを推定するQ推定回路32、前記現在蓄熱量Qと前記基準熱量Qminとを比較する比較器33、該比較器33よりの比較結果は判定回路3に送られ、該判定回路3の制御により補助発電機運転制御手段35とバイパス弁開度制御手段36により所定の駆動状態を選択する。
Pmin :停電を回避するために保安上必要な船内の最低必要電力量
Sstop:補助発電機が停止している状態から発電可能な状態(起動して必要電力Pminに対応する駆動負荷に到達するまでの)になるまでの時間
Sstby:補助発電機がアイドリング状態から発電可能な状態(アイドル状態から実駆動して必要電力Pminに対応する駆動負荷に到達するまでの)になるまでの時間
Qstop:エンジンが停止してから蒸気タービンの発電量PsがPminを
割り込むまでの時間がSstop以上確保できる蓄熱量
Qstby:エンジンが停止してから蒸気タービンの発電量PsがPminを
割り込むまでの時間がSstby以上確保できる蓄熱量
図3は実施形態1に係るエンジンの急停止による船内電力の経時変化を示す(より具体的には図は主駆動機(主発電機)停止後の船内電力の低減状態を時系列的に示し、図中STは蒸気タービン回転数に対応する主発電機の発電量変化、GTはガスタービン回転数に対応する主発電機の発電量変化、DGは、バックアップ用ディーゼル発電機(DGの起動発電量変化である。)船内電力は、エンジンの動力による軸発電機と、ガスタービン及び蒸気タービンの動力によって駆動する発電機と、バックアップ用のディーゼル発電機(補助発電機)によって供給されている。ここでは、主エンジンが急停止することによる急激な負荷変化に対する制御方法について述べる。
よって、本実施形態では、図3の矢印Sに示される補助発電機(DG)の立ち上がり時間を早めるよう制御する。詳しくは、停電を回避するために保安上必要な船内の最低必要電力容量Pminを割り込む前までに補助発電機を立ち上げるため、排ガスエコノマイザーに蓄えられる蓄熱量Qに着目して制御を行う。該蓄熱量Qの演算若しくは推定方法は前述している。
ステップS2では、ステップS1で推定された現在蓄熱量QをQstopと比較し、Q>Qstopを満たすとき、ステップS3で補助発電機を停止する。次いで、ステップS4で時間をカウントしてからステップS1に戻す。
また、ステップS5でQ>Qstbyを満たさないとき、ステップS7で補助発電機を発電運転し、ステップS4で時間をカウントした後にステップS1に戻す。
船の主駆動機(エンジン)の排熱から発電して船内の電力を賄っているため、負荷(船内電力需要)が急激に減少すると、発電した電力が余剰になる。そのため、ガスタービンの回転が上昇して損傷する危険がある。そこで上述した発電した電力の余剰防止に関しては、バイパス弁開度制御手段36は船内電力よりの需要をみて、バイパス弁11を全開/若しくは開度制御して船の主駆動機(ディーゼルエンジン)の排ガスをバイパスして逃がしている。
その状態で前記排ガスエコノマイザー11の推定された現在蓄熱量QをQstopと比較し図6に示す後記する制御を行う。
図5はエンジンの急停止による船内電力の経時変化を示す。(実施形態1と同様に主駆動機(主発電機)停止後の船内電力の低減状態を時系列的に示し、図中STは蒸気タービン回転数に対応する主発電機の発電量変化、GTはガスタービン回転数に対応する主発電機の発電量変化、DGは、バックアップ用ディーゼル発電機(DGの起動発電量変化である。)、蒸気タービンは排ガスエコノマイザーの蓄熱量のためにガスタービンよりも低下が遅い。よって、本実施形態では、図5の矢印Sに示される補助発電機の立ち上がり時間まで必要電力Pminが維持されるように制御を行う。
ステップS12では、ステップS11で推定された現在蓄熱量QをQstopと比較し、Q>Qstopを満たすとき、ステップS13でバイパス弁開度を下げる。バイパス弁とは、図1に示すガスタービンバイパス弁11であり、エンジン18から排出される排ガスがガスタービン10を介さずに排ガスエコノマイザー24へ供給されるために設けられたバイパス弁である。
次いで、ステップS14で補助発電機を停止し、ステップS15で時間をカウントしてからステップS11に戻す。
一方、ステップS17とステップS19でガスタービンバイパス弁11が全開でない場合は、ステップS21でバイパス弁開度を上げ、ステップS15で時間をカウントした後にステップS11に戻して必要発電量Pminに到達させる。
よって、図5のように補助発電機の立ち上がりまでの必要電力を維持することができ、船内の停電を回避することができる。また、補助発電機を停止させることができる時間が増えるため、省燃費になる。
Claims (9)
- 船の主駆動機(エンジン)にて発生した排ガスが過給機を介して導かれる排ガスエコノマイザーと、該排ガスエコノマイザーにて発生した蒸気から動力を得る蒸気タービンと、該蒸気タービンとともに発電機を駆動するガスタービンと、該発電機の発電量により船内電力を補う補助発電機とを備え、前記主駆動機にて発生した排ガスの一部を前記ガスタービンに供給し該ガスタービンで排出される排ガスの熱量を前記排ガスエコノマイザーへ導く排熱回収システムの制御方法において、
前記排ガスエコノマイザーの熱エネルギ検知信号に基づいて推定若しくは演算された現在蓄熱量Qと、 前記補助発電機の運転状態と船内の負荷電力に基づいて該補助発電機の起動時間まで必要電力を維持するのに必要な基準熱量Qminとを求めた後に、前記現在蓄熱量Qと前記該基準熱量Qminとを比較し、該比較結果に基づいて前記補助発電機の運転状態を停止、待機若しくは駆動運転の何れかから選択することを特徴とする排熱回収システムの制御方法。 - 前記主駆動機が停止して前記補助発電機の停止状態から発電可能な状態になるまでの時間を確保することができる蓄熱量Qstopよりも前記排ガスエコノマイザーに蓄えられる熱量Qが大きいときに前記補助発電機を停止することを特徴とする請求項1記載の排熱回収システムの制御方法。
- 前記排ガスエコノマイザーに蓄えられる熱量Qが前記蓄熱量Qstopを下回り、且つ前記主駆動機が停止して前記補助発電機の待機状態から発電可能な状態になるまでの時間を確保することができる蓄熱量Qstbyよりも大きいときに前記補助発電機を待機状態にすることを特徴とする請求項2記載の排熱回収システムの制御方法。
- 前記排ガスエコノマイザーに蓄えられる熱量Qが前記蓄熱量Qstopを下回り、且つ前記蓄熱量Qstbyを下回るときに前記補助発電機を運転させることを特徴とする請求項3記載の排熱回収システムの制御方法。
- 前記ガスタービンをバイパスし、該ガスタービンを介さずに前記主駆動機にて発生した排ガスの一部を前記排ガスエコノマイザーに供給させるバイパスラインと、該バイパスラインに配設され排ガスの流量を増減させるバイパス弁とを備え、
前記排ガスエコノマイザーに蓄えられる熱量Qが前記基準熱量Qminよりも大きくなるように該バイパス弁の開度を調整することを特徴とする請求項1記載の排熱回収システムの制御方法。 - 前記主駆動機が停止して前記補助発電機の停止状態から発電可能な状態になるまでの時間を確保することができる蓄熱量Qstopよりも前記排ガスエコノマイザーに蓄えられる熱量Qが大きいときに前記バイパス弁の開度を下げることを特徴とする請求項5記載の排熱回収システムの制御方法。
- 前記主駆動機が停止して前記補助発電機の停止状態から発電可能な状態になるまでの時間を確保することができる蓄熱量Qstopよりも前記排ガスエコノマイザーに蓄えられる熱量Qが小さいときに前記バイパス弁の開度を上げることを特徴とする請求項5記載の排熱回収システムの制御方法。
- 船の主駆動機にて発生した排ガスが過給機を介して導かれる排ガスエコノマイザーと、該排ガスエコノマイザーにて発生した蒸気から動力を得る蒸気タービンと、該蒸気タービンとともに発電機を駆動するガスタービンと、該発電機の発電量により船内電力を補う補助発電機とを備え、前記主駆動機にて発生した排ガスの一部を前記ガスタービンに供給し該ガスタービンで排出される排ガスの熱量を前記排ガスエコノマイザーへ導く構成とした排熱回収システムの制御装置において、
前記排ガスエコノマイザーの熱エネルギ検知信号に基づいて推定若しくは演算により現在蓄熱量Qを求める手段と
前記補助発電機の運転状態と船内の負荷電力に基づいて該補助発電機の起動時間まで必要電力を維持するのに必要な基準熱量Qminを求める手段と、前記排ガスエコノマイザーに蓄えられる熱量Qが該基準熱量Qminよりも大きくなるように補助発電機の運転状態を停止、待機若しくは運転の何れかから選択する補助発電機制御手段とを備えたことを特徴とする排熱回収システムの制御装置。 - 前記ガスタービンをバイパスし、該ガスタービンを介さずに前記主駆動機にて発生した排ガスの一部を前記排ガスエコノマイザーに供給させるバイパスラインと、該バイパスラインに配設され排ガスの流量を増減させるバイパス弁とを備え、
前記排ガスエコノマイザーに蓄えられる熱量Qが前記基準熱量Qminよりも大きくなるように該バイパス弁の開度を調整するバイパス弁調整手段を備えたことを特徴とする請求項8記載の排熱回収システムの制御装置。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP09834754A EP2372115A1 (en) | 2008-12-25 | 2009-12-16 | Control method and control device for exhaust heat recovery system for marine vessel |
JP2010544021A JP5047367B2 (ja) | 2008-12-25 | 2009-12-16 | 船舶用排熱回収システムの制御方法及び制御装置 |
CN200980152421.3A CN102265003B (zh) | 2008-12-25 | 2009-12-16 | 船舶用废热回收系统的控制方法及控制装置 |
US13/127,299 US20110203290A1 (en) | 2008-12-25 | 2009-12-16 | Control method and control device for exhaust heat recovery system for marine vessel |
KR1020117011870A KR101303985B1 (ko) | 2008-12-25 | 2009-12-16 | 선박용 배열 회수 시스템의 제어 방법 및 제어 장치 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008331595 | 2008-12-25 | ||
JP2008-331595 | 2008-12-25 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2010073951A1 true WO2010073951A1 (ja) | 2010-07-01 |
Family
ID=42287566
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2009/070993 WO2010073951A1 (ja) | 2008-12-25 | 2009-12-16 | 船舶用排熱回収システムの制御方法及び制御装置 |
Country Status (6)
Country | Link |
---|---|
US (1) | US20110203290A1 (ja) |
EP (1) | EP2372115A1 (ja) |
JP (1) | JP5047367B2 (ja) |
KR (1) | KR101303985B1 (ja) |
CN (1) | CN102265003B (ja) |
WO (1) | WO2010073951A1 (ja) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012053112A1 (ja) * | 2010-10-22 | 2012-04-26 | 三菱重工業株式会社 | 推進装置及びそれを備えた船舶 |
JP2012125102A (ja) * | 2010-12-10 | 2012-06-28 | Mitsubishi Heavy Ind Ltd | 船舶の発電制御装置、船舶、及び船舶の発電制御方法 |
CN102959185A (zh) * | 2010-09-24 | 2013-03-06 | 三菱重工业株式会社 | 涡轮发电机的控制方法及装置 |
CN103089340A (zh) * | 2011-10-27 | 2013-05-08 | 中集船舶海洋工程设计研究院有限公司 | 集装箱船的发电系统 |
JP2015533400A (ja) * | 2012-10-26 | 2015-11-24 | パワーフェイズ・エルエルシー | ガスタービンエネルギー補助システムおよび加熱システム、ならびに、その製造方法および使用方法 |
JP2019093735A (ja) * | 2017-11-17 | 2019-06-20 | 三菱重工業株式会社 | 舶用電源システム、これを備えた船舶、及び舶用電源システムの制御方法並びに舶用電源システムの制御プログラム |
US10480418B2 (en) | 2012-10-26 | 2019-11-19 | Powerphase Llc | Gas turbine energy supplementing systems and heating systems, and methods of making and using the same |
CN113264172A (zh) * | 2021-04-07 | 2021-08-17 | 泉州海洋职业学院 | 船舶动力清洗系统 |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5448873B2 (ja) * | 2010-01-21 | 2014-03-19 | 三菱重工業株式会社 | エンジン排気エネルギー回収装置、これを備える船舶、これを備える発電プラント、エンジン排気エネルギー回収装置の制御装置およびエンジン排気エネルギー回収装置の制御方法 |
KR101316560B1 (ko) * | 2011-09-22 | 2013-10-15 | 대우조선해양 주식회사 | 선박의 폐열을 이용한 에너지 절감 장치 |
US20130097993A1 (en) * | 2011-10-19 | 2013-04-25 | Himanshu Raja | Heat recovery steam generator and methods of coupling same to a combined cycle power plant |
KR101307100B1 (ko) * | 2011-11-24 | 2013-09-11 | 현대중공업 주식회사 | 선박엔진의 열효율을 향상시키는 복합발전시스템 |
KR101624442B1 (ko) * | 2012-04-04 | 2016-05-25 | 미츠비시 쥬고교 가부시키가이샤 | 선박의 발전 제어 장치, 선박, 및 선박의 발전 제어 방법 |
KR101426138B1 (ko) * | 2012-08-20 | 2014-08-05 | 현대중공업 주식회사 | 선박의 폐열 회수 시스템 및 그 방법 |
CN103111172B (zh) * | 2013-01-15 | 2015-05-13 | 大连海事大学 | 一种船舶主机余热回收和尾气处理系统及方法 |
CN103322634B (zh) * | 2013-05-27 | 2016-03-02 | 洛阳双瑞精铸钛业有限公司 | 一种船用主机冷却水余热利用装置 |
KR20150115119A (ko) * | 2014-04-02 | 2015-10-14 | 현대중공업 주식회사 | 액화가스 처리 시스템 및 방법 |
NL1042097B1 (en) * | 2016-10-11 | 2018-04-18 | Van Der Bogt Perry | Energy saving method for electrical (green) power supply with the EmNa power technology's. |
CN110500176B (zh) * | 2019-08-16 | 2024-08-16 | 潍柴西港新能源动力有限公司 | 热电联产燃气机组的主供电模式与主供热模式控制方法 |
CN114735183B (zh) * | 2022-03-21 | 2023-04-28 | 招商局重工(深圳)有限公司 | 一种船舶淡水循环热量回收系统及其控制方法 |
CN118517319A (zh) * | 2024-05-11 | 2024-08-20 | 杭州航民江东热电有限公司 | 一种热电机组的控制方法、系统及存储介质 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0565804A (ja) * | 1991-09-03 | 1993-03-19 | Kawasaki Heavy Ind Ltd | 2段混気式ターボ発電機の制御方法 |
JP2003214256A (ja) * | 2002-01-28 | 2003-07-30 | Mitsubishi Heavy Ind Ltd | コージェネレーションシステム |
JP2005320938A (ja) * | 2004-05-11 | 2005-11-17 | Yanmar Co Ltd | 排熱回収装置及び排熱回収方法 |
JP3804693B2 (ja) | 1996-06-21 | 2006-08-02 | 大阪瓦斯株式会社 | 排熱回収システム |
JP2007001339A (ja) * | 2005-06-21 | 2007-01-11 | Mitsubishi Heavy Ind Ltd | 船舶の推進装置における内燃機関廃熱回収プラント |
WO2007115579A2 (en) * | 2006-04-12 | 2007-10-18 | Man Diesel A/S | A large turbocharged diesel engine with energy recovery arrangment |
JP2008175108A (ja) * | 2007-01-17 | 2008-07-31 | Yanmar Co Ltd | ランキンサイクル動力回収装置 |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4455614A (en) * | 1973-09-21 | 1984-06-19 | Westinghouse Electric Corp. | Gas turbine and steam turbine combined cycle electric power generating plant having a coordinated and hybridized control system and an improved factory based method for making and testing combined cycle and other power plants and control systems therefor |
US4031404A (en) * | 1974-08-08 | 1977-06-21 | Westinghouse Electric Corporation | Combined cycle electric power plant and a heat recovery steam generator having improved temperature control of the steam generated |
US4047005A (en) * | 1974-08-13 | 1977-09-06 | Westinghouse Electric Corporation | Combined cycle electric power plant with a steam turbine having a throttle pressure limiting control |
US4013877A (en) * | 1974-08-13 | 1977-03-22 | Westinghouse Electric Corporation | Combined cycle electric power plant with a steam turbine having an improved valve control system |
US4201924A (en) * | 1974-08-13 | 1980-05-06 | Westinghouse Electric Corp. | Combined cycle electric power plant with a steam turbine having a sliding pressure main bypass and control valve system |
US5605045A (en) * | 1995-09-18 | 1997-02-25 | Turbodyne Systems, Inc. | Turbocharging system with integral assisting electric motor and cooling system therefor |
JP2005065804A (ja) * | 2003-08-21 | 2005-03-17 | Inaho:Kk | 長さを調節できるネックレス等の装身具 |
US20070039305A1 (en) * | 2005-08-19 | 2007-02-22 | General Electric Company | Lubricating Oil Heat Recovery System for Turbine Engines |
EP1881177B1 (en) * | 2006-07-21 | 2012-05-16 | C.R.F. Società Consortile per Azioni | Modular power generating system |
