JP5924873B2 - 空気調和装置用制御装置 - Google Patents

空気調和装置用制御装置 Download PDF

Info

Publication number
JP5924873B2
JP5924873B2 JP2011108267A JP2011108267A JP5924873B2 JP 5924873 B2 JP5924873 B2 JP 5924873B2 JP 2011108267 A JP2011108267 A JP 2011108267A JP 2011108267 A JP2011108267 A JP 2011108267A JP 5924873 B2 JP5924873 B2 JP 5924873B2
Authority
JP
Japan
Prior art keywords
temperature
reactor
air conditioner
control device
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011108267A
Other languages
English (en)
Other versions
JP2012237533A (ja
Inventor
真作 楠部
真作 楠部
健太 湯淺
健太 湯淺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2011108267A priority Critical patent/JP5924873B2/ja
Publication of JP2012237533A publication Critical patent/JP2012237533A/ja
Application granted granted Critical
Publication of JP5924873B2 publication Critical patent/JP5924873B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Landscapes

  • Control Of Ac Motors In General (AREA)
  • Inverter Devices (AREA)

Description

この発明は、空気調和装置用制御装置に関するものである。
空気調和装置用制御装置には、圧縮機やファンなどのモータを駆動するインバータ装置やインバータによって発生する高調波を抑制する高調波抑制装置などが備えられている。これらの装置を構成する主回路部品としてリアクタが通常必要となるが、リアクタは発熱量が多く、サイズが大型化することから、リアクタの温度上昇を抑制することで小型化を図る技術が各種提案されている。例えば、リアクタを分割して個々のリアクタの発熱量を減らし、小型化を図ると共に、ヒートシンクを用いて積極的に放熱する構造としたものがある(例えば、特許文献1参照)。
特許第4581175号公報(図2、図3)
特許文献1の空気調和装置用制御装置では、リアクタを分割して小型化できるとしているが、分割した個々を基板上に離間して配置しているため、その分スペースが必要となり、充分な小型化ができなかった。また、発熱素子であるリアクタとスイッチング素子をまとめて一体化し、その一体化部分に対してヒートシンクを設けた構造であるため、ヒートシンクに高い放熱能力が要求される。よって、ヒートシンクが大型化せざるを得ず、その面でも充分な小型化ができなかった。
また、リアクタの発熱量が大きいため、スイッチング素子はリアクタに対して風路の上流側に配置せざるを得ず、スイッチング素子冷却後の空気でリアクタを冷却するため、リアクタの冷却が十分にできないという課題があった。このため、リアクタには高温に耐えるものを使う必要があり、高コスト、大型化となる等の問題があった。また、リアクタそのものの温度検出は実施していないため、リアクタの最高使用温度に対して十分にマージンを確保した絶縁階級の絶縁を施す必要があり、この点でも高コストとなっていた。
この発明は、上記のような課題を解決するためになされたもので、リアクタ及びスイッチング素子の放熱用のヒートシンクの小型化、軽量化及び低コスト化が可能な空気調和装置用制御装置を得ることを目的とする。
