WO2010073635A1 - 電力変換装置 - Google Patents

電力変換装置 Download PDF

Info

Publication number
WO2010073635A1
WO2010073635A1 PCT/JP2009/007139 JP2009007139W WO2010073635A1 WO 2010073635 A1 WO2010073635 A1 WO 2010073635A1 JP 2009007139 W JP2009007139 W JP 2009007139W WO 2010073635 A1 WO2010073635 A1 WO 2010073635A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
converter
diode
temperature device
power
Prior art date
Application number
PCT/JP2009/007139
Other languages
English (en)
French (fr)
Inventor
日比野寛
関本守満
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Publication of WO2010073635A1 publication Critical patent/WO2010073635A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/2089Modifications to facilitate cooling, ventilating, or heating for power electronics, e.g. for inverters for controlling motor
    • H05K7/20909Forced ventilation, e.g. on heat dissipaters coupled to components
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0083Converters characterised by their input or output configuration
    • H02M1/0085Partially controlled bridges
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/003Constructional details, e.g. physical layout, assembly, wiring or busbar connections
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Definitions

  • the present invention relates to a power conversion device including a semiconductor device cooled by forced convection.
  • silicon is used as the main material of the semiconductor device.
  • SiC has a higher allowable temperature than silicon and can operate at high speed with low loss. It is considered that a wide band gap semiconductor such as is used as a main material of a semiconductor device.
  • the allowable temperature differs between a semiconductor device mainly composed of silicon (hereinafter also referred to as a silicon device) and a semiconductor device mainly composed of a wide band gap semiconductor (hereinafter also referred to as a wide band gap semiconductor device). It is necessary to employ a cooling structure in which the temperature of each semiconductor device is lower than the allowable temperature.
  • the silicon device and the wide band gap semiconductor device may be cooled by separate cooling mechanisms.
  • a source of forced convection such as a fan or a pump is considered.
  • the present invention has been made in view of such points, and an object of the present invention is to efficiently replace semiconductor devices having different allowable temperatures in a power conversion apparatus including a semiconductor device cooled by forced convection of a fluid.
  • the object is to obtain a cooling structure that can be cooled.
  • heat generated by the low temperature device (11) having a low allowable temperature is dissipated upstream of the forced convection of the fluid, and a high temperature having a high allowable temperature.
  • the first invention is directed to a power conversion device including a semiconductor device (11, 12) cooled by forced convection of a fluid.
  • the semiconductor device (11, 12) includes a low temperature device (11) having a relatively low allowable temperature and a high temperature device (12) having a higher allowable temperature than the low temperature device (11). (11) and the high temperature device (12) dissipate heat generated in the low temperature device (11) upstream of the forced convection of the fluid, and heat generated in the high temperature device (12). It is assumed that heat is dissipated on the downstream side.
  • the low-temperature device (11) having a relatively low allowable temperature and the high-temperature device (12) having a higher allowable temperature than the low-temperature device (11) can be cooled by a single fluid flow (forced convection). It is possible to efficiently cool a plurality of semiconductor devices (11, 12) having different allowable temperatures. That is, the low temperature device (11) can be preferentially cooled by dissipating heat generated by the low temperature device (11) having a low allowable temperature upstream of the forced convection of the fluid.
  • the heat generated in the high temperature device (12) having a high permissible temperature downstream of the forced convection is dissipated, so that the fluid having a relatively high temperature after cooling the low temperature device (11) Although the high temperature device (12) will be cooled, the allowable temperature of the high temperature device (12) is relatively high, so the temperature of the high temperature device (12) can be kept below the allowable temperature even with the above fluid. become.
  • the low temperature device (11) is disposed upstream of the forced convection with respect to the high temperature device (12) (second invention).
  • the low temperature device (11) can be reliably cooled on the upstream side of the forced convection of the fluid, and the configuration of the first invention can be realized reliably and easily.
  • At least one of the low temperature device (11) and the high temperature device (12) may be provided with a heat radiating section (13, 14, 21) for radiating heat to the fluid (third invention).
  • the semiconductor device (11, 12) is provided with the heat radiation portion (13, 14, 21) for heat radiation, the low-temperature device (11) as in the configuration of the first invention. Heat is dissipated upstream of the forced convection of the fluid, and heat of the high temperature device (12) is dissipated downstream of the forced convection of the fluid. , 21) can provide a cooling structure capable of efficiently cooling a plurality of semiconductor devices (11, 12) having different allowable temperatures, as in the first aspect of the invention.
  • the heat radiating section (21) is provided across the devices (11, 12) so as to radiate the heat generated in the low temperature device (11) and the high temperature device (12) to the fluid.
  • the low-temperature device (11) is preferably arranged on the upstream side of the forced convection with respect to the high-temperature device (12) on the heat dissipation part (21) (fourth invention).
  • the low temperature device (11) is placed upstream of forced convection from the high temperature device (12).
  • the low-temperature device (11) having a low allowable temperature can be reliably and efficiently cooled.
  • the semiconductor device (11, 12) is made efficient by adopting the above-described configuration. It can cool well.
  • the number of mounting screws for attaching the heat dissipation part (21) to the electrical component box can be reduced and Work can be reduced.
  • the low temperature device (11) is preferably composed of silicon as a main material
  • the high temperature device (12) is preferably composed of a wide band gap semiconductor as a main material (fifth invention). Even in such a configuration, the operations of the first to fourth inventions can be obtained by adopting the configurations of the first to fourth inventions.
  • the wide band gap semiconductor is preferably SiC, GaN, or diamond (sixth invention).
  • a semiconductor device capable of operating at high speed with low loss can be realized. Even when such a semiconductor device is used, the effects of the first to fourth aspects of the invention can be obtained by adopting the configurations of the first to fourth aspects of the invention.
  • the fluid is preferably air, water, or a refrigerant in a refrigerant circuit that performs a refrigeration cycle (seventh invention).
  • air is used as the forced convection fluid
  • water or a refrigerant is used as the forced convection fluid, the cooling performance can be improved compared to air, so that the semiconductor device can be cooled more efficiently.
  • the semiconductor device (11, 12) having a higher switching frequency in the relative relationship is the high temperature device (12), switching. It is preferable that the one having a lower frequency is the low-temperature device (11) (eighth invention).
  • the semiconductor device (11, 12) performs a switching operation
  • the semiconductor device (11, 12) with a higher switching frequency tends to be hotter than a device with a lower switching frequency.
  • the semiconductor device (11, 12) having a lower switching frequency that is, the low temperature device (11) is efficiently cooled.
  • the low-temperature device (11) and the high-temperature device (12) include a converter (2) that converts DC power or AC power into a predetermined voltage, current DC power, or AC power having a predetermined voltage, current, and frequency. , 4) may be configured (9th invention).
  • the converter (2, 4) includes a converter circuit (2) that rectifies AC power by a diode (2a) and converts it into DC power, and a plurality of switching elements (4a) that convert the converter circuit (2).
  • the diode (2a) is the low-temperature device in the converter (2, 4).
  • the switching element (4a) is the high temperature device (12) (tenth invention).
  • a converter circuit (2) having a rectifier circuit (65) for rectifying AC power with a diode (2a) and converting it to DC power, and a step-up chopper circuit (60)
  • the step-up chopper circuit (60) includes a reactor (2b) connected to one output node of the rectifier circuit (65), a diode (63) connected in series to the reactor (2b), and
  • the converter (2, 4) includes the converter circuit (
  • the diode (2a) of 2) is the low temperature device (11), the semiconductor devices of the diode (63) and the switching element (62) of the step-up chopper circuit (60) are the high temperature device (12). It is preferable (No. 1 of the invention).
  • the step-up chopper circuit (60) may be a soft switching type circuit (a twelfth aspect of the invention).
  • the step-up AC chopper circuit (70) includes a reactor (2b) connected to a predetermined output node of the AC power source (6) and a predetermined input node of the rectifier circuit (65), and the reactor
  • the switching element (4a) is Low temperature device (11), bidirectional switch It is preferred that each semiconductor device Ji (72) and the diode (2a) is higher device (12) (a thirteenth aspect of).
  • the converter (2, 4) includes a converter circuit (2) having a rectifier circuit (65) that rectifies AC power with a diode (2a) and converts it into DC power, and a step-down chopper circuit (90). And an inverter circuit (4) for switching the output of the step-down chopper circuit (90) with a plurality of switching elements (4a) to convert it into AC power having a predetermined voltage, current and frequency, and the step-down type A chopper circuit (90) includes a switching element (91) connected to one output node of the rectifier circuit (65), a reactor (92) connected in series to the switching element (91), and the converter circuit (2) A first diode (93) connected between the other output node and the switching element (91), and a first diode (93) connected in parallel to the series-connected switching element (91) and the reactor (92).
  • each of the diode (2a) of the converter circuit (2) and the second diode (94) of the step-down chopper circuit (90) The semiconductor device is preferably the low temperature device (11), the semiconductor device of the switching element (91) of the step-down chopper circuit (90) and the first diode (93) is the high temperature device (12) ( 14th invention).
  • the converter (2, 4) includes a rectifier circuit (65) that rectifies AC power using a diode (2a), a transformer (102), a switching element (101), and a secondary diode (103).
  • the primary coil of the transformer (102) and the switching element (101) are connected in series between the output nodes of the rectifier circuit (65), and a secondary diode ( 103) is connected to the flyback converter circuit (2) and a plurality of switching elements (4a) to switch the output of the flyback converter circuit (2) to convert it into AC power of a predetermined voltage, current and frequency.
  • each semiconductor device of the switching element (101), the diode (2a) of the rectifier circuit (65) and the secondary diode (103) is the high temperature device (12) (fifteenth invention).
  • the converter (2, 4) includes a converter circuit (2) of any one of a forward converter, a push-pull converter, a three-phase one-stone converter, and a full-bridge converter, and a plurality of switching elements (4a).
  • the conversion unit (2, 4) Preferably, the switching element (4a) of the inverter circuit (4) is the low temperature device (11), and at least a part of the semiconductor device of the converter circuit (2) is the high temperature device (12). ).
  • the converter (2, 4) a rectifier circuit (65) in which a plurality of switching elements (2d) are bridge-connected, or a rectifier circuit in which a switching element (2d) and a diode (2a) are connected in a mixed bridge ( 65), the converter circuit (2) in which AC power is input to the rectifier circuit (65) via the reactor (2b), and the output of the converter circuit (2) by a plurality of switching elements (4a)
  • the conversion unit (2, 4) includes the switching element (2) of the inverter circuit (4).
  • 4a) is the low temperature device (11), and each bridge-connected semiconductor device is the high temperature device (12). (Seventeenth invention).
  • the power converter (1) of the present invention heat generated in the low temperature device (11) is dissipated upstream of the forced convection of the fluid, and the heat generated in the high temperature device (12) is forced into the forced convection of the fluid. Since the heat is radiated on the downstream side, the plurality of semiconductor devices (11, 12) having different allowable temperatures can be efficiently cooled by one fluid flow path. Therefore, the above-described configuration provides a cooling structure that can efficiently cool the plurality of semiconductor devices (11, 12).
  • the low temperature device (11) is arranged on the upstream side of forced convection with respect to the high temperature device (12), whereby the configuration of the first invention can be realized with certainty. .
  • the low temperature device (11) in the configuration in which the heat radiating portion (13, 14, 21) is provided in at least one of the low temperature device (11) and the high temperature device (12), the low temperature device (11) The generated heat is radiated to the upstream side of the forced convection, and the heat generated by the high temperature device (12) is radiated to the downstream side of the forced convection, so that the same effect as the effect of the first invention is achieved. Is obtained.
  • the low temperature device (11) is also connected to the high temperature device (11) even in the configuration in which the heat dissipation portion (21) is provided across the low temperature device (11) and the high temperature device (12).
  • the low temperature device (11) is mainly made of silicon and the high temperature device (12) is mainly made of a wide band gap semiconductor,
  • the effect of each invention can be obtained.
  • the wide band gap semiconductor is any one of SiC, GaN, and diamond
  • a high-temperature device (12) capable of high-speed operation with low loss can be more reliably realized.
  • the effects of the respective inventions can be obtained by adopting the configurations of the first to fourth inventions.
  • the fluid is air, water, or a refrigerant in a refrigerant circuit that performs a refrigeration cycle. Therefore, if air is forced to convection, a cooling structure can be realized with a simple configuration, If forced convection of water or refrigerant is performed, the semiconductor device (11, 12) can be cooled more efficiently.
  • the switching frequency of the predetermined semiconductor device (11, 12) of the conversion unit (2, 4) It is possible to achieve both higher frequency and higher cooling efficiency of each semiconductor device (11, 12).
  • the switching frequency of the switching element (4a) can be increased, and the control band of the inverter circuit (4) can be expanded. Further, if the switching frequency of the inverter circuit (4) is set to be higher than the audible frequency, noise due to switching can be reduced.
  • the switching element (62) can be increased in switching frequency, and as a result, the reactor (2b) can be downsized.
  • the same effect as that of the eleventh invention can be obtained in the power conversion device having the soft switching boost chopper circuit (60).
  • the switching frequency of the bidirectional switch (72) can be increased, and as a result, the reactor (2b) can be reduced in size.
  • the switching frequency of the switching element (91) and the first diode (93) of the step-down chopper circuit (90) can be increased.
  • the reactor (92) can be reduced in size. It becomes possible.
  • the switching frequency of the diode (2a), the switching element (101), and the secondary diode (103) can be increased.
  • the transformer (102) can be reduced in size. It becomes possible.
  • the switching frequency in the rectifier circuit (65) can be increased, and as a result, the reactor (92) can be reduced in size.
  • FIG. 1 is a diagram illustrating a schematic configuration of a power conversion device according to Embodiment 1 of the present invention.
  • FIG. 2 is a diagram schematically illustrating a cooling structure of the power conversion device according to the first embodiment.
  • FIG. 3 is a view corresponding to FIG. 2 showing a cooling structure in a modification of the first embodiment.
  • FIG. 4 is a view corresponding to FIG. 2 of the cooling structure of the power conversion device according to the second embodiment.
  • FIG. 5 is a diagram illustrating a configuration example of the power conversion device according to the third embodiment of the present invention.
  • 6A is a diagram illustrating an example in which a converter circuit is configured with a so-called single-phase voltage doubler rectifier circuit, and FIG.
  • FIG. 6B is a diagram illustrating an example in which the converter circuit is configured with a so-called three-phase full-wave rectifier circuit. is there.
  • FIG. 7 is a diagram illustrating a configuration example of the power conversion device according to the fourth embodiment of the present invention.
  • FIG. 8 is a diagram illustrating a configuration of a power conversion device according to the first modification of the fourth embodiment.
  • FIG. 9 is a diagram illustrating a configuration of a power conversion device according to the second modification of the fourth embodiment.
  • FIG. 10 is a diagram illustrating a configuration example of the power conversion device according to the fifth embodiment of the present invention.
  • FIGS. 11A to 11C are diagrams illustrating a configuration example of the bidirectional switch.
  • FIG. 12 is a diagram illustrating a configuration example of a converter circuit according to a modification of the fifth embodiment.
  • FIG. 13: is a figure which shows the structural example of the power converter device which concerns on Embodiment 6 of this invention.
  • FIG. 14 is a diagram illustrating a configuration example of a power conversion device according to the seventh embodiment of the present invention.
  • FIG. 15 is a diagram illustrating a configuration example of the power conversion device according to the eighth embodiment of the present invention.
  • 16A is a diagram illustrating a configuration example of a PWM converter circuit for single-phase AC
  • FIG. 16B is a diagram illustrating a configuration example of a PWM converter circuit for three-phase AC.
  • the power converter (1) includes a converter circuit (2), a capacitor circuit (3), and an inverter circuit (4).
  • the said power converter device (1) is used, for example in order to drive the electric motor (5) (henceforth a motor) of the compressor provided in the refrigerant circuit of the air conditioning apparatus.
  • the refrigerant circuit of the air conditioner is not particularly shown, but the compressor, the condenser, the expansion mechanism, and the evaporator are connected to form a closed circuit, and the refrigerant circulates to form a vapor compression refrigeration. It is configured to perform a cycle.
  • this refrigerant circuit in the cooling operation, air cooled by the evaporator is supplied into the room, and in the heating operation, air heated by the condenser is supplied into the room.
  • the converter circuit (2) includes a plurality of diodes (2a), and is configured to rectify AC power output from the commercial power supply (6).
  • the converter circuit (2) includes a plurality of diodes (for example, six in the case of three-phase alternating current) connected in a bridge shape, thereby forming a rectifier circuit.
  • the converter circuit (2) is configured by a plurality of diodes (2a).
  • the converter circuit (2) is not limited to this, and is configured by a switching element such as a transistor so that AC power is rectified to DC power. The switching element may be driven and controlled.
  • the capacitor circuit (3) includes a capacitor (3a) connected in parallel to the output side of the converter circuit (2). By providing this capacitor circuit (3), the voltage rectified by the converter circuit (2) can be smoothed. Thereby, DC power can be stably supplied to the inverter circuit (4) side.
  • the inverter circuit (4) is connected in parallel to the converter circuit (2) together with the capacitor circuit (3).
  • the inverter circuit (4) includes a plurality of switching elements (4a) (for example, six in the case of a three-phase alternating current) that are bridge-connected. That is, although not particularly illustrated, the inverter circuit (4) is formed by connecting three switching legs in which two switching elements (4a, 4a) are connected in series with each other. The on / off operation of 4a) converts the DC voltage into an AC voltage and supplies it to the motor (5).
  • each of the switching elements (4a) is formed by connecting a transistor and a diode in antiparallel.
  • the present invention is not limited to this. It may be configured as follows.
  • the diode (2a) of the converter circuit (2) is a semiconductor device (11) (hereinafter also referred to as a silicon device) whose main material is silicon.
  • the switching element (4a) of the inverter circuit (4) is a semiconductor device (12) (hereinafter also referred to as a wide band gap semiconductor device) mainly composed of a wide band gap semiconductor such as SiC, GaN, or diamond.
  • the silicon device (11) is mainly made of silicon, the allowable temperature is lower than that of the wide band gap semiconductor device (12) due to the difference in physical properties between silicon and the wide band gap semiconductor (silicon device).
  • the silicon device (11) corresponds to the low temperature device of the present invention
  • the wide band gap semiconductor device (12) corresponds to the high temperature device of the present invention.
  • the junction temperature t j (° C.) of a semiconductor device is obtained by the following equation, and this t j needs to be equal to or lower than the allowable temperature t max .
  • the allowable temperature when the t max for cooling a plurality of different semiconductor devices (11, 12) of, and focusing on the fact that the allowable temperature t max of each of the semiconductor devices (11, 12) are different The present inventors have found a cooling structure capable of efficiently cooling the semiconductor device (11, 12).
  • a silicon device (11) having a relatively low permissible temperature is arranged upstream of forced convection of air (the white arrow in the figure), and the silicon device ( A wide band gap semiconductor device (12) having an allowable temperature higher than that of 11) is arranged downstream of forced convection from the silicon device (11).
  • the silicon device (11) having a low allowable temperature can be efficiently cooled by air.
  • the air heated by the heat generated in the silicon device (11) flows through the wide band gap semiconductor device (12) located downstream of the wide band gap semiconductor device (12). Since the permissible temperature is relatively high, the wide band gap semiconductor device (12) can be cooled to the permissible temperature or less even with the air.
  • the semiconductor devices (11, 12) are provided with heat sinks (13, 14) (heat dissipating parts) for improving the cooling performance.
  • the cooling fan (15) is used as a generation source for generating forced convection of air to the semiconductor device (11, 12).
  • the silicon device (11) having a relatively low permissible temperature is arranged upstream of the forced air convection, and the wide band gap semiconductor having a permissible temperature higher than that of the silicon device (11). Since the device (12) is arranged downstream of the forced convection, the plurality of semiconductor devices (11, 12) having different allowable temperatures can be cooled by one air flow path.
  • the temperature difference between the allowable temperature t max and t a can be increased, so that the temperature of the device (11, 12) can be kept below the allowable temperature even when the thermal resistance R ⁇ from the semiconductor device to the outside is increased. Can be realized.
  • this modification is different from the first embodiment in that the silicon device (11) and the wide band gap semiconductor device (12) are cooled by a single heat sink (21). Different. Only portions different from the configuration of the first embodiment will be described below, and the same portions are denoted by the same reference numerals and description thereof is omitted.
  • the silicon device (11) and the wide band gap semiconductor device (12) are arranged on one heat sink (21). Even in such a configuration, the silicon device (11) having a relatively low permissible temperature is arranged on the upstream side of forced air convection, and a wide band gap semiconductor having a permissible temperature higher than that of the silicon device (11). The device (12) is located downstream of the forced convection of air.
  • the silicon device (11) with the lower allowable temperature is cooled while allowing the allowable temperature.
  • the temperature of the wide bandgap semiconductor device (12) having a high value can be made to be lower than the allowable temperature. Therefore, also in this case, a cooling structure that can cool the semiconductor devices (11, 12) efficiently at low cost can be easily realized.
  • FIG. 4 shows a cooling structure of the power conversion device according to the second embodiment of the present invention.
  • This cooling structure is different from the first embodiment only in that the semiconductor device (11, 12) is cooled using the refrigerant flowing in the refrigerant circuit. Therefore, the same parts as those in the first embodiment are denoted by the same reference numerals, and different parts will be described below.
  • the semiconductor device (11, 12) is disposed on a cooling jacket (31, 32) (heat dissipating part) configured to allow the refrigerant flowing in the refrigerant circuit to flow.
  • the silicon device (11) low temperature device
  • the silicon device (11) having a relatively low permissible temperature and its cooling jacket (31) are arranged upstream of the refrigerant flow (forced convection, black arrows in the figure)
  • the wide band gap semiconductor device (12) (high temperature device) having a higher allowable temperature than the silicon device (11) and its cooling jacket (32) are disposed downstream of the refrigerant flow (forced convection).
  • the cooling jacket (31) of the silicon device (11) is located upstream of the refrigerant pipe (33) through which the refrigerant flows, while the cooling jacket (32) of the wide band gap semiconductor device (12). Is located downstream.
  • the refrigerant flowing in the refrigerant pipe (33) first flows in the cooling jacket (31) to cool the silicon device (11) on the cooling jacket (31), and then the cooling jacket (32 ) To cool the wide band gap semiconductor device (12) on the cooling jacket (32).
  • the refrigerant pipe (33) is provided with the silicon device (11) having a low allowable temperature and the cooling jacket (31) on the upstream side, and the wide band having a high allowable temperature on the downstream side. Since the gap semiconductor device (12) and its cooling jacket (32) are provided, the plurality of semiconductor devices (11, 12) having different allowable temperatures can be efficiently cooled by the refrigerant flowing through one refrigerant flow path.
  • the semiconductor devices (11, 12) can be cooled more efficiently than when air is used.
  • the two semiconductor devices are configured to be cooled.
  • Two or more semiconductor devices may be cooled.
  • the fluids air, refrigerant, etc.
  • the fluids may be arranged in order from the lowest allowable temperature from the upstream side to the downstream side of forced convection.
  • the converter circuit (2) is formed only by the silicon device (11) having a low allowable temperature
  • the inverter circuit (4) is formed by only the wide band gap semiconductor device (12) having a high allowable temperature.
  • the converter circuit (2), the inverter circuit (4), etc. may be configured by mixing silicon devices (11) and wide band gap semiconductor devices (12). .
  • the plurality of semiconductor devices (11, 12) are provided with heat sinks (13, 14) for radiating heat generated in the semiconductor devices (11, 12), respectively.
  • a heat sink may be provided only for some of the semiconductor devices, or a heat sink may not be provided for any of the semiconductor devices.
  • the cooling jackets (31, 32) are provided for the plurality of semiconductor devices (11, 12), respectively.
  • the present invention is not limited to this, and the heat sink in the modification of the first embodiment.
  • one common cooling jacket may be provided for the semiconductor device (11, 12).
  • the refrigerant is used as the fluid for forced convection.
  • the present invention is not limited to this, and the semiconductor device may be cooled via the cooling jacket by forcibly convection with a liquid such as water. .
  • Embodiment 3 >> In the following embodiments, specific examples of circuit configurations of the inverter circuit (4) and the like of the power conversion device (1) will be described.
  • FIG. 5 is a diagram illustrating a configuration example of the power conversion device (1) according to the third embodiment of the present invention.
  • the power conversion device (1) includes a converter circuit (2), a capacitor circuit (3) (capacitor (3a)), and an inverter circuit (4) as in the first embodiment. ing.
  • the converter circuit (2) and the inverter circuit (4) are examples of the conversion unit of the present invention (hereinafter, the same applies to other embodiments).
  • the converter circuit (2) of the present embodiment is a so-called single-phase full-wave rectifier circuit.
  • the converter circuit (2) includes four diodes (2a) and a reactor (2b), and the four diodes (2a) are bridge-connected to form a rectifier circuit (65).
  • the output node on the positive side of the rectifier circuit (65) is connected to one connection node of the capacitor circuit (3) via the reactor (2b), and the output node on the negative side is connected to the other node of the capacitor circuit (3).
  • the input node of the rectifier circuit (65) is connected to the commercial power supply (6) (single-phase AC). Therefore, in this embodiment, the switching frequency of each diode (2a) is the frequency (for example, 50 Hz or 60 Hz) of the commercial power supply (6).
  • the inverter circuit (4) is connected to the converter circuit (2) via the capacitor circuit (3), converts the direct current output from the converter circuit (2) into a three-phase alternating current, and is connected as a load. It is designed to supply to the motor (5).
  • the inverter circuit (4) of this embodiment includes six switching elements (4a) connected in a bridge, and each switching element (4a) includes a free wheel diode (4b). ) Are connected in reverse parallel. More specifically, this inverter circuit (4) is provided with a pair of positive and negative DC buses, and three switching elements (4a, 4a) are connected in series with each other between these DC buses. Switching legs are connected in parallel.
  • Each intermediate point (M1, M2, M3) of each switching leg is a node that outputs the phase voltage (Vu, Vv, Vw) of each phase (U phase, V phase, W phase) of the output AC.
  • Each intermediate point (M1, M2, M3) is connected to the winding of each phase of the motor (5).
  • each switching element (4a) in the inverter circuit (4) varies depending on the setting of the so-called carrier frequency, but is 6 kHz in this embodiment. That is, in this embodiment, the switching frequency of each switching element (4a) is higher than the switching frequency of each diode (2a). In this embodiment, the free-wheeling diode (4b) is connected in antiparallel to each switching element (4a).
  • the present invention is not limited to this, and any other configuration may be used as long as switching is possible.
  • each diode (2a) of the converter circuit (2) is the silicon device.
  • Each switching element (4a) and each freewheeling diode (4b) of the inverter circuit (4) are the wide band gap semiconductor devices.
  • each semiconductor device (each switching element (4a) and each freewheeling diode (4b)) of the inverter circuit (4) is higher than the allowable temperature of each diode (2a), and each diode (2a)
  • the former (diode (2a)) is the above low temperature device (11)
  • the latter (each switching element (4a) and each freewheeling diode (4b)) is the above high temperature device (12). (See FIG. 5).
  • the switching frequency of each semiconductor device (high temperature device) of the inverter circuit (4) is higher than the switching frequency of each diode (2a) (low temperature device), and each semiconductor device of the inverter circuit (4) is the converter.
  • each diode (2a) It tends to be hotter than each diode (2a) in the circuit (2). Therefore, in this embodiment, the heat generated in each diode (2a) is radiated upstream of the forced convection of the fluid, and the heat generated in each semiconductor device of the inverter circuit (4) is downstream of the forced convection of the fluid. These semiconductor devices are provided so as to dissipate heat on the side.
  • the switching frequency can be increased in this way, the control band of the inverter circuit (4) can be expanded. Further, if the switching frequency is set to be higher than the audible frequency, noise due to switching can be reduced.
  • FIG. 6 is a diagram illustrating a configuration example of a power conversion device (1) according to a modification of the third embodiment.
  • FIG. 6A is an example in which the converter circuit (2) is configured by a so-called single-phase voltage doubler rectifier circuit, and two diodes (2a) and two capacitors (2c) are bridge-connected.
  • FIG. 6B is an example in which the converter circuit (2) is configured by a so-called three-phase full-wave rectifier circuit. Also in these examples, each diode (2a) is the silicon device.
  • the allowable temperature of each semiconductor device of the inverter circuit (4) is higher than the allowable temperature of each diode (2a), and the former is the above for each diode (2a) and each semiconductor device of the inverter circuit (4).
  • the low temperature device (11) is related to the latter high temperature device (12).
  • FIG. 7 is a diagram illustrating a configuration example of the power conversion device (1) according to the fourth embodiment of the present invention. This embodiment differs from the third embodiment in the configuration of the converter circuit (2).
  • the converter circuit (2) of the present embodiment is a so-called step-up PFC (Power Factor Correction) converter circuit, and includes a rectifier circuit (65) and a step-up chopper circuit (60) as shown in FIG. .
  • PFC Power Factor Correction
  • the rectifier circuit (65) includes four diodes (2a) that are bridge-connected. Also in this example, the switching frequency of each diode (2a) of the rectifier circuit (65) is the frequency (for example, 50 Hz or 60 Hz) of the commercial power supply (6).
  • the step-up chopper circuit (60) includes a reactor (2b), a switching element (62), and a diode (63), and functions as a power factor correction circuit (PFC circuit).
  • the reactor (2b) has one end connected to the positive output node of the rectifier circuit (65) and the other end connected to the diode (63).
  • the switching element (62) is connected between a connection node between the reactor (2b) and the diode (63) and a negative output node of the rectifier circuit (65).
  • the conduction width (ON period) of each diode (2a) of the rectifier circuit (65) is widened by switching of the switching element (62) of the boost chopper circuit (60). become.
  • the switching frequency of the switching element (62) can be set variously, but in this example, it is 20 kHz. In this embodiment, the switching frequency of each switching element (4a) in the inverter circuit (4) is 6 kHz.
  • each diode (2a) of the converter circuit (2) is the silicon device.
  • the switching element (62) and the diode (63) of the step-up chopper circuit (60) are the wide band gap semiconductor devices. Therefore, the allowable temperature of the switching element (62) and the diode (63) is higher than the allowable temperature of each diode (2a) of the rectifier circuit (65). That is, each diode (2a) of the rectifier circuit (65) and each semiconductor device (diode (63) and switching element (62)) of the boost chopper circuit (60) are the former (diode (2a)).
  • the low temperature device (11) and the latter are related to the high temperature device (12) (see FIG. 7).
  • the switching frequency of each semiconductor device (high temperature device) of the boost chopper circuit (60) is higher than the switching frequency of each diode (2a) (low temperature device), and each semiconductor device of the boost chopper circuit (60) However, the temperature tends to be higher than that of each diode (2a) of the rectifier circuit (65).
  • the heat generated in each diode (2a) of the rectifier circuit (65) is dissipated upstream of the forced convection of the fluid, and the diode (63) and the switching element of the boost chopper circuit (60) These semiconductor devices are provided so as to dissipate the heat generated in (62) downstream of the forced convection of the fluid.
  • each semiconductor device (switching element (4a) and each freewheeling diode (4b)) of the inverter circuit (4) is composed of the silicon device or the wide band gap semiconductor device. May be.
  • each semiconductor device of the inverter circuit (4) is composed of the above silicon devices, each semiconductor device of the inverter circuit (4) is a low temperature device (11), so each semiconductor device of the inverter circuit (4) is The generated heat is radiated on the upstream side of the forced convection of the fluid.
  • each semiconductor device of the inverter circuit (4) is composed of the wide band gap semiconductor device, each semiconductor device of the inverter circuit (4) is a high-temperature device (12), so the generated heat is transferred to the fluid. Arrange to dissipate heat downstream of forced convection.
  • the low temperature device (11) in this example, the diode (2a)
  • the low temperature device (11) and the high temperature device (12) as described above. Therefore, in this embodiment, it is possible to further increase the switching frequency of the switching element (62) and the diode (63) which are wide band gap semiconductor devices. If the switching frequency of the switching element (62) and the diode (63) can be increased, the reactor (2b) can be reduced in size.
  • FIG. 8 is a diagram illustrating a configuration of a power conversion device according to the first modification of the fourth embodiment.
  • the configuration of the rectifier circuit (65) is different from that in the fourth embodiment.
  • the AC power source (6) is a power source that outputs a three-phase AC
  • the rectifier circuit (65) is configured to rectify the three-phase AC by bridge-connecting six diodes (2a). Yes.
  • each diode (2a) of the rectifier circuit (65) is the silicon device. That is, each diode (2a) is the low-temperature device (11).
  • each diode (2a) is disposed so as to dissipate the generated heat upstream of the forced convection of the fluid.
  • FIG. 9 is a diagram illustrating a configuration of the power conversion device (1) according to the second modification of the fourth embodiment.
  • the step-up chopper circuit (60) is constituted by a so-called soft switching circuit.
  • the step-up chopper circuit (60) includes a soft switching coil (66), a diode (67), and a soft switching capacitor in addition to the step-up chopper circuit (60) of the first modification of the fourth embodiment. (68) is added.
  • the soft switching capacitor (68) is connected in parallel to the diode (63), and the diode (67) is connected in reverse parallel to the switching element (62).
  • the soft switching coil (66) is connected between the connection node between the reactor (2b) and the diode (63) and the switching element (62).
  • a resonance circuit is configured by the soft switching coil (66) and the soft switching capacitor (68).
  • the diode (67) is also a wide band gap semiconductor device. Therefore, the diode (67) is arranged so as to dissipate the generated heat downstream of the forced convection of the fluid. Thereby, also in this modification, it becomes possible to acquire the effect similar to the power converter device (1) of the said Embodiment 4.
  • FIG. The soft switching circuit has a larger current peak than the so-called hard switching circuit.
  • the use of the wide bandgap semiconductor device as described above has the advantage that it is not easily damaged by a large current. can get.
  • FIG. 10 is a figure which shows the structural example of the power converter device (1) which concerns on Embodiment 5 of this invention.
  • the configuration of the converter circuit (2) is different from that of the third embodiment.
  • the converter circuit (2) of this embodiment is a so-called step-up PFC converter circuit, and includes a rectifier circuit (65) and a step-up AC chopper circuit (70).
  • the rectifier circuit (65) includes four diodes (2a) as shown in FIG. 10, and the four diodes (2a) are bridge-connected.
  • the step-up AC chopper circuit (70) includes a reactor (2b) and a bidirectional switch (72).
  • the bidirectional switch (72) performs switching to boost the output of the commercial power supply (6).
  • the rectifier circuit (65) is supplied.
  • the switching frequency of the bidirectional switch (72) can be set in various ways, but is 20 kHz in this embodiment.
  • the reactor (2b) is connected between one output node of the commercial power supply (6) and the input node of the rectifier circuit (65), and is bidirectional.
  • the switch (72) is connected between the node on the rectifier circuit (65) side of the reactor (2b) and the other output node of the commercial power supply (6).
  • the bidirectional switch (72) can have various configurations.
  • (A) to (C) of FIG. 11 are diagrams showing a configuration example of the bidirectional switch (72).
  • the bidirectional switch (72) can be configured by combining a switching element (72a) and a diode (72b).
  • each diode (2a) of the rectifier circuit (65) is turned on / off in response to the turning on / off of the bidirectional switch (72). Specifically, the diode (2a) is turned off when the bidirectional switch (72) is on, and the diode (2a) is turned on when the bidirectional switch (72) is off. That is, the diode (2a) of the rectifier circuit (65) is turned on / off at the same switching frequency as that of the bidirectional switch (72). In this embodiment, the switching frequency of each switching element (4a) in the inverter circuit (4) is 6 kHz.
  • the bidirectional switch (72) and each diode (2a) of the rectifier circuit (65) are the wide band gap semiconductor devices.
  • Each semiconductor device (switching element (4a) and freewheeling diode (4b)) of the inverter circuit (4) is the silicon device. Therefore, the allowable temperature of the bidirectional switch (72) and each diode (2a) is higher than the allowable temperature of each semiconductor device of the inverter circuit (4). That is, each semiconductor device of the inverter circuit (4) and each semiconductor device (bidirectional switch (72) and each diode (2a)) of the converter circuit (2) are the former (each switching element (4a) and the free wheel diode).
  • each high temperature device (bidirectional switch (72) and each diode (2a)) is related to the high temperature device (12) (see FIG. 10).
  • the switching frequency of each high temperature device (bidirectional switch (72) and each diode (2a)) is the switching frequency of low temperature device (each switching element (4a) and each return diode (4b) of the inverter circuit (4)).
  • the bidirectional switch (72) and the diodes (2a) tend to be hotter than the switching elements (4a) and the free-wheeling diodes (4b) of the inverter circuit (4).
  • each switching element (4a) and the freewheeling diode (4b) of the inverter circuit (4) is radiated upstream of the forced convection of the fluid, and the bidirectional circuit of the converter circuit (2).
  • These semiconductor devices are provided so that heat generated by the switch (72) and each diode (2a) is dissipated downstream of the forced convection of the fluid.
  • the low temperature device (11) in this example, the switching element (4a) and the free wheel diode (4b)
  • the low temperature device (11) is effective by arranging the low temperature device (11) and the high temperature device (12) as described above. Can be cooled. Therefore, in this embodiment, it is possible to further increase the switching frequency of the bidirectional switch (72) and each diode (2a) which are wide band gap semiconductor devices. And if a switching frequency can be made high in this way, size reduction of a reactor (2b) will be attained.
  • FIG. 12 is a diagram illustrating a configuration example of a power conversion device (1) according to a modification of the fifth embodiment.
  • the converter circuit (2) rectifies three-phase alternating current.
  • the rectifier circuit (65) six diodes (2a) are bridge-connected to rectify a three-phase alternating current.
  • three reactors (2b) of the boost type AC chopper circuit (70) are provided corresponding to each phase of the commercial power source (6) which is a three-phase AC power source.
  • Three bidirectional switches (72) are also provided for each reactor (2b). Each bidirectional switch (72) has one end connected to the corresponding reactor (2b) and the other ends connected to each other.
  • each bidirectional switch (72) and each diode (2a) is a high temperature device (12) constituted by a wide band gap semiconductor device. Therefore, also in this modification, each bidirectional switch (72) and each diode (2a) are arranged so as to dissipate the generated heat downstream of the forced convection of the fluid. Thereby, also in this modification, it becomes possible to acquire the effect similar to the power converter device (1) of the said Embodiment 5.
  • the bidirectional switch (72) is connected by so-called Y connection, but may be connected by ⁇ connection.
  • FIG. 13 is a figure which shows the structural example of the power converter device (1) which concerns on Embodiment 6 of this invention.
  • the present embodiment is an example of a so-called pseudo current type inverter circuit.
  • the power converter (1) of this embodiment includes a converter circuit (2), a capacitor circuit (3), a step-down chopper circuit (90), and an inverter circuit (4).
  • the converter circuit (2) includes six diodes (2a), and these diodes (2a) are bridge-connected to form a rectifier circuit (65).
  • the rectifier circuit (65) is connected to a commercial power source (6) that outputs a three-phase alternating current.
  • the switching frequency of each diode (2a) is the frequency (for example, 50 Hz or 60 Hz) of the commercial power supply (6). It is also possible to use a single-phase AC power source as the commercial power source (6).
  • a rectifier circuit (65) is configured by bridge-connecting four diodes (2a).
  • the step-down chopper circuit (90) includes a switching element (91), a reactor (92), a first diode (93), and a second diode (94), and is an example of the conversion unit of the present invention.
  • one end of the switching element (91) is connected to the positive output node of the rectifier circuit (65), and the other end is connected in series with the reactor (92).
  • the first diode (93) is connected to a connection node between the switching element (91) and the reactor (92) and a negative output node of the rectifier circuit (65).
  • the second diode (94) is connected to the positive DC bus of the inverter circuit (4) and the capacitor (3a), and the current from the inverter circuit (4) is supplied to the capacitor (3a) of the capacitor circuit (3).
  • the switching frequency of the switching element (91) can be variously set, but in this example, it is 20 kHz. In this embodiment, the switching frequency of each switching element (4a) in the inverter circuit (4) is 6 kHz.
  • each diode (2a) of the rectifier circuit (65) is the silicon device.
  • the switching element (91) and the first diode (93) are the wide bandgap semiconductor device, and the second diode (94) is the silicon device. Therefore, the allowable temperature of the switching element (91) and the first diode (93) is higher than the allowable temperature of each diode (2a) and the second diode (94) of the rectifier circuit (65). That is, each diode (2a) and second diode (94) and each semiconductor device (switching element (91) and first diode (93)) of the step-down chopper circuit (90) are the former (each diode).
  • the switching frequency of the switching element (91) and the first diode (93) (high temperature device) is higher than the switching frequency of each diode (2a) and the second diode (94) (low temperature device). 91) and the first diode (93) tend to be hotter than the diodes (2a) and the second diode (94).
  • the heat generated in each diode (2a) and the second diode (94) is dissipated upstream of the forced convection of the fluid and generated in the switching element (91) and the first diode (93).
  • These semiconductor devices are provided so as to dissipate the generated heat downstream of the forced convection of the fluid.
  • each semiconductor device (switching element (4a) and each freewheeling diode (4b)) of the inverter circuit (4) is composed of the silicon device or the wide band gap semiconductor device. May be.
  • each semiconductor device of the inverter circuit (4) is composed of the above silicon devices, each semiconductor device of the inverter circuit (4) is a low temperature device (11), so each semiconductor device of the inverter circuit (4) is The generated heat is radiated on the upstream side of the forced convection of the fluid.
  • each semiconductor device of the inverter circuit (4) is composed of the wide band gap semiconductor device, each semiconductor device of the inverter circuit (4) is a high-temperature device (12), so the generated heat is transferred to the fluid. Arrange to dissipate heat downstream of forced convection.
  • the low temperature device (11) in this example, the diode (2a) and the second diode (94)
  • the low temperature device (11) in this example, the diode (2a) and the second diode (94)
  • FIG. 14 is a figure which shows the structural example of the power converter device (1) which concerns on Embodiment 7 of this invention.
  • the configuration of the converter circuit (2) is different from that of the third embodiment.
  • the converter circuit (2) of the present embodiment is an example of a so-called flyback converter circuit.
  • the converter circuit (2) includes four diodes (2a), a switching element (101), a transformer (102), and a secondary side diode (103), and an inverter circuit via the capacitor circuit (3). (4) Connected with. More specifically, in this converter circuit (2), the four diodes (2a) are bridge-connected to form a rectifier circuit (65).
  • the input node is connected to a commercial power supply (6) that is a single-phase AC power supply, and the primary coil of the transformer (102) and the switching element (101) are connected in series between the output nodes.
  • a secondary diode (103) is connected to one end of the secondary coil of the transformer (102).
  • the switching frequency of the switching element (101) can be variously set, but in this embodiment, it is 20 kHz.
  • each diode (2a) of the rectifier circuit (65) is turned on / off in response to the on / off of the switching element (101). That is, the switching frequency of each diode (2a) is the same as the switching frequency (20 kHz in this example) of the switching element (101).
  • the switching frequency of each switching element (4a) of an inverter circuit (4) changes with setting of what is called a carrier frequency, in this embodiment, it is 6 kHz.
  • each semiconductor device (the switching element (101), each diode (2a), and the secondary diode (103)) of the converter circuit (2) is the wide band gap semiconductor device.
  • Each semiconductor device (switching element (4a) and each freewheeling diode (4b)) of the inverter circuit (4) is the silicon device. Therefore, the allowable temperature of each semiconductor device of the converter circuit (2) is higher than the allowable temperature of each semiconductor device of the inverter circuit (4). That is, in this power converter (1), each semiconductor device of the inverter circuit (4) is a low temperature device (11), and each semiconductor device of the converter circuit (2) is the high temperature device (12).
  • each semiconductor device (high temperature device) of the converter circuit (2) is higher than the switching frequency of each semiconductor device (low temperature device) of the inverter circuit (4), and each semiconductor device of the converter circuit (2)
  • the temperature tends to be higher than that of each semiconductor device of the inverter circuit (4). Therefore, in this embodiment, heat generated in each semiconductor device of the inverter circuit (4) is radiated upstream of the forced convection of the fluid, and heat generated in each semiconductor device of the converter circuit (2) is dissipated in the fluid.
  • These semiconductor devices are provided to dissipate heat downstream of forced convection.
  • the low temperature device (11) in this example, the switching element (4a) and the free wheel diode (4b)
  • the switching element (4a) and the free wheel diode (4b) is effective. Can be cooled. Therefore, in this embodiment, it is possible to further increase the switching frequency of the switching element (101), each diode (2a), and the secondary side diode (103), which are wide band gap semiconductor devices. If the switching frequency can be increased in this way, the transformer (102) can be reduced in size.
  • FIG. 15 is a diagram illustrating a configuration example of the power conversion device (1) according to the eighth embodiment of the present invention.
  • the configuration of the converter circuit (2) is different from that of the third embodiment.
  • the converter circuit (2) of the present embodiment is composed of a single-phase mixed bridge circuit which is an example of a so-called PWM converter circuit.
  • the converter circuit (2) includes two diodes (2a) and two switching elements (2d) that are bridge-connected to form a rectifier circuit (65) as shown in FIG. Yes.
  • a diode (2e) is connected in antiparallel to these switching elements (2d).
  • a commercial power supply (6) which is a single-phase AC power supply, is connected to the rectifier circuit (65) via a reactor (2b), and the output of the rectifier circuit (65) is an inverter via a capacitor circuit (3). Connected to circuit (4).
  • the switching frequency of the switching element (2d) can be set in various ways, but is 20 kHz in the present embodiment. In addition, although the switching frequency of each switching element (4a) of an inverter circuit (4) changes with setting of what is called a carrier frequency, in this embodiment, it is 6 kHz.
  • each semiconductor device (each diode (2a), switching element (2d), and diode (2e)) of the converter circuit (2) is the wide band gap semiconductor device. .
  • Each semiconductor device (switching element (4a) and each freewheeling diode (4b)) of the inverter circuit (4) is the silicon device. Therefore, the allowable temperature of each semiconductor device of the converter circuit (2) is higher than the allowable temperature of each semiconductor device of the inverter circuit (4). That is, in this power converter (1), each semiconductor device of the inverter circuit (4) is a low temperature device (11), and each semiconductor device of the converter circuit (2) is the high temperature device (12).
  • each semiconductor device (high temperature device) of the converter circuit (2) is higher than the switching frequency of each semiconductor device (low temperature device) of the inverter circuit (4), and each semiconductor device of the converter circuit (2)
  • the temperature tends to be higher than that of each semiconductor device of the inverter circuit (4). Therefore, in this embodiment, heat generated in each semiconductor device of the inverter circuit (4) is radiated upstream of the forced convection of the fluid, and heat generated in each semiconductor device of the converter circuit (2) is dissipated in the fluid.
  • These semiconductor devices are provided to dissipate heat downstream of forced convection.
  • the low temperature device (11) in this example, the switching element (4a) and the free wheel diode (4b)
  • the low temperature device (11) in this example, the switching element (4a) and the free wheel diode (4b)
  • FIG. 16 is a diagram illustrating a configuration example of a power conversion device (1) according to a modification of the eighth embodiment
  • FIG. 16A is a diagram illustrating a configuration example of a single-phase AC PWM converter circuit.
  • four switching elements (2d) are bridge-connected, and commercial power supply (6) (single-phase AC) is connected via a reactor (2b). It is connected.
  • the diodes (2e) are also connected in reverse parallel to these switching elements (2d).
  • each semiconductor device of the converter circuit (2) is the wide band gap semiconductor device (high temperature device (12)), and each semiconductor device of the inverter circuit (4) is the silicon device. Therefore, also in this modified example, the low temperature device (11) is effectively cooled by arranging the low temperature device (11) and the high temperature device (12) as in the power conversion device (1) of the eighth embodiment. It is possible to obtain the same effect as the power conversion device (1) of the eighth embodiment.
  • the converter circuit (2) of the power converter (1) can employ, for example, a forward converter, push-pull converter, three-phase one-stone converter, full-bridge converter, etc. is there.
  • each switching element (4a) of the inverter circuit (4) is constituted by the low-temperature device (11), and at least a part of the semiconductor devices of the converter circuit (2) Is composed of a high temperature device (12).
  • the power conversion apparatus of the present invention is particularly useful when cooling semiconductor devices having different allowable temperatures.

Abstract

 半導体デバイス(11,12)は、相対的に許容温度の低いシリコンデバイス(11)と該シリコンデバイス(11)よりも許容温度の高いワイドバンドギャップ半導体デバイス(12)とを有している。上記シリコンデバイス(11)及びワイドバンドギャップ半導体デバイス(12)は、該シリコンデバイス(11)で発生した熱を流体の強制対流の上流側で放熱し、該ワイドバンドギャップ半導体デバイス(12)で発生した熱を上記流体の強制対流の下流側で放熱するように設けられている。

Description

電力変換装置
 本発明は、強制対流によって冷却される半導体デバイスを備えた電力変換装置に関する。
 従来より、電力変換装置に用いられる半導体デバイスを流体の強制対流によって冷却する構成が知られている。このような電力変換装置では、例えば特許文献1に開示されるように、ファン等によって空気の強制対流を生じさせて、その空気の流れによって半導体デバイスを冷却するようにしている。
 また、現在、半導体デバイスの主材料としては、シリコンが用いられているが、例えば上記特許文献1にも開示されるように、シリコンよりも許容温度が高く、低損失で高速動作が可能なSiCなどのワイドバンドギャップ半導体を半導体デバイスの主材料として用いることが考えられている。
特開2008-60430号公報
 ところで、半導体デバイスの主材料を、現在、一般的に用いられているシリコンから上述のワイドバンドギャップ半導体へ移行する場合、シリコンを主材料としたものとワイドバンドギャップ半導体を主材料としたものとが混在した状態になることが考えられる。そうすると、シリコンを主材料とする半導体デバイス(以下、シリコンデバイスともいう)と、ワイドバンドギャップ半導体を主材料とする半導体デバイス(以下、ワイドバンドギャップ半導体デバイスともいう)とでは、許容温度が異なるため、各半導体デバイスの温度が許容温度以下になるような冷却構造を採用する必要がある。
 そのような冷却構造の一つとして、例えば、上記シリコンデバイス及びワイドバンドギャップ半導体デバイスを別々の冷却機構によって冷却することが考えられるが、そのような構成ではファンやポンプなどの強制対流の発生源が余分に必要になるとともに、流路等も別に設ける必要があり、あまり効率の良い冷却構造とはいえない。
 本発明は、斯かる点に鑑みてなされたものであり、その目的とするところは、流体の強制対流によって冷却される半導体デバイスを備えた電力変換装置において、許容温度の異なる半導体デバイスを効率良く冷却することのできる冷却構造を得ることにある。
 上記目的を達成するために、本発明に係る電力変換装置(1)では、許容温度の低い低温デバイス(11)で発生した熱を流体の強制対流の上流側で放熱し、許容温度の高い高温デバイス(12)で発生した熱を強制対流の下流側で放熱するように、上記低温デバイス(11)及び高温デバイス(12)を設けることで、一つの流体の流れによって許容温度の異なる半導体デバイス(11,12)を効率良く冷却できるようにした。
 具体的には、第1の発明では、流体の強制対流によって冷却される半導体デバイス(11,12)を備えた電力変換装置を対象とする。
 そして、上記半導体デバイス(11,12)は、相対的に許容温度の低い低温デバイス(11)と該低温デバイス(11)よりも許容温度の高い高温デバイス(12)とを有し、上記低温デバイス(11)及び高温デバイス(12)は、上記低温デバイス(11)で発生した熱を上記流体の強制対流の上流側で放熱し、上記高温デバイス(12)で発生した熱を上記流体の強制対流の下流側で放熱するように設けられているものとする。
 この構成により、相対的に許容温度の低い低温デバイス(11)と該低温デバイス(11)よりも許容温度の高い高温デバイス(12)を、一つの流体の流れ(強制対流)によって冷却することができ、許容温度の異なる複数の半導体デバイス(11,12)を効率良く冷却することができる。すなわち、流体の強制対流の上流側で、許容温度の低い低温デバイス(11)で発生した熱を放熱することにより、該低温デバイス(11)を優先して冷却することができる。一方、上記強制対流の下流側で許容温度の高い高温デバイス(12)で発生した熱を放熱することで、上記低温デバイス(11)を冷却した後の比較的、温度が高くなった流体によって上記高温デバイス(12)が冷却されることになるが、該高温デバイス(12)の許容温度は相対的に高いため、上記流体によっても高温デバイス(12)の温度を許容温度以下とすることが可能になる。
 したがって、許容温度の異なる複数の半導体デバイス(11,12)に対して、別々の冷却機構を設ける必要がなくなるので、ファンやポンプなどの強制対流の発生源や流体の流路の数を減らすことができる。よって、上述の構成により、上記複数の半導体デバイス(11,12)を効率良く冷却することができる冷却構造を得ることができる。
 上述の構成において、上記低温デバイス(11)は、上記高温デバイス(12)よりも上記強制対流の上流側に配置されているものとする(第2の発明)。こうすることで、上記低温デバイス(11)を流体の強制対流の上流側で確実に冷却することができ、上記第1の発明の構成を確実且つ容易に実現することができる。
 また、上記低温デバイス(11)及び高温デバイス(12)の少なくとも一方には、上記流体に放熱するための放熱部(13,14,21)が設けられていてもよい(第3の発明)。
 このように、半導体デバイス(11,12)に放熱のための放熱部(13,14,21)が設けられている場合にも、上記第1の発明の構成のように、低温デバイス(11)の熱が流体の強制対流の上流側で放熱され、高温デバイス(12)の熱が流体の強制対流の下流側で放熱されるように、半導体デバイス(11,12)及び放熱部(13,14,21)を配置することで、上記第1の発明と同様、許容温度の異なる複数の半導体デバイス(11,12)を効率良く冷却することができる冷却構造を得ることができる。
 また、上記放熱部(21)は、上記低温デバイス(11)及び高温デバイス(12)で発生した熱を上記流体に放熱するように、それらのデバイス(11,12)に跨って設けられていて、上記低温デバイス(11)は、上記放熱部(21)上の上記高温デバイス(12)よりも上記強制対流の上流側に配置されているのが好ましい(第4の発明)。
 これにより、許容温度の異なる複数の半導体デバイス(11,12)を一つの放熱部(21)上に配置する場合、低温デバイス(11)を高温デバイス(12)よりも強制対流の上流側に配置することで、許容温度の低い低温デバイス(11)を確実且つ効率良く冷却することができる。すなわち、許容温度の異なる複数の半導体デバイス(11,12)に対して共通の放熱部(21)を設ける場合でも、上述のような構成にすることで、該半導体デバイス(11,12)を効率良く冷却することができる。
 さらに、一つの放熱部(21)上に複数の半導体デバイス(11,12)を配置することで、該放熱部(21)を電装品箱に取り付けるための取付ネジの数を低減できるとともに、取付作業の軽減も図れる。
 また、上記低温デバイス(11)は、シリコンを主材料として構成されていて、上記高温デバイス(12)は、ワイドバンドギャップ半導体を主材料として構成されているのが好ましい(第5の発明)。このような構成でも、上記第1から第4の発明のような構成にすることで、該第1から第4の各発明の作用が得られる。
 特に、上記ワイドバンドギャップ半導体は、SiC、GaNまたはダイヤモンドのいずれかであるのが好ましい(第6の発明)。これにより、低損失で高速動作可能な半導体デバイスを実現することができる。そして、このような半導体デバイスを用いる場合でも、上記第1から第4の発明のような構成にすることで、該第1から第4の各発明の作用が得られる。
 さらに、上記流体は、空気、水、または冷凍サイクルを行う冷媒回路内の冷媒のいずれかであるのが好ましい(第7の発明)。強制対流させる流体として空気を用いれば、水や冷媒を強制対流させる場合のように配管を用いる必要がなくなるため、簡単な構成で半導体デバイスを冷却することができる。また、強制対流させる流体として水や冷媒を用いれば、空気に比べて冷却性能を向上できるため、半導体デバイスをより効率良く冷却することができる。
 また、上記半導体デバイス(11,12)が、スイッチング動作を行う構成では、上記半導体デバイス(11,12)のうち、相対的な関係においてスイッチング周波数がより高いものが上記高温デバイス(12)、スイッチング周波数がより低いものが上記低温デバイス(11)であることが好ましい(第8の発明)。
 上記半導体デバイス(11,12)がスイッチング動作を行う構成では、スイッチング周波数がより高い半導体デバイス(11,12)の方が、スイッチング周波数がより低いものよりも高温になりがちである。しかし、この構成では、スイッチング周波数がより低い半導体デバイス(11,12)、すなわち低温デバイス(11)が効率的に冷却される。
 また、上記低温デバイス(11)及び上記高温デバイス(12)は、直流電力又は交流電力を所定の電圧、電流の直流電力、又は所定の電圧、電流、周波数の交流電力に変換する変換部(2,4)を構成してもよい(第9の発明)。
 このようにすることで、スイッチングにより電力変換を行う電力変換装置において、上記各発明の作用を得ることが可能になる。
 また、上記変換部(2,4)として、交流電力をダイオード(2a)で整流して直流電力に変換するコンバータ回路(2)と、複数のスイッチング素子(4a)で上記コンバータ回路(2)の出力をスイッチングして所定の電圧、電流、周波数の交流電力に変換するインバータ回路(4)と、を備えた構成では、上記変換部(2,4)では、上記ダイオード(2a)が上記低温デバイス(11)、上記スイッチング素子(4a)が上記高温デバイス(12)であることが好ましい(第10の発明)。
 また、上記変換部(2,4)として、交流電力をダイオード(2a)で整流して直流電力に変換する整流回路(65)、及び昇圧形チョッパ回路(60)を有したコンバータ回路(2)を備え、上記昇圧形チョッパ回路(60)は、上記整流回路(65)の一方の出力ノードと接続されたリアクトル(2b)、該リアクトル(2b)と直列接続されたダイオード(63)、及び、上記整流回路(65)のもう一方の出力ノードと該リアクトル(2b)との間に設けられたスイッチング素子(62)を有した構成では、上記変換部(2,4)では、上記コンバータ回路(2)の上記ダイオード(2a)が上記低温デバイス(11)、上記昇圧形チョッパ回路(60)の上記ダイオード(63)及び上記スイッチング素子(62)の各半導体デバイスが上記高温デバイス(12)であることが好ましい(第11の発明)。
 また、上記昇圧形チョッパ回路(60)は、ソフトスイッチング方式の回路であってもよい(第12の発明)。
 また、上記変換部(2,4)として、昇圧形交流チョッパ回路(70)、及び上記昇圧形交流チョッパ回路(70)の出力をダイオード(2a)で整流して直流電力に変換する整流回路(65)を有したコンバータ回路(2)と、複数のスイッチング素子(4a)で上記コンバータ回路(2)の出力をスイッチングして所定の電圧、電流、周波数の交流電力に変換するインバータ回路(4)と、を備え、上記昇圧形交流チョッパ回路(70)は、交流電源(6)の所定の出力ノードと整流回路(65)の所定の入力ノードに接続されたリアクトル(2b)、及び、該リアクトル(2b)と該整流回路(65)の他の入力ノードとに接続された双方向スイッチ(72)を有した構成では、上記変換部(2,4)では、上記スイッチング素子(4a)が上記低温デバイス(11)、上記双方向スイッチ(72)及び上記ダイオード(2a)の各半導体デバイスが高温デバイス(12)であることが好ましい(第13の発明)。
 また、上記変換部(2,4)として、交流電力をダイオード(2a)で整流して直流電力に変換する整流回路(65)を有したコンバータ回路(2)と、降圧形チョッパ回路(90)と、複数のスイッチング素子(4a)で上記降圧形チョッパ回路(90)の出力をスイッチングして所定の電圧、電流、周波数の交流電力に変換するインバータ回路(4)と、を備え、上記降圧形チョッパ回路(90)が、上記整流回路(65)の一方の出力ノードに接続されたスイッチング素子(91)、該スイッチング素子(91)に直列接続されたリアクトル(92)、該コンバータ回路(2)の他方の出力ノードと該スイッチング素子(91)との間に接続された第1ダイオード(93)、及び直列接続の該スイッチング素子(91)と該リアクトル(92)に対して並列接続された第2ダイオード(94)を有した構成では、上記変換部(2,4)では、上記コンバータ回路(2)の上記ダイオード(2a)及び上記降圧形チョッパ回路(90)の上記第2ダイオード(94)の各半導体デバイスが上記低温デバイス(11)、上記降圧形チョッパ回路(90)の上記スイッチング素子(91)及び上記第1ダイオード(93)の各半導体デバイスが上記高温デバイス(12)であることが好ましい(第14の発明)。
 また、上記変換部(2,4)として、交流電力をダイオード(2a)で整流する整流回路(65)、トランス(102)、スイッチング素子(101)、及び2次側ダイオード(103)を有し、該トランス(102)の一次側コイルと該スイッチング素子(101)とが該整流回路(65)の出力ノード間で直列接続され、該トランス(102)の二次側コイルに2次側ダイオード(103)が接続されたフライバックコンバータ回路(2)と、複数のスイッチング素子(4a)で上記フライバックコンバータ回路(2)の出力をスイッチングして所定の電圧、電流、周波数の交流電力に変換するインバータ回路(4)と、を備えた構成では、上記変換部(2,4)では、上記インバータ回路(4)の上記スイッチング素子(4a)が上記低温デバイス(11)、上記フライバックコンバータ回路(2)の上記スイッチング素子(101)、上記整流回路(65)の上記ダイオード(2a)及び上記2次側ダイオード(103)の各半導体デバイスが上記高温デバイス(12)であることが好ましい(第15の発明)。
 また、上記変換部(2,4)として、フォワードコンバータ、プッシュプル方式コンバータ、三相一石コンバータ、及びフルブリッジ方式コンバータの何れかの方式のコンバータ回路(2)と、複数のスイッチング素子(4a)で上記コンバータ回路(2)の出力をスイッチングして所定の電圧、電流、周波数の交流電力に変換するインバータ回路(4)と、を備えた構成では、上記変換部(2,4)では、上記インバータ回路(4)の上記スイッチング素子(4a)が上記低温デバイス(11)、上記コンバータ回路(2)の少なくとも一部の半導体デバイスが上記高温デバイス(12)であることが好ましい(第16の発明)。
 また、上記変換部(2,4)として、複数のスイッチング素子(2d)がブリッジ接続された整流回路(65)、又はスイッチング素子(2d)とダイオード(2a)が混合ブリッジ接続された整流回路(65)を有し、該整流回路(65)にリアクトル(2b)を介して交流電力が入力されるコンバータ回路(2)と、複数のスイッチング素子(4a)で上記コンバータ回路(2)の出力をスイッチングして所定の電圧、電流、周波数の交流電力に変換するインバータ回路(4)と、を備えた構成では、上記変換部(2,4)では、上記インバータ回路(4)の上記スイッチング素子(4a)が上記低温デバイス(11)、上記ブリッジ接続の各半導体デバイスが上記高温デバイス(12)であることが好ましい。(第17の発明)。
 本発明に係る電力変換装置(1)によれば、低温デバイス(11)で発生した熱を流体の強制対流の上流側で放熱させて、高温デバイス(12)で発生した熱を流体の強制対流の下流側で放熱させるようにしたため、一つの流体の流路によって許容温度の異なる複数の半導体デバイス(11,12)を効率良く冷却することができる。したがって、上述の構成により、複数の半導体デバイス(11,12)を効率良く冷却することができる冷却構造が得られる。特に、第2の発明によれば、上記低温デバイス(11)を高温デバイス(12)よりも強制対流の上流側に配置することで、上記第1の発明の構成を確実に実現することができる。
 また、第3の発明によれば、上記低温デバイス(11)及び高温デバイス(12)の少なくとも一方に放熱部(13,14,21)が設けられている構成においても、低温デバイス(11)で発生した熱は強制対流の上流側に放熱し、高温デバイス(12)で発生した熱は強制対流の下流側に放熱するように構成されているため、上記第1の発明の効果と同様の効果が得られる。
 また、第4の発明によれば、上記放熱部(21)が、低温デバイス(11)及び高温デバイス(12)に跨って設けられている構成においても、該低温デバイス(11)を高温デバイス(12)よりも強制対流の上流側に配置することで、上記第1の発明の効果と同様の効果が得られる。
 また、第5の発明によれば、上記低温デバイス(11)はシリコンを主材料としていて、上記高温デバイス(12)はワイドバンドギャップ半導体を主材料としている場合でも、上記第1から第4の各発明のような構成にすることで、該各発明の効果が得られる。
 特に、第6の発明によれば、上記ワイドバンドギャップ半導体は、SiC、GaN、ダイヤモンドのいずれかであるため、低損失で高速動作可能な高温デバイス(12)をより確実に実現でき、この構成においても、上記第1から第4の各発明のような構成にすることで、該各発明の効果が得られる。
 さらに、第7の発明によれば、上記流体は、空気、水、または冷凍サイクルを行う冷媒回路内の冷媒であるため、空気を強制対流させれば、簡単な構成で冷却構造を実現でき、水や冷媒を強制対流させれば、より効率良く半導体デバイス(11,12)を冷却することができる。
 また、第8の発明によれば、所定の半導体デバイス(11,12)のスイッチング周波数の高周波化と、各半導体デバイス(11,12)の冷却の効率化の両立を実現できる。
 また、第9の発明によれば、スイッチングにより電力変換を行う変換部(2,4)を備えた構成において、上記変換部(2,4)の所定の半導体デバイス(11,12)のスイッチング周波数の高周波化と、各半導体デバイス(11,12)の冷却の効率化の両立を実現できる。
 また、第10の発明によれば、上記スイッチング素子(4a)のスイッチング周波数の高周波化が可能になり、インバータ回路(4)の制御帯域の拡大が可能になる。また、該インバータ回路(4)のスイッチング周波数を可聴周波数以上にすれば、スイッチングによる騒音の低減も可能になる。
 また、第11の発明によれば、スイッチング素子(62)のスイッチング周波数の高周波化が可能になり、結果として、リアクトル(2b)の小型化も可能になる。
 また、第12の発明によれば、ソフトスイッチング方式の昇圧形チョッパ回路(60)を有した電力変換装置において、上記第11の発明と同様の効果を得ることが可能になる。
 また、第13の発明によれば、双方向スイッチ(72)のスイッチング周波数の高周波化が可能になり、結果として、リアクトル(2b)の小型化も可能になる。
 また、第14の発明によれば、降圧形チョッパ回路(90)のスイッチング素子(91)や第1ダイオード(93)のスイッチング周波数の高周波化が可能になり、結果として、リアクトル(92)の小型化も可能になる。
 また、第15の発明によれば、ダイオード(2a)、スイッチング素子(101)、2次側ダイオード(103)のスイッチング周波数の高周波化が可能になり、結果として、トランス(102)の小型化も可能になる。
 また、第16の発明によれば、コンバータ回路(2)の所定の半導体デバイスのスイッチング周波数の高周波化が可能になり、上記第15の発明と同様の効果を得ることが可能になる。
 また、第17の発明によれば、整流回路(65)におけるスイッチング周波数の高周波化が可能になり、結果として、リアクトル(92)の小型化も可能になる。
図1は、本発明の実施形態1に係る電力変換装置の概略構成を示す図である。 図2は、実施形態1における電力変換装置の冷却構造を模式的に示す図である。 図3は、実施形態1の変形例における冷却構造の図2相当図である。 図4は、実施形態2に係る電力変換装置の冷却構造の図2相当図である。 図5は、本発明の実施形態3に係る電力変換装置の構成例を示す図である。 図6は、(A)がいわゆる単相倍電圧整流回路でコンバータ回路を構成した例を示す図であり、(B)がいわゆる三相全波整流回路でコンバータ回路を構成した例を示す図である。 図7は、本発明の実施形態4に係る電力変換装置の構成例を示す図である。 図8は、実施形態4の変形例1に係る電力変換装置の構成を示す図である。 図9は、実施形態4の変形例2に係る電力変換装置の構成を示す図である。 図10は、本発明の実施形態5に係る電力変換装置の構成例を示す図である。 図11(A)~(C)は、双方向スイッチの構成例を示す図である。 図12は、実施形態5の変形例に係るコンバータ回路の構成例を示す図である。 図13は、本発明の実施形態6に係る電力変換装置の構成例を示す図である。 図14は、本発明の実施形態7に係る電力変換装置の構成例を示す図である。 図15は、本発明の実施形態8に係る電力変換装置の構成例を示す図である。 図16は、(A)が単相交流用のPWMコンバータ回路の構成例を示す図であり、(B)が三相交流用のPWMコンバータ回路の構成例を示す図である。
 以下、本発明に係る実施形態を図面に基づいて詳細に説明する。尚、以下の好ましい実施形態の説明は、本質的に例示に過ぎず、本発明、その適用物或いはその用途を制限することを意図するものではない。
 《実施形態1》
 本発明の実施形態1について以下で説明する。図1に示すように、本実施形態に係る電力変換装置(1)は、コンバータ回路(2)とコンデンサ回路(3)とインバータ回路(4)とを備えている。なお、上記電力変換装置(1)は、例えば空気調和装置の冷媒回路に設けられた圧縮機の電動機(5)(以下、モータともいう)を駆動するために用いられる。ここで、空気調和装置の冷媒回路は、特に図示しないが、圧縮機と凝縮器と膨張機構と蒸発器とが閉回路を構成するように接続されてなり、冷媒が循環して蒸気圧縮式冷凍サイクルを行うように構成されている。この冷媒回路によって、冷房運転では、蒸発器で冷却された空気が室内へ供給され、暖房運転では、凝縮器で加熱された空気が室内へ供給される。
 上記コンバータ回路(2)は、複数のダイオード(2a)を備えていて、商用電源(6)から出力される交流電力を整流するように構成されている。特に図示しないが、上記コンバータ回路(2)は、複数のダイオード(例えば三相交流であれば6個)がブリッジ状に接続されており、これにより整流回路を構成している。なお、本実施形態では、上記コンバータ回路(2)を複数のダイオード(2a)によって構成しているが、この限りではなく、トランジスタなどのスイッチング素子によって構成し、交流電力を直流電力に整流するように該スイッチング素子を駆動制御してもよい。
 上記コンデンサ回路(3)は、上記コンバータ回路(2)の出力側に並列に接続されるコンデンサ(3a)を備えている。このコンデンサ回路(3)を設けることによって、上記コンバータ回路(2)で整流された電圧を平滑化することができる。これにより、上記インバータ回路(4)側に直流電力を安定して供給することができる。
 上記インバータ回路(4)は、上記コンバータ回路(2)に対して上記コンデンサ回路(3)とともに並列に接続されている。このインバータ回路(4)は、複数のスイッチング素子(4a)(例えば三相交流であれば6個)がブリッジ結線されてなる。すなわち、特に図示しないが、上記インバータ回路(4)は、2つのスイッチング素子(4a,4a)を互いに直列接続してなる3つのスイッチングレグが並列に接続されてなるもので、これらのスイッチング素子(4a)のオンオフ動作によって、直流電圧を交流電圧に変換し、モータ(5)へ供給するように構成されている。なお、本実施形態では、図1に示すように、上記各スイッチング素子(4a)は、トランジスタとダイオードとが逆並列に接続されてなるが、この限りではなく、スイッチング可能な構成であれば他の構成であってもよい。
 上述のような構成の電力変換装置(1)において、上記コンバータ回路(2)のダイオード(2a)は、シリコンを主材料とする半導体デバイス(11)(以下、シリコンデバイスともいう)であり、上記インバータ回路(4)のスイッチング素子(4a)は、SiCやGaN、ダイヤモンドなどのワイドバンドギャップ半導体を主材料とする半導体デバイス(12)(以下、ワイドバンドギャップ半導体デバイスともいう)である。上述のとおり、上記シリコンデバイス(11)は、シリコンを主材料としているため、シリコンとワイドバンドギャップ半導体との物性の違いから、ワイドバンドギャップ半導体デバイス(12)よりも許容温度が低い(シリコンデバイスの許容温度は約150度以下である。一方、ワイドバンドギャップ半導体デバイスは、約200度以上でも動作可能で、SiCを主材料とする半導体デバイスは、理論的には800度以上でも動作する)。すなわち、上記シリコンデバイス(11)が本発明の低温デバイスに、上記ワイドバンドギャップ半導体デバイス(12)が本発明の高温デバイスに、それぞれ対応している。
 ここで、上記シリコンデバイス(11)やワイドバンドギャップ半導体デバイス(12)のような半導体デバイスは、その動作によって発熱するため、デバイスの温度が許容温度以下になるように、冷却する必要がある。一般的に、半導体デバイスのジャンクション温度t(℃)は下式によって求められ、このtを許容温度tmax以下にする必要がある。
 t=P・Rθ+t
 ここで、上式において、半導体デバイスの電力損失をP(W)、半導体デバイスから外部までの熱抵抗をRθ(℃/W)、外部の温度をt(℃)とする。
 上式のtを許容温度tmax以下にしようとすると、Pはデバイス及び製品の仕様によって決まるため、Rθを小さくするか、若しくはtmaxとtaの温度差(tmax-t)を大きくする必要がある。
 上記Rθを小さくするためには、半導体デバイスに設けるヒートシンクなどの冷却器を大型化するか、若しくは、半導体デバイスに流す冷却風の流量を増やす必要がある。しかしながら、冷却器を大型化するとコストアップになり、冷却風の流量を増やすと、その分、冷却ファンが汚れやすくなったり、冷却フィンや周辺で結露が生じやすくなったりする可能性がある。
 一方、tmaxとtの温度差(tmax-t)を大きくするためには、複数の半導体デバイスを個別に冷却する必要があり、複数の冷却ファンを用いる必要がある。このように他方のデバイスで加熱された空気を流すことなく、複数の半導体デバイスにそれぞれ別の流路で空気を流すことにより、tの上昇を抑えることができ、tmaxとtの温度差(tmax-t)を大きくすることができる。しかしながら、このような構成にするためには、複数の半導体デバイスに対してそれぞれ別の流路を設ける必要があるため、構造が複雑になり、コストアップやメンテナンス作業の増大につながるという問題が生じる。
 これに対し、本発明では、許容温度tmaxの異なる複数の半導体デバイス(11,12)を冷却する場合に、該各半導体デバイス(11,12)の許容温度tmaxが異なる点に着目し、該半導体デバイス(11,12)を効率良く冷却することのできる冷却構造を見出した。
 具体的には、図2に示すように、相対的に許容温度の低いシリコンデバイス(11)を、空気の強制対流(図中の白抜き矢印)の上流側に配置するとともに、該シリコンデバイス(11)よりも許容温度の高いワイドバンドギャップ半導体デバイス(12)を、該シリコンデバイス(11)よりも強制対流の下流側に配置する。これにより、許容温度の低いシリコンデバイス(11)を空気によって効率良く冷却することができる。一方、その下流側に位置するワイドバンドギャップ半導体デバイス(12)には、上記シリコンデバイス(11)で発生した熱によって温められた空気が流れることになるが、該ワイドバンドギャップ半導体デバイス(12)の許容温度が相対的に高いため、上記空気でも該ワイドバンドギャップ半導体デバイス(12)を許容温度以下になるように冷却することができる。
 なお、上記半導体デバイス(11,12)には、それぞれ、冷却性能を向上するためのヒートシンク(13,14)(放熱部)が設けられている。また、本実施形態では、上記半導体デバイス(11,12)に対して空気の強制対流を生じさせる発生源として、冷却ファン(15)を用いている。
 -実施形態1の効果-
 以上より、この実施形態によれば、相対的に許容温度の低いシリコンデバイス(11)を空気の強制対流の上流側に配置し、該シリコンデバイス(11)よりも許容温度の高いワイドバンドギャップ半導体デバイス(12)を強制対流の下流側に配置したため、一つの空気の流路によって、許容温度の異なる複数の半導体デバイス(11,12)を冷却することができる。
 したがって、上述のような構成にすることで、空気の強制対流の発生源としての冷却ファン(15)や空気の流路を一つ設ければ足りるため、複数の半導体デバイス(11,12)に対してそれぞれ冷却風を当てる場合に比べて、低コストで効率良く半導体デバイス(11,12)を冷却することができる。また、流路ごとにフィルタを設ける構成の場合には、上述のように流路を一つにすることで、フィルタの数を減らすことができ、フィルタのメンテナンスが容易になる。
 さらに、上述のような構成にすることで、許容温度の低いシリコンデバイス(11)及び許容温度の高いワイドバンドギャップ半導体デバイス(12)の両方において、許容温度tmaxとtの温度差(tmax-t)を大きくすることができるため、半導体デバイスから外部までの熱抵抗Rθを大きくしても上記デバイス(11,12)の温度を許容温度以下にすることができ、冷却器の小型化を図れる。また、上述のように、許容温度tmaxとtの温度差(tmax-t)を大きくできることによって、上記デバイス(11,12)に対する冷却風の流量も下げることができ、冷却ファンが汚れにくくなるとともに、冷却フィンや周辺の結露の発生も抑えることができる。
 また、強制対流させる流体として空気を用いることで、水や冷媒を用いる場合のように、配管等を設ける必要がなくなるため、簡単な構成で半導体デバイス(11,12)を冷却することができる。
 -実施形態1の変形例-
 この変形例は、図3に示すように、一つのヒートシンク(21)によってシリコンデバイス(11)及びワイドバンドギャップ半導体デバイス(12)を冷却するように構成されている点で上記実施形態1とは異なる。なお、上記実施形態1の構成と異なる部分についてのみ以下で説明し、同一の部分には同一の符号を付して説明を省略する。
 具体的には、上記シリコンデバイス(11)及びワイドバンドギャップ半導体デバイス(12)は、一つのヒートシンク(21)上に配設されている。そして、このような構成でも、相対的に許容温度の低い上記シリコンデバイス(11)は、空気の強制対流の上流側に配置され、該シリコンデバイス(11)よりも許容温度の高いワイドバンドギャップ半導体デバイス(12)は、空気の強制対流の下流側に配置されている。
 これにより、一つのヒートシンク(21)で許容温度の異なる複数の半導体デバイス(11,12)を冷却する場合にも、許容温度の低い方のシリコンデバイス(11)を確実に冷却しつつ、許容温度の高いワイドバンドギャップ半導体デバイス(12)の温度を許容温度以下にすることができる。したがって、この場合にも、低コストで効率良く半導体デバイス(11,12)を冷却することのできる冷却構造を容易に実現できる。
 しかも、ヒートシンク(21)が一つになるので、図示しない電装品箱への取付ネジの数を低減できるとともに、取付作業の軽減も図れる。
 《実施形態2》
 図4に本発明の実施形態2に係る電力変換装置の冷却構造を示す。この冷却構造では、冷媒回路内を流れる冷媒を用いて半導体デバイス(11,12)を冷却する点でのみ上記実施形態1と異なる。そのため、上記実施形態1と同一の部分には同一の符号を付して、異なる部分について以下で説明する。
 具体的には、半導体デバイス(11,12)は、冷媒回路内を流れる冷媒が流通可能なように構成された冷却ジャケット(31,32)(放熱部)上に配設されている。そして、相対的に許容温度の低いシリコンデバイス(11)(低温デバイス)及びその冷却ジャケット(31)は、冷媒の流れ(強制対流、図中の黒塗り矢印)の上流側に配置されていて、該シリコンデバイス(11)よりも許容温度の高いワイドバンドギャップ半導体デバイス(12)(高温デバイス)及びその冷却ジャケット(32)は、冷媒の流れ(強制対流)の下流側に配置されている。
 すなわち、上記冷媒の流れる冷媒配管(33)に対して、上記シリコンデバイス(11)の冷却ジャケット(31)は上流側に位置する一方、上記ワイドバンドギャップ半導体デバイス(12)の冷却ジャケット(32)は下流側に位置している。
 これにより、上記冷媒配管(33)内を流れる冷媒は、まず、上記冷却ジャケット(31)内を流れて該冷却ジャケット(31)上のシリコンデバイス(11)を冷却した後、上記冷却ジャケット(32)内を流れて該冷却ジャケット(32)上のワイドバンドギャップ半導体デバイス(12)を冷却する。
 -実施形態2の効果-
 以上より、この実施形態によれば、冷媒配管(33)に対して、上流側に許容温度の低いシリコンデバイス(11)及びその冷却ジャケット(31)を設け、下流側に許容温度の高いワイドバンドギャップ半導体デバイス(12)及びその冷却ジャケット(32)を設けたため、一つの冷媒流路を流れる冷媒によって、許容温度の異なる複数の半導体デバイス(11,12)を効率良く冷却することができる。
 したがって、冷媒の強制対流の発生源としての圧縮機や冷媒配管を一つ設ければ足りるため、複数の半導体デバイスの冷却ジャケットに対してそれぞれ冷媒を流す場合に比べて、低コストで効率良く半導体デバイスを冷却することができる。
 しかも、強制対流させる流体として冷媒を用いることで、空気を用いる場合に比べて、半導体デバイス(11,12)を効率良く冷却することができる。
 《その他の実施形態》
 本発明は、上記各実施形態について、以下のような構成としてもよい。
 上記各実施形態では、許容温度の低いシリコンデバイス(11)及び許容温度の高いワイドバンドギャップ半導体デバイス(12)の2つの半導体デバイスを冷却するように構成されているが、この限りではなく、3つ以上の半導体デバイスを冷却するようにしてもよい。なお、この場合にも、流体(空気や冷媒など)の強制対流の上流側から下流側に向かって、許容温度の低いものから順に配置すればよい。
 また、上記各実施形態では、コンバータ回路(2)は、許容温度の低いシリコンデバイス(11)のみによって、インバータ回路(4)は、許容温度の高いワイドバンドギャップ半導体デバイス(12)のみによって、それぞれ構成されているが、この限りではなく、上記コンバータ回路(2)やインバータ回路(4)などは、シリコンデバイス(11)とワイドバンドギャップ半導体デバイス(12)が混在して構成されていてもよい。
 また、上記実施形態1では、複数の半導体デバイス(11,12)に対して、該半導体デバイス(11,12)で発生した熱を放熱するためのヒートシンク(13,14)がそれぞれ設けられているが、この限りではなく、一部の半導体デバイスのみにヒートシンクを設けてもよいし、いずれの半導体デバイスにもヒートシンクを設けないようにしてもよい。
 また、上記実施形態2では、複数の半導体デバイス(11,12)に対して、それぞれ、冷却ジャケット(31,32)を設けているが、この限りではなく、上記実施形態1の変形例におけるヒートシンク(21)のように、上記半導体デバイス(11,12)に対して共通の冷却ジャケットを1つ設けるようにしてもよい。
 また、上記実施形態2では、強制対流させる流体として冷媒を用いているが、この限りではなく、水などの液体を強制対流させて、冷却ジャケットを介して半導体デバイスを冷却するようにしてもよい。
 《実施形態3》
 以下の各実施形態では、上記電力変換装置(1)のインバータ回路(4)等の回路構成の具体例を説明する。
 図5は、本発明の実施形態3に係る電力変換装置(1)の構成例を示す図である。同図に示すように、電力変換装置(1)は、上記実施形態1等と同様に、コンバータ回路(2)、コンデンサ回路(3)(コンデンサ(3a))、及びインバータ回路(4)を備えている。コンバータ回路(2)及びインバータ回路(4)は、本発明の変換部の一例である(以下、他の実施形態でも同様)。
 本実施形態のコンバータ回路(2)は、いわゆる単相全波整流回路である。具体的には、このコンバータ回路(2)は、4つのダイオード(2a)、及びリアクトル(2b)を備え、4つのダイオード(2a)はブリッジ接続されて整流回路(65)を構成している。そして、整流回路(65)の正側の出力ノードはリアクトル(2b)を介してコンデンサ回路(3)の一方の接続ノードに接続され、負側の出力ノードはコンデンサ回路(3)のもう一方の接続ノードに接続されている。また、整流回路(65)の入力ノードは、商用電源(6)(単相交流)に接続されている。したがって、本実施形態では各ダイオード(2a)のスイッチング周波数は、商用電源(6)の周波数(例えば50Hz又は60Hz)である。
 また、インバータ回路(4)は、コンデンサ回路(3)を介してコンバータ回路(2)が接続され、該コンバータ回路(2)が出力した直流を三相交流に変換して、負荷として接続されたモータ(5)へ供給するようになっている。本実施形態のインバータ回路(4)は、具体的には図5に示すように、ブリッジ接続された6つのスイッチング素子(4a)を備え、それぞれのスイッチング素子(4a)には、還流ダイオード(4b)が逆並列接続されている。より詳しくは、このインバータ回路(4)は、正負1対の直流母線が設けられており、これらの直流母線間には、2つのスイッチング素子(4a,4a)を互いに直列接続してなる3つのスイッチングレグが並列に接続されている。そして、それぞれのスイッチングレグの各中間点(M1,M2,M3)は、出力交流の各相(U相,V相,W相)の相電圧(Vu,Vv,Vw)を出力するノードであり、各中間点(M1,M2,M3)はモータ(5)の各相の巻き線にそれぞれ接続されている。
 このインバータ回路(4)では、上記直流母線に、コンデンサ回路(3)を介して、コンバータ回路(2)が出力した直流電力が供給され、各スイッチング素子(4a)が、例えばPWM制御によってスイッチング動作を行うことで、所定の交流電力が負荷に供給される。インバータ回路(4)における各スイッチング素子(4a)のスイッチング周波数は、いわゆるキャリア周波数の設定により異なるが、本実施形態では6kHzである。すなわち、本実施形態では、各スイッチング素子(4a)のスイッチング周波数は、各ダイオード(2a)のスイッチング周波数よりも高いのである。なお、本実施形態では、各スイッチング素子(4a)に還流ダイオード(4b)が逆並列に接続されているが、この限りではなく、スイッチング可能な構成であれば他の構成であってもよい。
 〈各半導体デバイスの選定及び配置〉
 本実施形態では、コンバータ回路(2)の各ダイオード(2a)は上記シリコンデバイスである。また、インバータ回路(4)の各スイッチング素子(4a)及び各還流ダイオード(4b)は上記ワイドバンドギャップ半導体デバイスである。すなわち、インバータ回路(4)の各半導体デバイス(各スイッチング素子(4a)及び各還流ダイオード(4b))の許容温度は、各ダイオード(2a)の許容温度よりも高く、各ダイオード(2a)と、インバータ回路(4)の各半導体デバイスとは、前者(ダイオード(2a))が上記低温デバイス(11)、後者(各スイッチング素子(4a)及び各還流ダイオード(4b))が上記高温デバイス(12)の関係にある(図5を参照)。そして、インバータ回路(4)の各半導体デバイス(高温デバイス)のスイッチング周波数は、各ダイオード(2a)(低温デバイス)のスイッチング周波数よりも高く、インバータ回路(4)の各半導体デバイスの方が、コンバータ回路(2)の各ダイオード(2a)よりも高温になりがちである。したがって、本実施形態では、各ダイオード(2a)で発生した熱を上記流体の強制対流の上流側で放熱し、インバータ回路(4)の各半導体デバイスで発生した熱を上記流体の強制対流の下流側で放熱するように、これらの半導体デバイスを設けている。
 〈本実施形態における効果〉
 例えば、従来の電力変換装置における半導体デバイスの配置では、ワイドバンドギャップ半導体デバイスを用いて、そのスイッチング周波数を従来のシリコンデバイスよりも高めた場合、ワイドバンドギャップ半導体デバイスおよびワイドバンドギャップ半導体デバイスの近くに配置されたシリコンデバイスの温度が上昇してシリコンデバイスを破壊する可能性がある。そのため、ワイドバンドギャップ半導体デバイスのスイッチング周波数を高めるには限界があった。これに対し、本実施形態では、上記のように、各ダイオード(2a)(低温デバイス)やインバータ回路(4)の各半導体デバイス(高温デバイス)を配置することで、各ダイオード(2a)を効果的に冷却できる。それゆえ、本実施形態では、ワイドバンドギャップ半導体デバイスであるスイッチング素子(4a)や還流ダイオード(4b)のスイッチング周波数をより高めることが可能になる。
 そして、このように、スイッチング周波数の高周波化が可能になれば、インバータ回路(4)の制御帯域の拡大が可能になる。また、スイッチング周波数を可聴周波数以上にすれば、スイッチングによる騒音の低減も可能になる。
 《実施形態3の変形例》
 図6は、実施形態3の変形例に係る電力変換装置(1)構成例を示す図である。詳しくは図6の(A)は、いわゆる単相倍電圧整流回路でコンバータ回路(2)を構成した例であり、2つのダイオード(2a)と2つのコンデンサ(2c)とがブリッジ接続されている。また、図6の(B)は、いわゆる三相全波整流回路でコンバータ回路(2)を構成した例である。これらの例においても、各ダイオード(2a)は上記シリコンデバイスである。すなわち、インバータ回路(4)の各半導体デバイスの許容温度は、各ダイオード(2a)の許容温度よりも高く、各ダイオード(2a)と、インバータ回路(4)の各半導体デバイスとは、前者が上記低温デバイス(11)、後者が上記高温デバイス(12)の関係にある。この構成においても、各ダイオード(2a)で発生した熱を上記流体の強制対流の上流側で放熱し、各スイッチング素子(4a)や各還流ダイオード(4b)で発生した熱を上記流体の強制対流の下流側で放熱するように、これらの半導体デバイスを配置することで、上記実施形態3と同様の効果を得ることが可能になる。
 《実施形態4》
 図7は、本発明の実施形態4に係る電力変換装置(1)の構成例を示す図である。本実施形態は、コンバータ回路(2)の構成が上記実施形態3と異なっている。本実施形態のコンバータ回路(2)は、いわゆる昇圧形PFC(Power Factor Correction)コンバータ回路であり、図7に示すように、整流回路(65)と昇圧形チョッパ回路(60)とを備えている。
 この例では、整流回路(65)は、ブリッジ接続された4つのダイオード(2a)を備えている。この例でも整流回路(65)の各ダイオード(2a)のスイッチング周波数は、商用電源(6)の周波数(例えば50Hz又は60Hz)である。
 また、昇圧形チョッパ回路(60)は、リアクトル(2b)、スイッチング素子(62)、及びダイオード(63)を備え、力率改善回路(PFC回路)として機能する。この例では、リアクトル(2b)は、一端側が整流回路(65)の正側の出力ノード、他の一端側がダイオード(63)にそれぞれ接続されている。また、スイッチング素子(62)は、リアクトル(2b)とダイオード(63)との接続ノードと、整流回路(65)の負側の出力ノードとの間に接続されている。本実施形態のコンバータ回路(2)では、昇圧形チョッパ回路(60)のスイッチング素子(62)のスイッチングにより、整流回路(65)の各ダイオード(2a)の導通幅(オンの期間)が広がることになる。スイッチング素子(62)のスイッチング周波数は種々の設定が可能であるが、この例では20kHzである。なお、本実施形態でもインバータ回路(4)における各スイッチング素子(4a)のスイッチング周波数は、6kHzである。
 〈各半導体デバイスの選定及び配置〉
 本実施形態では、コンバータ回路(2)の各ダイオード(2a)は上記シリコンデバイスである。また、昇圧形チョッパ回路(60)のスイッチング素子(62)とダイオード(63)とは、上記ワイドバンドギャップ半導体デバイスである。そのため、スイッチング素子(62)及びダイオード(63)の許容温度は、整流回路(65)の各ダイオード(2a)の許容温度よりも高い。すなわち、整流回路(65)の各ダイオード(2a)と、昇圧形チョッパ回路(60)の各半導体デバイス(ダイオード(63)及びスイッチング素子(62))とは、前者(ダイオード(2a))が上記低温デバイス(11)、後者(ダイオード(63)及びスイッチング素子(62))が上記高温デバイス(12)の関係にある(図7を参照)。そして、昇圧形チョッパ回路(60)の各半導体デバイス(高温デバイス)のスイッチング周波数は、各ダイオード(2a)(低温デバイス)のスイッチング周波数よりも高く、昇圧形チョッパ回路(60)の各半導体デバイスの方が、整流回路(65)の各ダイオード(2a)よりも高温になりがちである。したがって、本実施形態では、整流回路(65)の各ダイオード(2a)で発生した熱を上記流体の強制対流の上流側で放熱し、昇圧形チョッパ回路(60)のダイオード(63)及びスイッチング素子(62)で発生した熱を上記流体の強制対流の下流側で放熱するように、これらの半導体デバイスは設けられているのである。
 なお、本実施形態では、インバータ回路(4)の各半導体デバイス(スイッチング素子(4a)及び各還流ダイオード(4b))は、上記シリコンデバイスで構成しても、上記ワイドバンドギャップ半導体デバイスで構成してもよい。例えば、インバータ回路(4)の各半導体デバイスを上記シリコンデバイスで構成した場合には、インバータ回路(4)の各半導体デバイスは、低温デバイス(11)なので、インバータ回路(4)の各半導体デバイスは、発生した熱を上記流体の強制対流の上流側で放熱するように配置する。一方、インバータ回路(4)の各半導体デバイスを上記ワイドバンドギャップ半導体デバイスで構成した場合には、インバータ回路(4)の各半導体デバイスは、高温デバイス(12)なので、発生した熱を上記流体の強制対流の下流側で放熱するように配置する。
 《本実施形態における効果》
 本実施形態でも、上記のように、低温デバイス(11)と高温デバイス(12)を配置することで、低温デバイス(11)(この例ではダイオード(2a))を効果的に冷却できる。それゆえ、本実施形態では、ワイドバンドギャップ半導体デバイスであるスイッチング素子(62)やダイオード(63)のスイッチング周波数をより高めることが可能になる。そして、スイッチング素子(62)やダイオード(63)のスイッチング周波数を高くすることができると、リアクトル(2b)の小型化が可能になる。
 《実施形態4の変形例1》
 図8は、実施形態4の変形例1に係る電力変換装置の構成を示す図である。この例では、上記実施形態4と比べ、整流回路(65)の構成が異なっている。図8の例では、交流電源(6)は三相交流を出力する電源であり、整流回路(65)は、6つのダイオード(2a)がブリッジ接続されて三相交流を整流するようになっている。この例でも整流回路(65)の各ダイオード(2a)は、上記シリコンデバイスである。すなわち、各ダイオード(2a)は、上記低温デバイス(11)である。そのため、各ダイオード(2a)は、発生した熱を上記流体の強制対流の上流側で放熱するように配置する。これにより、本変形例でも上記実施形態4の電力変換装置(1)と同様の効果を得ることが可能になる。
 《実施形態4の変形例2》
 図9は、実施形態4の変形例2に係る電力変換装置(1)の構成を示す図である。この例は、昇圧形チョッパ回路(60)を、いわゆるソフトスイッチング方式の回路で構成した例である。具体的には、昇圧形チョッパ回路(60)は、上記実施形態4の変形例1の昇圧形チョッパ回路(60)に、ソフトスイッチング用コイル(66)、ダイオード(67)、及びソフトスイッチング用コンデンサ(68)を追加したものである。この例では、ソフトスイッチング用コンデンサ(68)は、ダイオード(63)と並列接続され、ダイオード(67)は、スイッチング素子(62)に逆並列接続されている。また、ソフトスイッチング用コイル(66)は、リアクトル(2b)、ダイオード(63)間の接続ノードと、スイッチング素子(62)との間に接続されている。そして、本変形例の昇圧形チョッパ回路(60)では、ソフトスイッチング用コイル(66)とソフトスイッチング用コンデンサ(68)で共振回路が構成されている。
 本変形例では、ダイオード(67)もワイドバンドギャップ半導体デバイスである。そのため、ダイオード(67)は、発生した熱を上記流体の強制対流の下流側で放熱するように配置する。これにより、本変形例でも上記実施形態4の電力変換装置(1)と同様の効果を得ることが可能になる。なお、ソフトスイッチング方式の回路では、いわゆるハードスイッチング方式の回路と比べ電流ピークが大きくなるが、上記のようにワイドバンドギャップ半導体デバイスを用いたことにより、大電流での破損が起こりにくいという利点を得られる。
 《実施形態5》
 図10は、本発明の実施形態5に係る電力変換装置(1)の構成例を示す図である。本実施形態は、コンバータ回路(2)の構成が上記実施形態3等と異なっている。本実施形態のコンバータ回路(2)は、いわゆる昇圧形PFCコンバータ回路であり、整流回路(65)と昇圧形交流チョッパ回路(70)を備えている。
 このコンバータ回路(2)では、整流回路(65)は、図10に示すように、4つのダイオード(2a)を備え、4つのダイオード(2a)はブリッジ接続されている。
 また、昇圧形交流チョッパ回路(70)は、リアクトル(2b)、双方向スイッチ(72)を備え、双方向スイッチ(72)がスイッチングを行うことで、商用電源(6)の出力を昇圧して整流回路(65)に供給するようになっている。双方向スイッチ(72)のスイッチング周波数は、種々の設定が可能であるが、本実施形態では20kHzである。
 具体的に、この昇圧形交流チョッパ回路(70)では、リアクトル(2b)が、商用電源(6)の一方の出力ノードと、整流回路(65)の入力ノードとの間に接続され、双方向スイッチ(72)は、リアクトル(2b)の整流回路(65)側のノードと、商用電源(6)のもう一方の出力ノードとの間に接続されている。なお、双方向スイッチ(72)には、種々の構成のものを採用できる。例えば、図11の(A)~(C)は、双方向スイッチ(72)の構成例を示す図である。図11の(A)~(C)に示すように、双方向スイッチ(72)は、スイッチング素子(72a)とダイオード(72b)とを組み合わせて構成することができる。
 このコンバータ回路(2)では、双方向スイッチ(72)のオンオフに応じて、整流回路(65)の各ダイオード(2a)がオンオフする。具体的には、双方向スイッチ(72)がオンのときにダイオード(2a)がオフ、双方向スイッチ(72)がオフのときにダイオード(2a)がオンになる。すなわち、双方向スイッチ(72)と同じスイッチング周波数で、整流回路(65)のダイオード(2a)がオンオフするのである。なお、本実施形態でもインバータ回路(4)における各スイッチング素子(4a)のスイッチング周波数は、6kHzである。
 〈各半導体デバイスの選定及び配置〉
 本実施形態では、双方向スイッチ(72)と、整流回路(65)の各ダイオード(2a)とは、上記ワイドバンドギャップ半導体デバイスである。また、インバータ回路(4)の各半導体デバイス(スイッチング素子(4a)及び還流ダイオード(4b))は、上記シリコンデバイスである。そのため、双方向スイッチ(72)及び各ダイオード(2a)の許容温度は、インバータ回路(4)の各半導体デバイスの許容温度よりも高い。すなわち、インバータ回路(4)の各半導体デバイスと、コンバータ回路(2)の各半導体デバイス(双方向スイッチ(72)及び各ダイオード(2a))とは、前者(各スイッチング素子(4a)及び還流ダイオード(4b))が低温デバイス(11)、後者(双方向スイッチ(72)、及び各ダイオード(2a))が高温デバイス(12)の関係にある(図10を参照)。そして、各高温デバイス(双方向スイッチ(72)や各ダイオード(2a))のスイッチング周波数は、低温デバイス(インバータ回路(4)の各スイッチング素子(4a)及び各還流ダイオード(4b))のスイッチング周波数よりも高く、双方向スイッチ(72)や各ダイオード(2a)の方が、インバータ回路(4)の各スイッチング素子(4a)や各還流ダイオード(4b)よりも高温になりがちである。したがって、本実施形態では、インバータ回路(4)の各スイッチング素子(4a)や還流ダイオード(4b)で発生した熱を上記流体の強制対流の上流側で放熱し、コンバータ回路(2)の双方向スイッチ(72)及び各ダイオード(2a)で発生した熱を上記流体の強制対流の下流側で放熱するように、これらの半導体デバイスは設けられているのである。
 《本実施形態における効果》
 本実施形態でも、上記のように、低温デバイス(11)と高温デバイス(12)を配置することで、低温デバイス(11)(この例ではスイッチング素子(4a)や還流ダイオード(4b))を効果的に冷却できる。それゆえ、本実施形態では、ワイドバンドギャップ半導体デバイスである双方向スイッチ(72)や各ダイオード(2a)のスイッチング周波数をより高めることが可能になる。そして、このようにスイッチング周波数を高くすることができると、リアクトル(2b)の小型化が可能になる。
 《実施形態5の変形例》
 図12は、実施形態5の変形例に係る電力変換装置(1)の構成例を示す図である。この例では、コンバータ回路(2)は、三相交流を整流するようになっている。具体的には、整流回路(65)は、6つのダイオード(2a)がブリッジ接続されて三相交流を整流するようになっている。そして、昇圧形交流チョッパ回路(70)のリアクトル(2b)は、三相交流電源である商用電源(6)の各相に対応して、3つ設けられている。また、双方向スイッチ(72)も各リアクトル(2b)に対応して3つ設けられている。各双方向スイッチ(72)は、一端側が、対応したリアクトル(2b)と接続され、他の一端同士が互いに接続されている。この例においても、各双方向スイッチ(72)と各ダイオード(2a)がワイドバンドギャップ半導体デバイスで構成された高温デバイス(12)である。そのため、本変形例でも、各双方向スイッチ(72)と各ダイオード(2a)とは、発生した熱を上記流体の強制対流の下流側で放熱するように配置している。これにより、本変形例でも上記実施形態5の電力変換装置(1)と同様の効果を得ることが可能になる。
 なお、上記の双方向スイッチ(72)は、いわゆるY結線にて接続されているが、Δ結線にて接続されてもよい。
 《実施形態6》
 図13は、本発明の実施形態6に係る電力変換装置(1)の構成例を示す図である。本実施形態は、いわゆる擬似電流形インバータ回路の一例である。本実施形態の電力変換装置(1)は、図13に示すように、コンバータ回路(2)、コンデンサ回路(3)、降圧形チョッパ回路(90)、及びインバータ回路(4)を備えている。
 本実施形態では、コンバータ回路(2)は、6つのダイオード(2a)を備え、これらのダイオード(2a)がブリッジ接続されて整流回路(65)を構成している。この整流回路(65)は、三相交流を出力する商用電源(6)に接続されている。この例でも各ダイオード(2a)のスイッチング周波数は、商用電源(6)の周波数(例えば50Hz又は60Hz)である。なお、商用電源(6)として単相交流電源を用いることも可能である。この場合には、4つのダイオード(2a)をブリッジ接続して整流回路(65)を構成する。
 また、降圧形チョッパ回路(90)は、スイッチング素子(91)、リアクトル(92)、第1ダイオード(93)、及び第2ダイオード(94)を備え、本発明の変換部の一例である。降圧形チョッパ回路(90)では、スイッチング素子(91)は、その一端が整流回路(65)の正側の出力ノードに接続され、他の一端側でリアクトル(92)と直列に接続されている。また、第1ダイオード(93)は、スイッチング素子(91)及びリアクトル(92)間の接続ノードと、整流回路(65)の負側の出力ノードとに接続されている。また、第2ダイオード(94)は、インバータ回路(4)の正側の直流母線とコンデンサ(3a)とに接続され、インバータ回路(4)からの電流をコンデンサ回路(3)のコンデンサ(3a)に還流させるようになっている。スイッチング素子(91)のスイッチング周波数は種々の設定が可能であるが、この例では20kHzである。なお、本実施形態でもインバータ回路(4)における各スイッチング素子(4a)のスイッチング周波数は、6kHzである。
 〈各半導体デバイスの選定及び配置〉
 本実施形態では、整流回路(65)の各ダイオード(2a)は上記シリコンデバイスである。また、降圧形チョッパ回路(90)では、スイッチング素子(91)及び第1ダイオード(93)は、上記ワイドバンドギャップ半導体デバイスであり、第2ダイオード(94)は、上記シリコンデバイスである。そのため、スイッチング素子(91)及び第1ダイオード(93)の許容温度は、整流回路(65)の各ダイオード(2a)や第2ダイオード(94)の許容温度よりも高い。すなわち、各ダイオード(2a)及び第2ダイオード(94)のそれぞれと、降圧形チョッパ回路(90)の各半導体デバイス(スイッチング素子(91)及び第1ダイオード(93))とは、前者(各ダイオード(2a)及び第2ダイオード(94))が上記低温デバイス(11)、後者(スイッチング素子(91)及び第1ダイオード(93))が上記高温デバイス(12)の関係にある(図13を参照)。そして、スイッチング素子(91)、及び第1ダイオード(93)(高温デバイス)のスイッチング周波数は、各ダイオード(2a)や第2ダイオード(94)(低温デバイス)のスイッチング周波数よりも高く、スイッチング素子(91)や第1ダイオード(93)の方が、各ダイオード(2a)や第2ダイオード(94)よりも高温になりがちである。したがって、本実施形態では、各ダイオード(2a)及び第2ダイオード(94)で発生した熱を上記流体の強制対流の上流側で放熱し、スイッチング素子(91)や第1ダイオード(93)で発生した熱を上記流体の強制対流の下流側で放熱するように、これらの半導体デバイスは設けている。
 なお、本実施形態では、インバータ回路(4)の各半導体デバイス(スイッチング素子(4a)及び各還流ダイオード(4b))は、上記シリコンデバイスで構成しても、上記ワイドバンドギャップ半導体デバイスで構成してもよい。例えば、インバータ回路(4)の各半導体デバイスを上記シリコンデバイスで構成した場合には、インバータ回路(4)の各半導体デバイスは、低温デバイス(11)なので、インバータ回路(4)の各半導体デバイスは、発生した熱を上記流体の強制対流の上流側で放熱するように配置する。一方、インバータ回路(4)の各半導体デバイスを上記ワイドバンドギャップ半導体デバイスで構成した場合には、インバータ回路(4)の各半導体デバイスは、高温デバイス(12)なので、発生した熱を上記流体の強制対流の下流側で放熱するように配置する。
 《本実施形態における効果》
 本実施形態でも、上記のように、低温デバイス(11)と高温デバイス(12)を配置することで、低温デバイス(11)(この例ではダイオード(2a)と第2ダイオード(94))を効果的に冷却できる。それゆえ、本実施形態では、ワイドバンドギャップ半導体デバイスであるスイッチング素子(91)や第1ダイオード(93)のスイッチング周波数をより高めることが可能になる。そして、このようにスイッチング周波数を高くすることができると、リアクトル(92)の小型化が可能になる。
 《実施形態7》
 図14は、本発明の実施形態7に係る電力変換装置(1)の構成例を示す図である。本実施形態は、コンバータ回路(2)の構成が上記実施形態3等と異なっている。本実施形態のコンバータ回路(2)は、いわゆるフライバックコンバータ回路の一例である。本実施形態ではコンバータ回路(2)は、4つのダイオード(2a)、スイッチング素子(101)、トランス(102)、及び2次側ダイオード(103)を備え、コンデンサ回路(3)を介してインバータ回路(4)と接続されている。より詳しくは、このコンバータ回路(2)では、4つのダイオード(2a)は、ブリッジ接続されて整流回路(65)を構成している。この整流回路(65)は、入力ノードが単相交流電源である商用電源(6)に接続され、出力ノード間には、トランス(102)の一次側コイルとスイッチング素子(101)とが直列接続されている。また、トランス(102)の二次側コイルの一端には、2次側ダイオード(103)が接続されている。
 このコンバータ回路(2)では、スイッチング素子(101)のスイッチング周波数は、種々の設定が可能であるが、本実施形態では20kHzである。そして、この回路構成では、整流回路(65)の各ダイオード(2a)は、スイッチング素子(101)のオンオフに応じてオンオフする。すなわち、各ダイオード(2a)のスイッチング周波数は、スイッチング素子(101)のスイッチング周波数(この例では20kHz)と同じである。なお、インバータ回路(4)の各スイッチング素子(4a)のスイッチング周波数は、いわゆるキャリア周波数の設定により異なるが、本実施形態では6kHzである。
 〈各半導体デバイスの選定及び配置〉
 本実施形態では、コンバータ回路(2)の各半導体デバイス(スイッチング素子(101)、各ダイオード(2a)、及び2次側ダイオード(103))は、上記ワイドバンドギャップ半導体デバイスである。また、インバータ回路(4)の各半導体デバイス(スイッチング素子(4a)及び各還流ダイオード(4b))は、上記シリコンデバイスである。そのため、コンバータ回路(2)の各半導体デバイスの許容温度は、インバータ回路(4)の各半導体デバイスの許容温度よりも高い。すなわち、この電力変換装置(1)では、インバータ回路(4)の各半導体デバイスが低温デバイス(11)であり、コンバータ回路(2)の各半導体デバイスが上記高温デバイス(12)である。そして、コンバータ回路(2)の各半導体デバイス(高温デバイス)のスイッチング周波数は、インバータ回路(4)の各半導体デバイス(低温デバイス)のスイッチング周波数よりも高く、コンバータ回路(2)の各半導体デバイスの方が、インバータ回路(4)の各半導体デバイスよりも高温になりがちである。したがって、本実施形態では、インバータ回路(4)の各半導体デバイスで発生した熱を上記流体の強制対流の上流側で放熱し、コンバータ回路(2)の各半導体デバイスで発生した熱を上記流体の強制対流の下流側で放熱するように、これらの半導体デバイスは設けている。
 〈本実施形態における効果〉
 本実施形態でも、上記のように、低温デバイス(11)と高温デバイス(12)を配置することで、低温デバイス(11)(この例ではスイッチング素子(4a)や還流ダイオード(4b))を効果的に冷却できる。それゆえ、本実施形態では、ワイドバンドギャップ半導体デバイスである、スイッチング素子(101)、各ダイオード(2a)、及び2次側ダイオード(103)のスイッチング周波数をより高めることが可能になる。そして、このようにスイッチング周波数を高くすることができると、トランス(102)の小型化が可能になる。
 《実施形態8》
 図15は、本発明の実施形態8に係る電力変換装置(1)の構成例を示す図である。本実施形態は、コンバータ回路(2)の構成が上記実施形態3等と異なっている。本実施形態のコンバータ回路(2)は、いわゆるPWMコンバータ回路の一例である単相混合ブリッジ回路で構成されている。具体的に本実施形態ではコンバータ回路(2)は、2つのダイオード(2a)と2つのスイッチング素子(2d)が、図15に示すように、ブリッジ接続されて整流回路(65)を構成している。これらのスイッチング素子(2d)には、ダイオード(2e)が逆並列接続されている。整流回路(65)には、単相交流電源である商用電源(6)が、リアクトル(2b)を介して接続され、該整流回路(65)の出力は、コンデンサ回路(3)を介してインバータ回路(4)に接続されている。スイッチング素子(2d)のスイッチング周波数は、種々の設定が可能であるが、本実施形態では20kHzである。なお、インバータ回路(4)の各スイッチング素子(4a)のスイッチング周波数は、いわゆるキャリア周波数の設定により異なるが、本実施形態では6kHzである。
 〈各半導体デバイスの選定及び配置〉
 本実施形態の電力変換装置(1)では、コンバータ回路(2)の各半導体デバイス(各ダイオード(2a)、スイッチング素子(2d)、及びダイオード(2e))は、上記ワイドバンドギャップ半導体デバイスである。また、インバータ回路(4)の各半導体デバイス(スイッチング素子(4a)及び各還流ダイオード(4b))は、上記シリコンデバイスである。そのため、コンバータ回路(2)の各半導体デバイスの許容温度は、インバータ回路(4)の各半導体デバイスの許容温度よりも高い。すなわち、この電力変換装置(1)では、インバータ回路(4)の各半導体デバイスが低温デバイス(11)であり、コンバータ回路(2)の各半導体デバイスが上記高温デバイス(12)である。そして、コンバータ回路(2)の各半導体デバイス(高温デバイス)のスイッチング周波数は、インバータ回路(4)の各半導体デバイス(低温デバイス)のスイッチング周波数よりも高く、コンバータ回路(2)の各半導体デバイスの方が、インバータ回路(4)の各半導体デバイスよりも高温になりがちである。したがって、本実施形態では、インバータ回路(4)の各半導体デバイスで発生した熱を上記流体の強制対流の上流側で放熱し、コンバータ回路(2)の各半導体デバイスで発生した熱を上記流体の強制対流の下流側で放熱するように、これらの半導体デバイスは設けている。
 〈本実施形態における効果〉
 本実施形態でも、上記のように、低温デバイス(11)と高温デバイス(12)を配置することで、低温デバイス(11)(この例ではスイッチング素子(4a)や還流ダイオード(4b))を効果的に冷却できる。それゆえ、本実施形態では、ワイドバンドギャップ半導体デバイスである、各ダイオード(2a)、各スイッチング素子(2d)、及びダイオード(2e)のスイッチング周波数をより高めることが可能になる。そして、このようにスイッチング周波数を高くすることができると、リアクトル(2b)の小型化が可能になる。
 《実施形態8の変形例》
 図16は、実施形態8の変形例に係る電力変換装置(1)の構成例を示す図であり、(A)が単相交流用のPWMコンバータ回路の構成例を示す図であり、(B)が三相交流用のPWMコンバータ回路の構成例を示す図である。図16(A)に示した単相交流用のPWMコンバータ回路の例では、4つのスイッチング素子(2d)がブリッジ接続され、リアクトル(2b)を介して商用電源(6)(単相交流)と接続されている。これらのスイッチング素子(2d)にもダイオード(2e)がそれぞれ逆並列接続されている。一方、図16(B)に示した三相交流用のPWMコンバータ回路例では、6つのスイッチング素子(2d)がブリッジ接続されて構成されている。また、図16(B)の例では、リアクトル(2b)は、三相交流電源である商用電源(6)の各相に対応して3つ設けられている。これらの例でも、コンバータ回路(2)の各半導体デバイスは、上記ワイドバンドギャップ半導体デバイス(高温デバイス(12))であり、インバータ回路(4)の各半導体デバイスは、上記シリコンデバイスである。したがって、本変形例においても、上記実施形態8の電力変換装置(1)と同様に、低温デバイス(11)と高温デバイス(12)を配置することで、低温デバイス(11)を効果的に冷却でき、上記実施形態8の電力変換装置(1)と同様の効果を得ることが可能になる。
 《その他のコンバータ回路の例》
 電力変換装置(1)のコンバータ回路(2)には、上記の例の他にも、例えば、フォワードコンバータ、プッシュプル方式コンバータ、三相一石コンバータ、フルブリッジ方式コンバータ等を採用することが可能である。これらの形式のコンバータ回路を採用した場合には、例えば、インバータ回路(4)の各スイッチング素子(4a)を上記低温デバイス(11)で構成し、コンバータ回路(2)の少なくとも一部の半導体デバイスを高温デバイス(12)で構成する。
 以上説明したように、本発明の電力変換装置は、許容温度の異なる半導体デバイスを冷却する場合に特に有用である。
   1    電力変換装置
   2    コンバータ回路
   2a   ダイオード
   3    コンデンサ回路
   3a   コンデンサ
   4    インバータ回路
   4a   スイッチング素子
   5    モータ(電動機)
   6    商用電源
  11    シリコンデバイス(低温デバイス)
  12    ワイドバンドギャップ半導体デバイス(高温デバイス)
  13,14 ヒートシンク(放熱部)
  15    冷却ファン
  21    ヒートシンク(放熱部)
  31,32 冷却ジャケット(放熱部)
  33    冷媒配管
  60    昇圧形チョッパ回路
  62    スイッチング素子
  63    ダイオード
  65    整流回路
  70    昇圧形交流チョッパ回路
  72    双方向スイッチ
  90    降圧形チョッパ回路
  91    スイッチング素子
  92    リアクトル
  93    第1ダイオード
  94    第2ダイオード
 101    スイッチング素子
 102    トランス
 103    2次側ダイオード

Claims (17)

  1.  流体の強制対流によって冷却される半導体デバイス(11,12)を備えた電力変換装置であって、
     上記半導体デバイス(11,12)は、相対的に許容温度の低い低温デバイス(11)と該低温デバイス(11)よりも許容温度の高い高温デバイス(12)とを有し、
     上記低温デバイス(11)及び高温デバイス(12)は、上記低温デバイス(11)で発生した熱を上記流体の強制対流の上流側で放熱し、上記高温デバイス(12)で発生した熱を上記流体の強制対流の下流側で放熱するように設けられていることを特徴とする電力変換装置。
  2.  請求項1において、
     上記低温デバイス(11)は、上記高温デバイス(12)よりも上記強制対流の上流側に配置されていることを特徴とする電力変換装置。
  3.  請求項1において、
     上記低温デバイス(11)及び高温デバイス(12)の少なくとも一方には、上記流体に放熱するための放熱部(13,14,21)が設けられていることを特徴とする電力変換装置。
  4.  請求項3において、
     上記放熱部(21)は、上記低温デバイス(11)及び高温デバイス(12)で発生した熱を上記流体に放熱するように、それらのデバイス(11,12)に跨って設けられていて、
     上記低温デバイス(11)は、上記放熱部(21)上の上記高温デバイス(12)よりも上記強制対流の上流側に配置されていることを特徴とする電力変換装置。
  5.  請求項1において、
     上記低温デバイス(11)は、シリコンを主材料として構成されていて、
     上記高温デバイス(12)は、ワイドバンドギャップ半導体を主材料として構成されていることを特徴とする電力変換装置。
  6.  請求項5において、
     上記ワイドバンドギャップ半導体は、SiC、GaNまたはダイヤモンドのいずれかであることを特徴とする電力変換装置。
  7.  請求項1において、
     上記流体は、空気、水、または冷凍サイクルを行う冷媒回路内の冷媒のいずれかであることを特徴とする電力変換装置。
  8.  請求項1において、
     上記半導体デバイス(11,12)は、スイッチング動作を行うものであり、
     上記半導体デバイス(11,12)のうち、相対的な関係においてスイッチング周波数がより高いものが上記高温デバイス(12)、スイッチング周波数がより低いものが上記低温デバイス(11)であることを特徴とする電力変換装置。
  9.  請求項8において、
     上記低温デバイス(11)及び上記高温デバイス(12)は、直流電力又は交流電力を所定の電圧、電流の直流電力、又は所定の電圧、電流、周波数の交流電力に変換する変換部(2,4)を構成していることを特徴とする電力変換装置。
  10.  請求項9において、
     上記変換部(2,4)として、
     交流電力をダイオード(2a)で整流して直流電力に変換するコンバータ回路(2)と、
     複数のスイッチング素子(4a)で上記コンバータ回路(2)の出力をスイッチングして所定の電圧、電流、周波数の交流電力に変換するインバータ回路(4)と、
     を備え、
     上記変換部(2,4)では、上記ダイオード(2a)が上記低温デバイス(11)、上記スイッチング素子(4a)が上記高温デバイス(12)であることを特徴とする電力変換装置。
  11.  請求項9において、
     上記変換部(2,4)として、
     交流電力をダイオード(2a)で整流して直流電力に変換する整流回路(65)、及び昇圧形チョッパ回路(60)を有したコンバータ回路(2)を備え、
     上記昇圧形チョッパ回路(60)は、上記整流回路(65)の一方の出力ノードと接続されたリアクトル(2b)、該リアクトル(2b)と直列接続されたダイオード(63)、及び、上記整流回路(65)のもう一方の出力ノードと該リアクトル(2b)との間に設けられたスイッチング素子(62)を有し、
     上記変換部(2,4)では、上記コンバータ回路(2)の上記ダイオード(2a)が上記低温デバイス(11)、上記昇圧形チョッパ回路(60)の上記ダイオード(63)及び上記スイッチング素子(62)の各半導体デバイスが上記高温デバイス(12)であることを特徴とする電力変換装置。
  12.  請求項11において、
     上記昇圧形チョッパ回路(60)は、ソフトスイッチング方式の回路であることを特徴とする電力変換装置。
  13.  請求項9において、
     上記変換部(2,4)として、
     昇圧形交流チョッパ回路(70)、及び上記昇圧形交流チョッパ回路(70)の出力をダイオード(2a)で整流して直流電力に変換する整流回路(65)を有したコンバータ回路(2)と、
     複数のスイッチング素子(4a)で上記コンバータ回路(2)の出力をスイッチングして所定の電圧、電流、周波数の交流電力に変換するインバータ回路(4)と、
     を備え、
     上記昇圧形交流チョッパ回路(70)は、交流電源(6)の所定の出力ノードと整流回路(65)の所定の入力ノードに接続されたリアクトル(2b)、及び、該リアクトル(2b)と該整流回路(65)の他の入力ノードとに接続された双方向スイッチ(72)を有し、
     上記変換部(2,4)では、上記スイッチング素子(4a)が上記低温デバイス(11)、上記双方向スイッチ(72)及び上記ダイオード(2a)の各半導体デバイスが高温デバイス(12)であることを特徴とする電力変換装置。
  14.  請求項9において、
     上記変換部(2,4)として、
     交流電力をダイオード(2a)で整流して直流電力に変換する整流回路(65)を有したコンバータ回路(2)と、
     降圧形チョッパ回路(90)と、
     複数のスイッチング素子(4a)で上記降圧形チョッパ回路(90)の出力をスイッチングして所定の電圧、電流、周波数の交流電力に変換するインバータ回路(4)と、
     を備え、
     上記降圧形チョッパ回路(90)は、上記整流回路(65)の一方の出力ノードに接続されたスイッチング素子(91)、該スイッチング素子(91)に直列接続されたリアクトル(92)、該コンバータ回路(2)の他方の出力ノードと該スイッチング素子(91)との間に接続された第1ダイオード(93)、及び直列接続の該スイッチング素子(91)と該リアクトル(92)に対して並列接続された第2ダイオード(94)を有し、
     上記変換部(2,4)では、上記コンバータ回路(2)の上記ダイオード(2a)及び上記降圧形チョッパ回路(90)の上記第2ダイオード(94)の各半導体デバイスが上記低温デバイス(11)、上記降圧形チョッパ回路(90)の上記スイッチング素子(91)及び上記第1ダイオード(93)の各半導体デバイスが上記高温デバイス(12)であることを特徴とする電力変換装置。
  15.  請求項9において、
     上記変換部(2,4)として、
     交流電力をダイオード(2a)で整流する整流回路(65)、トランス(102)、スイッチング素子(101)、及び2次側ダイオード(103)を有し、該トランス(102)の一次側コイルと該スイッチング素子(101)とが該整流回路(65)の出力ノード間で直列接続され、該トランス(102)の二次側コイルに2次側ダイオード(103)が接続されたフライバックコンバータ回路(2)と、
     複数のスイッチング素子(4a)で上記フライバックコンバータ回路(2)の出力をスイッチングして所定の電圧、電流、周波数の交流電力に変換するインバータ回路(4)と、
     を備え、
     上記変換部(2,4)では、上記インバータ回路(4)の上記スイッチング素子(4a)が上記低温デバイス(11)、上記フライバックコンバータ回路(2)の上記スイッチング素子(101)、上記整流回路(65)の上記ダイオード(2a)及び上記2次側ダイオード(103)の各半導体デバイスが上記高温デバイス(12)であることを特徴とする電力変換装置。
  16.  請求項9において、
     上記変換部(2,4)として、
     フォワードコンバータ、プッシュプル方式コンバータ、三相一石コンバータ、及びフルブリッジ方式コンバータの何れかの方式のコンバータ回路(2)と、
     複数のスイッチング素子(4a)で上記コンバータ回路(2)の出力をスイッチングして所定の電圧、電流、周波数の交流電力に変換するインバータ回路(4)と、
     を備え、
     上記変換部(2,4)では、上記インバータ回路(4)の上記スイッチング素子(4a)が上記低温デバイス(11)、上記コンバータ回路(2)の少なくとも一部の半導体デバイスが上記高温デバイス(12)であることを特徴とする電力変換装置。
  17.  請求項9において、
     上記変換部(2,4)として、
     複数のスイッチング素子(2d)がブリッジ接続された整流回路(65)、又はスイッチング素子(2d)とダイオード(2a)が混合ブリッジ接続された整流回路(65)を有し、該整流回路(65)にリアクトル(2b)を介して交流電力が入力されるコンバータ回路(2)と、
     複数のスイッチング素子(4a)で上記コンバータ回路(2)の出力をスイッチングして所定の電圧、電流、周波数の交流電力に変換するインバータ回路(4)と、
     を備え、
     上記変換部(2,4)では、上記インバータ回路(4)の上記スイッチング素子(4a)が上記低温デバイス(11)、上記ブリッジ接続の各半導体デバイスが上記高温デバイス(12)であることを特徴とする電力変換装置。
PCT/JP2009/007139 2008-12-26 2009-12-22 電力変換装置 WO2010073635A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008334621 2008-12-26
JP2008-334621 2008-12-26

Publications (1)

Publication Number Publication Date
WO2010073635A1 true WO2010073635A1 (ja) 2010-07-01

Family

ID=42287282

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/007139 WO2010073635A1 (ja) 2008-12-26 2009-12-22 電力変換装置

Country Status (2)

Country Link
JP (1) JP2010172183A (ja)
WO (1) WO2010073635A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103081332A (zh) * 2010-09-09 2013-05-01 三菱电机株式会社 功率半导体模块、电力转换装置及铁路车辆
US9270199B2 (en) 2011-02-10 2016-02-23 Mitsubishi Electric Corporation Power conversion apparatus with a laminated bus bar comprising an exposed heat radiating portion
US10770985B2 (en) 2014-07-18 2020-09-08 Mitsubishi Electric Corporation Vehicle auxiliary power supply device

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5496345B2 (ja) * 2010-09-10 2014-05-21 三菱電機株式会社 電力変換装置
WO2012140774A1 (ja) * 2011-04-15 2012-10-18 三菱電機株式会社 乗客コンベア用の電力変換器一体型モータ
JP5924873B2 (ja) * 2011-05-13 2016-05-25 三菱電機株式会社 空気調和装置用制御装置
JP5773904B2 (ja) * 2012-02-07 2015-09-02 三菱電機株式会社 電気品箱および空気調和機
JP6029288B2 (ja) * 2012-02-22 2016-11-24 三菱電機株式会社 パワーモジュール
PL2677652T3 (pl) * 2012-02-23 2017-04-28 Kyosan Electric Mfg. Co., Ltd. Falownik prądu i sposób sterowania falownikiem prądu
JP5970983B2 (ja) * 2012-07-03 2016-08-17 三菱電機株式会社 電力変換装置
JP5997956B2 (ja) * 2012-07-17 2016-09-28 東芝三菱電機産業システム株式会社 半導体装置
JP2014068428A (ja) * 2012-09-25 2014-04-17 Mitsubishi Electric Corp 電力変換装置
JP2014086536A (ja) * 2012-10-23 2014-05-12 Renesas Electronics Corp 半導体装置および半導体装置の製造方法
JP6584047B2 (ja) * 2012-12-05 2019-10-02 ダイキン工業株式会社 パワーモジュール
JP6439396B2 (ja) * 2014-11-11 2018-12-19 富士電機株式会社 半導体電力変換装置
JP6476515B2 (ja) * 2014-12-17 2019-03-06 三菱重工サーマルシステムズ株式会社 制御装置、制御方法及びプログラム
JP6526253B2 (ja) * 2016-02-10 2019-06-05 三菱電機株式会社 電力変換装置及び空気調和装置
JP6359137B2 (ja) * 2017-03-01 2018-07-18 三菱電機株式会社 車両用補助電源装置
JP2019176594A (ja) * 2018-03-28 2019-10-10 株式会社日立産機システム 電力変換装置
JP7117949B2 (ja) 2018-09-06 2022-08-15 三菱電機株式会社 半導体モジュールおよび電力変換装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0213266A (ja) * 1988-06-29 1990-01-17 Hitachi Ltd インバータ装置
JP2002078355A (ja) * 2000-08-24 2002-03-15 Mitsubishi Electric Corp 系統連系電力変換器
JP2006210605A (ja) * 2005-01-27 2006-08-10 Toyota Motor Corp 半導体装置および負荷駆動装置
JP2008060430A (ja) * 2006-08-31 2008-03-13 Daikin Ind Ltd 電力変換装置
JP2008061374A (ja) * 2006-08-31 2008-03-13 Daikin Ind Ltd 電力変換装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0213266A (ja) * 1988-06-29 1990-01-17 Hitachi Ltd インバータ装置
JP2002078355A (ja) * 2000-08-24 2002-03-15 Mitsubishi Electric Corp 系統連系電力変換器
JP2006210605A (ja) * 2005-01-27 2006-08-10 Toyota Motor Corp 半導体装置および負荷駆動装置
JP2008060430A (ja) * 2006-08-31 2008-03-13 Daikin Ind Ltd 電力変換装置
JP2008061374A (ja) * 2006-08-31 2008-03-13 Daikin Ind Ltd 電力変換装置

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103081332A (zh) * 2010-09-09 2013-05-01 三菱电机株式会社 功率半导体模块、电力转换装置及铁路车辆
EP2615733A1 (en) * 2010-09-09 2013-07-17 Mitsubishi Electric Corporation Power semiconductor module, power conversion apparatus, and railroad vehicle
EP2615733A4 (en) * 2010-09-09 2014-04-09 Mitsubishi Electric Corp POWER SEMICONDUCTOR MODULE, POWER CONVERTING APPARATUS AND RAILWAY VEHICLE
US9270199B2 (en) 2011-02-10 2016-02-23 Mitsubishi Electric Corporation Power conversion apparatus with a laminated bus bar comprising an exposed heat radiating portion
US10770985B2 (en) 2014-07-18 2020-09-08 Mitsubishi Electric Corporation Vehicle auxiliary power supply device

Also Published As

Publication number Publication date
JP2010172183A (ja) 2010-08-05

Similar Documents

Publication Publication Date Title
WO2010073635A1 (ja) 電力変換装置
JP5970983B2 (ja) 電力変換装置
JP2008061404A (ja) 電力変換装置
WO2013069277A1 (ja) 半導体装置
JP5748851B2 (ja) ヒートポンプ装置、空気調和機および冷凍機
JP2008061412A (ja) 空調機のコンバータ装置
JP2017152612A (ja) 電力変換装置
JP5740837B2 (ja) 基準回路モジュール、三相インバータ回路、整流回路、pam回路、一石型pam回路、ハーフブリッジ/インターリーブ回路、および空気調和装置
JP7012754B2 (ja) 電力変換装置およびこれを用いた空気調和装置
JP5984470B2 (ja) 電力変換装置、圧縮機、送風機、空気調和装置、及び冷蔵庫
JP2016171680A (ja) 電力変換装置、及びこれを備える空気調和機、並びに電力変換方法
JP5660916B2 (ja) 電源変換装置および空気調和機
JP2012210012A (ja) パワーモジュール
JP5099379B2 (ja) ベースプレート構造および電源装置
JP2011045218A (ja) 電力変換装置、それを備えたモーター駆動制御装置、それを搭載した圧縮機及び送風機、並びに、その圧縮機又は送風機を搭載した空気調和機、冷蔵庫及び冷凍庫
JP2019187075A (ja) 電力変換装置
JP2012235629A (ja) 空気調和装置用制御装置
JP6439396B2 (ja) 半導体電力変換装置
JP2009022111A (ja) 電力変換装置
KR20200012204A (ko) 변압기의 냉각장치 및 그 제어방법
JP5003752B2 (ja) 電源装置
JP6584673B2 (ja) 交流直流変換装置、電力変換装置および空気調和装置
JP5860356B2 (ja) 空気調和装置
JP2016517262A (ja) 熱交換型電力素子モジュールを使用した電力変換装置
JP6896143B2 (ja) コンバータ装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09834443

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09834443

Country of ref document: EP

Kind code of ref document: A1