US8155813B2 (en) * | 2008-12-25 | 2012-04-10 | Mitsubishi Heavy Industries, Ltd. | Control device for vessel equipped with exhaust heat recovery system and the vessel equipped with the control device |
WO2010074173A1 (ja) * | 2008-12-26 | 2010-07-01 | 三菱重工業株式会社 | 排熱回収システムの制御装置 |
-
2009
- 2009-12-16 WO PCT/JP2009/070993 patent/WO2010073951A1/ja active Application Filing
- 2009-12-16 US US13/127,299 patent/US20110203290A1/en not_active Abandoned
- 2009-12-16 JP JP2010544021A patent/JP5047367B2/ja not_active Expired - Fee Related
- 2009-12-16 EP EP09834754A patent/EP2372115A1/en not_active Withdrawn
- 2009-12-16 CN CN200980152421.3A patent/CN102265003B/zh active Active
- 2009-12-16 KR KR1020117011870A patent/KR101303985B1/ko active IP Right Grant
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0565804A (ja) * | 1991-09-03 | 1993-03-19 | Kawasaki Heavy Ind Ltd | 2段混気式ターボ発電機の制御方法 |
JP3804693B2 (ja) | 1996-06-21 | 2006-08-02 | 大阪瓦斯株式会社 | 排熱回収システム |
JP2003214256A (ja) * | 2002-01-28 | 2003-07-30 | Mitsubishi Heavy Ind Ltd | コージェネレーションシステム |
JP2005320938A (ja) * | 2004-05-11 | 2005-11-17 | Yanmar Co Ltd | 排熱回収装置及び排熱回収方法 |
JP2007001339A (ja) * | 2005-06-21 | 2007-01-11 | Mitsubishi Heavy Ind Ltd | 船舶の推進装置における内燃機関廃熱回収プラント |
WO2007115579A2 (en) * | 2006-04-12 | 2007-10-18 | Man Diesel A/S | A large turbocharged diesel engine with energy recovery arrangment |
JP2008175108A (ja) * | 2007-01-17 | 2008-07-31 | Yanmar Co Ltd | ランキンサイクル動力回収装置 |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102959185A (zh) * | 2010-09-24 | 2013-03-06 | 三菱重工业株式会社 | 涡轮发电机的控制方法及装置 |
WO2012053112A1 (ja) * | 2010-10-22 | 2012-04-26 | 三菱重工業株式会社 | 推進装置及びそれを備えた船舶 |
JP2012125102A (ja) * | 2010-12-10 | 2012-06-28 | Mitsubishi Heavy Ind Ltd | 船舶の発電制御装置、船舶、及び船舶の発電制御方法 |
CN103089340A (zh) * | 2011-10-27 | 2013-05-08 | 中集船舶海洋工程设计研究院有限公司 | 集装箱船的发电系统 |
JP2015533400A (ja) * | 2012-10-26 | 2015-11-24 | パワーフェイズ・エルエルシー | ガスタービンエネルギー補助システムおよび加熱システム、ならびに、その製造方法および使用方法 |
US10119472B2 (en) | 2012-10-26 | 2018-11-06 | Powerphase Llc | Gas turbine energy supplementing systems and heating systems, and methods of making and using the same |
US10480418B2 (en) | 2012-10-26 | 2019-11-19 | Powerphase Llc | Gas turbine energy supplementing systems and heating systems, and methods of making and using the same |
US10995670B2 (en) | 2012-10-26 | 2021-05-04 | Powerphase International, Llc | Gas turbine energy supplementing systems and heating systems, and methods of making and using the same |
US11686250B2 (en) | 2012-10-26 | 2023-06-27 | Powerphase Llc | Gas turbine energy supplementing systems and heating systems, and methods of making and using the same |
JP2019093735A (ja) * | 2017-11-17 | 2019-06-20 | 三菱重工業株式会社 | 舶用電源システム、これを備えた船舶、及び舶用電源システムの制御方法並びに舶用電源システムの制御プログラム |
JP7046569B2 (ja) | 2017-11-17 | 2022-04-04 | 三菱重工マリンマシナリ株式会社 | 舶用電源システム、これを備えた船舶、及び舶用電源システムの制御方法並びに舶用電源システムの制御プログラム |
CN113264172A (zh) * | 2021-04-07 | 2021-08-17 | 泉州海洋职业学院 | 船舶动力清洗系统 |
Also Published As
Publication number | Publication date |
---|---|
KR101303985B1 (ko) | 2013-09-04 |
EP2372115A1 (en) | 2011-10-05 |
CN102265003B (zh) | 2014-07-16 |
CN102265003A (zh) | 2011-11-30 |
JPWO2010073951A1 (ja) | 2012-06-14 |
JP5047367B2 (ja) | 2012-10-10 |
KR20110088529A (ko) | 2011-08-03 |
US20110203290A1 (en) | 2011-08-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5047367B2 (ja) | 船舶用排熱回収システムの制御方法及び制御装置 | |
JP5409848B2 (ja) | 船舶用排熱回収システムを利用した発電方法とその排熱回収システム | |
JP5293835B2 (ja) | 内燃機関の潤滑システム | |
KR101592652B1 (ko) | 연료전지 차량의 열 관리 시스템 및 방법 | |
JP5173111B2 (ja) | 燃料電池システム | |
JP2010269641A (ja) | セントラル清水冷却システム | |
JP2010007950A (ja) | コージェネレーションシステム | |
JP4707338B2 (ja) | 燃料電池システム | |
JP5816057B2 (ja) | 冷却系統の制御方法及び装置 | |
US20060035121A1 (en) | Fuel cell system | |
JP5967404B2 (ja) | スターリングエンジン制御システム及びスターリングエンジン搭載船舶 | |
JP2008226810A (ja) | 燃料電池発電システム | |
JP2006052902A (ja) | コージェネレーションシステム | |
JP4833707B2 (ja) | 排熱回収装置 | |
JP5440337B2 (ja) | エンジン廃熱回収発電方法及び装置 | |
JP4485616B2 (ja) | コージェネレーション装置 | |
JP2004179153A (ja) | 燃料電池システム | |
JP2008218356A (ja) | 燃料電池発電システム及びその制御方法 | |
JP2006274873A (ja) | 熱回収装置、並びに、コージェネレーションシステム | |
JP5895498B2 (ja) | タービンバイパス装置およびタービンバイパス制御方法 | |
JP2010190140A (ja) | 排熱回収方法、排熱回収装置及びコジェネレーションシステム | |
JP5371260B2 (ja) | インバータ式エンジン発電装置 | |
JP2006032140A (ja) | 燃料電池コージェネレーションシステム | |
JP2008270132A (ja) | 車両用燃料電池システムの制御装置及びコンプレッサ制御方法 | |
KR20200078900A (ko) | 연료전지 시스템의 cod히터의 과열 방지 제어 방법 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 200980152421.3 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 09834754 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2010544021 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2009834754 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13127299 Country of ref document: US |
|
ENP | Entry into the national phase |
Ref document number: 20117011870 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |