JP2016160870A - 低温熱回収システム - Google Patents

低温熱回収システム Download PDF

Info

Publication number
JP2016160870A
JP2016160870A JP2015041846A JP2015041846A JP2016160870A JP 2016160870 A JP2016160870 A JP 2016160870A JP 2015041846 A JP2015041846 A JP 2015041846A JP 2015041846 A JP2015041846 A JP 2015041846A JP 2016160870 A JP2016160870 A JP 2016160870A
Authority
JP
Japan
Prior art keywords
temperature
organic medium
heat
heat exchanger
supercharger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015041846A
Other languages
English (en)
Inventor
守男 近藤
Morio Kondo
守男 近藤
寿子 加藤
Toshiko Kato
寿子 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Engineering and Shipbuilding Co Ltd
Original Assignee
Mitsui Engineering and Shipbuilding Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Engineering and Shipbuilding Co Ltd filed Critical Mitsui Engineering and Shipbuilding Co Ltd
Priority to JP2015041846A priority Critical patent/JP2016160870A/ja
Publication of JP2016160870A publication Critical patent/JP2016160870A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Control Of Turbines (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

【課題】原動機の運転当初から、二相流タービンと発電機を早期に定格運転できると共に、二相流タービンと発電機の定格運転状態を維持することができる低温熱回収システムを提供すること。【解決手段】特定の油圧機構9と、特定の有機媒体低温熱回収機構と、からなる低温熱回収システムであり、第1の熱交換器3から二相流ノズル51までの有機媒体の正規移送ライン14に、有機媒体の温度を計測する温度計31を設け、該温度計31による有機媒体の計測温度を制御部19に送り、制御部19は、計測温度に対応する飽和圧力Paを求め、特定の有機媒体低温熱回収機構により、飽和圧力Paに基づき、該有機媒体が液相を維持するように循環ポンプ10の回転数を制御し、特定の油圧機構9により、計測温度が、二相流タービン52の起動可能温度範囲内を維持するように第1の熱交換器3入口の廃熱ガス温度を制御することを特徴とする低温熱回収システム。【選択図】図1

Description

本発明は、低温熱回収システムに関し、詳しくは、船舶用の過給機付き原動機から熱回収する低温熱回収システムに関する。
低温熱回収システムとしては、低沸点有機媒体を気化させてタービンを駆動するORC(Organic Rankine Cycle)発電システムが代表的なシステムであり、船舶への適用も報告されている。このORC発電システム例としては、特許文献1、2の技術が開示されている。
特開2013−167241号公報 特開2011−231636号公報
特許文献1に記載の技術では、熱交換器において原動機の掃気から有機媒体に熱回収し、有機媒体を気化させ、その気体のみを蒸気タービンに導入し、発電機で発電している。この手法では、熱交換器から蒸気タービンに至るまでに気液分離器が必要となり、設備コストの上昇をまねく。
特許文献2では、蒸気タービンへ導入する有機媒体を気体のみとするような手法を明確にしており、蒸気タービンの手前の熱交換器として蒸発器を用いている。しかし、蒸発器を用いると、装置が大型化する。
また有機媒体を気化させる必要がある場合、廃熱温度が低い際には有機媒体が十分に気化されず、蒸気タービンの出力が低下する問題があった。
また、特許文献1、2の技術では、熱交換器において、有機媒体との間で熱交換させているが、原動機から過給機を介して送られてくる廃熱ガスの温度が低い場合には、有機媒体の温度が上昇しないので、蒸気タービンに送ることができない。通常、有機媒体の温度が90℃を超えた状態で蒸気タービンに送られ、発電を行っている。
しかるに、廃熱ガスの温度が上昇せず、有機媒体が90℃を超えない場合には、有機媒体を蒸気タービンに送らずに、バイパスラインを介して循環させるようにしていた。そのため電力の発生もないのに、移動させるエネルギーが消費されるだけであり、無駄な動力消費となっていた。
そこで、本発明の課題は、原動機の運転当初から、二相流タービンと発電機を早期に定格運転できると共に、二相流タービンと発電機の定格運転状態を維持することができる低温熱回収システムを提供することにある。
また本発明の他の課題は、以下の記載によって明らかとなる。
上記課題は、以下の各発明によって解決される。
1.過給機付き原動機と、該過給機付き原動機の過給機と原動機とをそれぞれ駆動補助する油圧機構と、有機媒体を用いて前記過給機付き原動機から熱を回収する有機媒体低温熱回収機構と、からなる低温熱回収システムであり、
前記油圧機構は、前記過給機の回転軸に連結されて前記過給機と共に回転する第1の油圧駆動源と、前記原動機の軸に連結されて前記軸と共に回転する第2の油圧駆動源と、前記第1の油圧駆動源と前記第2の油圧駆動源との間を流れる油の流量調整を行う可変容量型の第3の油圧駆動源と、前記第3の油圧駆動源の回転軸に連結されて前記第3の油圧駆動源と共に回転する電気駆動源とを備え
前記有機媒体低温熱回収機構は、過給機付き原動機から排出される廃熱ガスと、液相の状態で有機媒体ライン内を圧送される有機媒体との間で、熱交換して、前記廃熱ガスから熱回収する第1の熱交換器と、前記第1の熱交換器の出口から正規移送ラインを介して送られる有機媒体を、気相と液相の二相流に変換させる二相流ノズルと、該二相流ノズルにより生成する気相と液相の二相流ジェットを導入して回転する二相流タービンと、該二相流タービンが回転することにより発電する発電機と、前記二相流タービンから排出される有機媒体を冷却して液化する凝縮器と、該凝縮器で液化した有機媒体を貯留する媒体タンクと、該媒体タンクから前記第1の熱交換器に前記正規移送ラインを介して、該有機媒体を送液する循環ポンプとを備え、
前記第1の熱交換器から前記二相流ノズルまでの有機媒体の正規移送ラインに、有機媒体の温度を計測する温度計を設け、
該温度計による有機媒体の計測温度を制御部に送り、
前記制御部は、前記計測温度に対応する飽和圧力Paを求め、前記有機媒体低温熱回収機構により、前記飽和圧力Paに基づき、該有機媒体が液相を維持するように前記循環ポンプの回転数を制御し、
前記油圧機構により、前記計測温度が、前記二相流タービンの起動可能温度範囲内を維持するように前記第1の熱交換器入口の廃熱ガス温度を制御することを特徴とする低温熱回収システム。
2.前記制御部は、前記計測温度が前記二相流タービンの起動可能温度範囲より低い場合、前記第1の熱交換器入口の廃熱ガス温度を上昇させ、前記計測温度が前記二相流タービンの起動可能温度範囲内になるよう制御することを特徴とする前記1記載の低温熱回収システム。
3.前記制御部は、前記計測温度が前記二相流タービンの起動可能温度範囲より高い場合、下記(1)及び/又は(2)の動作を行い、前記計測温度が二相流タービンの起動可能温度範囲内になるよう制御することを特徴とする前記1記載の低温熱回収システム。
(1)前記第1の熱交換器入口の廃熱ガス温度を下降させること
(2)前記過給機付き原動機の油圧機構内の電気駆動源の回転力で発電すること
4.前記循環ポンプから有機媒体を送液する正規移送ラインに第3の熱交換器をさらに備え、前記原動機に、該原動機からの発熱を吸収する冷却水を通水する冷却配管を設け、該冷却配管と前記第3の熱交換器の間を冷却水が通水する冷却水配管を設け、前記第3の熱交換器で、前記原動機の発熱を吸収して温度上昇した冷却水から、前記有機媒体に、熱移動して熱回収する構成を有することを特徴とする前記1〜3のいずれかに記載の低温熱回収システム。
5.過給機付き原動機と、該過給機付き原動機の過給機と原動機とをそれぞれ駆動補助する油圧機構と、有機媒体を用いて前記過給機付き原動機から熱を回収する有機媒体低温熱回収機構と、からなる低温熱回収システムであり、
前記油圧機構は、前記過給機の回転軸に連結されて前記過給機と共に回転する第1の油圧駆動源と、前記原動機の軸に連結されて前記軸と共に回転する第2の油圧駆動源と、前記第1の油圧駆動源と前記第2の油圧駆動源との間を流れる油の流量調整を行う可変容量型の第3の油圧駆動源と、前記第3の油圧駆動源の回転軸に連結されて前記第3の油圧駆動源と共に回転する電気駆動源とを備え
前記有機媒体低温熱回収機構は、過給機で圧縮されて原動機に供給される加圧掃気と液相の状態で圧送される有機媒体との間で熱交換して前記加圧掃気から熱回収する第2の熱交換器と、前記第2の熱交換器によって前記加圧掃気から熱回収した前記有機媒体を気相と液相の二相流に変換させる二相流ノズルと、該二相流ノズルにより生成する気相と液相の二相流ジェットを導入して回転する二相流タービンと、該二相流タービンが回転することにより発電する発電機と、前記二相流タービンから排出される有機媒体を冷却して液化する凝縮器と、該凝縮器で液化した有機媒体を貯留する媒体タンクと、該媒体タンクから前記第1の熱交換器に、正規移送ラインを介して、該有機媒体を送液する循環ポンプとを備え、
前記第2の熱交換器から前記二相流ノズルまでの有機媒体の正規移送ラインに、有機媒体の温度を計測する温度計を設け、
該温度計による有機媒体の計測温度を制御部に送り、
前記制御部は、前記計測温度に対応する飽和圧力Paを求め、前記有機媒体低温熱回収機構により、前記飽和圧力Paに基づき、該有機媒体が液相を維持するように前記循環ポンプの回転数を制御し、
前記油圧機構により、前記計測温度が、前記二相流タービンの起動可能温度範囲内を維持するように前記第2の熱交換器入口の加圧掃気温度を制御することを特徴とする低温熱回収システム。
6.前記制御部は、前記計測温度が前記二相流タービンの起動可能温度範囲より低い場合、前記第2の熱交換器入口の加圧掃気温度を上昇させ、前記計測温度が、二相流タービンの起動可能温度範囲内になるよう制御することを特徴とする前記5記載の低温熱回収システム。
7.前記制御部は、前記計測温度が前記二相流タービンの起動可能温度範囲より高い場合、下記(1)及び/又は(2)の動作を行い、前記計測温度が二相流タービンの起動可能温度範囲内になるよう制御することを特徴とする前記5記載の低温熱回収システム。
(1)前記第2の熱交換器入口の加圧掃気温度を下降させること
(2)前記過給機付き原動機の油圧機構内の電気駆動源の回転力で発電すること
8.前記循環ポンプから有機媒体を送液する正規移送ラインに第3の熱交換器をさらに備え、前記原動機に、該原動機からの発熱を吸収する冷却水を通水する冷却配管を設け、該冷却配管と前記第3の熱交換器の間を冷却水が通水する冷却水配管を設け、前記第3の熱交換器で、前記原動機の発熱を吸収して温度上昇した冷却水から、前記有機媒体に、熱移動して熱回収する構成を有することを特徴とする前記5〜7のいずれかに記載の低温熱回収システム。
9.過給機付き原動機と、該過給機付き原動機の過給機と原動機とをそれぞれ駆動補助する油圧機構と、有機媒体を用いて前記過給機付き原動機から熱を回収する有機媒体低温熱回収機構と、からなる低温熱回収システムであり、
前記油圧機構は、前記過給機の回転軸に連結されて前記過給機と共に回転する第1の油圧駆動源と、前記原動機の軸に連結されて前記軸と共に回転する第2の油圧駆動源と、前記第1の油圧駆動源と前記第2の油圧駆動源との間を流れる油の流量調整を行う可変容量型の第3の油圧駆動源と、前記第3の油圧駆動源の回転軸に連結されて前記第3の油圧駆動源と共に回転する電気駆動源とを備え、
前記有機媒体低温熱回収機構は、過給機付き原動機から排出される廃熱ガスと液相の状態で圧送される有機媒体との間で熱交換して前記廃熱ガスから熱回収する第1の熱交換器と、過給機から圧縮して原動機に供給する加圧掃気と液相の状態で圧送される有機媒体との間で熱交換して前記加圧掃気から熱回収する第2の熱交換器と、前記第1の熱交換器及び第2の熱交換器によって前記廃熱ガス及び前記加圧掃気から熱回収した前記有機媒体を気相と液相の二相流に変換させる二相流ノズルと、該二相流ノズルにより生成する気相と液相の二相流ジェットを導入して回転する二相流タービンと、該二相流タービンが回転することにより発電する発電機と、前記二相流タービンから排出される有機媒体を冷却して液化する凝縮器と、該凝縮器で液化した有機媒体を貯留する媒体タンクと、該媒体タンクから前記第1の熱交換器に正規移送ラインを介して、該有機媒体を送液する循環ポンプとを備え、
前記第1の熱交換器から前記二相流ノズルまでの有機媒体の正規移送ラインに、有機媒体の温度を計測する温度計を設け、
該温度計による有機媒体の計測温度を制御部に送り、
前記制御部は、前記温度計から得られた該有機媒体の温度に対応する飽和圧力Paを求め、前記有機媒体低温熱回収機構により、前記飽和圧力Paに基づき、該有機媒体が液相を維持するような前記循環ポンプの回転数を制御し、
前記油圧機構により、前記計測温度が、前記二相流タービンの起動可能温度範囲内を維持するように前記第1の熱交換器入口の廃熱ガス温度及び前記第2の熱交換器入口の加圧掃気温度を制御することを特徴とする低温廃熱回収システム。
10.前記制御部は、前記計測温度が前記二相流タービンの起動可能温度範囲より低い場合、前記第1の熱交換器入口の廃熱ガス温度及び前記第2の熱交換器入口の加圧掃気温度を上昇させ、前記計測温度が二相流タービンの起動可能温度範囲内になるよう制御することを特徴とする前記9記載の低温熱回収システム。
11.前記制御部は、前記計測温度が前記二相流タービンの起動可能温度範囲より高い場合、下記(1)及び又は(2)の動作を行い、前記計測温度が二相流タービンの起動可能温度範囲内になるよう制御することを特徴とする前記9記載の低温熱回収システム。
(1)前記前記第1の熱交換器入口の廃熱ガス温度及び前記第2の熱交換器入口の加圧掃気温度を下降させること
(2)前記過給機付き原動機の油圧機構内の電気駆動源の回転力で発電すること
12.前記循環ポンプから有機媒体を送液する正規移送ラインに第3の熱交換器をさらに備え、前記原動機に、該原動機からの発熱を吸収する冷却水を通水する冷却配管を設け、該冷却配管と前記第3の熱交換器の間を冷却水が通水する冷却水配管を設け、前記第3の熱交換器で、前記原動機の発熱を吸収して温度上昇した冷却水から、前記有機媒体に、熱移動して熱回収する構成を有することを特徴とする前記9〜11のいずれかに記載の低温熱回収システム。
13.前記1〜12のいずれかに記載の低温熱回収システムであって、船舶用に用いられることを特徴とする低温熱回収システム。
本発明によれば、原動機の運転当初から、二相流タービンと発電機を早期に定格運転できる低温熱回収システムを提供することができる。
また本発明によれば、油圧機構の機能発揮により、原動機の高負荷の早期実現により、有機媒体温度を早期に所定温度以上に持っていき二相流タービンと発電機の定格運転状態を維持することができる低温熱回収システムを提供することができる。
さらに本発明によれば、有機媒体が所定温度以上になって、二相流タービンと発電機の定格運転状態を維持できないような場合には、余剰熱を利用して油圧機構の中で発電を行うことができる低温熱回収システムを提供することができる。
本発明の低温熱回収システムの一例を示す説明図 本発明の低温熱回収システムが備える油圧機構の一例を示すブロック図 第1の制御における制御テーブル例を示す図 第2の制御の一例を示す図 本発明の低温熱回収システムの他の例を示す説明図 本発明の低温熱回収システムの他の例を示す説明図 本発明の低温熱回収システムの他の例を示す説明図 本発明の低温熱回収システムの他の例を示す説明図 本発明の低温熱回収システムの他の例を示す説明図
以下、図面に基づいて、本発明を実施するための形態について説明する。
本発明の低温熱回収システムは、過給機付き原動機と、該過給機付き原動機の過給機と原動機とをそれぞれ駆動補助する油圧機構と、有機媒体を用いて前記過給機付き原動機から熱を回収する有機媒体低温熱回収機構とからなる。
図1は、船舶に適用される本発明の低温熱回収システムの一例を示す説明図である。
低温熱回収システムを構成する原動機1と過給機2は、油圧機構9によって連結されている。
1.油圧機構
以下、図2に基づき、油圧機構の一例を説明する。
前記過給機2には、該過給機2の回転(ロータ)軸23に連結されて前記過給機2と共に回転する第1の油圧駆動源91が設けられている。図示の例では、第1の油圧駆動源91は固定容量型の油圧ポンプ又は油圧モータが用いられる。
また前記原動機1には、該原動機1のクランク軸11に連結されて前記クランク軸11と共に回転する第2の油圧駆動源92が設けられている。図示の例では、第2の油圧駆動源92は固定容量型の油圧モータが用いられる。
94は、前記第1の油圧駆動源91と前記第2の油圧駆動源92との間を流れる油の流量調整を行う可変容量型の第3の油圧駆動源である。96は、前記第3の油圧駆動源94の回転軸に連結されて前記第3の油圧駆動源94と共に回転する電気駆動源である。
前記第1の油圧駆動源91、前記第2の油圧駆動源92及び前記第3の油圧駆動源94は、油圧回路93(図2参照)に直接又は間接に連結されている。
本発明において船舶用低温熱回収システムが備える油圧機構の一例を図1及び図2を参酌して説明する。
油圧機構9は、過給機2のロータ軸23に、直接または変速機を介して接続された第1の油圧駆動源91と、原動機1のクランク軸11に、直接または変速機を介して接続された第2の油圧駆動源92とにより構成されている。第1の油圧駆動源91と第2の油圧駆動源92とは、油圧回路93により接続されている。
原動機1の始動を含む低負荷時から中負荷時までは、原動機1のクランク軸11に連結された第2の油圧駆動源92が油圧ポンプとして作動し、油圧を発生させる。一方、第3の油圧駆動源94は容量を変化させ、電気駆動源96により第3の油圧駆動源94が油圧ポンプとして作動し、油圧を発生させる。これにより第1の油圧駆動源91が回転駆動し、過給機2に対して必要な回転力を加勢する。
すなわち、過給機2に連結された第1の油圧駆動源91を油圧モータとして駆動して、過給機2に対して回転力の加勢を行わせる。
これにより、過給機2は原動機1からの排気により過給機2の回転力が加勢され、これに加えて、第2の油圧駆動源92、第3の油圧駆動源94により発生した油圧により、第1の油圧駆動源91を油圧モータとして回転駆動させることにより、回転軸23を介して、過給機2の回転力がさらに増速され、原動機1に対してより多くの過給を行なうことができる。
原動機1の負荷が、中負荷領域を過ぎると、原動機1からの廃熱ガス(排気)が、過給機2に必要とされる排気量に対して余剰が生じ始める。このとき、第3の油圧駆動源94の容量を変化させて、過給機2の回転力により、該回転力を、回転軸23を介して、第1の油圧駆動源91に伝え、第1の油圧駆動源91は、伝えられた回転力により油圧を発生させ、発生させた油圧により、第2の油圧駆動源92を回転駆動させる。
一方で、第3の油圧駆動源94は、常用負荷運転近傍までは、電気駆動源96により回転駆動され続け、第3の油圧駆動源94から発生した油圧により第2の油圧駆動源92の回転をさらに加勢する。
すなわち、第1の油圧駆動源91は、中負荷領域を超えた段階で、油圧ポンプとして作動し、第1の油圧駆動源91及び第3の油圧駆動源94で発生した油圧によって第2の油圧駆動源92の回転を加勢することになる。
原動機1の負荷が常用負荷運転近傍から高負荷の定格負荷運転までは、原動機1の廃熱ガス(排気)が、過給機2に必要とされる排気量に対して、さらに余剰になる。
このとき、第3の油圧駆動源94は、容量を変化させて、過給機2の回転力で第1の油圧駆動源91を油圧ポンプとして作動させ、第1の油圧駆動源91が発生させた油圧により、第2の油圧駆動源92及び第3の油圧駆動源94を回転駆動させる。
すなわち、第1の油圧駆動源91が発生させた油圧は、第2の油圧駆動源92を回転駆動させることで、クランク軸11を介して原動機1を補助駆動させ、さらに、第3の油圧駆動源94を回転駆動させることにより、第3の油圧駆動源94は油圧モータとして作動し、電気駆動源96を発電機として回転駆動させる。
油圧回路93には、第1の油圧駆動源91、第2の油圧駆動源92、第3の油圧駆動源94が接続され、油圧の相互作用によって、原動機1の始動を含む低負荷時から、中負荷時及び常用負荷運転近傍を介して、高負荷の定格負荷運転を早期に実現し、過給機2から排出される廃熱ガス(排気ガス)の早期高温化を実現できる。
さらに詳細に説明すると、過給機2は、タービン21と圧縮機22を有し、これらはロータ軸23で連結されている。原動機1の排気ガスによりタービン21が回転駆動され、圧縮機22が回転する。これにより原動機1の給気密度が高められ、原動機出力が向上する。
過給機2のロータ軸23には、変速機24が連結され、変速機24に固定容量型の第1の油圧駆動源91が連結されている。原動機1のクランク軸11には、変速機13が連結され、変速機13に固定容量型の第2の油圧駆動源92が連結されている。
上述の2つの油圧駆動源91、92は、油圧回路93の中に組み込まれる。油圧駆動源91の出力側と油圧駆動源92の一方のポートは油路101により、油圧駆動源91の入力側と油圧駆動源92の他方のポートは油路102によりそれぞれ接続されている。
2つの油路101、102の間に、小型の可変容量型の油圧駆動源94が油路103、104により接続されている。油路103は油圧駆動源94と油路101とを接続し、油路104は油圧駆動源94と油路102とを接続する。このように、油圧駆動源94は、油圧駆動源91と油圧駆動源92とにそれぞれ並列に接続されている。
可変容量型の油圧駆動源94には、電気駆動源96が連結される。電気駆動源96は油圧駆動源94を電動モータとして回転駆動するほか、油圧駆動源94により回転駆動されて発電機として作動する。
電気駆動源96は、船舶の中央配電装置97と電気的に接続されて、後述のように、電気駆動源96がモータとして作動するときは中央配電装置97から電力を得ると共に、電気駆動源96が発電機として作動するときは、過給機2の余剰動力を船舶の電力として利用することができる。
上述の油圧駆動源94の容量可変部の可変機構としては、例えば、斜板式や斜軸式など様々なものがある。原動機1の燃料噴射量を制御するコントローラ98が配設され、コントローラ98は、油圧駆動源94の可変機構部と電気的に接続されてこれを制御し、油圧駆動源94の容量を変化させる。さらに、コントローラ98は、制御部19に内蔵若しくは電気的に接続されている。
2.有機媒体低温熱回収機構
図1の例は、過給機2付き原動機1から排出される廃熱ガスから熱回収する場合の一例を示している。
本発明の低温熱回収システムは、過給機2付き原動機1から排出される廃熱ガスと、液相の状態で圧送される有機媒体との間で熱交換して、前記廃熱ガスから熱回収する第1の熱交換器3を備え、前記第1の熱交換器3によって熱回収した前記有機媒体を、気相と液相の二相流に変換させる二相流ノズル51を備える。本発明の低温熱回収システムは,船舶用に好ましく適用できる。
そして、本発明の低温熱回収システムは、該二相流ノズル51により生成する気相と液相の二相流ジェットを二相流タービン52に導入して、該二相流タービン52を回転して発電する発電機6を備え、前記二相流タービン52から排出される有機媒体を冷却して液化する凝縮器7を備え、該凝縮器7で液化した有機媒体を貯留する媒体タンク8と、該媒体タンク8から第1の熱交換器3に有機媒体を送液する循環ポンプ10を備える。循環ポンプ10の駆動の際に、昇圧補助機能を発揮するため、ブーストポンプ10aを設けてもよいし、また、循環ポンプ10の容量の都合上、ブーストポンプ10aを設けてもよい。
第1の熱交換器3は、廃熱回収用の熱交換器であり、過給機2付き原動機(例えばエンジン)1から排出される廃熱ガスを煙突20に送る過程で、有機媒体により、廃熱ガスから熱回収する。
過給機2は、原動機1から排出される廃熱ガスにより回転するタービン21と前記原動機1に供給する掃気を圧縮する圧縮機22とを備えている。
本発明において、過給機付き原動機としては、例えば、過給機を備えたディーゼルエンジンやガスエンジンなどを好ましく例示できる。
前記有機媒体は、例えば、中低温熱源との熱交換媒体として、代替フロンであるR245fa、R134aなどの低沸点の有機媒体を好ましく用いることができる。
前記第1の熱交換器3を出た有機媒体は、液相のままで、タービンユニット5に供給される。タービンユニット5は少なくとも二相流ノズル51と二相流タービン52で構成されている。
二相流ノズル51は、一部が気化し、気相、液相の混合した二相流を生成する。そして、この二相流を二相流ノズル51の先端から高速で排出する。
この時、二相流ノズル51内部では、ノズル先端に向かうに従って、ガスのせん断応力が液相を微小液滴に分割し、ガスの運動量を液滴に伝達する。
気相と液相のち密な連成により微小液摘を十分に加速し、二相流ノズル51の先端出口でガス流速と液滴の流速をそろえることができる。ノズルからの二相流の流速は、エロージョン限界速度に比べて十分低くすることが望ましい。
有機媒体が有する熱エネルギーを有効に運動エネルギーに変換するためには、液滴を可能な限り均一微細化することが望ましい。
また、二相流ノズル51の先端は、二相流タービン52のタービン羽根に向かって所定の向きに配置される。
発電機6は、例えば三相誘導発電機を用いた場合、定格回転数(3600rpm)に達すると、図示しない発電機用遮断器が閉じて発電を開始する。
発電機6では、二相流ノズル4により生成する気相と液相の二相流を二相流タービン5に導入して、該二相流タービン5を回転して発電する。
本発明では、過給機2付き原動機1から排出される廃熱ガスの低温廃熱を回収し、発電を行うことができる。
凝縮器7では、前記二相流タービン5から排出される有機媒体を冷却して液化する。
該凝縮器7で液化した有機媒体は、媒体タンク8に貯留される。該媒体タンク8内の液化した有機媒体は、循環ポンプ10によって第1の熱交換器3に移送され、循環使用される。
循環ポンプ10は、エンジン負荷に応じて第1の熱交換器3内で、蒸発が起きない熱媒体圧力を保持するように、 VFD(Variable Frequency Driver)により回転数制御される。起動時は、有機媒体の温度が低いため循環ポンプ10の回転数はゼロとなるようにして、有機媒体の循環はブーストポンフ10aによって行なうようにしてもよい。
上記のように、第1の熱交換器3において有機媒体を気化させないことにより、第1の熱交換器3として液相のみを扱い、相変化を伴わない仕様が可能になる。そのため、従来のように第1の熱交換器3として蒸発器または気化器を必要とせず、熱交換器の構成を簡素にできるだけでなく、設備を小型化できる効果が得られる。
更に、有機媒体の一部気化は、図示しないタービンユニットに内蔵される二相流ノズル4内で行われるため、第1の熱交換器3から二相流ノズル4までは液相のみであり、従来のように気液分離器を必要とせず、この点でも設備を小型化できる効果が得られる。
また、第1の熱交換器3から二相流ノズル4まで、有機媒体を液相のまま移送するため、第1の熱交換器3から二相流ノズル4までの配管の径を細くでき、コスト低下を実現できる。
具体的には、実施例で示したように、従来のように気相の状態で移送する場合に対して、第1の熱交換器3から二相流ノズル4までの配管の径を、2サイズダウンできる。このことも、設備の小型化に寄与する。
特に船舶内の限られたスペースにおいて、設備の小型化は、優れた効果となる。
また、従来は、廃熱温度が低い際に第1の熱交換器において圧力を下げなければ有機媒体が十分に気化されず、タービン出力が低下する問題があったが、上記のように、第1の熱交換器3において有機媒体を気化させないことにより、タービン出力を安定化できる効果が得られる。これにより、廃熱が比較的低温の場合であっても有効に回収することができるため、過給機付原動機が備える多岐に亘る廃熱源に対して、汎用性高く適用できる。
また更に、二相流ジェットにより二相流タービン52を駆動することにより、タービンブレードのエロージョンを防止できる効果も得られる。
本発明における第1の制御は、第1の熱交換器3から二相流タービン52まで、有機媒体を液相のまま移送する制御である。
前記第1の熱交換器から二相流ノズル51までの有機媒体の正規移送ライン(移送配管)14に、温度計31を設け、該温度計31は有機媒体の温度を計測し、計測温度を制御部19に送り、該制御部19において該有機媒体の温度に対応する飽和圧力Paを求め、該飽和圧力Paに基づき、該制御部19は、該有機媒体が液相を維持するように前記循環ポンプ10の回転数を制御する。
以下に、図3に基づいて、具体的な制御の一例を説明する。
制御部19は、有機媒体の温度と該温度における飽和圧力とを対応づけたテーブルIを記憶する記憶部190を有することが好ましい。
かかるテーブルIを用いて、以下のようにして制御を行う。すなわち、制御部19は、前記温度計31により前記有機媒体の温度を計測し、前記温度計31から該計測温度を受信する。ここで、温度計31からの計測温度は常時制御部に送信し、制御部19は常時有機媒体の温度を監視できるようにしておくことが好ましい。
次いで、前記制御部19は、前記テーブルIに基づき前記受信した計測温度に対応する飽和圧力を呼び出す。
次いで、呼び出された該飽和圧力に、所定圧力を加算した設定圧力を算出する。ここで、所定圧力は、配管の圧力損失や、第1の熱交換器における圧力損失などを考慮した圧力をいう。
次いで、PID制御を行うため、前記算出された設定圧力に基づいた液相を維持するための循環ポンプ10のポンプ回転数を算出する。
次いで、PID制御により、VFDを作用させて、算出された設定圧力を保持するように循環ポンプ10のポンプ回転数を算出されたポンプ回転数に合わせるよう調整する。
なお、循環ポンプ10の回転数は、設定圧力に基づき算出された回転数に基づいて制御される。したがって、循環ポンプ10の吐出圧は、飽和圧力に圧損等の所定圧力を加算して算出される設定圧力と実質的に変わらない。
また、圧力計32は、第1の熱交換器3から二相流ノズル51に至る正規移送ライン14の圧力を計測することができる。
以上の一例では、テーブルを用いた制御の一例を説明したが、有機媒体の温度と該温度における飽和圧力とを対応づけたテーブルIを用いずに、有機媒体の温度と飽和圧力との近似式を用いて、該温度に基づき飽和圧力を算出することもできる。
また、PID制御を用いずに、設定圧力と循環ポンプの回転数とを対応付けたテーブルIIを用いて、算出された設定圧力に基づき、ポンプの回転数を求めることもできる。これにより、算出された設定圧力に基づき循環ポンプ9のポンプ回転数を制御することもできる。
なお、ポンプ回転数と共に弁の開度の調節の併用により有機媒体の圧力を制御することもできる。
システム起動時、タービン遮断弁33は閉じており、バイパス調節弁35は開いている状態であり、ブーストポンプ10aに引き続き、循環ポンプ10が自動起動し、有機媒体をバイパスライン14bに通して、タービンバイパス運転を開始する。
原動機1から排出された廃熱ガスが第1の熱交換器3を通過する際の温度は、原動機1の負荷に応じて上昇し、それに伴って有機媒体の温度も上昇する。
ここで、前述のとおり油圧機構9の作用により、原動機の負荷を早期に上昇させることができるので、原動機の負荷の上昇に伴う有機媒体の温度も早期に上昇させることができる。
本発明における第2の制御は、二相流タービン52の起動可能範囲になるように維持する制御である。
前記第1の熱交換器から二相流ノズル51までの有機媒体の正規移送ライン14に、温度計31を設け、該温度計31は有機媒体の温度を計測し、計測温度を制御部19に送り、該制御部19において該有機媒体の温度が、二相流タービンの起動可能範囲を維持できるように、該制御部19は、前記第1の熱交換器の入口廃熱ガス温度を制御する。
以下に、図4に基づいて、具体的な制御の一例を説明する。
制御部19は、運転維持制御を行うため、以下の処理を行う。
まず、制御部19は、第1の熱交換器3の出口の有機媒体の温度を計測する温度計31から、該有機媒体の計測温度を受け取る(S101)。ここで、運転維持であることから、計測温度を監視するため、制御部19は、常時、温度計31からの計測温度を受け取ることもできる。
次いで、該計測温度に基づき、制御部19は、タービンユニット5の起動可能範囲内であるか否かの判断を行う(S102)。具体的には、タービンユニット5の起動可能範囲は、有機媒体の計測温度に基づいて、判断を行う。ここで、例えば、aをタービン起動可能範囲の下限温度とし、bをタービン起動可能温度の上限温度とする。また、tを計測温度とし、温度計31からの計測温度を受け取るとtに計測温度を代入する。そして、a≦t≦bが成立するか否かを判断する。従って、有機媒体の計測温度tは、a≦t≦bが成立する場合、つまり起動可能温度範囲内である場合は、正常に運転維持ができていると判断される。しかし、a≦t≦bが成立していない場合は、計測温度tが、a≦t≦bとなるように以下の処理を行う。
有機媒体の計測温度が、タービンユニット5の起動可能範囲の下限を下回った場合(S103)、つまり、t<aが成立した場合、制御部19は、第1の熱交換器入口3の廃熱ガス温度を上げるよう制御する。
具体的には、制御部19(コントローラ98)は、油圧機構9の第3の油圧駆動源94に容量を増やすよう指示する(S104)。
この結果、電気駆動源96により第3の油圧駆動源94が油圧ポンプとして作動させ、油圧回路93に油圧を発生させることになる。
また、原動機1のクランク軸11に連結された第2の油圧駆動源92が油圧回路93に油圧を発生させており、さらに、電気駆動源96の回転駆動され、第3の油圧駆動源94が油圧回路に油圧を発生させる。
この結果、第2の油圧駆動源92及び第3の油圧駆動源94が発生させた油圧により、第1の油圧駆動源91を油圧モータとして回転駆動させ、軸23を介して、過給機2の回転力がさらに増速される。これにより過給機2は原動機1からの排気をより多く排出することになり、廃熱ガス温度が上昇させることができる。
したがって、廃熱ガス温度が高くなることで、第1の熱交換器3により熱交換する有機媒体の温度を上げることができる。
廃熱ガス温度の上昇により、有機媒体の温度が起動可能領域に達するまで行われ、達したら処理を終了する。
一方、有機媒体の計測温度が、タービンユニット5の起動可能範囲の下限を下回っていない場合(S103)、つまり、a≦t≦bが成立せず、更にt<aが成立しなかった場合は、t>bが成立する。すなわち、起動可能温度範囲の上限を上回っていることになる。この場合、制御部19は、第1の熱交換器3の入口の廃熱ガス温度を下げるよう制御する。
具体的には、過給機2の回転力が高すぎることになっているので、制御部19(コントローラ98)は、第3の油圧駆動源94に容量を減らすよう指示する(S105)。
この結果、過給機2の回転力により第1の油圧駆動源91を油圧ポンプとして作動し、第1の油圧駆動源91が油圧を発生させ、この油圧により第2の油圧駆動源92及び第3の油圧駆動源94を回転駆動される。
つまり、第2の油圧駆動源92を回転駆動させることで、クランク軸11を介して原動機1を補助駆動させる。これにより原動機1は補助駆動により負荷が通常より低く抑えられ、さらに、第3の油圧駆動源94を回転駆動させることで、第3の油圧駆動源94は油圧モータとして作動し、電気駆動源96を発電機として回転駆動させる。
これにより、原動機1の負荷が減ることになり、排気が抑えられる。また、発電機として回転駆動される電気駆動源96は、中央配電装置97に電気的に接続され、発電した電力を中央配電装置97に送ることができる。
したがって、発電による第3の油圧駆動源94への負荷及び原動機1の負荷が減ることにより、排気が抑えられる結果、廃熱ガス温度が高くなくなり、第1の熱交換器3により熱交換する有機媒体の温度を下げることができる。
廃熱ガス温度の下降により、有機媒体の温度が起動可能領域に達するまで行われ、達したら処理を終了する。
運転開始時、第1の熱交換器3から二相流ノズル51に至る有機媒体の正規移送ライン14に設けられているタービン遮断弁33及びタービン調節弁34は閉じられた状態にあり、バイパスライン14bに設けられているバイパス調節弁35は開いている状態にある。
制御部19は、温度計31から送られる計測温度が所定の温度以上であることを起動条件として、起動が行われ、起動信号によりタービン遮断弁33及びタービン調節弁34が開き、バイパス調節弁35が閉じられる。これにより、バイパスライン14bから第1の熱交換器3からタービンユニット5に至る正規移送ライン(媒体ライン)14への切り替えが行われる。
上記切り替えが行われ、二相流タービン52が駆動することにより、発電機6が駆動すると、発電がおこなわれる。二相流タービン52に接続された発電機6は、例えば三相誘導発電機を用いた場合、定格回転数(3600rpm)に達すると、図示しない発電機用遮断器が閉じて発電を開始する。
タービンユニット5の通常停止は、タービン調節弁34からバイパス調節弁35への切り替えが徐々に行われ、低温熱回収システムは正規移送ライン14からバイパスライン14bへの運転モードに移行する。発電出力がゼロになると、発電機用遮断器が開き、同時にタービン遮断弁33が閉じる。
本発明の低温熱回収システムは、VPC(Variable Phase Cycle)発電システムであり、VPCは、原動機1の運転状況に関わらず、常時停止することができる。また、図示しない冷却海水ポンプは、船体側と併用している場合、VPCの停止と関係なく停止することはできないが、VPC専用の場合、VPCの停止後に停止させることができる。
図5は、本発明の低温熱回収システムの他の例を示す説明図である。図中、図1と同符号により示される構成については、図1を参照してした説明を援用することができる。
図示の例は、過給機2に備えられた圧縮機22で圧縮された加圧掃気から熱回収を行う場合の一例を示している。
この実施形態における船舶用低温熱回収システムは、過給機2に備えられた圧縮機22で圧縮された加圧掃気と、液相の状態で圧送される有機媒体との間で熱交換して、前記加圧掃気から熱回収する第2の熱交換器15を備えている。
第2の熱交換器15は、過給機2に備えられた圧縮機22で圧縮された加圧掃気から余剰熱を有機媒体により回収する熱交換器であり、過給機2の圧縮機22で圧縮され、原動機1に供給する加圧掃気を有機媒体により冷却し熱回収する。なお、原動機1から排出される排ガスを、例えば、ボイラー40を用いて、廃熱ガスを利用することも可能である。
図6は、本発明の低温熱回収システムの他の例を示す説明図である。図中、図1と同符号により示される構成については、図1を参照してした説明を援用することができる。
図示の例は、過給機2に備えられた圧縮機22で圧縮された加圧掃気から熱回収を行い、かつ過給機2付き原動機1から排出される廃熱ガスから熱回収する場合の一例を示している。
図7は、本発明の低温熱回収システムの他の例を示す説明図である。図中、図1と同符号により示される構成については、図1を参照してした説明を援用することができる。
図示の例は、過給機2付き原動機1を冷却する冷却水から廃熱回収を行い、過給機2付き原動機1から排出される廃熱ガスから熱回収する場合の一例を示している。
原動機1の周囲には、冷却配管17が設けられ、原動機1からの廃熱は、冷却配管17内の冷却水に回収される。
該冷却配管17と第3の熱交換器16の間に、冷却水が通水する冷却水配管18を設け、冷却配管17内の冷却水が通水するように構成されている。
第3の熱交換器16は、かかる冷却水から、有機媒体に廃熱を回収する。
なお、第3の熱交換器16により熱回収され冷却された冷却水は、再び冷却配管17に導入され、原動機1の冷却に寄与する構成にすることも好ましい。
図8は、本発明の低温熱回収システムの他の例を示す図である。図中、図1、図5及び図7と同符号により示される構成については、図1、図5及び図7を参照してした説明を援用することができる。
図示の例は、過給機2付き原動機1を冷却する冷却水から廃熱回収を行い、かつ過給機2に備えられた圧縮機22で圧縮された加圧掃気から余剰熱回収を行う場合の一例を示している。
図9は、本発明の低温熱回収システムの他の例を示す図である。図中、図1、図5及び図7と同符号により示される構成については、図1、図5及び図7を参照してした説明を援用することができる。
図示の例は、過給機2付き原動機1を冷却する冷却水から廃熱回収を行い、過給機2に備えられた圧縮機22で圧縮された加圧掃気から余剰熱回収を行い、さらに過給機2付き原動機1から排出される廃熱ガスから熱回収する場合の一例を示している。
本発明では、発電機6の負荷遮断などの緊急時に、原則、タービン遮断弁33で移送配管14の二相流タービン52への流路を遮断することにより、有機媒体が流入しないように対応している。
以下に、本発明の実施例により、本発明の効果を例証する。
実験1
第1の熱交換器の出口での移送配管14内の有機媒体の状態が100%液相である場合に、熱交換器出口での移送配管14内の有機媒体圧力(MPaA)、温度(℃)、密度(kg/m)、流量(kg/h)、流速(m/s)、口径(A)は、表1の通りであった。なお、MPaAは絶対圧を示している。
比較実験1
第1の熱交換器の出口での移送配管14内の有機媒体の状態が100%気相である場合に、熱交換器出口での移送配管14内の有機媒体圧力(MPaA)、温度(℃)、密度(kg/m)、流量(kg/h)、流速(m/s)、口径(A)は、表1の通りであった。
Figure 2016160870
表1より、熱交換器出口配管内で、100%液相のままの場合、100%気化させる場合と比較して、配管は150A(6インチ)から100A(4インチ)と、2サイズダウンとなり、経済的であることがわかる。
従って、本発明は、第1の熱交換器3、第2の熱交換器15及び第3の熱交換器16のいずれにおいても、有機媒体は、液相のままで(液状で)、熱交換媒体として機能する
従って、本発明は、図1、図5〜図9の実施態様のいずれにおいても、油圧機構9の作用により、原動機1や過給機2の動作を油圧機構9がない状態に比べて負荷をより早くかけることができる。この結果、バイパス運転から通常運転への切替をシステム起動から早期に行うことができる。
1:原動機
11:クランク軸
13:変速機
2:過給機
21:タービン
22:圧縮機
23:回転軸(ロータ軸)
24:変速機
3:第1の熱交換器
4:インタークーラー
5:タービンユニット
51:二相流ノズル
52:二相流タービン
6:発電機
7:凝縮器
8:媒体タンク
10:循環ポンプ
10a:ブーストポンプ
14:正規移送ライン(移送配管)
14b:バイパスライン
15:第2の熱交換器
16:第3の熱交換器
17:冷却配管
18:冷却水配管
19:制御部
190:記憶部
9:油圧機構
91:第1の油圧駆動源
92:第2の油圧駆動源
93:油圧回路
94:第3の油圧駆動源
96:電気駆動源(電動モータ)
97:中央配電装置
98:コントローラ
101、102,103、104:油路
20:煙突
31:温度計
32:圧力計
33:タービン遮断弁
34:タービン調節弁
35:バイパス調節弁
40:ボイラー

Claims (13)

  1. 過給機付き原動機と、該過給機付き原動機の過給機と原動機とをそれぞれ駆動補助する油圧機構と、有機媒体を用いて前記過給機付き原動機から熱を回収する有機媒体低温熱回収機構と、からなる低温熱回収システムであり、
    前記油圧機構は、前記過給機の回転軸に連結されて前記過給機と共に回転する第1の油圧駆動源と、前記原動機の軸に連結されて前記軸と共に回転する第2の油圧駆動源と、前記第1の油圧駆動源と前記第2の油圧駆動源との間を流れる油の流量調整を行う可変容量型の第3の油圧駆動源と、前記第3の油圧駆動源の回転軸に連結されて前記第3の油圧駆動源と共に回転する電気駆動源とを備え
    前記有機媒体低温熱回収機構は、過給機付き原動機から排出される廃熱ガスと、液相の状態で有機媒体ライン内を圧送される有機媒体との間で、熱交換して、前記廃熱ガスから熱回収する第1の熱交換器と、前記第1の熱交換器の出口から正規移送ラインを介して送られる有機媒体を、気相と液相の二相流に変換させる二相流ノズルと、該二相流ノズルにより生成する気相と液相の二相流ジェットを導入して回転する二相流タービンと、該二相流タービンが回転することにより発電する発電機と、前記二相流タービンから排出される有機媒体を冷却して液化する凝縮器と、該凝縮器で液化した有機媒体を貯留する媒体タンクと、該媒体タンクから前記第1の熱交換器に前記正規移送ラインを介して、該有機媒体を送液する循環ポンプとを備え、
    前記第1の熱交換器から前記二相流ノズルまでの有機媒体の正規移送ラインに、有機媒体の温度を計測する温度計を設け、
    該温度計による有機媒体の計測温度を制御部に送り、
    前記制御部は、前記計測温度に対応する飽和圧力Paを求め、前記有機媒体低温熱回収機構により、前記飽和圧力Paに基づき、該有機媒体が液相を維持するように前記循環ポンプの回転数を制御し、
    前記油圧機構により、前記計測温度が、前記二相流タービンの起動可能温度範囲内を維持するように前記第1の熱交換器入口の廃熱ガス温度を制御することを特徴とする低温熱回収システム。
  2. 前記制御部は、前記計測温度が前記二相流タービンの起動可能温度範囲より低い場合、前記第1の熱交換器入口の廃熱ガス温度を上昇させ、前記計測温度が前記二相流タービンの起動可能温度範囲内になるよう制御することを特徴とする請求項1記載の低温熱回収システム。
  3. 前記制御部は、前記計測温度が前記二相流タービンの起動可能温度範囲より高い場合、下記(1)及び/又は(2)の動作を行い、前記計測温度が二相流タービンの起動可能温度範囲内になるよう制御することを特徴とする請求項1記載の低温熱回収システム。
    (1)前記第1の熱交換器入口の廃熱ガス温度を下降させること
    (2)前記過給機付き原動機の油圧機構内の電気駆動源の回転力で発電すること
  4. 前記循環ポンプから有機媒体を送液する正規移送ラインに第3の熱交換器をさらに備え、前記原動機に、該原動機からの発熱を吸収する冷却水を通水する冷却配管を設け、該冷却配管と前記第3の熱交換器の間を冷却水が通水する冷却水配管を設け、前記第3の熱交換器で、前記原動機の発熱を吸収して温度上昇した冷却水から、前記有機媒体に、熱移動して熱回収する構成を有することを特徴とする請求項1〜3のいずれかに記載の低温熱回収システム。
  5. 過給機付き原動機と、該過給機付き原動機の過給機と原動機とをそれぞれ駆動補助する油圧機構と、有機媒体を用いて前記過給機付き原動機から熱を回収する有機媒体低温熱回収機構と、からなる低温熱回収システムであり、
    前記油圧機構は、前記過給機の回転軸に連結されて前記過給機と共に回転する第1の油圧駆動源と、前記原動機の軸に連結されて前記軸と共に回転する第2の油圧駆動源と、前記第1の油圧駆動源と前記第2の油圧駆動源との間を流れる油の流量調整を行う可変容量型の第3の油圧駆動源と、前記第3の油圧駆動源の回転軸に連結されて前記第3の油圧駆動源と共に回転する電気駆動源とを備え
    前記有機媒体低温熱回収機構は、過給機で圧縮されて原動機に供給される加圧掃気と液相の状態で圧送される有機媒体との間で熱交換して前記加圧掃気から熱回収する第2の熱交換器と、前記第2の熱交換器によって前記加圧掃気から熱回収した前記有機媒体を気相と液相の二相流に変換させる二相流ノズルと、該二相流ノズルにより生成する気相と液相の二相流ジェットを導入して回転する二相流タービンと、該二相流タービンが回転することにより発電する発電機と、前記二相流タービンから排出される有機媒体を冷却して液化する凝縮器と、該凝縮器で液化した有機媒体を貯留する媒体タンクと、該媒体タンクから前記第1の熱交換器に、正規移送ラインを介して、該有機媒体を送液する循環ポンプとを備え、
    前記第2の熱交換器から前記二相流ノズルまでの有機媒体の正規移送ラインに、有機媒体の温度を計測する温度計を設け、
    該温度計による有機媒体の計測温度を制御部に送り、
    前記制御部は、前記計測温度に対応する飽和圧力Paを求め、前記有機媒体低温熱回収機構により、前記飽和圧力Paに基づき、該有機媒体が液相を維持するように前記循環ポンプの回転数を制御し、
    前記油圧機構により、前記計測温度が、前記二相流タービンの起動可能温度範囲内を維持するように前記第2の熱交換器入口の加圧掃気温度を制御することを特徴とする低温熱回収システム。
  6. 前記制御部は、前記計測温度が前記二相流タービンの起動可能温度範囲より低い場合、前記第2の熱交換器入口の加圧掃気温度を上昇させ、前記計測温度が、二相流タービンの起動可能温度範囲内になるよう制御することを特徴とする請求項5記載の低温熱回収システム。
  7. 前記制御部は、前記計測温度が前記二相流タービンの起動可能温度範囲より高い場合、下記(1)及び/又は(2)の動作を行い、前記計測温度が二相流タービンの起動可能温度範囲内になるよう制御することを特徴とする請求項5記載の低温熱回収システム。
    (1)前記第2の熱交換器入口の加圧掃気温度を下降させること
    (2)前記過給機付き原動機の油圧機構内の電気駆動源の回転力で発電すること
  8. 前記循環ポンプから有機媒体を送液する正規移送ラインに第3の熱交換器をさらに備え、前記原動機に、該原動機からの発熱を吸収する冷却水を通水する冷却配管を設け、該冷却配管と前記第3の熱交換器の間を冷却水が通水する冷却水配管を設け、前記第3の熱交換器で、前記原動機の発熱を吸収して温度上昇した冷却水から、前記有機媒体に、熱移動して熱回収する構成を有することを特徴とする請求項5〜7のいずれかに記載の低温熱回収システム。
  9. 過給機付き原動機と、該過給機付き原動機の過給機と原動機とをそれぞれ駆動補助する油圧機構と、有機媒体を用いて前記過給機付き原動機から熱を回収する有機媒体低温熱回収機構と、からなる低温熱回収システムであり、
    前記油圧機構は、前記過給機の回転軸に連結されて前記過給機と共に回転する第1の油圧駆動源と、前記原動機の軸に連結されて前記軸と共に回転する第2の油圧駆動源と、前記第1の油圧駆動源と前記第2の油圧駆動源との間を流れる油の流量調整を行う可変容量型の第3の油圧駆動源と、前記第3の油圧駆動源の回転軸に連結されて前記第3の油圧駆動源と共に回転する電気駆動源とを備え、
    前記有機媒体低温熱回収機構は、過給機付き原動機から排出される廃熱ガスと液相の状態で圧送される有機媒体との間で熱交換して前記廃熱ガスから熱回収する第1の熱交換器と、過給機から圧縮して原動機に供給する加圧掃気と液相の状態で圧送される有機媒体との間で熱交換して前記加圧掃気から熱回収する第2の熱交換器と、前記第1の熱交換器及び第2の熱交換器によって前記廃熱ガス及び前記加圧掃気から熱回収した前記有機媒体を気相と液相の二相流に変換させる二相流ノズルと、該二相流ノズルにより生成する気相と液相の二相流ジェットを導入して回転する二相流タービンと、該二相流タービンが回転することにより発電する発電機と、前記二相流タービンから排出される有機媒体を冷却して液化する凝縮器と、該凝縮器で液化した有機媒体を貯留する媒体タンクと、該媒体タンクから前記第1の熱交換器に正規移送ラインを介して、該有機媒体を送液する循環ポンプとを備え、
    前記第1の熱交換器から前記二相流ノズルまでの有機媒体の正規移送ラインに、有機媒体の温度を計測する温度計を設け、
    該温度計による有機媒体の計測温度を制御部に送り、
    前記制御部は、前記温度計から得られた該有機媒体の温度に対応する飽和圧力Paを求め、前記有機媒体低温熱回収機構により、前記飽和圧力Paに基づき、該有機媒体が液相を維持するような前記循環ポンプの回転数を制御し、
    前記油圧機構により、前記計測温度が、前記二相流タービンの起動可能温度範囲内を維持するように前記第1の熱交換器入口の廃熱ガス温度及び前記第2の熱交換器入口の加圧掃気温度を制御することを特徴とする低温廃熱回収システム。
  10. 前記制御部は、前記計測温度が前記二相流タービンの起動可能温度範囲より低い場合、前記第1の熱交換器入口の廃熱ガス温度及び前記第2の熱交換器入口の加圧掃気温度を上昇させ、前記計測温度が二相流タービンの起動可能温度範囲内になるよう制御することを特徴とする請求項9記載の低温熱回収システム。
  11. 前記制御部は、前記計測温度が前記二相流タービンの起動可能温度範囲より高い場合、下記(1)及び又は(2)の動作を行い、前記計測温度が二相流タービンの起動可能温度範囲内になるよう制御することを特徴とする請求項9記載の低温熱回収システム。
    (1)前記前記第1の熱交換器入口の廃熱ガス温度及び前記第2の熱交換器入口の加圧掃気温度を下降させること
    (2)前記過給機付き原動機の油圧機構内の電気駆動源の回転力で発電すること
  12. 前記循環ポンプから有機媒体を送液する正規移送ラインに第3の熱交換器をさらに備え、前記原動機に、該原動機からの発熱を吸収する冷却水を通水する冷却配管を設け、該冷却配管と前記第3の熱交換器の間を冷却水が通水する冷却水配管を設け、前記第3の熱交換器で、前記原動機の発熱を吸収して温度上昇した冷却水から、前記有機媒体に、熱移動して熱回収する構成を有することを特徴とする請求項9〜11のいずれかに記載の低温熱回収システム。
  13. 請求項1〜12のいずれかに記載の低温熱回収システムであって、船舶用に用いられることを特徴とする低温熱回収システム。
JP2015041846A 2015-03-03 2015-03-03 低温熱回収システム Pending JP2016160870A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015041846A JP2016160870A (ja) 2015-03-03 2015-03-03 低温熱回収システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015041846A JP2016160870A (ja) 2015-03-03 2015-03-03 低温熱回収システム

Publications (1)

Publication Number Publication Date
JP2016160870A true JP2016160870A (ja) 2016-09-05

Family

ID=56846521

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015041846A Pending JP2016160870A (ja) 2015-03-03 2015-03-03 低温熱回収システム

Country Status (1)

Country Link
JP (1) JP2016160870A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3514339A1 (en) 2018-01-18 2019-07-24 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Thermal energy recovery device
EP3521576A1 (en) 2018-01-31 2019-08-07 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Thermal energy recovery device
KR20190121697A (ko) 2018-04-18 2019-10-28 가부시키가이샤 고베 세이코쇼 열에너지 회수 장치 및 열에너지 회수 장치의 설치 방법

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3514339A1 (en) 2018-01-18 2019-07-24 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Thermal energy recovery device
KR20190088418A (ko) 2018-01-18 2019-07-26 가부시키가이샤 고베 세이코쇼 열 에너지 회수 장치
EP3521576A1 (en) 2018-01-31 2019-08-07 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Thermal energy recovery device
KR20190093125A (ko) 2018-01-31 2019-08-08 가부시키가이샤 고베 세이코쇼 열 에너지 회수 장치
KR20190121697A (ko) 2018-04-18 2019-10-28 가부시키가이샤 고베 세이코쇼 열에너지 회수 장치 및 열에너지 회수 장치의 설치 방법
EP3569829A1 (en) 2018-04-18 2019-11-20 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Thermal energy recovery device and method for installation of thermal energy recovery device

Similar Documents

Publication Publication Date Title
US9926813B2 (en) Heat energy distribution systems and methods for power recovery
US9932861B2 (en) Systems and methods for controlling backpressure in a heat engine system having hydrostaic bearings
US9638065B2 (en) Methods for reducing wear on components of a heat engine system at startup
US20140102098A1 (en) Bypass and throttle valves for a supercritical working fluid circuit
JP6194273B2 (ja) 排熱回収装置及び排熱回収方法
WO2013108867A1 (ja) 廃熱回収装置および原動機システム
US20160017758A1 (en) Management of working fluid during heat engine system shutdown
EP3093456B1 (en) Heat energy recovery system
KR101814878B1 (ko) 선박 추진 시스템 및 선박 및 선박 추진 시스템의 운전 방법
WO2016125699A1 (ja) 排熱回収装置、排熱回収型船舶推進装置および排熱回収方法
JP2015081569A (ja) 排熱回収システム、船舶及び排熱回収方法
KR20120097704A (ko) 선박의 폐열을 이용한 저항 감소 장치
JP2016160870A (ja) 低温熱回収システム
JP4684761B2 (ja) 発電装置
CN102575531A (zh) 用于生成高压蒸汽的方法和系统
JP2016160868A (ja) 低温熱回収システム
KR20160031745A (ko) 선박용 엔진의 폐열회수장치 및 방법
JP5563052B2 (ja) 排熱回収システム及び排熱回収方法
JP4976426B2 (ja) 冷凍サイクル系統、天然ガス液化設備、及び冷凍サイクル系統の改造方法
KR101613227B1 (ko) 선박의 폐열을 이용한 전력 생산 장치 및 방법
JP2016160869A (ja) 低温熱回収システム
JP6152155B2 (ja) Lngサテライト設備
JP2019093735A (ja) 舶用電源システム、これを備えた船舶、及び舶用電源システムの制御方法並びに舶用電源システムの制御プログラム
JP2014218922A (ja) 原動機システム
JP2023093169A (ja) 船舶用発電システム