JP2019093735A - 舶用電源システム、これを備えた船舶、及び舶用電源システムの制御方法並びに舶用電源システムの制御プログラム - Google Patents

舶用電源システム、これを備えた船舶、及び舶用電源システムの制御方法並びに舶用電源システムの制御プログラム Download PDF

Info

Publication number
JP2019093735A
JP2019093735A JP2017221828A JP2017221828A JP2019093735A JP 2019093735 A JP2019093735 A JP 2019093735A JP 2017221828 A JP2017221828 A JP 2017221828A JP 2017221828 A JP2017221828 A JP 2017221828A JP 2019093735 A JP2019093735 A JP 2019093735A
Authority
JP
Japan
Prior art keywords
diesel generator
secondary battery
power
rankine cycle
marine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017221828A
Other languages
English (en)
Other versions
JP7046569B2 (ja
JP2019093735A5 (ja
Inventor
晃 川波
Akira Kawanami
晃 川波
白石 啓一
Keiichi Shiraishi
啓一 白石
祐介 今森
Yusuke Imamori
祐介 今森
武蔵 坂本
Musashi Sakamoto
武蔵 坂本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2017221828A priority Critical patent/JP7046569B2/ja
Publication of JP2019093735A publication Critical patent/JP2019093735A/ja
Publication of JP2019093735A5 publication Critical patent/JP2019093735A5/ja
Application granted granted Critical
Publication of JP7046569B2 publication Critical patent/JP7046569B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Control Of Eletrric Generators (AREA)

Abstract

【課題】ディーゼル発電機、有機ランキンサイクルシステム及び二次電池を備えディーゼル発電機を高負荷運転する舶用電源システム、これを備えた船舶、及び舶用電源システムの制御方法並びに舶用電源システムの制御プログラムを提供することを目的とする。【解決手段】制御装置9がディーゼル発電機10、ORCシステム2及び二次電池20を組み合わせて船内需要電力を賄うように制御を行う舶用電源システム1であって、ディーゼル発電機10は、平均船内需要電力に対して負荷率が60%以上90%以下であり、制御装置9は、船内需要電力がディーゼル発電機10及びORCシステム2の合計出力を超えない場合に余剰分の電力を二次電池20に充電するように制御を行い、船内需要電力がディーゼル発電機10及びORCシステム2の合計出力を超える場合に二次電池20に蓄電された電力を放電するように制御を行う。【選択図】図5

Description

本発明は、舶用電源システム、これを備えた船舶、及び舶用電源システムの制御方法並びに舶用電源システムの制御プログラムに関するものである。
船舶において、船内の電力負荷を賄うために、様々な方法が検討されている。
例えば、特許文献1には、パワータービンで発電した電力を蓄電し、船内負荷が増加した場合に蓄電した電力を利用することが開示されている。
また、特許文献2には、船舶に設けられた過給機と同軸上の発電機にて発電した電力を蓄電し、船内負荷が増加した場合に蓄電した電力を利用することが開示されている。
一方、特許文献3には、推進用メインエンジンを冷却したジャケット水と熱交換した有機熱媒体を熱源として発電を行う有機ランキンサイクルシステムが開示されている。
また、特許文献4には、船舶に設けられた過給機と同軸上の発電機にて発電した電力にて船内負荷を賄い、一部を二次電池へ蓄電し、緊急停止時に用いるディーゼル発電設備が発電を開始するまでの間に二次電池から電力を供給することが開示されている。
特開2009−137383号公報 特開2011−256827号公報 特開2016−142223号公報 特許第5804728号公報
しかしながら、上記特許文献1、2及び4に開示された発明では、ディーゼル発電機は主機関が停止している場合等に発電を行うために設けられた非常用の発電機であり、ディーゼル発電機の負荷率についての検討がなされていないため、場合によってはディーゼル発電機の燃費効率が悪いという問題があった。
また、上記特許文献1、2及び4に開示された発明に対し、上記特許文献3に開示された発明を適用したとしても同様の課題が存在する。
また、上記特許文献4に開示された発明において、ディーゼル発電機の高効率化を図り燃費改善を行うために二次電池を用いてディーゼル発電機の負荷の変動を平準化することが考えられるが、二次電池は充放電効率が悪く、単に二次電池を設置しただけではディーゼル発電機の効率改善と二次電池の充放電損失とが相殺され、燃費改善の目的に対しては効果が薄いということがわかっている。
また、従来のシステムは、発電を行う装置として船内需要電力の変動に見合う容量のメインディーゼル発電機のみが設けられていた。この従来のシステムに対し、有機ランキンサイクルシステム及び二次電池を追加で設置し、メインディーゼル発電機の負荷の平滑化を行うとすると、メインディーゼル発電機の負荷率は一定となり、常時低負荷での運転が行われることとなる。ここで、メインディーゼル発電機の低負荷での運転は、燃費効率が悪いという問題がある。
本発明は、このような事情に鑑みてなされたものであって、ディーゼル発電機、有機ランキンサイクルシステム及び二次電池を備えディーゼル発電機を高負荷運転する舶用電源システム、これを備えた船舶、及び舶用電源システムの制御方法並びに舶用電源システムの制御プログラムを提供することを目的とする。
上記課題を解決するために、本発明の舶用電源システム、これを備えた船舶、及び舶用電源システムの制御方法並びに舶用電源システムの制御プログラムは以下の手段を採用する。
本発明の第一態様に係る舶用電源システムは、発電を行うディーゼル発電機と、有機熱媒体を熱源として発電を行う有機ランキンサイクルシステムと、二次電池と、制御装置と、を備え、前記制御装置は、前記ディーゼル発電機、前記有機ランキンサイクルシステム及び前記二次電池を組み合わせて船内需要電力を賄うように制御を行う舶用電源システムであって、前記ディーゼル発電機は、平均船内需要電力に対して負荷率が60%以上90%以下であり、前記制御装置は、船内需要電力が前記ディーゼル発電機及び前記有機ランキンサイクルシステムの合計出力を超えない場合に余剰分の電力を前記二次電池に充電するように制御を行い、前記船内需要電力が前記ディーゼル発電機及び前記有機ランキンサイクルシステムの合計出力を超える場合に前記二次電池に蓄電された前記電力を放電するように制御を行う。
本態様によれば、発電を行うディーゼル発電機と、有機熱媒体を熱源として発電を行う有機ランキンサイクルシステムと、二次電池と、制御装置と、を備え、前記制御装置は、前記ディーゼル発電機、前記有機ランキンサイクルシステム及び前記二次電池を組み合わせて船内需要電力を賄うように制御を行う舶用電源システムであって、前記ディーゼル発電機は、平均船内需要電力に対して負荷率が60%以上90%以下であり、前記制御装置は、船内需要電力が前記ディーゼル発電機及び前記有機ランキンサイクルシステムの合計出力を超えない場合に余剰分の電力を前記二次電池に充電するように制御を行い、前記船内需要電力が前記ディーゼル発電機及び前記有機ランキンサイクルシステムの合計出力を超える場合に前記二次電池に蓄電された前記電力を放電するように制御を行うことから、船内需要電力が平均の値の近辺ではディーゼル発電機を燃費効率のよい負荷率で用い、船内需要電力が増加するとディーゼル発電機に加えて有機ランキンサイクルシステム及び二次電池を用いて増加分をカバーすることができる。
また、有機ランキンサイクルシステム及び二次電池にて発電を行うことから、ディーゼル発電機の容量を削減することができる、すなわち低容量のディーゼル発電機を用いることができるため、導入コストを削減することができる。
また、有機ランキンサイクルシステムにて二次電池の充電を行う場合は、ディーゼル発電機を用いて二次電池の充電を行う必要がないためディーゼル発電機の燃料費を削減することができる。
また、通常航海中は二次電池の充電を行い、出港時のバウスラスター起動等の急激な負荷上昇を二次電池の放電にて賄うことから、特に港湾域でのディーゼル発電機の黒鉛発生を防止することができる。
本発明の第二態様に係る舶用電源システムは、発電を行うディーゼル発電機と、有機熱媒体を熱源として発電を行う有機ランキンサイクルシステムと、二次電池と、制御装置と、を備え、前記制御装置は、前記ディーゼル発電機、前記有機ランキンサイクルシステム及び前記二次電池を組み合わせて船内需要電力を賄うように制御を行う舶用電源システムであって、前記ディーゼル発電機は、メインディーゼル発電機よりも出力が小さい発電機であり、前記制御装置は、船内需要電力が前記ディーゼル発電機及び前記有機ランキンサイクルシステムの合計出力を超えない場合に余剰分の電力を前記二次電池に充電するように制御を行い、前記船内需要電力が前記ディーゼル発電機及び前記有機ランキンサイクルシステムの合計出力を超える場合に前記二次電池に蓄電された前記電力を放電するように制御を行う。
本態様によれば、発電を行うディーゼル発電機と、有機熱媒体を熱源として発電を行う有機ランキンサイクルシステムと、二次電池と、制御装置と、を備え、前記制御装置は、前記ディーゼル発電機、前記有機ランキンサイクルシステム及び前記二次電池を組み合わせて船内需要電力を賄うように制御を行う舶用電源システムであって、前記ディーゼル発電機は、メインディーゼル発電機よりも出力が小さい発電機であり、前記制御装置は、船内需要電力が前記ディーゼル発電機及び前記有機ランキンサイクルシステムの合計出力を超えない場合に余剰分の電力を前記二次電池に充電するように制御を行い、前記船内需要電力が前記ディーゼル発電機及び前記有機ランキンサイクルシステムの合計出力を超える場合に前記二次電池に蓄電された前記電力を放電するように制御を行うことから、メインディーゼル発電機を用いずメインディーゼル発電機よりも小出力の発電機にて船内需要電力を賄うことができる。
ディーゼル発電機は、高負荷域で稼働することにより低燃費とすることができる。メインディーゼル発電機を用いて船内需要電力を賄う場合に、メインディーゼル発電機の容量に対して船内需要電力が低い場合は、メインディーゼル発電機は低負荷域で稼働することとなり燃費効率が悪い。
また、停電発生時の短時間の電力供給や、メインディーゼル発電機の高効率化及び制御の簡易化を目的としたメインディーゼル発電機の負荷の平滑化を行うために二次電池を設けることが考えられるが、二次電池は充放電効率が悪く、単に二次電池を設置しただけではメインディーゼル発電機の効率改善を二次電池の充放電時の損失で相殺されてしまうため、燃費改善の効果が薄い。
そこで、メインディーゼル発電機よりも小出力のディーゼル発電機を用いることとする。これにより、ディーゼル発電機は高負荷域で稼働することとなり、燃費を抑えることができる。また、ディーゼル発電機のみでは船内需要電力を賄えない場合に有機ランキンサイクルシステム及び二次電池を組み合わせて用いることで、船内需要電力の増加分をカバーすることができる。
また、有機ランキンサイクルシステム及び二次電池にて発電を行うことから、ディーゼル発電機の容量を削減することができる、すなわち低容量のディーゼル発電機を用いることができるため、導入コストを削減することができる。
また、有機ランキンサイクルシステムにて二次電池の充電を行う場合は、ディーゼル発電機を用いて二次電池の充電を行う必要がないためディーゼル発電機の燃料費を削減することができる。
また、通常航海中は二次電池の充電を行い、出港時のバウスラスター起動等の急激な負荷上昇を二次電池の放電にて賄うことから、特に港湾域でのディーゼル発電機の黒鉛発生を防止することができる。
上記第二態様では、前記制御装置は、前記ディーゼル発電機及び前記有機ランキンサイクルシステムの出力を一定に制御するとしてもよい。
本態様によれば、制御装置は、ディーゼル発電機及び有機ランキンサイクルシステムの出力を一定に制御することから、複雑な制御を必要としない。また、ディーゼル発電機の出力を高負荷運転となるような所定の値に設定することができる。負荷の変動に対しては、二次電池の充放電にて対応する。
上記第二態様では、前記制御装置は、船内需要電力の増減に応じて前記ディーゼル発電機の発停を切り替える制御を行うとしてもよい。
本態様によれば、制御装置は、船内需要電力の増減に応じてディーゼル発電機の発停を切り替える制御を行うことから、ディーゼル発電機が高負荷運転となる場合のみディーゼル発電機を運転するため、ディーゼル発電機の燃費を抑えることができる。ディーゼル発電機が停止している場合は、有機ランキンサイクルシステム及び二次電池にて船内需要電力を賄う。
本発明の第三態様に係る船舶は、上述の舶用電源システムを備える。
本発明の第四態様に係る舶用電源システムの制御方法は、ディーゼル発電機、有機ランキンサイクルシステム及び二次電池を組み合わせて船内需要電力を賄うように制御を行う舶用電源システムの制御方法であって、平均船内需要電力に対してディーゼル発電機の負荷率が60%以上90%以下となるように制御する工程と、船内需要電力が前記ディーゼル発電機及び前記有機ランキンサイクルシステムの合計出力を超えない場合に、余剰分の電力を二次電池に充電するように制御する工程と、前記船内需要電力が前記ディーゼル発電機及び前記有機ランキンサイクルシステムの前記合計出力を超える場合に、前記二次電池に蓄電された前記電力を放電するように制御する工程と、を有する。
本発明の第六態様に係る舶用電源システムの制御プログラムは、ディーゼル発電機、有機ランキンサイクルシステム及び二次電池を組み合わせて船内需要電力を賄うように制御を行う舶用電源システムの制御プログラムであって、平均船内需要電力に対してディーゼル発電機の負荷率が60%以上90%以下となるように制御するステップと、船内需要電力が前記ディーゼル発電機及び前記有機ランキンサイクルシステムの合計出力を超えない場合に、余剰分の電力を二次電池に充電するように制御するステップと、前記船内需要電力が前記ディーゼル発電機及び前記有機ランキンサイクルシステムの前記合計出力を超える場合に、前記二次電池に蓄電された前記電力を放電するように制御するステップと、を有する。
本発明によれば、ディーゼル発電機を高負荷運転するので、ディーゼル発電機の燃費を低燃費とすることができる。
メインディーゼル発電機を用いた舶用電源システムを示した概略構成図である。 ORCシステムを示した概略構成図である。 ディーゼル発電機の出力に対する燃費を示したグラフである。 図1の構成を用いた場合の電力、燃費率、燃料消費量積算値および二次電池充電量の各値の推移を示したグラフである。 本発明の第1実施形態に係る舶用電源システムを示した概略構成図である。 本発明の第1実施形態に係る舶用電源システムを用いた場合の電力、燃費率、燃料消費量積算値および二次電池充電量の各値の推移を示したグラフである。 本発明の第2実施形態に係る舶用電源システムを用いた場合の電力、燃費率、燃料消費量積算値および二次電池充電量の各値の推移を示したグラフである。
以下に、本発明に係る舶用電源システム、これを備えた船舶、及び舶用電源システムの制御方法並びに舶用電源システムの制御プログラムの一実施形態について、図面を参照して説明する。
〔第1実施形態〕
以下、本発明の第1実施形態について、図1乃至6を用いて説明する。
図1には、メインディーゼル発電機を用いた舶用電源システムの概略構成が示されている。
図1に示されるように、メインディーゼル発電機を用いた舶用電源システム1は、メインディーゼル発電機11a及び11b、ディーゼル発電機10、推進用メインエンジン3、ORCシステム(Organic Rankine Cycle System;有機ランキンサイクルシステム)2、二次電池20を主な構成として備えている。
以下の説明において、各メインディーゼル発電機11を区別する場合は、末尾にaまたはbのいずれかを付し、各メインディーゼル発電機11を区別しない場合は、aまたはbを省略する。
メインディーゼル発電機11a及び11bは、船内需要電力を賄うために発電を行う。通常、メインディーゼル発電機11は1台が常時稼働しており、船内需要電力が高負荷となった場合のみ2台が負荷均等にて稼働される。また負荷は、船内需要電力の変動に追従する。
ディーゼル発電機10は、メインディーゼル発電機11よりも出力が小さいディーゼル発電機であり、例えば停泊用の発電機として用いられる。
図2には、本実施形態に係るORCシステムの概略構成が示されている。
ORCシステム2は、有機熱媒体を熱源として発電を行うシステムである。本実施形態では、推進用メインエンジン3におけるディーゼル燃料の燃焼により発生する熱が伝達されるジャケット冷却水を利用することにより、ジャケット冷却水と有機熱媒体を熱交換し有機熱媒体を熱源として発電を行うシステムであるとする。
図2に示すように、ORCシステム2は、有機流体循環流路2aと、蒸発器2bと、パワータービン2cと、発電機2dと、凝縮器2eと、循環ポンプ2fとを有する。
有機流体循環流路2aは、冷却水循環流路6を循環する推進用メインエンジン3におけるジャケット冷却水と熱交換させられる有機流体(作動流体;有機熱媒体)を循環させる流路である。有機流体としては、水よりも沸点の低い流体が用いられる。したがって、有機流体循環流路2aを循環する有機流体は、高温の冷却水(例えば、約85℃)と熱交換することにより蒸発させられる。
水よりも沸点の低い有機流体として、イソペンタン、ブタン、プロパン等の低分子炭化水素や、R134a、R245fa等の冷媒を用いることができる。
蒸発器2bは、冷却水循環流路6を流通する推進用メインエンジン3におけるジャケット冷却水と有機流体とを熱交換させて有機流体を蒸発させる装置である。蒸発器2bは、循環ポンプ2fから有機流体循環流路2aを介して流入する有機流体を蒸発させるとともに蒸発させられた有機流体をパワータービン2cへ供給する。
パワータービン2cは、蒸発器2bによって蒸発させられた気相の有機流体によって回転させられる装置である。パワータービン2cは発電機2dに連結されるロータ軸(図示略)を有し、ロータ軸の回転動力を発電機2dに伝達する。パワータービン2cに回転動力を与える仕事をした有機流体は、パワータービン2cから排出された後に凝縮器2eへ供給される。
発電機2dは、パワータービン2cから伝達されるロータ軸の回転動力によって発電を行う装置である。発電機2dにより発電された電力は、船内需要電力を賄うため本実施形態の舶用電源システム1が搭載される船舶の各部に供給される。
凝縮器2eは、パワータービン2cから排出された有機流体を海水によって冷却し、気相の有機流体を液相の有機流体に凝縮させる装置である。凝縮器2eによって凝縮された液相の有機流体は、有機流体循環流路2aを介して循環ポンプ2fへ供給される。
循環ポンプ2fは、有機流体循環流路2aを介して凝縮器2eから供給される液相の有機流体を蒸発器2bへ圧送する装置である。循環ポンプ2fが有機流体を圧送することにより、有機流体が有機流体循環流路2a上を蒸発器2b,パワータービン2c,凝縮器2eの順に循環する。循環ポンプ2fが有機流体を吐出する吐出量は、制御装置9によって制御される。
図1に示されるように、推進用メインエンジン3は、船舶の推進力を発生させる主機関(主機)であり、燃料油および燃料ガスの少なくともいずれか一方を主燃料として掃気空気とともに燃焼させる内燃機関である。図1の推進用メインエンジン3には軸発電機31が備えられているが、軸発電機31は設置されていなくてもよく、その出力については本発明の検討に含まないものとする。
推進用メインエンジン3は、エンジンシリンダの外側に冷却水の流れる通路であるウォータジャケット(図示略)を有する。推進用メインエンジン3は、冷却水入口から流入する冷却水をウォータジャケットに導いてウォータジャケットの周囲を冷却し、冷却水を冷却水出口から冷却水循環流路6へ排出する。
推進用メインエンジン3を冷却した冷却水は、冷却水循環流路6から流入し、蒸発器2bを通過して有機流体循環流路2aを循環する有機流体と熱交換させられ、冷却水循環流路6へ供給される。
図1に示されるように、二次電池20は、船内需要電力の急変動に対応するため、又は停電発生時における短時間の電力供給を目的として設置されている。また、これに加えてメインディーゼル発電機11の負荷の変動を平準化するために用いられ、これによりメインディーゼル発電機11の高効率化を図り、燃費改善効果が期待される。
二次電池20は、リチウムイオン電池、鉛電池、ニッケル水素電池等であり、特に限定されないが、出力密度、エネルギー密度が高いことからリチウムイオン電池が好ましく用いられる。本実施形態の二次電池20の容量は、100kwであるとする。
以下の説明において、二次電池20はORCシステム2から充電を行うとしているが、これに限らず運転状況によっては他の装置からの充電を行うとしてもよい。例えば、ORCシステム2が停止している場合、また排熱が少ない場合は、ディーゼル発電機10等の他の装置からの充電を行うとしてもよい。
制御装置9は、メインディーゼル発電機11、ディーゼル発電機10、ORCシステム2及び二次電池20の制御を行う。
制御装置9は、例えば、CPU(Central Processing Unit)、RAM(Random Access Memory)、ROM(Read Only Memory)、及びコンピュータ読み取り可能な記憶媒体等から構成されている。そして、各種機能を実現するための一連の処理は、一例として、プログラムの形式で記憶媒体等に記憶されており、このプログラムをCPUがRAM等に読み出して、情報の加工・演算処理を実行することにより、各種機能が実現される。なお、プログラムは、ROMやその他の記憶媒体に予めインストールしておく形態や、コンピュータ読み取り可能な記憶媒体に記憶された状態で提供される形態、有線又は無線による通信手段を介して配信される形態等が適用されてもよい。コンピュータ読み取り可能な記憶媒体とは、磁気ディスク、光磁気ディスク、CD−ROM、DVD−ROM、半導体メモリ等である。
従来のシステムは、発電を行う装置としてメインディーゼル発電機11のみが設けられており、船内需要電力の変動については、メインディーゼル発電機11の負荷を調整することで対応していた。そのため、船内需要電力の変動に見合う容量のメインディーゼル発電機11が設けられていた。
ここで、メインディーゼル発電機11は、それのみで船内需要電力を賄うために容量の大きいディーゼル発電機とされている。例えば図1の場合、メインディーゼル発電機11は、それぞれ例えば680kWのディーゼル発電機であるとされている。
この従来のシステムに対し、メインディーゼル発電機11を置き換えることなくORCシステム2及び二次電池20を追加で設置し、停電発生時の短時間の電力供給や、メインディーゼル発電機11の高効率化及び制御の簡易化を目的としたメインディーゼル発電機11の負荷の平滑化を行うこととした。
しかし、船内需要電力の平均である平均船内需要電力に対してメインディーゼル発電機11の容量が大きすぎると、メインディーゼル発電機11は低負荷となる。
従来のシステムに対し図1に示されるようにORCシステム2及び二次電池20を追加で設置すると、ORCシステム2による排熱回収分の電力にて船内需要電力の一部を賄い、また二次電池20によってメインディーゼル発電機11の負荷変動を吸収、すなわち負荷を平滑化することとなる。その結果、メインディーゼル発電機11は常時低負荷での運転が行われることとなる。
図3には、ディーゼル発電機の出力に対する燃費がグラフに示されている。
図3において、縦軸はディーゼル発電機の燃費、横軸はディーゼル発電機の出力である。ディーゼル発電機の出力が高いほど燃費が減少、すなわち燃費効率が上がるため、緩やかに右下がりとなるグラフが示されている。
図3に示されるように、ディーゼル発電機は、高負荷の場合に燃費効率が良い。特に、負荷率が60%以上90%以下の場合に燃費効率が良いとされる。
よって、メインディーゼル発電機11が低負荷の場合は、燃費効率が悪くなる。
図4には、図1の構成を用いた場合の電力、燃費率、燃料消費量積算値および二次電池充電量の各値の推移がグラフに示されている。
図4の各横軸は時間であり、図4(a)の縦軸は電力、図4(b)の縦軸は燃費率、図4(c)の縦軸は燃料消費量積算値、図4(d)の縦軸は二次電池充電量である。
図4(a)において、太実線は合計電力を示し、これはすなわち船内需要電力と等しい。また、点線はメインディーゼル発電機11aの電力、一点鎖線はメインディーゼル発電機11bの電力、二点鎖線はORCシステム2の出力、実線は二次電池20の出力(充放電)を示す。
図4(b)において、点線はメインディーゼル発電機11aの燃費率を示す。
図4(c)において、実線はメインディーゼル発電機11の合計燃料消費量、一点鎖線はメインディーゼル発電機11bの燃料消費量を示す。
図4(d)において、実線は二次電池20の充電量を示す。
図4(a)の時間tsからteの間において、太線で示される船内需要電力が要求されるものとする。
メインディーゼル発電機11の容量は680kWであるとし、ORCシステム2はその出力が100kWであるとする。船内需要電力に対し、メインディーゼル発電機11は1台のみ運転とするため、メインディーゼル発電機11bは停止し、図4(a)の一点鎖線で示されるように時間tsからteまで出力は0である。またメインディーゼル発電機11a及びORCシステム2は、図4(a)の点線及び二点鎖線で示されるように一定の出力で運転される。また、図4(a)のグラフから平均船内需要電力は242kW、最大船内需要電力は820kWである。ORCシステム2は100kWの一定出力で運転されるとすると、メインディーゼル発電機11aは平均船内需要電力からORCシステム2の出力を減算した値に余裕値を持たせた148kWの一定の出力で運転されるものとする。
時間tsからt1までの間は、メインディーゼル発電機11a及びORCシステム2の合計出力のみで船内需要電力を賄うことができる。この時、二次電池20は、図4(a)の実線で示されるようにマイナスの値をとるが、これは充電を示している。二次電池20は、ORCシステム2によって余剰分の電力が充電される。
時間t1に船内需要電力が増加すると、一定出力とされているメインディーゼル発電機11a及びORCシステム2の合計出力のみでは賄うことができないため、二次電池20に蓄電された電力を放電することで船内需要電力を賄う。その後、船内需要電力が低下しメインディーゼル発電機11a及びORCシステム2の合計出力のみで賄うことができるようになると、二次電池20はORCシステム2から余剰分を充電する。
メインディーゼル発電機11aは、容量680kWに対して148kWの負荷で運転を行うことから、その負荷率は22%である。ここで、負荷率は、時間tsでの二次電池20の充電量が時間teで充電量の初期値に回復するような負荷率とされる。
図4(b)に示されるように、メインディーゼル発電機11aの燃費率はほぼ一定のαg/kWh(αは例えば260)である。
また図4(c)に示されるように、メインディーゼル発電機11、すなわちメインディーゼル発電機11a及びメインディーゼル発電機11bの合計燃料消費量は、メインディーゼル発電機11aのみの運転であるため、メインディーゼル発電機11aの燃料消費量を示す。メインディーゼル発電機11aの燃料消費量積算値は時間とともに上昇し、時間teで約51kgとなる。
また、二次電池20については、時間tsでの充電量が70kWhである場合に、時間teで初期値70kWhに回復するようにメインディーゼル発電機11aの負荷率が決定されている。時間tsからt1までの間は、ORCシステム2から充電されるため二次電池20の充電量は増加する。時間t1において放電を開始するため、二次電池20の充電量は減少するが、放電が必要なくなり再度ORCシステム2から充電が開始されると二次電池20の充電量は増加し、時間teにて充電量は初期値の70kWhに回復する。
このように、従来のシステムに対し単にORCシステム2及び二次電池20を追加で設置するだけでは、メインディーゼル発電機11の負荷率が低くなり、燃費効率の良い運転を行うことが困難である。
そこで、本実施形態では、メインディーゼル発電機11よりも出力が小さいディーゼル発電機10を主発電機として用いるものとする。また、ディーゼル発電機10のみで最大船内需要電力を賄えない場合は、ORCシステム2及び二次電池20を組み合わせて用いるものとする。
図5には、本実施形態に係る舶用電源システムの概要構成が示されている。
図5に示されるように、本実施形態の構成は、図1に示された構成とほぼ同じであるが、メインディーゼル発電機11に替えてディーゼル発電機10を主発電機として用いる。
図6には、本実施形態に係る舶用電源システムを用いた場合の電力、燃費率、燃料消費量積算値および二次電池充電量の各値の推移がグラフに示されている。
図6の各横軸は時間であり、図6(a)の縦軸は電力、図6(b)の縦軸は燃費率、図6(c)の縦軸は燃料消費量積算値、図6(d)の縦軸は二次電池充電量である。
図6(a)において、太実線は合計電力を示し、これはすなわち船内需要電力と等しい。また、点線はディーゼル発電機10の電力、一点鎖線はメインディーゼル発電機11の電力、二点鎖線はORCシステム2の出力、実線は二次電池20の出力(充放電)を示す。
図6(b)において、点線はディーゼル発電機10の燃費率を示す。
図6(c)において、実線はディーゼル発電機10及びメインディーゼル発電機11の合計燃料消費量、一点鎖線はメインディーゼル発電機11の燃料消費量を示す。
図6(d)において、実線は二次電池20の充電量を示す。
図6(a)の時間tsからteの間において、太線で示される船内需要電力が要求されるものとする。
ディーゼル発電機10の容量は240kWであるとし、ORCシステム2はその出力が100kWであるとする。船内需要電力に対し、ディーゼル発電機10が主発電機として運転されるため、メインディーゼル発電機11は停止され、図6(a)の一点鎖線で示されるように時間tsからteまで出力は0である。またディーゼル発電機10及びORCシステム2は、図6(a)の点線及び二点鎖線で示されるように一定の出力で運転される。また、図6(a)のグラフから平均船内需要電力は242kW、最大船内需要電力は820kWである。ORCシステム2は100kWの一定出力で運転されるとすると、制御装置9は、平均船内需要電力からORCシステム2の出力を減算した値に余裕値を持たせた148kWの一定の出力でディーゼル発電機10が運転されるように制御を行うとする。
時間tsからt1までの間は、ディーゼル発電機10及びORCシステム2の合計出力のみで船内需要電力を賄うことができる。この時、二次電池20は、図6(a)の実線で示されるようにマイナスの値をとるが、これは充電を示している。二次電池20は、ORCシステム2によって余剰分の電力が充電される。
時間t1に船内需要電力が増加すると、ディーゼル発電機10及びORCシステム2の合計出力のみでは賄うことができないため、二次電池20に蓄電された電力を放電することで船内需要電力を賄う。その後、船内需要電力が低下しディーゼル発電機10及びORCシステム2の合計出力のみで賄うことができるようになると、二次電池20はORCシステム2から余剰分を充電する。
ディーゼル発電機10は、容量240kWに対して148kWの負荷で運転を行うことから、その負荷率は61%である。ここで、負荷率は、時間tsでの二次電池20の充電量が時間teで充電量の初期値に回復するような負荷率とされる。
図6(b)に示されるように、ディーゼル発電機10の燃費率はほぼ一定のβg/kWh(βは例えば220)である。
また図6(c)に示されるように、ディーゼル発電機10及びメインディーゼル発電機11の合計燃料消費量は、ディーゼル発電機10のみの運転であるため、ディーゼル発電機10の燃料消費量を示す。ディーゼル発電機10の燃料消費量積算値は時間とともに上昇し、時間teで約43kgとなる。
また、二次電池20については、時間tsでの充電量が70kWhである場合に、時間teで初期値70kWhに回復するようにディーゼル発電機10の負荷率が決定されている。時間tsからt1までの間は、ORCシステム2から充電されるため二次電池20の充電量は増加する。時間t1において放電を開始するため、二次電池20の充電量は減少するが、時間t2において放電が必要なくなり再度ORCシステム2から充電が開始されると二次電池20の充電量は増加し、時間teにて充電量は初期値の70kWhに回復する。
このように、ディーゼル発電機10を主発電機として用いる場合は、制御装置9によってディーゼル発電機10の負荷率が高く燃費効率がよいとされる60から90%の負荷率で運転されるように制御されるため、燃費効率のよい運転を行うことができ、メインディーゼル発電機11を用いる場合と比較して燃費消費量積算値を約15%削減することができる。
上記制御については、制御装置9によって行われる。制御装置9によってORCシステム2の制御及び二次電池20の充放電制御が行われる。
ここで、ORCシステム2のみ設置する場合、または二次電池20のみ設置する場合は、それぞれインバータが各々独立して1つずつ必要である。しかし、本実施形態の場合は、インバータを1つにすることができる。
以上、説明してきたように、本実施形態に係る舶用電源システム、これを備えた船舶、及び舶用電源システムの制御方法並びに舶用電源システムの制御プログラムによれば、以下の作用効果を奏する。
本実施形態によれば、発電を行うディーゼル発電機10と、有機熱媒体を熱源として発電を行うORCシステム2と、二次電池20と、制御装置9と、を備え、制御装置9は、ディーゼル発電機10、ORCシステム2及び二次電池20を組み合わせて船内需要電力を賄うように制御を行う舶用電源システム1であって、ディーゼル発電機10は、メインディーゼル発電機11よりも出力が小さい発電機であり、制御装置9は、船内需要電力がディーゼル発電機10及びORCシステム2の合計出力を超えない場合に余剰分の電力を二次電池20に充電するように制御を行い、船内需要電力がディーゼル発電機10及びORCシステム2の合計出力を超える場合に二次電池20に蓄電された電力を放電するように制御を行うことから、メインディーゼル発電機11を用いずメインディーゼル発電機11よりも小出力のディーゼル発電機10にて船内需要電力を賄うことができる。
ディーゼル発電機は、高負荷域で稼働することにより低燃費とすることができる。メインディーゼル発電機11を用いて船内需要電力を賄う場合に、メインディーゼル発電機11の容量に対して船内需要電力が低い場合(例えば容量の半分以下)は、メインディーゼル発電機11は低負荷域で稼働することとなり燃費効率が悪い。
また、停電発生時の短時間の電力供給や、メインディーゼル発電機11の高効率化及び制御の簡易化を目的としたメインディーゼル発電機11の負荷の平滑化を行うために二次電池20を設けることが考えられるが、二次電池20は充放電効率が悪く、単に二次電池20を設置しただけではメインディーゼル発電機11の効率改善を二次電池20の充放電時の損失で相殺されてしまうため、燃費改善の効果が薄い。
そこで、メインディーゼル発電機11よりも小出力のディーゼル発電機10を用いることとする。これにより、ディーゼル発電機10は高負荷域で稼働することとなり、燃費を抑えることができる。また、ディーゼル発電機10のみでは船内需要電力を賄えない場合にORCシステム2及び二次電池20を組み合わせて用いることで、船内需要電力の増加分をカバーすることができる。
また、ORCシステム2及び二次電池20にて発電を行うことから、ディーゼル発電機10の容量を削減することができる、すなわち低容量のディーゼル発電機を用いることができるため、導入コストを削減することができる。
また、ORCシステム2にて二次電池20の充電を行う場合は、ディーゼル発電機10を用いて二次電池20の充電を行う必要がないためディーゼル発電機10の燃料費を削減することができる。
また、通常航海中は二次電池20の充電を行い、出港時のバウスラスター起動等の急激な負荷上昇を二次電池20の放電にて賄うことから、特に港湾域でのディーゼル発電機10の黒鉛発生を防止することができる。
また本実施形態によれば、制御装置9は、ディーゼル発電機10及びORCシステム2の出力を一定に制御することから、複雑な制御を必要としない。また、ディーゼル発電機10の出力を高負荷運転となるような所定の値に設定することができる。負荷の変動に対しては、二次電池20の充放電にて対応する。
また本実施形態によれば、ORCシステム2及び二次電池20を独立して設ける場合に必要なインバータを一つ削減し、一つのインバータとすることができ、導入コストを削減することができる。
〔第2実施形態〕
以下、本発明の第2実施形態について、図7を用いて説明する。
上記した第1実施形態では、ディーゼル発電機は常時稼働されるとしたが、本実施形態では、高負荷率(可能な限り100%に近い負荷率)で運転できる場合のみディーゼル発電機を稼働するものである。その他の点については第1実施形態と同様であるので、同様の構成については同一符号を付しその説明は省略する。
二次電池20の充電量には100kwの制限があり、ディーゼル発電機10を発停させず常時稼働する場合は、二次電池20の充電量が制限値の100kwに到達すると容量を超えるためそれ以上充電を行えない。その結果ディーゼル発電機10の負荷率を下げる必要がある。よって、ディーゼル発電機10を常時稼働する場合に、常時100%に近い負荷率での運転を行うのは困難である。
図7には、本実施形態に係る舶用電源システムを用いた場合の電力、燃費率、燃料消費量積算値および二次電池充電量の各値の推移がグラフに示されている。
図7の各横軸は時間であり、図7(a)の縦軸は電力、図7(b)の縦軸は燃費率、図7(c)の縦軸は燃料消費量積算値、図7(d)の縦軸は二次電池充電量である。
図7(a)において、太実線は合計電力を示し、これはすなわち船内需要電力と等しい。また、点線はディーゼル発電機10の電力、一点鎖線はメインディーゼル発電機11の電力、二点鎖線はORCシステム2の出力、実線は二次電池20の出力(充放電)を示す。
図7(b)において、点線はディーゼル発電機10の燃費率を示す。
図7(c)において、実線はディーゼル発電機10及びメインディーゼル発電機11の合計燃料消費量、一点鎖線はメインディーゼル発電機11の燃料消費量を示す。
図7(d)において、実線は二次電池20の充電量を示す。
図7(a)の時間tsからteの間において、太線で示される船内需要電力が要求されるものとする。
ディーゼル発電機10の容量は240kWであるとし、ORCシステム2はその出力が100kWであるとする。船内需要電力に対し、ディーゼル発電機10が主発電機として運転されるため、メインディーゼル発電機11は停止され、図7(a)の一点鎖線で示されるように時間tsからteまで出力は0である。またORCシステム2は、図7(a)の二点鎖線で示されるように一定の出力100kWで運転される。ディーゼル発電機10は、高負荷率(可能な限り100%に近い負荷率)で運転できる期間のみ運転されるものとする。よって、船内需要電力に対しORCシステム2の出力のみでは不足する場合は、二次電池20の放電により電力を賄う。ディーゼル発電機10の負荷率及び発停時期については、時間tsでの二次電池20の充電量が100kWhである場合に、時間teで初期値100kWhに回復するように決定される。また、図7(a)のグラフから平均船内需要電力は242kW、最大船内需要電力は820kWである。
時間tsからt3までの間は、ORCシステム2及び二次電池20の合計出力のみで船内需要電力を賄うことができる。この時、二次電池20は、図7(a)の実線で示されるようにプラスの値をとるが、これは放電を示している。
決定された発停時期に基づき、時間t3においてディーゼル発電機10が運転を行い、二次電池20は充電に切り替わる。時間t3以降の期間において、ディーゼル発電機10は80から100%の負荷率にて船内需要電力に応じて運転される。また、ディーゼル発電機10とORCシステム2との合計出力が船内需要電力を超え、余剰が発生する場合は、ORCシステム2から二次電池20に充電されるように制御装置9によって制御される。一方、ディーゼル発電機10とORCシステム2との合計出力が船内需要電力に満たない場合は、二次電池20の放電により、不足分が補われる。
図7(b)に示されるように、ディーゼル発電機10は時間t3から稼働され、その燃費率は図6(b)に示されたβg/kWh(βは例えば220)よりも少ない約213g/kWhである。
また図7(c)に示されるように、ディーゼル発電機10及びメインディーゼル発電機11の合計燃料消費量は、ディーゼル発電機10のみの運転であるため、ディーゼル発電機10の燃料消費量を示す。ディーゼル発電機10の燃料消費量積算値は時間teで約42kgとなる。
また、二次電池20については、時間tsからt3までの間は、放電を行うため二次電池20の充電量は100kWhから減少する。時間t3にて充電を開始するため、二次電池20の充電量は増加するが、船内需要電力が増加しディーゼル発電機10とORCシステム2のみでは賄えない場合は二次電池20の放電により不足分が補われるためこの場合は充電量が減少する。時間t4にてORCシステム2から二次電池20への充電が開始され、時間teにて充電量は初期値の100kWhに回復する。
このように、ディーゼル発電機10を主発電機として用い、必要な場合のみディーゼル発電機10を運転する場合は、ディーゼル発電機10の負荷率が高く燃費効率がよいとされる高い負荷率で運転されるため、燃費効率のよい運転を行うことができ、メインディーゼル発電機11を用いる場合と比較して燃費消費量積算値を約17%削減することができる。
以上、説明してきたように、本実施形態に係る舶用電源システム、これを備えた船舶、及び舶用電源システムの制御方法並びに舶用電源システムの制御プログラムによれば、以下の作用効果を奏する。
本実施形態によれば、制御装置9は、船内需要電力の増減に応じてディーゼル発電機10の発停を切り替える制御を行うことから、ディーゼル発電機10が高負荷運転となる場合のみディーゼル発電機10を運転するため、ディーゼル発電機10の燃費を抑えることができる。ディーゼル発電機10が停止している場合は、ORCシステム2及び二次電池20にて船内需要電力を賄う。
以上、本発明の各実施形態について図面を参照して詳述してきたが、具体的な構成はこの実施形態に限られるものではない。たとえば、上述した各実施形態においてはメインディーゼル発電機11が設置され、ディーゼル発電機10を主発電機として用いるとしたが、メインディーゼル発電機11を設置しなくてもよい。
メインディーゼル発電機11を設置しない場合は、平均船内需要電力に対してディーゼル発電機10の負荷率が60%以上90%以下となるようにディーゼル発電機10を船内需要電力量に応じて1台または複数台設置するものとする。この場合の制御については、メインディーゼル発電機11を設置する場合(第1実施形態及び第2実施形態)と同様の制御が行われる。
本態様によれば、発電を行うディーゼル発電機10と、ORCシステム2と、二次電池20と、制御装置9と、を備え、制御装置9は、ディーゼル発電機10、ORCシステム2及び二次電池20を組み合わせて船内需要電力を賄うように制御を行う舶用電源システム1であって、ディーゼル発電機10は、平均船内需要電力に対して負荷率が60%以上90%以下であり、制御装置9は、船内需要電力がディーゼル発電機10及びORCシステム2の合計出力を超えない場合に余剰分の電力を二次電池20に充電するように制御を行い、船内需要電力がディーゼル発電機10及びORCシステム2の合計出力を超える場合に二次電池20に蓄電された電力を放電するように制御を行うことから、船内需要電力が平均の値の近辺ではディーゼル発電機10を燃費効率のよい負荷率で用い、船内需要電力が増加するとディーゼル発電機10に加えてORCシステム2及び二次電池20を用いて増加分をカバーすることができる。
また、ORCシステム2及び二次電池20にて発電を行うことから、ディーゼル発電機10の容量を削減することができる、すなわち低容量のディーゼル発電機を用いることができるため、導入コストを削減することができる。
また、ORCシステム2にて二次電池20の充電を行う場合は、ディーゼル発電機10を用いて二次電池20の充電を行う必要がないためディーゼル発電機10の燃料費を削減することができる。
また、通常航海中は二次電池20の充電を行い、出港時のバウスラスター起動等の急激な負荷上昇を二次電池20の放電にて賄うことから、特に港湾域でのディーゼル発電機10の黒鉛発生を防止することができる。
1 舶用電源システム
2 ORCシステム(有機ランキンサイクルシステム)
3 推進用メインエンジン
9 制御装置
10 ディーゼル発電機
11 メインディーゼル発電機
20 二次電池

Claims (7)

  1. 発電を行うディーゼル発電機と、有機熱媒体を熱源として発電を行う有機ランキンサイクルシステムと、二次電池と、制御装置と、を備え、
    前記制御装置は、前記ディーゼル発電機、前記有機ランキンサイクルシステム及び前記二次電池を組み合わせて船内需要電力を賄うように制御を行う舶用電源システムであって、
    前記ディーゼル発電機は、平均船内需要電力に対して負荷率が60%以上90%以下であり、
    前記制御装置は、船内需要電力が前記ディーゼル発電機及び前記有機ランキンサイクルシステムの合計出力を超えない場合に余剰分の電力を前記二次電池に充電するように制御を行い、前記船内需要電力が前記ディーゼル発電機及び前記有機ランキンサイクルシステムの合計出力を超える場合に前記二次電池に蓄電された前記電力を放電するように制御を行う舶用電源システム。
  2. 発電を行うディーゼル発電機と、有機熱媒体を熱源として発電を行う有機ランキンサイクルシステムと、二次電池と、制御装置と、を備え、
    前記制御装置は、前記ディーゼル発電機、前記有機ランキンサイクルシステム及び前記二次電池を組み合わせて船内需要電力を賄うように制御を行う舶用電源システムであって、
    前記ディーゼル発電機は、メインディーゼル発電機よりも出力が小さい発電機であり、
    前記制御装置は、船内需要電力が前記ディーゼル発電機及び前記有機ランキンサイクルシステムの合計出力を超えない場合に余剰分の電力を前記二次電池に充電するように制御を行い、前記船内需要電力が前記ディーゼル発電機及び前記有機ランキンサイクルシステムの合計出力を超える場合に前記二次電池に蓄電された前記電力を放電するように制御を行う舶用電源システム。
  3. 前記制御装置は、前記ディーゼル発電機及び前記有機ランキンサイクルシステムの出力を一定に制御する請求項2に記載の舶用電源システム。
  4. 前記制御装置は、船内需要電力の増減に応じて前記ディーゼル発電機の発停を切り替える制御を行う請求項2に記載の舶用電源システム。
  5. 請求項1から請求項4のいずれかに記載の舶用電源システムを備えた船舶。
  6. ディーゼル発電機、有機ランキンサイクルシステム及び二次電池を組み合わせて船内需要電力を賄うように制御を行う舶用電源システムの制御方法であって、
    平均船内需要電力に対してディーゼル発電機の負荷率が60%以上90%以下となるように制御する工程と、
    船内需要電力が前記ディーゼル発電機及び前記有機ランキンサイクルシステムの合計出力を超えない場合に、余剰分の電力を二次電池に充電するように制御する工程と、
    前記船内需要電力が前記ディーゼル発電機及び前記有機ランキンサイクルシステムの前記合計出力を超える場合に、前記二次電池に蓄電された前記電力を放電するように制御する工程と、
    を有する舶用電源システムの制御方法。
  7. ディーゼル発電機、有機ランキンサイクルシステム及び二次電池を組み合わせて船内需要電力を賄うように制御を行う舶用電源システムの制御プログラムであって、
    平均船内需要電力に対してディーゼル発電機の負荷率が60%以上90%以下となるように制御するステップと、
    船内需要電力が前記ディーゼル発電機及び前記有機ランキンサイクルシステムの合計出力を超えない場合に、余剰分の電力を二次電池に充電するように制御するステップと、
    前記船内需要電力が前記ディーゼル発電機及び前記有機ランキンサイクルシステムの前記合計出力を超える場合に、前記二次電池に蓄電された前記電力を放電するように制御するステップと、
    を有する舶用電源システムの制御プログラム。
JP2017221828A 2017-11-17 2017-11-17 舶用電源システム、これを備えた船舶、及び舶用電源システムの制御方法並びに舶用電源システムの制御プログラム Active JP7046569B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017221828A JP7046569B2 (ja) 2017-11-17 2017-11-17 舶用電源システム、これを備えた船舶、及び舶用電源システムの制御方法並びに舶用電源システムの制御プログラム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017221828A JP7046569B2 (ja) 2017-11-17 2017-11-17 舶用電源システム、これを備えた船舶、及び舶用電源システムの制御方法並びに舶用電源システムの制御プログラム

Publications (3)

Publication Number Publication Date
JP2019093735A true JP2019093735A (ja) 2019-06-20
JP2019093735A5 JP2019093735A5 (ja) 2021-02-04
JP7046569B2 JP7046569B2 (ja) 2022-04-04

Family

ID=66972520

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017221828A Active JP7046569B2 (ja) 2017-11-17 2017-11-17 舶用電源システム、これを備えた船舶、及び舶用電源システムの制御方法並びに舶用電源システムの制御プログラム

Country Status (1)

Country Link
JP (1) JP7046569B2 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022539820A (ja) * 2019-07-10 2022-09-13 マースクライン エーエス コンテナ船の電力制御
KR20230010589A (ko) 2021-07-12 2023-01-19 나부테스코 가부시키가이샤 발전 제어 장치, 발전 제어 방법, 기억 매체

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6315632A (ja) * 1986-07-04 1988-01-22 三菱重工業株式会社 多数発電機の最適運転台数決定方法
JP2010141998A (ja) * 2008-12-10 2010-06-24 Ihi Marine United Inc 船舶の電力設備及びその運用方法
WO2010073951A1 (ja) * 2008-12-25 2010-07-01 三菱重工業株式会社 船舶用排熱回収システムの制御方法及び制御装置
JP2011020579A (ja) * 2009-06-15 2011-02-03 Niigata Power Systems Co Ltd 舶用推進装置
JP2011020620A (ja) * 2009-07-17 2011-02-03 Mitsui O S K Lines Ltd 自動車運搬船
JP2011025799A (ja) * 2009-07-23 2011-02-10 Ihi Marine United Inc 給電システム及び電気推進船
JP2015081569A (ja) * 2013-10-23 2015-04-27 三菱重工業株式会社 排熱回収システム、船舶及び排熱回収方法
JP2015199413A (ja) * 2014-04-07 2015-11-12 新潟原動機株式会社 船舶用発電システム

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106575403B (zh) 2014-08-06 2020-05-12 三菱电机株式会社 信息提供系统、显示控制装置、信息设备以及信息提供方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6315632A (ja) * 1986-07-04 1988-01-22 三菱重工業株式会社 多数発電機の最適運転台数決定方法
JP2010141998A (ja) * 2008-12-10 2010-06-24 Ihi Marine United Inc 船舶の電力設備及びその運用方法
WO2010073951A1 (ja) * 2008-12-25 2010-07-01 三菱重工業株式会社 船舶用排熱回収システムの制御方法及び制御装置
JP2011020579A (ja) * 2009-06-15 2011-02-03 Niigata Power Systems Co Ltd 舶用推進装置
JP2011020620A (ja) * 2009-07-17 2011-02-03 Mitsui O S K Lines Ltd 自動車運搬船
JP2011025799A (ja) * 2009-07-23 2011-02-10 Ihi Marine United Inc 給電システム及び電気推進船
JP2015081569A (ja) * 2013-10-23 2015-04-27 三菱重工業株式会社 排熱回収システム、船舶及び排熱回収方法
JP2015199413A (ja) * 2014-04-07 2015-11-12 新潟原動機株式会社 船舶用発電システム

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022539820A (ja) * 2019-07-10 2022-09-13 マースクライン エーエス コンテナ船の電力制御
US11870258B2 (en) 2019-07-10 2024-01-09 Maersk Line A/S Power control for a container vessel
JP7478223B2 (ja) 2019-07-10 2024-05-02 マースクライン エーエス コンテナ船の電力制御
KR20230010589A (ko) 2021-07-12 2023-01-19 나부테스코 가부시키가이샤 발전 제어 장치, 발전 제어 방법, 기억 매체

Also Published As

Publication number Publication date
JP7046569B2 (ja) 2022-04-04

Similar Documents

Publication Publication Date Title
US11034424B2 (en) Gas-electric parallel-serial hybrid marine power train system with LNG cooling
KR20160036076A (ko) 선박추진장치, 선박, 및 선박추진방법
EP3093456B1 (en) Heat energy recovery system
CN109941417A (zh) 一种带超级电容的气电混联式船舶混合动力系统
KR101814878B1 (ko) 선박 추진 시스템 및 선박 및 선박 추진 시스템의 운전 방법
JP5976498B2 (ja) 内燃機関システムおよびこれを備えた船舶ならびに内燃機関システムの運転方法
JP7046569B2 (ja) 舶用電源システム、これを備えた船舶、及び舶用電源システムの制御方法並びに舶用電源システムの制御プログラム
GB2551875A (en) Power supply apparatus and method
KR102571302B1 (ko) 선박용 전원 시스템, 이것을 구비한 선박, 선박용 전원 시스템의 제어 방법 및 선박용 전원 시스템의 제어 프로그램
US9718328B2 (en) Engine control apparatus
JP2015199413A (ja) 船舶用発電システム
US20220399783A1 (en) Electric vehicle with energy recovery system
JP7337544B2 (ja) 電源システム及び船舶、並びに制御方法、並びに制御プログラム
JP2016160870A (ja) 低温熱回収システム
JP2016160868A (ja) 低温熱回収システム
US20180328234A1 (en) Power cogeneration system
US20240157842A1 (en) Power distribution system
KR102566708B1 (ko) 리튬배터리와 축발전기를 이용한 선박용 스마트 전력 시스템
KR20170114333A (ko) 복합 발전 시스템 및 이를 구비한 선박
JP2024033535A (ja) 燃料電池冷却システム
BR202022020292U2 (pt) Veículo de propulsão a motor elétrico utilizando motor a combustão como fonte energética
JP2022181853A (ja) 電池冷却システム
JP2002205537A (ja) 自動車の冷房装置
JP2011196209A (ja) 排熱回生システム
JP2021008873A (ja) 熱サイクルシステム

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20200325

A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20201106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201218

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210712

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210720

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210917

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220222

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220323

R150 Certificate of patent or registration of utility model

Ref document number: 7046569

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150