JP2015081569A - 排熱回収システム、船舶及び排熱回収方法 - Google Patents

排熱回収システム、船舶及び排熱回収方法 Download PDF

Info

Publication number
JP2015081569A
JP2015081569A JP2013220136A JP2013220136A JP2015081569A JP 2015081569 A JP2015081569 A JP 2015081569A JP 2013220136 A JP2013220136 A JP 2013220136A JP 2013220136 A JP2013220136 A JP 2013220136A JP 2015081569 A JP2015081569 A JP 2015081569A
Authority
JP
Japan
Prior art keywords
steam
heating
water
exhaust gas
hot water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013220136A
Other languages
English (en)
Other versions
JP6195299B2 (ja
Inventor
雅幸 川見
Masayuki Kawami
雅幸 川見
悟史 杉下
Satoshi Sugishita
悟史 杉下
浩市 松下
Koichi Matsushita
浩市 松下
森 匡史
Tadashi Mori
匡史 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2013220136A priority Critical patent/JP6195299B2/ja
Publication of JP2015081569A publication Critical patent/JP2015081569A/ja
Application granted granted Critical
Publication of JP6195299B2 publication Critical patent/JP6195299B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T70/00Maritime or waterways transport
    • Y02T70/50Measures to reduce greenhouse gas emissions related to the propulsion system

Landscapes

  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

【課題】有機ランキンサイクルシステムの採用の困難性を低減し、有機ランキンサイクルシステムの採用を比較的容易にすることが可能な排熱回収システム、船舶及び排熱回収方法を提供することを目的とする。
【解決手段】排熱回収システム1は、ディーゼルエンジン3と、ディーゼルエンジン3から排出される排ガスと熱交換して蒸気を生成する排ガスエコノマイザ11と、排ガスエコノマイザ11に水を供給し、かつ、排ガスエコノマイザ11で生成された蒸気が供給される高圧蒸気ドラム18と、低沸点媒体が蒸発器46を流通してタービン48を駆動するORCシステム13と、低沸点媒体と高圧蒸気ドラム18から供給された加熱用熱水が熱交換をさせたのち、前記加熱用熱水の温度が低下した加熱用水を高圧蒸気ドラム18に戻す加熱用水循環系統とを備える。
【選択図】図1

Description

本発明は、排熱回収システム、船舶及び排熱回収方法に関するものである。
船舶には、排熱回収システムが設置される場合があり、排熱回収システムは、ディーゼルエンジン等のメインエンジンと、パワータービン(ガスタービン)と、蒸気タービンと、排ガスエコノマイザなどから構成される。パワータービンと蒸気タービンは、メインエンジンから排出される排ガス(燃焼ガス)の排気エネルギーを動力源として駆動し、パワータービンと蒸気タービンに接続された発電機によって発電が行われる。
下記の特許文献1では、エンジン廃熱回収発電ターボシステムの発明であって、低沸点媒体が、排気ガスとの間、高温側のジャケット冷却水との間、又は、ターボチャージャの出口空気との間で熱交換を行うことが開示されている。特許文献2では、排熱回収発電装置の発明であって、有機流体が、エンジン冷却水及び空気冷却器と熱交換する排熱回収媒体との間で熱交換を行うことが開示されている。
特開2011−106302号公報 特開2011−231636号公報
船舶による運輸では、燃料消費を低減するため、メインエンジンを定格運転させるのではなく、速度を落とした減速運転によって巡航が行われることがある。これにより、燃料代を大幅に減少することができる。
一方、一般に船舶に搭載された排熱回収システムは、メインエンジン負荷が例えば90%の高負荷域で設計されている。パワータービンは、メインエンジンからの排ガスを駆動源としており、例えばメインエンジン負荷が約50%以上となったとき、排ガスが導入されて、運転可能となる。
しかし、減速運転による巡航では、メインエンジン負荷が50%以下の状態でメインエンジンを運転させている。そのため、メインエンジンから排出される排ガスの排ガス温度が低く流量も少ないため、排ガスから熱エネルギを回収する排ガスエコノマイザにおける蒸気の蒸発量も少ない。したがって、減速運転時、排熱回収システムにおいて、パワータービンが駆動してないだけでなく、蒸気タービンの駆動による発電量も少ない、又は蒸気タービンの運転が不可能となり、発電が行われない状況にあった。
また、船舶の燃料所費の低減のために低温側温度領域での熱回収システムとして、低沸点媒体を用いて排熱を利用する有機ランキンサイクル(ORC)発電システムを追加することが考えられる。しかし、ORCシステム用の排ガスエコノマイザを新たに設置するとした場合、船舶では設置のためのスペースを確保しづらく、ORCシステムの採用が困難であった。
本発明は、このような事情に鑑みてなされたものであって、船舶への有機ランキンサイクルシステムの採用の困難性を低減し、有機ランキンサイクルシステムの採用を比較的容易にすることが可能な排熱回収システム、船舶及び排熱回収方法を提供することを目的とする。
上記課題を解決するために、本発明の排熱回収システム、船舶及び排熱回収方法は以下の手段を採用する。
すなわち、本発明に係る排熱回収システムは、エンジン部と、前記エンジン部から排出される排ガスと熱交換して加熱用熱水及び蒸気を生成する熱交換部と、前記熱交換部に水を供給し、かつ、前記熱交換部で生成された前記加熱用熱水及び前記蒸気が供給される蒸気ドラムと、低沸点媒体が蒸発器を流通してタービンを駆動する有機ランキンサイクルシステムと、前記蒸発器で、前記低沸点媒体と前記蒸気ドラムから供給された前記加熱用熱水とを熱交換させたのち、前記加熱用熱水の温度が低下した加熱用水を前記水として前記蒸気ドラムに戻す加熱用熱水循環系統とを備える。
この構成によれば、蒸気ドラム内の加熱用熱水が有機ランキンサイクルシステムの蒸発器へ供給されて、蒸発器にて加熱用熱水と低沸点媒体が熱交換し、有機ランキンサイクルシステムで低沸点媒体によってタービンが駆動される。したがって、比較的簡単に有機ランキンサイクルシステムの蒸発器で熱交換される加熱用熱水を確保できることから、有機ランキンサイクルシステム用の排ガスエコノマイザを新たに設置する必要がない。その結果、船舶では設置スペースを確保しづらいことによる、有機ランキンサイクルシステムの採用の困難性が低減され、ORCシステムの採用が比較的容易になる。
また、有機ランキンサイクルシステムでは、比較的低温な排ガスエネルギーからでもエネルギーを回収して発電が可能であるから、エンジン部が低負荷運転時であって、熱交換部から供給される蒸気によって駆動する蒸気タービンによる発電の出力が低下するような場合でも、有機ランキンサイクルシステムにて発電が可能となり、エネルギーの有効利用を図ることができる。
本発明に係る排熱回収システムは、エンジン部と、前記エンジン部から排出される排ガスと熱交換して熱水及び第1蒸気を生成する熱交換部と、前記熱交換部に水を供給し、かつ、前記熱交換部で生成された前記熱水及び前記第1蒸気が供給される蒸気ドラムと、低沸点媒体が蒸発器を流通してタービンを駆動する有機ランキンサイクルシステムと、前記蒸発器で、前記低沸点媒体と前記蒸気ドラムから供給された第2蒸気とを熱交換させたのち、前記第2蒸気の温度が低下し凝縮した凝縮水を前記水として前記蒸気ドラムへ戻す蒸気循環系統と、を備える。
この構成によれば、蒸気ドラム内の第2蒸気が有機ランキンサイクルシステムの蒸発器へ供給されて、蒸発器にて第2蒸気と低沸点媒体が熱交換し、有機ランキンサイクルシステムで低沸点媒体によってタービンが駆動される。したがって、比較的簡単に有機ランキンサイクルシステムの蒸発器で熱交換される第2蒸気を確保できることから、有機ランキンサイクルシステム用の排ガスエコノマイザを新たに設置する必要がない。その結果、船舶では設置スペースを確保しづらいことによる、有機ランキンサイクルシステムの採用の困難性が低減され、ORCシステムの採用が比較的容易になる。
また、有機ランキンサイクルシステムでは、比較的低温な排ガスエネルギーからでもエネルギーを回収して発電が可能であるから、エンジン部が低負荷運転時であって、熱交換部から供給される蒸気によって駆動する蒸気タービンの出力が低下するような場合でも、有機ランキンサイクルシステムにて発電が可能となり、エネルギーの有効利用を図ることができる。
上記発明において、前記蒸気ドラムに接続されるダンプ弁と、前記ダンプ弁の開動作に基づいて、前記有機ランキンサイクルシステムの蒸発器への前記蒸気ドラム内の前記加熱用熱水又は前記第2蒸気の供給を開始させる制御部とを更に備えてもよい。
この構成によれば、ダンプ弁が開動作にあるとき、有機ランキンサイクルシステムの蒸発器への蒸気ドラム内の加熱用熱又は第2蒸気の供給が開始される。これにより、例えば、蒸気タービンの出力低下時等において、蒸気ドラム内の圧力が上昇しているときに、加熱用熱水循環系統の加熱用熱水又は蒸気循環系統の第2蒸気が循環を開始して、有機ランキンサイクルシステムにて熱回収が行われる。したがって、ダンプ弁から蒸気をダンプしてエネルギーを排気することなく熱回収を行える。またエンジン部の低負荷時にも有機ランキンサイクルシステムで発電が可能となり、エネルギーの有効利用を図ることができる。
本発明に係る船舶は、上記の排熱回収システムを備える。
本発明に係る排熱回収方法は、エンジン部から排出される排ガスとの熱交換が行われる熱交換部に蒸気ドラムから水を供給するステップと、前記熱交換部にて加熱用熱水及び蒸気を生成するステップと、前記熱交換部で生成された前記加熱用熱水及び前記蒸気を前記蒸気ドラムに供給するステップと、有機ランキンサイクルシステムにて低沸点媒体を蒸発器へ流通させてタービンを駆動するステップと、前記蒸発器で、前記低沸点媒体と前記蒸気ドラムから供給した前記加熱用熱水が熱交換をするステップと、前記蒸発器で前記加熱用熱水の温度が低下した加熱用水を前記水として前記蒸気ドラムへ戻すステップとを備える。
本発明に係る排熱回収方法は、エンジン部から排出される排ガスとの熱交換が行われる熱交換部に蒸気ドラムから水を供給するステップと、前記熱交換部にて加熱用熱水及び第1蒸気を生成するステップと、前記熱交換部で生成された前記加熱用熱水及び前記第1蒸気を蒸気ドラムに供給するステップと、有機ランキンサイクルシステムにて低沸点媒体を蒸発器へ流通させてタービンを駆動するステップと、前記蒸発器で、前記低沸点媒体と前記蒸気ドラムから供給した第2蒸気が熱交換をするステップと、前記蒸発器で前記第2蒸気の温度が低下し凝縮した凝縮水を前記水として前記蒸気ドラムへ戻すステップとを備える。
本発明によれば、有機ランキンサイクルシステムの採用の困難性を低減し、有機ランキンサイクルシステムの採用を比較的容易にすることができる。
本発明の第1実施形態に係る排熱回収システムを示す構成図である。 本発明の第2実施形態に係る排熱回収システムを示す構成図である。 本発明の第1実施形態に係る排熱回収システムのパワータービン及び蒸気タービンの出力とディーゼルエンジン負荷の関係を示すグラフである。
以下に、本発明に係る実施形態について、図面を参照して説明する。
[第1実施形態]
図1には、本発明の第1実施形態に係る排熱回収システム1の概略構成が示されている。本実施形態では、メインエンジンとして船舶推進用のディーゼルエンジン3を用いている。排熱回収システム1は、船舶に搭載される。
排熱回収システム1は、船舶推進用のディーゼルエンジン3と、ディーゼルエンジン3の排ガスによって駆動される排気ターボ過給機5と、排気ターボ過給機5の上流側から抽気されたディーゼルエンジン3の排ガスによって駆動されるパワータービン(ガスタービン)7と、ディーゼルエンジン3の排ガスによって蒸気を生成する排ガスエコノマイザ(排ガスボイラ)11と、排ガスエコノマイザ11によって生成された蒸気によって駆動される蒸気タービン9と、有機ランキンサイクルシステム13(以下「ORCシステム13」という。)などを備えている。
ディーゼルエンジン3からの出力は、プロペラ軸を介してスクリュープロペラに直接的又は間接的に接続されている。また、ディーゼルエンジン3の各気筒のシリンダ部(図示せず。)の排気ポートは、排ガス集合管としての排気マニホールド(図示せず。)に接続され、排気マニホールドは、第1排気管L1を介して排気ターボ過給機5のタービン部5aの入口側と接続される。また、排気マニホールドは、第2排気管L2(抽気通路)を介してパワータービン7の入口側と接続されて、排ガスの一部が、排気ターボ過給機5に供給される前に抽気されてパワータービン7に供給される。
一方、各シリンダ部の給気ポートは給気マニホールド(図示せず。)に接続されており、給気マニホールドは、給気管K1を介して排気ターボ過給機5のコンプレッサ部5bと接続している。また、給気管K1には空気冷却器19が設置されている。
排気ターボ過給機5は、タービン部5aと、コンプレッサ部5bと、タービン部5aとコンプレッサ部5bを連結する回転軸5cとから構成されている。
パワータービン7は、第2排気管L2を介して排気マニホールドから抽気された排ガスによって回転駆動される。また、蒸気タービン9は、排ガスエコノマイザ11によって生成された蒸気が供給されて回転駆動される。
この排ガスエコノマイザ11は、排気ターボ過給機5のタービン部5aの出口側から第3排気管L3を介して排出される排ガスと、パワータービン7の出口側から第4排気管L4を介して排出される排ガスとが導入される。排ガスエコノマイザ11における熱交換部21は、排ガスの熱によって蒸発管23を介して供給された蒸気を再度加熱し、過熱蒸気を発生させる。そして、排ガスエコノマイザ11で生成された蒸気は、第1蒸気管J1を介して蒸気タービン9に導入され、また、蒸気タービン9で仕事を終えた蒸気は第2蒸気管J2によって排出されて復水器10に導かれる。
パワータービン7と蒸気タービン9とは直列に結合されて発電機25を駆動する。蒸気タービン9の回転軸は、図示しない減速機及びカップリングを介して発電機25に接続される。また、パワータービン7の回転軸は図示しない減速機及びクラッチ31を介して蒸気タービン9の回転軸29と連結されている。クラッチ31としては、所定の回転数にて軸と軸を接続したり離したりするクラッチが用いられ、例えばSSS(Synchro-Self-Shifting)クラッチが好適に用いられる。なお、パワータービン7と蒸気タービン9が直列に結合されるのではなく、パワータービン7と蒸気タービン9が並列に回転が結合されていてもよく、またパワータービン7と蒸気タービン9のそれぞれに発電機が接続されてもよい。
また、第2排気管L2には、パワータービン7に導入する排ガスのガス量を制御する排ガス量調整弁33と、非常時にパワータービン7への排ガスの供給を遮断する非常停止用緊急遮断弁35とが設けられている。また、排ガスバイパス管L5が、第2排気管L2から分岐して設けられ、第4排気管L4と合流する。排ガスバイパス管L5には、排ガスバイパス量調整弁34が設置される。排ガスバイパス量調整弁34は、ディーゼルエンジン3の掃気圧力が最低許容掃気圧を維持するように制御される。ここで、最低許容掃気圧とは、エンジン負荷に応じて予め設定された必要最低の掃気圧であり、ディーゼルエンジン3の燃料燃焼のために必要とされる掃気圧である。具体的には、ディーゼルエンジン3の掃気圧が常にモニタリングされるようにして、エンジン負荷に応じて予め設定された最低許容掃気圧を確保できるように、排ガスバイパス量調整弁34が制御される。減速運転時において、排ガスバイパス量調整弁34を開くように調整することによって、パワータービン7を経由せずに、排ガスエコノマイザ11へ排出される排ガス量が増える。その結果、排ガスエコノマイザ11における蒸気の蒸発量を増加させて、低負荷運転において蒸気タービン9の起動開始を早めることができる。また、低負荷運転において発電機25による発電量を増やすことが可能になる。
さらに、第1蒸気管J1には、蒸気タービン9に導入する蒸気量を制御する蒸気量調整弁37と、非常時に蒸気タービン9への蒸気の供給を遮断する非常停止用緊急遮断弁39とが設置されている。上述した排ガス量調整弁33、排ガスバイパス量調整弁34及び蒸気量調整弁37は、制御装置43によって、その開度が制御される。
以上のように発電機25は、船舶推進用のディーゼルエンジン3の排ガス(燃焼ガス)の排気エネルギーを動力として駆動されるようになっており、排気エネルギー回収装置を構成している。
排ガスエコノマイザ11は、過熱器12、高圧蒸発器14、低圧蒸発器16等が内部に配置されている。過熱器12は、高圧蒸気ドラム18から高圧蒸気が供給され、高圧蒸気を過熱する。そして、過熱器12は、蒸気タービン9の最上段に過熱した高圧蒸気を供給する。
高圧蒸発器14は、高圧缶水循環ポンプ20によって、高圧蒸気ドラム18内の液相(水)部分から水が供給され、供給された水を蒸発させて加熱用熱水及び高圧蒸気を生成する。高圧蒸発器14は、生成した加熱用熱水及び高圧蒸気を高圧蒸気ドラム18に供給する。
低圧蒸発器16は、低圧缶水循環ポンプ22によって、低圧蒸気ドラム24から水が供給され、供給された水を蒸発させて低圧蒸気を生成する。そして、低圧蒸発器16は、生成した低圧蒸気を低圧蒸気ドラム24に供給する。
高圧蒸気ドラム18は、例えば船舶の燃料油加熱装置26に接続され、高圧蒸気の一部は、高圧蒸気ドラム18から燃料油加熱装置26に供給される。燃料油加熱装置26で利用された蒸気は大気圧ドレンタンク28に回収される。燃料油加熱装置26は、船舶の燃料油のうち、粘性が高い状態のものを加熱して燃料油の粘度を低下させて、ディーゼルエンジン3への供給を容易にする。
低圧蒸気ドラム24は、蒸気タービン9の中間段や船内各部30に接続され、低圧蒸気は、低圧蒸気ドラム24から蒸気タービン9の中間段や船内各部30に供給される。船内各部30に供給された低圧蒸気は、雑用蒸気として利用され、利用された低圧蒸気は、大気圧ドレンタンク28に回収される。
高圧蒸気ドラム18及び低圧蒸気ドラム24は、それぞれ高圧ダンプ弁32及び低圧ダンプ弁27を備え、高圧ダンプ弁32及び低圧ダンプ弁27は、ドラム内圧が所定圧以上になったとき、蒸気を外部に逃がす。高圧ダンプ弁32及び低圧ダンプ弁27を通過した蒸気は、復水器10へ供給される。
復水器10に回収された蒸気は、例えば海水によって冷却されて水となり、復水器10内の水は、復水ポンプ36によって大気圧ドレンタンク28へ供給される。大気圧ドレンタンク28内の水は、給水ポンプ38によって、ディーゼルエンジンジャケット冷却器40や空気冷却器19を通過して加熱されながら、高圧蒸気ドラム18と低圧蒸気ドラム24それぞれへ供給される。高圧蒸気ドラム18と低圧蒸気ドラム24に供給される水は、流量調整弁42,44によって供給される水量が調整される。
高圧蒸気循環系統において、高圧蒸気ドラム18の内部の液相部分の低温度領域にある水は、高圧缶水循環ポンプ20によって、高圧蒸気ドラム18から排ガスエコノマイザ11の高圧蒸発器14に供給されて、排ガスと熱交換した後、加熱用熱水及び高圧蒸気となり、高圧蒸気ドラム18に戻り、高圧蒸気ドラム18内で気水分離が行われる。そして、高圧蒸気ドラム18内の高圧蒸気は、高圧蒸気ドラム18から排ガスエコノマイザ11の過熱器12や燃料油加熱装置26に供給される。排ガスエコノマイザ11の過熱器12に供給された高圧蒸気は、過熱蒸気となり、蒸気タービン9の最上段に供給されて蒸気タービン9を駆動する。発電機25は、蒸気タービン9の駆動力によって発電する。仕事を終えた蒸気は、復水器10で冷却されて水となり、復水ポンプ36及び給水ポンプ38によって、高圧蒸気ドラム18又は低圧蒸気ドラム24に戻される。また、燃料油加熱装置26に供給された高圧蒸気は、大気圧ドレンタンク28に回収された後、給水ポンプ38によって、高圧蒸気ドラム18又は低圧蒸気ドラム24に戻される。
なお、高圧蒸気循環系統の高圧蒸気の循環量は、蒸発管の流速を確保し、蒸発管内で水が急速に蒸気化しない安全上の配慮から、高圧蒸気の定格蒸発量の10倍程度の循環量を確保することが好ましい。
低圧蒸気循環系統において、低圧蒸気ドラム24の水は、低圧缶水循環ポンプ22によって、低圧蒸気ドラム24から排ガスエコノマイザ11の低圧蒸発器16に供給されて、排ガスと熱交換した後、低圧蒸気となり、低圧蒸気ドラム24に戻る。そして、低圧蒸気は、低圧蒸気ドラム24から船内各部30や蒸気タービン9の中間段に供給される。船内各部30に供給された低圧蒸気は、大気圧ドレンタンク28に回収された後、給水ポンプ38によって、高圧蒸気ドラム18又は低圧蒸気ドラム24に戻される。蒸気タービン9に供給された低圧蒸気は、蒸気タービン9を駆動する。仕事を終えた蒸気は、復水器10で冷却されて水となり、復水ポンプ36及び給水ポンプ38によって、高圧蒸気ドラム18又は低圧蒸気ドラム24に戻される。
ORCシステム13は、例えば蒸発器46と、タービン48と、発電機50と、コンデンサ52と、循環ポンプ54などからなる。低沸点媒体は、蒸発器46で加熱されて蒸気となり、生成された蒸気はタービン48に供給されてタービン48を駆動する。発電機50は、タービン48の駆動力によって発電する。タービン48を通過した低沸点媒体は、コンデンサ52で回収され、海水によって冷却され液体となる。液体の低沸点媒体は、循環ポンプ54によって蒸発器46に供給される。低沸点媒体は、例えば、イソペンタン、ブタン、プロパン等の低分子炭化水素や冷媒として用いられるR134a,R245fa等である。
高圧蒸気ドラム18内部の液相部分の高温度領域の熱水は、熱水循環ポンプ56によって加圧され、ORCシステム13の蒸発器46には、高圧蒸気ドラム18から液相状態にある加熱用の熱水である加熱用熱水が供給される。蒸発器46では、加熱用熱水と低沸点媒体が熱交換する。蒸発器46を通過した加熱用熱水は圧力が低下するとともに冷却されて、加熱用水として高圧蒸気ドラム18に供給される。すなわち、加熱用水循環系統において、加熱用熱水は、熱水循環ポンプ56によって、高圧蒸気ドラム18からORCシステム13の蒸発器46に供給されて、低沸点媒体と熱交換した後、加熱用水となり高圧蒸気ドラム18に戻る。
なお、加熱用水循環系統は、ORCシステム13の蒸発器46の入口上流部と蒸発器46の出口下流部を結ぶバイパス管B1が設けられる。ORCシステム13の蒸発器46にて熱交換を行わない場合は、開閉弁58を閉状態としバイパス開閉弁60を開状態として、加熱用熱水は、蒸発器46を通過しないで、加熱用水循環系統を循環する。ORCシステム13の蒸発器46にて熱交換を行う場合は、開閉弁58を開状態としバイパス開閉弁60を閉状態として、加熱用熱水は、蒸発器46を通過しながら、加熱用水となり加熱用水循環系統を循環する。なお、開閉弁58の開度を調整して加熱用水循環系統を流れる加熱用熱水の流量を変化させ、これと熱交換する低沸点媒体の流量を循環ポンプ54で調整したり、低沸点媒体の温度を調整してもよい。
制御装置43における高圧ダンプ弁32の開閉の検知、又は、高圧ダンプ弁32の制御信号に基づいて、高圧ダンプ弁32が開状態にあるとき又は開閉を短期間に繰り返すとき、制御装置43は熱水循環ポンプ56を起動する。これにより、蒸気タービン9の出力の低下によって、高圧蒸気ドラム18内の圧力が上昇していることが検知される。その結果、蒸気タービン9の出力低下時に、加熱用水循環系統の加熱用熱水が循環を開始して、ORCシステム13にて熱回収が行われる。したがって、ディーゼルエンジン3の低負荷時にもORCシステム13で発電が可能となり、エネルギーの有効利用を図ることができる。
ORCシステム13は、蒸気タービン9の出力が低下している状態で駆動することが望ましい。したがって、上述したとおり、高圧ダンプ弁32の開閉をトリガーにして加熱用水循環系統の加熱用熱水の循環を開始させる方法が考えられるが、加熱用水循環系統の加熱用熱水の循環開始のトリガーは他の方法を用いてもよい。
これにより、高圧ダンプ弁32から蒸気をダンプしてエネルギーを排気することなく、ORCシステム13により熱回収を行える。
本実施形態によれば、ORCシステム13への加熱用熱水供給専用のポンプである熱水循環ポンプ56によって、加熱用熱水をORCシステム13へ供給できる。
以上、蒸気タービン9の出力が低下している状態でORCシステム13を駆動する構成及び作用を中心に説明したが、以下では、図3を参照して、ORCシステム13を駆動する前の蒸気タービン9の出力が低下していない状態を含めて、排ガスバイパス量の調整及びパワータービン7又は蒸気タービン9の運転について説明する。
パワータービン7を起動するためには、パワータービン7を蒸気タービン9の回転数まで上昇させなければならない。また、パワータービン7は、運転時、最少負荷をとる必要がある。パワータービン7による出力を開始するには、多くの排ガス量が必要であり、ディーゼルエンジン3負荷(メインエンジン負荷)がある程度高いことが必要である。
したがって、パワータービン7の回転数が蒸気タービン9の回転数以上となる状態で、排ガス量調整弁33を開けて、排ガスをパワータービン7へ供給することによって、パワータービン7による出力を開始できる。
例えば、図3に示すように、ディーゼルエンジン3負荷が50%を超えるような運転がされており、パワータービン7の回転数が、蒸気タービン9の回転数まで上昇する場合に、パワータービン7を起動する。なお、以下では、パワータービン7に起動を開始させるディーゼルエンジン3負荷が、50%の場合について説明するが、本発明は、この例に限られず、例えば45%など、50%よりも低い場合も適用できる。
ディーゼルエンジン3負荷が50%よりも低い状態から、ディーゼルエンジン3負荷が50%に到達したとき、排ガス量調整弁33を開けることによって、パワータービン7は、運転を開始する。そして、図3に示すように、ディーゼルエンジン3負荷の上昇にかかわらず、パワータービン7の出力は一定になるように、パワータービン7に供給される排ガス量は一定に保たれ、それ以外の排ガス量は排気ターボ過給機5のタービン部5aへ送られる。ここで、パワータービン7に供給される排ガス量は、制御の簡易化のために一定量でも良いし、全体のエネルギーバランスから最適とするために、制御装置43により所定流量に調整される。
なお、ディーゼルエンジン3の排気利用の安定性を図るために、ディーゼルエンジン3負荷が50%以上では、排ガスバイパス量調整弁34は閉状態に維持される。
ディーゼルエンジン3負荷が50%以上では、排ガスエコノマイザ11は、排気ターボ過給機5のタービン部5aの出口側から第3排気管L3を介して排出される排ガス、パワータービン7の出口側から第4排気管L4を介して排出される排ガスとが導入される。そして、排ガスエコノマイザ11で生成された蒸気は、蒸気タービン9に導入されて、蒸気タービン9を駆動する。
一方、ディーゼルエンジン3負荷が高い状態からディーゼルエンジン3負荷が50%未満となるとき、制御装置43からの指令によって排ガス量調整弁33が閉じられて、パワータービン7への排ガスの供給が停止される。その結果、図3に示すように、パワータービン7による出力は0(ゼロ)となる。また、制御装置43からの指令によって排ガスバイパス量調整弁34が開く。
そして、ディーゼルエンジン3負荷が50%未満であるとき、ディーゼルエンジン3の掃気圧力が最低許容掃気圧を維持するように、制御装置43によって、排ガスバイパス量調整弁34の開度が調整される。
その結果、排ガスエコノマイザ11は、排気ターボ過給機5のタービン部5aの出口側から第3排気管L3を介して排出される排ガスと、排ガスバイパス量調整弁34が設けられた排ガスバイパス管L5を介して排出される排ガスとが導入される。そして、排ガスエコノマイザ11で生成された蒸気は、蒸気タービン9に導入されて、蒸気タービン9を駆動することがある。
したがって、排ガスバイパス量調整弁34を開き、排ガスエコノマイザ11における蒸気の蒸発量を増加させることによって、低負荷運転においても蒸気タービン9を駆動することができる。
例えば、ディーゼルエンジン3負荷が25%よりも低い状態から、ディーゼルエンジン3負荷が25%以上となったとき、ディーゼルエンジン3の掃気圧力が最低許容掃気圧を維持するように、制御装置43によって、排ガスバイパス量調整弁34が開き始める。これによって、ディーゼルエンジン3の掃気圧力を最低許容掃気圧よりも低下させることなく、かつ、排ガスエコノマイザ11に排ガスを導入できる。その結果、ディーゼルエンジン3負荷が25%以上50%未満では低負荷運転でも、蒸気タービン9を駆動させて、発電を行うことができる。
ディーゼルエンジン3負荷が25%以上50%未満では、運転時、ディーゼルエンジン3の掃気圧が常にモニタリングされるようにして、ディーゼルエンジン3負荷に応じて予め設定された最低許容掃気圧を確保できるように、排ガスバイパス量調整弁34が制御される。すなわち、排気ターボ過給機5のコンプレッサ部5bの出口の空気圧力に余裕があるか否かが判断される。そして、コンプレッサ部5bの出口の空気圧力の余裕度に応じて、排ガスバイパス量調整弁34の開度が調整される。
一方、ディーゼルエンジン3負荷が25%よりも高い状態から、ディーゼルエンジン3負荷が25%未満となったとき、排ガスバイパス量調整弁34が閉じられる。その結果、ディーゼルエンジン3の掃気圧力は、最低許容掃気圧よりも高くなるように維持される。
従来、低負荷運転時で、排ガスバイパス管L5に設けられた弁を利用する場合、開度を調整することなく、開又は閉を切り替えていただけであった。例えば、図3に示すように、ディーゼルエンジン3で最低許容掃気圧を確保するためには、ディーゼルエンジン3負荷が例えば約35%となったときに初めて、排ガスバイパス管L5に設けられた弁を開にすることができた。
これに対して本実施形態では、排ガスバイパス管L5に設けられた排ガスバイパス量調整弁34は、開度を調整することができる。そして、排ガスバイパス量調整弁34は、ディーゼルエンジン3の掃気圧力が最低許容掃気圧を維持するように制御される。したがって、ディーゼルエンジン3負荷が例えば約25%であっても、排ガスバイパス管L5を介して排ガスを排ガスエコノマイザ11へ排出できる。その結果、従来よりもディーゼルエンジン3負荷が低い状態で、蒸気タービン9を駆動させることができる。ディーゼルエンジン3負荷がゼロ又はゼロに近い状態から増加する場合は、蒸気タービン9の起動開始を従来よりも早めることができ、低負荷運転における蒸気タービン9による発電量を増加させることができる(図3の縦線網掛け部分“ST拡大領域”参照)。
以上、説明したとおり、従来は減速運航時、排ガス温度が低かったため蒸気タービン9を駆動して発電機25による発電をすることができなかったところ、排気マニホールドから抽気された高温の排ガスを排ガスエコノマイザ11に導くことができる。そして、排気マニホールドから抽気される排ガス量は、排ガスバイパス量調整弁34によって制御されることから、ディーゼルエンジン3の掃気圧力を最低許容掃気圧よりも高く維持できる。また、従来よりも、減速運航時における排ガスエコノマイザ11での蒸気の蒸発量を著しく増加させることができることから、ディーゼルエンジン3負荷が25%から50%の間で減速運転においても蒸気タービン9による発電能力を高められる。
また、ディーゼルエンジン3負荷が例えば約50%以上であるとき、排ガス量調整弁33を開けて、排ガスバイパス量調整弁34を閉じる。したがって、ディーゼルエンジン3からの排気ガスの抽気利用の安定性を図ることができる。
さらに本実施形態では、ディーゼルエンジン3負荷が例えば25%以下であって、蒸気タービン9の出力が確保しづらい状態であっても、加熱用水循環系統の加熱用熱水の循環を開始させて、ORCシステム13にて熱回収を行うことができる。その結果、図3の格子状網掛け部分に示すように、ディーゼルエンジン3負荷が例えば20%から25%の範囲でもORCシステム13で発電が可能となり、ディーゼルエンジン3の排ガスエネルギーの有効利用を図ることができる。
このとき、比較的簡単にORCシステム13の蒸発器へ供給される加熱用熱水を確保できることから、ORCシステム13用の排ガスエコノマイザを新たに設置する必要がなく、ORCシステム13を設けることが比較的容易になる。
なお、図1に示す例では、排ガスバイパス管L5は、第3排気管L3に接続されて、パワータービン7を経由しない排ガスは、排ガスバイパス管L5と第3排気管L3を通過して、排ガスエコノマイザ11に供給される場合について説明したが、本発明はこの例に限定されない。例えば、排ガスバイパス管L5が第4排気管L4に接続されてもよい。
[第2実施形態]
上述した第1実施形態では、高圧蒸気ドラム18からORCシステム13へ加熱用熱水を供給する場合について説明したが、本発明はこの例に限定されない。第2実施形態に係る排熱回収システム2では、高圧蒸気ドラム18からORCシステム13へ蒸気を供給する。図2には、本発明の第2実施形態に係る排熱回収システム2の概略構成が示されている。
以下では、第1実施形態と重複する構成について説明を省略する。
ORCシステム13の蒸発器46には、高圧蒸気ドラム18から蒸気(第2蒸気)が供給される。高圧蒸気循環系統において、高圧蒸気ドラム18の内部の液相部分の低温度領域にある水は、高圧缶水循環ポンプ20によって、高圧蒸気ドラム18から排ガスエコノマイザ11の高圧蒸発器14に供給されて、排ガスと熱交換した後、熱水及び高圧蒸気(第1蒸気)となり、高圧蒸気ドラム18に戻り、高圧蒸気ドラム18内で気水分離が行われる。そして、高圧蒸気ドラム18内の高圧蒸気(第2蒸気)は蒸発器46に供給され、蒸発器46では高圧蒸気(第2蒸気)と低沸点媒体が熱交換する。蒸発器46を通過した高圧蒸気は冷却されて凝縮水となり、熱水ドレンポンプ62によって、凝縮水が高圧蒸気ドラム18に戻される。すなわち、ORC用蒸気循環系統において、高圧蒸気は、高圧蒸気ドラム18からORCシステム13の蒸発器46に供給されて、低沸点媒体と熱交換した後、熱水ドレンポンプ62によって、高圧蒸気の凝縮水が高圧蒸気ドラム18に戻る。
ここで第2実施形態における蒸発器46は、高圧蒸気が凝縮水へと相変化を伴って伝熱されることから、熱伝達率が高くなり、第1実施形態での蒸発器46に比べて伝熱面積が小さくても良く小型化が可能となるので好ましい。
また第2実施形態における熱水ドレンポンプ62は、第1実施形態での加熱用熱水を流動させる熱水循環ポンプ56に比べて流量が少なく、小型化が可能となるので好ましい。
なお、ORC用蒸気循環系統は、第1実施形態の加熱用熱水循環系統とは異なり、ORCシステム13の蒸発器46の入口上流部と高圧ダンプ弁32の入口部を結ぶバイパス管B1が設けられる。ORCシステム13の蒸発器46にて熱交換を行わない場合は、開閉弁58を閉状態としバイパス開閉弁60を開状態として、高圧蒸気は、蒸発器46を通過しないで、高圧ダンプ弁32から復水器へ供給され、凝縮水として復水器から高圧蒸気ドラム18へと戻る。ORCシステム13の蒸発器46にて熱交換を行う場合は、開閉弁58を開状態としバイパス開閉弁60を閉状態として、高圧蒸気は、蒸発器46を通過しながら、ORC用蒸気循環系統を循環する。なお、開閉弁58の開度を調整してORC用蒸気循環系統を流れる高圧蒸気の流量を変化させ、これと熱交換する低沸点媒体の流量を循環ポンプ54で調整したり、低沸点媒体の温度を調整してもよい。
また、本実施形態では、低圧蒸気ドラム24から船内各部30へ低圧蒸気を供給する系統と、高圧蒸気ドラム18から燃料油加熱装置26へ高圧蒸気を供給する系統とを結ぶバイパス管B2が設けられる。そして、高圧蒸気ドラム18と燃料油加熱装置26を結ぶ高圧蒸気管に開閉弁66が設けられる。
これにより、ORC用蒸気循環系統を用いてORCシステム13へ蒸気を供給することによって、燃料油加熱装置26へ供給する蒸気量が不足する場合、バイパス管B2の開閉弁64を開状態とし、高圧蒸気管の開閉弁66を閉状態とすることによって、低圧蒸気ドラム24から燃料油加熱装置26へ低圧蒸気を供給する。その結果、蒸気循環系統を用いてORCシステム13へ蒸気を供給しながら、船内雑用蒸気30の供給量とのバランスをとりつつ、燃料油加熱装置26への必要蒸気量を確保することもできる。
以上、本発明の第1及び第2実施形態によれば、ORCシステム13がない蒸気タービン9及びパワータービン7のみの構成からでは不可能であったディーゼルエンジン3の低負荷時の発電が、ORCシステム13によって可能となる。また、本実施形態によれば、比較的簡単にORCシステム13の蒸発器へ供給される加熱用熱水又は蒸気を確保できることから、ORCシステム13用の排ガスエコノマイザを新たに設置する必要がない。その結果、船舶では設置スペースを確保しづらいことによる、ORCシステム13の採用の困難性が低減され、ORCシステム13の採用が比較的容易になる。
なお、上記実施形態では、高圧蒸気ドラム18からの高圧蒸気が、燃料油加熱装置26へ供給される場合について説明したが、本発明はこの例に限定されない。例えば、高圧蒸気ドラム18からの高圧蒸気は、燃料油加熱装置26以外の船内に設置された高圧蒸気消費機器へ供給されるとしてもよい。
1,2 排熱回収システム
3 ディーゼルエンジン(エンジン部)
7 パワータービン(ガスタービン)
9 蒸気タービン
11 排ガスエコノマイザ(熱交換部)
13 ORCシステム(有機ランキンサイクルシステム)
18 高圧蒸気ドラム(蒸気ドラム)
32 高圧ダンプ弁(ダンプ弁)
43 制御装置(制御部)
46 蒸発器
48 タービン
50 発電機

Claims (6)

  1. エンジン部と、
    前記エンジン部から排出される排ガスと熱交換して加熱用熱水及び蒸気を生成する熱交換部と、
    前記熱交換部に水を供給し、かつ、前記熱交換部で生成された前記加熱用熱水及び前記蒸気が供給される蒸気ドラムと、
    低沸点媒体が蒸発器を流通してタービンを駆動する有機ランキンサイクルシステムと、
    前記蒸発器で、前記低沸点媒体と前記蒸気ドラムから供給された前記加熱用熱水とを熱交換させたのち、前記加熱用熱水の温度が低下した加熱用水を前記水として前記蒸気ドラムに戻す加熱用熱水循環系統と、
    を備える排熱回収システム。
  2. エンジン部と、
    前記エンジン部から排出される排ガスと熱交換して熱水及び第1蒸気を生成する熱交換部と、
    前記熱交換部に水を供給し、かつ、前記熱交換部で生成された前記熱水及び前記第1蒸気が供給される蒸気ドラムと、
    低沸点媒体が蒸発器を流通してタービンを駆動する有機ランキンサイクルシステムと、
    前記蒸発器で、前記低沸点媒体と前記蒸気ドラムから供給された第2蒸気とを熱交換させたのち、前記第2蒸気の温度が低下し凝縮した凝縮水を前記水として前記蒸気ドラムへ戻す蒸気循環系統と、
    を備える排熱回収システム。
  3. 前記蒸気ドラムに接続されるダンプ弁と、
    前記ダンプ弁の開動作に基づいて、前記有機ランキンサイクルシステムの蒸発器への前記蒸気ドラム内の前記加熱用熱水又は前記第2蒸気の供給を開始させる制御部と、
    を更に備える請求項1又は2に記載の排熱回収システム。
  4. 請求項1から3のいずれか1項に記載の排熱回収システムを備える船舶。
  5. エンジン部から排出される排ガスとの熱交換が行われる熱交換部に蒸気ドラムから水を供給するステップと、
    前記熱交換部にて加熱用熱水及び蒸気を生成するステップと、
    前記熱交換部で生成された前記加熱用熱水及び前記蒸気を前記蒸気ドラムに供給するステップと、
    有機ランキンサイクルシステムにて低沸点媒体を蒸発器へ流通させてタービンを駆動するステップと、
    前記蒸発器で、前記低沸点媒体と前記蒸気ドラムから供給した前記加熱用熱水が熱交換をするステップと、
    前記蒸発器で前記加熱用熱水の温度が低下した加熱用水を前記水として前記蒸気ドラムへ戻すステップと、
    を備える排熱回収方法。
  6. エンジン部から排出される排ガスとの熱交換が行われる熱交換部に蒸気ドラムから水を供給するステップと、
    前記熱交換部にて加熱用熱水及び第1蒸気を生成するステップと、
    前記熱交換部で生成された前記加熱用熱水及び前記第1蒸気を蒸気ドラムに供給するステップと、
    有機ランキンサイクルシステムにて低沸点媒体を蒸発器へ流通させてタービンを駆動するステップと、
    前記蒸発器で、前記低沸点媒体と前記蒸気ドラムから供給した第2蒸気が熱交換をするステップと、
    前記蒸発器で前記第2蒸気の温度が低下し凝縮した凝縮水を前記水として前記蒸気ドラムへ戻すステップと、
    を備える排熱回収方法。
JP2013220136A 2013-10-23 2013-10-23 排熱回収システム、船舶及び排熱回収方法 Active JP6195299B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013220136A JP6195299B2 (ja) 2013-10-23 2013-10-23 排熱回収システム、船舶及び排熱回収方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013220136A JP6195299B2 (ja) 2013-10-23 2013-10-23 排熱回収システム、船舶及び排熱回収方法

Publications (2)

Publication Number Publication Date
JP2015081569A true JP2015081569A (ja) 2015-04-27
JP6195299B2 JP6195299B2 (ja) 2017-09-13

Family

ID=53012312

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013220136A Active JP6195299B2 (ja) 2013-10-23 2013-10-23 排熱回収システム、船舶及び排熱回収方法

Country Status (1)

Country Link
JP (1) JP6195299B2 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017066917A (ja) * 2015-09-29 2017-04-06 株式会社神戸製鋼所 熱エネルギー回収システム
KR20180041914A (ko) * 2016-10-17 2018-04-25 현대중공업 주식회사 보일러 시스템
EP3425176A4 (en) * 2016-03-31 2019-04-24 Mitsubishi Heavy Industries, Ltd. LOST HEAT RECOVERY DEVICE, INTERNAL COMBUSTION SYSTEM, SHIP, AND METHOD FOR CONTROLLING LOST HEAT RECOVERY DEVICE
JP2019093735A (ja) * 2017-11-17 2019-06-20 三菱重工業株式会社 舶用電源システム、これを備えた船舶、及び舶用電源システムの制御方法並びに舶用電源システムの制御プログラム
CN110318830A (zh) * 2019-06-25 2019-10-11 潍柴动力股份有限公司 一种车载蓄热式双朗肯余热回收系统
CN113107622A (zh) * 2021-04-27 2021-07-13 中国能源建设集团广东省电力设计研究院有限公司 一种高效布雷顿-朗肯循环柔性发电系统
CN113685332A (zh) * 2021-09-23 2021-11-23 陈奕阳 一种低碳排放型油气田压缩机及其控制方法
CN114655414A (zh) * 2022-04-02 2022-06-24 武汉船用电力推进装置研究所(中国船舶重工集团公司第七一二研究所) 一种高能效的船舶冷却系统
CN114962055A (zh) * 2022-05-26 2022-08-30 一汽解放汽车有限公司 Orc余热回收系统、控制方法、装置、设备及存储介质

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57123904U (ja) * 1981-01-27 1982-08-02
JP2007255363A (ja) * 2006-03-24 2007-10-04 Osaka Gas Co Ltd 動力システム
JP2010048129A (ja) * 2008-08-20 2010-03-04 Sanden Corp 内燃機関の廃熱利用装置
JP2011106302A (ja) * 2009-11-13 2011-06-02 Mitsubishi Heavy Ind Ltd エンジン廃熱回収発電ターボシステムおよびこれを備えた往復動エンジンシステム
JP2011231636A (ja) * 2010-04-26 2011-11-17 Mitsubishi Heavy Ind Ltd 排熱回収発電装置およびこれを備えた船舶
JP2012149541A (ja) * 2011-01-17 2012-08-09 Mitsubishi Heavy Ind Ltd 排熱回収発電装置および船舶
JP2012215124A (ja) * 2011-03-31 2012-11-08 Mitsubishi Heavy Ind Ltd 排熱回収発電装置
JP2013160132A (ja) * 2012-02-03 2013-08-19 Mitsubishi Heavy Ind Ltd 排熱回収利用システム

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57123904U (ja) * 1981-01-27 1982-08-02
JP2007255363A (ja) * 2006-03-24 2007-10-04 Osaka Gas Co Ltd 動力システム
JP2010048129A (ja) * 2008-08-20 2010-03-04 Sanden Corp 内燃機関の廃熱利用装置
JP2011106302A (ja) * 2009-11-13 2011-06-02 Mitsubishi Heavy Ind Ltd エンジン廃熱回収発電ターボシステムおよびこれを備えた往復動エンジンシステム
JP2011231636A (ja) * 2010-04-26 2011-11-17 Mitsubishi Heavy Ind Ltd 排熱回収発電装置およびこれを備えた船舶
JP2012149541A (ja) * 2011-01-17 2012-08-09 Mitsubishi Heavy Ind Ltd 排熱回収発電装置および船舶
JP2012215124A (ja) * 2011-03-31 2012-11-08 Mitsubishi Heavy Ind Ltd 排熱回収発電装置
JP2013160132A (ja) * 2012-02-03 2013-08-19 Mitsubishi Heavy Ind Ltd 排熱回収利用システム

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017066917A (ja) * 2015-09-29 2017-04-06 株式会社神戸製鋼所 熱エネルギー回収システム
EP3425176A4 (en) * 2016-03-31 2019-04-24 Mitsubishi Heavy Industries, Ltd. LOST HEAT RECOVERY DEVICE, INTERNAL COMBUSTION SYSTEM, SHIP, AND METHOD FOR CONTROLLING LOST HEAT RECOVERY DEVICE
KR102295007B1 (ko) * 2016-10-17 2021-08-26 현대중공업 주식회사 보일러 시스템
KR20180041914A (ko) * 2016-10-17 2018-04-25 현대중공업 주식회사 보일러 시스템
JP2019093735A (ja) * 2017-11-17 2019-06-20 三菱重工業株式会社 舶用電源システム、これを備えた船舶、及び舶用電源システムの制御方法並びに舶用電源システムの制御プログラム
JP7046569B2 (ja) 2017-11-17 2022-04-04 三菱重工マリンマシナリ株式会社 舶用電源システム、これを備えた船舶、及び舶用電源システムの制御方法並びに舶用電源システムの制御プログラム
CN110318830A (zh) * 2019-06-25 2019-10-11 潍柴动力股份有限公司 一种车载蓄热式双朗肯余热回收系统
CN110318830B (zh) * 2019-06-25 2022-04-05 潍柴动力股份有限公司 一种车载蓄热式双朗肯余热回收系统
CN113107622A (zh) * 2021-04-27 2021-07-13 中国能源建设集团广东省电力设计研究院有限公司 一种高效布雷顿-朗肯循环柔性发电系统
CN113107622B (zh) * 2021-04-27 2022-07-12 中国能源建设集团广东省电力设计研究院有限公司 一种高效布雷顿-朗肯循环柔性发电系统
CN113685332A (zh) * 2021-09-23 2021-11-23 陈奕阳 一种低碳排放型油气田压缩机及其控制方法
CN114655414A (zh) * 2022-04-02 2022-06-24 武汉船用电力推进装置研究所(中国船舶重工集团公司第七一二研究所) 一种高能效的船舶冷却系统
CN114655414B (zh) * 2022-04-02 2024-04-09 武汉船用电力推进装置研究所(中国船舶重工集团公司第七一二研究所) 一种高能效的船舶冷却系统
CN114962055A (zh) * 2022-05-26 2022-08-30 一汽解放汽车有限公司 Orc余热回收系统、控制方法、装置、设备及存储介质

Also Published As

Publication number Publication date
JP6195299B2 (ja) 2017-09-13

Similar Documents

Publication Publication Date Title
JP6195299B2 (ja) 排熱回収システム、船舶及び排熱回収方法
CA2589781C (en) Method and apparatus for power generation using waste heat
KR101316560B1 (ko) 선박의 폐열을 이용한 에너지 절감 장치
WO2011136118A1 (ja) 排熱回収発電装置およびこれを備えた船舶
EP3354869B1 (en) Waste heat recovery equipment, internal combustion engine system, ship, and waste heat recovery method
EP3093456B1 (en) Heat energy recovery system
JP2012149541A (ja) 排熱回収発電装置および船舶
JP6532652B2 (ja) 排熱回収装置、内燃機関システムおよび船舶、並びに排熱回収方法
JP2013160132A (ja) 排熱回収利用システム
KR102220071B1 (ko) 보일러 시스템
CN105386803A (zh) 一种气液混合回收的低品质余热发电系统及控制方法
JP5563052B2 (ja) 排熱回収システム及び排熱回収方法
KR101922026B1 (ko) 선박의 폐열을 이용한 에너지 절감 시스템
JP5951593B2 (ja) 排熱回収装置、排熱回収型船舶推進装置および排熱回収方法
JP2014218922A (ja) 原動機システム
KR101519542B1 (ko) 유기냉매의 폐열을 이용한 선박의 에너지 절감 장치
JP7301553B2 (ja) 液化ガス気化装置及びこれを備えた浮体設備
JP2019082180A (ja) 排熱回収装置、内燃機関システムおよび船舶、並びに排熱回収方法
JP2024143496A (ja) 船舶用発電システム
JP2024143498A (ja) 船舶用発電システム
JP2024143497A (ja) 船舶用発電システム
JP6239008B2 (ja) 熱機関の動作制御および安全制御のための装置および方法
JP2016050527A (ja) 低温排熱回収システム
JP2014001675A (ja) 原動機システム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150220

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151222

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160222

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160705

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161005

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20161024

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20161202

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170809

R150 Certificate of patent or registration of utility model

Ref document number: 6195299

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350