WO2010073827A1 - 正極タブリード及び負極タブリード並びに電池 - Google Patents

正極タブリード及び負極タブリード並びに電池 Download PDF

Info

Publication number
WO2010073827A1
WO2010073827A1 PCT/JP2009/068986 JP2009068986W WO2010073827A1 WO 2010073827 A1 WO2010073827 A1 WO 2010073827A1 JP 2009068986 W JP2009068986 W JP 2009068986W WO 2010073827 A1 WO2010073827 A1 WO 2010073827A1
Authority
WO
WIPO (PCT)
Prior art keywords
tab lead
electrode tab
coating layer
positive electrode
negative electrode
Prior art date
Application number
PCT/JP2009/068986
Other languages
English (en)
French (fr)
Inventor
清志 多田
大祐 橋本
哲 山▲崎▼
Original Assignee
昭和電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昭和電工株式会社 filed Critical 昭和電工株式会社
Priority to KR1020127033896A priority Critical patent/KR20130004606A/ko
Priority to EP09834631.5A priority patent/EP2372815A4/en
Priority to CN200980157136.0A priority patent/CN102326280B/zh
Priority to US13/141,141 priority patent/US9070919B2/en
Publication of WO2010073827A1 publication Critical patent/WO2010073827A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/571Methods or arrangements for affording protection against corrosion; Selection of materials therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/172Arrangements of electric connectors penetrating the casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/172Arrangements of electric connectors penetrating the casing
    • H01M50/174Arrangements of electric connectors penetrating the casing adapted for the shape of the cells
    • H01M50/176Arrangements of electric connectors penetrating the casing adapted for the shape of the cells for prismatic or rectangular cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/533Electrode connections inside a battery casing characterised by the shape of the leads or tabs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/534Electrode connections inside a battery casing characterised by the material of the leads or tabs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/547Terminals characterised by the disposition of the terminals on the cells
    • H01M50/55Terminals characterised by the disposition of the terminals on the cells on the same side of the cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/552Terminals characterised by their shape
    • H01M50/553Terminals adapted for prismatic, pouch or rectangular cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/562Terminals characterised by the material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a tab lead for a secondary battery such as a lithium secondary battery, a positive electrode tab lead and a negative electrode tab lead which are preferably used as a tab lead for a capacitor.
  • the term “aluminum” is used to include aluminum and its alloys, and the term “copper” is used to include copper and its alloys. Further, in this specification and claims, the term “battery” is used to include not only a battery such as a secondary battery but also a capacitor.
  • the battery is configured as an assembled battery formed by electrically connecting these single cells. That is, the electrode terminals (tab leads) of a plurality of single cells are joined together to form an assembled battery. Conventionally, such tab leads are often joined by welding.
  • the present invention has been made in view of such a technical background, and an object thereof is to provide a positive electrode tab lead, a negative electrode tab lead, and a battery capable of bonding tab leads with a sufficient bonding force at a low energy cost. To do.
  • the present invention provides the following means.
  • a positive electrode tab lead wherein a partial coating layer made of nickel, tin, or solder is formed on at least a part of a region of the aluminum plate exposed to the outside of the exterior body.
  • a negative electrode tab lead having a nickel coating layer formed on the entire surface of a copper plate.
  • a nickel coating layer is formed on the entire surface of the copper plate, and a partial coating layer made of tin or solder is formed on at least a part of the outer surface of the nickel coating layer exposed to the exterior of the exterior body.
  • the negative electrode tab lead characterized by the above-mentioned.
  • a battery main body portion including a positive electrode, a negative electrode, and an electrolyte; an outer package enclosing the battery main body portion; a positive electrode tab lead electrically connected to the positive electrode; and an electric connection to the negative electrode
  • the positive electrode tab lead is formed by forming a partial coating layer made of nickel, tin or solder on at least a part of the exposed region of the aluminum plate
  • the negative electrode tab lead is a battery in which a nickel coating layer is formed on the entire surface of a copper plate.
  • a battery main body portion including a positive electrode, a negative electrode, and an electrolyte; an outer package enclosing the battery main body portion; a positive electrode tab lead electrically connected to the positive electrode; and an electric connection to the negative electrode
  • the positive electrode tab lead is formed by forming a partial coating layer made of nickel on at least a part of the exposed region of the aluminum plate
  • the negative electrode tab lead is a battery in which a nickel coating layer is formed on the entire surface of a copper plate.
  • a battery main body portion including a positive electrode, a negative electrode, and an electrolyte; an outer package enclosing the battery main body portion; a positive electrode tab lead electrically connected to the positive electrode; and an electric connection to the negative electrode
  • the positive electrode tab lead is formed by forming a partial coating layer made of tin on at least a part of the exposed region of the aluminum plate
  • the negative electrode tab lead is a battery in which a nickel coating layer is formed on the entire surface of a copper plate and a partial coating layer made of tin is formed on at least a part of the exposed region of the nickel coating layer.
  • a battery main body portion including a positive electrode, a negative electrode, and an electrolyte; an outer package enclosing the battery main body portion; a positive electrode tab lead electrically connected to the positive electrode; and an electric connection to the negative electrode
  • the positive electrode tab lead is formed by forming a partial coating layer made of solder on at least a part of the exposed region of the aluminum plate
  • the negative electrode tab lead is a battery in which a nickel coating layer is formed on the entire surface of a copper plate and a partial coating layer made of solder is formed on at least a part of the exposed region of the nickel coating layer.
  • the partial coating layer is formed in the entire area of the aluminum plate exposed outside the exterior body (excluding the side end face), the corrosion resistance of the externally exposed area can be improved. The durability reliability of the battery can be further improved.
  • the partial coating layer (13) may be formed in the side end surface (11a) of the area
  • the nickel coating layer is formed on the entire surface of the copper plate (excluding the side end faces), the tab leads can be joined to each other with a sufficient joining force by soldering. Further, since the tab leads can be joined to each other by soldering, the energy cost at the time of joining is small and economical.
  • the nickel coating layer (22) may be formed on the side end surface of the copper plate (see FIG. 5), or the nickel coating layer may not be formed. Any configuration is included.
  • a nickel coating layer is formed on the entire surface of the copper plate (excluding the side end surfaces), and at least one of the regions exposed to the outside of the exterior body on the outer surface of the nickel coating layer. Since the partial coating layer made of tin or solder is formed on the part, the tab leads can be joined to each other with a sufficient joining force by solder joining. Further, since the tab leads can be joined to each other by soldering, the energy cost at the time of joining is small and economical.
  • the nickel coating layer (22) may be formed on the side end surface of the copper plate (see FIG. 7), or the nickel coating layer may not be formed. Any configuration is included.
  • the chitosan layer containing one or more chitosans selected from the group consisting of chitosan and chitosan derivatives is further formed on the surface, the negative electrode tab lead and the insulating tab The adhesiveness with the film can be further improved, whereby the durability reliability of the battery can be further improved.
  • the positive electrode tab lead is formed by forming a partial coating layer made of nickel, tin or solder on at least a part of the exposed region of the aluminum plate, and the negative electrode tab lead is the entire surface of the copper plate (however, (Excluding the side end face), a nickel coating layer is formed, so that when a unit cell having such a configuration is electrically connected to form a battery assembly, for example, one unit cell
  • the partial coating layer of the positive electrode tab lead and the nickel coating layer of the negative electrode tab lead of another unit cell can be bonded with a sufficient bonding force by solder bonding.
  • the tab leads can be joined to each other by soldering, the energy cost at the time of joining is small and economical.
  • the nickel coating layer (22) may be formed on the side end surface of the copper plate (see FIG. 5), or the nickel coating layer may not be formed. Any configuration is included.
  • the positive electrode tab lead is formed by forming a partial coating layer made of nickel on at least a part of the exposed region of the aluminum plate, and the negative electrode tab lead is the entire surface of the copper plate (excluding the side end surfaces). ))
  • a nickel coating layer is formed, and when the unit cells having such a configuration are electrically connected to each other to form an assembled battery, for example, the positive tab lead of one unit cell
  • the partial coating layer and the nickel coating layer of the negative electrode tab lead of another unit cell can be bonded with a sufficient bonding force by solder bonding. Further, since the tab leads can be joined to each other by soldering, the energy cost at the time of joining is small and economical.
  • the partial coating layer of the positive electrode tab lead and the nickel coating layer of the negative electrode tab lead are the same kind of metal (nickel), there is an advantage that the cost required for forming these layers can be reduced.
  • the nickel coating layer (22) may be formed on the side end surface of the copper plate (see FIG. 5), or the nickel coating layer may not be formed. Any configuration is included.
  • the positive electrode tab lead is formed by forming a partial coating layer made of tin on at least a part of the exposed region of the aluminum plate, and the negative electrode tab lead is the entire surface of the copper plate (excluding the side end surfaces). ) And a nickel coating layer and at least a part of the exposed region of the nickel coating layer is formed with a partial coating layer made of tin.
  • the partial coating layer of the positive electrode tab lead of one unit cell and the partial coating layer of the negative electrode tab lead of another unit cell are bonded with sufficient bonding force by solder bonding. be able to.
  • the tab leads can be joined to each other by soldering, the energy cost at the time of joining is small and economical.
  • the nickel coating layer (22) may be formed on the side end surface of the copper plate (see FIG. 7), or the nickel coating layer may not be formed. Any configuration is included.
  • the positive electrode tab lead is formed by forming a partial coating layer made of solder on at least a part of the exposed region of the aluminum plate, and the negative electrode tab lead is the entire surface of the copper plate (excluding the side end surfaces). ) And a nickel coating layer and a partial coating layer made of solder is formed on at least a part of the exposed region of the nickel coating layer.
  • the partial coating layer of the positive electrode tab lead of one unit cell and the partial coating layer of the negative electrode tab lead of another unit cell are bonded with sufficient bonding force by solder bonding. be able to.
  • the tab leads can be joined to each other by soldering, the energy cost at the time of joining is small and economical.
  • the nickel coating layer (22) may be formed on the side end surface of the copper plate (see FIG. 7), or the nickel coating layer may not be formed. Any configuration is included.
  • the partial coating layer is formed in the entire area (excluding the side end face) of the aluminum plate of the positive electrode tab lead that is exposed to the outside, the corrosion resistance of this externally exposed area.
  • the durability of the battery can be further improved.
  • the partial coating layer (13) may be formed on the side end surface (11a) of the region exposed to the outside of the exterior body of the aluminum plate of the positive electrode tab lead (see FIG. 9), or the partial coating layer. (13) may not be formed (see FIG. 8), and the invention [14] includes any of these configurations.
  • FIG. 1 is a perspective view showing one embodiment of a battery according to the present invention, and (b) is an enlarged sectional view taken along line XX in (a). It is a top view which shows the positive electrode tab lead of the battery which concerns on one Embodiment of this invention, and its vicinity.
  • FIG. 3 is a sectional view taken along line AA in FIG. 2. It is a top view which shows the negative electrode tab lead of the battery which concerns on one Embodiment of this invention, and its vicinity.
  • FIG. 5 is a sectional view taken along line BB in FIG. 4. It is a top view which shows the negative electrode tab lead of the battery which concerns on other embodiment of this invention, and its vicinity. It is sectional drawing of the CC line in FIG. It is sectional drawing which shows the positive electrode tab lead of the battery which concerns on other embodiment of this invention, and its vicinity. It is sectional drawing which shows the positive electrode tab lead of the battery which concerns on further another embodiment of this invention, and its vicinity.
  • FIG. 1 shows an embodiment of a battery (30) according to the present invention.
  • the battery (30) of the first embodiment is a non-aqueous electrolyte lithium secondary battery.
  • a film-like positive electrode (33) and a film-like negative electrode (34) are arranged in a superposed manner with a separator (36) interposed therebetween, and between these positive electrode (33) and negative electrode (34).
  • the non-aqueous electrolyte (35) is interposed in the battery, and is configured to be chargeable / dischargeable by transmission of lithium ions.
  • the battery body (32) including the positive electrode (33), the negative electrode (34), and the electrolyte (35) is covered in a liquid-tight state by the exterior body (31), that is, the interior of the exterior body (31). (See FIG. 1).
  • a positive electrode tab lead (1) is electrically connected to the positive electrode (33), and a part of the positive electrode tab lead (1) is exposed (derived) from the exterior body (31) ( 1 to 3).
  • the positive electrode tab lead (1) is formed with a partial coating layer (13) made of nickel on a part (tip portion) of the externally exposed region of the aluminum plate (11).
  • a chitosan layer (14) containing chitosans is formed on the outermost surface.
  • the nickel coating layer is not formed in the area
  • insulating tab films (15) and (15) are adhered to both sides of the intermediate region in the length direction of the positive electrode tab lead (1), and further this insulating tab film (15) ( 15) is arranged so that the edge of the outer package (31) is sandwiched, and the edge of the outer package (31) is sealed and bonded by heat sealing or the like.
  • the negative electrode tab lead (2) is electrically connected to the negative electrode (34), and a part of the negative electrode tab lead (2) is exposed to the outside of the outer package (31) (derived). (See FIGS. 1, 4, and 5).
  • the negative electrode tab lead (2) has a nickel coating layer (22) formed on the entire surface of the copper plate (21) and the entire outer surface of the nickel coating layer (22). In which a chitosan layer (24) containing chitosans is formed.
  • insulating tab films (25) and (25) are attached to both sides of the intermediate region in the length direction of the negative electrode tab lead (2), and further this insulating tab film (25) ( 25) is arranged so that the edge of the exterior body (31) is sandwiched, and the edge of the exterior body (31) is sealed and bonded by heat sealing or the like.
  • the unit cells (30) having the above-described configuration are electrically connected to form a battery pack, for example, the partial coating layer (13) of the positive electrode tab lead (1) of one unit cell (30) and the other If the nickel coating layer (22) of the negative electrode tab lead (2) of the unit cell (30) is joined by solder joint, the joint can be made with a sufficient joining force.
  • the following configuration (second embodiment) may be adopted. That is, in the battery of the above embodiment, as the positive electrode tab lead (1), a partial coating layer (13) made of tin is formed on a part (tip portion) of the externally exposed region of the aluminum plate (11), and Furthermore, while using a chitosan layer (14) containing chitosans formed on the outermost surface (see FIG. 3), the negative electrode tab lead (2) is a copper plate (21) as shown in FIGS. A nickel coating layer (22) is formed on the entire surface of the substrate, and a partial coating layer (23) made of tin is formed on a part of the exposed region of the nickel coating layer (22), and further contains chitosans on the outermost surface. A structure using a chitosan layer (24) formed may be employed. A tin coating layer is not formed in a region of the aluminum plate (11) disposed in the exterior body (31).
  • insulating tab films (15) and (15) are attached to both sides of the intermediate region in the length direction of the positive electrode tab lead (1). ) (15) is sandwiched between the edges of the exterior body (31), and the edges of the exterior body (31) are sealed and joined by heat sealing or the like.
  • insulating tab films (25) and (25) are attached to both sides of the intermediate region in the length direction of the negative electrode tab lead (2), and further this insulating tab film (25 ) (25) is sandwiched between the edges of the exterior body (31), and the edges of the exterior body (31) are sealed and joined by heat sealing or the like.
  • a partial coating layer made of tin of the positive electrode tab lead (1) of one unit cell (30) ( 13) and the partial coating layer (23) made of tin of the negative electrode tab lead (2) of the other unit cell (30) can be bonded with a sufficient bonding force if they are bonded by solder bonding.
  • the battery (30) according to the present invention may employ the following configuration (third embodiment). That is, in the battery of the second embodiment, as the positive electrode tab lead (1), a partial coating layer (13) made of solder is formed on a part (tip portion) of the externally exposed region of the aluminum plate (11). In addition, while using a chitosan layer (14) containing chitosans on the outermost surface (see FIG. 3), as the negative electrode tab lead (2), as shown in FIGS. 21) A nickel coating layer (22) is formed on the entire surface, a partial coating layer (23) made of solder is formed on a part of the exposed region of the nickel coating layer (22), and chitosans are further formed on the outermost surface. You may employ
  • insulating tab films (15) and (15) are attached to both sides of the intermediate region in the length direction of the positive electrode tab lead (1). ) (15) is sandwiched between the edges of the exterior body (31), and the edges of the exterior body (31) are sealed and joined by heat sealing or the like.
  • insulating tab films (25) and (25) are attached to both sides of the intermediate region in the length direction of the negative electrode tab lead (2), and further this insulating tab film (25 ) (25) is sandwiched between the edges of the exterior body (31), and the edges of the exterior body (31) are sealed and joined by heat sealing or the like.
  • a partial coating layer for example, solder of the positive electrode tab lead (1) of one unit cell (30) 13
  • the partial coating layer (23) made of solder of the negative electrode tab lead (2) of another unit cell (30) can be joined with sufficient joining force.
  • the partial coating layer (13) is formed in a part of the region exposed to the outside of the exterior body (31) in the aluminum plate (11).
  • the configuration has been adopted, it is not particularly limited to such a configuration.
  • a structure in which the partial coating layer (13) is formed may be adopted, or the entire area (including the side end face 11a) of the aluminum plate (11) exposed to the outside of the exterior body (31) may be adopted.
  • the positive electrode tab lead (1) has a partial coating layer (13) made of nickel on the entire externally exposed region (excluding the side end surface 11a) of the aluminum plate (11).
  • the outermost surface further comprises a chitosan layer (14) containing chitosans. That is, in the present embodiment, an insulating tab film made of polypropylene resin is used in a mode in which the partial coating layer (13) is formed on both sides of the lengthwise intermediate region of the positive electrode tab lead (1). 15) A configuration in which (15) is heat-welded is adopted.
  • the edge part of the said exterior body (31) is arrange
  • the nickel coating layer is not formed in the area
  • FIG. 1 An example of the latter is shown in FIG.
  • a partial coating layer (13) made of nickel is formed on the entire externally exposed region (including the side end surface 11a) of the aluminum plate (11) of the positive electrode tab lead (1).
  • the configuration is the same as the configuration of FIG.
  • the method for forming the partial coating layers (13) and (23) is not particularly limited.
  • the thickness of the partial coating layers (13) and (23) is preferably set to 1 to 10 ⁇ m.
  • the method for forming the nickel coating layer (22) is not particularly limited, and examples thereof include a clad rolling method, a dip plating method, an electroplating method, a vapor deposition method, a CVD method, and a PVD method. Among these, it is preferable to use an immersion plating method or an electroplating method in terms of productivity and cost.
  • the thickness of the nickel coating layer (22) is preferably set to 1 to 10 ⁇ m.
  • the surface roughness Ra of the aluminum plate (11) is preferably set in the range of 0.03 to 0.5 ⁇ m. By setting to such a range, the adhesiveness of a positive electrode tab lead (1) and an insulating tab film (15) can be improved.
  • the surface roughness in such a range can be formed by a method such as emboss rolling, hairline processing, shot blasting, or chemical etching.
  • the surface roughness Ra of the nickel coating layer (22) formed on the copper plate (21) is preferably set in the range of 0.03 to 0.5 ⁇ m. By being set in such a range, the adhesion between the negative electrode tab lead (2) and the insulating tab film (25) can be improved.
  • the surface roughness in such a range can be formed by a method such as emboss rolling, hairline processing, shot blasting, or chemical etching.
  • the surface roughness Ra is a value measured in accordance with JIS B0601-2001.
  • the thickness of the aluminum plate (11) is preferably set to 0.1 to 1 mm, and the thickness of the copper plate (21) is preferably set to 0.1 to 1 mm.
  • chitosans constituting the chitosan layers (14) and (24) one or more compounds selected from the group consisting of chitosan and chitosan derivatives are used.
  • the chitosan derivative is not particularly limited, and examples thereof include carboxymethyl chitosan, cationized chitosan, hydroxyalkyl chitosan, glycerylated chitosan, salts of these chitosans with acids, and the like.
  • a method for forming the chitosan layers (14) and (24) is not particularly limited.
  • a treatment liquid containing the chitosans may be applied by a dipping method, a roll coating method, a gravure coating method, or the like.
  • coating to a surface and drying is mentioned.
  • the solid content coating amount of the chitosan layers (14) and (24) is preferably set to 0.1 to 50 mg / m 2 .
  • the positive electrode (33) is not particularly limited, and for example, a well-known positive electrode material can be used for a nonaqueous electrolyte battery.
  • a lithium salt as a positive electrode active material can be used.
  • LiCoO 2, LiNiO 2, LiMnO 2, LiFeO 2 carbon powder as a conductive agent, a mixture composition PVDF were mixed as a binder, coating the surface of the aluminum plate is a positive electrode current collector, dried
  • the positive electrode formed by the above can be illustrated.
  • the carbon powder is not particularly limited, and examples thereof include powdery graphite, granular graphite, fullerene graphite, and carbon nanotube.
  • the negative electrode (34) is not particularly limited, and for example, a known negative electrode material for a non-aqueous electrolyte battery can be used. Specifically, for example, graphite powder as a negative electrode active material, Examples include a negative electrode formed by applying and drying a mixed composition obtained by mixing PVDF as an adhesive on the surface of a copper plate as a negative electrode current collector.
  • the electrolyte (35) is not particularly limited, and for example, a known nonaqueous electrolyte for a nonaqueous electrolyte battery can be used.
  • a gel-like one containing a non-aqueous solvent and an electrolyte is suitable.
  • the non-aqueous solvent is not particularly limited, and examples thereof include ethylene carbonate and propylene carbonate.
  • the electrolyte is not particularly limited, and examples thereof include LiPF 6 and LiClO 4 .
  • the separator (36) is not particularly limited, and for example, a known separator for a nonaqueous electrolyte battery can be used. Specifically, porous polypropylene etc. are mentioned, for example.
  • said exterior body (31) Although it does not specifically limit as said exterior body (31), for example, what laminated
  • the insulating tab films (15) and (25) are not particularly limited, and examples thereof include insulating films made of polyethylene, polypropylene, and the like.
  • a nickel partial coating layer (partial plating layer) (13) having a surface roughness Ra of 0.1 ⁇ m and a thickness of 500 ⁇ m is formed on both sides of the tip of an aluminum plate (11) by electroplating to form a positive electrode tab lead. (1) was obtained. Further, a nickel plating coating layer (22) having a thickness of 3 ⁇ m was formed on the entire surface of a copper plate (21) having a surface roughness Ra of 0.1 ⁇ m and a thickness of 500 ⁇ m by electroplating to obtain a negative electrode tab lead (2).
  • the partial coating layer (13) of the positive electrode tab lead and the nickel plating coating layer (22) of the negative electrode tab lead (2) were joined by solder bonding.
  • the electrical energy required for this solder joint was 0.1 kWs.
  • a partial coating layer (partial plating layer) (13) of tin of 3 ⁇ m on one side is formed on both sides of the tip of an aluminum plate (11) having a surface roughness Ra of 0.1 ⁇ m and a thickness of 500 ⁇ m by a positive electrode tab lead. (1) was obtained. Further, a nickel plating coating layer (22) having a thickness of 3 ⁇ m is formed by electroplating on the entire surface of a copper plate (21) having a surface roughness Ra of 0.1 ⁇ m and a thickness of 500 ⁇ m, and further the nickel plating coating layer (22). A partial coating layer (partial plating layer) (23) of tin having a thickness of 3 ⁇ m on one side was formed on both sides of the tip of the negative electrode tab lead (2).
  • the tin partial coating layer (13) of the positive electrode tab lead and the tin partial coating layer (23) of the negative electrode tab lead (2) were joined by solder bonding.
  • the electrical energy required for this solder joint was 0.1 kWs.
  • a partial coating layer (partial plating layer) (13) of solder of 3 ⁇ m on one side is formed on both sides of the tip of an aluminum plate (11) having a surface roughness Ra of 0.1 ⁇ m and a thickness of 500 ⁇ m by a positive electrode tab lead. (1) was obtained. Further, a nickel plating coating layer (22) having a thickness of 3 ⁇ m is formed by electroplating on the entire surface of a copper plate (21) having a surface roughness Ra of 0.1 ⁇ m and a thickness of 500 ⁇ m, and further the nickel plating coating layer (22). A partial coating layer (partial plating layer) (23) of solder having a thickness of 3 ⁇ m on one side was formed on both sides of the tip of the negative electrode tab lead (2).
  • solder partial coating layer (13) of the positive electrode tab lead and the solder partial coating layer (23) of the negative electrode tab lead (2) were joined by solder bonding.
  • the electrical energy required for this solder joint was 0.1 kWs.
  • ⁇ Comparative Example 1> While preparing a positive electrode tab lead made of an aluminum plate having a surface roughness Ra of 0.1 ⁇ m and a thickness of 500 ⁇ m, a nickel plate having a thickness of 3 ⁇ m was formed by electroplating on the entire surface of a copper plate having a surface roughness Ra of 0.1 ⁇ m and a thickness of 500 ⁇ m. A negative electrode tab lead was obtained by forming a plating coating layer.
  • the positive electrode tab lead and the nickel plating coating layer of the negative electrode tab lead were joined by a welding method.
  • the electric energy required for this welding joint was 10 kWs.
  • the bonding strength between the positive electrode tab lead and the negative electrode tab lead bonded together as described above was evaluated based on the following evaluation method.
  • ⁇ Joint strength evaluation method> A tensile test was performed on the positive electrode tab lead and the negative electrode tab lead bonded to each other, thereby measuring the bonding force between the tab leads. The case where the joining force was 60 MPa or more was designated as “ ⁇ ”, and the case where the joining force was less than 60 MPa was designated as “x”.
  • the tab leads (joining of the positive electrode tab lead and the negative electrode tab lead) could be joined with a sufficient joining force at a low energy cost.
  • Example 4 A nickel partial coating layer (partial plating layer) (13) having a surface roughness Ra of 0.03 ⁇ m and a thickness of 500 ⁇ m on both sides of the tip of the aluminum plate (11) is formed by electroplating on one side.
  • An aqueous solution of carboxymethyl chitosan (concentration of 0.5% by mass) was applied to the entire surface of the substrate and dried to form a chitosan layer (14) having a solid content of 50 mg / m 2 , and positive electrode tab leads (1 ) was obtained (see FIG. 3).
  • Example 5 A positive electrode tab lead (1) was obtained in the same manner as in Example 4 except that the solid content adhesion amount of the chitosan layer (14) was set to 0.5 mg / m 2 (see FIG. 3).
  • Example 6 A positive electrode tab lead (as in Example 4) except that an aluminum plate (11) having a surface roughness Ra of 0.1 ⁇ m was used and the solid content adhesion amount of the chitosan layer (14) was set to 1.0 mg / m 2. 1) was obtained (see FIG. 3).
  • a partial coating layer (partial plating layer) (13) of tin of 3 ⁇ m on one side is formed by electroplating on both sides of the tip of an aluminum plate (11) having a surface roughness Ra of 0.1 ⁇ m and a thickness of 500 ⁇ m.
  • An aqueous solution of carboxymethyl chitosan (concentration of 0.5% by mass) was applied to the entire surface of the substrate, and dried to form a chitosan layer (14) with a solid content of 1.0 mg / m 2 , and positive electrode tab lead (1) was obtained (see FIG. 3).
  • a solder partial coating layer (partial plating layer) (13) having a surface roughness Ra of 0.1 ⁇ m and a thickness of 500 ⁇ m on both sides of the tip of the aluminum plate (11) is formed by electroplating on one side of the aluminum plate (11).
  • An aqueous solution of carboxymethyl chitosan (concentration of 0.5% by mass) was applied to the entire surface of the substrate, and dried to form a chitosan layer (14) with a solid content of 1.0 mg / m 2 , and positive electrode tab lead (1) was obtained (see FIG. 3).
  • a positive electrode tab lead made of an aluminum plate having a surface roughness Ra of 0.03 ⁇ m and a thickness of 500 ⁇ m was prepared.
  • the liquid (electrolytic solution) leakage from the positive electrode tab portion when the battery was configured using the positive electrode tab lead obtained as described above was evaluated based on the following evaluation method.
  • insulating tab films (15) and (15) made of polypropylene resin are heat-welded on both sides of the intermediate region in the length direction of the positive electrode tab lead (1), and this insulating tab film (15) ( 15), the edge of the exterior body (31) having an unstretched polypropylene layer on the inner surface side was sealed and joined by heat sealing.
  • an electrolyte solution LiPF 6 having a concentration of 1 M was sealed in the exterior body (31). This was put in an oven at 85 ° C. for 30 days to conduct a durability test. 1000 samples were prepared for each example, and a durability test was performed on the 1000 samples to count the number of samples in which electrolyte leakage from the positive electrode tab portion occurred (defects occurred).
  • Example 9 A nickel coating layer (22) having a surface roughness Ra of 0.1 ⁇ m and a thickness of 3 ⁇ m was formed on the entire surface of a copper plate (21) having a thickness of 500 ⁇ m by electroplating to obtain a negative electrode tab lead (2).
  • Example 10 A nickel coating layer (22) having a surface roughness Ra of 0.02 ⁇ m and a thickness of 3 ⁇ m was formed on the entire surface of the copper plate (21) having a thickness of 500 ⁇ m by electroplating, and further on the outer surface of the nickel coating layer (22). An aqueous solution of carboxymethyl chitosan (concentration 0.5% by mass) was applied and dried to form a chitosan layer (24) having a solid content of 1.0 mg / m 2 to obtain a negative electrode tab lead (2). (See FIG. 5).
  • Example 11 A negative electrode tab lead (2) was obtained in the same manner as in Example 10 except that a nickel coating layer (22) having a surface roughness Ra of 0.1 ⁇ m was formed (see FIG. 5).
  • a nickel coating layer (22) having a surface roughness Ra of 0.1 ⁇ m and a thickness of 3 ⁇ m is formed on the entire surface of a copper plate (21) having a thickness of 500 ⁇ m by electroplating, and the tip of the nickel plating coating layer (22) is further formed.
  • a partial coating layer (partial plating layer) (23) of tin of 3 ⁇ m on one side was formed on both sides by electroplating, and an aqueous solution of carboxymethyl chitosan (concentration 0.5% by mass) was applied to the entire surface of these surfaces. And dried to form a chitosan layer (24) having a solid content of 1.0 mg / m 2 to obtain a negative electrode tab lead (2) (see FIG. 7).
  • a nickel coating layer (22) having a surface roughness Ra of 0.1 ⁇ m and a thickness of 3 ⁇ m is formed on the entire surface of a copper plate (21) having a thickness of 500 ⁇ m by electroplating, and the tip of the nickel plating coating layer (22) is further formed.
  • a partial coating layer (partial plating layer) (23) of solder of 3 ⁇ m on one side was formed on both sides of the substrate by applying an aqueous solution of carboxymethyl chitosan (concentration 0.5% by mass) over the entire surface. And dried to form a chitosan layer (24) having a solid content of 1.0 mg / m 2 to obtain a negative electrode tab lead (2) (see FIG. 7).
  • the liquid (electrolyte) leakage from the negative electrode tab portion when the battery was configured using the negative electrode tab lead obtained as described above was evaluated based on the following evaluation method.
  • insulating tab films (25) and (25) made of polypropylene resin are heat-welded on both sides of the intermediate region in the length direction of the negative electrode tab lead (2), and this insulating tab film (25 ) (25) was sandwiched between the edges of the exterior body (31) having a non-stretched polypropylene layer on the inner surface side by heat sealing.
  • an electrolytic solution LiPF 6 having a concentration of 1 M was sealed in the exterior body (31). This was placed in an oven at 85 ° C. for 30 days to conduct a durability test. 1000 samples were prepared for each example, and a durability test was performed on the 1000 samples, and the number of samples in which electrolyte leakage from the negative electrode tab portion occurred (defects occurred) was counted.
  • a partial coating layer (partial plating layer) (13) of nickel of 3 ⁇ m on one side is formed by electroplating on both sides (both sides) of the tip of an aluminum plate (11) having a surface roughness Ra of 0.1 ⁇ m and a thickness of 500 ⁇ m. Further, an aqueous solution of carboxymethyl chitosan (concentration 0.5 mass%) was applied to the entire surface of these surfaces and dried to form a chitosan layer (14) having a solid content of 50 mg / m 2 , thereby forming a positive electrode.
  • a tab lead (1) was obtained (see FIG. 8).
  • an insulating tab film (15) (15) made of polypropylene resin is applied to a region where the partial coating layer (13) is formed on both sides of the intermediate region in the length direction of the positive electrode tab lead (1). 15) was heat-welded (see FIG. 8). That is, the positive electrode formed by forming a partial coating layer (partial plating layer) (13) of nickel on the entire area (excluding the side end face 11a) of the aluminum plate (11) exposed to the outside of the exterior body (31). A tab lead (1) was obtained (see FIG. 8).
  • a partial coating layer (partial plating layer) (13) of nickel of 3 ⁇ m on one side is formed by electroplating on both sides (both sides) of the tip of an aluminum plate (11) having a surface roughness Ra of 0.1 ⁇ m and a thickness of 500 ⁇ m. Further, an aqueous solution of carboxymethyl chitosan (concentration 0.5 mass%) was applied to the entire surface of these surfaces and dried to form a chitosan layer (14) having a solid content of 50 mg / m 2 , thereby forming a positive electrode.
  • a tab lead (1) was obtained (see FIG. 8).
  • an insulating tab film (15) (15) made of polypropylene resin is applied to a region where the partial coating layer (13) is formed on both sides of the intermediate region in the length direction of the positive electrode tab lead (1). 15) was heat-welded (see FIG. 8). That is, a partial coating layer (partial plating layer) (13) of nickel is formed on the entire area of the aluminum plate (11) exposed outside the exterior body (31) (excluding the side end surfaces). A positive electrode tab lead (1) was obtained (see FIG. 8).
  • a nickel plating coating layer (22) having a thickness of 3 ⁇ m is formed by electroplating on the entire surface of a copper plate (21) having a surface roughness Ra of 0.1 ⁇ m and a thickness of 500 ⁇ m. Further, the nickel coating layer (22) An aqueous solution of carboxymethyl chitosan (concentration 0.5 mass%) was applied to the outer surface and dried to form a chitosan layer (24) having a solid content of 50 mg / m 2 to obtain a negative electrode tab lead (2). (See FIG. 5).
  • the partial coating layer (13) of the positive electrode tab lead and the nickel plating coating layer (22) of the negative electrode tab lead (2) were joined by solder bonding.
  • the electrical energy required for this solder joint was 0.1 kWs.
  • a nickel plating coating layer (22) having a thickness of 3 ⁇ m is formed by electroplating on the entire surface of a copper plate (21) having a surface roughness Ra of 0.1 ⁇ m and a thickness of 500 ⁇ m.
  • An aqueous solution of methyl chitosan (concentration: 0.5% by mass) was applied and dried to form a chitosan layer (24) with a solid content of 50 mg / m 2 to obtain a negative electrode tab lead (2) (FIG. 5). reference).
  • the partial coating layer (13) of the positive electrode tab lead and the nickel plating coating layer (22) of the negative electrode tab lead (2) were joined by solder bonding.
  • the electrical energy required for this solder joint was 0.1 kWs.
  • a partial coating layer (partial plating layer) (13) of tin of 3 ⁇ m on one side is formed by electroplating on both sides of the tip of an aluminum plate (11) having a surface roughness Ra of 0.1 ⁇ m and a thickness of 500 ⁇ m.
  • An aqueous solution of carboxymethyl chitosan (concentration of 0.5% by mass) was applied to the entire surface of the substrate and dried to form a chitosan layer (14) having a solid content of 50 mg / m 2 , thereby forming a positive electrode tab lead (1 ) Was obtained (see FIG. 3).
  • a nickel plating coating layer (22) having a thickness of 3 ⁇ m is formed by electroplating on the entire surface of a copper plate (21) having a surface roughness Ra of 0.1 ⁇ m and a thickness of 500 ⁇ m, and further the nickel plating coating layer (22).
  • a partial coating layer (partial plating layer) (23) of 3 ⁇ m on one side was formed by electroplating on both sides of the tip of each of the metal, and an aqueous solution of carboxymethyl chitosan (concentration 0.5% by mass) was further formed on the entire surface. ) was applied and dried to form a chitosan layer (24) having a solid content of 50 mg / m 2 to obtain a negative electrode tab lead (2) (see FIG. 7).
  • the tin partial coating layer (13) of the positive electrode tab lead and the tin partial coating layer (23) of the negative electrode tab lead (2) were joined by solder bonding.
  • the electrical energy required for this solder joint was 0.1 kWs.
  • a solder partial coating layer (partial plating layer) (13) having a surface roughness Ra of 0.1 ⁇ m and a thickness of 500 ⁇ m on both sides of the tip of the aluminum plate (11) is formed by electroplating on one side of the aluminum plate (11).
  • An aqueous solution of carboxymethyl chitosan (concentration of 0.5% by mass) was applied to the entire surface of the substrate and dried to form a chitosan layer (14) having a solid content of 50 mg / m 2 , thereby forming a positive electrode tab lead (1 ) was obtained (see FIG. 3).
  • a nickel plating coating layer (22) having a thickness of 3 ⁇ m is formed by electroplating on the entire surface of a copper plate (21) having a surface roughness Ra of 0.1 ⁇ m and a thickness of 500 ⁇ m, and further the nickel plating coating layer (22).
  • a solder partial coating layer (partial plating layer) (23) having a surface of 3 ⁇ m on one side was formed on both sides of the tip of the metal by an electroplating method, and an aqueous solution of carboxymethyl chitosan (concentration 0.5% by mass) on the entire surface of these surfaces. ) was applied and dried to form a chitosan layer (24) having a solid content of 50 mg / m 2 to obtain a negative electrode tab lead (2) (see FIG. 7).
  • solder partial coating layer (13) of the positive electrode tab lead and the solder partial coating layer (23) of the negative electrode tab lead (2) were joined by solder bonding.
  • the electrical energy required for this solder joint was 0.1 kWs.
  • Example 15 to 18 the bonding force between the positive electrode tab lead and the negative electrode tab lead bonded to each other as described above was evaluated based on the above-described bonding force evaluation method, and in each of Examples 15 to 18 and Comparative Example 1, The corrosion resistance of the joined positive electrode tab lead and negative electrode tab lead was evaluated based on the following evaluation method. These results are shown in Table 5.
  • ⁇ Corrosion resistance evaluation method> The positive and negative electrode tab leads joined to each other are set in a salt spray tester (temperature: 35 ° C.) and operated in this state for 500 hours. Then, they are taken out and visually observed for the degree of corrosion. The corrosion resistance was evaluated based on (Criteria) “ ⁇ ”: No trace of corrosion on the aluminum plate and excellent corrosion resistance “O”: Although trace of corrosion on the aluminum plate was slightly observed, it was generally in good condition and had good corrosion resistance A certain “x”: the aluminum plate is significantly corroded by the action of the local battery and is inferior in corrosion resistance.
  • the surface roughness Ra of the aluminum plate and the surface roughness Ra of the nickel coating layer (plating layer) formed on the copper plate were adjusted by applying an emboss rolling method to the plate. .
  • the positive electrode tab lead and the negative electrode tab lead of the present invention are suitably used, for example, as a tab lead for a secondary battery such as a lithium secondary battery or a tab lead for a capacitor.

Abstract

 低エネルギーコストで、タブリード同士を十分な接合力で接合することのできる正極タブリードを提供する。 アルミニウム板11における外装体の外部に露出される領域の少なくとも一部に、ニッケル、錫またはハンダからなる部分コーティング層13を形成せしめた構成とする。さらに表面に、キトサン及びキトサン誘導体からなる群より選ばれる1種または2種以上の化合物を含有してなるキトサン層14を形成せしめるのが好ましい。

Description

正極タブリード及び負極タブリード並びに電池
 この発明は、例えば、リチウム2次電池などの2次電池用のタブリード、キャパシター用のタブリードとして好適に用いられる正極タブリード、負極タブリードに関する。
 なお、この明細書及び特許請求の範囲において、「アルミニウム」の語は、アルミニウム及びその合金を含む意味で用い、「銅」の語は、銅及びその合金を含む意味で用いている。また、この明細書及び特許請求の範囲において、「電池」の語は、2次電池等の電池は勿論のこと、キャパシターをも含む意味で用いる。
  2次電池(非水電解質リチウム2次電池等)やキャパシターには、外部に電気を取り出すためのタブリードが設けられている。従来は、正極タブリードとしてはアルミニウム板からなるものが用いられ、負極タブリードとしては銅板からなるものが用いられていた(特許文献1参照)。
 しかして例えば自動車用の動力源として用いられる場合には、大きな電流が必要となるので、これら単電池同士を電気的に接続してなる組電池に構成される。即ち、複数個の単電池の各電極端子(タブリード)同士が接合されて組電池に構成される。このようなタブリード同士の接合は、従来は溶接により行われることが多かった。
特開2008-27771号公報
 しかしながら、上記従来技術のようにタブリード同士が溶接により接合された場合には、十分な接合力が得られないという問題があった。また、溶接により接合した場合には、エネルギーコストが高いという問題もあった。
 この発明は、かかる技術的背景に鑑みてなされたものであって、低エネルギーコストで、タブリード同士を十分な接合力で接合することのできる正極タブリード及び負極タブリード並びに電池を提供することを目的とする。
  前記目的を達成するために、本発明は以下の手段を提供する。
 [1]アルミニウム板における外装体の外部に露出される領域の少なくとも一部に、ニッケル、錫またはハンダからなる部分コーティング層が形成されていることを特徴とする正極タブリード。
 [2]前記アルミニウム板の表面粗さRaが0.03~0.5μmである前項1に記載の正極タブリード。
 [3]前記アルミニウム板における前記部分コーティング層が形成されていない領域の表面粗さRaが0.03~0.5μmである前項1に記載の正極タブリード。
 [4]前記アルミニウム板における外装体の外部に露出される領域の全部に、前記部分コーティング層が形成されている前項1~3のいずれか1項に記載の正極タブリード。
 [5]さらに表面に、キトサン及びキトサン誘導体からなる群より選ばれる1種または2種以上の化合物を含有してなるキトサン層が形成されていることを特徴とする前項1~4のいずれか1項に記載の正極タブリード。
 [6]銅板の全面にニッケル被覆層が形成されていることを特徴とする負極タブリード。
 [7]銅板の全面にニッケル被覆層が形成され、該ニッケル被覆層の外表面における外装体の外部に露出される領域の少なくとも一部に、錫またはハンダからなる部分コーティング層が形成されていることを特徴とする負極タブリード。
 [8]前記ニッケル被覆層の表面粗さRaが0.03~0.5μmである前項6または7に記載の負極タブリード。
 [9]さらに表面に、キトサン及びキトサン誘導体からなる群より選ばれる1種または2種以上の化合物を含有してなるキトサン層が形成されていることを特徴とする前項6~8のいずれか1項に記載の負極タブリード。
 [10]正極、負極及び電解質を含んでなる電池本体部と、該電池本体部を内部に封入した外装体と、前記正極と電気的に接続された正極タブリードと、前記負極と電気的に接続された負極タブリードとを備え、前記正極タブリードの一部が前記外装体の外部に露出され、前記負極タブリードの一部が前記外装体の外部に露出されてなる電池において、
 前記正極タブリードは、アルミニウム板における前記露出領域の少なくとも一部に、ニッケル、錫またはハンダからなる部分コーティング層が形成されたものからなり、
  前記負極タブリードは、銅板の全面にニッケル被覆層が形成されたものからなることを特徴とする電池。
 [11]正極、負極及び電解質を含んでなる電池本体部と、該電池本体部を内部に封入した外装体と、前記正極と電気的に接続された正極タブリードと、前記負極と電気的に接続された負極タブリードとを備え、前記正極タブリードの一部が前記外装体の外部に露出され、前記負極タブリードの一部が前記外装体の外部に露出されてなる電池において、
 前記正極タブリードは、アルミニウム板における前記露出領域の少なくとも一部に、ニッケルからなる部分コーティング層が形成されたものからなり、
  前記負極タブリードは、銅板の全面にニッケル被覆層が形成されたものからなることを特徴とする電池。
 [12]正極、負極及び電解質を含んでなる電池本体部と、該電池本体部を内部に封入した外装体と、前記正極と電気的に接続された正極タブリードと、前記負極と電気的に接続された負極タブリードとを備え、前記正極タブリードの一部が前記外装体の外部に露出され、前記負極タブリードの一部が前記外装体の外部に露出されてなる電池において、
 前記正極タブリードは、アルミニウム板における前記露出領域の少なくとも一部に、錫からなる部分コーティング層が形成されたものからなり、
  前記負極タブリードは、銅板の全面にニッケル被覆層が形成されると共にこのニッケル被覆層における前記露出領域の少なくとも一部に錫からなる部分コーティング層が形成されたものからなることを特徴とする電池。
 [13]正極、負極及び電解質を含んでなる電池本体部と、該電池本体部を内部に封入した外装体と、前記正極と電気的に接続された正極タブリードと、前記負極と電気的に接続された負極タブリードとを備え、前記正極タブリードの一部が前記外装体の外部に露出され、前記負極タブリードの一部が前記外装体の外部に露出されてなる電池において、
 前記正極タブリードは、アルミニウム板における前記露出領域の少なくとも一部に、ハンダからなる部分コーティング層が形成されたものからなり、
  前記負極タブリードは、銅板の全面にニッケル被覆層が形成されると共にこのニッケル被覆層における前記露出領域の少なくとも一部にハンダからなる部分コーティング層が形成されたものからなることを特徴とする電池。
 [14]前記正極タブリードのアルミニウム板における前記露出領域の全部に前記部分コーティング層が形成されている前項10~13のいずれか1項に記載の電池。
 [1]の発明(正極タブリード)では、アルミニウム板における外装体の外部に露出される領域の少なくとも一部に、ニッケル、錫またはハンダからなる部分コーティング層が形成されているから、タブリード同士をハンダ接合により十分な接合力で接合することができる。また、タブリード同士をハンダ接合で接合できるので、接合の際のエネルギーコストが小さくて済み、経済的である。
 [2]の発明では、アルミニウム板の表面粗さRaが0.03~0.5μmに設定されているから、正極タブリードと絶縁タブフィルムとの密着性を向上させることができ、これにより電池の耐久信頼性を向上させることができる。
 [3]の発明では、アルミニウム板における部分コーティング層が形成されていない領域の表面粗さRaが0.03~0.5μmに設定されているから、正極タブリードと絶縁タブフィルムとの密着性を向上させることができ、これにより電池の耐久信頼性を向上させることができる。
 [4]の発明では、アルミニウム板における外装体の外部に露出される領域の全部(但し、側端面を除く)に前記部分コーティング層が形成されているから、外部露出領域の耐食性を高めることができ、電池の耐久信頼性をより向上させることができる。なお、アルミニウム板における外装体の外部に露出される領域の側端面(11a)は、前記部分コーティング層(13)が形成されていても良いし(図9参照)、前記部分コーティング層(13)が形成されていなくても良く(図8参照)、[4]の発明は、これらいずれの構成
も含むものである。
 [5]の発明では、さらに表面に、キトサン及びキトサン誘導体からなる群より選ばれる1種または2種以上のキトサン類を含有してなるキトサン層が形成されているから、この正極タブリードと絶縁タブフィルムとの密着性をさらに向上させることができ、これにより電池の耐久信頼性をさらに向上させることができる。
 [6]の発明(負極タブリード)では、銅板の全面(但し、側端面を除く)にニッケル被覆層が形成されているから、タブリード同士をハンダ接合により十分な接合力で接合することができる。また、タブリード同士をハンダ接合で接合できるので、接合の際のエネルギーコストが小さくて済み、経済的である。なお、銅板における側端面は、前記ニッケル被覆層(22)が形成されていても良いし(図5参照)、前記ニッケル被覆層が形成されていなくても良く、[6]の発明は、これらいずれの構成も含むものである。
 [7]の発明(負極タブリード)では、銅板の全面(但し、側端面を除く)にニッケル被覆層が形成され、該ニッケル被覆層の外表面における外装体の外部に露出される領域の少なくとも一部に、錫またはハンダからなる部分コーティング層が形成されているから、タブリード同士をハンダ接合により十分な接合力で接合することができる。また、タブリード同士をハンダ接合で接合できるので、接合の際のエネルギーコストが小さくて済み、経済的である。なお、銅板における側端面は、前記ニッケル被覆層(22)が形成されていても良いし(図7参照)、前記ニッケル被覆層が形成されていなくても良く、[7]の発明は、これらいずれの構成も含むものである。
 [8]の発明では、ニッケル被覆層の表面粗さRaが0.03~0.5μmに設定されているから、この負極タブリードと絶縁タブフィルムとの密着性を向上させることができ、これにより電池の耐久信頼性を向上させることができる。
 [9]の発明では、さらに表面に、キトサン及びキトサン誘導体からなる群より選ばれる1種または2種以上のキトサン類を含有してなるキトサン層が形成されているから、この負極タブリードと絶縁タブフィルムとの密着性をさらに向上させることができ、これにより電池の耐久信頼性をさらに向上させることができる。
 [10]の発明では、正極タブリードは、アルミニウム板における露出領域の少なくとも一部に、ニッケル、錫またはハンダからなる部分コーティング層が形成されたものからなり、負極タブリードは、銅板の全面(但し、側端面を除く)にニッケル被覆層が形成されたものからなる構成であるから、このような構成からなる単電池同士を電気的に接続して組電池に構成する場合に、例えば一つの単電池の正極タブリードの部分コーティング層と他の単電池の負極タブリードのニッケル被覆層とをハンダ接合により十分な接合力で接合することができる。また、タブリード同士をハンダ接合で接合できるので、接合の際のエネルギーコストが小さくて済み、経済的である。なお、銅板における側端面は、前記ニッケル被覆層(22)が形成されていても良いし(図5参照)、前記ニッケル被覆層が形成されていなくても良く、[10]の発明は、これらいずれの構成も含むものである。
 [11]の発明では、正極タブリードは、アルミニウム板における露出領域の少なくとも一部に、ニッケルからなる部分コーティング層が形成されたものからなり、負極タブリードは、銅板の全面(但し、側端面を除く)にニッケル被覆層が形成されたものからなる構成であるから、このような構成からなる単電池同士を電気的に接続して組電池に構成する場合に、例えば一つの単電池の正極タブリードの部分コーティング層と他の単電池の負極タブリードのニッケル被覆層とをハンダ接合により十分な接合力で接合することができる。また、タブリード同士をハンダ接合で接合できるので、接合の際のエネルギーコストが小さくて済み、経済的である。また、この[11]の構成では、正極タブリードの部分コーティング層と負極タブリードのニッケル被覆層が同種の金属(ニッケル)であるので、これら層の形成に要するコストを低減できる利点がある。なお、銅板における側端面は、前記ニッケル被覆層(22)が形成されていても良いし(図5参照)、前記ニッケル被覆層が形成されていなくても良く、[11]の発明は、これらいずれの構成も含むものである。
 [12]の発明では、正極タブリードは、アルミニウム板における露出領域の少なくとも一部に、錫からなる部分コーティング層が形成されたものからなり、負極タブリードは、銅板の全面(但し、側端面を除く)にニッケル被覆層が形成されると共にこのニッケル被覆層における露出領域の少なくとも一部に錫からなる部分コーティング層が形成されたものからなる構成であるから、このような構成からなる単電池同士を電気的に接続して組電池に構成する場合に、例えば一つの単電池の正極タブリードの部分コーティング層と他の単電池の負極タブリードの部分コーティング層とをハンダ接合により十分な接合力で接合することができる。また、タブリード同士をハンダ接合で接合できるので、接合の際のエネルギーコストが小さくて済み、経済的である。なお、銅板における側端面は、前記ニッケル被覆層(22)が形成されていても良いし(図7参照)、前記ニッケル被覆層が形成されていなくても良く、[12]の発明は、これらいずれの構成も含むものである。
 [13]の発明では、正極タブリードは、アルミニウム板における露出領域の少なくとも一部に、ハンダからなる部分コーティング層が形成されたものからなり、負極タブリードは、銅板の全面(但し、側端面を除く)にニッケル被覆層が形成されると共にこのニッケル被覆層における露出領域の少なくとも一部にハンダからなる部分コーティング層が形成されたものからなる構成であるから、このような構成からなる単電池同士を電気的に接続して組電池に構成する場合に、例えば一つの単電池の正極タブリードの部分コーティング層と他の単電池の負極タブリードの部分コーティング層とをハンダ接合により十分な接合力で接合することができる。また、タブリード同士をハンダ接合で接合できるので、接合の際のエネルギーコストが小さくて済み、経済的である。なお、銅板における側端面は、前記ニッケル被覆層(22)が形成されていても良いし(図7参照)、前記ニッケル被覆層が形成されていなくても良く、[13]の発明は、これらいずれの構成も含むものである。
 [14]の発明では、正極タブリードのアルミニウム板における外装体の外部に露出される領域の全部(但し、側端面を除く)に前記部分コーティング層が形成されているから、この外部露出領域の耐食性を高めることができ、電池の耐久信頼性をさらに向上させることができる。なお、正極タブリードのアルミニウム板における外装体の外部に露出される領域の側端面(11a)は、前記部分コーティング層(13)が形成されていても良いし(図9参照)、前記部分コーティング層(13)が形成されていなくても良く(図8参照)、[14]の発明は、これらいずれの構成も含むものである。
(a)はこの発明に係る電池の一実施形態を示す斜視図であり、(b)は(a)におけるX-X線の拡大断面図である。 この発明の一実施形態に係る電池の正極タブリード及びその近傍を示す平面図である。 図2におけるA-A線の断面図である。 この発明の一実施形態に係る電池の負極タブリード及びその近傍を示す平面図である。 図4におけるB-B線の断面図である。 この発明の他の実施形態に係る電池の負極タブリード及びその近傍を示す平面図である。 図6におけるC-C線の断面図である。 この発明の他の実施形態に係る電池の正極タブリード及びその近傍を示す断面図である。 この発明のさらに他の実施形態に係る電池の正極タブリード及びその近傍を示す断面図である。
 この発明に係る電池(30)の一実施形態を図1に示す。本第1実施形態の電池(30)は、非水電解質リチウム2次電池である。この電池(30)は、フィルム状の正極(33)とフィルム状の負極(34)とがセパレータ(36)を介して重ね合わせ状に配置され、これら正極(33)と負極(34)の間に非水電解質(35)が介在するように構成されてリチウムイオンの伝達により充放電可能に構成されたものである。これら正極(33)、負極(34)及び電解質(35)を含んでなる電池本体部(32)は、外装体(31)により液密状態に被覆されている、即ち外装体(31)の内部に封入されている(図1参照)。
  前記正極(33)に対して正極タブリード(1)が電気的に接続され、該正極タブリード(1)の一部が前記外装体(31)の外部に露出されている(導出されている)(図1~3参照)。本実施形態では、前記正極タブリード(1)は、図3に示すように、アルミニウム板(11)における前記外部露出領域の一部(先端部)に、ニッケルからなる部分コーティング層(13)が形成されると共に、さらに最表面にキトサン類を含有してなるキトサン層(14)が形成されたものからなる。なお、前記アルミニウム板(11)における外装体(31)内に配置される領域にはニッケルのコーティング層は形成されていない。
 図3に示すように、前記正極タブリード(1)の長さ方向の中間部領域の両側には絶縁タブフィルム(15)(15)が貼着されており、更にこの絶縁タブフィルム(15)(15)を挟み込む態様で前記外装体(31)の縁部が配置され、この外装体(31)の縁部がヒートシール等によって封止接合されている。
  また、前記負極(34)に対して負極タブリード(2)が電気的に接続され、該負極タブリード(2)の一部が前記外装体(31)の外部に露出されている(導出されている)(図1、4、5参照)。本実施形態では、前記負極タブリード(2)は、図5に示すように、銅板(21)の全面にニッケル被覆層(22)が形成されると共に該ニッケル被覆層(22)の外表面の全面にキトサン類を含有してなるキトサン層(24)が形成されたものからなる。
 図5に示すように、前記負極タブリード(2)の長さ方向の中間部領域の両側には絶縁タブフィルム(25)(25)が貼着されており、更にこの絶縁タブフィルム(25)(25)を挟み込む態様で前記外装体(31)の縁部が配置され、この外装体(31)の縁部がヒートシール等によって封止接合されている。
  上記構成からなる単電池(30)同士を電気的に接続して組電池に構成する場合には、例えば一つの単電池(30)の正極タブリード(1)の部分コーティング層(13)と、他の単電池(30)の負極タブリード(2)のニッケル被覆層(22)とをハンダ接合により接合すれば、十分な接合力で接合することができる。
 この発明に係る電池(30)としては次のような構成(第2実施形態)を採用しても良い。即ち、上記実施形態の電池において、正極タブリード(1)として、アルミニウム板(11)における前記外部露出領域の一部(先端部)に、錫からなる部分コーティング層(13)が形成されると共に、さらに最表面にキトサン類を含有してなるキトサン層(14)が形成されたもの(図3参照)を用いる一方、負極タブリード(2)として、図6、7に示すように、銅板(21)の全面にニッケル被覆層(22)が形成されると共に該ニッケル被覆層(22)における前記露出領域の一部に錫からなる部分コーティング層(23)が形成され、さらに最表面にキトサン類を含有してなるキトサン層(24)が形成されたものを用いた構成を採用しても良い。前記アルミニウム板(11)における外装体(31)内に配置される領域には錫のコーティング層は形成されていない。
 なお、図3に示すように、前記正極タブリード(1)の長さ方向の中間部領域の両側には絶縁タブフィルム(15)(15)が貼着されており、更にこの絶縁タブフィルム(15)(15)を挟み込む態様で前記外装体(31)の縁部が配置され、この外装体(31)の縁部がヒートシール等によって封止接合されている。
 また、図7に示すように、前記負極タブリード(2)の長さ方向の中間部領域の両側には絶縁タブフィルム(25)(25)が貼着されており、更にこの絶縁タブフィルム(25)(25)を挟み込む態様で前記外装体(31)の縁部が配置され、この外装体(31)の縁部がヒートシール等によって封止接合されている。
  上記第2実施形態の単電池(30)同士を電気的に接続して組電池に構成する場合には、例えば一つの単電池(30)の正極タブリード(1)の錫からなる部分コーティング層(13)と、他の単電池(30)の負極タブリード(2)の錫からなる部分コーティング層(23)とをハンダ接合により接合すれば、十分な接合力で接合することができる。
 また、この発明に係る電池(30)としては次のような構成(第3実施形態)を採用しても良い。即ち、上記第2実施形態の電池において、正極タブリード(1)として、アルミニウム板(11)における前記外部露出領域の一部(先端部)に、ハンダからなる部分コーティング層(13)が形成されると共に、さらに最表面にキトサン類を含有してなるキトサン層(14)が形成されたもの(図3参照)を用いる一方、負極タブリード(2)として、図6、7に示すように、銅板(21)の全面にニッケル被覆層(22)が形成されると共に該ニッケル被覆層(22)における前記露出領域の一部にハンダからなる部分コーティング層(23)が形成され、さらに最表面にキトサン類を含有してなるキトサン層(24)が形成されたものを用いた構成を採用しても良い。前記アルミニウム板(11)における外装体(31)内に配置される領域にはハンダのコーティング層は形成されていない。
 なお、図3に示すように、前記正極タブリード(1)の長さ方向の中間部領域の両側には絶縁タブフィルム(15)(15)が貼着されており、更にこの絶縁タブフィルム(15)(15)を挟み込む態様で前記外装体(31)の縁部が配置され、この外装体(31)の縁部がヒートシール等によって封止接合されている。
 また、図7に示すように、前記負極タブリード(2)の長さ方向の中間部領域の両側には絶縁タブフィルム(25)(25)が貼着されており、更にこの絶縁タブフィルム(25)(25)を挟み込む態様で前記外装体(31)の縁部が配置され、この外装体(31)の縁部がヒートシール等によって封止接合されている。
  上記第3実施形態の単電池(30)同士を電気的に接続して組電池に構成する場合には、例えば一つの単電池(30)の正極タブリード(1)のハンダからなる部分コーティング層(13)と、他の単電池(30)の負極タブリード(2)のハンダからなる部分コーティング層(23)とをハンダ接合により接合すれば、十分な接合力で接合することができる。
 上記第1~3実施形態では、正極タブリード(1)は、アルミニウム板(11)における外装体(31)の外部に露出される領域の一部に、前記部分コーティング層(13)が形成された構成が採用されていたが、特にこのような構成に限定されるものではなく、例えばアルミニウム板(11)における外装体(31)の外部に露出される領域の全部(側端面11aを除く全部)に前記部分コーティング層(13)が形成された構成を採用しても良いし、アルミニウム板(11)における外装体(31)の外部に露出される領域の全部(側端面11aを含む全部)に前記部分コーティング層(13)が形成された構成を採用しても良い。このような構成を採用した場合には、外部露出領域の耐食性を高めることができる利点がある。
  前者の一例を図8に示す。この実施形態では、正極タブリード(1)は、図8に示すように、アルミニウム板(11)における前記外部露出領域の全部(側端面11aを除く)に、ニッケルからなる部分コーティング層(13)が形成されると共に、さらに最表面にキトサン類を含有してなるキトサン層(14)が形成されたものからなる。即ち、本実施形態では、正極タブリード(1)の長さ方向の中間部領域の両側に、前記部分コーティング層(13)が形成されている領域にかかる態様で、ポリプロピレン樹脂からなる絶縁タブフィルム(15)(15)を熱溶着せしめた構成が採用されている。更に、この絶縁タブフィルム(15)(15)を挟み込む態様で前記外装体(31)の縁部が配置され、この外装体(31)の縁部がヒートシール等によって封止接合されている。なお、前記アルミニウム板(11)における外装体(31)内に配置される領域にはニッケルのコーティング層は形成されていない。
  後者の一例を図9に示す。この実施形態では、正極タブリード(1)のアルミニウム板(11)における前記外部露出領域の全部(側端面11aを含む)に、ニッケルからなる部分コーティング層(13)が形成されており、これ以外の構成は、図8の構成と同様である。
 この発明において、前記部分コーティング層(13)(23)の形成手法としては、特に限定されるものではなく、例えば、クラッド圧延法、浸漬メッキ法、電気メッキ法、蒸着法、CVD法、PVD法等が挙げられる。これらの中でも、生産性、コストの点で、浸漬メッキ法や電気メッキ法を用いるのが好ましい。前記部分コーティング層(13)(23)の厚さは1~10μmに設定されるのが好ましい。
 また、前記ニッケル被覆層(22)の形成手法としては、特に限定されるものではなく、例えば、クラッド圧延法、浸漬メッキ法、電気メッキ法、蒸着法、CVD法、PVD法等が挙げられる。これらの中でも、生産性、コストの点で、浸漬メッキ法や電気メッキ法を用いるのが好ましい。前記ニッケル被覆層(22)の厚さは1~10μmに設定されるのが好ましい。
 前記アルミニウム板(11)の表面粗さRaは0.03~0.5μmの範囲に設定されているのが好ましい。このような範囲に設定されていることにより、正極タブリード(1)と絶縁タブフィルム(15)との密着性を向上させることができる。このような範囲の表面粗さは、例えばエンボス圧延、ヘアーライン加工、ショットブラスト、化学エッチング等の方法により形成することができる。
 また、前記銅板(21)に形成したニッケル被覆層(22)の表面粗さRaは0.03~0.5μmの範囲に設定されているのが好ましい。このような範囲に設定されていることにより、負極タブリード(2)と絶縁タブフィルム(25)との密着性を向上させることができる。このような範囲の表面粗さは、例えばエンボス圧延、ヘアーライン加工、ショットブラスト、化学エッチング等の方法により形成することができる。
 なお、前記表面粗さRaは、JIS B0601-2001に準拠して測定された値である。
 前記アルミニウム板(11)の厚さは0.1~1mmに設定されるのが好ましく、前記銅板(21)の厚さは0.1~1mmに設定されるのが好ましい。
  前記キトサン層(14)(24)を構成するキトサン類としては、キトサン及びキトサン誘導体からなる群より選ばれる1種または2種以上の化合物が用いられる。前記キトサン誘導体としては、特に限定されるものではないが、例えば、カルボキシメチルキトサン、カチオン化キトサン、ヒドロキシアルキルキトサン、グリセリル化キトサン、これらキトサンの酸との塩などが挙げられる。
 前記キトサン層(14)(24)の形成手法としては、特に限定されるものではないが、例えば、前記キトサン類を含有した処理液を、浸漬法、ロールコート法、グラビアコート法等の塗布法により表面に塗布して乾燥させる等の方法が挙げられる。前記キトサン層(14)(24)の固形分塗布量は0.1~50mg/m2に設定されるのが好ましい。
 この発明において、前記正極(33)としては、特に限定されるものではなく、例えば非水電解質電池用として公知の正極材料を用いることができ、具体的には例えば、正極活物質としてのリチウム塩(LiCoO2、LiNiO2、LiMnO2、LiFeO2)、導電剤であるカーボン粉末、結着剤としてのPVDFを混合した混合組成物を、正極集電体であるアルミニウム板の表面に塗布、乾燥して形成された正極などを例示できる。前記カーボン粉末としては、特に限定されるものではないが、例えば粉体の黒鉛、粒状の黒鉛、フラーレンの黒鉛、カーボンナノチューブ等を例示できる。
 また、前記負極(34)としては、特に限定されるものではなく、例えば非水電解質電池用として公知の負極材料を用いることができ、具体的には例えば、負極活物質としての黒鉛粉末、結着剤としてのPVDFを混合した混合組成物を、負極集電体である銅板の表面に塗布、乾燥して形成された負極などを例示できる。
 また、前記電解質(35)としては、特に限定されるものではなく、例えば非水電解質電池用として公知の非水電解質を用いることができる。この非水電解質としては、非水溶媒と電解質とを含有してなるゲル状のものが好適である。前記非水溶媒としては、特に限定されるものではないが、例えば、エチレンカーボネート、プロピレンカーボネート等が挙げられる。前記電解質としては、特に限定されるものではないが、例えば、LiPF6、LiClO4等が挙げられる。
 また、前記セパレータ(36)としては、特に限定されるものではなく、例えば非水電解質電池用として公知のセパレータを用いることができる。具体的には、例えば、多孔質ポリプロピレン等が挙げられる。
 前記外装体(31)としては、特に限定されるものではないが、例えば、アルミニウム等の金属箔の表面に、ポリエチレン、ポリプロピレン、ポリエステル、ポリアミド等の高分子フィルムが積層されたもの等が挙げられる。
 また、前記絶縁タブフィルム(15)(25)としては、特に限定されるものではないが、例えば、ポリエチレン、ポリプロピレン等からなる絶縁フィルム等が挙げられる。
 次に、この発明の具体的実施例について説明するが、本発明はこれら実施例のものに特に限定されるものではない。
 <実施例1>
  表面粗さRaが0.1μmで厚さ500μmのアルミニウム板(11)の先端部の両側に電気メッキ法により片面3μmのニッケルの部分コーティング層(部分メッキ層)(13)を形成せしめて正極タブリード(1)を得た。また、表面粗さRaが0.1μmで厚さ500μmの銅板(21)の全面に電気メッキ法により厚さ3μmのニッケルメッキ被覆層(22)を形成せしめて負極タブリード(2)を得た。
 次に、正極タブリードの部分コーティング層(13)と、負極タブリード(2)のニッケルメッキ被覆層(22)とをハンダ接合により接合した。このハンダ接合に要した電気エネルギーは0.1kWsであった。
 <実施例2>
  表面粗さRaが0.1μmで厚さ500μmのアルミニウム板(11)の先端部の両側に電気メッキ法により片面3μmの錫の部分コーティング層(部分メッキ層)(13)を形成せしめて正極タブリード(1)を得た。また、表面粗さRaが0.1μmで厚さ500μmの銅板(21)の全面に電気メッキ法により厚さ3μmのニッケルメッキ被覆層(22)を形成せしめ、さらに該ニッケルメッキ被覆層(22)の先端部の両側に電気メッキ法により片面3μmの錫の部分コーティング層(部分メッキ層)(23)を形成せしめて負極タブリード(2)を得た。
 次に、正極タブリードの錫の部分コーティング層(13)と、負極タブリード(2)の錫の部分コーティング層(23)とをハンダ接合により接合した。このハンダ接合に要した電気エネルギーは0.1kWsであった。
 <実施例3>
  表面粗さRaが0.1μmで厚さ500μmのアルミニウム板(11)の先端部の両側に電気メッキ法により片面3μmのハンダの部分コーティング層(部分メッキ層)(13)を形成せしめて正極タブリード(1)を得た。また、表面粗さRaが0.1μmで厚さ500μmの銅板(21)の全面に電気メッキ法により厚さ3μmのニッケルメッキ被覆層(22)を形成せしめ、さらに該ニッケルメッキ被覆層(22)の先端部の両側に電気メッキ法により片面3μmのハンダの部分コーティング層(部分メッキ層)(23)を形成せしめて負極タブリード(2)を得た。
 次に、正極タブリードのハンダの部分コーティング層(13)と、負極タブリード(2)のハンダの部分コーティング層(23)とをハンダ接合により接合した。このハンダ接合に要した電気エネルギーは0.1kWsであった。
 <比較例1>
  表面粗さRaが0.1μmで厚さ500μmのアルミニウム板からなる正極タブリードを準備する一方、表面粗さRaが0.1μmで厚さ500μmの銅板の全面に電気メッキ法により厚さ3μmのニッケルメッキ被覆層を形成せしめて負極タブリードを得た。
 次に、正極タブリードと、負極タブリードのニッケルメッキ被覆層とを溶接法により接合した。この溶接接合に要した電気エネルギーは10kWsであった。
 上記のようにして相互に接合された正極タブリードと負極タブリードの接合力を下記評価法に基づいて評価した。
 <接合力評価法>
  相互に接合された正極タブリードと負極タブリードに対し引っ張り試験を行うことによって、両タブリード間の接合力を測定した。接合力が60MPa以上であるものを「○」、60MPa未満であるものを「×」とした。
 表1から明らかなように、この発明の正極タブリードと負極タブリードによれば、低エネルギーコストで、タブリード同士(正極タブリードと負極タブリードの接合)を十分な接合力で接合することができた。
  これに対し、溶接で接合した比較例1では、エネルギーコストが顕著に大きいものであった。
Figure JPOXMLDOC01-appb-T000001
 <実施例4>
 表面粗さRaが0.03μmで厚さ500μmのアルミニウム板(11)の先端部の両側に電気メッキ法により片面3μmのニッケルの部分コーティング層(部分メッキ層)(13)を形成せしめ、さらにこれらの表面の全面に、カルボキシメチルキトサンの水溶液(濃度0.5質量%)を塗布して乾燥させることによって固形分付着量が50mg/m2のキトサン層(14)を形成せしめて正極タブリード(1)を得た(図3参照)。
 <実施例5>
  キトサン層(14)の固形分付着量を0.5mg/m2に設定した以外は、実施例4と同様にして正極タブリード(1)を得た(図3参照)。
 <実施例6>
  表面粗さRaが0.1μmのアルミニウム板(11)を用い、キトサン層(14)の固形分付着量を1.0mg/m2に設定した以外は、実施例4と同様にして正極タブリード(1)を得た(図3参照)。
 <実施例7>
 表面粗さRaが0.1μmで厚さ500μmのアルミニウム板(11)の先端部の両側に電気メッキ法により片面3μmの錫の部分コーティング層(部分メッキ層)(13)を形成せしめ、さらにこれらの表面の全面に、カルボキシメチルキトサンの水溶液(濃度0.5質量%)を塗布して乾燥させることによって固形分付着量が1.0mg/m2のキトサン層(14)を形成せしめて正極タブリード(1)を得た(図3参照)。
 <実施例8>
 表面粗さRaが0.1μmで厚さ500μmのアルミニウム板(11)の先端部の両側に電気メッキ法により片面3μmのハンダの部分コーティング層(部分メッキ層)(13)を形成せしめ、さらにこれらの表面の全面に、カルボキシメチルキトサンの水溶液(濃度0.5質量%)を塗布して乾燥させることによって固形分付着量が1.0mg/m2のキトサン層(14)を形成せしめて正極タブリード(1)を得た(図3参照)。
 <比較例2>
 表面粗さRaが0.03μmで厚さ500μmのアルミニウム板からなる正極タブリードを準備した。
 上記のようにして得られた正極タブリードを用いて電池を構成した場合の正極タブ部からの液(電解液)漏れ性を下記評価法に基づいて評価した。
 <正極タブ部の液漏れ性評価法>
  図3に示すように、正極タブリード(1)の長さ方向の中間部領域の両側にポリプロピレン樹脂からなる絶縁タブフィルム(15)(15)を熱溶着せしめ、更にこの絶縁タブフィルム(15)(15)を挟み込む態様で、内面側に非延伸ポリプロピレン層を有する外装体(31)の縁部をヒートシールで封止接合した。なお、封止直前に外装体(31)の内部に電解液(濃度1MのLiPF6)を封入せしめた。これを85℃のオーブン内に30日間入れて耐久性試験を行った。各実施例毎にサンプルを1000個用意し、これら1000個について耐久性試験を行って正極タブ部からの電解液漏れ発生(不良発生)のあったサンプル数を数えた。
Figure JPOXMLDOC01-appb-T000002
 <実施例9>
 厚さ500μmの銅板(21)の全面に電気メッキ法により表面粗さRaが0.1μmで厚さ3μmのニッケル被覆層(22)を形成せしめて負極タブリード(2)を得た。
 <実施例10>
 厚さ500μmの銅板(21)の全面に電気メッキ法により表面粗さRaが0.02μmで厚さ3μmのニッケル被覆層(22)を形成せしめ、さらにこのニッケル被覆層(22)の外表面にカルボキシメチルキトサンの水溶液(濃度0.5質量%)を塗布して乾燥させることによって固形分付着量が1.0mg/m2のキトサン層(24)を形成せしめて負極タブリード(2)を得た(図5参照)。
 <実施例11>
 表面粗さRaが0.1μmのニッケル被覆層(22)を形成せしめた以外は、実施例10と同様にして負極タブリード(2)を得た(図5参照)。
 <実施例12>
 厚さ500μmの銅板(21)の全面に電気メッキ法により表面粗さRaが0.1μmで厚さ3μmのニッケル被覆層(22)を形成せしめ、さらに該ニッケルメッキ被覆層(22)の先端部の両側に電気メッキ法により片面3μmの錫の部分コーティング層(部分メッキ層)(23)を形成せしめ、さらにこれらの表面の全面に、カルボキシメチルキトサンの水溶液(濃度0.5質量%)を塗布して乾燥させることによって固形分付着量が1.0mg/m2のキトサン層(24)を形成せしめて負極タブリード(2)を得た(図7参照)。
 <実施例13>
 厚さ500μmの銅板(21)の全面に電気メッキ法により表面粗さRaが0.1μmで厚さ3μmのニッケル被覆層(22)を形成せしめ、さらに該ニッケルメッキ被覆層(22)の先端部の両側に電気メッキ法により片面3μmのハンダの部分コーティング層(部分メッキ層)(23)を形成せしめ、さらにこれらの表面の全面に、カルボキシメチルキトサンの水溶液(濃度0.5質量%)を塗布して乾燥させることによって固形分付着量が1.0mg/m2のキトサン層(24)を形成せしめて負極タブリード(2)を得た(図7参照)。
 上記のようにして得られた負極タブリードを用いて電池を構成した場合の負極タブ部からの液(電解液)漏れ性を下記評価法に基づいて評価した。
 <負極タブ部の液漏れ性評価法>
  図5、7に示すように、負極タブリード(2)の長さ方向の中間部領域の両側にポリプロピレン樹脂からなる絶縁タブフィルム(25)(25)を熱溶着せしめ、更にこの絶縁タブフィルム(25)(25)を挟み込む態様で、内面側に非延伸ポリプロピレン層を有する外装体(31)の縁部をヒートシールで封止接合した。なお、封止直前に外装体(31)の内部に電解液(濃度1MのLiPF6)を封入せしめた。これを85℃のオーブン内に30日間入れて耐久性試験を行った。各実施例毎にサンプルを1000個用意し、これら1000個について耐久性試験を行って負極タブ部からの電解液漏れ発生(不良発生)のあったサンプル数を数えた。
Figure JPOXMLDOC01-appb-T000003
 <実施例14>
 表面粗さRaが0.1μmで厚さ500μmのアルミニウム板(11)の先端部の両側(両面)に電気メッキ法により片面3μmのニッケルの部分コーティング層(部分メッキ層)(13)を形成せしめ、さらにこれらの表面の全面に、カルボキシメチルキトサンの水溶液(濃度0.5質量%)を塗布して乾燥させることによって固形分付着量が50mg/m2のキトサン層(14)を形成せしめて正極タブリード(1)を得た(図8参照)。
次に、前記正極タブリード(1)の長さ方向の中間部領域の両側に、前記部分コーティング層(13)が形成されている領域にかかる態様で、ポリプロピレン樹脂からなる絶縁タブフィルム(15)(15)を熱溶着せしめた(図8参照)。即ち、アルミニウム板(11)における外装体(31)の外部に露出される領域の全部(側端面11aを除く)に、ニッケルの部分コーティング層(部分メッキ層)(13)が形成されてなる正極タブリード(1)を得た(図8参照)。
 上記のようにして得られた実施例14の正極タブリードを用いて電池を構成した場合の正極タブ部からの液(電解液)漏れ性を下記評価法に基づいて評価した。その結果を表4に示す。
 <正極タブ部の液漏れ性評価法>
  図8に示すように、絶縁タブフィルム(15)(15)を挟み込む態様で、内面側に非延伸ポリプロピレン層を有する外装体(31)の縁部をヒートシールで封止接合した。なお、封止直前に外装体(31)の内部に電解液(濃度1MのLiPF6)を封入せしめた。これを85℃のオーブン内に30日間入れて耐久性試験を行った。各実施例毎にサンプルを1000個用意し、これら1000個について耐久性試験を行って正極タブ部からの電解液漏れ発生(不良発生)のあったサンプル数を数えた。
Figure JPOXMLDOC01-appb-T000004
 <実施例15>
 表面粗さRaが0.1μmで厚さ500μmのアルミニウム板(11)の先端部の両側(両面)に電気メッキ法により片面3μmのニッケルの部分コーティング層(部分メッキ層)(13)を形成せしめ、さらにこれらの表面の全面に、カルボキシメチルキトサンの水溶液(濃度0.5質量%)を塗布して乾燥させることによって固形分付着量が50mg/m2のキトサン層(14)を形成せしめて正極タブリード(1)を得た(図8参照)。
次に、前記正極タブリード(1)の長さ方向の中間部領域の両側に、前記部分コーティング層(13)が形成されている領域にかかる態様で、ポリプロピレン樹脂からなる絶縁タブフィルム(15)(15)を熱溶着せしめた(図8参照)。即ち、アルミニウム板(11)における外装体(31)の外部に露出される領域の全部(但し、側端面を除く)に、ニッケルの部分コーティング層(部分メッキ層)(13)が形成されてなる正極タブリード(1)を得た(図8参照)。
 また、表面粗さRaが0.1μmで厚さ500μmの銅板(21)の全面に電気メッキ法により厚さ3μmのニッケルメッキ被覆層(22)を形成せしめ、さらにこのニッケル被覆層(22)の外表面にカルボキシメチルキトサンの水溶液(濃度0.5質量%)を塗布して乾燥させることによって固形分付着量が50mg/m2のキトサン層(24)を形成せしめて負極タブリード(2)を得た(図5参照)。
 次に、正極タブリードの部分コーティング層(13)と、負極タブリード(2)のニッケルメッキ被覆層(22)とをハンダ接合により接合した。このハンダ接合に要した電気エネルギーは0.1kWsであった。
 <実施例16>
  表面粗さRaが0.1μmで厚さ500μmのアルミニウム板(11)の先端部の両側に電気メッキ法により片面3μmのニッケルの部分コーティング層(部分メッキ層)(13)を形成せしめ、さらにこれらの表面の全面に、カルボキシメチルキトサンの水溶液(濃度0.5質量%)を塗布して乾燥させることによって固形分付着量が50mg/m2のキトサン層(14)を形成せしめて正極タブリード(1)を得た(図3参照)。
 また、表面粗さRaが0.1μmで厚さ500μmの銅板(21)の全面に電気メッキ法により厚さ3μmのニッケルメッキ被覆層(22)を形成せしめ、さらにこれらの表面の全面に、カルボキシメチルキトサンの水溶液(濃度0.5質量%)を塗布して乾燥させることによって固形分付着量が50mg/m2のキトサン層(24)を形成せしめて負極タブリード(2)を得た(図5参照)。
 次に、正極タブリードの部分コーティング層(13)と、負極タブリード(2)のニッケルメッキ被覆層(22)とをハンダ接合により接合した。このハンダ接合に要した電気エネルギーは0.1kWsであった。
 <実施例17>
  表面粗さRaが0.1μmで厚さ500μmのアルミニウム板(11)の先端部の両側に電気メッキ法により片面3μmの錫の部分コーティング層(部分メッキ層)(13)を形成せしめ、さらにこれらの表面の全面に、カルボキシメチルキトサンの水溶液(濃度0.5質量%)を塗布して乾燥させることによって固形分付着量が50mg/m2のキトサン層(14)を形成せしめて正極タブリード(1)を得た(図3参照)。
 また、表面粗さRaが0.1μmで厚さ500μmの銅板(21)の全面に電気メッキ法により厚さ3μmのニッケルメッキ被覆層(22)を形成せしめ、さらに該ニッケルメッキ被覆層(22)の先端部の両側に電気メッキ法により片面3μmの錫の部分コーティング層(部分メッキ層)(23)を形成せしめ、さらにこれらの表面の全面に、カルボキシメチルキトサンの水溶液(濃度0.5質量%)を塗布して乾燥させることによって固形分付着量が50mg/m2のキトサン層(24)を形成せしめて負極タブリード(2)を得た(図7参照)。
 次に、正極タブリードの錫の部分コーティング層(13)と、負極タブリード(2)の錫の部分コーティング層(23)とをハンダ接合により接合した。このハンダ接合に要した電気エネルギーは0.1kWsであった。
 <実施例18>
  表面粗さRaが0.1μmで厚さ500μmのアルミニウム板(11)の先端部の両側に電気メッキ法により片面3μmのハンダの部分コーティング層(部分メッキ層)(13)を形成せしめ、さらにこれらの表面の全面に、カルボキシメチルキトサンの水溶液(濃度0.5質量%)を塗布して乾燥させることによって固形分付着量が50mg/m2のキトサン層(14)を形成せしめて正極タブリード(1)を得た(図3参照)。
 また、表面粗さRaが0.1μmで厚さ500μmの銅板(21)の全面に電気メッキ法により厚さ3μmのニッケルメッキ被覆層(22)を形成せしめ、さらに該ニッケルメッキ被覆層(22)の先端部の両側に電気メッキ法により片面3μmのハンダの部分コーティング層(部分メッキ層)(23)を形成せしめ、さらにこれらの表面の全面に、カルボキシメチルキトサンの水溶液(濃度0.5質量%)を塗布して乾燥させることによって固形分付着量が50mg/m2のキトサン層(24)を形成せしめて負極タブリード(2)を得た(図7参照)。
 次に、正極タブリードのハンダの部分コーティング層(13)と、負極タブリード(2)のハンダの部分コーティング層(23)とをハンダ接合により接合した。このハンダ接合に要した電気エネルギーは0.1kWsであった。
 実施例15~18において上記のようにして相互に接合された正極タブリードと負極タブリードの接合力を前述した接合力評価法に基づいて評価すると共に、実施例15~18及び比較例1において相互に接合された正極タブリードと負極タブリードの耐食性を下記評価法に基づいて評価した。これらの結果を表5に示す。
 <耐食性評価法>
  相互に接合された正極タブリードと負極タブリードを塩水噴霧試験機内(温度:35℃)にセットし、この状態で500時間運転した後、これらを取り出して腐食の程度を目視により観察し、下記判定基準に基づいて耐食性を評価した。
(判定基準)
「◎」…アルミニウム板の腐食の痕跡が認められず、耐食性に優れている
「○」…アルミニウム板の腐食の痕跡が僅かに認められたものの、概ね良好な状態であって、耐食性が良好である
「×」…アルミニウム板が局部電池の作用で著しく腐食しており耐食性に劣っている。
Figure JPOXMLDOC01-appb-T000005
 なお、上記実施例、比較例において、アルミニウム板の表面粗さRa、銅板に形成したニッケル被覆層(メッキ層)の表面粗さRaは、板に対してエンボス圧延法を適用することにより調整した。
 この出願は、2008年12月22日付で出願された日本国特許出願の特願2008-325521号、及び2009年5月26日付で出願された日本国特許出願の特願2009-126176号の優先権主張を伴うものであり、その開示内容は、そのまま本願の一部を構成するものである。
 ここで用いられた用語及び説明は、この発明に係る実施形態を説明するために用いられたものであって、この発明はこれに限定されるものではない。この発明は請求の範囲内であれば、その精神を逸脱するものでない限りいかなる設計的変更をも許容するものである。
 この発明の正極タブリード及び負極タブリードは、例えば、リチウム2次電池等の2次電池用のタブリード、キャパシター用のタブリードとして好適に用いられる。
1…正極タブリード
2…負極タブリード
11…アルミニウム板
13…部分コーティング層
14…キトサン層
21…銅板
22…ニッケル被覆層
23…部分コーティング層
24…キトサン層
30…電池
31…外装体
32…電池本体部
33…正極
34…負極
35…電解質

Claims (14)

  1.  アルミニウム板における外装体の外部に露出される領域の少なくとも一部に、ニッケル、錫またはハンダからなる部分コーティング層が形成されていることを特徴とする正極タブリード。
  2.   前記アルミニウム板の表面粗さRaが0.03~0.5μmである請求項1に記載の正極タブリード。
  3.   前記アルミニウム板における前記部分コーティング層が形成されていない領域の表面粗さRaが0.03~0.5μmである請求項1に記載の正極タブリード。
  4.   前記アルミニウム板における外装体の外部に露出される領域の全部に前記部分コーティング層が形成されている請求項1~3のいずれか1項に記載の正極タブリード。
  5.   さらに表面に、キトサン及びキトサン誘導体からなる群より選ばれる1種または2種以上の化合物を含有してなるキトサン層が形成されていることを特徴とする請求項1~4のいずれか1項に記載の正極タブリード。
  6.   銅板の全面にニッケル被覆層が形成されていることを特徴とする負極タブリード。
  7.  銅板の全面にニッケル被覆層が形成され、該ニッケル被覆層の外表面における外装体の外部に露出される領域の少なくとも一部に、錫またはハンダからなる部分コーティング層が形成されていることを特徴とする負極タブリード。
  8.   前記ニッケル被覆層の表面粗さRaが0.03~0.5μmである請求項6または7に記載の負極タブリード。
  9.  さらに表面に、キトサン及びキトサン誘導体からなる群より選ばれる1種または2種以上の化合物を含有してなるキトサン層が形成されていることを特徴とする請求項6~8のいずれか1項に記載の負極タブリード。
  10.   正極、負極及び電解質を含んでなる電池本体部と、該電池本体部を内部に封入した外装体と、前記正極と電気的に接続された正極タブリードと、前記負極と電気的に接続された負極タブリードとを備え、前記正極タブリードの一部が前記外装体の外部に露出され、前記負極タブリードの一部が前記外装体の外部に露出されてなる電池において、
     前記正極タブリードは、アルミニウム板における前記露出領域の少なくとも一部に、ニッケル、錫またはハンダからなる部分コーティング層が形成されたものからなり、
      前記負極タブリードは、銅板の全面にニッケル被覆層が形成されたものからなることを特徴とする電池。
  11.   正極、負極及び電解質を含んでなる電池本体部と、該電池本体部を内部に封入した外装体と、前記正極と電気的に接続された正極タブリードと、前記負極と電気的に接続された負極タブリードとを備え、前記正極タブリードの一部が前記外装体の外部に露出され、前記負極タブリードの一部が前記外装体の外部に露出されてなる電池において、
     前記正極タブリードは、アルミニウム板における前記露出領域の少なくとも一部に、ニッケルからなる部分コーティング層が形成されたものからなり、
      前記負極タブリードは、銅板の全面にニッケル被覆層が形成されたものからなることを特徴とする電池。
  12.   正極、負極及び電解質を含んでなる電池本体部と、該電池本体部を内部に封入した外装体と、前記正極と電気的に接続された正極タブリードと、前記負極と電気的に接続された負極タブリードとを備え、前記正極タブリードの一部が前記外装体の外部に露出され、前記負極タブリードの一部が前記外装体の外部に露出されてなる電池において、
     前記正極タブリードは、アルミニウム板における前記露出領域の少なくとも一部に、錫からなる部分コーティング層が形成されたものからなり、
      前記負極タブリードは、銅板の全面にニッケル被覆層が形成されると共にこのニッケル被覆層における前記露出領域の少なくとも一部に錫からなる部分コーティング層が形成されたものからなることを特徴とする電池。
  13.   正極、負極及び電解質を含んでなる電池本体部と、該電池本体部を内部に封入した外装体と、前記正極と電気的に接続された正極タブリードと、前記負極と電気的に接続された負極タブリードとを備え、前記正極タブリードの一部が前記外装体の外部に露出され、前記負極タブリードの一部が前記外装体の外部に露出されてなる電池において、
     前記正極タブリードは、アルミニウム板における前記露出領域の少なくとも一部に、ハンダからなる部分コーティング層が形成されたものからなり、
      前記負極タブリードは、銅板の全面にニッケル被覆層が形成されると共にこのニッケル被覆層における前記露出領域の少なくとも一部にハンダからなる部分コーティング層が形成されたものからなることを特徴とする電池。
  14.  前記正極タブリードのアルミニウム板における前記露出領域の全部に前記部分コーティング層が形成されている請求項10~13のいずれか1項に記載の電池。
PCT/JP2009/068986 2008-12-22 2009-11-06 正極タブリード及び負極タブリード並びに電池 WO2010073827A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020127033896A KR20130004606A (ko) 2008-12-22 2009-11-06 정극 탭 리드 및 부극 탭 리드, 및 전지
EP09834631.5A EP2372815A4 (en) 2008-12-22 2009-11-06 POSITIVE ELECTRODE TAB, NEGATIVE ELECTRODE TAB AND BATTERY
CN200980157136.0A CN102326280B (zh) 2008-12-22 2009-11-06 正极连接引线和负极连接引线以及电池
US13/141,141 US9070919B2 (en) 2008-12-22 2009-11-06 Positive electrode tab lead, negative electrode tab lead, and battery

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2008-325521 2008-12-22
JP2008325521 2008-12-22
JP2009-126176 2009-05-26
JP2009126176A JP5684462B2 (ja) 2008-12-22 2009-05-26 正極タブリード及び電池

Publications (1)

Publication Number Publication Date
WO2010073827A1 true WO2010073827A1 (ja) 2010-07-01

Family

ID=42287452

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/068986 WO2010073827A1 (ja) 2008-12-22 2009-11-06 正極タブリード及び負極タブリード並びに電池

Country Status (6)

Country Link
US (1) US9070919B2 (ja)
EP (1) EP2372815A4 (ja)
JP (1) JP5684462B2 (ja)
KR (2) KR20130004606A (ja)
CN (1) CN102326280B (ja)
WO (1) WO2010073827A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012076327A1 (de) * 2010-12-10 2012-06-14 Sb Limotive Company Ltd. Ableiterfolie für eine lithium-ionen-zelle, lithium-ionen-akkumulator sowie kraftfahrzeug mit einem lithium-ionen-akkumulator
WO2012076328A1 (de) * 2010-12-10 2012-06-14 Sb Limotive Company Ltd. Kollektor für eine lithium-ionen-zelle, lithium-ionen-akkumulator sowie kraftfahrzeug mit einem lithium-ionen-akkumulator
EP2602846A2 (en) * 2011-06-30 2013-06-12 LG Chem, Ltd. Electrode terminal for secondary battery and lithium secondary battery comprising same
EP2602845A4 (en) * 2010-09-27 2016-03-23 Lg Chemical Ltd ELECTRODE ROD COMPRISING A CORROSION PROTECTION LAYER, AND RECHARGEABLE BATTERY COMPRISING SAID ELECTRODE ROD
JP2016162482A (ja) * 2015-02-26 2016-09-05 株式会社フジクラ 蓄電デバイス及び蓄電モジュール
EP2423996B1 (en) * 2010-08-30 2020-02-26 Samsung SDI Co., Ltd. Secondary battery
EP3703159A4 (en) * 2017-10-26 2021-08-11 LG Electronics Inc. CONNECTION TAB AND POCKET-TYPE BATTERY INCLUDING IT

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2237346B1 (en) * 2009-04-01 2017-08-09 The Swatch Group Research and Development Ltd. Electrically conductive nanocomposite material comprising sacrificial nanoparticles and open porous nanocomposites produced thereof
EP2228854B1 (en) * 2009-03-12 2014-03-05 Belenos Clean Power Holding AG Nitride and carbide anode materials
EP2287946A1 (en) * 2009-07-22 2011-02-23 Belenos Clean Power Holding AG New electrode materials, in particular for rechargeable lithium ion batteries
CN101771142B (zh) * 2010-02-10 2012-09-19 力佳电源科技(深圳)有限公司 一种软包锂电池极耳材料及其电镀和应用方法
US9496541B2 (en) * 2010-03-31 2016-11-15 Jm Energy Corporation Accumulator device
DE102010029970B4 (de) * 2010-06-11 2021-06-02 Vitesco Technologies GmbH Batterie mit passivem Korrosionsschutz
JP2013080586A (ja) * 2011-10-03 2013-05-02 Showa Denko Kk 端子リード
JP2013134818A (ja) 2011-12-26 2013-07-08 Showa Denko Kk 端子リード
JP2014017175A (ja) * 2012-07-10 2014-01-30 Sumitomo Electric Ind Ltd リード導体、及び電力貯蔵デバイス
KR101585839B1 (ko) 2012-07-24 2016-01-14 가부시끼가이샤 도시바 2차 전지
US20140120383A1 (en) * 2012-10-25 2014-05-01 John Bradford Janik Apparatus and method for high power density power discharge from a battery pack
CN105283978B (zh) * 2013-06-14 2017-08-29 汽车能源供应公司 二次电池
JP6149528B2 (ja) * 2013-06-17 2017-06-21 住友電気工業株式会社 リード部材
JP6146232B2 (ja) * 2013-09-20 2017-06-14 三菱自動車工業株式会社 二次電池
KR101639320B1 (ko) * 2016-01-13 2016-07-13 (주)크레타하이테크 프레스 금형
CN108123090B (zh) * 2016-11-30 2021-02-19 宝山钢铁股份有限公司 一种带有防护的外极耳及其电池
KR102244120B1 (ko) * 2017-04-18 2021-04-22 주식회사 엘지화학 전극 리드와 버스바의 결합 구조가 개선된 배터리 모듈
KR102085342B1 (ko) 2017-04-26 2020-03-05 주식회사 엘지화학 이차전지용 전극리드, 이를 포함하는 파우치형 이차전지 및 배터리 모듈
KR102209767B1 (ko) * 2017-06-13 2021-01-28 주식회사 엘지화학 전극 리드와 버스바의 결합 구조가 개선된 배터리 모듈
US20190296316A1 (en) * 2018-03-26 2019-09-26 GM Global Technology Operations LLC Battery tab having a localized welded joint and method of making the same
CN113871802A (zh) * 2021-09-10 2021-12-31 东莞市万连实业有限公司 一种带新型电压采样点的铜排连接件及其制备方法
CN113972448B (zh) * 2021-10-19 2022-08-09 东莞新能安科技有限公司 一种电化学装置及包含该电化学装置的电子装置
DE102021133391A1 (de) * 2021-12-16 2023-06-22 Schott Ag Gehäuseteil für eine elektrische Speichereinrichtung und elektrische Speichereinrichtung

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1167281A (ja) * 1997-08-26 1999-03-09 Toshiba Battery Co Ltd 電 池
JP2000215879A (ja) * 1999-01-26 2000-08-04 Hitachi Maxell Ltd ポリマ―電解質電池
JP2001076706A (ja) * 1999-09-08 2001-03-23 Hitachi Maxell Ltd ポリマー電解質電池
JP2001332240A (ja) * 2000-05-24 2001-11-30 Mitsubishi Chemicals Corp 電池用リード及び電池用リードの取り付け構造
JP2003077451A (ja) * 2001-08-30 2003-03-14 Rohm Co Ltd 電池保護モジュール接続構造
JP2003123733A (ja) * 2001-10-18 2003-04-25 Sony Corp 電池用電極及びリチウムイオンポリマ電池、並びにそれらの製造方法
JP2004063133A (ja) * 2002-07-25 2004-02-26 Toshiba Corp 薄型二次電池
JP2004063132A (ja) * 2002-07-25 2004-02-26 Toshiba Corp 電極リード用部材
JP2004127839A (ja) * 2002-10-07 2004-04-22 Tdk Corp 電気化学デバイス
JP2008027771A (ja) 2006-07-21 2008-02-07 Kyoritsu Kagaku Sangyo Kk 非水電解質電池用タブリード材、その製造方法、およびこれを用いた非水電解質電池

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL250677A (ja) * 1959-04-27 1900-01-01
EP0964461B1 (en) * 1997-10-07 2007-04-11 Matsushita Electric Industrial Co., Ltd. Non-aqueous electrolyte secondary cell
WO1999040634A1 (fr) * 1998-02-05 1999-08-12 Dai Nippon Printing Co., Ltd. Feuille pour boitier de cellule et dispositif a cellule
US6267790B1 (en) * 1998-03-18 2001-07-31 Ntk Powerdex, Inc. Treatment of conductive feedthroughs for battery packaging
JP2001167752A (ja) * 1999-12-10 2001-06-22 Japan Storage Battery Co Ltd 非水電解質二次電池
JP2003086070A (ja) * 2001-06-29 2003-03-20 Matsushita Electric Ind Co Ltd 温度ヒューズおよびそれを用いた電池
JP4301509B2 (ja) * 2004-07-08 2009-07-22 フルタ電機株式会社 ハウスの防虫ネット付き整流シャッター
CN2754220Y (zh) * 2004-12-08 2006-01-25 惠州Tcl金能电池有限公司 一种电池极耳
JP2010003711A (ja) * 2006-10-13 2010-01-07 Kyoritsu Kagaku Sangyo Kk タブリード材及びその製造方法
JP4904539B2 (ja) * 2006-10-25 2012-03-28 住電朝日精工株式会社 リード部材とその接合方法及び非水電解質蓄電デバイス
JP2008186779A (ja) * 2007-01-31 2008-08-14 Toshiba Corp 非水電解質電池

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1167281A (ja) * 1997-08-26 1999-03-09 Toshiba Battery Co Ltd 電 池
JP2000215879A (ja) * 1999-01-26 2000-08-04 Hitachi Maxell Ltd ポリマ―電解質電池
JP2001076706A (ja) * 1999-09-08 2001-03-23 Hitachi Maxell Ltd ポリマー電解質電池
JP2001332240A (ja) * 2000-05-24 2001-11-30 Mitsubishi Chemicals Corp 電池用リード及び電池用リードの取り付け構造
JP2003077451A (ja) * 2001-08-30 2003-03-14 Rohm Co Ltd 電池保護モジュール接続構造
JP2003123733A (ja) * 2001-10-18 2003-04-25 Sony Corp 電池用電極及びリチウムイオンポリマ電池、並びにそれらの製造方法
JP2004063133A (ja) * 2002-07-25 2004-02-26 Toshiba Corp 薄型二次電池
JP2004063132A (ja) * 2002-07-25 2004-02-26 Toshiba Corp 電極リード用部材
JP2004127839A (ja) * 2002-10-07 2004-04-22 Tdk Corp 電気化学デバイス
JP2008027771A (ja) 2006-07-21 2008-02-07 Kyoritsu Kagaku Sangyo Kk 非水電解質電池用タブリード材、その製造方法、およびこれを用いた非水電解質電池

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2372815A4

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2423996B1 (en) * 2010-08-30 2020-02-26 Samsung SDI Co., Ltd. Secondary battery
EP2602845A4 (en) * 2010-09-27 2016-03-23 Lg Chemical Ltd ELECTRODE ROD COMPRISING A CORROSION PROTECTION LAYER, AND RECHARGEABLE BATTERY COMPRISING SAID ELECTRODE ROD
WO2012076327A1 (de) * 2010-12-10 2012-06-14 Sb Limotive Company Ltd. Ableiterfolie für eine lithium-ionen-zelle, lithium-ionen-akkumulator sowie kraftfahrzeug mit einem lithium-ionen-akkumulator
WO2012076328A1 (de) * 2010-12-10 2012-06-14 Sb Limotive Company Ltd. Kollektor für eine lithium-ionen-zelle, lithium-ionen-akkumulator sowie kraftfahrzeug mit einem lithium-ionen-akkumulator
EP2602846A2 (en) * 2011-06-30 2013-06-12 LG Chem, Ltd. Electrode terminal for secondary battery and lithium secondary battery comprising same
EP2602846A4 (en) * 2011-06-30 2014-12-17 Lg Chemical Ltd ELECTRODE TERMINAL FOR SECONDARY BATTERY AND LITHIUM SECONDARY BATTERY COMPRISING SUCH AN ASSEMBLY
JP2016162482A (ja) * 2015-02-26 2016-09-05 株式会社フジクラ 蓄電デバイス及び蓄電モジュール
EP3703159A4 (en) * 2017-10-26 2021-08-11 LG Electronics Inc. CONNECTION TAB AND POCKET-TYPE BATTERY INCLUDING IT

Also Published As

Publication number Publication date
US20110305945A1 (en) 2011-12-15
KR20130004606A (ko) 2013-01-11
JP5684462B2 (ja) 2015-03-11
CN102326280B (zh) 2015-01-28
US9070919B2 (en) 2015-06-30
EP2372815A4 (en) 2014-05-07
CN102326280A (zh) 2012-01-18
KR20110082177A (ko) 2011-07-18
JP2010170979A (ja) 2010-08-05
EP2372815A1 (en) 2011-10-05

Similar Documents

Publication Publication Date Title
JP5684462B2 (ja) 正極タブリード及び電池
KR102303986B1 (ko) 박형 축전 디바이스 및 그 제조 방법
JP6487712B2 (ja) 蓄電デバイス
US7749652B2 (en) Lead and nonaqueous electrolyte battery including same
JP6649026B2 (ja) 蓄電デバイス
JP4784236B2 (ja) 非水電解質電池用リード線及び非水電解質電池
JP2002231217A (ja) フィルムシール型非水電解質電池
JP4096718B2 (ja) バイポーラ電池、バイポーラ電池の製造方法、組電池および車両
JP2016207542A (ja) 蓄電デバイス用外装体及び蓄電デバイス
WO2018092640A1 (ja) 高出力電池および電池ケース
JPH11345599A (ja) シート型電気化学素子及びその製造方法
KR20180097084A (ko) 이차 전지
JP2004031161A (ja) 組電池
JP2016062717A (ja) 蓄電デバイス及びその製造方法
KR20140116795A (ko) 탭 리드
JP4186260B2 (ja) 薄型電池
JP6632831B2 (ja) 蓄電デバイス
WO2021060409A1 (ja) 蓄電素子及び蓄電素子の製造方法
WO2024053312A1 (ja) 蓄電装置
TW202228327A (zh) 極耳及非水電解質裝置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980157136.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09834631

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20117011538

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2009834631

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13141141

Country of ref document: US