この発明に係る空気調和装置用制御装置は、空気調和装置の圧縮機又は送風機のモータを駆動するためのインバータ装置及びインバータ装置によって発生する高調波を抑制する高調波抑制装置の少なくとも一方の主回路を構成するリアクタ及びスイッチング素子と、スイッチング素子の発熱を放熱するためのヒートシンクと、リアクタの温度を検出する温度検出素子とを備え、リアクタを風路上流側に、ヒートシンクを風路下流側に配置すると共に、スイッチング素子をリアクタよりも耐熱性の高いワイドバンドギャップ半導体で構成し、更に、温度検出素子の検出温度に基づいてリアクタの過熱保護を行う制御回路を備えたものである。
この発明の空気調和装置用制御装置は、リアクタとヒートシンクを同じ風路内で上流からリアクタ、ヒートシンクの順に配置すると共に、スイッチング素子にはワイドバンドギャップ半導体を用い、更にリアクタの温度検出によりリアクタの過熱保護を行うようにしたので、リアクタの小型化及び軽量化が図れると共に、スイッチング素子の放熱用ヒートシンクの小型化及び軽量化も図れ、低コスト化できるという効果が得られる。
この発明の一実施の形態に係る空気調和装置用制御装置の構成を示した図である。 図1の要部であるリアクタと温度検出素子、制御回路、スイッチング素子の接続関係を示す図である。 この発明の一実施の形態に係る空気調和装置用制御装置の特徴部分の構成を示す図である。 図3のヒートシンクを矢印A方向から見た図である。 図1の空気調和装置用制御装置が配置された室外機の概略構成と室外機内の風向き(矢印)を示す図である。 図4の高調波抑制装置の風路構成を説明するための断面図である。 図3の配置とした場合のリアクタとモジュールのそれぞれの温度と入力との関係を示す図である。 リアクタへの温度検出素子の取り付け構造の一例を示す図である。 リアクタへの温度検出素子の取り付け構造の他の一例を示す図である。 図8の台座の中央突出部を矢印A方向から見た図である。 この発明の一実施の形態に係る空気調和装置用制御装置における過熱保護の流れを示すフローチャートである。 この発明の一実施の形態に係る空気調和装置用制御装置における風速異常検知処理の流れを示すフローチャートである。 この発明の一実施の形態に係る空気調和装置用制御装置における特徴部分の他の構成を示す図である。
実施の形態1.
図1は、この発明の一実施の形態に係る空気調和装置用制御装置の構成を示した図である。図2は、図1の要部であるリアクタと温度検出素子、制御回路、スイッチング素子の接続関係を示す図である。
図1の空気調和装置用制御装置は、インバータ装置10と、高調波抑制装置20と、これらを制御する制御回路30とを備えている。インバータ装置10は、3相交流電源1の交流電圧を直流電圧に変換する整流器11と、力率改善を行うためのリアクタ12と、平滑コンデンサ13と、インバータ主回路14とを備えており、空気調和装置の圧縮機のモータ15に接続されている。
インバータ主回路14は、平滑コンデンサ13によって平滑された直流電源を交流電源に変換するものであり、ワイドバンドギャップ半導体で構成した複数のスイッチング素子で構成される。なお、ワイドバンドギャップ半導体とは、シリコン(Si)素子と比較して、バンドギャップが大きい半導体素子の総称であり、炭化ケイ素(SiC)素子の他、例えば、窒化ガリウム(GaN)、ダイヤモンド素子等が挙げられる。インバータ主回路14の各スイッチング素子は、制御回路30から送られる動作信号(PWM信号、ゲート信号)に基づいてスイッチング動作を行う。
高調波抑制装置20は、ノイズフィルタ21と、リプルフィルタ22と、リアクタ23a〜23cと、ワイドバンドギャップ半導体で構成された複数のスイッチング素子で構成されたスイッチ回路24と、コンデンサ25とを備えており、インバータ装置10に並列に分岐接続され、電源高調波電流の抑制を行う。
空気調和装置用制御装置においては更に、各リアクタ12、23a〜23cのそれぞれに対して、リアクタ12、23a〜23cの温度を検出する温度検出素子12A、23A〜23Cが備えられている。そして、各温度検出素子12A、23A〜23Cの検出温度は図2に示すように制御回路30に入力される。制御回路30は温度検出素子12A、23A〜23Cからの検出温度に基づいて対応の回路(温度検出素子12Aについてはインバータ主回路14、温度検出素子23A〜23Cについてはスイッチ回路24に相当する)に動作信号(PWM信号、ゲート信号)を出力し、その回路のスイッチング素子Sのスイッチング動作を制御してリアクタ12、23a〜23cの過熱保護を行う。なお、以下では各リアクタ12、23a〜23cを総称してリアクタR、温度検出素子12A、23A〜23Cを総称して温度検出素子Tという場合がある。
