WO2010073719A1 - Eg5阻害剤 - Google Patents

Eg5阻害剤 Download PDF

Info

Publication number
WO2010073719A1
WO2010073719A1 PCT/JP2009/007298 JP2009007298W WO2010073719A1 WO 2010073719 A1 WO2010073719 A1 WO 2010073719A1 JP 2009007298 W JP2009007298 W JP 2009007298W WO 2010073719 A1 WO2010073719 A1 WO 2010073719A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
compound
substituted
unsubstituted
formula
Prior art date
Application number
PCT/JP2009/007298
Other languages
English (en)
French (fr)
Inventor
藤井信孝
小川修
西山博之
大野浩章
大石真也
渡部敏明
竹内智起
浅井章良
澤田潤一
Original Assignee
国立大学法人京都大学
一般社団法人ファルマIp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人京都大学, 一般社団法人ファルマIp filed Critical 国立大学法人京都大学
Publication of WO2010073719A1 publication Critical patent/WO2010073719A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/56Ring systems containing three or more rings
    • C07D209/80[b, c]- or [b, d]-condensed
    • C07D209/82Carbazoles; Hydrogenated carbazoles
    • C07D209/86Carbazoles; Hydrogenated carbazoles with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to carbon atoms of the ring system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • A61P37/06Immunosuppressants, e.g. drugs for graft rejection
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/56Ring systems containing three or more rings
    • C07D209/80[b, c]- or [b, d]-condensed
    • C07D209/82Carbazoles; Hydrogenated carbazoles
    • C07D209/88Carbazoles; Hydrogenated carbazoles with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to carbon atoms of the ring system
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D471/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00
    • C07D471/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00 in which the condensed system contains two hetero rings
    • C07D471/04Ortho-condensed systems

Definitions

  • the present invention relates to an Eg5 inhibitor containing a polycyclic nitrogen-containing heterocyclic compound such as a carbazole derivative or a carboline derivative as an active ingredient.
  • Eg5 (KSP: Kinesin spindle protein) is a kind of motor protein and plays an important role in cell division of cancer cells. That is, Eg5 is involved in centrosome separation / migration, spindle formation / maintenance, spindle pole formation, and the like, and controls the progression of cell division in the M phase (see, for example, Non-Patent Document 1). ). It is known that by inhibiting Eg5, cancer cells are arrested in the M phase and apoptosis is induced (see, for example, Non-Patent Document 2). Therefore, Eg5 inhibitors are expected as therapeutic agents for cell proliferative diseases such as cancer.
  • nR 1 and Y represents NR 1 R 2 , NR 1 COR 2 , NR 1 CONR 2 R 3 , NR 1 CSNR 2 R 3 or NR 1 (S ) Represents nR 2 and A and B represent carbon or nitrogen
  • An object of the present invention is to provide a novel Eg5 inhibitor containing a polycyclic nitrogen-containing heterocyclic compound such as a carbazole derivative or a carboline derivative as an active ingredient, and an anticancer agent, an immunosuppressive agent or an immunomodulator containing the Eg5 inhibitor Is to provide etc.
  • the present inventors focused on the common central skeleton possessed by Eg5 inhibitors reported so far, and also developed an efficient carbazole skeleton synthesis method developed by the present inventors (Chem. Comm., 2007, 4516- 4518), and the derivatives having substituents other than amino groups at the 2-position or 3-position of carbazole have significantly higher inhibitory activity than conventional Eg5 inhibitors. Found to show. Furthermore, structural activity relationship studies of analogs were developed, and ⁇ -carboline derivatives in which the carbon atom at the 2-position of carbazole was replaced with a nitrogen atom were found to have an additional 10-fold increase in inhibitory activity.
  • Eg5 inhibitory activity was also observed in harmine having a similar ⁇ -carboline skeleton, and a compound having a ⁇ -carboline skeleton was also found to be useful as an Eg5 inhibitor.
  • the present inventors have found that tricyclic or higher polycyclic nitrogen-containing heterocyclic compounds such as carbazole derivatives and carboline derivatives are useful as Eg5 inhibitors, and have completed the present invention. It was.
  • bonds ab and cd are the same or different and represent a single bond or a double bond;
  • a cyclic hydrocarbon ring, an aromatic hydrocarbon ring or a heterocyclic ring may be formed]
  • Y 1 , Y 2 , Y 3 and Y 4 are the same or different and have the same meaning as X, and when the bond ab and / or cd represents a single bond, Y 1 to Y 4 are oxo Group or thioxo group, Z represents a hydrogen atom, a substituted or unsubstituted alkyl group or an amino-protecting group ⁇
  • the Eg5 inhibitor which contains the polycyclic nitrogen-containing heterocyclic compound represented by these, or its pharmacologically acceptable salt as an active ingredient.
  • the present invention also provides: (2) The compound represented by the formula (I) is represented by the following formula (Ia)
  • An Eg5 inhibitor according to (1) above which is a carbazole derivative represented by the formula: (3) X 2 and X 3 are the same or different and are a substituted or unsubstituted alkyl group, OR 1 (wherein R 1 is as defined above), COR 6 (wherein R 6 is the same as defined above)
  • the Eg5 inhibitor according to (2) above which is a COOR 7 (wherein R 7 is as defined above), a substituted or unsubstituted aryl group or a halogen atom, (4)
  • the present invention also provides: (6)
  • the compound represented by the formula (I) is represented by the following formula (Ib)
  • An Eg5 inhibitor according to (1) above which is a carboline derivative represented by: (7) The Eg5 inhibitor according to the above (6), wherein Q 2a is a ⁇ -carboline derivative which is a nitrogen atom, (8) The Eg5 inhibitor according to any one of (6) or (7) above, wherein Y 2 is a trifluoromethyl group.
  • the present invention also provides: (9) an anticancer agent containing, as an active ingredient, a nitrogen-containing heterocyclic compound represented by the formula (I) according to any one of the above (1) to (8) or a pharmacologically acceptable salt thereof, (10) An immunosuppressant or immunity comprising as an active ingredient a nitrogen-containing heterocyclic compound represented by the formula (I) according to any one of (1) to (8) above or a pharmacologically acceptable salt thereof It relates to a regulator.
  • the present invention provides (11) Formula (Ia-A) (Wherein X 1a and X 2a represent a group bonded via —NHC (O) CH 2 CH 2 — or —CH 2 CH 2 C (O) NH—, and X 3 , X 4 , Y 1 -Y 4 and Z are as defined above) Or a pharmaceutically acceptable salt thereof, or a polycyclic nitrogen-containing heterocyclic compound represented by (12) Formula (Ia-B) (Wherein X 2b and X 3b represent a group bonded through —NHC (O) CH 2 CH 2 — or —CH 2 CH 2 C (O) NH—, and X 1 , X 4 , Y 1 -Y 4 and Z are as defined above) And a pharmacologically acceptable salt thereof.
  • Formula (Ia-A) wherein X 1a and X 2a represent a group bonded via —NHC (O) CH 2 CH 2 — or —CH 2 CH 2 C (O)
  • the present invention also provides a nitrogen-containing heterocyclic compound represented by the formula (I) according to any one of the above (1) to (8) or a pharmacological thereof used for the treatment of diseases caused by Eg5 and cancer.
  • nitrogen-containing heterocyclic compounds represented by the formula (I) according to any one of the above (1) to (8) or a pharmacology thereof for treating a salt acceptable to Eg5, a disease caused by Eg5, or cancer Use of a pharmaceutically acceptable salt, or a nitrogen-containing heterocyclic compound represented by the formula (I) according to any one of (1) to (8) or a pharmacologically acceptable salt thereof as an active ingredient
  • the present invention relates to a method for treating a disease caused by Eg5 and a cancer.
  • the polycyclic nitrogen-containing heterocyclic compound (I) such as carbazole derivative and carboline derivative used in the present invention has an excellent Eg5 inhibitory activity which has not been known so far, and is an anticancer agent against various cancers. It has activity as.
  • the alkyl group is, for example, linear or branched alkyl having 1 to 8 carbon atoms, specifically, methyl, ethyl, propyl, isopropyl, butyl, isobutyl, sec-butyl, tert-butyl, pentyl, isopentyl, neopentyl. Hexyl, heptyl, octyl and the like.
  • the cycloalkyl group is a 3- to 12-membered cycloalkyl group in which a saturated or partially unsaturated bond may exist, and a monocyclic or a plurality of the monocyclic cycloalkyl groups, an aryl group or an aromatic heterocycle. It may be a polycyclic condensed cycloalkyl group condensed with a cyclic group.
  • Examples of the monocyclic cycloalkyl group include monocyclic cycloalkyl having 3 to 8 carbon atoms, specifically, cyclopropyl.
  • Examples of the polycyclic cycloalkyl group include polycyclic cycloalkyl having 5 to 12 carbon atoms, specifically, Specifically, pinanyl, adamantyl, bicyclo [3.3.1] octyl, bicyclo [3.1.1] heptyl and the like can be mentioned.
  • the alkenyl group is, for example, linear or branched alkenyl having 2 to 8 carbon atoms, specifically vinyl, allyl, 1-propenyl, isopropenyl, methacryl, butenyl, 1,3-butadienyl, crotyl, pentenyl, Hexenyl, heptenyl, octenyl and the like can be mentioned.
  • aryl group examples include aryl having 6 to 14 carbon atoms, specifically, phenyl, naphthyl, anthryl, phenanthryl and the like.
  • the aralkyl group has the same aryl part as the aryl group, and the alkyl part has the same meaning as the alkyl group.
  • aralkyl having 7 to 15 carbon atoms specifically benzyl, phenethyl, phenylpropyl, phenylbutyl.
  • the heterocyclic group means an alicyclic heterocyclic group and an aromatic heterocyclic group, and the alicyclic heterocyclic group is the same or different and has at least one or more hetero atoms such as nitrogen, oxygen, sulfur.
  • a 3- to 8-membered alicyclic heterocyclic group which may contain a saturated or partially unsaturated bond, and is monocyclic or a plurality of such monocyclic heterocyclic groups, an aryl group or an aromatic group It may be a polycyclic fused alicyclic heterocyclic group condensed with an aromatic heterocyclic group.
  • monocyclic alicyclic heterocyclic groups include aziridinyl, pyrrolidinyl, imidazolidinyl, imidazolinyl, pyrazolidinyl, pyrazolinyl, dihydrothiazolyl, tetrahydrofuranyl, 1,3-dioxolanyl, thiolanyl, oxazolidyl, thiazolidinyl, piperidino , Piperidyl, piperazinyl, homopiperidinyl, morpholino, morpholinyl, thiomorpholinyl, pyranyl, oxathianyl, oxadiazinyl, thiadiazinyl, dithiazinyl, azepinyl, dihydroazosinyl, and the like.
  • polycyclic fused alicyclic heterocyclic group include , Indolinyl, isoindolinyl, chromanyl, isochronyl,
  • the aromatic heterocyclic group is the same or different and consists of a 5-membered or 6-membered aromatic heterocyclic group containing at least one or more hetero atoms such as nitrogen, oxygen, sulfur and the like. It may be a monocyclic or a polycyclic fused aromatic heterocyclic group in which a plurality of the monocyclic heterocyclic groups are condensed with an aryl group, for example, a bicyclic or tricyclic heterocyclic group.
  • the monocyclic aromatic heterocyclic group examples include furyl, thienyl, pyrrolyl, imidazolyl, pyrazolyl, triazolyl, tetrazolyl, oxazolyl, isoxazolyl, oxadiazolyl, thiazolyl, thiadiazolyl, isothiazolyl, pyridyl, pyrimidinyl, pyrazinyl, pyridazinyl, triazinyl
  • the polycyclic fused aromatic heterocyclic group examples include benzofuryl, benzothienyl, indolyl, isoindolyl, indazolyl, benzimidazolyl, benzotriazolyl, benzoxazolyl, benzothiazolyl, carbazolyl, purinyl, quinolyl, isoquinolyl Quinazolinyl, phthalazinyl, quinoxalinyl, cinnolinyl,
  • the heterocyclic portion has the same meaning as the aliphatic heterocyclic group or aromatic heterocyclic group, and the alkyl portion has the same meaning as the alkyl group.
  • at least one hetero atom is present.
  • aliphatic heterocyclic alkyl such as pyrrolidinylmethyl, imidazolidinylmethyl, pyrazolinylethyl, thiazolidinylmethyl, piperidinomethyl, morpholinomethyl, and pyridylmethyl, pyridylethyl, furanylmethyl, thienyl Mention may be made of aromatic heterocyclic alkyl such as methyl.
  • the nitrogen-containing heterocyclic group is a heterocyclic group containing at least one nitrogen atom as a hetero atom among the heterocyclic groups.
  • Halogen atom means each atom of fluorine, chlorine, bromine and iodine.
  • the alicyclic hydrocarbon ring is, for example, an alicyclic hydrocarbon ring corresponding to the cycloalkyl group having 5 to 8 carbon atoms, and specifically includes cyclopentane, cyclohexane, cycloheptane, cyclooctane and the like. .
  • aromatic hydrocarbon ring examples include aromatic hydrocarbon rings corresponding to the aryl group having 6 to 14 carbon atoms, and specific examples include benzene, naphthalene, and anthracene.
  • Heterocycle means a heterocycle corresponding to the heterocyclic group, for example, a 5- to 8-membered alicyclic heterocycle corresponding to the alicyclic heterocyclic group, specifically, pyrroline, pyrrolidine, imidazoline, Examples include imidazolidine, pyrazoline, pyrazolidine, dihydrothiazole, tetrahydrofuran, dioxolane, thiolane, piperidine, piperazine, morpholine, thiomorpholine, pyran, oxathiane, oxadiazine, thiadiazine, dithiazine and the like.
  • the 5- to 6-membered aromatic heterocyclic ring corresponding to the aromatic heterocyclic group is specifically a monocyclic aromatic heterocyclic ring such as furan, thiophene, pyrrole, oxazole, isoxazole, thiazole, thiadiazole, Isothiazole, imidazole, pyrazole, triazole, pyridine, pyrazine, pyrimidine, pyridazine, etc.
  • condensed aromatic heterocycles include benzofuran, benzothiophene, indole, isoindole, indolizine, benzimidazole, benzotriazole, benzoxazole Benzothiazole, carbazole, purine, quinoline, isoquinoline, quinazoline, phthalazine, cinnoline, quinoxaline and the like.
  • amino-protecting group those commonly used as amino-amino protecting groups can be used as they are.
  • acyl groups such as formyl, acetyl, trifluoroacetyl and benzoyl, and aralkyls such as benzyl and trityl are used.
  • alkoxycarbonyl groups such as methoxycarbonyl, tert-butoxycarbonyl (Boc), 9-fluorenylmethoxycarbonyl (Fmoc), and the like.
  • alkyl groups As substituents in alkyl groups, cycloalkyl groups, alkenyl groups, aryl groups, aralkyl groups, heterocyclic groups, heterocyclic alkyl groups, nitrogen-containing heterocyclic groups, alicyclic hydrocarbon rings, aromatic hydrocarbon rings, and heterocyclic rings Is an alkyl group, a cycloalkyl group, an alkenyl group, an aryl group, an aralkyl group, a heterocyclic group, a heterocyclic alkyl group, OR 21 , OCOR 22 , NR 23 R 24 , NR 25 COR 26 , NR 27 COOR 28 , NR 29 SO 2 R 30 , NR 31 SO 2 NR 32 R 33 , NR 34 COOR 35 , S (O) mR 36 (wherein, m represents 0, 1 or 2), SO 2 NR 37 R 38 , COR 39 , CONR 40 R 41 , nitro group, cyano group, halogen atom,
  • R 21 to R 41 are the same or different and each represents a hydrogen atom, an alkyl group, a cycloalkyl group, an alkenyl group, an aryl group, an aralkyl group, a heterocyclic group or a heterocyclic alkyl group, and R 23 and R 24 , R 32 and R 33 , R 37 and R 38 , R 40 and R 41 may be combined to form a nitrogen-containing heterocyclic group.
  • alkyl group, a cycloalkyl group, an alkenyl group, an alkynyl group, an aryl group, an aralkyl group, a heterocyclic group, and a heterocyclic alkyl group are as defined above, and the group may further have a substituent, Examples of the substituent include the same substituents as described above.
  • the number of substitutions of these substituents may be the same or different, and may be up to the number of hydrogen atoms present in each group, but is preferably 1 to 10, more preferably 1 to 6.
  • Examples of the pharmacologically acceptable salt of compound (I) include acid addition salts, metal salts, ammonium salts, organic amine addition salts and the like, and acid addition salts include hydrochloric acid, hydrobromic acid, sulfuric acid, Nitric acid, phosphoric acid, boric acid and other inorganic acid salts, and organic acids such as formic acid, acetic acid, propionic acid, fumaric acid, malonic acid, succinic acid, maleic acid, tartaric acid, benzoic acid and other carboxylic acids, methanesulfone Examples thereof include acids, sulfonic acids such as p-toluenesulfonic acid, and amino acids such as glutamic acid and aspartic acid.
  • acid addition salts include hydrochloric acid, hydrobromic acid, sulfuric acid, Nitric acid, phosphoric acid, boric acid and other inorganic acid salts, and organic acids such as formic acid, acetic acid, propionic acid, fumaric acid, malonic
  • each alkali metal salt such as lithium, sodium, potassium, etc.
  • each alkaline earth metal salt such as magnesium, calcium, etc.
  • each metal salt such as aluminum, zinc, etc.
  • ammonium salt ammonium, tetramethylammonium, etc.
  • organic amine salt include salts of triethylamine, piperidine, morpholine, toluidine and the like.
  • the compound used as the Eg5 inhibitor of the present invention is preferably a tricyclic or higher polycyclic nitrogen-containing heterocyclic compound, and as the compound, a compound represented by the formula (I) (Hereinafter, it is referred to as compound (I).
  • compound (I) a compound represented by the formula (I)
  • compound (Ia) a compound represented by the formula (I)
  • a compound having a substituent at X 2 and / or X 3 is more preferable.
  • the substituent include a methyl group, an ethyl group, an isopropyl group, a tert-butyl group, Alkyl groups such as difluoromethyl group, trifluoromethyl group and hydroxymethyl group, alkoxy groups such as hydroxy group, methoxy group, tert-butoxy group and trifluoromethoxy group, alkanoyl groups such as formyl group, carboxyl group And an alkoxycarbonyl group such as a methoxycarbonyl group and a benzyloxycarbonyl group, an aryl group such as a phenyl group and an m-hydroxyphenyl group, and a halogen atom such as a fluoro group.
  • a fluoromethyl group is preferred.
  • a compound in which X 1 and X 2 or X 2 and X 3 are combined to form a heterocyclic ring is preferable, and X 1 -X 2 or X 2 -X 3 is —NHC ( More preferred is a piperidinone ring which is a heterocyclic ring formed by bonding via O) CH 2 CH 2 — or —CH 2 CH 2 C (O) NH—.
  • a ⁇ -carboline derivative in which Q 2a is a nitrogen atom is more preferable.
  • Y 2 is preferably a compound having a trifluoromethyl group as a substituent.
  • Compound (I) used in the present invention can be produced by the method described in the literature (Chem. Comm., 2007, 4516-4518) or the following production method according to these methods.
  • L represents a leaving group, and Q 1 to Q 4 , Y 1 to Y 4, and Z are as defined above.
  • Examples of the leaving group in the definition of L include a halogen atom, a substituted or unsubstituted alkylsulfonyloxy group, and a substituted or unsubstituted arylsulfonyloxy group.
  • the halogen atom has the same meaning as described above.
  • the alkylsulfonyloxy group is synonymous with the alkyl group, for example, an alkylsulfonyloxy group having 1 to 8 carbon atoms, and the arylsulfonyloxy group is synonymous with the aryl group.
  • an arylsulfonyloxy group having 6 to 14 carbon atoms examples include a halogen atom, an alkyl group, a nitro group and the like, and the halogen atom and the alkyl group are as defined above.
  • alkylsulfonyloxy groups such as methanesulfonyloxy and trifluoromethanesulfonyloxy
  • arylsulfonyloxy groups such as benzenesulfonyloxy and toluenesulfonyloxy can be exemplified.
  • Amine compound (IIa) and aryl compound (IIIa) are converted into a suitable inert solvent such as halogenated hydrocarbons such as chloroform and dichloromethane, benzene, toluene and chlorobenze in the presence of a transition metal catalyst, a ligand and a base.
  • a suitable inert solvent such as halogenated hydrocarbons such as chloroform and dichloromethane, benzene, toluene and chlorobenze in the presence of a transition metal catalyst, a ligand and a base.
  • Aromatic hydrocarbons such as dichlorobenzene, ether solvents such as diethyl ether, tetrahydrofuran (THF) and 1,4-dioxane, lower alcohols such as methanol, ethanol and isopropanol, organic carboxylic acids such as acetic acid and propionic acid, N , N-dimethylformamide (DMF), N-methylpyrrolidone (NMP), N-methylmorpholine, dimethyl sulfoxide (DMSO), etc.
  • N- arylated diarylamine compound (IVa) Aromatic hydrocarbons such as dichlorobenzene, ether solvents such as diethyl ether, tetrahydrofuran (THF) and 1,4-dioxane, lower alcohols such as methanol, ethanol and isopropanol, organic carboxylic acids such as acetic acid and propionic acid, N , N-dimethylformamide (DMF), N-methylpyrroli
  • transition metal of the transition metal catalyst examples include palladium, nickel, copper, and iron.
  • Specific examples of the transition metal catalyst include tetrakis (triphenylphosphine) palladium (0), tetrakis (triphenylphosphine) nickel (0 ) And the like.
  • These transition metal catalysts may be prepared in situ from the corresponding transition metal salt in the presence of a ligand.
  • the ligand include triphenylphosphine, tributylphosphine, 1,1′-bis (diphenylphosphine).
  • Fino) ferrocene 2,2′-bis (diphenylphosphino) -1,1′-binaphthyl, 1,3-bis (diphenylphosphino) propane, 4,5-bis (diphenylphosphino) -9,9- Examples thereof include dimethylxanthene, tricyclohexylphosphonium tetrafluoroborate, 2-dicyclohexylphosphino-2 ′, 4 ′, 6′-triisopropylbiphenyl, and transition metal salts such as palladium chloride, palladium acetate, palladium-carbon, Nickel chloride, copper chloride (I), copper iodide (I), copper oxide (I), iron chloride (II), iron chloride (III), etc.
  • the transition metal catalyst is used in an amount of 5 to 10 mol% relative to compound (IIIa), and the ligand is used in an amount of 5 to 20 mol% relative to compound (IIIa).
  • the base examples include organic bases such as triethylamine, N-methylmorpholine, and pyridine, inorganic bases such as potassium carbonate, potassium bicarbonate, cesium carbonate, potassium phosphate, sodium hydroxide, sodium hydride, sodium methoxide, potassium and metal alkoxides such as tert-butoxide. If necessary, an organic acid such as pivalic acid may be added.
  • compound (IIa) and (IIIa) can be obtained as a commercial item, or can also be manufactured by a conventional method.
  • Step 2 Compound (IVa) obtained in Step 1 is subjected to an oxidative coupling reaction in a suitable inert solvent at a temperature between ⁇ 78 ° C. and the boiling point of the solvent used for 5 minutes to 48 hours.
  • the oxidation reaction may be carried out using oxygen or oxygen in the air as an oxidant and aeration of oxygen or air in an open system, or oxygen or air in a closed system under pressure.
  • the solvent the solvent exemplified in Step 1 can be used similarly, but acetic acid or a mixed solvent of acetic acid and toluene is preferably used.
  • the compound (IVa) obtained in step 1 can be isolated, purified if necessary and used as the raw material of step 2, but the compound (IVa) obtained in step 1 can be isolated and purified. It is also possible to carry out the reaction of step 2 as it is.
  • L 1 and L 2 are the same or different and have the same meaning as L, and Q 1 to Q 4 , Y 1 to Y 4 and Z have the same meanings as described above).
  • the target compound (I) can be produced from the amine compound (IIb) and the aryl compound (IIIa) according to the method described in Production Method 1 and Step 1.
  • the N-arylated diaryl compound (IVb) produced from the compound (IIb) and the compound (IIIa) is once isolated, purified if necessary, and further subjected to the method described in Production Method 1 and Step 1.
  • the reaction conditions for obtaining the target compound (I) from the compound (IVb) may be the same as the reaction conditions for producing the compound (IVb) from the compound (IIb) and the compound (IIIa). May be different.
  • the target compound (I) can also be obtained directly from the compound (IIb) and the compound (IIIa) without isolating and purifying the compound (IVb) produced on the way.
  • Compound (IIb) is available as a commercial product or can be produced by a conventional method.
  • the target compound (I) is prepared from the amine compound (IIa) and the aryl compound (IIIb) according to the method described in the literature (Synlett, 2007, 15, 2331-2336) or these methods. It can be produced according to the method described.
  • Compound (IIIb) can be obtained as a commercial product or can be produced by a conventional method.
  • the target compound (I) is prepared by reacting an aryl compound (IIc) with an amine compound (IIIc) according to a method described in literature (Angew. Chem., Int. Ed., 2007, 46, 1627-1629) or according to these methods. From the above, it can be produced according to the method described in production method 2. In addition, compound (IIc) and (IIIc) can be obtained as a commercial item, or can also be manufactured by a conventional method.
  • the aryl compound (IIc) and the amine compound (IIId) are converted into an N-arylated diaryl compound (IVa) (Step 1), and the compound (IVa) is subjected to oxidative coupling.
  • the target compound (I) can be produced (step 2).
  • Compound (IIId) can be obtained as a commercial product or can be produced by a conventional method.
  • M represents a metal-containing leaving group
  • L, Q 1 to Q 4 and Y 1 to Y 4 are as defined above.
  • the metal of the metal-containing leaving group in the definition of M include lithium, boron, magnesium, aluminum, silicon, zinc, tin and the like.
  • Specific examples of the metal-containing leaving group include —B (OH) 2 , —B (—OC (CH 3 ) 2 —C (CH 3 ) 2 O—), —MgCl, —MgBr, —ZnBr, —ZnI, —Sn (nBu) 3 , —SiCl 2 (C 2 H 5 ), etc. Is mentioned.
  • the diaryl compound (IVd) can be obtained by reacting the aryl compound (IId) with the nitro compound (IIIe) in the presence of a transition metal catalyst and a base.
  • the transition metal catalyst, base and reaction solvent, reaction temperature, time and the like used can be carried out under substantially the same conditions as exemplified in Production Method 1 and Step 1.
  • compound (IId) and (IIIe) can be obtained as a commercial item, or can also be manufactured by a conventional method.
  • the target compound (Id) in which Z is a hydrogen atom in the compound (I) can be obtained by the reductive cyclization reaction of the compound (IVd) obtained in Step 1 in the presence of triphenylphosphine.
  • the reaction solvent, reaction temperature, time and the like can be carried out under substantially the same conditions as exemplified in Production Method 1 and Step 1.
  • the compound (IVd) obtained in step 1 can be isolated, purified if necessary and used as the raw material of step 2, but the compound (IIIc) obtained in step 1 can be isolated and purified. It is also possible to carry out the reaction of step 2 as it is.
  • an oxidizing agent to obtain the desired ⁇ -carboline compound (Iba) in which Q 2 is a nitrogen atom.
  • the oxidizing agent include oxygen, hydrogen peroxide, potassium permanganate, potassium chlorate, potassium dichromate, and palladium carbon.
  • the reaction solvent, reaction temperature, time, and the like are exemplified in Production Method 1 and Step 1. It can be performed under substantially the same conditions.
  • Compounds (Va) and (VI) can be obtained as commercial products or can be produced by conventional methods.
  • Z a represents a substituted or unsubstituted alkyl group, and Q 1 to Q 4 and Y 1 to Y 4 are as defined above.
  • target compound (Ie) in which Z is an alkyl group can be obtained by reacting compound (Id) in the presence of an alkylating agent and a base.
  • alkylating agent include halides of the alkyl groups defined above, dialkyl sulfuric acid, and the like, and specific examples include methyl iodide, ethyl iodide, dimethyl sulfuric acid, and the like.
  • the base used, reaction solvent, reaction temperature, time, etc. can be carried out under substantially the same conditions as exemplified in Production Method 1 and Step 1.
  • the target compound (Ig) in which Y 3 is formylated can be obtained according to the method described in the literature (Tetrahedron, 2007, 63, 10290-10299).
  • compound (If) is reacted with DMF and an electrophile such as phosphorus oxychloride, oxalyl chloride, and phosphoric acid trichloride in the presence of a Beer-Smeier reagent to formylate Y 3 (Ig) can be obtained.
  • the base used, reaction solvent, reaction temperature, time, etc. can be carried out under substantially the same conditions as exemplified in Production Method 1 and Step 1.
  • the target compound (Ih) is a compound (Ica) in which the bond cd is a single bond.
  • an oxidizing agent those exemplified in Production Method 5 can be carried out under substantially the same conditions as those exemplified in Production Method 1 and Step 1 with respect to the reaction solvent, reaction temperature, time and the like.
  • Y 1 and Y 2 are combined to form an alicyclic hydrocarbon ring.
  • Y 1 and Y 2 are combined to form an aromatic ring.
  • the reducing agent include hydride reducing agents such as lithium aluminum hydride, diisobutylaluminum hydride, sodium borohydride, alkali metals such as sodium, etc., and the reaction solvent, reaction temperature, time, etc. are the production method 1, step 1 can be performed under substantially the same conditions as illustrated in 1.
  • the target compound (Icb) in which the bonds ab and cd are single bonds is a hydrazine compound (Tetrahedron, 1960, 8, 67-72) according to the method described in the literature (Tetrahedron, 1960, 8, 67-72).
  • IIe) and carbonyl compound (IIIf) can be obtained by reacting in the presence of an acid such as an inorganic acid such as hydrochloric acid or an organic acid such as acetic acid or propionic acid. These acids are also used as a solvent, and the reaction temperature, time and the like can be carried out under substantially the same conditions as exemplified in Production Example 1 and Step 1.
  • Compounds (IIe) and (IIIf) can be obtained as commercial products or can be produced by conventional methods.
  • Y 4a and Y 4b are the same or different and each represents an oxo group or a thioxo group, and L, Q 1 to Q 4 , Y 1 to Y 3 and Z are as defined above).
  • the target compound (Icc) in which Y 4 is an oxo group or a thioxo group is prepared according to the method described in the literature (Synlett, 2007, 17, 2699-2702) and the amine compound (IIb) and diketone.
  • Compound (IVe) is obtained from compound (IIIg) (step 1), and then can be produced according to the method described in production method 1 and step 1 (step 2).
  • Compound (IIIg) is available as a commercial product or can be produced by a conventional method.
  • Production method 14.1 (hydroxymethylation) By reacting compound (I) in which at least one of substituents X 1 to X 4 and Y 1 to Y 4 in compound (I) is a carboxylic acid ester such as an alkoxycarbonyl group in the presence of a reducing agent, Compound (I) in which the substituent of (I) is a hydroxymethyl group can be obtained.
  • the reducing agent include hydride reducing agents exemplified in Production Method 9, and the reaction solvent, reaction temperature, time, and the like can be performed under substantially the same conditions as exemplified in Production Example 1 and Step 1.
  • Production method 14.2 (carboxylation) Similarly to Production Method 14.1, compound (I) having a carboxylic acid ester as a substituent is subjected to a hydrolysis reaction in the presence of a base to obtain compound (I) in which the substituent is a carboxyl group.
  • a base examples include inorganic bases such as sodium hydroxide and potassium hydroxide, metal alkoxides such as sodium methoxide and potassium tert-butoxide, and the reaction solvent, reaction temperature, time and the like are as described in Production Example 1 and Step 1. It can be performed under substantially the same conditions as illustrated.
  • the intermediates and target compounds in the above production methods are isolated and purified by purification methods commonly used in organic synthetic chemistry, such as neutralization, filtration, extraction, washing, drying, concentration, recrystallization, and various chromatography. be able to.
  • the intermediate can be subjected to the next reaction without any particular purification.
  • compound (I) when it is desired to obtain a salt of compound (I), if compound (I) is obtained in the form of a salt, it can be purified as it is, and if it is obtained in a free form, it can be dissolved in an appropriate organic solvent. Alternatively, it may be suspended, and an acid or base is added to form a salt by an ordinary method.
  • Compound (I) and pharmacologically acceptable salts thereof may exist in the form of adducts with water or various solvents, and these adducts should also be used as the Eg5 inhibitor of the present invention. Can do.
  • Compound (I) or a pharmacologically acceptable salt thereof can be administered alone as it is, but it is usually desirable to prepare various pharmaceutical preparations. It can be produced by a conventional method of pharmaceutics by mixing with one or two or more types of carriers that are acceptable.
  • administration routes include oral administration, inhalation administration, parenteral administration such as intravenous administration.
  • Examples of the dosage form include tablets, injections, etc.
  • the tablets are mixed with various additives such as lactose, starch, magnesium stearate, hydroxypropyl cellulose, polyvinyl alcohol, surfactant, glycerin, etc.
  • the inhalant may be produced according to a conventional method by adding, for example, lactose.
  • An injection may be produced according to a conventional method by adding water, physiological saline, vegetable oil, solubilizer, preservative and the like.
  • the effective amount and frequency of administration of compound (I) or a pharmacologically acceptable salt thereof vary depending on the administration form, patient age, body weight, symptoms, etc., but usually 0.001 mg to 5 g per adult, preferably Is administered at a dose of 0.1 mg to 1 g, more preferably 1 mg to 500 mg, once a day or several times a day.
  • Eg5 inhibitory activity ATPase inhibition test of Eg5
  • ATP consumption an index of ATPase activity
  • L 0 luminescence when only the solvent for dissolving the test sample is added without Eg5 recombinant protein
  • L chem Light emission when test sample is added
  • L DMSO Luminescence when only the solvent for dissolving the test sample is added
  • Table 6 The test results are shown in Table 6.
  • Table 7 shows the results regarding the concentration (IC 50 ) that inhibits ATP hydrolysis by 50%.
  • Cell growth inhibition test 1 HeLa cells derived from human cervical cancer were cultured in Dulbecco's modified Eagle's medium (DMEM; Invitrogen-Gibco BRL) containing 10% fetal bovine serum (FBS; Hyclone) The medium was cultured in a 96-well plate at a density of 5000 cells / well (cells / well) for 8 hours in a constant temperature room at 37 ° C. filled with 5% CO 2 . A 10% FBS-containing DMEM solution of a test sample (prepared from a DMSO solution) prepared to have various concentrations was added to each well, and the culture was continued.
  • DMEM Dulbecco's modified Eagle's medium
  • FBS fetal bovine serum
  • the number of viable cells after culturing for 2 days was measured using a cell proliferation test kit (Promega); CellTiter96 (R) AQueousOne Solution Cell Proliferation Assay) by MTS method, and the cell proliferation score was calculated according to the following formula.
  • MS Absorbance by MTS reagent when sample is added
  • MD Absorbance by MTS reagent when only solvent for sample dissolution is added
  • Table 9 shows the 50% growth inhibitory concentration (IC 50 ) at 72 hours after administration of the test sample by MTT assay using prostate cancer cell lines (PC3, DU145) and bladder cancer cell lines (RT112, KU7). .
  • Tablets are prepared by a conventional method using a composition comprising 10 mg of compound (Ia-20), 70 mg of lactose, 15 mg of starch, 4 mg of polyvinyl alcohol and 1 mg of magnesium stearate (total 100 mg).
  • halogen compound (IIc-1) 500 mg, 2.42 mmol
  • amine compound (IIIc-1) (278 ⁇ L, 2.66 mmol)
  • tris (dibenzylideneacetone) dipalladium (0)- Chloroform adduct 125 mg, 0.12 mmol
  • 2-disylsiloxyphosphino-2 ′-(N, N-dimethylamino) biphenyl 95.2 mg, 0.24 mmol
  • cesium carbonate (1.19 g, 3. 38 mmol) in toluene (2.5 mL) was stirred at 100 ° C. under argon. After 2 hours, the mixture was filtered through Celite and concentrated under reduced pressure.
  • the target compound (Ia-50) (2.35 mg, yield 98%) was obtained according to the method described in Production Method 10.
  • diaryl compound (IVd-2) (77 mg, yield 56%) was obtained by flash chromatography using silica gel with n-hexane-ethyl acetate (1: 1) as an eluent.
  • the tetrahydrocarboline compound (Vb-1) obtained by using the ethylamine compound (Va-1) and m-hydroxybenzaldehyde (VI) according to the method described in the production method 7 was directly purified without modification to xylene (12 mL). And palladium carbon (1.33 g, 12.5 mmol) were added and refluxed under argon. After 6 hours, the mixture was returned to room temperature, filtered through celite, and concentrated under reduced pressure.
  • the target compound (Ib-4) (26.1 mg, 2.2% yield) was obtained as a pale yellowish white solid by chromatography using a PLC plate with n-hexane-ethyl acetate (1: 2) as an eluent.
  • the diaryl compound (IVc-1) was obtained using the pyridine compound (IIc-5) and the amine compound (IIIc-2) according to the method described in Production Method 4.
  • DMA (20 mL) was added to compound (IVc-1) (120 mg, 0.38 mmol), and further palladium acetate (4.25 mg, 0.02 mmol), tricyclohexylphosphonium tetrafluoroborate (14.0 mg, 0.02 mmol).
  • 04 mmol potassium carbonate (73.3 mg, 0.53 mmol) and pivalic acid (11.6 mg, 0.11 mmol) were added and stirred at 130 ° C. under argon.
  • amine compound (IIb-1) 400 mg, 3.11 mmol
  • iodo compound (IIIa-2) 846 mg, 3.11 mmol
  • copper iodide 60.2 mg, 0.31 mmol
  • 1,10-phenanthroline 84.1 mg, 0.47 mmol
  • potassium carbonate 860 mg, 6.22 mmol
  • DMF 6.0 mL
  • the diaryl compound (IVb-1) (22.4 mg, yield ⁇ 26%) was obtained as a crude product by flash chromatography using silica gel with n-hexane-ethyl acetate (6: 1) as an eluent. Obtained. DMA (8.2 mL) was added to the obtained crude compound (IVb-1), and further palladium acetate (9.20 mg, 0.04 mmol), tricyclohexylphosphonium tetrafluoroborate (30.2 mg, 0.08 mmol), Potassium carbonate (159 mg, 1.15 mmol) and pivalic acid (25.1 mg, 0.25 mmol) were added and stirred at 130 ° C. under argon.
  • the diaryl compound (IVe-1) was obtained from the amine compound (IIb-2) and the diketone compound (IIIg-1) according to the method described in Production Method 13.
  • Compound (IVe-1) (612 mg, 1.83 mmol), palladium acetate (20.6 mg, 0.09 mmol), 1,3-bis (diphenylphosphino) propane (37.8 mg, 0.09 mmol), acetic acid
  • a DMF (18 mL) solution containing sodium (601 mg, 7.33 mmol) and tetraethylammonium chloride (304 mg, 1.83 mmol) was stirred at 120 ° C. under argon.
  • the target compound (Ic-3) (3.30 g, yield: quantitative) was obtained from the commercially available hydrazine compound (IIe-2) and ketone compound (IIIf-2) according to the method described in Production Method 12.
  • the Eg5 inhibitor containing a polycyclic nitrogen-containing heterocyclic compound such as a carbazole derivative or a carboline derivative of the present invention or a pharmacologically acceptable salt thereof has cell growth inhibitory activity and is effective against various cancers. It can be used as an anticancer agent, and can also be used as an immunosuppressant, immunomodulator and the like.

Abstract

カルバゾール誘導体、カルボリン誘導体等の多環性含窒素複素環化合物を有効成分として含有する新規なEg5阻害剤を提供するものである。下記式(I)で表される多環性含窒素複素環化合物又はその薬理学的に許容される塩を有効成分として含有するEg5阻害剤。(式中、結合a-b及びc-dは、単結合又は二重結合を表し、Q~Qは、窒素原子又は-C(X)=を表し、X及びY~Yは、水素原子、アルキル基、アラルキル基、アリール基、複素環基、ヒドロキシ基、アルコキシ基、カルボキシル基、ハロゲン原子等を表し、Zは、水素原子、アルキル基等を表す)

Description

Eg5阻害剤
 本発明は、カルバゾール誘導体、カルボリン誘導体等の多環性含窒素複素環化合物を有効成分として含有するEg5阻害剤に関する。
 Eg5(KSP:キネシンスピンドルタンパク質)は、モータータンパクの一種であり、癌細胞の細胞分裂において重要な役割を果たしている。すなわちEg5は、中心体の分離・移動、紡錘体の形成・維持及び紡錘体極の形成などに関与しており、M期における細胞分裂の進行を制御している(例えば、非特許文献1参照)。Eg5を阻害することにより、癌細胞はM期に停止され、アポトーシスが誘導されることが知られている(例えば、非特許文献2参照)。したがってEg5阻害剤は、癌などの細胞増殖性疾患の治療薬として期待される。
 下記式(A)
Figure JPOXMLDOC01-appb-C000001
(式中、Xは、CF又はS(O)nRを表し、Yは、NR、NRCOR、NRCONR、NRCSNR又はNR(S)nRを表し、A及びBは、炭素又は窒素を表す)
で表される化合物において、特に置換基Yがアミノ基又はカルバモイル基等で置換されたアミノ基を有する化合物が、KSP阻害活性を有し、癌等の治療に有効であることが知られている(例えば、特許文献1参照)。
 また、テトラヒドロカルボリン化合物が、同じくKSP阻害活性を有することが知られている(例えば、特許文献2参照)。
WO2006/005063号公報 特表2007-518822号公報
Cell、1995、83、1159-1169 Curr.Biol.、1998、8、903-913
 従来、天然物類似の骨格を有する化合物をはじめとして、種々のEg5阻害剤が知られているが、多くの化合物が実用化の観点から活性が不十分であり、化学構造が複雑で、化学合成が容易でないことから、多数の関連誘導体を用いた構造活性相関研究が困難であり、新規Eg5阻害剤の開発は、必ずしも満足できるものではない。本発明の課題は、カルバゾール誘導体、カルボリン誘導体等の多環性含窒素複素環化合物を有効成分として含有する新規なEg5阻害剤、及び該Eg5阻害剤を含有する抗癌剤、免疫抑制剤、免疫調整剤等を提供することにある。
 本発明者らは、これまでに報告されたEg5阻害剤が有する共通の中心骨格に着目し、また、本発明者らが開発した効率的カルバゾール骨格合成法(Chem.Comm.、2007、4516-4518)を用いて得られる種々のカルバゾール誘導体のスクリーニングを実施し、特に、カルバゾールの2位若しくは3位にアミノ基以外の置換基を有する誘導体が、従来のEg5阻害剤よりも著しく高い阻害活性を示すことを見出した。さらに、類縁体の構造活性相関研究を展開し、カルバゾールの2位の炭素原子を窒素原子に置換したβ-カルボリン誘導体では、さらに約10倍の阻害活性の増強が認められた。また、天然に存在し、類似のβ-カルボリン骨格を有するハルミン(harmine)にも中程度のEg5阻害活性が認められ、β-カルボリン骨格を有する化合物もEg5阻害剤として有用であることを見出した。即ち、本発明者らは、カルバゾール誘導体、カルボリン誘導体等の三環性或いはそれ以上の多環性の含窒素複素環化合物がEg5阻害剤として有用であることを見出し、本発明を完成するに至った。
 すなわち、本発明は、
 (1) 式(I)
Figure JPOXMLDOC01-appb-C000002
{式中、
 結合a-b及びc-dは、同一又は異なって、単結合又は二重結合を表し、
 Q、Q、Q及びQは、同一又は異なって、窒素原子又は-C(X)=[式中、Xは、水素原子、置換若しくは非置換アルキル基、置換若しくは非置換シクロアルキル基、置換若しくは非置換アルケニル基、置換若しくは非置換アリール基、置換若しくは非置換アラルキル基、置換若しくは非置換複素環基、置換若しくは非置換複素環アルキル基、OR(式中、Rは、水素原子、置換若しくは非置換アルキル基、置換若しくは非置換シクロアルキル基、置換若しくは非置換アルケニル基、置換若しくは非置換アリール基、置換若しくは非置換アラルキル基、置換若しくは非置換複素環基又は置換若しくは非置換複素環アルキル基を表す)、OCOR(式中、Rは、前記Rと同義である)、S(O)nR(式中、nは、0、1又は2を表し、Rは、前記Rと同義である)、SONR(式中、R及びRは、同一又は異なって、前記Rと同義であるか、RとRが一緒になって、置換もしくは非置換含窒素複素環基を形成してもよい)、COR(式中、Rは、前記Rと同義である)、COOR(式中、Rは、前記Rと同義である)、CONR(式中、R及びRは、それぞれ前記R及びRと同義である)、ニトロ基、シアノ基又はハロゲン原子を表し、ここで、Xが同時に複数存在する場合は、同一又は異なっていてもよく、また、隣接する任意の二つのXは、一緒になって置換もしくは非置換の脂環式炭化水素環、芳香族炭化水素環又は複素環を形成してもよい]を表し、
 Y、Y、Y及びYは、同一又は異なって、前記Xと同義であり、結合a-b及び/又はc-dが単結合を表すとき、Y~Yは、オキソ基又はチオキソ基であってもよく、
 Zは、水素原子、置換若しくは非置換アルキル基又はアミノ基の保護基を表す}
で表される多環性含窒素複素環化合物又はその薬理学的に許容される塩を有効成分として含有するEg5阻害剤に関する。
 また、本発明は、
 (2) 式(I)で表される化合物が、下記式(Ia)
Figure JPOXMLDOC01-appb-C000003
(式中、X~Xは、同一又は異なって、前記Xと同義であり、Y~Y及びZは、前記と同義である)
で表されるカルバゾール誘導体であることを特徴とする上記(1)記載のEg5阻害剤や、
 (3) X及びXが、同一又は異なって、置換若しくは非置換アルキル基、OR(式中、Rは、前記と同義である)、COR(式中、Rは、前記と同義である)、COOR(式中、Rは、前記と同義である)、置換若しくは非置換アリール基又はハロゲン原子であることを特徴とする上記(2)記載のEg5阻害剤や、
 (4) 置換若しくは非置換アルキル基が、tert-ブチル基又はトリフルオロメチル基であることを特徴とする上記(3)記載のEg5阻害剤や、
 (5) X及びX或いはXおよびXが一緒になって形成される複素環が、ピペリジノン環であることを特徴とする上記(2)記載のEg5阻害剤に関する。
 また、本発明は、
 (6) 式(I)で表される化合物が、下記式(Ib)
Figure JPOXMLDOC01-appb-C000004
(式中、Q1a~Q4aは、その少なくとも一つが窒素原子を表し、その他は前記Q~Qの定義と同義であり、Y~Y及びZは、前記と同義である)
で表されるカルボリン誘導体であることを特徴とする上記(1)記載のEg5阻害剤や、
 (7) Q2aが、窒素原子であるβ-カルボリン誘導体であることを特徴とする上記(6)記載のEg5阻害剤や、
 (8) Yが、トリフルオロメチル基であることを特徴とする上記(6)又は(7)のいずれか記載のEg5阻害剤に関する。
 また、本発明は、
 (9) 上記(1)~(8)のいずれか記載の式(I)で表される含窒素複素環化合物又はその薬理学的に許容される塩を有効成分として含有する抗癌剤や、
 (10) 上記(1)~(8)のいずれか記載の式(I)で表される含窒素複素環化合物又はその薬理学的に許容される塩を有効成分として含有する免疫抑制剤又は免疫調整剤に関する。
 さらに、本発明は、
 (11) 式(Ia-A)
Figure JPOXMLDOC01-appb-C000005

(式中、X1a及びX2aは、-NHC(O)CHCH-又は-CHCHC(O)NH-を介して結合した基を表し、X、X、Y~Y及びZは前記と同義である)
で表される多環性含窒素複素環化合物又はその薬理学的に許容される塩や、
 (12) 式(Ia-B)
Figure JPOXMLDOC01-appb-C000006

(式中、X2b及びX3bは、-NHC(O)CHCH-又は-CHCHC(O)NH-を介して結合した基を表し、X、X、Y~Y及びZは前記と同義である)
で表される多環性含窒素複素環化合物又はその薬理学的に許容される塩に関する。
 また、本発明は、Eg5に起因する疾患や、癌の治療に使用する上記(1)~(8)のいずれか記載の式(I)で表される含窒素複素環化合物又はその薬理学的に許容される塩や、Eg5に起因する疾患や、癌を治療するための上記(1)~(8)のいずれか記載の式(I)で表される含窒素複素環化合物又はその薬理学的に許容される塩の使用や、(1)~(8)のいずれか記載の式(I)で表される含窒素複素環化合物又はその薬理学的に許容される塩を有効成分として含有する医薬組成物によるEg5に起因する疾患や、癌の治療方法に関する。
 本発明で使用されるカルバゾール誘導体、カルボリン誘導体等の多環性含窒素複素環化合物(I)は、これまで知られていなかった優れたEg5阻害活性を有し、各種の癌に対しての抗癌剤としての活性を有している。
マウス皮下移植膀胱癌細胞の増殖の抑制を示す図である。
 本発明において、Eg5阻害剤として使用される式(I)で表される化合物における各基の定義において、
 アルキル基は、例えば、直鎖又は分岐状の炭素数1~8のアルキル、具体的には、メチル、エチル、プロピル、イソプロピル、ブチル、イソブチル、sec-ブチル、tert-ブチル、ペンチル、イソペンチル、ネオペンチル、ヘキシル、ヘプチル、オクチル等が挙げられる。
 シクロアルキル基は、飽和又は一部不飽和結合が存在してもよい3~12員のシクロアルキル基であり、単環性あるいは該単環性のシクロアルキル基が複数又はアリール基もしくは芳香族複素環基と縮合した多環性の縮合シクロアルキル基であってもよく、単環性のシクロアルキル基としては、例えば、炭素数3~8の単環性シクロアルキル、具体的には、シクロプロピル、シクロブチル、シクロペンチル、シクロヘキシル、シクロヘプチル、シクロオクチル、シクロドデシル、1-シクロヘキセニル等が挙げられ、多環性のシクロアルキル基としては、例えば、炭素数5~12の多環性シクロアルキル、具体的には、ピナニル、アダマンチル、ビシクロ[3.3.1]オクチル、ビシクロ[3.1.1]ヘプチル等が挙げられる。
 アルケニル基は、例えば、直鎖又は分岐状の炭素数2~8のアルケニル、具体的には、ビニル、アリル、1-プロペニル、イソプロペニル、メタクリル、ブテニル、1,3-ブタジエニル、クロチル、ペンテニル、ヘキセニル、ヘプテニル、オクテニル等が挙げられる。
 アリール基は、例えば、炭素数6~14のアリール、具体的には、フェニル、ナフチル、アントリル、フェナントリル等を挙げることができる。
 アラルキル基は、そのアリール部分は前記アリール基と同義であり、アルキル部分は前記アルキル基と同義であり、例えば、炭素数7~15のアラルキル、具体的にはベンジル、フェネチル、フェニルプロピル、フェニルブチル、ベンズヒドリル、トリチル、ナフチルメチル、ナフチルエチル、フェニルシクロプロピル等を挙げることができる。
 複素環基は、脂環式複素環基及び芳香族複素環基を意味し、脂環式複素環基としては、同一又は異なって、少なくとも1以上の異項原子、例えば、窒素、酸素、硫黄等を含み、飽和又は一部不飽和結合が存在してもよい3~8員の脂環式複素環基であり、単環性あるいは該単環性の複素環基が複数又はアリール基もしくは芳香族複素環基と縮合した多環性の縮合脂環式複素環基であってもよい。単環性の脂環式複素環基として、具体的には、アジリジニル、ピロリジニル、イミダゾリジニル、イミダゾリニル、ピラゾリジニル、ピラゾリニル、ジヒドロチアゾリル、テトラヒドロフラニル、1,3-ジオキソラニル、チオラニル、オキサゾリジル、チアゾリジニル、ピペリジノ、ピペリジル、ピペラジニル、ホモピペリジニル、モルホリノ、モルホリニル、チオモルホリニル、ピラニル、オキサチアニル、オキサジアジニル、チアジアジニル、ジチアジニル、アゼピニル、ジヒドロアゾシニル等が例示され、多環性の縮合脂環式複素環基として、具体的には、インドリニル、イソインドリニル、クロマニル、イソクロマニル、キヌクリジニル等を挙げることができる。 
 芳香族複素環基は、同一又は異なって、少なくとも1以上の異項原子、例えば、窒素、酸素、硫黄等を含む5員又は6員の芳香族複素環基からなり、該複素環基は、単環性又は該単環性複素環基が複数又はアリール基と縮合した多環性の縮合芳香族複素環基、例えば、二環性もしくは三環性複素環基であってもよい。単環性の芳香族複素環基の具体例としては、フリル、チエニル、ピロリル、イミダゾリル、ピラゾリル、トリアゾリル、テトラゾリル、オキサゾリル、イソオキサゾリル、オキサジアゾリル、チアゾリル、チアジアゾリル、イソチアゾリル、ピリジル、ピリミジニル、ピラジニル、ピリダジニル、トリアジニル等が挙げられ、多環性の縮合芳香族複素環基としては、ベンゾフリル、ベンゾチエニル、インドリル、イソインドリル、インダゾリル、ベンゾイミダゾリル、ベンゾトリアゾリル、ベンゾオキサゾリル、ベンゾチアゾリル、カルバゾリル、プリニル、キノリル、イソキノリル、キナゾリニル、フタラジニル、キノキサリニル、シンノリニル、ナフチリジニル、ピリドピリミジニル、ピリミドピリミジニル、プテリジニル、アクリジニル、チアントレニル、フェノキサチニル、フェノキサジニル、フェノチアジニル、フェナジニル等を挙げることができる。
 複素環アルキル基は、その複素環部分が、前記脂肪族複素環基又は芳香族複素環基と同義であり、アルキル部分は前記アルキル基と同義であり、例えば、少なくとも1以上の異項原子を含み、具体的には、ピロリジニルメチル、イミダゾリジニルメチル、ピラゾリニルエチル、チアゾリジニルメチル、ピペリジノメチル、モルホリノメチル等の脂肪族複素環アルキル、及びピリジルメチル、ピリジルエチル、フラニルメチル、チエニルメチル等の芳香族複素環アルキルを挙げることができる。
 含窒素複素環基としては、前記複素環基のうち、異項原子として少なくとも一つの窒素原子を含む複素環基であり、具体的には、アジリジニル、ピロリジニル、ピペリジノ、ホモピペリジニル、ピペラジニル、ホモピペラジニル、モルホリノ、チオモルホリニル、ピロリル、イミダゾリル、ピラゾリル、トリアゾリル、テトラゾリル、インドリル、インダゾリル、ベンゾイミダゾリル、ベンゾトリアゾリル等を挙げることができる。
 ハロゲン原子は、フッ素、塩素、臭素、ヨウ素の各原子を意味する。
 脂環式炭化水素環は、例えば、炭素数5~8の前記シクロアルキル基に対応する脂環式炭化水素環が、具体的には、シクロペンタン、シクロヘキサン、シクロヘプタン、シクロオクタン等が挙げられる。
 芳香族炭化水素環は、例えば、炭素数6~14の前記アリール基に対応する芳香族炭化水素環が、具体的には、ベンゼン、ナフタレン、アントラセン等を挙げることができる。
 複素環は前記複素環基に対応する複素環を意味し、例えば、前記脂環式複素環基に対応する5~8員脂環式複素環が、具体的には、ピロリン、ピロリジン、イミダゾリン、イミダゾリジン、ピラゾリン、ピラゾリジン、ジヒドロチアゾール、テトラヒドロフラン、ジオキソラン、チオラン、ピペリジン、ピペラジン、モルホリン、チオモルホリン、ピラン、オキサチアン、オキサジアジン、チアジアジン、ジチアジン等を挙げることができる。
 また、前記芳香族複素環基に対応する5~6員芳香族複素環が、具体的には、単環性芳香族複素環として、フラン、チオフェン、ピロール、オキサゾール、イソオキサゾール、チアゾール、チアジアゾール、イソチアゾール、イミダゾール、ピラゾール、トリアゾール、ピリジン、ピラジン、ピリミジン、ピリダジン等が、また、縮合芳香族複素環としては、ベンゾフラン、ベンゾチオフェン、インドール、イソインドール、インドリジン、ベンゾイミダゾール、ベンゾトリアゾール、ベンゾオキサゾール、ベンゾチアゾール、カルバゾール、プリン、キノリン、イソキノリン、キナゾリン、フタラジン、シンノリン、キノキサリン等を挙げることができる。
 アミノ基の保護基としては、アミノ酸のアミノ基の保護基として通常用いられているものがそのまま使用できるが、例えば、ホルミル、アセチル、トリフルオロアセチル、ベンゾイル等のアシル基、ベンジル、トリチル等のアラルキル基、メトキシカルボニル、tert-ブトキシカルボニル(Boc)、9-フルオレニルメトキシカルボニル(Fmoc)等のアルコキシカルボニル基等が挙げられる。
 アルキル基、シクロアルキル基、アルケニル基、アリール基、アラルキル基、複素環基、複素環アルキル基、含窒素複素環基、脂環式炭化水素環、芳香族炭化水素環及び複素環における置換基としては、アルキル基、シクロアルキル基、アルケニル基、アリール基、アラルキル基、複素環基、複素環アルキル基、OR21、OCOR22、NR2324、NR25COR26、NR27COOR28、NR29SO30、NR31SONR3233、NR34COOR35、S(O)mR36(式中、mは、0、1又は2を表す)、SONR3738、COR39、CONR4041、ニトロ基、シアノ基、ハロゲン原子、オキソ基及びチオキソ基等から適宜選択される。ここで、R21~R41は、同一又は異なって、水素原子、アルキル基、シクロアルキル基、アルケニル基、アリール基、アラルキル基、複素環基又は複素環アルキル基等を表し、R23及びR24、R32及びR33、R37及びR38、R40及びR41は、一緒になって含窒素複素環基を形成してもよい。
 アルキル基、シクロアルキル基、アルケニル基、アルキニル基、アリール基、アラルキル基、複素環基、複素環アルキル基は、前記と同義であり、当該基は、さらに置換基を有していてもよく、該置換基としては、前記した同様の置換基が挙げられる。
 これら置換基の置換数としては、同一又は異なって、最大各基に存在する水素原子の数まで可能であるが、好ましくは1~10、より好ましくは1~6である。
 化合物(I)の薬理学的に許容される塩としては、酸付加塩、金属塩、アンモニウム塩、有機アミン付加塩等が挙げられ、酸付加塩としては、塩酸、臭化水素酸、硫酸、硝酸、リン酸、ホウ酸等の各無機酸塩、及び、有機酸としてのギ酸、酢酸、プロピオン酸、フマル酸、マロン酸、コハク酸、マレイン酸、酒石酸、安息香酸等のカルボン酸類、メタンスルホン酸、p-トルエンスルホン酸等のスルホン酸類、グルタミン酸、アスパラギン酸等のアミノ酸類が挙げられる。金属塩としては、リチウム、ナトリウム、カリウム等の各アルカリ金属塩、マグネシウム、カルシウム等の各アルカリ土類金属塩、アルミニウム、亜鉛等の各金属塩が、アンモニウム塩としては、アンモニウム、テトラメチルアンモニウム等の各塩が、有機アミン塩としては、トリエチルアミン、ピペリジン、モルホリン、トルイジン等の各塩が挙げられる。
 本発明のEg5阻害剤として使用される化合物としては、三環性或いはそれ以上の多環性の含窒素複素環化合物であることが好ましく、当該化合物としては、式(I)で表される化合物(以下、化合物(I)という。他の式番号の化合物についても同様である)であれば特に制限されず、化合物(I)において、例えば、下記式(Ia)
Figure JPOXMLDOC01-appb-C000007
(式中、X~Xは、同一又は異なって、前記Xと同義であり、Y~Y及びZは、前記と同義である)
で表されるカルバゾール誘導体が好ましい。
 特に、化合物(Ia)において、X及び/又はXに置換基を有する化合物がより好ましく、該置換基としては、具体的には、メチル基、エチル基、イソプロピル基、tert-ブチル基、ジフルオロメチル基、トリフルオロメチル基、ヒドロキシメチル基等のアルキル基や、ヒドロキシ基や、メトキシ基、tert-ブトキシ基、トリフルオロメトキシ基等のアルコキシ基や、ホルミル基等のアルカノイル基や、カルボキシル基や、メトキシカルボニル基、ベンジルオキシカルボニル基等のアルコキシカルボニル基や、フェニル基、m-ヒドロキシフェニル基等のアリール基や、フルオロ基等のハロゲン原子などが例示され、特に、tert-ブチル基、トリフルオロメチル基が好ましい。
 また、化合物(Ia)において、X及びX或いはX及びXが一緒になって、複素環を形成した化合物が好ましく、X-X或いはX-Xが、-NHC(O)CHCH-又は-CHCHC(O)NH-を介して結合し形成される複素環であるピペリジノン環であることがより好ましい。
 また、化合物(I)において、Q~Qの少なくとも一つが窒素原子である下記式(Ib)
(式中、Q1a~Q4a、Y~Y及びZは、前記と同義である)
で表されるカルボリン誘導体が好ましく、特に、Q2aが窒素原子であるβ-カルボリン誘導体がより好ましい。該化合物においても、Yが、置換基としてトリフルオロメチル基を有する化合物が好ましい。
 本発明のEg5阻害剤として使用される化合物(I)の製造法の例について、以下に説明するが、これらの製造法に限定されるものではなく、また、試薬として入手可能な化合物もある。
製造法1.
 本発明で使用される化合物(I)は、文献(Chem.Comm.、2007、4516-4518)記載の方法又はこれらの方法に準じて、下記製造法によって製造することができる。
Figure JPOXMLDOC01-appb-C000009
(式中、Lは、脱離基を表し、Q~Q、Y~Y及びZは、前記と同義である)
 Lの定義における脱離基としては、ハロゲン原子、置換もしくは非置換のアルキルスルホニルオキシ基、置換もしくは非置換のアリールスルホニルオキシ基等が挙げられる。ハロゲン原子は前記と同義である。アルキルスルホニルオキシ基は、そのアルキル部分は前記アルキル基と同義であり、例えば、炭素数1~8のアルキルスルホニルオキシ基が、また、アリールスルホニルオキシ基は、そのアリール部分は前記アリール基と同義であり、例えば、炭素数6~14のアリールスルホニルオキシ基が挙げられ、置換基としては、ハロゲン原子、アルキル基、ニトロ基等が挙げられ、ハロゲン原子及びアルキル基は前記と同義である。具体的には、メタンスルホニルオキシ、トリフルオロメタンスルホニルオキシ等のアルキルスルホニルオキシ基や、ベンゼンスルホニルオキシ、トルエンスルホニルオキシ等のアリールスルホニルオキシ基を例示することができる。
(工程1)
 アミン化合物(IIa)とアリール化合物(IIIa)とを、遷移金属触媒、配位子、及び塩基存在下に、適当な不活性溶媒、例えばクロロホルム、ジクロロメタン等のハロゲン化炭化水素、ベンゼン、トルエン、クロロベンゼ、ジクロロベンゼン等の芳香族炭化水素、ジエチルエーテル、テトラヒドロフラン(THF)、1,4-ジオキサン等のエーテル系溶媒、メタノール、エタノール、イソプロパノール等の低級アルコール、酢酸、プロピオン酸等の有機カルボン酸、N,N-ジメチルホルムアミド(DMF)、N-メチルピロリドン(NMP)、N-メチルモルホリン、ジメチルスルホキシド(DMSO)等の非プロトン性極性溶媒、水もしくはこれらの混合溶媒中、-78℃~用いた溶媒の沸点の間の温度で、5分~48時間反応させることにより、N-アリール化したジアリールアミン化合物(IVa)を得ることができる。
 遷移金属触媒の遷移金属としては、パラジウム、ニッケル、銅、鉄等が挙げられ、遷移金属触媒の具体例としては、テトラキス(トリフェニルホスフィン)パラジウム(0)、テトラキス(トリフェニルホスフィン)ニッケル(0)等が挙げられる。これらの遷移金属触媒は、配位子存在下、対応する遷移金属塩等からin situで調製してもよく、配位子としてはトリフェニルホスフィン、トリブチルホスフィン、1,1’-ビス(ジフェニルホスフィノ)フェロセン、2,2’-ビス(ジフェニルホスフィノ)-1,1’-ビナフチル、1,3-ビス(ジフェニルホスフィノ)プロパン、4,5-ビス(ジフェニルホスフィノ)-9,9-ジメチルキサンテン、テトラフルオロホウ酸トリシクロヘキシルホスホニウム、2-ジシクロヘキシルホスフィノ-2’,4’,6’-トリイソプロピルビフェニル等が挙げられ、遷移金属塩等としては塩化パラジウム、酢酸パラジウム、パラジウム-炭素、塩化ニッケル、塩化銅(I)、ヨウ化銅(I)、酸化銅(I)、塩化鉄(II)、塩化鉄(III)等が挙げられ、遷移金属触媒は、化合物(IIIa)に対して、5~10モル%、配位子は、化合物(IIIa)に対して、5~20モル%用いられる。
 塩基としては、例えば、トリエチルアミン、N-メチルモルホリン、ピリジン等の有機塩基、炭酸カリウム、炭酸水素カリウム、炭酸セシウム、リン酸カリウム、水酸化ナトリウム、水素化ナトリウム等の無機塩基、ナトリウムメトキシド、カリウムtert-ブトキシド等の金属アルコキシド等が挙げられる。
 また、必要により、ピバル酸等の有機酸を添加してもよい。
 なお、化合物(IIa)及び(IIIa)は、市販品として入手可能であるか、常法により製造することもできる。
(工程2)
 工程1で得られる化合物(IVa)を、適当な不活性な溶媒中、-78℃~用いた溶媒の沸点の間の温度で、5分~48時間、酸化カップリング反応に付すことにより目的化合物(I)を得ることができる。
 酸化反応は、酸素又は空気中の酸素を酸化剤とし、酸素又は空気を開放系で通気しながら行うか、酸素又は空気を加圧下に密閉系で行ってもよい。
 溶媒は、工程1で例示した溶媒が同様に使用できるが、酢酸又は酢酸とトルエンの混合溶媒が好ましく用いられる。
 反応は、工程1で得られる化合物(IVa)を単離、必要により精製して工程2の原料として供することも可能であるが、工程1で得られる化合物(IVa)を単離、精製することなく、そのまま工程2の反応を行うことも可能である。
製造法2.
Figure JPOXMLDOC01-appb-C000010
(式中、L及びLは、同一又は異なって、前記Lと同義であり、Q~Q、Y~Y及びZは、前記と同義である)
 目的化合物(I)は、アミン化合物(IIb)とアリール化合物(IIIa)とから、製造法1、工程1に記載の方法に準じて製造することがきる。
 反応は、化合物(IIb)と化合物(IIIa)から生成するN-アリール化したジアリール化合物(IVb)を、一旦単離、必要により精製し、さらに、製造法1、工程1に記載の方法に付すことにより目的化合物(I)を得ることができる。なお、化合物(IVb)から目的化合物(I)を得る場合の反応条件は、化合物(IIb)と化合物(IIIa)から化合物(IVb)を生成するときの反応条件と同一であってもよく、また異なっていてもよい。或いは、化合物(IIb)と化合物(IIIa)から、途中生成する化合物(IVb)を単離、精製することなく、直接目的化合物(I)を得ることもできる。
 なお、化合物(IIb)は、市販品として入手可能であるか、常法により製造することもできる。
製造法3.
Figure JPOXMLDOC01-appb-C000011
(式中、L、L、Q~Q、Y~Y及びZは、前記と同義である)
 目的化合物(I)は、文献(Synlett、2007,15、2331-2336)に記載された方法又はこれらの方法に準じて、アミン化合物(IIa)とアリール化合物(IIIb)とから、製造法2に記載の方法に従って製造することができる。
 なお、化合物(IIIb)は、市販品として入手可能であるか、常法により製造することもできる。 
製造法4.
Figure JPOXMLDOC01-appb-C000012
(式中、L、L、Q~Q、Y~Y及びZは、前記と同義である)
 目的化合物(I)は、文献(Angew.Chem.,Int.Ed.、2007、46、1627-1629)に記載された方法又はこれらの方法に準じて、アリール化合物(IIc)とアミン化合物(IIIc)とから、製造法2に記載の方法に従って製造することができる。
 なお、化合物(IIc)及び(IIIc)は、市販品として入手可能であるか、常法により製造することもできる。
製造法5.
Figure JPOXMLDOC01-appb-C000013
(式中、L、Q~Q、Y~Y及びZは、前記と同義である)
 製造法1に記載の方法に準じて、アリール化合物(IIc)とアミン化合物(IIId)とから、N-アリール化したジアリール化合物(IVa)とし(工程1)、化合物(IVa)は、酸化カップリング反応に付すことにより、目的化合物(I)を製造することができる(工程2)。
 なお、化合物(IIId)は、市販品として入手可能であるか、常法により製造することもできる。
製造法6.
Figure JPOXMLDOC01-appb-C000014

(式中、Mは含金属脱離基を表し、L、Q~Q及びY~Y及は、前記と同義である)
 Mの定義における含金属脱離基の金属としては、リチウム、ホウ素、マグネシウム、アルミニウム、ケイ素、亜鉛、スズ等が挙げられ、含金属脱離基の具体例としては、-B(OH)、-B(-OC(CH-C(CHO-)、-MgCl、-MgBr、-ZnBr、-ZnI、-Sn(nBu)、-SiCl(C)等が挙げられる。
(工程1)
 アリール化合物(IId)とニトロ化合物(IIIe)とを、遷移金属触媒及び塩基存在下に反応させることによりジアリール化合物(IVd)を得ることができる。 
 使用される遷移金属触媒、塩基及び反応溶媒、反応温度、時間等は、製造法1、工程1に例示したとほぼ同様の条件で行うことができる。
 なお、化合物(IId)及び(IIIe)は、市販品として入手可能であるか、常法により製造することもできる。
(工程2)
 化合物(I)においてZが水素原子である目的化合物(Id)は、工程1で得られる化合物(IVd)を、トリフェニルホスフィンの存在下に還元的環化反応により得ることができる。反応溶媒、反応温度、時間等は、製造法1、工程1に例示したとほぼ同様の条件で行うことができる。
 反応は、工程1で得られる化合物(IVd)を単離、必要により精製して工程2の原料として供することも可能であるが、工程1で得られる化合物(IIIc)を単離、精製することなく、そのまま工程2の反応を行うことも可能である。
製造法7.
Figure JPOXMLDOC01-appb-C000015
(式中、X、X、X、Y~Y及びZは、前記と同義である)
 β-アリールエチルアミン化合物(Va)とアルデヒド化合物(VI)を用いて、文献(Tetrahedron Lett.、2007、48、1379-1383)に記載された方法に準じて得られるテトラヒドロ-β-カルボリン化合物(Vb)を、酸化剤の存在下に反応し、Qが窒素原子である目的のβ-カルボリン化合物(Iba)を得ることができる。
 酸化剤としては、酸素、過酸化水素、過マンガン酸カリウム、塩素酸カリウム、二クロム酸カリウム、パラジウムカーボン等が挙げられ、反応溶媒、反応温度、時間等は、製造法1、工程1に例示したとほぼ同様の条件で行うことができる。
 なお、化合物(Va)及び(VI)は、市販品として入手可能であるか、常法により製造することもできる。
製造法8.
Figure JPOXMLDOC01-appb-C000016
(式中、Zは、置換若しくは非置換アルキル基を表し、Q~Q及びY~Yは、前記と同義である)
 化合物(I)において、Zがアルキル基である目的化合物(Ie)は、化合物(Id)をアルキル化剤及び塩基存在下に反応させることにより得ることができる。   
 アルキル化剤としては、前記定義したアルキル基のハロゲン化物、ジアルキル硫酸等が挙げられ、具体的には、ヨウ化メチル、ヨウ化エチル、ジメチル硫酸等が例示され、アルキル化剤は、化合物(Id)に対して、1~3当量用いられる。使用される塩基、反応溶媒、反応温度、時間等は、製造法1、工程1に例示したとほぼ同様の条件で行うことができる。
製造法9.
Figure JPOXMLDOC01-appb-C000017
(式中、Q~Q及びZは、前記と同義である)
 化合物(If)を用いて、文献(Tetrahedron、2007、63、10290-10299)に記載された方法に準じてYがホルミル化された目的化合物(Ig)を得ることができる。
 反応は、化合物(If)を、DMFとオキシ塩化リン、塩化オキサリル、リン酸トリクロリド等の求電子剤とから得られるビールスマイヤー試薬の存在下に反応させることにより、Yがホルミル化された化合物(Ig)を得ることができる。
 使用される塩基、反応溶媒、反応温度、時間等は、製造法1、工程1に例示したとほぼ同様の条件で行うことができる。
製造法10.
Figure JPOXMLDOC01-appb-C000018
(式中、Q~Q、Y、Y及びZは、前記と同義である)
 YとYとが一緒になって芳香環を形成している、例えば、目的化合物(Ih)は、結合c-dが単結合である、例えば、化合物(Ica)を用いて、文献(Synlett、2006、7、1021-1022)に記載された方法に準じ、酸化剤存在下に反応させることにより、得ることができる。
 酸化剤としては、製造法5に例示したものが、反応溶媒、反応温度、時間等は、製造法1、工程1に例示したとほぼ同様の条件で行うことができる。
製造法11.
Figure JPOXMLDOC01-appb-C000019
(式中、Q~Q、Y、Y及びZは、前記と同義である)
 YとYとが一緒になって脂環式炭化水素環を形成している、例えば、目的化合物(Ii)は、YとYとが一緒になって芳香環を形成している、例えば、化合物(Ih)を還元剤存在下に、反応させることにより得ることができる。
 還元剤としては、水素化アルミニウムリチウム、水素化ジイソブチルアルミニウム、水素化ホウ素ナトリウム等のヒドリド還元剤やナトリウムなどのアルカリ金属等が挙げられ、反応溶媒、反応温度、時間等は、製造法1、工程1に例示したとほぼ同様の条件で行うことができる。
製造法12.
Figure JPOXMLDOC01-appb-C000020
(式中、Q~Q、Y~Y及びZは、前記と同義である)
 化合物(I)において、結合a-b及びc-dが単結合である目的化合物(Icb)は、文献(Tetrahedron、1960、8、67-72)に記載された方法に準じて、ヒドラジン化合物(IIe)とカルボニル化合物(IIIf)とを塩酸等の無機酸又は酢酸、プロピオン酸等の有機酸等の酸性存在下反応させることにより得ることができる。
 これら酸は溶媒としても用いられ、反応温度、時間等は、製造例1、工程1に例示したとほぼ同様の条件で行うことができる。
 なお、化合物(IIe)及び(IIIf)は、市販品として入手可能であるか、常法により製造することもできる。
製造法13.
Figure JPOXMLDOC01-appb-C000021
(式中、Y4a及びY4bは、同一又は異なって、オキソ基又はチオキソ基を表し、L、Q~Q、Y~Y及びZは、前記と同義である)
 化合物(Icb)において、Yが、オキソ基又はチオキソ基である目的化合物(Icc)は、文献(Synlett、2007、17、2699-2702)に記載された方法に従い、アミン化合物(IIb)とジケトン化合物(IIIg)とから、化合物(IVe)を得(工程1)、次いで、製造法1、工程1に記載の方法に準じ、製造することができる(工程2)。
 なお、化合物(IIIg)は、市販品として入手可能であるか、常法により製造することもできる。
製造法14.
 X~X及びY~Y等における各種置換基は、上記各製造法で得られる化合物(I)における当該置換基を修飾することにより得ることもできる。以下、これら置換基の修飾による製造法の例について説明するが、これら製造法に限定されない。
製造法14.1(ヒドロキシメチル化)
 化合物(I)における置換基X~X及びY~Y等の少なくとも一つがアルコキシカルボニル基等のカルボン酸エステルである化合物(I)を、還元剤存在下に反応させることにより、化合物(I)の当該置換基がヒドロキシメチル基である化合物(I)を得ることができる。
 還元剤としては、製造法9に例示したヒドリド還元剤が挙げられ、反応溶媒、反応温度、時間等は、製造例1、工程1に例示したとほぼ同様の条件で行うことができる。
製造法14.2(カルボキシル化)
 製造法14.1と同様に、置換基としてカルボン酸エステルを有する化合物(I)を、塩基存在下に加水分解反応に付すことにより、当該置換基がカルボキシル基である化合物(I)を得ることができる。
 塩基としては、水酸化ナトリウム、水酸化カリウム等の無機塩基、ナトリウムメトキシド、カリウム tert-ブトキシド等の金属アルコキシド等が挙げられ、反応溶媒、反応温度、時間等は、製造例1、工程1に例示したとほぼ同様の条件で行うことができる。
製造法14.3(アルコキシ化)
 化合物(I)における置換基X~X及びY~Y等の少なくとも一つがヒドロキシ基である化合物(I)を、アルキル化剤及びルイス酸存在下に反応させることにより、当該置換基がアルコキシ基である化合物(I)を得ることができる。
 アルキル化剤としては、製造法8で例示したものが、ルイス酸としては、塩化チタン(IV)、フッ化ホウ素(III)、塩化スズ(IV)、トリメチルシリルトリフラート、ヨードトリメチルシラン等が挙げられ、反応溶媒、反応温度、時間等は、製造例1、工程1に例示したとほぼ同様の条件で行うことができる。
 上記した各製造法において、定義した基が実施方法の条件下で変化するか又は方法を実施するのに不適切な場合、有機合成化学で常用される保護基の導入及び脱離方法等を用いることにより目的化合物を得ることができる。また、化合物(I)の中には、例えば製造法14で説明したように、これを合成中間体としてさらに別の誘導体(I)へ導くことができるものもある。
 上記製造法における中間体及び目的化合物は、有機合成化学で常用される精製法、例えば中和、濾過、抽出、洗浄、乾燥、濃縮、再結晶、各種クロマトグラフィー等に付して単離精製することができる。また、中間体においては、特に精製することなく次の反応に供することも可能である。
 化合物(I)の塩を取得したいとき、化合物(I)が塩の形で得られる場合には、そのまま精製すればよく、また、遊離の形で得られる場合には、適当な有機溶媒に溶解もしくは懸濁させ、酸又は塩基を加えて通常の方法により塩を形成させればよい。
 また、化合物(I)及びその薬理学的に許容される塩は、水あるいは各種溶媒との付加物の形で存在することもあるが、これら付加物も本発明のEg5阻害剤として使用することができる。
 本発明のEg5阻害剤として使用できる化合物(I)の具体例を下記表1~5に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
 なお、表1~5中、2-ヒドロキシカルバゾール(化合物Ia-28)、9H-カルバゾール-2-カルバルデヒド(化合物Ia-34)及び天然物である1-メチル-9H-ピリド[3,4-b]インドール;harman(化合物Ib-2)、7-メトキシ-1-メチル-9H-ピリド[3,4-b]インドール;harmine(化合物Ib-3)等は市販品としても入手可能である。
 化合物(I)又はそれらの薬理学的に許容される塩は、そのまま単独で投与することも可能であるが、通常各種の医薬製剤とすることが望ましく、該医薬製剤は、活性成分を薬理学的に許容される一種もしくは二種以上の担体と混合し、製剤学の常法により製造することができる。
 投与経路としては、経口投与又は吸入投与、静脈内投与などの非経口投与が挙げられる。
 投与形態としては、錠剤、注射剤などが挙げられ、錠剤は、例えば乳糖、デンプン、ステアリン酸マグネシウム、ヒドロキシプロピルセルロース、ポリビニルアルコール、界面活性剤、グリセリン等の、各種添加剤を混合し、常法に従い製造すればよく、吸入剤は、例えば乳糖等を添加し、常法に従い製造すればよい。注射剤は、水、生理食塩水、植物油、可溶化剤、保存剤等を添加し、常法に従い製造すればよい。
 化合物(I)又はそれらの薬理学的に許容される塩の有効量及び投与回数は、投与形態、患者の年齢、体重、症状等により異なるが、通常成人一人当たり、0.001mg~5g、好ましくは0.1mg~1g、より好ましくは1mg~500mgを、一日一回ないし数回に分けて投与する。
 以下、実施例により本発明をより具体的に説明するが、本発明の技術的範囲はこれらの例示に限定されるものではない。
(Eg5阻害活性:Eg5のATPase阻害試験)
 Eg5阻害活性は、Eg5がATPを消費しながら微小管上を移動するモータータンパク質であるため、ATPase活性(ATPの消費量)指標として、その阻害活性を見積もった。
 本試験は、文献(Chemistry&Biology、2002、9、989-996)記載の方法に準じ、以下に記載する方法により実施した。
 各種濃度となるように調製した試験サンプル(DMSO溶液より調製)を含む96穴プレート(白)に、大腸菌で発現させたEg5モータードメイン組換えタンパク質とタキソールで安定化させたマイクロチューブルを加え、25℃で10分間静置した。その後、終濃度30μMになるようにATP溶液を加えることで、ATP加水分解反応を開始した。反応液には、40nMのEg5モーター組換えタンパク質と、350nMのチュブリンタンパク質から調製したマイクロチューブルを含む。20分後に反応停止と残存ATP量の定量を行うため、ルシフェラーゼによるATP測定法(プロメガ(Promega)社;Kinase-Glo Plus assay)を用いて測定し、ATP加水分解スコアを次式に従って算出した。
ATP加水分解スコア(%)= 100 × (L0-Lchem)/(L0-LDMSO)
L0:Eg5組換えタンパク質なしに試験サンプル溶解用の溶媒のみを添加した場合の発光量
Lchem:試験サンプルを添加した場合の発光量
LDMSO:試験サンプル溶解用の溶媒のみを添加した場合の発光量
 その試験結果を表6に示す。また、ATPの加水分解を50%阻害する濃度(IC50)についての結果を表7に示す。
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
(細胞増殖阻害試験1)
 ヒト子宮頸がん由来HeLa細胞を、10%のウシ胎児血清(FBS;ハイクロン(Hyclone)社)を含有したダルベッコ変法イーグル培地(DMEM;インビトロジェン‐ギブコBRL(Invitrogen-Gibco BRL)社)を培養培地として、96穴プレートで5000細胞/ウエル(cells/well)の密度で、5%COで満たされた37℃の恒温室で8時間培養した。各ウエルに、各種濃度となるように調製した試験サンプル(DMSO溶液より調製)の10%FBS含有DMEM溶液を添加し、培養を継続した。2日間培養後の生細胞数を、MTS法による細胞増殖試験キット(プロメガ(Promega)社;CellTiter96(R) AQueousOne Solution Cell Proliferation Assay)を用いて測定し、細胞増殖スコアを次式に従って算出した。
細胞増殖スコア(%)= 100 × MS / MD
MS:サンプルを添加した場合のMTS試薬による吸光度
MD:サンプル溶解用の溶媒のみを添加した場合のMTS試薬による吸光度
 その試験結果を表8に示す。
Figure JPOXMLDOC01-appb-T000008
(細胞増殖阻害試験2)
 前立腺癌細胞株(PC3、DU145)及び膀胱癌細胞株(RT112、KU7)を用い、MTTアッセイにより、試験サンプル投与後72時間目での50%増殖阻止濃度(IC50)について、表9に示す。
Figure JPOXMLDOC01-appb-T000009
(マウス皮下移植膀胱癌細胞の増殖抑制試験)
 ヌードマウス(n=8)に膀胱癌細胞株KU7を5×10個 皮下移植し、5日目より連続5日間で試験化合物(Ib-5)及びSTLC(S-トリチル-L-システイン:対照)を、共に20mg/kgを 腹腔内投与した。
腫瘍径より体積を算出、平均値の推移を図1に示す。
 図から明らかなように、化合物(Ib-5)は、STLC(対照)と同等に、マウス皮下移植膀胱癌細胞の増殖を抑制した。
 化合物(Ia-20)10mg、乳糖70mg、デンプン15mg、ポリビニルアルコール4mg及びステアリン酸マグネシウム1mg(計100mg)からなる組成を用い、常法により、錠剤を調製する。
 常法により、化合物(Ia-25)70mg、精製大豆油50mg、卵黄レシチン10mg及びグリセリン25mgからなる組成に、全容量100mLとなるよう注射用蒸留水を添加し、バイアルに充填後、加熱滅菌して注射剤を調製する。
[製造例1] 
化合物Ia-1(9H-カルバゾール)の製造
Figure JPOXMLDOC01-appb-C000022
 製造法1記載の方法に従い、アミン化合物(IIa-1)(20.5mg、0.22mmol)とトリフラート化合物(IIIa-1)(45.2mg、0.20mmol)、酢酸パラジウム(4.49mg、0.02mmol)、2-ジシクロヘキシルホスフィノ-2’,4’,6’-トリイソプロピルビフェニル(14.3mg、0.03mmol)、炭酸セシウム(78.2mg、0.24mmol)を含むトルエン(0.4mL)溶液を100℃、アルゴン下で攪拌した。1時間後、室温に戻し、酢酸(1.6mL)を加え、100℃、酸素雰囲気下で攪拌した。10時間後に室温に戻し、飽和炭酸水素ナトリウム溶液で洗浄し、酢酸エチルで抽出した。無水硫酸マグネシウムで乾燥させた後、減圧下で濃縮し、n-ヘキサン-酢酸エチル(50:1)を溶離液としてシリカゲルを用いたフラッシュクロマトグラフィーによって、白色固体として目的化合物(Ia-1)(23.1mg、収率69%)を得た。
1H NMR (400 MHz, CDCl3); δ 7.22 -7.26 (m, 2H), 7.41-7.43 (m, 4H), 8.03 (br, 1H), 8.08 (d, J = 7.8 Hz, 2H).
[製造例2] 
化合物Ia-2(1-メチル-9H-カルバゾール)の製造
 製造例1に記載した方法に準じ、目的化合物(Ia-2)(7.25mg、収率20%)を得た。
1H NMR (500 MHz, CDCl3); δ 2.48 (s, 3H), 7.14 (dd, J = 7.4, 7.4 Hz, 1H), 7.18-7.22 (m, 2H), 7.37-7.38 (m, 2H), 7.81 (br, 1H), 7.90 (d, J = 7.7 Hz, 1H), 8.04 (d, J = 7.7 Hz, 1H).
[製造例3] 
化合物Ia-3(メチル 8-メチル-9H-カルバゾール-3-カルボキシレート)の製造
 製造例1に記載した方法に準じ、目的化合物(Ia-3)(26.8mg、収率56%)を得た。
1H NMR (400 MHz, CDCl3); δ 2.58 (s, 3H), 3.97 (s, 3H), 7.19-7.28 (m, 2H), 7.46 (d, J = 8.5 Hz, 1H), 7.97 (d, J = 7.8 Hz, 1H), 8.12 (d, J = 8.5 Hz, 1H), 8.24 (br, 1H), 8.80 (s, 1H).
[製造例4] 
化合物Ia-4(1-トリフルオロメチル-9H-カルバゾール)の製造
 製造例1に記載した方法に準じ、目的化合物(Ia-4)(5.01mg、収率11%)を得た。
1H NMR (400 MHz, CDCl3); δ 7.24-7.28 (m, 2H), 7.45-7.46 (m, 2H), 7.62 (d, J = 7.4 Hz, 1H), 8.06 (d, J = 7.7 Hz, 1H), 8.19 (d, J = 7.7 Hz, 1H), 8.43 (br, 1H).
[製造例5] 
化合物Ia-5(1-tert-ブチル-9H-カルバゾール)の製造
Figure JPOXMLDOC01-appb-C000023
 製造法3記載の方法に従い、アミン化合物(IIa-2)(147mg、1.00mmol)とジクロロ化合物(IIIb-1)(164mg、1.10mmol)、酢酸パラジウム(11.2mg、0.05mmol)、テトラフルオロホウ酸トリシクロヘキシルホスホニウム(36.8mg、0.10mmol)、リン酸カリウム(467mg、2.20mmol)を含むN-メチルモルホリン(5.0mL)溶液を130℃、アルゴン下で攪拌した。30時間後、室温に戻し減圧下で濃縮し、n-ヘキサン-酢酸エチル(50:1)を溶離液としてシリカゲルを用いたフラッシュクロマトグラフィーによって、白色固体として目的化合物(Ia-5)(91.0mg、収率41%)を得た。
1H NMR (500 MHz, CDCl3); δ 1.55 (s, 9H), 7.19 (dd, J = 7.7, 7.4 Hz, 2H), 7.36 (d, J = 7.7 Hz, 1H), 7.39 (dd, J = 7.7, 7.4 Hz, 1H), 7.44 (d, J = 7.7 Hz, 1H), 7.96 (d, J = 7.7 Hz, 1H), 8.05 (d, J = 7.7 Hz, 1H), 8.14 (br, 1H).
[製造例6] 
化合物Ia-6((9H-カルバゾロ-1-イル)メタノール)の製造
 製造法14.1記載の方法に従い、化合物(Ia)において、Xがメトキシカルボニル基である化合物(558mg、2.48mmol)を含むTHF(25mL)の攪拌溶液に、水素化アルミニウムリチウム(207mg、5.45mmol)を0℃、アルゴン下ゆっくり加えた。30分後、0℃で攪拌しながら飽和酒石酸水溶液を添加し、セライトろ過を行った。減圧下で濃縮し、n-ヘキサン-酢酸エチル(6:1)を溶離液としてシリカゲルを用いたフラッシュクロマトグラフィーによって、白色固体として目的化合物(Ia-6)(379mg、収率78%)を得た。
1H NMR (500 MHz, CDCl3); δ 1.94 (s, 1H), 5.05 (s, 2H), 7.16 (dd, J = 7.7, 7.4 Hz, 1H), 7.21-7.25 (m, 2H), 7.40-7.45 (m, 2H), 8.03 (d, J = 7.7 Hz, 1H), 8.07 (d, J = 7.7 Hz, 1H), 8.83 (br, 1H).
[製造例7] 
化合物Ia-7(1-フェニル-9H-カルバゾール)の製造
 製造例5に記載した方法に準じ、目的化合物(Ia-7)(116mg、収率48%)を得た。
1H NMR (500 MHz, CDCl3); δ 7.24 (dd, J = 6.9, 6.9 Hz, 1H), 7,31 (dd, J = 7.7, 7.4 Hz, 1H), 7.39-7.44 (m, 4H), 7.54 (dd, J = 8.0, 7.4 Hz, 2H), 7.67-7.70 (m, 2H), 8.07 (d, J = 7.7 Hz, 1H), 8.10 (d, J = 8.0 Hz, 1H), 8.28 (br, 1H).
[製造例8] 
化合物Ia-8(3-(9H-カルバゾロ-1-イル)フェノール)の製造
Figure JPOXMLDOC01-appb-C000024
 製造法3記載の方法に従い、酢酸パラジウム(109mg、0.49mmol)と4,5-ビス(ジフェニルホスフィノ)-9,9-ジメチルキサンテン(281mg、0.49mmol)のトルエン(2.5mL)溶液をアルゴン下で15分間攪拌した。その後、アミン化合物(IIa-3)(450mg、2.43mmol)、ジハロゲン化合物(IIIb-2)(343μL、2.67mmol)、ナトリウムtert-ブトキサイド(514mg、5.35mmol)、ジオキサン(13mL)を加え、120℃アルゴン下で攪拌した。12時間後、セライトろ過をし、減圧下で濃縮した。N,N-ジメチルアセトアミド(DMA)(1.8mL)を加え、さらに酢酸パラジウム(2.03mg、9.02μmol)、テトラフルオロホウ酸トリシクロヘキシルホスホニウム(6.65mg、0.02mmol)、炭酸セシウム(133mg、0.38mmol)を加え130℃、アルゴン下で攪拌した。3時間後、室温に戻し、減圧下で濃縮し、n-ヘキサン-酢酸エチル(6:1)を溶離液としてシリカゲルを用いたフラッシュクロマトグラフィーによって、白色固体として目的化合物(Ia-8)(31.1mg、収率67%)を得た。
1H NMR (500 MHz, CDCl3); δ 5.23 (s, 1H), 6.88 (dd, J = 8.0, 2.6 Hz, 1H), 7.13 (s, 1H), 7.22-7.25 (m, 2H), 7.30 (dd, J = 7.7, 7.4 Hz, 1H), 7.38-7.42 (m, 4H), 8.06 (d, J = 7.7 Hz, 1H), 8.10 (d, J = 7.7 Hz, 1H), 8.34 (br, 1H).
[製造例9] 
化合物Ia-9(メチル 3-メチル-9H-カルバゾール-1-カルボキシレート)の製造
 製造例1に記載した方法に準じ、目的化合物(Ia-9)(20.1mg、収率42%)を得た。
1H NMR (400 MHz, CDCl3); δ 2.55 (s, 3H), 4.01 (s, 3H), 7.22-7.28 (m, 1H), 7.42-7.49 (m, 2H), 7.89 (s, 1H), 8.03-8.06 (m, 2H), 9.74 (br, 1H).
[製造例10] 
化合物Ia-10(メチル 7-メチル-9H-カルバゾール-1-カルボキシレート)の製造
 製造例1に記載した方法に準じ目的化合物(Ia-10)(24.9mg、収率52%)を得た。
1H NMR (400 MHz, CDCl3); δ 2.54 (s, 3H), 4.01 (s, 3H), 7.09 (d, J = 7.8, 1H), 7.21 (dd, J = 7.8, 7.8 Hz, 1H), 7.94 (d, J = 8.0 Hz, 1H), 8.03 (d, J = 7.8 Hz, 1H), 8.20 (d, J = 7.8 Hz, 1H), 9.80 (br, 1H).
[製造例11] 
化合物Ia-11(2-メチル-9H-カルバゾール)の製造
 製造例1に記載した方法に準じ、目的化合物(Ia-11)(22.5mg、収率62%)を得た。
1H NMR (400 MHz, CDCl3); δ 2.52 (s, 3H), 7.06 (d, J = 8.0 Hz, 1H), 7.20-7.23 (m, 2H), 7.37-7.38 (m, 2H), 7.88 (br, 1H), 7.94 (d, J = 8.0 Hz, 1H), 8.02 (d, J = 7.8 Hz, 1H).
[製造例12] 
化合物Ia-12(2-メチル-7-フェニル-9H-カルバゾール)の製造
 製造例1に記載した方法に準じ、目的化合物(Ia-12)(39.6mg、収率75%)を得た。
1H NMR (400 MHz, THF-d8); δ 2.49 (s, 3H), 6.98 (d, J = 8.0 Hz, 1H), 7.22 (s, 1H), 7.28 (dd, J = 7.3, 7.3 Hz, 1H), 7.41 (m, 3H), 7.61 (d, J = 1.0 Hz, 1H), 7.69 (m, 2H), 7.91 (d, J = 7.8 Hz, 1H), 8.03 (d, J = 8.0 Hz, 1H), 10.2 (br, 1H).
[製造例13] 
化合物Ia-13(メチル 7-メチル-9H-カルバゾール-2-カルボキシレート)の製造
 製造例1に記載した方法に準じ、目的化合物(Ia-13)(3.99mg、収率8%)を得た。
1H NMR (400 MHz, CDCl3); δ 2.54 (s, 3H), 3.97 (s, 3H), 7.10 (d, J = 8.1 Hz, 1H), 7.26 (s, 1H), 7.92 (d, J = 8.1 Hz, 1H), 7.98 (d, J = 8.1 Hz, 1H), 8.05 (d, J = 8.1 Hz, 1H), 8.12 (s, 1H), 8.13 (s, 1H). 
[製造例14] 
化合物Ia-14(3-フルオロ-7-メチル-9H-カルバゾール)の製造
 製造例1に記載した方法に準じ、目的化合物(Ia-14)(28.3mg、収率71%)を得た。
1H NMR (400 MHz, CDCl3); δ 2.52 (s, 3H), 7.05 (d, J = 8.0 Hz, 1H), 7.11 (dd, J = 9.0, 2.4 Hz, 1H), 7.22 (s, 1H), 7.31 (dd, J = 9.0, 4.1 Hz, 1H), 7.67 (dd, J = 9.0, 2.4 Hz, 1H), 7.87-7.89 (m, 2H).
[製造例15] 
化合物Ia-15(3-トリフルオロメチル-7-メチル-9H-カルバゾール)の製造
 製造例1に記載した方法に準じ、目的化合物(Ia-15)(38.9mg、収率78%)を得た。
1H NMR (400 MHz, CDCl3); δ 2.52 (s, 3H), 7.11 (d, J = 8.0 Hz, 1H), 7.20 (s, 1H), 7.39 (d, J = 8.5 Hz, 1H), 7.60 (d, J = 8.5 Hz, 1H), 7.94 (d, J = 8.0 Hz, 1H), 8.03 (br, 1H), 8.27 (s, 1H).
[製造例16] 
化合物Ia-16(1-(7-メチル-9H-カルバゾロ-3-イル)エタノン)の製造
 製造例1に記載した方法に準じ、目的化合物(Ia-16)(34.8mg、収率78%)を得た。
1H NMR (400 MHz, CDCl3); δ 2.53 (s, 3H), 2.72 (s, 3H), 7.12 (d, J = 7.8 Hz, 1H), 7.24 (s, 1H), 7.39 (d, J = 8.5 Hz, 1H), 7.99 (d, J = 7.8 Hz, 1H), 8.06 (dd, J = 8.5, 1.7 Hz, 1H), 8.41 (br, 1H), 8.68 (d, J = 1.7 Hz, 1H).
[製造例17] 
化合物Ia-17(メチル 7-メチル-9H-カルバゾール-3-カルボキシレート)の製造
 製造例1に記載した方法に準じ、目的化合物(Ia-17)(50.9mg、収率:定量的)を得た。
1H NMR (400 MHz, CDCl3); δ 2.52 (s, 3H), 3.97 (s, 3H), 7.12 (d, J = 8.0 Hz, 1H), 7.22 (s, 1H), 7.37 (d, J = 8.5 Hz, 1H), 7.98 (d, J = 8.0 Hz, 1H), 8.10 (dd, J = 8.5, 1.5 Hz, 1H), 8.24 (s, 1H), 8.76 (s, 1H).
[製造例18] 
化合物Ia-18(メチル 7-メチル-9H-カルバゾール-4-カルボキシレート)の製造
 製造例1に記載した方法に準じ、目的化合物(Ia-18)(24.5mg、収率52%)を得た。
1H NMR (400 MHz, CDCl3); δ 2.49 (s, 3H), 4.05 (s, 3H), 7.07 (d, J = 8.3 Hz, 1H), 7.12 (s, 1H), 7.36 (dd, J = 8.1, 7.6 Hz, 1H), 7.49 (d, J = 8.1 Hz, 1H), 7.84  (d, J = 7.6 Hz, 1H), 8.12 (s, 1H), 8.71 (d, J = 8.3 Hz, 1H).
[製造例19] 
化合物Ia-19(2-ジフルオロメチル-9H-カルバゾール)の製造
Figure JPOXMLDOC01-appb-C000025
 製造法4記載の方法に従い、ハロゲン化合物(IIc-1)(500mg、2.42mmol)とアミン化合物(IIIc-1)(278μL、2.66mmol)、トリス(ジベンジリデンアセトン)二パラジウム(0)-クロロホルム付加体(125mg、0.12mmol)、2-ジシルクロヘキシルホスフィノ-2’-(N,N―ジメチルアミノ)ビフェニル(95.2mg、0.24mmol)、炭酸セシウム(1.19g、3.38mmol)のトルエン(2.5mL)溶液を100℃アルゴン下で攪拌した。2時間後、セライトろ過をし、減圧下で濃縮した。DMA(20mL)を加え、さらに酢酸パラジウム(27.1mg、0.12mmol)、テトラフルオロホウ酸トリシクロヘキシルホスホニウム(89.1mg、0.24mmol)、炭酸カリウム(467mg、3.38mmol)、ピバル酸(74.0mg、0.73mmol)を加え130℃アルゴン下で攪拌した。2時間後、室温に戻し減圧下で濃縮し、n-ヘキサン-酢酸エチル(20:1)を溶離液としてシリカゲルを用いたフラッシュクロマトグラフィーによって、白色固体として目的化合物(Ia-19)(112mg、収率21%)を得た。
1H NMR (400 MHz, CDCl3); δ 6.81 (t, J = 56.7 Hz, 1H), 7.25-7.29 (m, 2H), 7.36 (d, J = 8.0 Hz, 1H), 7.46-7.47 (m, 2H), 7.60 (s, 1H), 8.11 (d, J = 7.7 Hz, 1H), 8.14 (d, J = 8.3 Hz, 1H), 8.17 (br, 1H).
[製造例20] 
化合物Ia-20(2-トリフルオロメチル-9H-カルバゾール)の製造
 製造例1に記載した方法に準じ、目的化合物(Ia-20)(16.0mg、収率34%)を得た。
1H NMR (400 MHz, CDCl3); δ 7.29 (ddd, J = 8.0, 2.4, 2.2 Hz, 1H), 748-7.50 (m, 3H), 7.70 (s, 1H), 8.12 (d, J = 8.0 Hz, 1H), 8.15 (d, J = 8.3 Hz, 1H), 8.22 (br, 1H).
[製造例21] 
化合物Ia-21(2-トリフルオロメチル-7-tert-ブチル-9H-カルバゾール)の製造
 製造例1に記載した方法に準じ、目的化合物(Ia-21)(91.2mg、収率21%)を得た。
1H NMR (500 MHz, CDCl3); δ 1.42 (s, 9H), 7.36 (dd, J = 8.3, 1.7 Hz, 1H), 7.44-7.46 (m, 2H), 7.65 (d, J = 0.9 Hz, 1H), 8.01 (d, J = 8.3 Hz, 1H), 8.07-8.09 (m, 2H).
[製造例22] 
化合物Ia-22(2-トリフルオロメチル-9-メチルカルバゾール)の製造
Figure JPOXMLDOC01-appb-C000026
 製造法8記載の方法に従い、製造例20で得られる化合物(Ia-20)(20.8mg、88.4μmmol)を含むTHF(0.8mL)の攪拌溶液に、水素化ナトリウム(3.89mL、97.3μmmol)を0℃、アルゴン下加えた。15分後、ヨードメタン(11.0μL、0.18mmol)を加え室温で10時間攪拌した。水で反応を停止させ、エーテルで抽出した。抽出物は飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥させた。減圧下で濃縮し、続いてn-ヘキサン-酢酸エチル(40:1)を溶離液としてシリカゲルを用いたフラッシュクロマトグラフィーによって、白色固体として目的化合物(Ia-22)(18mg、収率82%)を得た。
1H NMR (500 MHz, CDCl3); δ 3.87 (s, 3H), 7.28 (dd, J = 7.7, 0.9 Hz, 1H), 7.43 (d, J = 8.3 Hz, 1H), 7.47 (d, J = 8.3 Hz, 1H), 7.54 (dd, J = 7.7, 0.9 Hz, 1H), 7.64 (s, 1H), 8.12 (d, J = 8.0 Hz, 1H), 8.14 (d, J = 8.0 Hz, 1H).
[製造例23] 
化合物Ia-23(2-エチル-9H-カルバゾール)の製造
 製造例1に記載した方法に準じ、目的化合物(Ia-23)(78.3mg、収率80%)を得た。
1H NMR (400 MHz, CDCl3); δ 1.30-1.33 (m, 3H), 2.78-2.83 (m, 2H), 7.09 (dd, J = 7.7, 1.1 Hz, 1H), 7.19-7.24 (m, 2H), 7.37 (m, 2H), 7.87 (br, 1H), 7.97 (d, J = 8.0 Hz, 1H), 8.03 (d, J = 7.7 Hz, 1H).
[製造例24] 
化合物Ia-24(2-イソプロピル-9H-カルバゾール)の製造
 製造例1に記載した方法に準じ、目的化合物(Ia-24)(60.0mg、収率57%)を得た。
1H NMR (400 MHz, CDCl3); δ 1.33 (d, J = 6.9 Hz, 6H), 3.00-3.08 (m, 1H), 7.11 (dd, J = 8.0, 1.4 Hz, 1H), 7.15 (s, 1H), 7.19 (ddd, J = 8.0, 7.7, 0.9 Hz, 1H), 7.29 (dd, J = 7.7, 0.9 Hz, 1H), 7.35 (dd, J = 7.7, 1.1 Hz, 1H), 7.73 (br, 1H), 7.96 (d, J = 8.0 Hz, 1H), 8.01 (d, J = 7.7 Hz, 1H).
[製造例25] 
化合物Ia-25(2-tert-ブチル-9H-カルバゾール)の製造
 製造例1に記載した方法に準じ、目的化合物Ia-25(27.7mg、収率62%)を得た。
1H NMR (400 MHz, CDCl3); δ 1.42 (s, 9H), 7.18-7.22 (m, 1H), 7.30 (dd, J = 8.3, 1.0 Hz, 1H), 7.36-7.41 (m, 3H), 7.91 (br, 1H), 7.98 (d, J = 8.3 Hz, 1H), 8.03 (d, J = 7.6 Hz, 1H).
[製造例26] 
化合物Ia-26(7-tert-ブチル-9H-カルバゾール-3-カルボン酸)の製造
Figure JPOXMLDOC01-appb-C000027
 製造法14.2記載の方法に従い、製造例27で得られる化合物(Ia-27)(34.9mg、0.12mmol)を含むメタノール(1.2mL)の攪拌溶液に1M水酸化リチウム(248μL,0.25mmol)を加え還流した。4時間後、室温に戻した後、1N塩酸を加え酸性とし、クロロホルムで抽出した。抽出物は飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥させた。減圧下で濃縮し、続いてn-ヘキサン-酢酸エチル(1:2)を溶離液としてPLCプレートを用いたクロマトグラフィーによって、白色固体として目的化合物(Ia-26)(5.50mg、収率17%)を得た。
1H NMR (500 MHz, THF-d8); δ 1.32 (s, 9H), 7.23 (dd, J = 8.3, 1.7 Hz, 1H), 7.35 (dd, J = 8.6, 0.6 Hz, 1H), 7.41 (d, J = 0.6 Hz, 1H), 7.92 (dd, J = 8.3, 0.6 Hz, 1H), 7.95 (dd, J = 8.3, 1.7 Hz, 1H), 8.63 (m, 1H).
[製造例27] 
化合物Ia-27(7-tert-ブチル-9H-カルバゾール-3-カルボン酸 メチルエステル)の製造
 製造例1に記載した方法に準じ、目的化合物(Ia-27)(53.5mg、収率95%)を得た。
1H NMR (400 MHz, CDCl3); δ 1.43 (s, 9H), 3.97 (s, 3H), 7.37 (dd, J = 8.3, 1.7 Hz, 1H), 7.41 (d, J = 8.5 Hz, 1H), 7.46 (d, J = 1.7 Hz, 1H), 8.03 (d, J = 8.3 Hz, 1H), 8.10 (dd, J = 8.5, 1.7 Hz, 1H), 8.19 (s, 1H), 8.77 (s, 1H).
[製造例28] 
化合物Ia-29(2-メトキシ-9H-カルバゾール)の製造
 製造例1に記載した方法に準じ、目的化合物(Ia-29)(20.9mg、収率53%)を得た。
1H NMR (400 MHz, CDCl3); δ 3.90 (s, 3H), 6.86 (dd, J = 8.5, 2.2 Hz, 1H), 6.92 (d, J = 2.2 Hz, 1H), 7.20 (ddd, J = 7.8, 7.5, 1.2 Hz, 1H), 7.32-7.40 (m, 2H), 7.93 (d, J = 8.5 Hz, 1H), 7.97 (d, J = 7.8 Hz, 1H), 7.92-7.98 (br, 1H).
[製造例29] 
化合物Ia-30(メチル 2-メトキシ-9H-カルバゾール-6-カルボキシレート)の製造
 製造例1に記載した方法に準じ、目的化合物(Ia-30)(40.8mg、収率80%)を得た。
1H NMR (400 MHz, CDCl3); δ 3.88 (s, 3H), 3.95 (s, 3H), 6.86 (s, 1H), 7.24 (ddd, J = 8.3, 5.1, 3.2 Hz, 1H), 7.36-7.38 (m, 2H), 7.99 (d, J = 7.8 Hz, 1H), 8.38 (br, 1H), 8.60 (s, 1H).
[製造例30] 
化合物Ia-31(2-トリフルオロメトキシ-9H-カルバゾール)の製造
 製造例1に記載した方法に準じ、目的化合物(Ia-31)(28.6mg、収率57%)を得た。
1H NMR (500 MHz, CDCl3); δ 7.09 (dd, J = 8.6, 0.9 Hz, 1H), 7.23 (s, 1H), 7.25 (dd, J = 8.0, 7.4 Hz, 1H), 7.38 (d, J = 8.3 Hz, 1H), 7.42 (dd, J = 8.3, 7.4 Hz, 1H), 8.00 (d, J = 8.6 Hz, 1H), 8.03 (d, J = 8.0 Hz, 1H), 8.01 (br, 1H).
[製造例31] 
化合物Ia-32(2-tert-ブトキシ-9H-カルバゾール)の製造
Figure JPOXMLDOC01-appb-C000028
 製造法14.3記載の方法に従い、市販品として入手した化合物(Ia-28)(200mg、1.09mmol)を含む塩化メチレン(3.0mL)溶液にジ-tert-ブチルジカルボネート(547mg、2.51mmol)、過塩素酸マグネシウム(24.3mg、0.11mmol)を加え、室温で攪拌した。24時間後、水で反応を停止させ、減圧下で濃縮し、酢酸エチルで抽出した。抽出液は飽和炭酸水素ナトリウム溶液で洗浄し、無水硫酸マグネシウムで乾燥させた。減圧下で濃縮し、続いてn-ヘキサン-酢酸エチル(15:1→10:1)を溶離液としてシリカゲルを用いたフラッシュクロマトグラフィーによって、白色固体として目的化合物(Ia-32)(57.8mg、収率22%)を得た。
1H NMR (500 MHz, CDCl3); δ 1.48 (s, 9H), 6.91 (dd, J = 8.3, 2.0 Hz, 1H), 7.04 (d, J = 2.0 Hz, 1H), 7.20 (ddd, J = 7.2, 1.7, 1.4 Hz, 1H), 7.33-7.38 (m, 2H), 7.92 (d, J = 8.3 Hz, 1H), 7.96 (br, 1H), 8.00 (d, J = 7.7 Hz, 1H).
[製造例32] 
化合物Ia-33(2-フェニル-9H-カルバゾール)の製造
 製造例1に記載した方法に準じ、目的化合物(Ia-33)(29.2mg、収率60%)を得た。
1H NMR (400 MHz, DMSO-d6); δ 7.16 (dd, J = 7.6, 7.1 Hz, 1H), 7.34-7.51 (m, 6H), 7.70 (s, 1H), 7.74 (d, J = 8.0 Hz, 1H), 8.12 (d, J = 7.6 Hz, 1H), 8.17 (d, J = 8.0 Hz, 1H), 11.3 (s, 1H).
[製造例33] 
化合物Ia-35(9H-カルバゾール-2-カルボン酸)の製造
 製造例26に記載した方法に準じ、製造例34で得られるエステル化合物(Ia-36)から目的化合物(Ia-35)(10.6mg、収率57%)を得た。
1H NMR (500 MHz, CD3OD); δ 7.10 (ddd, J = 7.4, 1.1, 0.9 Hz, 1H), 7.34 (ddd, J = 7.7, 7.4, 1.1 Hz, 1H), 7.39 (dd, J = 8.3, 0.9 Hz, 1H), 7.74 (dd, J = 8.3, 1.4 Hz, 1H), 8.00-8.02 (m, 2H), 8.06 (dd, J = 1.1, 0.9 Hz, 1H).
[製造例34] 
化合物Ia-36(メチル 9H-カルバゾール-2-カルボキシレート)の製造
 製造例5に記載した方法に準じ、目的化合物(Ia-36)(157mg、収率70%)を得た。
1H NMR (500 MHz, CDCl3); δ 3.97 (s, 3H), 7.25-7.28 (m, 1H), 7.45-7.50 (m, 2H), 7.94 (dd, J = 8.0, 1.4 Hz, 1H), 8.09-8.12 (m, 2H), 8.17 (d, J = 0.9 Hz, 1H), 8.30 (br, 1H).
[製造例35] 化合物Ia-37(3-フルオロ-9H-カルバゾール)の製造
 製造例1に記載した方法に準じ、目的化合物(Ia-37)(21.1mg、収率57%)を得た。
1H NMR (500 MHz, CDCl3); δ 7.15 (ddd, J = 9.0, 9.0, 2.7 Hz 1H), 7.23 (ddd, J = 7.8, 5.4, 2.7 Hz, 1H), 7.34 (q, J = 4.4 Hz, 1H), 7.42-7.43 (m, 2H), 7.72 (dd, J = 9.0, 2.7 Hz, 1H), 8.02 (br, d, J = 7.8 Hz, 2H).
[製造例36] 
化合物Ia-38(3-メチル-9H-カルバゾール)の製造
 製造例1に記載した方法に準じ、目的化合物(Ia-38)(16.7mg、収率46%)を得た。
1H NMR (500 MHz, CDCl3); δ 2.53 (s, 3H), 7.19-7.25 (m, 2H), 7.31 (d, J = 8.3 Hz, 1H), 7.38-7.40 (m, 2H), 7.87 (s, 1H), 7.93 (br, 1H), 8.04 (d, J = 7.8 Hz, 1H).
[製造例37] 
化合物Ia-39(3-トリフルオロメチル-6-メチル-9H-カルバゾール)の製造
 製造例1に記載した方法に準じ、目的化合物(Ia-39)(7.48mg、収率15%)を得た。
1H NMR (400 MHz, CDCl3); δ 2.54 (s, 3H), 7.30 (d, J = 8.9 Hz, 1H), 7.37 (d, J = 8.3 Hz, 1H), 7.46 (d, J = 8.3 Hz, 1H), 7.63 (d, J = 8.9 Hz, 1H), 7.91 (s, 1H), 8.15 (br, 1H), 8.31 (s, 1H). 
[製造例38] 
化合物Ia-40(メチル 6-メチル-9H-カルバゾール-3-カルボキシレート)の製造
 製造例1に記載した方法に準じ、目的化合物(Ia-40)(37.3mg、収率78%)を得た。
1H NMR (400 MHz, DMSO-d6); δ 2.49 (s, 3H), 3.90 (s, 3H), 7.29 (d, J = 8.3 Hz, 1H), 7.44 (d, J = 8.3 Hz, 1H), 7.53 (d, J = 8.5 Hz, 1H), 7.99 (d, J = 8.5 Hz, 1H), 8.75 (s, 1H), 8.75 (s, 1H), 11.58 (s, 1H). 
[製造例39] 
化合物Ia-41(3-トリフルオロメチル-9H-カルバゾール)の製造
 製造例1に記載した方法に準じ、目的化合物(Ia-41)(33.9mg、収率72%)を得た。
1H NMR (400 MHz, CDCl3); δ 7.29 (dd, J = 7.3, 1.7 Hz, 1H), 7.44-7.48 (m, 1H), 7.65 (d, J = 7.3 Hz, 1H), 8.09 (d, J = 8.0 Hz, 1H), 8.19 (br, 1H), 8.33 (s, 1H). 
[製造例40] 
化合物Ia-42(3-tert-ブチル-9H-カルバゾール)の製造
 製造例1に記載した方法に準じ、目的化合物(Ia-42)(19.2mg、収率43%)を得た。
1H NMR (400 MHz, CDCl3); δ 1.44 (s, 9H), 7.21 (ddd, J = 8.0, 8.0, 3.9 Hz, 1H), 7.33-7.38 (m, 3H), 7.49 (dd, J = 8.5, 2.0 Hz, 1H), 7.92 (br, 1H), 8.07-8.09 (m, 2H). 
[製造例41] 
化合物Ia-43(メチル 6-tert-ブチル-9H-カルバゾール-3-カルボキシレート)の製造
 製造例1に記載した方法に準じ、目的化合物(Ia-43)(52.9mg、収率94%)を得た。
1H NMR (400 MHz, CDCl3); δ 1.45 (s, 9H), 3.98 (s, 3H), 7.39 (d, J = 8.5 Hz, 1H), 7.40 (d, J = 8.5 Hz, 1H), 7.54 (dd, J = 8.5, 2.0 Hz, 1H), 8.11 (dd, J = 8.5, 1.7 Hz, 1H), 8.14 (s, 1H), 8.22 (s, 1H), 8.83 (s, 1H). 
[製造例42] 
化合物Ia-44(3-メトキシ-9H-カルバゾール)の製造
 製造例1に記載した方法に準じ、目的化合物(Ia-44)(10.3mg、収率26%)を得た。
1H NMR (400 MHz, CDCl3); δ 3.93 (s, 3H), 7.07 (dd, J = 8.8, 2.4 Hz, 1H), 7.21 (ddd, J = 7.8, 7.8, 3.9 Hz, 1H), 7.32 (d, J = 8.8 Hz, 1H), 7.40 (d, J = 3.9 Hz, 1H), 7.56 (d, J = 2.4 Hz, 1H), 7.91 (br, 1H), 8.03 (d, J = 7.8 Hz, 1H). 
[製造例43] 
化合物Ia-45(3-フェニル-9H-カルバゾール)の製造
 製造例1に記載した方法に準じ、目的化合物(Ia-45)(31.6mg、収率65%)を得た。
1H NMR (400 MHz, CDCl3); δ 7.23-7.27 (m, 1H), 7.34 (dd, J = 7.6, 7.3 Hz, 1H), 7.43-7.49 (m, 5H), 7.66-7.72 (m, 3H), 8.07 (br, 1H), 8.12 (d, J = 7.8 Hz, 1H), 8.29 (d, J = 1.2 Hz, 1H).
[製造例44] 
化合物Ia-46(9H-カルバゾール-3-カルバルデヒド)の製造
Figure JPOXMLDOC01-appb-C000029
 製造法9記載の方法に従い、リン酸トリクロリド(1.5mL,16.2mmol)にDMF(5.0mL)を0℃、アルゴン下ゆっくり加え、室温で1時間攪拌した後、製造例1で得られる化合物(Ia-1)(2.70g、16.2mmol)を加えた。90℃で10時間攪拌後、水で反応を停止させ、塩化メチレンで抽出した。抽出物は飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥させた。減圧下で濃縮し、続いてn-ヘキサン-酢酸エチル(50:1→20:1)を溶離液としてシリカゲルを用いたフラッシュクロマトグラフィーによって、白色固体として目的化合物(Ia-46)(404mg、収率13%)を得た。
1H NMR (400 MHz, CDCl3); δ 7.39 (m, 3H), 7.61 (d, J = 6.3 Hz, 1H), 7.90 (d, J = 7.0 Hz, 1H), 8.53 (d, J = 6.3 Hz, 1H), 9.58 (s, 1H).
[製造例45] 
化合物Ia-47(メチル 9H-カルバゾール-3-カルボキシレート)の製造
 製造例1に記載した方法に準じ、目的化合物(Ia-47)(28.7mg、収率64%)を得た。
1H NMR (400 MHz, CDCl3); δ 3.98 (s, 3H), 7.29 (ddd, J = 8.0, 8.0, 4.1 Hz, 1H), 7.42-7.47 (m, 3H), 8.12-8.15 (m, 2H), 8.36 (br, 1H), 8.82 (m, 1H). 
[製造例46] 
化合物Ia-48(ベンジル 9H-カルバゾール-3-カルボキシレート)の製造
 製造例1に記載した方法に準じ、目的化合物(Ia-48)(44.4mg、収率74%)を得た。
1H NMR (400 MHz, CDCl3); δ 5.43 (s, 2H), 7.27 (m, 1H), 7.35-7.44 (m, 6H), 7.51 (d, J = 7.1 Hz, 2H), 8.10 (d, J = 7.8 Hz, 1H), 8.16 (dd, J = 7.8, 1.5 Hz, 1H), 8.35 (s, 1H), 8.84 (s, 1H).
[製造例47] 
化合物Ia-49(1,2,3,4-テトラヒドロ-11H-ベンゾ[a]カルバゾール)の製造
Figure JPOXMLDOC01-appb-C000030
 製造例48で得られる化合物(Ia-50)を用いて、製造法11記載の方法に準じ、目的化合物(Ia-49)(276mg、収率62%)を得た。
1H NMR (500 MHz, CDCl3); δ 1.90 (m, 2H), 1.97 (m, 2H), 2.89 (t, J = 6.3 Hz, 2H), 2.94 (t, J = 6.3 Hz, 1H), 6.98 (d, J = 8.0 Hz, 1H), 7.20 (ddd, J = 7.7, 7.2, 0.9 Hz, 1H), 7.36 (ddd, J = 8.3, 7.2, 0.9 Hz, 1H), 7.42 (d, J = 8.0 Hz, 1H), 7.81 (d, J = 8.0 Hz, 1H), 7.86 (br, 1H), 8.02 (d, J = 7.7 Hz, 1H).
[製造例48] 
化合物Ia-50(11H-ベンゾ[a]カルバゾール)の製造
Figure JPOXMLDOC01-appb-C000031
 製造例57で得られる化合物(Ic-3)を用いて、製造法10記載の方法に準じ、目的化合物(Ia-50)(2.35mg、収率98%)を得た。
1H NMR (500 MHz, CDCl3); δ 7.29-7.32 (m, 1H), 7.42-7.45 (m, 1H), 7.51-7.60 (m, 3H), 7.66 (d, J = 8.6 Hz, 1H), 8.01 (d, J = 8.0 Hz, 1H), 8.10-8.14 (m, 3H), 8.75 (br, 1H). 
[製造例49] 
化合物Ia-51(7,8,9,10-テトラヒドロ-5H-ベンゾ[b]カルバゾール)の製造
 製造例1に記載した方法に準じ、目的化合物(Ia-51)(99.4mg、収率23%)を得た。
1H NMR (500 MHz, CDCl3); δ 1.86 (m, 4H), 2.95 (m, 4H), 7.08 (s, 1H), 7.17 (ddd, J = 8.0, 4.9, 3.2 Hz, 1H), 7.33-7.37 (m, 1H), 7.75 (br, 2H), 7.99 (d, J = 8.0 Hz, 1H). 
化合物Ia-52(9-トリフルオロメチル-4,11-ジヒドロ-1H-ピリド[3,2-a]カルバゾール-3(2H)-オン)、及び、化合物Ia-53(8-(トリフルオロメチル)-3,4-ジヒドロ-1H-ピリド[2,3-b]カルバゾール-2(10H)-オン)の製造
Figure JPOXMLDOC01-appb-C000032
(工程a)
 製造法6記載の方法に準じ、ジヒドロキノロン化合物(IId-1)(99.1mg、0.36mmol)、4-ブロモ-3-ニトロベンゾトリフルオリド(IIIe-1)(51.0μL、0.33mmol)、[1,1’-ビス(ジフェニルホスフィノ)フェロセン]ジクロロパラジウム(II)-ジクロロメタン錯体 (1:1)(10.8mg、0.013mmol)、炭酸カリウム(100.3mg、0.73mmol)の1,4-ジオキサン(1.5mL)溶液を90℃アルゴン下で攪拌した。24時間後、セライトろ過をし、減圧下で濃縮し、n-ヘキサン-酢酸エチル(3:2)を溶離液としてシリカゲルを用いたフラッシュクロマトグラフィーによって、黄色固体としてジアリール化合物(IVd-1)(96mg、収率80%)を得た。
1H NMR (500 MHz, DMSO-d6); δ 2.50 (t, J = 7.7 Hz, 2H), 2.93 (t, J = 7.7 Hz, 2H), 6.95 (d, J = 8.3 Hz, 1H), 7.17 (d, J = 8.3 Hz, 1H), 7.25 (s, 1H), 7.79 (d, J = 8.3 Hz, 1H), 8.11 (d, J = 8.3 Hz, 1H), 8.39 (s, 1H), 10.3 (s, 1H).
(工程b)
 化合物(IVd-1)(600mg、1.78mmol)とトリフェニルホスフィン(1.17g、4.46mmol)のo-ジクロロベンゼン(3.6mL)溶液を加熱還流した。13時間後、減圧下で濃縮し、続いてn-ヘキサン-酢酸エチル(3:2(R)1:4)を溶離液としてアミンシリカゲルを用いたクロマトグラフィーによって、目的の白色固体としての化合物(Ia-52)(84mg、収率15%)と白色固体としての化合物(Ia-53)(109mg、収率20%)を得た。
 化合物(Ia-52):
1H NMR (500 MHz, DMSO-d6) δ 2.63 (t, J = 8.0 Hz, 2H), 3.16 (t, J = 8.0 Hz, 2H), 6.83 (d, J = 8.3 Hz, 1H), 7.43 (d, J = 8.3 Hz, 1H), 7.71 (s, 1H), 7.98 (d, J = 8.3 Hz, 1H), 8.20 (d, J = 8.3 Hz, 1H), 10.3 (s, 1H), 11.6 (s, 1H). 
 化合物(Ia-53):
1H NMR (500 MHz, DMSO-d6) δ 2.52 (t, J = 7.7 Hz, 2H), 3.03 (t, J = 7.7 Hz, 2H), 7.07 (s, 1H), 7.41 (d, J = 8.0 Hz, 1H), 7.71 (s, 1H), 7.99 (s, 1H), 8.18 (d, J = 8.0 Hz, 1H), 10.3 (s, 1H), 11.5 (s, 1H).
化合物Ia-54(8-(トリフルオロメチル)-3,4-ジヒドロ-1H-ピリド[3,2-b]カルバゾール-2(6H)-オン)の製造
Figure JPOXMLDOC01-appb-C000033
(工程a)
 製造法5記載の方法に準じ、ジヒドロキノロン化合物(IIc-2)(800mg,3.54mmol)、アミン化合物(IIId-1)(482μL、3.89mmol)、トリス(ジベンジリデンアセトン)二パラジウム(0)-クロロホルム付加体(183mg、0.18mmol)、2-ジシルクロヘキシルホスフィノ-2’-(N、N―ジメチルアミノ)ビフェニル(104mg,0.27mmol)、ナトリウムtert-ブトキシド(477mg,4.96mmol)のトルエン(7.0mL)溶液を100℃、アルゴン下で攪拌した。6時間後、室温に戻しセライトろ過した後、減圧下で濃縮した。続いて、n-ヘキサン-酢酸エチル(1:1)を溶離液としてシリカゲルを用いたフラッシュクロマトグラフィーによって、黄色固体としてジアリール化合物(IVa-1)(668mg、収率62%)を得た。
1H NMR (500 MHz, DMSO-d6) δ 2.45 (t, J = 7.4 Hz, 2H), 2.86 (t, J = 7.4 Hz, 2H), 6.85 (d, J = 8.0 Hz, 1H), 6.96 (d, J = 8.0 Hz, 1H), 6.97 (s, 1H), 7.00 (d, J = 8.0 Hz, 1H), 7.16 (s, 1H), 7.20 (d, J = 8.0 Hz, 1H), 7.37 (t, J = 8.0 Hz, 1H), 8.30 (s, 1H), 10.02 (s, 1H).
(工程b)
 化合物(IVa-1)(100mg、0.33mmol)、酢酸パラジウム (73.3mg、0.33mmol)の酢酸(3.3mL)溶液を120℃、酸素雰囲気下で攪拌した。8時間後室温に戻し、飽和炭酸水素ナトリウム溶液で洗浄し、酢酸エチルで抽出した。無水硫酸マグネシウムで乾燥させた後、減圧下で濃縮し、n-ヘキサン-酢酸エチル(1:2)を溶離液としてシリカゲルを用いたフラッシュクロマトグラフィーによって、白色固体として目的化合物(Ia-54)(53mg、収率52%)を得た。
1H NMR (500 MHz, DMSO-d6) δ 2.50 (t, J = 7.7 Hz, 2H), 3.06 (t, J = 7.7 Hz, 2H), 7.41 (d, J = 8.3 Hz, 1H), 7.42 (s, 1H), 7.59 (s, 1H), 7.77 (s, 1H), 8.17 (d, J = 8.3 Hz, 1H), 10.18 (s, 1H), 11.46 (s, 1H).
化合物Ia-55(9-(トリフルオロメチル)-4,7-ジヒドロ-1H-ピリド[2,3-c]カルバゾール-3(2H)-オン)の製造
Figure JPOXMLDOC01-appb-C000034
(工程a)
 ジヒドロキノロン化合物(IIc-3)(70mg、0.24mmol)の1,4-ジオキサン(2.4mL)溶液に室温で、塩化リチウム(50.4mg、1.19mmol)、テトラキス(トリフェニルホスフィン)パラジウム(13.9mg、0.012mmol)、ビス(トリ-n-ブチルチン)(243μL、0.48mmol)を加え、100℃アルゴン下で攪拌した。11時間後室温に戻し、セライトろ過をし、減圧下で濃縮し、n-ヘキサン-酢酸エチル(3:1)を溶離液としてシリカゲルを用いたフラッシュクロマトグラフィーによって、スズ化合物(IId-2)(68.0mg、収率65%)を得た。
1H NMR (500 MHz, CDCl3) δ 0.89 (t, J = 7.3 Hz, 9H), 1.07-1.10 (m, 6H), 1.29-1.37 (m, 6H), 1.49-1.55 (m, 6H), 6.79 (d, J = 7.4 Hz, 1H), 7.09 (d, J = 7.4 Hz, 1H), 7.14 (t, J = 7.4 Hz, 1H), 8.94 (s, 1H).
(工程b)
 製造法6記載の方法に準じ、化合物(IId-2)(180mg、0.41mmol)、4-ブロモ-3-ニトロベンゾトリフルオリド(IIIe-1)(63.3μL、0.41mmol)、トリス(ジベンジリデンアセトン)二パラジウム(0)-クロロホルム付加体(128mg、0.12mmol)、テトラフルオロホウ酸トリ-tert-ブチルホスホニウム(72mg、0.25mmol)、フッ化セシウム(439mg、2.89mmol)のトルエン(5mL)溶液を110℃、アルゴン下で攪拌した。21時間後、室温に戻しセライトろ過をした後、減圧下で濃縮した。続いて、n-ヘキサン-酢酸エチル(1:1)を溶離液としてシリカゲルを用いたフラッシュクロマトグラフィーによって、ジアリール化合物(IVd-2)(77mg、収率56%)を得た。
1H NMR (400 MHz, CDCl3) δ 2.50-2.70 (m, 2H), 2.98 (t, J = 7.8 Hz, 2H), 6.83 (d, J = 8.0 Hz, 1H), 6.85 (d, J = 8.0 Hz, 1H), 7.25 (t, J = 8.0 Hz, 1H), 7.53 (d, J = 8.0 Hz, 1H), 7.93 (d, J = 8.0 Hz), 8.05 (bs, 1H), 8.28 (s, 1H).
(工程c)
 化合物(IVd-2)(55mg、0.16mmol)、トリフェニルホスフィン(107mg、0.41mmol)のo-ジクロロベンゼン(1mL)溶液を加熱還流した。14時間後、減圧下で濃縮し、n-ヘキサン-酢酸エチル(1:3)を溶離液としてシリカゲルを用いたフラッシュクロマトグラフィーによって、白色固体として目的化合物(Ia-55)(20mg、収率40%)を得た。
1H NMR (500 MHz, CD3OD) δ 2.75 (t, J = 7.7 Hz, 2H), 3.59 (t, J = 7.7 Hz, 2H), 7.07 (d, J = 8.3 Hz, 1H), 7.35 (d, J = 8.3 Hz, 1H), 7.40 (d, J = 8.3 Hz, 1H), 7.73 (s, 1H), 8.30 (d, J = 8.3 Hz, 1H).
[製造例50] 
化合物Ib-1(7-(トリフルオロメチル)-9H-ピリド[2,3-b]インドール)の製造
Figure JPOXMLDOC01-appb-C000035
 製造法4記載の方法に準じ、酢酸パラジウム(44.9mg、0.20mmol)と4,5-ビス(ジフェニルホスフィノ)-9,9-ジメチルキサンテン(116mg、0.20mmol)のトルエン(1.0mL)溶液をアルゴン下で15分間攪拌した。その後、ピリジン化合物(IIc-4)(410mg、2.0mmol)、アミン化合物(IIIc-2)(309μL、2.20mmol)、ナトリウムtert-ブトキシド(269mg、2.80mmol)、トルエン(1mL)を加え、120℃アルゴン下で攪拌した。24時間後、室温に戻し減圧下で濃縮し、n-ヘキサン-酢酸エチル(2:1→1:1)を溶離液としてシリカゲルを用いたフラッシュクロマトグラフィーによって、薄い黄白色固体として目的化合物(Ib-1)(52.9mg、収率11%)を得た。
1H NMR (500 MHz,THF-d8); δ 6.94 (dd, J = 6.6, 6.6 Hz, 1H), 7.51 (dd, J = 9.2, 6.6 Hz, 1H), 7.59 (d, J = 8.3 Hz, 1H), 7.67 (d, J = 9.2 Hz, 1H), 8.15 (s, 1H), 8.25 (d, J = 8.3 Hz, 1H), 8.84 (d, J = 6.6 Hz, 1H). 
[製造例51] 化合物Ib-4(3-(9H-ピリド[3,4-b]インドロ-1-イル)フェノール)の製造
Figure JPOXMLDOC01-appb-C000036
 製造法7に記載した方法に準じ、エチルアミン化合物(Va-1)とm-ヒドロキシベンズアルデヒド(VI)を用いて得られるテトラヒドロカルボリン化合物(Vb-1)は、精製せずにそのまま、キシレン(12mL)とパラジウムカーボン(1.33g、12.5mmol)を加えアルゴン下還流した。6時間後、室温に戻しセライトろ過をした後、減圧下で濃縮した。続いて、n-ヘキサン-酢酸エチル(1:2)を溶離液としてPLCプレートを用いたクロマトグラフィーによって、薄い黄白色固体として目的化合物(Ib-4)(26.1mg、収率2.2%)を得た。
1H NMR (500 MHz, DMSO-d6); δ 6.91 (d, J = 8.0 Hz, 1H), 7.17 (dd, J = 7.4, 0.9 Hz, 1H), 7.28-7.30 (m, 2H), 7.35 (dd, J = 8.0, 7.2 Hz, 1H), 7.45 (ddd, J = 8.0, 7.2, 0.9 Hz, 1H), 7.52 (d, J = 8.0 Hz, 1H), 7.91 (d, J = 5.2 Hz, 1H), 8.06 (dd, J = 8.0, 0.9 Hz, 1H), 8.25 (d, J = 5.2 Hz, 1H).
[製造例52] 
化合物Ib-5(7-(トリフルオロメチル)-9H-ピリド[3,4-b]インドール)の製造
Figure JPOXMLDOC01-appb-C000037
 製造法4記載の方法に準じ、ピリジン化合物(IIc-5)とアミン化合物(IIIc-2)を用いてジアリール化合物(IVc-1)を得た。次いで、化合物(IVc-1)(120mg、0.38mmol)にDMA(20mL)を加え、さらに酢酸パラジウム(4.25mg、0.02mmol)、テトラフルオロホウ酸トリシクロヘキシルホスホニウム(14.0mg、0.04mmol)、炭酸カリウム(73.3mg、0.53mmol)、ピバル酸(11.6mg、0.11mmol)を加え、130℃アルゴン下で攪拌した。4時間後、室温に戻し減圧下で濃縮し、n-ヘキサン-酢酸エチル(1:1→酢酸エチル)を溶離液としてシリカゲルを用いたフラッシュクロマトグラフィーによって、薄い黄白色固体として目的化合物(Ib-5)(58.6mg、収率66%)を得た。
1H NMR (500 MHz, CD3OD); δ 7.51 (dd, J = 8.3, 0.9 Hz, 1H), 7.87 (s, 1H), 8.16 (dd, J = 5.4, 1.1 Hz, 1H), 8.35 (d, J = 5.4 Hz, 1H), 8.36 (s, 1H), 8.88 (s, 1H).
[製造例53] 
化合物Ib-6(7-(トリフルオロメチル)-5H-ピリド[4,3-b]インドール)の製造
 製造例52に記載した方法に準じ、目的化合物(Ib-6)(88.9mg、収率51%)を得た。
1H NMR (500 MHz, CD3OD); δ 7.51-7.55 (m, 2H), 7.82 (s, 1H), 8.33 (d, J = 8.3 Hz, 1H), 8.43 (d, J = 5.7 Hz, 1H), 9.29 (s, 1H).
[製造例54] 
化合物Ib-7(7-(トリフルオロメチル)-5H-ピリド[3,2-b]インドール)の製造
Figure JPOXMLDOC01-appb-C000038
 製造法2記載の方法に従い、アミン化合物(IIb-1)(400mg、3.11mmol)とヨード化合物(IIIa-2)(846mg、3.11mmol)、ヨウ化銅(59.2mg、0.31mmol)、1,10-フェナントロリン(84.1mg,0.47mmol)、炭酸カリウム(860mg,6.22mmol)を含むDMF(6.0mL)溶液を110℃アルゴン下攪拌した。24時間後、室温に戻しセライトろ過をし、減圧下で濃縮した。続いて、n-ヘキサン-酢酸エチル(6:1)を溶離液としてシリカゲルを用いたフラッシュクロマトグラフィーによって、粗生成物としてジアリール化合物(IVb-1)(22.4mg、収率<26%)を得た。
 得られた粗化合物(IVb-1)にDMA(8.2mL)を加え、さらに酢酸パラジウム(9.20mg、0.04mmol)、テトラフルオロホウ酸トリシクロヘキシルホスホニウム(30.2mg、0.08mmol)、炭酸カリウム(159mg、1.15mmol)、ピバル酸(25.1mg、0.25mmol)を加え130℃アルゴン下で攪拌した。10時間後、室温に戻し減圧下で濃縮し、n-ヘキサン-酢酸エチル(1:2)を溶離液としてPLCプレートを用いたクロマトグラフィーによって、薄い黄白色固体として目的化合物(Ib-7)(76.1mg、収率10%)を得た。
1H NMR (500 MHz, THF-d8); δ 7.36 (dd, J = 8.3, 4.6 Hz, 1H), 7.51 (d, J = 8.0 Hz, 1H), 7.78 (s, 1H), 7.82 (dd, J = 8.3, 1.4 Hz, 1H), 8.41 (d, J = 8.0 Hz, 1H), 8.52 (dd, J = 4.6, 1.4 Hz, 1H), 10.8 (br, 1H).
[製造例55] 
化合物Ic-1(7-(トリフルオロメチル)-2,3,4,9-テトラヒドロ-1H-カルバゾール)の製造
Figure JPOXMLDOC01-appb-C000039
 製造法12記載の方法に従い、ヒドラジン化合物(IIe-1)(0.4mL、3.40mmol)とシクロヘキサノン(IIIf-1)(0.35mL、3.40mmol)とを含む酢酸(34mL)溶液を還流しながら攪拌した。24時間後、室温に戻し減圧下で濃縮した。続いて、n-ヘキサン-酢酸エチル(20:1)を溶離液としてシリカゲルを用いたフラッシュクロマトグラフィーによって、白色固体として目的化合物(Ic-1)(285mg、収率35%)を得た。
1H NMR (500 MHz, CDCl3); δ 1.83-1.90 (m, 4H), 2.71-2.73 (m, 2H), 2.79-2.81 (m, 2H), 7.10 (dd, J = 7.7, 7.7 Hz, 1H), 7.38-7.40 (m, 2H), 7.84 (br, 1H).
[製造例56] 
化合物Ic-2(7-(トリフルオロメチル)-2,3-ジヒドロ-1H-カルバゾロ-4(9H)-オン)の製造
Figure JPOXMLDOC01-appb-C000040
 製造法13記載の方法に従い、アミン化合物(IIb-2)とジケトン化合物(IIIg-1)から、ジアリール化合物(IVe-1)を得た。
 次いで、化合物(IVe-1)(612mg、1.83mmol)、酢酸パラジウム(20.6mg、0.09mmol)、1,3-ビス(ジフェニルホスフィノ)プロパン(37.8mg、0.09mmol)、酢酸ナトリウム(601mg、7.33mmol)、テトラエチルアンモニウムクロリド(304mg、1.83mmol)を含むDMF(18mL)溶液を120℃アルゴン下で攪拌した。5時間後、室温に戻し減圧下で濃縮し、n-ヘキサン-酢酸エチル(1:2)を溶離液としてシリカゲルを用いたフラッシュクロマトグラフィーによって、薄い黄白色固体として目的化合物(Ic-2)(88.6mg、収率19%)を得た。
1H NMR (500 MHz, DMSO-d6); δ 2.15 (m, 2H), 2.47 (t, J = 6.3 Hz, 2H), 3.03 (t, J = 6.3 Hz, 2H), 7.46 (d, J = 8.3 Hz, 1H), 7.73 (s, 1H), 8.12 (d, J = 8.3 Hz, 1H), 12.3 (br, 1H).
[製造例57] 
化合物Ic-3(6,11-ジヒドロ-5H-ベンゾ[a]カルバゾール)の製造
Figure JPOXMLDOC01-appb-C000041
 製造法12記載の方法に従い、市販品であるヒドラジン化合物(IIe-2)とケトン化合物(IIIf-2)から目的化合物(Ic-3)(3.30g、収率;定量的)を得た。
1H NMR (500 MHz, CDCl3); δ 2.96-3.11 (m, 4H), 7.10-7.20 (m, 3H), 7.24-7.28 (m, 2H), 7.32 (d, J = 6.9 Hz, 1H), 7.38 (d, J = 8.0 Hz, 1H), 7.55 (d, J = 8.0 Hz, 1H), 8.17 (br, 1H).
 本発明のカルバゾール誘導体、カルボリン誘導体等の多環性含窒素複素環化合物又はその薬理学的に許容される塩を含有するEg5阻害剤は、細胞増殖抑制活性を有し、各種の癌に対して抗癌剤として使用することができ、また、免疫抑制剤、免疫調整剤等としても使用することができる。

Claims (12)

  1. 式(I)
    Figure JPOXMLDOC01-appb-C000042

    {式中、
     結合a-b及びc-dは、同一又は異なって、単結合又は二重結合を表し、
     Q、Q、Q及びQは、同一又は異なって、窒素原子又は-C(X)=[式中、Xは、水素原子、置換若しくは非置換アルキル基、置換若しくは非置換シクロアルキル基、置換若しくは非置換アルケニル基、置換若しくは非置換アリール基、置換若しくは非置換アラルキル基、置換若しくは非置換複素環基、置換若しくは非置換複素環アルキル基、OR(式中、Rは、水素原子、置換若しくは非置換アルキル基、置換若しくは非置換シクロアルキル基、置換若しくは非置換アルケニル基、置換若しくは非置換アリール基、置換若しくは非置換アラルキル基、置換若しくは非置換複素環基又は置換若しくは非置換複素環アルキル基を表す)、OCOR(式中、Rは、前記Rと同義である)、S(O)nR(式中、nは、0、1又は2を表し、Rは、前記Rと同義である)、SONR(式中、R及びRは、同一又は異なって、前記Rと同義であるか、RとRが一緒になって、置換もしくは非置換含窒素複素環基を形成してもよい)、COR(式中、Rは、前記Rと同義である)、COOR(式中、Rは、前記Rと同義である)、CONR(式中、R及びRは、それぞれ前記R及びRと同義である)、ニトロ基、シアノ基又はハロゲン原子を表し、ここで、Xが同時に複数存在する場合は、同一または異なっていてもよく、また、隣接する任意の二つのXは、一緒になって置換もしくは非置換の脂環式炭化水素環、芳香族炭化水素環または複素環を形成してもよい]を表し、
     Y、Y、Y及びYは、同一又は異なって、前記Xと同義であり、結合a-b及び/又はc-dが単結合を表すとき、Y~Yは、オキソ基又はチオキソ基であってもよく、
     Zは、水素原子、置換若しくは非置換アルキル基又はアミノ基の保護基を表す}
    で表される多環性含窒素複素環化合物又はその薬理学的に許容される塩を有効成分として含有するEg5阻害剤。
  2. 式(I)で表される化合物が、下記式(Ia)
    Figure JPOXMLDOC01-appb-C000043

    (式中、X~Xは、同一又は異なって、前記Xと同義であり、Y~Y及びZは、前記と同義である)
    で表されるカルバゾール誘導体であることを特徴とする請求項1記載のEg5阻害剤。
  3. 及びXが、同一又は異なって、置換若しくは非置換アルキル基、OR(式中、Rは、前記と同義である)、COR(式中、Rは、前記と同義である)、COOR(式中、Rは、前記と同義である)、置換若しくは非置換アリール基又はハロゲン原子であることを特徴とする請求項2記載のEg5阻害剤。
  4. 置換若しくは非置換アルキル基が、tert-ブチル基又はトリフルオロメチル基であることを特徴とする請求項3記載のEg5阻害剤。
  5. 及びX或いはXおよびXが一緒になって形成される複素環が、ピペリジノン環であることを特徴とする請求項2記載のEg5阻害剤。
  6. 式(I)で表される化合物が、下記式(Ib)
    Figure JPOXMLDOC01-appb-C000044

    (式中、Q1a~Q4aは、その少なくとも一つが窒素原子を表し、その他は前記Q~Qの定義と同義であり、Y~Y及びZは、前記と同義である)
    で表されるカルボリン誘導体であることを特徴とする請求項1記載のEg5阻害剤。
  7. 2aが、窒素原子であるβ-カルボリン誘導体であることを特徴とする請求項6記載のEg5阻害剤。
  8. が、トリフルオロメチル基であることを特徴とする請求項6又は7のいずれか記載のEg5阻害剤。
  9. 請求項1~8のいずれか記載の式(I)で表される含窒素複素環化合物又はその薬理学的に許容される塩を有効成分として含有する抗癌剤。
  10. 請求項1~8のいずれか記載の式(I)で表される含窒素複素環化合物又はその薬理学的に許容される塩を有効成分として含有する免疫抑制剤又は免疫調整剤。
  11. 式(Ia-A)
    Figure JPOXMLDOC01-appb-C000045

    (式中、X1a及びX2aは、-NHC(O)CHCH-又は-CHCHC(O)NH-を介して結合した基を表し、X、X、Y~Y及びZは前記と同義である)
    で表される多環性含窒素複素環化合物又はその薬理学的に許容される塩。
  12. 式(Ia-B)
    Figure JPOXMLDOC01-appb-C000046

    (式中、X2b及びX3bは、-NHC(O)CHCH-又は-CHCHC(O)NH-を介して結合した基を表し、X、X、Y~Y及びZは前記と同義である)
    で表される多環性含窒素複素環化合物又はその薬理学的に許容される塩。
PCT/JP2009/007298 2008-12-26 2009-12-25 Eg5阻害剤 WO2010073719A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008331963A JP2012051804A (ja) 2008-12-26 2008-12-26 Eg5阻害剤
JP2008-331963 2008-12-26

Publications (1)

Publication Number Publication Date
WO2010073719A1 true WO2010073719A1 (ja) 2010-07-01

Family

ID=42287352

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/007298 WO2010073719A1 (ja) 2008-12-26 2009-12-25 Eg5阻害剤

Country Status (2)

Country Link
JP (1) JP2012051804A (ja)
WO (1) WO2010073719A1 (ja)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011084439A1 (en) * 2009-12-17 2011-07-14 Sanofi Tetrahydrocarboline derivatives as eg5 inhibitors
US8318132B2 (en) 2008-02-14 2012-11-27 Siemens Medical Solutions Usa, Inc. Imaging agents for detecting neurological dysfunction
US8420052B2 (en) 2008-07-24 2013-04-16 Siemens Medical Solutions Usa, Inc. Imaging agents useful for identifying AD pathology
WO2013061669A1 (ja) * 2011-10-25 2013-05-02 国立大学法人九州大学 G2/m期停止及び細胞死を誘導するベンゾヒドラジド誘導体
US8491869B2 (en) 2009-03-23 2013-07-23 Eli Lilly And Company Imaging agents for detecting neurological disorders
JP2013541566A (ja) * 2010-11-03 2013-11-14 フィリップ・モーリス・プロダクツ・ソシエテ・アノニム カルバゾール及びカルボリンの誘導体ならびにその調製及び治療法上の応用
US8691187B2 (en) 2009-03-23 2014-04-08 Eli Lilly And Company Imaging agents for detecting neurological disorders
WO2014174745A1 (ja) * 2013-04-26 2014-10-30 国立大学法人京都大学 Eg5阻害剤
US8932557B2 (en) 2008-02-14 2015-01-13 Eli Lilly And Company Imaging agents for detecting neurological dysfunction
JP2015517572A (ja) * 2012-05-22 2015-06-22 イーライ リリー アンド カンパニー 神経機能障害を検出するための造影剤
WO2016037106A1 (en) * 2014-09-05 2016-03-10 Allosteros Therapeutics, Inc CaMKII INHIBITORS AND USES THEREOF
WO2017070796A1 (en) * 2015-10-30 2017-05-04 Trillium Therapeutics Inc. Heterocycle derivatives and their use for the treatment of cns disorders
CN109651232A (zh) * 2018-12-12 2019-04-19 河北华清光电材料有限公司 制备4-溴咔唑及其衍生物的方法
CN111039849A (zh) * 2019-12-26 2020-04-21 阜阳欣奕华材料科技有限公司 一种含有咔唑环类化合物的制备方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2803697A1 (en) 2010-06-25 2011-12-29 Facultes Universitaires Notre Dame De La Paix Beta carboline derivatives useful in the treatment of proliferative disorders
EP3016950B1 (en) * 2013-07-02 2017-06-07 Bristol-Myers Squibb Company Tricyclic pyrido-carboxamide derivatives as rock inhibitors
EP3016951B1 (en) * 2013-07-02 2017-05-31 Bristol-Myers Squibb Company Tricyclic pyrido-carboxamide derivatives as rock inhibitors

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0565283A (ja) * 1991-03-01 1993-03-19 Meiji Seika Kaisha Ltd β−カルボリン誘導体
JPH0859666A (ja) * 1994-08-04 1996-03-05 F Hoffmann La Roche Ag 新規なピロロカルバゾール類
JPH08502037A (ja) * 1992-07-20 1996-03-05 ザ・ウエルカム・ファウンデーション・リミテッド 4環性化合物、これらを調整するための方法及び中間体並びに抗腫瘍剤としてのこれらの使用
JP2000516231A (ja) * 1996-08-09 2000-12-05 ベーリンガー インゲルハイム ファーマシューティカルズ インコーポレイテッド 免疫調節物質としての4―置換β―カルボリン
JP2001504804A (ja) * 1996-08-23 2001-04-10 ベーリンガー・マンハイム・ファーマシューティカルズ・コーポレイション−スミスクライン・ベックマン・コーポレイション・リミテッド・パートナーシップ・ナンバー1 Fas発現阻害方法
JP2002514180A (ja) * 1996-09-04 2002-05-14 ワーナー―ランバート・コンパニー マトリックスメタロプロテイナーゼを阻害するための化合物およびその方法
JP2003528855A (ja) * 2000-03-29 2003-09-30 バーテックス ファーマシューティカルズ インコーポレイテッド カルバメートカスパーゼインヒビターおよびその使用
JP2004531558A (ja) * 2001-05-23 2004-10-14 バーテックス ファーマシューティカルズ インコーポレイテッド カスパーゼインヒビターおよびそれらの使用
JP2005503341A (ja) * 2001-04-23 2005-02-03 エフ.ホフマン−ラ ロシュ アーゲー 3環式アルキルヒドロキサム酸塩、その調製法、およびその細胞増殖抑制剤としての使用法
JP2006504632A (ja) * 2002-04-26 2006-02-09 ワーナー−ランバート・カンパニー、リミテッド、ライアビリティ、カンパニー チェックポイントキナーゼ(Wee1およびChk1)の阻害剤
JP2008513487A (ja) * 2004-09-20 2008-05-01 ジヤンセン・フアーマシユーチカ・ナームローゼ・フエンノートシヤツプ 性ステロイドホルモン受容体モジュレーターとして有用な新規な四環式ヘテロ原子含有誘導体

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0565283A (ja) * 1991-03-01 1993-03-19 Meiji Seika Kaisha Ltd β−カルボリン誘導体
JPH08502037A (ja) * 1992-07-20 1996-03-05 ザ・ウエルカム・ファウンデーション・リミテッド 4環性化合物、これらを調整するための方法及び中間体並びに抗腫瘍剤としてのこれらの使用
JPH0859666A (ja) * 1994-08-04 1996-03-05 F Hoffmann La Roche Ag 新規なピロロカルバゾール類
JP2000516231A (ja) * 1996-08-09 2000-12-05 ベーリンガー インゲルハイム ファーマシューティカルズ インコーポレイテッド 免疫調節物質としての4―置換β―カルボリン
JP2001504804A (ja) * 1996-08-23 2001-04-10 ベーリンガー・マンハイム・ファーマシューティカルズ・コーポレイション−スミスクライン・ベックマン・コーポレイション・リミテッド・パートナーシップ・ナンバー1 Fas発現阻害方法
JP2002514180A (ja) * 1996-09-04 2002-05-14 ワーナー―ランバート・コンパニー マトリックスメタロプロテイナーゼを阻害するための化合物およびその方法
JP2003528855A (ja) * 2000-03-29 2003-09-30 バーテックス ファーマシューティカルズ インコーポレイテッド カルバメートカスパーゼインヒビターおよびその使用
JP2005503341A (ja) * 2001-04-23 2005-02-03 エフ.ホフマン−ラ ロシュ アーゲー 3環式アルキルヒドロキサム酸塩、その調製法、およびその細胞増殖抑制剤としての使用法
JP2004531558A (ja) * 2001-05-23 2004-10-14 バーテックス ファーマシューティカルズ インコーポレイテッド カスパーゼインヒビターおよびそれらの使用
JP2006504632A (ja) * 2002-04-26 2006-02-09 ワーナー−ランバート・カンパニー、リミテッド、ライアビリティ、カンパニー チェックポイントキナーゼ(Wee1およびChk1)の阻害剤
JP2008513487A (ja) * 2004-09-20 2008-05-01 ジヤンセン・フアーマシユーチカ・ナームローゼ・フエンノートシヤツプ 性ステロイドホルモン受容体モジュレーターとして有用な新規な四環式ヘテロ原子含有誘導体

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ARUN C. KARMAKAR ET AL.: "Efficient synthesis of 5-demethyl-6-methylisoellipticine and utilization of the methodology to prepare angular and linear pyridocarbazoles", JOURNAL OF THE CHEMICAL SOCIETY, PERKIN TRANSACTIONS 1: ORGANIC AND BIO-ORGANIC CHEMISTRY, vol. 8, 1991, pages 1997 - 2002 *
HIROMI OKUMURA ET AL.: "Phenothiazine and carbazole-related compounds inhibit mitotic kinesin Eg5 and trigger apoptosis in transformed culture cells", TOXICOLOGY LETTERS, vol. 166, no. 1, 2006, pages 44 - 52 *

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8318132B2 (en) 2008-02-14 2012-11-27 Siemens Medical Solutions Usa, Inc. Imaging agents for detecting neurological dysfunction
US8932557B2 (en) 2008-02-14 2015-01-13 Eli Lilly And Company Imaging agents for detecting neurological dysfunction
US8420052B2 (en) 2008-07-24 2013-04-16 Siemens Medical Solutions Usa, Inc. Imaging agents useful for identifying AD pathology
US8491869B2 (en) 2009-03-23 2013-07-23 Eli Lilly And Company Imaging agents for detecting neurological disorders
US8691187B2 (en) 2009-03-23 2014-04-08 Eli Lilly And Company Imaging agents for detecting neurological disorders
WO2011084439A1 (en) * 2009-12-17 2011-07-14 Sanofi Tetrahydrocarboline derivatives as eg5 inhibitors
JP2013541566A (ja) * 2010-11-03 2013-11-14 フィリップ・モーリス・プロダクツ・ソシエテ・アノニム カルバゾール及びカルボリンの誘導体ならびにその調製及び治療法上の応用
WO2013061669A1 (ja) * 2011-10-25 2013-05-02 国立大学法人九州大学 G2/m期停止及び細胞死を誘導するベンゾヒドラジド誘導体
JP2015517572A (ja) * 2012-05-22 2015-06-22 イーライ リリー アンド カンパニー 神経機能障害を検出するための造影剤
WO2014174745A1 (ja) * 2013-04-26 2014-10-30 国立大学法人京都大学 Eg5阻害剤
WO2016037106A1 (en) * 2014-09-05 2016-03-10 Allosteros Therapeutics, Inc CaMKII INHIBITORS AND USES THEREOF
CN107074856A (zh) * 2014-09-05 2017-08-18 阿略斯泰罗斯医疗公司 CaMKII抑制剂及其用途
JP2017534572A (ja) * 2014-09-05 2017-11-24 アロステロス セラピューティクス, インコーポレイテッド CaMKII阻害剤及びその使用
US10759792B2 (en) 2014-09-05 2020-09-01 The Johns Hopkins University CaMKII inhibitors and uses thereof
JP2020143161A (ja) * 2014-09-05 2020-09-10 ザ・ジョンズ・ホプキンス・ユニバーシティー CaMKII阻害剤及びその使用
US11325908B2 (en) 2014-09-05 2022-05-10 The Johns Hopkins University CaMKII inhibitors and uses thereof
WO2017070796A1 (en) * 2015-10-30 2017-05-04 Trillium Therapeutics Inc. Heterocycle derivatives and their use for the treatment of cns disorders
US10428030B2 (en) 2015-10-30 2019-10-01 Trillium Therapeutics Heterocycle derivatives and their use for the treatment of CNS disorders
CN109651232A (zh) * 2018-12-12 2019-04-19 河北华清光电材料有限公司 制备4-溴咔唑及其衍生物的方法
CN111039849A (zh) * 2019-12-26 2020-04-21 阜阳欣奕华材料科技有限公司 一种含有咔唑环类化合物的制备方法
CN111039849B (zh) * 2019-12-26 2021-07-06 阜阳欣奕华材料科技有限公司 一种含有咔唑环类化合物的制备方法

Also Published As

Publication number Publication date
JP2012051804A (ja) 2012-03-15

Similar Documents

Publication Publication Date Title
WO2010073719A1 (ja) Eg5阻害剤
CA3049141C (en) N-[4-fluoro-5-[[(2s,4s)-2-methyl-4-[(5-methyl-1,2,4-oxadiazol-3-yl)methoxy]-1-piperidyl]methyl]thiazol-2-yl]acetamide as oga inhibitor
JP6457623B2 (ja) 2,4−二置換7H−ピロロ[2,3−d]ピリミジン誘導体、その製造方法および医薬における使用
JP6966423B2 (ja) 縮合環ピリミジンアミノ誘導体、その製造方法、中間体、薬学的組成物及び応用
Zelisko et al. Crotonic, cynnamic, and propiolic acids motifs in the synthesis of thiopyrano [2, 3-d][1, 3] thiazoles via hetero-Diels–Alder reaction and related tandem processes
TW200403224A (en) Novel compounds
CA2785679A1 (en) 1,3,4-oxadiazole-2-carboxamide compound
WO2007037187A1 (ja) Pgd2受容体アンタゴニスト活性を有するスルホンアミド誘導体
WO2012140114A1 (en) Tri- and tetracyclic pyrazolo[3,4-b]pyridine compounds as antineoplastic agent
JP2010533674A (ja) Mk2阻害剤として有用なヘテロ環式化合物
WO2008104077A1 (en) Small molecule inhibitors of protein arginine methyltransferases (prmts)
CA2870062A1 (en) Pyrrolopyrazone inhibitors of tankyrase
JP5654246B2 (ja) キナゾリン化合物を有効成分とする医薬組成物
BR112017009012B1 (pt) Derivados de anel benzo de seis membros como inibidor de dpp-4 e uso dos mesmos
HUE024989T2 (en) Azaindole derivatives as ABI and SRC protein kinase inhibitors
CN108727361A (zh) 吲哚胺2,3-双加氧酶抑制剂与应用
JP5760078B2 (ja) 含窒素飽和複素環化合物
WO2019091277A1 (zh) 2-(1h-吡唑-3-基)苯酚类化合物及其应用
CA2963337A1 (en) N-substituted beta-carbolinium compounds as potent p-glycoprotein inducers
JP2012211085A (ja) ヘッジホッグシグナル阻害剤
JP5764628B2 (ja) 医薬組成物
JP6120311B2 (ja) ポリフェノール化合物
WO2019049024A1 (en) COMPOUNDS HAVING A BENZO [A] CARBAZOLE STRUCTURE AND THEIR USE
WO2006129781A1 (ja) ジベンズオキセピン誘導体の製造方法
CN109280046B (zh) 苯并咪唑类衍生物及其制备方法及其在医药上的用途

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09834525

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09834525

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP