WO2010073666A1 - ガス供給装置、真空処理装置及び電子デバイスの製造方法 - Google Patents

ガス供給装置、真空処理装置及び電子デバイスの製造方法 Download PDF

Info

Publication number
WO2010073666A1
WO2010073666A1 PCT/JP2009/007188 JP2009007188W WO2010073666A1 WO 2010073666 A1 WO2010073666 A1 WO 2010073666A1 JP 2009007188 W JP2009007188 W JP 2009007188W WO 2010073666 A1 WO2010073666 A1 WO 2010073666A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
pipe
gas supply
sintered body
processing apparatus
Prior art date
Application number
PCT/JP2009/007188
Other languages
English (en)
French (fr)
Inventor
松村康晴
森脇崇行
Original Assignee
キヤノンアネルバ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by キヤノンアネルバ株式会社 filed Critical キヤノンアネルバ株式会社
Priority to JP2010543884A priority Critical patent/JP5209740B2/ja
Priority to US12/993,168 priority patent/US20110064877A1/en
Publication of WO2010073666A1 publication Critical patent/WO2010073666A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering

Definitions

  • the present invention relates to a gas supply device used for introducing a processing gas into a vacuum vessel, a vacuum processing device provided with the gas supply device in a vacuum vessel, and an electronic device manufacturing method using the vacuum device.
  • Patent Document 1 As a technique for uniformly supplying a reactive gas, for example, a sputtering technique using a gas supply pipe in which a large number of gas outlets are opened in a vacuum vessel has been proposed (see Patent Document 1).
  • Patent Document 1 it is not sufficient to homogenize the gas in the vacuum vessel simply by opening a large number of gas outlets in the gas supply pipe.
  • the total length of the gas supply pipe tends to be longer, and there is a difference in gas flow rate between the side closer to the connection with the gas introduction system and the side far from it, and gas is supplied uniformly. There was a problem that could not be done.
  • the present invention provides a gas supply device that can supply gas uniformly even when the total length of the gas supply pipe is long, and can ensure the uniformity of film quality.
  • An object of the present invention is to provide an apparatus and a method for manufacturing an electronic device using the vacuum processing apparatus.
  • the gas supply device is a gas supply device including a gas supply pipe for supplying a processing gas into a vacuum vessel, and the gas supply pipe includes an inner pipe connected to a gas introduction pipe, A double pipe comprising an outer pipe covering the periphery of the inner pipe with a gap, the inner pipe having a porous sintered body through which a gas passes at least partially,
  • the tube is a gas supply device having a number of gas outlets through which the gas that has passed through the sintered body surface flows out into the vacuum vessel.
  • the vacuum processing apparatus is a vacuum processing apparatus provided with a gas supply pipe for supplying gas into a vacuum vessel for processing a substrate, wherein the gas supply pipe includes an inner pipe connected to a gas introduction pipe and A double tube comprising an outer tube covering the outer periphery of the inner tube with a gap, the inner tube having a porous sintered body that allows gas to pass through at least a part thereof,
  • the outer pipe is a vacuum processing apparatus characterized in that it has a number of gas outlets for discharging the gas that has passed through the sintered body into the vacuum vessel.
  • the method for manufacturing an electronic device includes the step of performing substrate processing in a vacuum processing apparatus provided with a gas supply pipe for supplying a gas into the vacuum vessel.
  • a gas supply pipe for supplying a gas into the vacuum vessel.
  • a double pipe composed of an inner pipe connected to the gas introduction pipe and an outer pipe covering the outer periphery of the inner pipe with a gap therebetween, and the inner pipe has at least a portion of gas.
  • a method for manufacturing an electronic device comprising: a porous sintered body to be passed, wherein the outer tube has a plurality of gas outlets for discharging the gas that has passed through the sintered body into the vacuum vessel. It is.
  • the gas supply pipe has a double-pipe structure, and gas is diffused in the outer pipe through the porous sintered body surface of the inner pipe, and then discharged from a number of gas outlets in the outer pipe. Is done. Therefore, even if the total length of the gas supply pipe is long, the gas can be supplied uniformly, and the uniformity of the film quality can be ensured.
  • FIG. 1A is a schematic front view
  • FIG. 1B is a schematic right side view.
  • the vacuum processing apparatus 1 of the present embodiment includes a vacuum container 4 that partitions a processing space 3 of a substrate 2.
  • a substrate support 5 for placing the substrate 2 is provided at the center in the vacuum vessel 4.
  • the substrate support 5 is configured to support the substrate 2 on its mounting surface by an electrostatic adsorption method, and to be rotatable and movable up and down.
  • a cathode unit 6 is provided on the upper portion of the vacuum vessel 4 so as to face the substrate support 5.
  • the cathode unit 6 includes a magnet unit that supports the target on the front side of the cathode casing and applies a magnetic field to the target on the back side.
  • an exhaust port 7 connected to an unillustrated exhaust system (exhaust pump) is provided at the bottom of the vacuum container 4 to exhaust the inside of the vacuum container and keep it in a vacuum state.
  • a gas introduction pipe 22 is connected to the gas supply pipe 21, and A processing gas containing a reactive gas is supplied from the outlet 26 (see FIG. 2) into the vacuum vessel.
  • the gas introduction pipe 22 is connected to a gas introduction system including a gas source.
  • the gas outlet 26 of the gas supply pipe 21 is opened facing the upper wall of the vacuum vessel 2 and faces away from the substrate 2. Therefore, the flow of the gas supplied from the gas outlet 26 of the gas supply pipe 21 collides with the upper wall surface of the vacuum vessel 2 and then moves toward the processing space in the center of the vessel, so that the gas flow becomes a more uniform flow.
  • FIG. 2 is a schematic diagram showing the structure of the gas supply device of this embodiment.
  • the gas supply device 20 is a device provided with a gas supply pipe 21 for supplying a processing gas into a vacuum vessel, and the gas supply pipe 21 is an inner pipe connected to a gas introduction pipe 22. 23 and an outer tube 24 covering the outer periphery of the inner tube 23 with a gap therebetween.
  • the gas introduction tube 22 extends from the gas source, passes through the central portion in the longitudinal direction of the outer tube 24, and is connected to the central portion in the longitudinal direction of the inner tube 23.
  • the reason for connecting to the central portion of the inner pipe 23 in this way is to make the amount of gas released from the gas supply pipe 21 uniform.
  • a porous sintered body 25 is interposed in a part (intermediate portion) of the inner tube 23, and has a porous sintered body surface through which gas passes.
  • the outer pipe 24 is provided with a number of gas outlets 26 through which the gas introduced from the gas introduction pipe 22 to the inner pipe 23 and passed through the sintered body surface flows out into the vacuum vessel.
  • a number of gas outlets 26 are provided in the longitudinal direction of the outer tube 24, and are opened facing the upper wall of the vacuum vessel 2 as described above.
  • pipe 24 is set larger than the width
  • the sintered body surface of the inner tube 23 is arranged evenly on the left and right with respect to the center in the width direction (diameter center) of the substrate 2, and the gas introduction tube It is located at the center of the left and right portions 24a, 24a of the outer tube 24 with the 22 connecting portion as a boundary.
  • the inner tube 23 has only a length up to the sintered body 25, the amount of gas in the outer tube 24 varies depending on the part. It needs to be extended. Therefore, in the case where the inner tube 23 is extended from the sintered body 25 in the outer tube 24, it is not always necessary to be hollow.
  • 3A to 3C are schematic views illustrating the cross-sectional structure of the gas supply pipe 21 of the gas supply device 20, respectively.
  • the gas supply pipe 21 illustrated in FIG. 3A is an example in which a cylindrical porous sintered body 25 is interposed in the middle part of the inner pipe 23.
  • a metal sintered body by powder metallurgy can be used.
  • a metal having heat resistance and corrosion resistance such as aluminum and stainless steel (SUS).
  • the sintered body 25 is preferably formed of sintered particles of several ⁇ m, and no hole treatment is performed so as not to block the holes, and a joining means such as welding is provided at the intermediate portion of the inner tube 23. Is provided.
  • the outer tube 24 covers the outer periphery of the inner tube 23 with a gap, and a gas outlet 26 is opened at the top.
  • the upper half surface of the columnar sintered body 25 interposed in the middle portion of the inner pipe 23 has a half-short tubular cover member 30. It is covered with.
  • the outer tube 24 covers the outer periphery of the inner tube 23 with a gap, and a gas outlet 26 is opened at the top. That is, inside the outer tube 24, the sintered body surface of the inner tube 23 faces in the opposite direction to the opening side of the gas outlet 26 of the outer tube 24.
  • the gas in the inner tube 23 is supplied to the sintered body 25, and is transferred from the sintered body surface to the outer tube 24.
  • the gas is discharged in the direction opposite to the opened gas outlet 26. Therefore, the gas is rectified, and a gas with a constant flow rate is easily supplied into the vacuum vessel.
  • the inner tube itself may be constituted by a cylindrical sintered body 25 as in the gas supply tube 21 of another embodiment illustrated in FIG.
  • the flow rate distribution of the processing gas discharged from the gas outlet 26 of the outer pipe 24 is made constant.
  • the method of adjusting the flow rate to the gas introduction pipe 22 is not limited, but it is desirable to control using a mass flow controller or the like.
  • the gas supply pipe 21 has a double-pipe structure, and passes through the porous sintered body surface of the inner pipe 23 and passes through the gas inside the outer pipe 24. Is diffused and then discharged from a number of gas outlets 26 of the outer tube 24. Therefore, even if the total length of the gas supply pipe 21 is long, the gas can be supplied uniformly, and the uniformity of the film quality can be ensured.
  • FIG. 4 is a schematic cross-sectional view illustrating the vacuum processing apparatus according to the second embodiment.
  • symbol is attached
  • a substrate carry-in port and a substrate carry-out port are opened on both side surfaces of the vacuum vessel 4 that partitions the processing space 3, A long substrate (or band-shaped substrate) 102 is conveyed.
  • An exhaust port 7 connected to an exhaust system that exhausts the processing space 3 is provided at the bottom of the vacuum vessel 4.
  • two cathode units 6 are arranged in the upper part of the vacuum vessel 4 in the conveying direction of the long substrate 102, and a continuous film forming process is performed in the vacuum vessel. Between the two cathode units 6, there is provided a gas supply pipe 21 of the gas supply device 20 for supplying a processing gas including a reactive gas into the vacuum vessel during the film forming process.
  • the gas supply pipe 21 extends along a direction (width direction) orthogonal to the longitudinal direction of the long substrate 102.
  • a gas outlet 26 is opened at the upper part of the outer pipe 24 and discharges the gas blowing direction toward the upper wall of the vacuum vessel 4 (see FIG. 3).
  • the flow distribution of the processing gas discharged from the gas outlet 26 of the gas supply pipe 21 is made constant by using the gas supply apparatus 20 having the above structure. Can do. That is, in the vacuum processing apparatus 100 of the second embodiment, the processing gas supplied from the gas supply apparatus 20 reaches the processing space 3 between the target and the long substrate 102 without disturbing the distribution thereof. .
  • FIG. 5A is a schematic view of the vacuum processing apparatus according to the third embodiment seen through from above.
  • FIG. 5B is a schematic cross-sectional view taken along the line A-A ′ of the vacuum processing apparatus shown in FIG.
  • FIG. 5C is a schematic cross-sectional view in the B-B ′ cross section of the vacuum processing apparatus shown in FIG.
  • the vacuum processing apparatus 200 of the third embodiment further has a structure in which the periphery of the gas supply pipe 21 is surrounded by a shield 40 having a rectangular box shape.
  • the gas supply pipe 21 has a gas outlet 26 opened at the upper part of the outer pipe 24 and discharges the gas blowing direction toward the upper wall of the vacuum vessel 4. According to this structure, the gas supplied from the gas outlet 26 of the gas supply pipe 21 collides with the shield 40 after colliding with the upper wall surface of the vacuum container 4, so that it is difficult to freely diffuse inside the vacuum container 4.
  • a gap is provided between the side wall extending in the direction (width direction) orthogonal to the longitudinal direction of the long substrate 102 and the upper wall surface of the vacuum vessel 4.
  • the gas flow supplied from the gas outlet 26 of the gas supply pipe 21 collides with the upper wall surface of the vacuum vessel 4, and then the side wall of the shield 40 extending in the width direction of the long substrate 102 and the vacuum vessel 4. It introduce
  • a gas outlet 26 of the gas supply pipe 21 is opened at the upper part of the outer pipe 24 and is installed on the upstream side and the downstream side in the transport direction of the long substrate 102 in order to release the gas blowing direction toward the upper wall of the vacuum vessel 4.
  • the gas flows to the processing spaces in the vicinity of the two cathode units 6 are equalized.
  • the gap between the side wall of the shield 40 extending in the width direction of the long substrate 102 and the upper wall surface of the vacuum vessel 4 has a dimension equal to or less than the mean free path of the gas molecules to be supplied. If the gap is equal to or greater than the mean free path of gas molecules, the gas diffuses into the vacuum vessel 4, and between the upper wall surface of the vacuum vessel 4 and the side wall of the shield 40 extending in the width direction of the long substrate 102. The gas cannot be uniformly supplied only to the processing space near the cathode unit 6 from the gap.
  • the average free path of Ar, O 2 , and N 2 is about 6 mm, so the space between the upper wall surface of the vacuum vessel 4 and the side wall of the shield 40 that extends in the width direction of the long substrate 102.
  • the gap needs to be narrower than 6 mm.
  • FIG. 6 is a schematic view illustrating a vacuum processing apparatus according to the fourth embodiment.
  • symbol is attached
  • the gas supply pipes 21 of the gas supply apparatus 20 are provided at the end portions of the two cathode units 6 on the side wall side in the substrate transport direction. Also in this embodiment, the gas outlet 26 of the gas supply pipe 21 is opened at the upper part of the outer pipe 24 and discharges the gas blowing direction toward the upper wall of the vacuum vessel 4 (see FIG. 4). It is not limited to this, You may open the gas blower outlet 26 in the outer tube
  • the flow distribution of the processing gas discharged from the gas outlet 26 of the gas supply pipe 21 is made constant by using the gas supply apparatus 20 having the above structure. Can do. That is, in the vacuum processing apparatus 300 of the fourth embodiment, the processing gas supplied from the gas supply apparatus 20 reaches the processing space 3 between the target and the long substrate 102 without disturbing the distribution thereof. .
  • FIG. 7 is a schematic diagram showing the structure of a gas supply device according to another example.
  • symbol is attached
  • a gas supply pipe 21 having a double pipe structure is provided, and the gas supply pipe 21 has a C-shaped annular shape.
  • the gas introduction pipe 22 penetrates through the central portion of the C-shaped outer tube 24 and is connected to the central portion of the C-shaped inner tube 23.
  • the outer tube 24 is provided with a number of gas outlets 26 through which gas introduced into the inner tube 23 from the gas introduction system 22 and passed through the porous sintered body 25 flows out into the vacuum vessel. A large number of gas outlets 26 are provided at equal intervals on the inner peripheral surface of the outer tube 24.
  • the gas supply device 20 of this example when the gas supply device 20 of this example is provided between the cathode unit 6 and the substrate 2 shown in FIG. 1, the gas can be reliably supplied to the space between the cathode unit 6 and the substrate.
  • gas blower outlet 26 is provided in the inner peripheral surface of the outer tube
  • the gas blower outlet 26 can also be provided in the outer peripheral surface of the outer tube
  • a vacuum processing apparatus is used in, for example, a film forming process for manufacturing an electronic device such as a large flat panel display (liquid crystal display), a thin film solar cell panel, a microinductor, and a magnetic recording head. It can also be applied to a vacuum processing apparatus.
  • a film forming process for manufacturing an electronic device such as a large flat panel display (liquid crystal display), a thin film solar cell panel, a microinductor, and a magnetic recording head. It can also be applied to a vacuum processing apparatus.
  • Vacuum processing apparatus 1,100,200,300 Vacuum processing apparatus 2,102 Substrate 3 Processing space 4 Vacuum vessel 5 Substrate support 6 Cathode unit 7 Exhaust port 20 Gas supply device 21 Gas supply pipe 22 Gas introduction pipe 23 Inner pipe 24 Outer pipe 25 Firing Coupling 26 Gas outlet 30 Cover member 40 Shield

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

 ガス供給管21の全長が長くとも、均一にガスを供給することができ、膜質の均一性を確保することができるガス供給装置20を提供する。 ガス導入管22に接続された内管23と、該内管23の外周部を間隙を隔てて被う外管24とからなる二重管で構成されたガス供給管21を備え、前記内管23は、少なくとも一部にガスを通過させる多孔質の焼結体25を有し、前記外管24は、前記焼結体25を通過したガスを真空容器内へ放出させる多数のガス吹出口26を有するガス供給装置20とする。

Description

ガス供給装置、真空処理装置及び電子デバイスの製造方法
 本発明は、真空容器内に処理ガスを導入するために使用するガス供給装置、該ガス供給装置を真空容器内に備えた真空処理装置及び該真空装置を用いた電子デバイスの製造方法に関する。
 スパッタリング、蒸着、イオンプレーティング及びプラズマ重合など、真空容器内で基板などに成膜処理を行う場合には、真空容器内に処理ガスを供給する必要がある。特に、真空雰囲気下で反応性ガスを供給して基板上に薄膜を成膜する成膜方法では、反応性ガスを均一に供給することが、膜質の均一性を確保するために重要である。
 反応性ガスを均一に供給する技術としては、例えば、真空容器内に多数のガス流出口を開設したガス供給管を用いるスパッタリング技術が提案されている(特許文献1参照)。
特開平3-166366号公報(第1図、第2図)
 しかしながら、特許文献1のように、ガス供給管に多数のガス流出口を開設しただけでは、真空容器内におけるガスの均一化は不充分であった。特に、基板の大面積化の要請により、ガス供給管の全長が長くなる傾向にあり、ガス導入系との接続部に近い側と遠い側とではガス流量に差異が生じ、均一にガスを供給することができないという問題があった。
 本発明は、上記事情に鑑み、ガス供給管の全長が長くとも、均一にガスを供給することができ、膜質の均一性を確保することができるガス供給装置該ガス供給装置を備えた真空処理装置及び該真空処理装置を用いた電子デバイスの製造方法を提供することを目的とする。
 上記の目的を達成すべく成された本発明の構成は以下の通りである。
 即ち、本発明に係るガス供給装置は、真空容器内に処理ガスを供給するガス供給管を備えたガス供給装置であって、前記ガス供給管は、ガス導入管に接続された内管と、該内管の周囲を間隙を隔てて被う外管と、からなる二重管であり、前記内管は、少なくとも一部に、ガスを通過させる多孔質の焼結体を有し、前記外管は、前記焼結体面を通過したガスを上記真空容器内へ流出させる多数のガス吹出口を有することを特徴とするガス供給装置である。
 また、本発明に係る真空処理装置は、基板を処理する真空容器内にガスを供給するガス供給管を備えた真空処理装置において、前記ガス供給管は、ガス導入管に接続された内管と、該内管の外周部を間隙を隔てて被う外管と、からなる二重管であり、前記内管は、少なくとも一部に、ガスを通過させる多孔質の焼結体を有し、前記外管は、前記焼結体を通過したガスを前記真空容器内へ放出させる多数のガス吹出口を有することを特徴とする真空処理装置である。
 更に、本発明に係る電子デバイスの製造方法は、真空容器内にガスを供給するガス供給管を備えた真空処理装置内で基板処理を行う工程を有する電子デバイスの製造方法において、前記ガス供給管は、ガス導入管に接続された内管と、該内管の外周部を間隙を隔てて被う外管と、からなる二重管であり、前記内管は、少なくとも一部に、ガスを通過させる多孔質の焼結体を有し、前記外管は、前記焼結体を通過したガスを前記真空容器内へ放出させる多数のガス吹出口を有することを特徴とする電子デバイスの製造方法である。
 本発明によれば、ガス供給管が二重管構造であり、内管の多孔質の焼結体面を通過して外管内でガスが拡散したうえで、外管の多数のガス吹出口から放出される。したがって、ガス供給管の全長が長くとも、均一にガスを供給することができ、膜質の均一性を確保することができる。
本発明に係るガス供給装置を備えた第1の実施形態の真空処理装置を例示する模式図である。 本実施形態のガス供給装置の構造を示す模式図である。 ガス供給装置のガス供給管の断面構造を例示する模式図である。 第2の実施形態の真空処理装置を例示する模式図である。 第3の実施形態の真空処理装置を例示する模式図である。 第4の実施形態の真空処理装置を例示する模式図である。 他の例に係るガス供給装置の構造を示す模式図である。
 以下、図面を参照して、本発明の実施の形態を説明するが、本発明は本実施形態に限定されるものではない。
 〔第1の実施形態〕
 〈真空処理装置〉
 まず、図1を参照して、本発明に係る真空処理装置の第1の実施形態について説明する。図1は、本発明に係るガス供給装置を備えた第1の実施形態の真空処理装置を示し、図1(a)は正面模式図、図1(b)は右側面模式図である。
 図1に示すように、本実施形態の真空処理装置1は、基板2の処理空間3を区画する真空容器4が備えられている。真空容器4内の中央部に基板2を載置するための基板支持台5が設けられている。この基板支持台5は、例えば、その載置面に静電吸着方式により基板2を支持し、回転可能及び昇降移動可能に構成されている。
 また、真空容器4の上部には、上記基板支持台5に対向するように、カソードユニット6が設けられている。カソードユニット6は、カソードケーシングの前面側にターゲットを支持し、裏面側にターゲットに磁界を印加する磁石ユニットを備えている。さらに、真空容器4の底部には、不図示の排気系(排気ポンプ)に接続された排気口7が設けられ、真空容器内を排気して真空状態に保持する。
 そして、真空容器4の側壁には、後で詳述するガス供給装置20のガス供給管21が設けられ、このガス供給管21にはガス導入管22が接続され、ガス供給管21のガス吹出口26(図2参照)から真空容器内に反応性ガスを含む処理ガスが供給される。ガス導入管22は、ガス源を含むガス導入系に接続されているものである。
 本実施の形態では、ガス供給管21のガス吹出口26は、真空容器2の上部壁に臨んで開設されており、基板2とは反対方向を向いている。したがって、ガス供給管21のガス吹出口26から供給されたガスの流れは、真空容器2の上壁面に衝突してから容器中央の処理空間へ向かうので、ガス流はより均一な流れとなる。
 〈ガス供給装置〉
 次に、図2を参照して、本実施形態のガス供給装置20の具体的な構造について説明する。図2は、本実施形態のガス供給装置の構造を示す模式図である。
 図2に示すように、ガス供給装置20は、真空容器内に処理ガスを供給するガス供給管21を備えた装置であり、このガス供給管21は、ガス導入管22に接続された内管23と、この内管23の外周部を間隙を隔てて被う外管24と、からなる二重管である。
 ガス導入管22はガス源から延出され、外管24の長手方向の中央部を貫通して、内管23の長手方向の中央部に接続されている。このように内管23の中央部に接続するのは、ガス供給管21からのガス放出量を均一化させるためである。また、内管23の一部(中間部)には多孔質の焼結体25が介設され、ガスを通過させる多孔質の焼結体面を有している。
 外管24には、ガス導入管22から内管23に導入され、上記焼結体面を通過したガスを真空容器内へ流出させる多数のガス吹出口26が開設されている。ガス吹出口26は、外管24の長手方向に多数設けられ、上述したように、真空容器2の上部壁に臨んで開設されている。そして、外管24のガス吹出口26の開設範囲Lは、真空容器内で処理する基板2の幅(外径)Dよりも大きく設定されている。
 また、外管24からのガス放出量を均一化させるために、内管23の焼結体面は、基板2の幅方向中心(径方向中心)に対して左右均等に配置され、かつガス導入管22の接続部を境にした外管24の左右部分24a,24aの中央部に位置する。ここで、内管23が焼結体25までの長さしかなくとも、外管24内のガス量が部位によって異なってしまうため、ガス放出量の均一化を図るためには、外管24を延長する必要がある。したがって、外管24内で焼結体25よりも内管23を延長する場合は、必ずしも中空である必要はない。
 次に、図3を参照して、上記ガス供給管21の断面構造の態様について説明する。図3(a)ないし(c)は、それぞれガス供給装置20のガス供給管21の断面構造を例示する模式図である。
 図3(a)に例示するガス供給管21は、内管23の中間部に円柱状の多孔質の焼結体25が介設されている例である。この焼結体25としては、例えば、粉末冶金による金属焼結体を用いることができる。構成金属としては、アルミニウムやステンレス鋼(SUS)などの耐熱性及び耐腐食性を有する金属を用いることが好ましい。また、焼結体25は数μmの焼結粒で形成されていることが好ましく、その空孔を塞がないように空孔処理は行わず、内管23の中間部に溶接などの接合手段を用いて設けられる。外管24は、内管23の外周部を間隙を隔てて被っており、上部にガス吹出口26が開設されている。
 また、図3(b)に例示する他の態様のガス供給管21は、内管23の中間部に介設された円柱状の焼結体25の上半面が半割短管状のカバー部材30で被われている。外管24は、内管23の外周部を間隙を隔てて被っており、上部にガス吹出口26が開設されている。即ち、外管24の内部において、内管23の焼結体面は、外管24のガス吹出口26の開設側と逆方向に臨んでいる。本例では、焼結体25の上半面が半割短管状のカバー部材30で被われているので、内管23内のガスは焼結体25に供給され、焼結体面から外管24に開設したガス吹出口26と反対方向に向けて排出される。そのため、ガスは整流され、一定流量のガスが真空容器内に供給され易い。
 さらに、図3(c)に例示する他の態様のガス供給管21のように、内管自体を円筒状の焼結体25により構成してもよい。
 上記のような構造のガス供給管21を用いることで、外管24のガス吹出口26から放出される処理ガスの流量分布を一定にする。ガス吹出口26の数は多いほど良いが、通常外管24の長手方向50mm間隔に1箇所程度で十分である。また、ガス供給管21の外部形状は複雑でないので、設置場所の制約を受け難い。ガス導入管22への流量調整の方法は限定されないが、マスフローコントローラなどを用いて制御することが望ましい。
 以上説明したように、本実施形態のガス供給装置20によれば、ガス供給管21が二重管構造であり、内管23の多孔質の焼結体面を通過して外管24内でガスが拡散したうえで、外管24の多数のガス吹出口26から放出される。したがって、ガス供給管21の全長が長くとも、均一にガスを供給することができ、膜質の均一性を確保することができる。
 〔第2の実施形態〕
 図4を参照して、第2の実施形態の真空処理装置100について説明する。図4は、第2の実施形態の真空処理装置を例示する断面模式図である。なお、第1の実施形態と同様の構成の部材については、同一の符号を付して説明する。
 図4に示すように、第2の実施形態の真空処理装置100では、処理空間3を区画する真空容器4の両側面に不図示の基板搬入口及び基板搬出口が開設され、ローラ105上を長尺基板(もしくは帯状基体)102が搬送される。真空容器4の底部には、処理空間3を排気する排気系に接続される排気口7が設けられている。
 また、真空容器4の上部には、長尺基板102の搬送方向に2台のカソードユニット6が配設されており、真空容器内で連続成膜処理される。2台のカソードユニット6の間には、成膜処理に際して、真空容器内に反応性ガスを含む処理ガスを供給する上記ガス供給装置20のガス供給管21が設けられている。このガス供給管21は、長尺基板102の長手方向と直交する方向(幅方向)に沿って延出されている。
 ガス供給管21は、ガス吹出口26が外管24の上部に開設され、ガス吹き出し方向を真空容器4の上壁へ向けて放出する(図3参照)。
 第2の実施形態の真空処理装置100では、上記のような構造のガス供給装置20を用いることで、ガス供給管21のガス吹出口26から放出される処理ガスの流量分布を一定にすることができる。即ち、第2の実施形態の真空処理装置100では、ガス供給装置20から供給された処理ガスがターゲットと長尺基板102との間の処理空間3に、その分布が乱れることなく至ることになる。
 〔第3の実施形態〕
 図5を参照して第3の実施形態の真空処理装置200について説明する。
 図5(a)は、第3の実施形態の真空処理装置を上面から透視的に見た模式図である。図5(b)は、図5(a)に示した真空処理装置のA-A’断面における断面模式図である。図5(c)は、図5(a)に示した真空処理装置のB-B’断面における断面模式図である。
 第3の実施形態の真空処理装置200は、第2の実施形態において、更にガス供給管21の周囲を、長方形の箱形をなすシールド40で囲った構造を有する。本実施形態においても、第2の実施形態と同様、ガス供給管21は、ガス吹出口26が外管24の上部に開設され、ガス吹き出し方向を真空容器4の上壁へ向けて放出する。本構造によれば、ガス供給管21のガス吹出口26から供給されたガスは、真空容器4の上壁面に衝突後、シールド40に衝突するので、真空容器4内を自由に拡散しにくい。
 本シールド40の側壁のうち、長尺基板102の長手方向と直交する方向(幅方向)に延びる側壁と、真空容器4の上壁面との間には隙間が設けられている。一方、長尺基板102の長手方向(長尺基板進行方向)に延びるシールド40の側壁と、真空容器4の上壁面との間には隙間が無い構造となっている。つまり、ガスは、シールド40の幅方向両端部からは流出できないようになっている。
 これにより、ガス供給管21のガス吹出口26から供給されたガスの流れは、真空容器4の上壁面に衝突後、長尺基板102の幅方向に延びたシールド40の側壁と、真空容器4の上壁面との間の隙間からのみ、真空容器4内に導入される。そのため、カソードユニット6近傍の処理空間へのみガス流はより均一な流れとなって供給される。
 ガス供給管21のガス吹出口26が外管24の上部に開設され、ガス吹き出し方向を真空容器4の上壁へ向けて放出させるため、長尺基板102の搬送方向上流側と下流側に設置された2台のカソードユニット6近傍の処理空間へのガス流は、それぞれ等しくなる。
 長尺基板102の幅方向に延びたシールド40の側壁と真空容器4の上壁面との間の隙間は、供給される気体分子の平均自由行程以下の寸法が望ましい。隙間が気体分子の平均自由行程以上であると、ガスが真空容器4内に拡散してしまい、真空容器4の上壁面と、長尺基板102の幅方向に延びたシールド40の側壁との間の隙間からカソードユニット6近傍の処理空間へのみガスを均一に供給することができない。
 処理圧力が1Paの場合、Ar、O2、N2の平均自由行程は6mm程度であるため、真空容器4の上壁面と、長尺基板102の幅方向に延びたシールド40の側壁との間の隙間は6mmよりも狭くする必要がある。
 〔第4の実施形態〕
 図6を参照して、第4の実施形態の真空処理装置300について説明する。図6は、第4の実施形態の真空処理装置を例示する模式図である。なお、第1、第2及び第3の実施形態と同様の構成の部材については、同一の符号を付して説明する。
 第4の実施形態の真空処理装置300では、2台のカソードユニット6の基板搬送方向の側壁側の端部にそれぞれガス供給装置20のガス供給管21を設けている。本実施形態においても、ガス供給管21のガス吹出口26は外管24の上部に開設され、ガス吹き出し方向を真空容器4の上壁へ向けて放出する(図4参照)。これに限定されず、各ターゲット方向へ向けて外管24にガス吹出口26を開設してもよい。
 第4の実施形態の真空処理装置300では、上記のような構造のガス供給装置20を用いることで、ガス供給管21のガス吹出口26から放出される処理ガスの流量分布を一定にすることができる。即ち、第4の実施形態の真空処理装置300では、ガス供給装置20から供給された処理ガスがターゲットと長尺基板102との間の処理空間3に、その分布が乱れることなく至ることになる。
 以上、本発明の好ましい実施の形態を説明したが、本発明は上記の実施の形態に限定されるものではなく、特許請求の範囲の記載から把握される技術的範囲において種々の変更が可能である。
 〔ガス供給装置の他の例〕
 図7を参照してガス供給装置20の他の例について説明する。図7は他の例に係るガス供給装置の構造を示す模式図である。なお、第1の実施形態におけるガス供給装置20と同様の構成の部材については、同一の符号を付して説明する。
 図7示すように、図2に示されるガス供給装置20と同様に、ガス導入管22に接続された内管23と、この内管23の外周部を間隙を隔てて被う外管24とからなる二重管構造のガス供給管21を備えたものとなっているが、ガス供給管21がC字形の環状をなしている。また、ガス導入管22は、C字形をなす外管24の湾曲長中央部を貫通して、同じくC字形をなす内管23の湾曲長中央部に接続されている。外管24には、ガス導入系22から内管23に導入され、多孔質の焼結体25を通過したガスを真空容器内へ流出させる多数のガス吹出口26が開設されている。ガス吹出口26は、外管24の内周面に等間隔で多数設けられている。
 本例のガス供給装置20は、例えば図1に示されるカソードユニット6と基板2の間に設けると、カソードユニット6と基板との間の空間に確実にガスを供給することができる。
 なお、本例においては、外管24の内周面にガス吹出口26を設けたものとなっているが、ガス吹出口26を外管24の外周面、上面または下面に設けることもできる。
 本発明の実施形態にかかる真空処理装置は、例えば、大型フラットパネルディスプレイ(液晶ディスプレイ)や薄膜太陽電池パネル、マイクロインダクタ、磁気記録ヘッドなどの電子デバイスなどを製造するための成膜工程に使用される真空処理装置にも適用可能である。
  1,100,200,300 真空処理装置
  2,102 基板
  3 処理空間
  4 真空容器
  5 基板支持台
  6 カソードユニット
  7 排気口
  20 ガス供給装置
  21 ガス供給管
  22 ガス導入管
  23 内管
  24 外管
  25 焼結体
  26 ガス吹出口
  30 カバー部材
  40  シールド

Claims (12)

  1.  真空容器内にガスを供給するガス供給管を備えたガス供給装置であって、
     前記ガス供給管は、ガス導入管に接続された内管と、該内管の外周部を間隙を隔てて被う外管とからなる二重管であり、
     前記内管は、少なくとも一部に、ガスを通過させる多孔質の焼結体を有し、
     前記外管は、前記焼結体を通過したガスを前記真空容器内へ放出させる多数のガス吹出口を有することを特徴とするガス供給装置。
  2.  前記外管のガス吹出口の開設範囲が、前記真空容器内で処理する基板の幅よりも大きく設定されていることを特徴とする請求項1に記載のガス供給装置。
  3.  前記ガス導入管が、前記外管の中央部を貫通して前記内管の長手方向の中央部に接続され、
     前記内管の前記焼結体面が、前記基板の幅方向中心に対して左右均等に配置され、かつ前記ガス導入管の接続部を境にした前記外管の左右部分の中央部に位置することを特徴とする請求項1または2に記載のガス供給装置。
  4.  前記外管の内部において、前記内管の前記焼結体は、前記外管の前記ガス吹出口の開設側と逆方向に臨んでいることを特徴とする請求項1から3のいずれか1項に記載のガス供給装置。
  5.  基板を処理する真空容器内にガスを供給するガス供給管を備えた真空処理装置において、
     前記ガス供給管は、ガス導入管に接続された内管と、該内管の外周部を間隙を隔てて被う外管とからなる二重管であり、
     前記内管は、少なくとも一部に、ガスを通過させる多孔質の焼結体を有し、
     前記外管は、前記焼結体を通過したガスを前記真空容器内へ放出させる多数のガス吹出口を有することを特徴とする真空処理装置。
  6.  前記基板と対向する位置にターゲットを配置したことを特徴とする請求項5に記載の真空処理装置。
  7.  前記ガスは処理ガスであることを特徴とする請求項5または6に記載の真空処理装置。
  8.  前記外管のガス吹出口の開設範囲が、前記真空容器内で処理する基板の幅よりも大きく設定されていることを特徴とする請求項5ないし7のいずれかに記載の真空処理装置。
  9.  前記ガス導入管が、前記外管の中央部を貫通して前記内管の長手方向の中央部に接続され、
     前記内管の前記焼結体面が、前記基板の幅方向中心に対して左右均等に配置され、かつ前記ガス導入管の接続部を境にした前記外管の左右部分の中央部に位置することを特徴とする請求項5ないし8のいずれかに記載の真空処理装置。
  10.  前記外管の内部において、前記内管の前記焼結体は、前記外管の前記ガス吹出口の開設側と逆方向に臨んでいることを特徴とする請求項5ないし9のいずれかに記載の真空処理装置。
  11.  前記ターゲットは前記真空処置装置の上壁に固定され、前記外管ガス吹き出し口は、前記真空処理装置の上壁に向けてガスを吹き出すように配置されていることを特徴とする請求項6に記載の真空処理装置。
  12.  真空容器内にガスを供給するガス供給管を備えた真空処理装置内で基板処理を行う工程を有するデバイスの製造方法において、
     前記ガス供給管は、ガス導入管に接続された内管と、該内管の外周部を間隙を隔てて被う外管とからなる二重管であり、
     前記内管は、少なくとも一部に、ガスを通過させる多孔質の焼結体を有し、
     前記外管は、前記焼結体を通過したガスを前記真空容器内へ放出させる多数のガス吹出口を有することを特徴とする電子デバイスの製造方法。
PCT/JP2009/007188 2008-12-26 2009-12-24 ガス供給装置、真空処理装置及び電子デバイスの製造方法 WO2010073666A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2010543884A JP5209740B2 (ja) 2008-12-26 2009-12-24 ガス供給装置及び真空処理装置
US12/993,168 US20110064877A1 (en) 2008-12-26 2009-12-24 Gas supply device, vacuum processing apparatus and method of producing electronic device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-332856 2008-12-26
JP2008332856 2008-12-26

Publications (1)

Publication Number Publication Date
WO2010073666A1 true WO2010073666A1 (ja) 2010-07-01

Family

ID=42287308

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/007188 WO2010073666A1 (ja) 2008-12-26 2009-12-24 ガス供給装置、真空処理装置及び電子デバイスの製造方法

Country Status (3)

Country Link
US (1) US20110064877A1 (ja)
JP (1) JP5209740B2 (ja)
WO (1) WO2010073666A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013001991A (ja) * 2011-06-21 2013-01-07 Ulvac Japan Ltd 成膜方法
CN113846315A (zh) * 2021-09-27 2021-12-28 华中科技大学 空间隔离原子层沉积装置

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103510045A (zh) * 2012-06-29 2014-01-15 深圳富泰宏精密工业有限公司 真空镀膜用气管及应用该气管的真空镀膜装置
CN104451583B (zh) * 2015-01-05 2017-05-10 合肥京东方显示光源有限公司 磁控溅射真空室进气装置及磁控溅射设备
CN113330137B (zh) * 2018-11-06 2023-05-09 康宁股份有限公司 包括第一导管并且第一导管被第二导管包围的方法和设备

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62263971A (ja) * 1986-05-12 1987-11-16 Babcock Hitachi Kk 気相成長装置
JP2001054746A (ja) * 1999-08-20 2001-02-27 Mitsubishi Heavy Ind Ltd ガスノズル
JP2005256084A (ja) * 2004-03-11 2005-09-22 Jfe Steel Kk 化学蒸着処理の原料ガス供給用ノズル

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60206474A (ja) * 1984-03-30 1985-10-18 株式会社 サタケ 堅形選別装置の給穀装置
JPH02213468A (ja) * 1989-02-13 1990-08-24 Fuji Electric Co Ltd 反応性スパツタリング装置
US5443645A (en) * 1990-05-19 1995-08-22 Canon Kabushiki Kaisha Microwave plasma CVD apparatus comprising coaxially aligned multiple gas pipe gas feed structure
JP3079436B2 (ja) * 1991-02-16 2000-08-21 バブコック日立株式会社 光化学反応装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62263971A (ja) * 1986-05-12 1987-11-16 Babcock Hitachi Kk 気相成長装置
JP2001054746A (ja) * 1999-08-20 2001-02-27 Mitsubishi Heavy Ind Ltd ガスノズル
JP2005256084A (ja) * 2004-03-11 2005-09-22 Jfe Steel Kk 化学蒸着処理の原料ガス供給用ノズル

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013001991A (ja) * 2011-06-21 2013-01-07 Ulvac Japan Ltd 成膜方法
CN113846315A (zh) * 2021-09-27 2021-12-28 华中科技大学 空间隔离原子层沉积装置

Also Published As

Publication number Publication date
US20110064877A1 (en) 2011-03-17
JP5209740B2 (ja) 2013-06-12
JPWO2010073666A1 (ja) 2012-06-07

Similar Documents

Publication Publication Date Title
JP5209740B2 (ja) ガス供給装置及び真空処理装置
JP2018501405A5 (ja)
WO2012056592A1 (ja) クリーンルーム
JP2009239082A5 (ja)
JP4683334B2 (ja) 表面波励起プラズマ処理装置
TW201710530A (zh) 捲繞式成膜裝置、蒸發源單元以及捲繞式成膜方法
US6283143B1 (en) System and method for providing an integrated gas stick
US20160273102A1 (en) Tape-substrate coating line having a magnetron arrangement
TWI555868B (zh) 濺鍍裝置
JPWO2010016421A1 (ja) 熱処理装置及び熱処理方法
KR20020088487A (ko) 수직챔버를 구비한 플라즈마중합 연속처리장치
EP2267183A1 (en) Atomic layer film-forming device
JP2007157885A (ja) 原料ガス供給装置
WO2019109406A1 (zh) 具有防气体飘逸功能的板材镀膜设备
JP2010059509A (ja) 成膜または表面処理装置および方法
JP5841247B2 (ja) 金属ストリップを被覆する被覆工程でガス噴射を生成する装置
WO2014097544A1 (ja) 基材搬送装置
JP5863318B2 (ja) カーボンナノチューブ形成用cvd装置
JP6408949B2 (ja) 成膜装置
CN115595560A (zh) 一种半导体处理装置
CN102477545B (zh) 进气装置和具有它的等离子体化学气相沉积设备
WO2019100506A1 (zh) 板材镀膜设备
KR20130042157A (ko) 기판 처리 장치
JP6562946B2 (ja) ガス案内装置を備える真空チャンバのガス分配装置
JP2014181402A (ja) コーティング装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09834472

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010543884

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 12993168

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09834472

Country of ref document: EP

Kind code of ref document: A1