ここで、この実施の形態の特徴部分の構成について図2及び図3を参照して説明する。 図3は、この発明の一実施の形態に係る空気調和装置用制御装置の特徴部分の構成を示す図で、要部の風路断面を示している。図3の矢印は風向きを示している。また、図3Aは図3のヒートシンクを矢印A方向から見た図である。
空気調和装置用制御装置のインバータ装置10及び高調波抑制装置20はそれぞれ、主回路部品としてリアクタR及びスイッチング素子Sを備えており、更に、リアクタRの温度を検出する温度検出素子Tを備えた構成を有していることは上述の通りである。そして、スイッチング素子Sを備えたモジュールMには、スイッチング素子Sの熱を放熱させるヒートシンクHが取り付けられている。
この実施の形態では、図3に示すようにリアクタRとヒートシンクHとを、同じ風路内で上流からリアクタR、ヒートシンクHの順に配置すると共に、スイッチング素子Sをワイドバンドギャップ半導体で構成し、更に、温度検出素子Tにより検出した検出温度に基づいて制御回路30によりリアクタRの過熱保護を行うことに特徴がある。この特徴部分の構成をインバータ装置10と高調波抑制装置20の両方に備えるか、どちらか一方に備えるかは特に限定するものではない。以下、この特徴部分の構成について更に詳細に説明するが、ここでは高調波抑制装置20を代表して説明する。
図4は、図1の空気調和装置用制御装置が配置された室外機の概略構成と室外機内の風向き(矢印)を示す図である。
図4に示すように、室外機には、筐体内にモータ15により駆動される圧縮機15aと、インバータ装置10を備えた制御機器31と、高調波抑制装置20とが配置され、筐体上部にはファン32が設けられ筐体内の空気を吸い込んで外部(上部)に放出する。制御機器31や高調波抑制装置20は、雨水の跳ね返りによる下方からの水滴侵入や室外機筐体内への積雪時の雪侵入を防止するため、室外機の上方に配置している。
図5は、図4の高調波抑制装置の風路構成を説明するための断面図である。
高調波抑制装置20の筐体20a内下部にはファン26が配置され、吸気孔27を介してファン26により吸い込まれた筐体20a外の空気は、図5中矢印で示すように筐体20a内を流れてまずはリアクタR(23a〜23c)を冷却し、その後、スイッチ回路24を有するモジュールMに取り付けられたヒートシンクHを冷却し、排気孔28を介して筐体20a外部に排気される。なお、図5において29はノイズフィルタ21及びリプルフィルタ22が実装されたフィルタ基板であり、吸気孔27から吸い込まれた空気はリアクタR側に向かう空気とは別にフィルタ基板29の表面を流れてフィルタ基板29を冷却し、その後、モジュールMを冷却後の空気と合流して排気孔28から筐体20a外に排気される。
このように同じ風路内に、上流からリアクタR、ヒートシンクHの順に配置することで、吸込み空気によってまずリアクタRを冷却することができるため、リアクタRの冷却効果を高めることができ、リアクタRを小型化できる。
そして、リアクタRを冷却後の空気は続いてヒートシンクHを冷却する。リアクタRを冷却後の空気はリアクタRの冷却によって温度が上昇しているため、吸込み温度の空気によってヒートシンクHを冷却する場合に比べて冷却効果は低下するが、ヒートシンクHが取り付けられたモジュールMのスイッチング素子Sには、高温に耐えられるワイドバンドギャップ半導体を用いているため、冷却効果が低下しても動作し続けることができる。
ところで、ヒートシンクHは、板状のベース部h1の一方の表面にフィンh2を間隔を空けて複数並設した構成を有するもので、ベース部h1の他方の表面にモジュールMが取り付けられている。そして、ヒートシンクHは、空気調和装置の最大負荷条件においてモジュールM内のスイッチング素子Sのジャンクション温度が許容値を超えないように熱容量やサイズが決められる。しかし、スイッチング素子Sに高温に耐えられるワイドバンドギャップ半導体を用いているため、ヒートシンクH自体の小型化も可能となっている。
なお、ここでは高調波抑制装置20の風路構成を代表して説明したが、インバータ装置10側も同様であり、同じ風路内に、上流からリアクタ12、インバータ主回路14を備えたモジュールMに取り付けたヒートシンクHの順で配置する。これにより、上記と同様の作用効果が得られる。
図6は、図3の配置とした場合のリアクタとモジュールのそれぞれの温度と入力との関係を示す図で、(a)はインバータ装置10、(b)は高調波抑制装置20について示している。また、比較のため、従来例として、図3の配置とは逆に上流からヒートシンク、リアクタの順に配置した場合についても図示している。図6において横軸は室外機全体に対する入力電力、縦軸は温度を示している。なお、図6に示す何れの場合も吸込み温度は同じという温度条件にあるものとする。
図3の配置とすることにより、(a)に示すインバータ装置10、(b)に示す高調波抑制装置20のどちらにおいても、リアクタRの温度を、入力全体に渡ってモジュールM側に比べて低くすることが可能となっている。なお、図3と逆の配置とした場合には、モジュールMに比べてリアクタR側の温度が高くなっている。
また、この空気調和装置用制御装置では、リアクタRの温度を温度検出素子Tで直接検出している。以下、リアクタRへの温度検出素子Tの取り付け構造について以下に説明する。
図7は、リアクタへの温度検出素子の取り付け構造の一例を示す図である。図7(a)は平面図、(b)は左側面図、(c)は正面図である。矢印は風向きを示している。
図7のリアクタRは、絶縁した導線51を鉄心コア50との間に空間を設けた状態で鉄心コア50にコイル状に巻いた構成を有している。そして、温度検出素子Tは、鉄心コア50と導線(巻線)51との間の空間内に位置して鉄心コア50にねじ留めされている。温度検出素子Tが取り付けられたリアクタRは、温度検出素子Tが風路下流側となるように、鉄心コア50に一体に形成された台座52によって図3に示すように風路に固定されている。このように温度検出素子Tを風路下流側とすることで、風路上流側とする場合に比べて温度の高くなる部分での温度検出を行うようにしている。また、図7(a)に示したリアクタRと風向きとの位置関係の位置からリアクタRを90度回転させ、鉄心コア50から突出している両方の巻線51に同時に風があたるようにリアクタRを風路内に配置した場合でも、温度検出素子Tは巻線51の内側にあるため、冷却用の風が直接温度検出素子Tに当たることを避けることができ、リアクタRの高温部分の温度を正確に検出することができる。
図8は、リアクタへの温度検出素子の取り付け構造の他の一例を示す図である。図8(a)は平面図、(b)は側面図である。図中の矢印は風向きを示している。図9は、図8の台座の中央突出部を矢印A方向から見た図で、(a)は側面図で、中央突出部への温度検出素子の取り付け説明図である。
図8のリアクタRは、ドーナツ状のコアケース53に、絶縁した導線51をコイル状に巻回し、台座52上に配置した構成を有するもので、台座52の中央には、コアケース53の中心部に向けて突出する中央突出部52aが一体的に形成されている。中央突出部52aの中央には温度検出素子取付用の空間を有している。中央突出部52aの内面と温度検出素子Tの外面には、互いに係合する係合部55、56が設けられており、中央突出部52aの上部開口から温度検出素子Tを挿入することで係合部55、56同士が係合し、温度検出素子Tが中央突出部52a内に離脱不能に固定されている。
この構造においても、温度検出素子Tを巻線51の内側に配置しているため、冷却用の風が直接温度検出素子Tに当たることを避けることができ、リアクタRの温度を正確に検出することができる。また、巻線51の端子部57を台座52上において風向きの下流側に配置しているため、冷却用の風が端子部57に遮られることなく直接巻線51に当てることができ、リアクタRの放熱を効率よく行うことができる。
ところで、この実施の形態ではリアクタRの小型化を目的としているが、上述したようにリアクタRを吸込み空気で冷却することによりリアクタRの温度上昇を抑制できるため、小型化が可能となっている。どの程度小型化できるかは、空気調和装置駆動中のリアクタRの最高使用温度に応じて異なる。この最高使用温度に対する耐熱性を有する絶縁階級に最適化することで、必要以上の絶縁階級を施す必要がなく、リアクタRの小型化及び低コスト化が図れる。
なお、この実施の形態のリアクタRは、小型化の観点から、リアクタRの最高使用温度と絶縁階級との関係において互いに許容できるぎりぎりの設計としているため、リアクタRの温度検出により過熱保護を行うようにしている。
次に、温度検出素子Tにより検出したリアクタRの温度に応じた過熱保護について説明する。
図10は、この発明の一実施の形態に係る空気調和装置用制御装置における過熱保護の流れを示すフローチャートである。図10における所定値A及び所定値Bは、過熱保護の段階に応じて予め設定された温度であり、A<Bの関係にあるものとする。
温度検出素子TはリアクタRの温度TRを検出する(S100)。このステップS100は定期的に実行され、温度検出素子Tにより検出されたリアクタ温度TRは制御回路30に出力される。制御回路30は温度検出素子Tからのリアクタ温度TRに基づいてステップS101、S103の温度判断を行い、判断結果に応じて過熱保護処理を行う。
(過熱保護:段階1)
制御回路30は温度検出素子Tからのリアクタ温度TRが所定値Aを超え且つ所定値B以下の場合(S101)、スイッチング素子Sの発生損失を低下させる制御を行う(S102)。このステップS101及びS102の処理は、具体的にはインバータ装置10側について言えば、インバータ装置10の温度検出素子12Aにより検出されたリアクタ温度TRが所定値Aを超え且つ所定値B以下の場合、インバータ主回路14への入力電流を絞るためにインバータ周波数を低下させる制御を行う。その結果、インバータ主回路14のスイッチング素子Sの発生損失を低下させることができる。また、高調波抑制装置20側について言えば、温度検出素子23A〜23Cの何れかにより検出されたリアクタ温度TRが所定値Aを超え且つ所定値B以下の場合、高調波抑制装置20へ流入する入力電流を絞ることで、高調波抑制能力を低下させる制御を行う。その結果、スイッチ回路24のスイッチング素子Sの発生損失を低下させることができる。
(過熱保護:段階2)
制御回路30は、温度検出素子Tからのリアクタ温度TRが所定値Bを超えた場合(S103)、スイッチング素子Sの動作を停止させる。ステップS103の判断がNOの場合、つまりリアクタ温度TRが所定値A以下の場合には過熱状態ではなく正常状態であるため、過熱保護の処理は行わない。
空気調和装置用制御装置ではリアクタ温度TRに応じて以上の処理を行うように構成されているため、何らかのトラブルが生じてリアクタRの温度が高くなった場合、まずはスイッチング素子Sの発生損失を低下させる制御(S102)を行う。
それでもリアクタ温度TRが上昇して所定値Bを超えた場合は、スイッチング素子Sの動作を停止させる(S104)。
ところで、リアクタ温度TRと室外機全体に対する入力電力(以下、室外機入力という)との間には図6に示したように互いに相関関係があるため、この相関関係と温度検出素子Tにより検出されたリアクタ温度TRとに基づいてリアクタRに流れる風速の異常を検知することも可能である。
図11は、この発明の一実施の形態に係る空気調和装置用制御装置における風速異常検知処理の流れを示すフローチャートである。
温度検出素子TはリアクタRの温度TRを検出する(S200)。このステップS200は定期的に実行され、温度検出素子Tにより検出されたリアクタ温度TRは制御回路30に出力される。制御回路30は温度検出素子Tからのリアクタ温度TRが所定値Cを超えているか否かを判断し(S201)、リアクタ温度TRが所定値Cを超えていると判断した場合、続いて室外機入力が所定入力未満か否かを判断する(S202)。この所定入力は図3に示した風路内に冷却風を送風するファン(図5に示した高調波抑制装置20においてはファン26に相当)が正常に動作して所定の風速が得られている場合に、リアクタ温度TRが所定値Cの温度となるときの室外機入力に相当し、図6に示した相関関係に基づき予め求められる。なお、この相関関係は制御回路30に予め記憶されている。
そして、室外機入力が所定入力未満と判断した場合、つまり、正常時の室外機入力よりも低い室外機入力でリアクタRの温度が所定値Cを超えてしまっている場合、ファンが異常停止するなどして所定の風速が得られていないと判断する(S203)。異常と判断した場合の対応は適宜設定可能である。
なお、図11のフローチャートは、主にファンが異常停止した場合の風速異常検知を想定したものであるが、ファンが異常回転するなどした場合の風速異常も、正常時の室外機入力とリアクタ温度TRとの相関関係に基づいて検知することができる。
上記の構成では、ヒートシンクの上流側に温度検出素子Tを配置しているが、図12に示すようにヒートシンクHのベース部h1を、フィンh2よりも上流側に延ばし、その延びたベース部h1上にリアクタRを配置する構成としてもよい。この場合、温度検出素子TによってモジュールMの温度を加味した温度検出を行えるため、ファン26が異常停止するなどして所定の風速が得られず、モジュールMがリアクタRよりも早く温度上昇するような場合でも、モジュールMの過熱保護が可能となる。
以上説明したように、この実施の形態によればリアクタRとヒートシンクHとを、同じ風路内で上流からリアクタR、ヒートシンクHの順に配置し、吸込み空気、言い換えれば空気調和装置用制御装置内で最も低い温度の空気によりまずはリアクタRを冷却するようにしたので、リアクタRの放熱を効果的に行うことができる。よって、リアクタRの小型化が図れるとともに、リアクタRの縁階級を低くすることができ、軽量化及び低コスト化が可能となる。
またスイッチング素子Sに、高温動作可能なワイドバンドギャップ半導体を用いたので、リアクタRの下流側にスイッチング素子S用のヒートシンクHを配置しても温度的に十分に許容できる。例えばリアクタRの絶縁階級が、高温まで動作可能なH種のものでも許容温度は180℃であり、ワイドバンドギャップ半導体の許容温度に比べると十分低い。このため、仮に許容温度ぎりぎりの180℃の空気がヒートシンクHに流れても、スイッチング素子Sの耐熱性の範囲内であり十分に許容できる。
また、スイッチング素子Sに、高温動作可能なワイドバンドギャップ半導体を用いたことにより、ヒートシンクHに要求される放熱能力が低くて済むため、ヒートシンクHを小型化できる。また、空気調和装置の最大負荷条件においてスイッチング素子Sのジャンクション温度が許容値を超えないようにヒートシンクHの仕様を決めることで、スイッチング素子Sの温度検出が不要で、低コスト化が図れる。
また、リアクタRの絶縁階級が、高温まで動作可能なH種のものでも上述したように180℃であり、ワイドバンドギャップ半導体の許容温度に比べると十分低いため、リアクタRの過熱保護でモジュールMの過熱保護を兼ねることができる。
また温度検出素子TをリアクタRの巻線51の内側に配置したので、リアクタRの温度を精度よく検出できる。
また、温度検出素子Tの検出温度が過熱保護対象の温度帯に入った場合(つまり所定値Aを超えた場合)、直ちにスイッチング素子Sを停止させるのではなく、段階的に停止の方向に制御を移すようにした。これにより、空気調和装置としての運転を可能な限り継続させることができる。
また、制御回路30はリアクタ温度TRと室外機入力との相関関係に基づき風速異常を検知することができる。
また、この実施の形態では、空気調和装置用制御装置がインバータ装置10と高調波抑制装置20の両方を備えた構成を示したが、インバータ装置10だけを備えた構成としてもよい。また、この実施の形態では、本発明が適用されるインバータ装置を、圧縮機のモータを駆動するインバータとしたが、送風機のモータを駆動するインバータでもよい。
1 3相交流電源、2 制御手段、10 インバータ装置、11 整流器、12 リアクタ、12A 温度検出素子、13 平滑コンデンサ、14 インバータ主回路、15 モータ、15a 圧縮機、20 高調波抑制装置、20a 筐体、21 ノイズフィルタ、22 リプルフィルタ、23A〜23C 温度検出素子、23a〜23c リアクタ、24 スイッチ回路、25 コンデンサ、26 ファン、27 吸気孔、28 排気孔、30 制御回路、31 制御機器、32 ファン、40 モジュール、41 ヒートシンク、50 鉄心コア、51 導線(巻線)、52 台座、52a 中央突出部、53 コアケース、55 係合部、56 係合部、57 端子部、H ヒートシンク、M モジュール、R リアクタ、S スイッチング素子、T 温度検出素子、h1 ベース部、h2 フィン。

Claims (12)

  1. 空気調和装置の圧縮機又は送風機のモータを駆動するためのインバータ装置及び前記インバータ装置によって発生する高調波を抑制する高調波抑制装置の少なくとも一方の主回路を構成するリアクタ及びスイッチング素子と、
    前記スイッチング素子の発熱を放熱するためのヒートシンクと、
    前記リアクタの温度を検出する温度検出素子とを備え、
    前記リアクタを風路上流側に、前記ヒートシンクを風路下流側に配置すると共に、前記スイッチング素子を前記リアクタよりも耐熱性の高いワイドバンドギャップ半導体で構成し、更に、前記温度検出素子の検出温度に基づいて前記リアクタの過熱保護を行う制御回路を備えたことを特徴とする空気調和装置用制御装置。
  2. 前記ヒートシンクは、平板状のベース部の一方の面上に複数のフィンを並設した構成を有し、前記ベース部は前記複数のフィンよりも上流側に延びており、その延出部分上に前記リアクタを配置したことを特徴とする請求項1記載の空気調和装置用制御装置。
  3. 前記リアクタは絶縁した導線をコイル状に巻いた構成を有し、その巻線の内側に前記温度検出素子を配置したことを特徴とする請求項1又は請求項2記載の空気調和装置用制御装置。
  4. 前記リアクタは、絶縁した導線を鉄心コアとの間に空間を設けた状態で前記鉄心コアにコイル状に巻いた構成を有し、前記空間内に前記温度検出素子を位置させて前記鉄心コアに取り付けたことを特徴とする請求項1又は請求項2記載の空気調和装置用制御装置。
  5. 前記温度検出素子が風路下流側となるように前記リアクタを風路内に取り付けたことを特徴とする請求項4記載の空気調和装置用制御装置。
  6. 前記リアクタは、ドーナツ状のコアケースに絶縁した導線をコイル状に巻いた構成を有し、前記コアケースの中心部に前記温度検出素子を配置したことを特徴とする請求項1又は請求項2記載の空気調和装置用制御装置。
  7. 前記リアクタの端子部を前記温度検出素子よりも風路の下流側に配置したことを特徴とする請求項6記載の空気調和装置用制御装置。
  8. 前記制御回路は、前記温度検出素子の検出温度が、過熱保護を必要とする所定値よりも高い温度範囲を2つに分割した温度範囲に属することを検知すると、前記検出温度が属する温度範囲に応じた過熱保護を行うことを特徴とする請求項1乃至請求項7の何れか1項に記載の空気調和装置用制御装置。
  9. 前記制御回路は、前記温度検出素子の検出温度が、前記2つの温度範囲のうち低い温度範囲内のとき、前記スイッチング素子の発生損失を低下させるように前記スイッチング素子を制御することを特徴とする請求項8記載の空気調和装置用制御装置。
  10. 前記制御回路は、前記温度検出素子の検出温度が、前記2つの温度範囲のうち高い温度範囲内のとき、前記スイッチング素子のスイッチング動作を停止させることを特徴とする請求項8又は請求項9記載の空気調和装置用制御装置。
  11. 前記制御回路は、空気調和装置用制御装置を備えた室外機内において前記風路に冷却風を送風するファンの正常時における室外機入力と前記温度検出素子の検出温度との相関関係を予め記憶し、前記温度検出素子の検出温度と前記相関関係とに基づいて風速異常を検知することを特徴とする請求項1乃至請求項10の何れか1項に記載の空気調和装置用制御装置。
  12. 前記ワイドバンドギャップ半導体は、SiC、GaN又はダイヤモンドの何れかであることを特徴とする請求項1乃至請求項11の何れか1項に記載の空気調和装置用制御装置。
JP2011108267A 2011-05-13 2011-05-13 空気調和装置用制御装置 Expired - Fee Related JP5924873B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011108267A JP5924873B2 (ja) 2011-05-13 2011-05-13 空気調和装置用制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011108267A JP5924873B2 (ja) 2011-05-13 2011-05-13 空気調和装置用制御装置

Publications (2)

Publication Number Publication Date
JP2012237533A JP2012237533A (ja) 2012-12-06
JP5924873B2 true JP5924873B2 (ja) 2016-05-25

Family

ID=47460580

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011108267A Expired - Fee Related JP5924873B2 (ja) 2011-05-13 2011-05-13 空気調和装置用制御装置

Country Status (1)

Country Link
JP (1) JP5924873B2 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6157374B2 (ja) * 2014-02-05 2017-07-05 三菱電機株式会社 空気調和装置
JP6132793B2 (ja) * 2014-03-17 2017-05-24 三菱電機株式会社 電動機駆動用インバータ装置
JP6360032B2 (ja) 2015-12-24 2018-07-18 ファナック株式会社 モータ温度及びアンプ温度に応じて動作を変更する機能を有する工作機械の制御装置
WO2018061071A1 (ja) * 2016-09-27 2018-04-05 三菱電機株式会社 空気調和機の室外機

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59132055U (ja) * 1983-02-24 1984-09-04 三菱電機株式会社 空気調和装置の制御部品冷却装置
JPH04344173A (ja) * 1991-05-22 1992-11-30 Matsushita Seiko Co Ltd リアクターの保護装置
JP2004201463A (ja) * 2002-12-20 2004-07-15 Toyota Motor Corp 電圧変換装置、異常検出方法、および異常検出をコンピュータに実行させるためのプログラムを記録したコンピュータ読取り可能な記録媒体
WO2005031219A1 (ja) * 2003-09-25 2005-04-07 Toshiba Carrier Corporation 空気調和機の室外ユニット
JP4957538B2 (ja) * 2007-12-27 2012-06-20 アイシン・エィ・ダブリュ株式会社 コンバータ装置,回転電機制御装置および駆動装置
JP5221203B2 (ja) * 2008-05-19 2013-06-26 三菱電機株式会社 高周波交流電源装置
JP2010002120A (ja) * 2008-06-19 2010-01-07 Daikin Ind Ltd 冷凍装置
JP4487008B2 (ja) * 2008-12-03 2010-06-23 シャープ株式会社 電源装置
JP2010172183A (ja) * 2008-12-26 2010-08-05 Daikin Ind Ltd 電力変換装置

Also Published As

Publication number Publication date
JP2012237533A (ja) 2012-12-06

Similar Documents

Publication Publication Date Title
TWI494048B (zh) 一種大功率高壓變頻器功率單元
JP5615398B2 (ja) 電力変換装置
JP4879370B1 (ja) 車両用制御装置
JP5638505B2 (ja) 電力変換装置、およびそれを備えた空気調和装置
JP5924873B2 (ja) 空気調和装置用制御装置
US10100845B2 (en) Fan
JP2012105419A (ja) 電力変換装置
EP3255782B1 (en) Motor drive device and air conditioner
JP2014165949A (ja) 電力変換装置
JP5393841B2 (ja) 電力変換装置および電力変換装置の製造方法
JP2012062778A (ja) 電動過給機
JP2012210012A (ja) パワーモジュール
JP5469838B2 (ja) 並べて配置される複数台の電力変換装置およびその設置方法
JP5486434B2 (ja) 電力変換装置
JP5943556B2 (ja) ファン駆動用電動機
JPWO2019106792A1 (ja) 電力変換装置及び空気調和装置
US20180058454A1 (en) Electric compressor, control device, and monitoring method
JP2008092632A (ja) インバータ装置
JP5829414B2 (ja) 空気調和機の室内機
CN117318457A (zh) 功率转换装置
JP2005252090A (ja) 半導体素子の温度検出方法及び電力変換装置
JP2012184906A (ja) 空気調和装置の室外機及びその空気調和装置の室外機を用いた空気調和装置
JP2015163013A (ja) 圧縮機制御装置、力率改善回路、電装部品の放熱構造、及び電気機器
JP2013252006A (ja) モータ駆動装置及びそれを備えた空気調和機
JP6619393B2 (ja) 電力変換装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140310

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140919

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141007

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150127

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150408

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20150417

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20150612

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160419

R150 Certificate of patent or registration of utility model

Ref document number: 5924873

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees