WO2010071038A1 - 熱交換器及びその製造方法 - Google Patents

熱交換器及びその製造方法 Download PDF

Info

Publication number
WO2010071038A1
WO2010071038A1 PCT/JP2009/070448 JP2009070448W WO2010071038A1 WO 2010071038 A1 WO2010071038 A1 WO 2010071038A1 JP 2009070448 W JP2009070448 W JP 2009070448W WO 2010071038 A1 WO2010071038 A1 WO 2010071038A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat exchanger
tank
opening end
liquid receiver
main body
Prior art date
Application number
PCT/JP2009/070448
Other languages
English (en)
French (fr)
Inventor
浩 竹間
嘉宏 河合
拓未 船津
山崎 真
Original Assignee
カルソニックカンセイ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2008317823A external-priority patent/JP5237074B2/ja
Priority claimed from JP2008317824A external-priority patent/JP5237075B2/ja
Application filed by カルソニックカンセイ株式会社 filed Critical カルソニックカンセイ株式会社
Priority to US13/139,644 priority Critical patent/US20110247792A1/en
Priority to EP09833342.0A priority patent/EP2369269A4/en
Priority to CN2009801505640A priority patent/CN102245982A/zh
Publication of WO2010071038A1 publication Critical patent/WO2010071038A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K1/00Soldering, e.g. brazing, or unsoldering
    • B23K1/0008Soldering, e.g. brazing, or unsoldering specially adapted for particular articles or work
    • B23K1/0012Brazing heat exchangers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K1/00Soldering, e.g. brazing, or unsoldering
    • B23K1/002Soldering by means of induction heating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K1/00Soldering, e.g. brazing, or unsoldering
    • B23K1/008Soldering within a furnace
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K1/00Soldering, e.g. brazing, or unsoldering
    • B23K1/20Preliminary treatment of work or areas to be soldered, e.g. in respect of a galvanic coating
    • B23K1/203Fluxing, i.e. applying flux onto surfaces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/04Condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B43/00Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat
    • F25B43/003Filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • F28D1/0535Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight the conduits having a non-circular cross-section
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F19/00Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers
    • F28F19/01Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers by using means for separating solid materials from heat-exchange fluids, e.g. filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/0202Header boxes having their inner space divided by partitions
    • F28F9/0204Header boxes having their inner space divided by partitions for elongated header box, e.g. with transversal and longitudinal partitions
    • F28F9/0209Header boxes having their inner space divided by partitions for elongated header box, e.g. with transversal and longitudinal partitions having only transversal partitions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/0229Double end plates; Single end plates with hollow spaces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/0246Arrangements for connecting header boxes with flow lines
    • F28F9/0251Massive connectors, e.g. blocks; Plate-like connectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/026Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits
    • F28F9/0278Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits in the form of stacked distribution plates or perforated plates arranged over end plates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/04Tubular or hollow articles
    • B23K2101/14Heat exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/04Details of condensers
    • F25B2339/044Condensers with an integrated receiver
    • F25B2339/0441Condensers with an integrated receiver containing a drier or a filter
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/04Details of condensers
    • F25B2339/044Condensers with an integrated receiver
    • F25B2339/0442Condensers with an integrated receiver characterised by the mechanical fixation of the receiver to the header
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/04Details of condensers
    • F25B2339/044Condensers with an integrated receiver
    • F25B2339/0446Condensers with an integrated receiver characterised by the refrigerant tubes connecting the header of the condenser to the receiver; Inlet or outlet connections to receiver
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2220/00Closure means, e.g. end caps on header boxes or plugs on conduits
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/4935Heat exchanger or boiler making

Definitions

  • the present invention relates to a heat exchanger and a manufacturing method thereof.
  • the closing member when the pressure resistance of the liquid receiver is improved, the closing member is joined to the open end of the liquid receiver, for example, by welding. At this time, since the liquid receiver and the tank of the heat exchanger are very close to each other, the problems listed below occur. That is, it is not possible to secure a working space for joining the closing members. Moreover, there is a possibility that the tank of the heat exchanger may be deformed by heat at the time of joining the closing member. Furthermore, since the thermal mass of the liquid receiver is large, the closing member does not heat up as desired, and it takes time to join.
  • the present invention has been made to solve the above-mentioned problems, and an object of the present invention is to provide a heat exchanger capable of improving the pressure resistance of the liquid receiver by satisfactorily joining the closing member of the liquid receiver. It is to be.
  • the heat exchanger includes a pair of tanks arranged at a predetermined interval, a plurality of tubes having both ends connected to the pair of tanks, and a main body of one of the pair of tanks. And a liquid receiver having an open end provided on one side in the longitudinal direction of the main body, and a shape that can be inserted from the open end. And a closing member that is fixed to the opening end and closes the opening end, the opening end having an outer diameter that is the longitudinal length of the main body. It is characterized in that it is formed with a reduced diameter portion smaller than the outer diameter on the other side in the direction or protrudes outward in the longitudinal direction as compared with the one tank.
  • a pair of tanks arranged at a predetermined interval, a plurality of tubes having both ends connected to the pair of tanks, and a main body of the pair of tanks. Adjacently arranged along one tank, connected to this one tank, and having a liquid receiver having an open end provided on one side in the longitudinal direction of the main body, and a shape insertable from the open end
  • a heat exchanger manufacturing method comprising: a housing member formed in the liquid receiver and housed in the liquid receiver; and a closing member that is fixed to the opening end and closes the opening end.
  • the opening end portion having a diameter smaller than the outer diameter on the other side in the longitudinal direction of the main body and the opening end portion protruding outward in the longitudinal direction as compared with the one tank are provided.
  • the process of preparing the receiver and the heat exchanger A step of preparing the tank, the plurality of tubes, the housing member, and the closing member, a step of integrally forming the entire heat exchanger excluding the housing member and the closing member by brazing, and the brazing After the attaching process, the step of inserting and arranging the housing member from the opening end into the liquid receiver; A step of joining the closing member to the opening end portion by either welding or brazing after the housing member is inserted and arranged.
  • the outer diameter of the opening end on one side in the longitudinal direction of the liquid receiver into which the container is inserted is smaller than the outer diameter of the main body on the other side in the longitudinal direction, An open end projecting outward in the longitudinal direction as compared with the tank is provided.
  • the entire heat exchanger excluding the housing member and the closing member is integrally formed by brazing treatment or the like, and the housing member is inserted and disposed in the receiver from the opening end after the brazing treatment or the like, It has a structure and a manufacturing method in which the closing member can be welded or brazed to the opening end after the housing member is inserted and arranged.
  • the heat exchanger of the present invention and the method for manufacturing the heat exchanger ensure the joining work space for the blocking member, prevent thermal damage to the tank during joining, reduce the joining material and increase the efficiency of the joining work, It is possible to simultaneously improve the brazing property due to the mass, and it is possible to improve the pressure resistance by satisfactorily joining the closing member of the liquid receiver.
  • FIG. 10 It is a front view which shows the heat exchanger of Example 1 which concerns on this invention. It is a disassembled perspective view of the tank of the heat exchanger of Example 1.
  • FIG. It is a perspective view of the tank of FIG. It is a disassembled perspective view of the tank of FIG. It is a perspective view of the tank of FIG. It is a disassembled perspective view of the liquid receiver used with the heat exchanger of Example 1.
  • FIG. It is a perspective view of the liquid receiver of FIG. It is a disassembled perspective view of the intermediate member and liquid receiver used with the heat exchanger of Example 1.
  • FIG. 10 is a cross-sectional view taken along line S10-S10 in FIG.
  • FIG. 15 is a cross-sectional view taken along line S15-S15 in FIG. It is a figure explaining the profile of the temperature in the heat exchanger of Example 1.
  • FIG. It is a figure explaining the other joining example of the obstruction
  • FIG. 22 is a cross-sectional view taken along the line S22-S22 in FIG. 21, and is a diagram illustrating another example of joining of the blocking member.
  • FIG. 22 is a cross-sectional view taken along the line S23-S23 of FIG. 21, and is a diagram illustrating another example of joining of the blocking member.
  • FIG. 29 is a side cross-sectional view illustrating the upper interior of the liquid receiver in FIG. 28.
  • FIG. 29 is a side cross-sectional view illustrating the upper interior of the liquid receiver in FIG. 28. It is a figure explaining the high frequency induction heating process in the manufacturing method of the heat exchanger of Example 5 which concerns on this invention.
  • FIG. 1 is a front view showing a heat exchanger according to a first embodiment
  • FIG. 2 is an exploded perspective view of a tank used in the heat exchanger according to the first embodiment
  • FIG. 3 is a perspective view thereof
  • FIG. 4 is a tank according to FIGS.
  • FIG. 5 is an exploded perspective view of FIG. 6 is an exploded perspective view of the liquid receiver used in the heat exchanger of the first embodiment
  • FIG. 7 is a perspective view thereof
  • FIG. 8 is an exploded perspective view of the intermediate member and the liquid receiver of the first embodiment
  • FIG. 10 is a side sectional view for explaining the lower inside of the liquid receiver
  • FIG. 10 is a side sectional view for explaining the lower inside of the liquid receiver
  • FIG. 10 is a sectional view taken along line S10-S10 in FIG. 11 is a side sectional view for explaining the upper interior of the liquid receiver shown in FIGS. 6 and 7,
  • FIG. 12 is an exploded view of a metal filter used in the heat exchanger of the first embodiment, and
  • FIG. 13 is a heat exchange of the first embodiment. It is a top view of the bracket member used for a vessel.
  • FIG. 14 is a top view (partially omitted) illustrating the periphery of a blocking member for explaining high-frequency induction heating in the heat exchanger of Example 1
  • FIG. 15 is a cross-sectional view taken along line S15-S15 in FIG. It is a figure explaining the profile of the temperature in a heat exchanger.
  • 17 to 21 are diagrams for explaining other joining examples of the blocking member
  • FIG. 22 is a cross-sectional view taken along the line S22-S22 in FIG. 21, a diagram for explaining another joining example of the closing member
  • FIG. FIG. 24 is a cross-sectional view taken along line S23-S23, illustrating another example of joining of the blocking member
  • FIG. 24 is a diagram illustrating another example of joining of the closing member.
  • the heat exchanger 1 includes a pair of tanks 2 and 3 disposed at a predetermined interval on the left and right sides, and a core portion disposed between the pair of tanks 2 and 3. 4 and a long liquid receiver 5 disposed adjacently along the tank 3.
  • the tank 2 is divided into three chambers R1, R3, R6 by four plate-shaped divider plates D1, and an input connector 6 having an input port 6a communicating with the chamber R1 is provided, while an output communicating with the chamber R6 is provided.
  • An output connector 7 having a port 7a is provided.
  • the tank 3 is divided into three chambers R2, R4, and R5 by four divider plates D1, and is provided with a liquid receiver 5 that communicates with the chambers R4 and R5 through intermediate members 8 and 9.
  • the tank 2 includes a semi-cylindrical tube plate 10a having a substantially U-shaped cross section, and a semi-cylindrical tank plate having a substantially U-shaped cross section that is superimposed on the tube plate 10a in the middle. 10b and each of the above-described divider plates D1 interposed inside the plates 10a and 10b.
  • the tube plate 10a includes a reinforcement hole 10c into which an end portion of a later-described reinforcement 4c is inserted and fixed, and a tube hole 10d into which an end portion of the later-described tube 4a is inserted and fixed, respectively, by burring. It is formed in the shape of an annular protrusion.
  • a pair of bead portions 10e and 10e that are fixed in a state where the core plate 4 side of the divide plate D1 is sandwiched project from the position where the divide plate D1 is interposed in the tube plate 10a.
  • a pair of claw-shaped locking portions 10f, 10f that can be caulked and fixed to a part of the outer periphery of the tank plate 10b are provided on opposite side walls of the substantially U-shaped cross section of the tube plate 10a. A plurality are formed along. Note that the shape, the number of formation, the formation position, and the like of the locking portions 10f and 10f can be set as appropriate.
  • a fixing hole 10h for inserting and fixing the convex portion 10g formed on the divider plate D1 is formed at a position where the divider plate D1 is interposed in the tank plate 10b. Further, circular communication holes 10i and 10j are formed at positions where the connectors 6 and 7 are fixed on the tank plate 10b.
  • each connector 6 and 7 is formed by an annular projection formed in a ring-shaped projection toward the outside by burring the corresponding communication holes 10i and 10j of the tank plate 10b before the plates 10a and 10b are overlapped. By fixing by caulking, it is configured so that it can be temporarily assembled while in contact with the tank plate 10b.
  • the tank 3 has the respective plates 10a and 10b overlapped in the middle with the respective divider plates D1 interposed at predetermined positions, and then each locking portion 10f. , 10f are fixed to the tank plate 10b by caulking and fixed temporarily. Further, circular communication holes 10k and 10m are formed at positions where the intermediate members 8 and 9 are fixed on the tank plate 10b. Further, a communication hole 10n is formed at a position where a holding member 16 described later is fixed (see FIG. 11).
  • the core portion 4 includes a plurality of flat tubular tubes 4a whose both ends are inserted and fixed in the tube holes 10d of the tanks 2 and 3, and corrugated plate-like fins 4b whose corrugated tops are joined to the adjacent tubes 4a. Consists of. Further, both sides of the core portion 4 in the stacking direction are connected and reinforced by a pair of reinforcements 4c and 4c having both ends inserted and fixed in the reinforcement holes 10c of the tanks 2 and 3.
  • the liquid receiver 5 includes a main body 13 composed of a substantially cylindrical first divided member 11 and a substantially cylindrical second divided member 12 connected to each other, and the main body 13. And substantially dish-shaped closing members 14 and 15 for closing both ends of the opening.
  • the outer periphery of the first divided member 11 has a pair of side walls 11a and 11a that extend along the axis of the first divided member 11 and face each other, and a flat bottom portion 11b that is orthogonal to the side walls 11a and 11a.
  • a fixing portion 11c having a substantially U-shaped cross section that is open toward the intermediate members 8 and 9 is formed over the entire length of the first divided member 11.
  • circular communication holes 11d and 11e are formed at positions where the intermediate members 8 and 9 are fixed on the bottom portion 11b.
  • At least the first divided member 11 is an integrally molded product formed by extruding a base material.
  • the second divided member 12 is inserted through an insertion portion 12a having the same outer diameter as the inner periphery of the upper end portion of the first divided member 11, and an annular bead portion 12b formed to bulge outward from the insertion portion 12a. And a reduced diameter portion 12c reduced to a predetermined outer diameter.
  • the closing member 14 is formed in a disc-shaped bottom portion 14a and an annular protrusion standing from the outer periphery of the bottom portion 14a to the main body 13 side, and inside the lower opening end portion 13a of the main body 13 (first divided member 11).
  • An insertion portion 14b that can be inserted and fitted around the periphery is formed.
  • the closing member 15 is formed in a disc-like bottom portion 15a and an annular projection standing on the main body 13 side from the outer periphery of the bottom portion 15a, and inside the upper opening end portion 13b of the main body 13 (second divided member 12).
  • An insertion portion 15b that can be inserted and fitted around the periphery is formed.
  • both the divided members 11 and 12 can be connected and fixed.
  • both the closing members 14 and 15 are press-fitted inside the corresponding upper and lower opening end portions 13a and 13b of the main body 13 so that the bottom portions 14a and 15a are flush with the end portions 13a and 13b and can be fixed. ing.
  • the main body 13 of the liquid receiver 5 has a reduced diameter at the upper opening end 13b of the main body 13 because the reduced diameter portion 12c of the second divided member 12 has a reduced diameter.
  • the intermediate members 8 and 9 connect the communication holes 10 k and 10 m of the tank 3 and the corresponding communication holes 11 d and 11 e of the liquid receiver 5, respectively, and the liquid receiver 5 Is fixedly supported on the tank 3.
  • the intermediate member 8 (9) has a communication hole 8 a (9 a) that has a circular opening cross section and is formed so as to extend therethrough, and the tank 3 so as to extend this communication hole 8 a (9 a).
  • a cylindrical insertion portion 8b (9b) projecting on the side and a substantially rectangular seat portion 8c (9c) provided on the liquid receiver 5 side are formed.
  • the intermediate member 8 (9) has a midway between the insertion portion 8b (9b) and the seat portion 8c (9c) having a contact surface 8d (9d) that matches the outer peripheral shape of the tank plate 10b of the tank 3.
  • a portion 8e (9e) is formed.
  • the opening diameter of the communication hole 11d (11e) of the fixed portion 11c is set somewhat larger than the opening diameter of the communication hole 8a (9a).
  • the intermediate member 8 (9) has the insertion portion 8 b (9 b) inserted into the communication hole 10 k (10 m) of the tank 3 and the contact surface 8 d (9 d) is connected to the tank plate of the tank 3.
  • the seat portion 8c (9c) is fixed in contact with the bottom portion 11b of the fixing portion 11c.
  • the intermediate part 8e (9e) and the seat part 8c (9c) of each intermediate member 8 (9) are formed by a pair of caulks formed by crimping the side walls 11a, 11a inward. It is fixed by caulking by the tightening portion 11f.
  • the shape, the number of formation, a formation position, etc. of the crimping part 11f can be set suitably, and you may employ
  • a holding member 16 having the same shape as that of the intermediate member 8 (9) is provided near the middle part of the first divided member 11.
  • the holding member 16 has the insertion portion 16b inserted into the communication hole 10n of the tank 3, the contact surface 16d abutted against the tank plate 10b of the tank 3, and the seat portion 16c. It fixes in the state which contact
  • the holding member 16 is also swaged and fixed by a pair of swaged portions 11f similarly to the intermediate members 8 and 9. Thereby, the liquid receiver 5 is fixedly supported by the tank 3 in a stable state by the intermediate members 8 and 9 and the holding member 16.
  • a metal filter 17 is provided between the communication hole 11 d and the communication hole 11 e in the first divided member 11.
  • the metal filter 17 includes a filter main body 17a, a flange 17b, and a metal ring 17c.
  • the filter main body 17a is formed in a bottomed cylindrical shape having a small net-like hole and opened downward.
  • the flange portion 17b is formed in a cylindrical shape whose diameter is increased as it goes downward, and the inner diameter of the upper end portion thereof is formed slightly smaller than the inner diameter of the lower end portion of the filter main body portion 17a.
  • the metal ring 17c is formed in a cylindrical shape, and the inner diameter thereof is slightly larger than the outer diameter of the lower end portion of the filter main body portion 17a. As a result, the upper end portion of the flange portion 17b is overlapped with the inner side of the lower end portion of the filter body portion 17a, and the metal ring 17c is overlapped with the outer side of the metal ring 17c. Is fixed.
  • a chamber P1 communicating with the chamber R4 of the tank 3 through the communication hole 8a of the intermediate member 8 is formed in the liquid receiver 5. Further, a chamber P2 is formed which communicates with the chamber P1 through the filter main body portion 17a of the metal filter 17 and communicates with the chamber R5 of the tank 3 through the communication hole 9a of the intermediate member 9.
  • a bracket member 19 having a plurality of through holes 19 a (see also FIG. 13) is provided in the vicinity of the upper end portion of the first divided member 11.
  • a chamber P3 communicating with the chamber P1 through the through hole 19a is formed above the main body 13, and the accommodating member 20 is accommodated therein.
  • the housing member 20 in the heat exchanger 1 of Example 1 is a desiccant, and the desiccant is put in a fine particle state in a breathable cloth bag. In some cases, it can be entered directly. In some cases, a fluorescent agent is used instead of the desiccant.
  • all the constituent members of the heat exchanger 1 of the first embodiment are made of aluminum or an alloy mainly made of aluminum, stainless steel, or the like except for the housing member 20. Further, at least one of the contact portions of the constituent members in contact with each other is formed of a brazing sheet, or a brazing material to which a flux is previously applied or pasted is formed.
  • the closing member 14 is press-fitted and fixed to the lower opening end 13a of the main body 13 from below.
  • the side walls 11a and 11a are crimped to form the crimped portions 11f and 11f (FIG. 10).
  • the side walls 11a, 11a are in contact with the side surfaces of the seat portions 8c, 9c of the intermediate members 8, 9 to guide the intermediate members 8, 9, thereby causing the intermediate members 8, 9 to move in the front-rear direction (core portion 4). Positioning in the width direction) can be performed accurately.
  • the seat portions 8c and 9c of the intermediate members 8 and 9 and the intermediate portions 8e and 9e are crimped by the corresponding crimping portions 11f and 11f, so that the seat portions 8c and 9c of the intermediate members 8 and 9 are attached to both side walls. It can hold
  • the relative positioning of the intermediate members 8 and 9 and the fixed portion 11c can be performed, and the intermediate members 8 and 9 are fixed to the fixed portion 11c in a state where the communication holes 8a and 9a and the communication holes 11d and 11e are relatively positioned.
  • the opening diameter of the communication hole 11d (11e) is set to be somewhat larger than the opening diameter of the communication hole 8a (9a), the relative positional deviation in the vertical direction of both of them can be allowed to some extent.
  • the holding member 16 can be temporarily fixed in a state where the holding member 16 is relatively positioned with respect to the fixing portion 11c, similarly to the intermediate members 8 and 9.
  • the insertion portions 8b and 9b of the intermediate members 8 and 9 and the insertion portion 16b of the holding member 16 together with the liquid receiver 5 are inserted into and fixed to the corresponding communication holes 10k, 10m and 10n of the tank 3, respectively.
  • the vessel 5 is temporarily assembled to the tank 3. Thereby, temporary assembly of all the structural members of the heat exchanger 1 except the closing member 15 and the housing member 20 is completed.
  • the heat exchanger 1 temporarily assembled as described above is heat-treated in a heating furnace, and the joint portions of the respective constituent members are brazed and integrally formed.
  • the brazing process of the heat exchanger 1 is normally performed in a state where the core portion 4 is horizontal.
  • the weight of the liquid receiver 5 is applied to the intermediate members 8 and 9 in the vertical direction, the relative positional shift between them is particularly likely to be greatly shifted in the width direction of the core portion 4.
  • the intermediate members 8 and 9 and the liquid receiver 5 are displaced relative to each other, there is a problem that the communication hole 8a (9a) and the communication hole 11d (11e) are displaced and pressure loss of the circulation medium increases. Arise.
  • the opening diameter of the communication hole 11d (11e) is set to be slightly larger than the opening diameter of the communication hole 8a (9a) so as to allow the positional deviation between them, but the communication hole 11d (11e) If the opening diameter is set too large, the joining area between the intermediate member 8 (9) and the liquid receiver 5 cannot be secured, causing problems such as an increase in size of the intermediate members 8 and 9 and poor brazing.
  • both side walls 11a and 11a of the fixing portion 11c are brought into contact with the side surfaces of the seat portions 8c and 9c of the intermediate members 8 and 9, and further, a caulking portion
  • the seat portions 8c and 9c are fixed by caulking with 11f and 11f.
  • the accommodating member 20 is inserted and disposed in the chamber P3 from the upper opening end portion 13b of the main body 13 of the liquid receiver 5.
  • high-frequency induction heating is the same as the technique described in the publicly known Japanese Patent Application Laid-Open No. 7-9119 or Japanese Patent Application Laid-Open No. 6-295782, and the details will be briefly described.
  • high-frequency induction heating is based on the heat generated by eddy current loss caused by electromagnetic induction in a conductor (material with conductivity) placed in a work coil through which high-frequency current flows, and hysteresis loss.
  • the phenomenon of rapid heating by the heat generated (the amount of heat generated because each molecule of the magnetic material vibrates and rubs with an alternating magnetic flux) is utilized.
  • a brazing material (brazing sheet) (not shown) is provided on the outer surface of the closing member 15.
  • a loop-shaped work coil 32 electrically connected to the transmitter 31 is disposed so as to surround the joint B of the closing member 15. Note that the work coil 32 may be of a single ⁇ -shaped type instead of multiple windings.
  • the transmitter 31 is electrically connected to the controller 33.
  • the controller 33 stores a control method of the transmitter 31 in a rewritable memory as a program. By executing this program and transmitting a command signal to the transmitter 31 to output a high-frequency current, the joint portion The heating adjustment of B is controlled.
  • the controller 33 stores in advance data relating to the relationship between the time from the start of heating and the target temperature of the joint B of the closing member 15 as shown in FIG. 16, and the transmitter 31 is matched to this target temperature. Send command signal to. Thereby, stable brazing joining is realizable by controlling the temperature rise of the junction part B of the closure member 15.
  • the joint B of the closing member 15 arranged inside the work coil 32 is heated.
  • the closing member 15 can be satisfactorily brazed to the second divided member.
  • the outer surface of the bottom portion 15a of the closing member 15 and the outer surface of the insertion portion 15b are connected by a gentle curved surface, one of the brazing materials at a position relatively distant from the joint portion B in the closing member 15 is used.
  • the portion can be replenished by capillarity by reliably entering between the outer periphery of the insertion portion 15b and the inner periphery of the upper opening end portion 13b of the main body 13, that is, the joint portion B.
  • the closing member 15 when the closing member 15 is joined to the liquid receiver 5 by welding, for example, the liquid receiver 5 and the tank 3 of the heat exchanger 1 are very close to each other. In addition, welding workability is poor, and heat during welding may adversely affect the tank 3. Further, when brazing and joining using high-frequency induction heating by the work coil 32, a predetermined gap cannot be secured between the work coil 32 and the main body (precisely, the joining portion B of the closing member), resulting in poor brazing. There is a risk of inviting. In the high frequency induction heating, the predetermined gap is an important setting item.
  • the work coil and the tank 3 are very close to each other, so that the heat at the time of high-frequency induction heating is bonded to the tank 3. There is a risk of melting the brazing filler metal.
  • the diameter of the upper end portion of the liquid receiver 5 is reduced by the reduced diameter portion 12c of the second divided member 12.
  • a sufficient gap H can be secured between the main body 13 (the reduced diameter portion 12 c) and the tank 3 in the vicinity of B.
  • a predetermined gap is ensured between the work coil 32 and the main body 13 (joining part of the closing member 15), and a sufficient space for joining work can be secured.
  • the work coil 32 and the tank 3 are not excessively close to each other, the heat at the time of high-frequency induction heating does not have a possibility of adversely affecting the tank 3, and the tank 3 can be protected.
  • the thermal mass of the main body 13 can be made small and the smooth temperature rise of the junction part of the closure member 15 is realizable.
  • the joining area of the joining portion of the closing member 15 can be reduced, the amount of brazing material used can be reduced, the material cost can be kept low, and the time required for joining can be shortened.
  • the sealing degree (pressure resistance) can be further increased by reducing the joining area of the joining portion of the closing member 15.
  • the controller 33 controls the transmitter 31 by the controller 33, it is possible to control the temperature rise of the joint portion of the closing member 15, and to realize stable brazing joining.
  • the closing member 15 can be satisfactorily brazed to the upper opening end portion 13b of the main body 13, and compared with the sealing structure of the closing member using the sealing member and the screw groove. Can achieve very high pressure resistance.
  • the closing member 15 is brazed and joined to the upper end portion of the main body 13 by high frequency induction heating using the work coil 32, but may be fixed by welding. In this case, the same action and effect can be obtained.
  • the brazing material 40 enters the joint B of the closing member 15 by capillary action and is brazed and joined, but illustration and description thereof are omitted.
  • a powdery brazing material 40 may be provided near the upper portion of the joint B of the closing member 15, and flux may be applied to the brazing member 40 to be brazed or joined, or as shown in FIG. 18.
  • flux-cored ring low (flux-coward wire) member After providing a flux-cored ring low (flux-coward wire) member, brazing and joining may be performed.
  • an annular notch step portion 41 is formed on the inner periphery of the upper opening end portion 13b of the main body 13, and the notch step portion 41 is formed as shown in FIG.
  • an annular notch step 41 is formed on the inner periphery of the upper opening end 13b of the main body 13, and as shown in FIG.
  • the disc-shaped closing member 15 may be locked.
  • the insertion allowance for press-fitting into the main body 13 can be easily determined, and the weight and size of the closing member 15 can be increased, the chamber P3 can be enlarged (the accommodating member 20 can be enlarged), and the thermal mass can be reduced. be able to.
  • the brazing material 40 is provided on the outer surface of the closing member 15.
  • the insertion portion 15b of the closing member 15 is formed in a shape that is curved and recessed toward the main body 13, and is locked to the upper end of the main body 13 at a plurality of locations on the outer periphery thereof. You may make it provide the nail
  • the insertion portion 15b of the closing member 15 is formed into a shape that is curved and recessed toward the main body 13, and the opening end portion 13b of the main body 13 is flared to the outside. You may make it form the expanded part 43 expanded.
  • a brazing material 40 may be provided inside the enlarged diameter portion 43 and brazed and joined as in the case described above, as shown in FIG. In this case, the brazing material 40 can be actively guided toward the joint portion of the closing member 15 by the inclined surface of the enlarged diameter portion 43.
  • a fixed portion 11c is formed on the outer peripheral portion of the liquid receiver 5 (first divided member 11), and the intermediate portion 8, 9 is connected to the liquid receiver 5 in the fixed portion 11c.
  • the seats 8c and 9c, which are parts, are fixed and connected in communication. Thereby, there is no possibility that the seat portions 8c and 9c, which are the connection portions B of the intermediate members 8 and 9 with the liquid receiver 5, approach or contact the housing member of the liquid receiver 5, and the design in the liquid receiver 5 is free.
  • the degree can be expanded. Therefore, in the heat exchanger 1 of the first embodiment, the degree of freedom in designing the size and arrangement of the metal filter 17 can be expanded.
  • a high-temperature circulation medium at around 60 ° C. flowing into the chamber R1 of the tank 2 from the compressor side via the input port 6a of the input connector 6 is firstly supplied to each of the core portions 4.
  • the flow medium (shown by a broken line arrow) that has flowed into the chamber R ⁇ b> 4 of the tank 3 flows into the chamber P ⁇ b> 1 of the receiver 5 through the communication hole 8 a of the intermediate member 8. After liquid separation, it flows into the chamber P2 through the metal filter 17. At this time, foreign substances contained in the distribution medium can be removed by the filter main body 17a of the metal filter 17.
  • the accommodating member 20 is used as a desiccant, the moisture in the liquid receiver 5 is absorbed and the gas-liquid separation performance can be improved.
  • the housing member 20 is a fluorescent agent, it is possible to easily detect the leakage of the distribution medium when the sealing performance in the liquid receiver 5 is impaired for some reason.
  • the flow medium that has flowed into the chamber R5 of the tank 3 passes through the core portion 4 while flowing into the chamber R6 of the tank 2 via the corresponding tube 4a of the core portion 4 or a fan (not shown). After being heat-exchanged with forced air and supercooled to around 45 ° C., it is sent to the evaporator side via the output port 7a of the output connector 7 and functions as a so-called capacitor.
  • the heat exchanger 1 excluding the housing member 20 and the closing member 15 is integrated by brazing.
  • the storage member 20 is inserted into the receiver 5 from the upper opening end 13b, and the closing member 15 is inserted into the upper opening end 13b after the storage member 20 is inserted.
  • the blocking member 15 of the liquid receiver 5 can be satisfactorily joined and the pressure resistance of the liquid receiver 5 can be improved.
  • the closing member 15 was brazed and joined to the upper opening end 13b by high-frequency induction heating with the work coil 32 after the housing member 20 was inserted and arranged. Thereby, in addition to the same effect
  • the liquid receiver 5 is connected to the first divided member 11 having a substantially bottomed cylindrical shape and one side in the longitudinal direction of the first divided member 11 and is contracted to the outer diameter of the upper opening end 13b. It comprised from the substantially cylindrical 2nd division member 12 which has the diameter-reduced diameter part 12c. Thereby, the upper opening end part 13b reduced in diameter to the longitudinal direction one side of the liquid receiver 5 can be easily formed. Further, the amount of processing such as cutting is less than that in the case where the liquid receiver 5 is integrally formed, and the manufacturability is good. Further, the area of the joint portion B of the closing member 15 can be reduced, and as a result, the material cost of the joining material (flux or brazing material) can be reduced.
  • the restricting portion (fixed portion 11c) restricts the relative displacement in the width direction of the heat exchanger 1 in the intermediate members 8 and 9. Thereby, the position shift to the width direction of the heat exchanger 1 in the intermediate members 8 and 9 which becomes a problem especially at the time of brazing joining can be prevented.
  • the restricting portion (fixing portion 11c) has a substantially U-shaped cross section opened to the tank 3 side of the heat exchanger 1 and extends in the longitudinal direction of the first divided member 11, and the restricting portion (fixing portion 11c) After the intermediate members 8 and 9 were slid and guided in 11c), both were positioned and brazed and joined. Thereby, the effect
  • the second divided member 12 was fixedly supported on the tank 3 via the holding member 16 having the same shape as the intermediate members 8 and 9. Thereby, a component kind can be reduced.
  • the housing member was a desiccant 20 (or a fluorescent agent). Thereby, it becomes suitable when using the accommodation member which cannot be accommodated at the time of brazing processing of the whole heat exchanger 1 like a desiccant or a fluorescent agent.
  • An elongate liquid receiver 5 connected to the tank 3 and an accommodating member 20 accommodated in the liquid receiver 5 are provided, and an upper opening end 13b having a reduced diameter on one side in the longitudinal direction of the liquid receiver 5 is provided.
  • Example 2 which concerns on this invention, and its manufacturing method are demonstrated based on attached drawing.
  • the same components as those in the first embodiment are denoted by the same reference numerals, the description thereof will be omitted, and only the differences will be described in detail.
  • FIG. 25 is a diagram for explaining high-frequency induction heating in the heat exchanger of Example 2 and the manufacturing method thereof.
  • the black body paint 50 is applied in advance in the vicinity of the joint portion of the closing member 15 and the surface temperature of the black body paint 50 can be measured.
  • An infrared temperature sensor 51 is provided. Further, the temperatures detected by the infrared temperature sensor 51 are sequentially transmitted to the controller 33.
  • the type of the closing member 15 described with reference to FIGS. 21 to 23 of the first embodiment is used.
  • the present invention is not limited to this, and the position and number of the black body paint 50 can be set as appropriate.
  • the controller 33 collates the temperature sequentially transmitted from the infrared temperature sensor 51 with the temperature profile described in FIG. 16 of the first embodiment, and adjusts the heating to the transmitter 31 while performing feedback control so that they match.
  • the command signal is being transmitted.
  • temperature management can be performed according to the temperature rise state of the joint portion of the closing member 15, and good brazing joining can be realized.
  • the high frequency induction heating is always stable by measuring the temperature of the joint because the brazing property changes depending on the outside air temperature and humidity, and slight differences between individual joints of the closing member 15. The brazing property can be obtained and the product quality can be improved.
  • the temperature of the closing member 15 may be measured with a non-contact type radiation thermometer or the like. Further, the black body paint 50 may be provided on the entire surface of the closing member 15, and in this case, other reflected heat does not enter the infrared temperature sensor 51, and the temperature can be detected with high accuracy.
  • the closing member 15 is brazed and joined to the upper opening end 12b by high-frequency induction heating by the work coil 32, and the temperature of the joined portion of the closing member 15 at the time of brazing joining is measured by temperature measuring means (black body paint 50 and Feedback control of the temperature of the high frequency induction heating by the work coil 32 according to the temperature change of the joint measured by the infrared temperature sensor 51) and measured by the temperature measuring means (black body paint 50 and infrared temperature sensor 51). did. Thereby, the brazing joining of the closure member 15 stabilized becomes possible.
  • the temperature measuring means is composed of a black body paint 50 provided in the vicinity of the joint portion of the closing member 15 and an infrared temperature sensor 51 for measuring a temperature change of the black body paint 50. Thereby, the effect
  • Example 3 which concerns on this invention, and its manufacturing method are demonstrated based on attached drawing.
  • the same components as those of the first embodiment are denoted by the same reference numerals, the description thereof is omitted, and only the differences are described in detail.
  • FIG. 26 is a perspective view of a liquid receiver used in the heat exchanger of Example 3.
  • the total length of the first divided member 11 of the liquid receiver 5 is significantly shorter than that of the second divided member 12.
  • a bracket member 60 having a shape in which the first divided member 11 is made short is brazed and joined to the outer periphery of the second divided member 12 at a position corresponding to the holding member 16. Thereby, the holding member 16 can be brazed and joined to the second divided member 12 via the bracket member 60. Further, the bracket member 60 can be easily obtained by setting the length to be cut at the time of manufacturing the first divided member 11 according to the entire length of the bracket member 60.
  • the first divided member 11 is an integrally molded product formed by extruding the base material, and ensures moldability. Thereby, although the fixing
  • the body 13 is reduced in weight and size and the brazing member 15 is further brazed and joined by reducing the thermal mass. it can.
  • the heat exchanger of Example 4 which concerns on this invention, and its manufacturing method are demonstrated based on attached drawing.
  • the main body of the liquid receiver is not divided into the first divided member and the second divided member as in the first embodiment, and a part of the main body is reduced in diameter. Without changing the length of the main body, the conventional problems are solved.
  • FIG. 27 is an exploded perspective view of a liquid receiver used in the heat exchanger of the fourth embodiment.
  • FIG. 28 is a perspective view of the liquid receiver.
  • FIG. 29 is a side sectional view for explaining the upper interior of the liquid receiver.
  • the same components as those of the first embodiment are denoted by the same reference numerals, the description thereof is omitted, and only the differences are described in detail.
  • the liquid receiver 5 includes a substantially cylindrical main body 11 and substantially dish-shaped closing members 14 and 15 that close the open end portions 12 a and 12 b of the main body 11. Yes. In the vicinity of the upper end portion of the main body 11, a cylindrical cylindrical portion 13 is formed.
  • the main body 11 forms a cylindrical cylindrical portion 13 by extruding a base material and then cutting a part of the upper end of the fixed portion 11c.
  • the closing member 14 is formed in a disc-like bottom portion 14a and an annular protrusion standing up from the outer periphery of the bottom portion 14a toward the main body 11, and inserted into the inner periphery of the lower opening end portion 12a of the main body 11.
  • the insertable portion 14b that can be fitted is formed.
  • the closing member 15 is formed in a disk-like bottom portion 15a and an annular protrusion that stands on the main body 11 side from the outer periphery of the bottom portion 15a, and is inserted into the inner periphery of the upper opening end portion 12b of the main body 11 to be fitted.
  • a possible insertion part 15b is formed.
  • the closing members 14 and 15 are press-fitted inside the corresponding upper and lower opening ends 12a and 12b of the main body 11, and the bottoms 14a and 15a are flush with the ends 12a and 12b. It can be fixed in a state.
  • the cylindrical portion 13 protrudes outward in the longitudinal direction by the height dimension L ⁇ b> 1 compared to the tank 3.
  • This dimension L1 is such that the joint B (see FIG. 30) between the closing member 15 and the main body 11 is above the upper end of the tank 3, and a joining work space can be secured when the closing member 15 and the main body 11 are joined.
  • the dimension is set to allow the deformation of the tank 3 due to the heating of the joint B.
  • Other configurations are the same as those in the first embodiment.
  • Example 4 The heat exchanger of Example 4 configured as described above is also assembled in the same manner as Example 1.
  • the cylindrical portion 13 of the liquid receiver 5 protrudes upward from the tank 3 by the height dimension L1, as shown in FIG.
  • the work coil 32 being positioned above the tank 3
  • a predetermined clearance can be easily ensured between the work coil 32 and the main body 11 (joint part of the closing member 15).
  • the heat at the time of high frequency induction heating has an adverse effect on the tank 3, and the tank 3 can be protected. Since other assembly and operation are the same as those in the first embodiment, description thereof is omitted.
  • a long liquid receiver 5 that is disposed adjacent to the tank 3 and is connected to the tank 3, and a storage member 20 that is stored in the liquid receiver 5.
  • the heat exchanger 1 is provided with an upper opening end 12b projecting outward in the longitudinal direction as compared with the tank 3 on one side in the longitudinal direction, and the upper opening end 12b is closed by a closing member 15.
  • the entire heat exchanger 1 excluding the member 20 and the closing member 15 is integrally formed by a brazing process, and the housing member 20 is inserted into the receiver 5 from the upper opening end 12b after the brazing process. Then, the closing member 15 is inserted into the upper opening end after the housing member 20 is inserted and arranged. And brazing the 2b. Further, the closing member 15 was brazed and joined to the upper opening end 12b by high-frequency induction heating with the work coil 32 after the housing member 20 was inserted and arranged. Therefore, in addition to the effects (1), (2), and (9) of the first embodiment, the following effects are obtained. (14) Since it is only necessary to make the main body 11 of the liquid receiver 5 longer than the upper end of the tank 3, the manufacture of the liquid receiver 5 can be simplified.
  • the manufacturing method of the heat exchanger of Example 5 applies the high frequency induction heating similar to Example 2 to the heating of the heat exchanger of Example 4.
  • a black body paint 50 is previously applied in the vicinity of the joint portion of the closing member 15, and an infrared temperature sensor 51 capable of measuring the surface temperature of the black body paint 50 is provided.
  • the temperature detected by the infrared temperature sensor 51 is sequentially transmitted to the controller 33. Note that the position and number of the black body paint 50 can be set as appropriate.
  • the controller 33 collates the temperature sequentially transmitted from the infrared temperature sensor 51 with the temperature profile described in FIG. 16 of the first embodiment, and adjusts the heating to the transmitter 31 while performing feedback control so that they match.
  • the command signal is being transmitted.
  • Example 5 temperature management can be performed according to the temperature rise state of the joint portion of the closing member 15, and good brazing joining can be realized.
  • the high frequency induction heating is always stable by measuring the temperature of the joint because the brazing property changes depending on the outside air temperature and humidity, and slight differences between individual joints of the closing member 15. The brazing property can be obtained and the product quality can be improved.
  • the temperature of the closing member 15 may be measured with a non-contact type radiation thermometer or the like. Further, the black body paint 50 may be provided on the entire surface of the closing member 15, and in this case, other reflected heat does not enter the infrared temperature sensor 51, and the temperature can be detected with high accuracy.
  • the housing member is not limited to the desiccant and the fluorescent agent, and may be various pipes, metal filters, and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Power Engineering (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Details Of Heat-Exchange And Heat-Transfer (AREA)

Abstract

 所定間隔を置いて配置された一対のタンク2,3と、一対のタンク2,3に両端部が連通接続された複数のチューブ4aと、タンク3に沿って隣接して配置されると共に、タンク3に連通接続された長尺な受液器5と、受液器5内に収容された収容部材20と、受液器5の長手方向一方側に開口部を有して縮径された上方開口端部13bと、上方開口端部13bを閉塞する閉塞部材15を備える熱交換器1であって、収容部材20及び閉塞部材15を除いた熱交換器1全体を、ろう付け処理により一体的に形成し、収容部材20を、ろう付け処理後に、上方開口端部13bから受液器5内に挿入配置し、閉塞部材15を、収容部材20の挿入配置後に、上方開口端部13bにろう付け接合した。

Description

熱交換器及びその製造方法
 本発明は、熱交換器及びその製造方法に関する。
 従来の熱交換器としては、受液器内に乾燥剤を挿入して閉塞部材で内部を密閉したものが公知になっている(特許文献1参照)。
特開平8-110125号公報
 しかしながら、従来の熱交換器において、受液器の耐圧性を向上させる場合には、閉塞部材を例えば溶接で受液器の開口端部に接合することになる。
この際、受液器と熱交換器のタンクとが非常に接近しているため、以下に列記するような問題点が生じてしまう。
即ち、閉塞部材の接合を行うための作業スペースが確保できない。
また、閉塞部材の接合時の熱によって熱交換器のタンクが変形する虞がある。
さらに、受液器の熱マスが大きいため、閉塞部材が所望のように昇温せず、接合に時間が掛かる。
 本発明は上記課題を解決するためになされたものであって、その目的とするところは、受液器の閉塞部材を良好に接合して受液器の耐圧性を向上できる熱交換器を提供することである。
 本発明の熱交換器は、 所定間隔を置いて配置された一対のタンクと、前記一対のタンクに両端部が連通接続された複数のチューブと、本体が前記一対のタンクのうちの一方のタンクに沿って隣接配置され、この一方のタンクに連通接続されると共に、前記本体の長手方向一方側に設けた開口端部を有する受液器と、前記開口端部から挿入可能な形状に形成されて前記受液器内に収容された収容部材と、前記開口端部に固着されて該開口端部を閉塞する閉塞部材と、を備え、前記開口端部を、この外径が前記本体の長手方向他方側の外径よりも小さくした縮径部で形成するか、前記一方のタンクに比べて前記長手方向外側へ突出させたことを特徴とする。
 本発明の熱交換器の製造方法では、所定間隔を置いて配置された一対のタンクと、前記一対のタンクに両端部が連通接続された複数のチューブと、本体が前記一対のタンクのうちの一方のタンクに沿って隣接配置され、この一方のタンクに連通接続されると共に、前記本体の長手方向一方側に設けた開口端部を有する受液器と、前記開口端部から挿入可能な形状に形成されて前記受液器内に収容された収容部材と、前記開口端部に固着されて該開口端部を閉塞する閉塞部材と、を備えた熱交換器の製造方法であって、外径を前記本体の長手他方向側の外径よりも小さく形成した前記開口端部と前記一方のタンクに比べて前記長手方向外側へ突出させた前記開口端部とのうちの一方を設けた前記受液器を用意する行程と、前記熱交換器を構成する前記タンク、前記複数のチューブ、前記収容部材、前記閉塞部材を用意する行程と、前記収容部材及び閉塞部材を除いた熱交換器全体をろう付け処理して一体的に形成する工程と、前記ろう付け処理後に、前記収容部材を前記開口端部から受液器内に挿入配置する工程と、
 前記収容部材の挿入配置後に、前記閉塞部材を前記開口端部に溶接又はろう付けのうちの一方で接合する工程と、を備えることを特徴とする。
 本発明の熱交換器及びその製造方法では、収容体を挿入する受液器の長手方向一方側の開口端部の外径が長手方向他方側の本体の外径より縮径するか、一方のタンクに比べて長手方向外側へ突出させた開口端部を備えている。
そして、収容部材及び閉塞部材を除いた熱交換器全体を、ろう付け処理等により一体的に形成し、収容部材を、ろう付け処理等後に、開口端部から受液器内に挿入配置し、閉塞部材を、収容部材の挿入配置後に、開口端部に溶接又はろう付け接合することができる構造、製造方法となっている。
 この結果、本発明の熱交換器及びその製造方法は、閉塞部材の接合作業スペースの確保、接合時のタンクへの熱害防止、接合材料の低減と接合作業の効率化、受液器の熱マスによるろう付け性の向上等を同時に図ることができ、受液器の閉塞部材を良好に接合して耐圧性を向上できる。
本発明に係る実施例1の熱交換器を示す正面図である。 実施例1の熱交換器のタンクの分解斜視図である。 図2のタンクの斜視図である。 図2のタンクの分解斜視図である。 図2のタンクの斜視図である。 実施例1の熱交換器で用いる受液器の分解斜視図である。 図6の受液器の斜視図である。 実施例1の熱交換器で用いる中間部材と受液器の分解斜視図である。 図6の受液器の下方内部を説明する側断面図である。 図9のS10-S10線における断面図である。 図6の受液器の上方内部を説明する側断面図である。 実施例1の熱交換器で用いる金属製フィルタの分解図である。 実施例1の熱交換器で用いるブラケット部材の上面図である。 実施例1の熱交換器における高周波誘導加熱を説明する閉塞部材周辺の上面図(一部省略)である。 図14のS15-S15線における断面図である。 実施例1の熱交換器における温度のプロフィルを説明する図である。 図11に示した閉塞部材のその他の接合例を説明する図である。 閉塞部材のその他の接合例を説明する図である。 閉塞部材のその他の接合例を説明する図である。 閉塞部材のその他の接合例を説明する図である。 閉塞部材のその他の接合例を説明する図である。 図21のS22-S22線における断面図であり、閉塞部材のその他の接合例を説明する図である。 図21のS23-S23線における断面図であり、閉塞部材のその他の接合例を説明する図である。 閉塞部材のその他の接合例を説明する図である。 本発明に係る実施例2の熱交換器の製造方法における高周波誘導加熱処理を説明する図である。 本発明に係る実施例3の熱交換器で用いる受液器の斜視図である。 本発明に係る実施例4の熱交換器で用いる受液器の分解斜視図である。 図27の受液器の分解斜視図である。 図28の受液器の上方内部を説明する側断面図である。 図28の受液器の上方内部を説明する側断面図である。 本発明に係る実施例5の熱交換器の製造方法における高周波誘導加熱処理を説明する図である。
D1 ディバイドプレート
R1、R2、R3、R4、R5、R6、P1、P2、P3 室
1 熱交換器
2、3 タンク
4 コア部
4a チューブ
4b フィン
4c レインフォース
5 受液器
6 入力コネクタ
6a 入力ポート
7 出力コネクタ
7a 出力ポート
8、9 中間部材
8a、9a 連通孔
8b、9b、16b 挿入部
8c、9c、16c 座部
8d、9d、16d 当接面
8e、9e 中途部
10a チューブプレート
10b タンクプレート
10c レインフォース孔
10d チューブ孔
10e ビード部
10f 係止部
10g 凸部
10i、10j、11d、11e 連通孔
11 第1分割部材
11a 側壁
11b 底部
11c 固定部(規制部)
11f 加締め部
12 第2分割部材
12a 挿入部
12b ビード部
12c 縮径部
13 本体
14、15 閉塞部材
14a、15a 底部
14b、15b 挿入部
16 保持部材
17 金属製フィルタ
17a フィルタ本体部
17b フランジ部
17c 金属製リング
19、60 ブラケット部材
19a 貫通孔
20 乾燥剤
31 発信器
32 ワークコイル
33 コントローラ
40 ろう材
41 切欠段部
42 爪部
43 拡開部
50 黒体塗料
51 赤外線温度センサ
 以下、この発明の実施例を説明する。
 以下、本発明に係る実施例1の熱交換器およびその製造方法を添付の図面に基づいて説明する。
図1は実施例1の熱交換器を示す正面図、図2は実施例1の熱交換器に用いるタンクの分解斜視図、図3は同斜視図、図4は図2,図3のタンクの分解斜視図、図5は同斜視図である。
図6は実施例1の熱交換器に用いる受液器の分解斜視図、図7は同斜視図、図8は実施例1の中間部材と受液器の分解斜視図、図9は図6,図7の受液器の下方内部を説明する側断面図、図10は図9のS10-S10線における断面図である。
図11は図6,図7の受液器の上方内部を説明する側断面図、図12は実施例1の熱交換器に用いる金属製フィルタの分解図、図13は実施例1の熱交換器に用いるブラケット部材の上面図である。
 図14は実施例1の熱交換器における高周波誘導加熱を説明する閉塞部材周辺の上面図(一部省略)、図15は図14のS15-S15線における断面図、図16は実施例1の熱交換器における温度のプロフィルを説明する図である。
図17~21は閉塞部材のその他の接合例を説明する図、図22は図21のS22-S22線における断面図であり、閉塞部材のその他の接合例を説明する図、図23は図21のS23-S23線における断面図であり、閉塞部材のその他の接合例を説明する図、図24は閉塞部材のその他の接合例を説明する図である。
 先ず、実施例1の熱交換器の全体構成を説明する。
図1に示すように、実施例1の熱交換器1は、左右に所定間隔を置いて配置された一対のタンク2,3と、これら一対のタンク2,3の間に配置されたコア部4と、タンク3に沿って隣接して配置された長尺な受液器5等を備えている。
タンク2は、4枚の板状のディバイドプレートD1で3つの室R1,R3,R6に区分けする他、室R1に連通した入力ポート6aを備える入力コネクタ6を設ける一方、室R6に連通した出力ポート7aを備える出力コネクタ7を設けている。
タンク3は、4枚のディバイドプレートD1で3つの室R2,R4,R5に区分けする他、中間部材8,9を介して室R4,R5に連通した受液器5を設けている。
 図2に示すように、タンク2は、略コ字状断面を有する半筒状のチューブプレート10aと、チューブプレート10aに最中状に重ねられる略コ字状断面を有する半筒状のタンクプレート10bと、両プレート10a,10bの内側に介装される前述の各ディバイドプレートD1から構成している。
チューブプレート10aには、後述するレインフォース4cの端部が挿通し固定されるレインフォース孔10cと、後述するチューブ4aの端部が挿通し固定されるチューブ孔10dとを、それぞれバーリング加工により内側へ環状突起状に形成している。
また、チューブプレート10aにおけるディバイドプレートD1を介装する位置には、該ディバイドプレートD1のコア部4側を挟持した状態で固定する一対のビード部10e,10eが内側に向かって突設している。
さらに、チューブプレート10aにおける略コ字状断面の対向する側壁には、タンクプレート10bの外周一部に加締め固定可能な一対の爪状の係止部10f,10fが該チューブプレート10aの長手方向に沿って複数形成している。
なお、係止部10f,10fの形状、形成数、形成位置等については適宜設定できる。
 一方、タンクプレート10bにおけるディバイドプレートD1が介装される位置には、該ディバイドプレートD1に形成された凸部10gを挿入し固定する固定孔10hを形成している。
また、タンクプレート10bにおける各コネクタ6,7が固定される位置にはそれぞれ円形状の連通孔10i,10jを形成している。
 そして、図3に示すように、各ディバイドプレートD1を所定位置に介装して両プレート10a,10bを最中状に重ねた後、各係止部10f,10fをタンクプレート10bに加締め固定することにより、タンク2を仮組み可能に構成している。
また、各コネクタ6,7は、両プレート10a,10bを重ねる前に予めタンクプレート10bのそれぞれ対応する連通孔10i,10jをバーリング加工して外側に向けて環状突起状に形成した環状突起部によって加締め固定することにより、タンクプレート10bに当接した状態で仮組み可能に構成している。
 図4、5に示すように、タンク3は、タンク2と同様に各ディバイドプレートD1を所定位置に介装した状態で両プレート10a,10bを最中状に重ねた後、各係止部10f,10fをタンクプレート10bに加締め固定することにより仮組み可能に構成している。
また、タンクプレート10bにおける中間部材8,9が固定される位置にはそれぞれ円形状の連通孔10k,10mを形成している。
また、後述する保持部材16が固定される位置には、連通孔10nを形成している(図11参照)。
 コア部4は、タンク2,3のチューブ孔10dに両端部が挿通し固定された複数の偏平管状のチューブ4aと、隣接するチューブ4aに波状の頂部が接合された波板状のフィン4bとから構成している。
また、コア部4の積層方向両側は、タンク2,3のレインフォース孔10cに両端部が挿通し固定された一対のレインフォース4c,4cで連結補強している。
 図6、7に示すように、受液器5は、互いに連結される略円筒状の第1分割部材11と略円筒状の第2分割部材12で構成される本体13と、この本体13の開口両端部を閉塞する略皿状の閉塞部材14,15とを備えている。
第1分割部材11の外周部には、第1分割部材11の軸心に沿って延び互いに対向する一対の側壁11a,11aと、この両側壁11a,11a間でこれらと直交する平坦な底部11bを有して、中間部材8,9側に開口した略コ字状断面の固定部11cを、第1分割部材11の全長に亘って形成している。
また、底部11bにおける中間部材8,9が固定される位置には、それぞれ円形状の連通孔11d,11eを形成している。
なお、少なくとも第1分割部材11は、母材を押し出し成形加工して形成した一体成形品になっている。
 一方、第2分割部材12は、第1分割部材11の上端部の内周と同一の外径を有する挿入部12aと、この挿入部12aから外側へ膨出形成した環状のビード部12bを介して所定の外径まで縮径した縮径部12cを備えている。
 閉塞部材14は、円盤状の底部14aと、この底部14aの外周から本体13側に起立した環状突起状に形成し、且つ、本体13(第1分割部材11)の下方開口端部13aの内周に挿入して嵌合可能な挿入部14bを形成する。
 閉塞部材15は、円盤状の底部15aと、この底部15aの外周から本体13側に起立した環状突起状に形成し、且つ、本体13(第2分割部材12)の上方開口端部13bの内周に挿入して嵌合可能な挿入部15bを形成する。
 そして、図7に示すように、第2分割部材12の挿入部12aを第1分割部材11の上端部の内周に挿入して、ビード部12bを第1分割部材11の上端部に当接させることにより、両分割部材11,12を連結して固定できるようにしている。
また、両閉塞部材14,15を本体13のそれぞれ対応する上下開口端部13a,13bの内側に圧入して、底部14a,15aを該端部13a,13bと面一状態にして固定できるようにしている。
 従って、受液器5の本体13は、第2分割部材12の縮径部12cが縮径していることから、本体13の上方開口端部13bが縮径している。
 図8~図10に示すように、中間部材8,9は、タンク3の連通孔10k,10mと受液器5のそれぞれ対応する連通孔11d,11eを連通接続し、且つ、受液器5をタンク3に固定支持するためのものである。中間部材8(9)には、図8に示すように、円形の開口断面を有して貫通形成した連通孔8a(9a)と、この連通孔8a(9a)を延設するようにタンク3側に突設した筒状の挿入部8b(9b)と、受液器5側に設けた略矩形状の座部8c(9c)とを形成している。
また、中間部材8(9)の挿入部8b(9b)と座部8c(9c)との間には、タンク3のタンクプレート10bの外周形状に合致する当接面8d(9d)を有する中途部8e(9e)とを、形成している。
なお、固定部11cの連通孔11d(11e)の開口径は、連通孔8a(9a)の開口径よりも幾分大きく設定している。
 そして、図9に示すように、中間部材8(9)は、挿入部8b(9b)をタンク3の連通孔10k(10m)に挿通して当接面8d(9d)をタンク3のタンクプレート10bに当接し、且つ、座部8c(9c)を固定部11cの底部11bに当接した状態で固定している。
これにより、中間部材8,9(連通孔8a,9a)を介してタンク3(連通孔10k,10m)と受液器5(連通孔11d,11e)とを連通接続している。
 また、図10に示すように、各中間部材8(9)の中途部8e(9e)及び座部8c(9c)は、該両側壁11a,11aを内側に加締めて形成された一対の加締め部11fによって加締め固定している。
なお、加締め部11fの形状、形成数、形成位置等は適宜設定できる他、加締め以外の位置決め構造を採用しても良い。
 また、図11に示すように、第1分割部材11の中途部付近には中間部材8(9)と同一形状の保持部材16を設けている。
この保持部材16は、中間部材8,9と同様に、挿入部16bをタンク3の連通孔10nに挿通して当接面16dをタンク3のタンクプレート10bに当接し、且つ、座部16cを固定部11cの底部11bに当接した状態で固定している。
また、図示を省略するが、保持部材16も中間部材8,9と同様に、一対の加締め部11fによって加締め固定する。
これにより、受液器5は、中間部材8,9と保持部材16によってタンク3に安定した状態で固定支持する。
 図9に示すように、第1分割部材11内における連通孔11dと連通孔11eとの間には金属製フィルタ17を設けている。この金属製フィルタ17は、図12に示すように、フィルタ本体部17aと、フランジ部17bと、金属製リング17cから構成する。
フィルタ本体部17aは、網状の小さな孔を有して下方に開口した有底円筒状に形成する。
フランジ部17bは、下方に行くに連れて拡径した円筒状に形成する他、その上端部の内径はフィルタ本体部17aの下端部の内径よりも僅かに小さく形成する。
金属製リング17cは円筒状に形成する他、その内径はフィルタ本体部17aの下端部の外径よりも僅かに大きく形成する。
これにより、フィルタ本体部17aの下端部の内側にフランジ部17bの上端部を重ねる一方、外側に金属製リング17cを重ねた状態として、金属製リング17cを内側に加締めることにより、これら三者を固定している。
 そして、図9に示すように、金属製フィルタ17は、本体11内における連通孔11dと連通孔11eとの間に圧入固定する。
従って、受液器5内には、中間部材8の連通孔8aを介してタンク3の室R4に連通した室P1を形成している。
また、金属製フィルタ17のフィルタ本体部17aを介して室P1に連通し、且つ、中間部材9の連通孔9aを介してタンク3の室R5に連通した室P2を形成している。
 一方、図11に示すように、第1分割部材11の上端部付近には、複数の貫通孔19a(図13をも参照)を有するブラケット部材19を設ける。
これにより、本体13内の上方には、貫通孔19aを介して室P1に連通した室P3を形成すると共に、ここに収容部材20を収容する。
実施例1の熱交換器1における収容部材20は、乾燥剤であり、通気性のある布袋内に乾燥剤が細粒子状態で入れられているが、この限りではなく、大粒状の乾燥剤を直接入れる場合もあり得る。
また、乾燥剤の代わりに蛍光剤を入れる場合もある。
 その他、実施例1の熱交換器1の各構成部材は、収容部材20を除いて全てアルミ製、またはアルミやステンレス等を主要材料とする合金製となっている。
また、各構成部材の当接した接合部同士のうちのすくなくとも一方にはブレージングシートから構成し、又は予めフラックスを塗布や貼付したろう材を成形する。
 次に、実施例1の熱交換器およびその製造方法の作用を説明する。
[熱交換器の製造について]
このような熱交換器1を製造するには、先ず、熱交換器1全体を仮組みする。
この際、受液器5をタンク3に仮組みするには、先ず、両分割部材11,12を連結して本体13を仮組みした後、図9、図11に示すようにその内部に金属製フィルタ17及びブラケット部材19を挿入して配置する。
 続いて、閉塞部材14を下方から本体13の下方開口端部13aに圧入固定する。
 次に、図9,図11に示すように中間部材8,9及び保持部材16を固定部11cの内側に挿入配置した後、両側壁11a,11aを加締めて加締め部11f,11f(図10参照)を形成する。
この際、両側壁11a,11aが中間部材8,9の座部8c,9cの側面に当接して該中間部材8,9を案内することにより、中間部材8,9の前後方向(コア部4の幅方向)の位置決めを正確に行うことができる。
また、中間部材8,9の座部8c,9cと中途部8e,9eがそれぞれ対応する加締め部11f,11fで加締められることにより、中間部材8,9の座部8c,9cを両側壁11a,11aと底部11bに密着させた状態で保持できる。
 これにより、中間部材8,9と固定部11cとの相対位置決めを行うことができ、連通孔8a,9aと連通孔11d,11eとを相対位置決めした状態で中間部材8,9を固定部11cに仮固定できる。
さらに、連通孔11d(11e)の開口径は連通孔8a(9a)の開口径よりも幾分大きく設定されているため、これら両者の上下方向における相対位置ずれは多少許容できる。
同様に、保持部材16においても、中間部材8,9と同様に、固定部11cとの相対位置決めをした状態で仮固定できる。
 次に、受液器5と共に中間部材8,9の挿入部8b,9b及び保持部材16の挿入部16bをタンク3のそれぞれ対応する連通孔10k,10m,10nに挿通し固定して、受液器5をタンク3に仮組みする。
これにより、閉塞部材15及び収容部材20を除く熱交換器1の全ての構成部材の仮組みが終了する。
 次に、このように仮組みされた熱交換器1を加熱炉内で熱処理することにより各構成部材の接合部同士をろう付け接合して一体的に形成する。
 この熱交換器1のろう付け処理は、通常、コア部4を水平にした状態で行われる。
この結果、受液器5の自重が中間部材8,9に鉛直方向に掛かるため、これら両者の相対位置ずれは特にコア部4の幅方向に大きく相対位置ずれする可能性が高い。
なお、中間部材8,9と受液器5とが相対位置ずれすると、連通孔8a(9a)と連通孔11d(11e)が位置ずれして流通媒体の圧力損失が増大してしまうといった問題が生じる。
そこで、連通孔11d(11e)の開口径を連通孔8a(9a)の開口径よりも幾分大きく設定してこれら両者の位置ずれを許容するようにしているが、連通孔11d(11e)の開口径をあまり大きく設定すると、中間部材8(9)と受液器5との接合面積を確保できず、中間部材8,9の大型化やろう付け不良を招いてしまうといった問題が生じる。
 このような問題に対し、実施例1の熱交換器1では、固定部11cの両側壁11a,11aを中間部材8,9の座部8c,9cの側面に当接させ、さらに、加締め部11f,11fによって座部8c,9cを加締め固定している。
これにより、ろう付け処理中に中間部材8,9が位置ずれする虞がなく、これらを良好に位置決めした状態でろう付け接合できる。
加えて、位置決めした状態はろう付け処理後も維持されるため、接合耐久性を向上でき、ひいては熱交換器1の耐久性を向上できる。
 なお、第1分割部材11の上端部と第2分割部材12のビード部12bとの間には、フラックス入りリングロー(フラックスコワードワイヤー)部材を設けて接合すると、これら両者の良好な接合を得ることができる。
 次に、図11に示すように、受液器5の本体13の上方開口端部13bから収容部材20を室P3内に挿入配置する。
 次に、本体13の上方開口端部13bに閉塞部材15を圧入固定した後、閉塞部材15の挿入部15bの外周と本体13の上方開口端部13bの内周との当接部位(以下は閉塞部材15の接合部Bと称し、図15の太線で図示)を高周波誘導加熱にてろう付け接合する。
 なお、高周波誘導加熱は、公知の特開平7-9119号公報または特開平6-295782号公報等に記載の技術と同様であるため、その詳細は簡略して説明する。
即ち、高周波誘導加熱は、高周波電流の流れるワークコイルの中に置かれた導電体(通電性を持つ材料)が、電磁誘導作用によって導電体に生じる渦電流損による発熱と、ヒステリシス損によって導電体に生じる発熱(磁性材料の各分子が交流磁束によって振動、摩擦するため発生する熱量)により急速に加熱される現象を利用するものである。
 図14、図15に示すように、実施例1では、閉塞部材15の外面に、図示しないろう材(ブレージングシート)が設けられている。
また、発信器31と電気的に接続されたループ状のワークコイル32が閉塞部材15の接合部Bの周囲を囲むように配置されている。
なお、ワークコイル32は多重巻ではなくΩ状の1巻のタイプの場合もある。
また、発信器31はコントローラ33に電気的に接続されている。
コントローラ33には、発信器31の制御方法が書き換え可能なメモリにプログラムとして記憶されており、このプログラムを実行して発信器31に指令信号を送信して高周波電流を出力させることにより、接合部Bの加熱調整を制御するようになっている。
 なお、コントローラ33には、図16に示すような、加熱開始から時間と閉塞部材15の接合部Bの目標温度との関係に関するデータが予め記憶されており、この目標温度に合わせて発信器31に指令信号を送信する。
これにより、閉塞部材15の接合部Bの昇温を制御して安定したろう付け接合を実現できる。
 そして、コントローラ33による指令信号によって発信器31からワークコイル32に高周波電流が流れると、ワークコイル32の内側に配置された閉塞部材15の接合部Bが加熱し、この結果、この接合部のろう材を溶融させて、閉塞部材15を第2分割部材へ良好にろう付け接合することができる。
なお、この際、閉塞部材15の底部15aの外面と挿入部15bの外面とは緩やかな曲面で接続されているため、閉塞部材15において、接合部Bから比較的離れた部位のろう材の一部を毛細管現象によって、挿入部15bの外周と本体13の上方開口端部13bの内周との間、即ち、接合部Bに確実に進入させて補充することができる。
 ここで、従来の発明において、閉塞部材15を受液器5に対して、例えば溶接で接合する場合には、受液器5と熱交換器1のタンク3とが非常に接近しているため、溶接作業性が悪い上、溶接時の熱がタンク3に悪影響を及ぼす虞があった。
また、ワークコイル32による高周波誘導加熱を用いてろう付け接合する場合には、ワークコイル32と本体(正確には閉塞部材の接合部B)との間に所定隙間を確保できず、ろう付け不良を招く虞がある。
なお、高周波誘導加熱においても、この所定隙間は重要設定項目である。
あるいは、ワークコイル32と本体との間に所定の距離を確保できた場合であっても、ワークコイルとタンク3とが非常に接近してしまうため、高周波誘導加熱時の熱がタンク3の接合部のろう材を溶融してしまう虞がある。
 これに対し、実施例1の熱交換器では、前述したように、第2分割部材12の縮径部12cにより受液器5の上端部側が縮径しているため、閉塞部材15の接合部B付近における本体13(縮径部12c)とタンク3との間に十分な隙間Hを確保できる。
これにより、ワークコイル32と本体13(閉塞部材15の接合部)との間に所定隙間を確保し、充分な接合作業のためのスペースを確保できる。
加えて、ワークコイル32とタンク3とが過度に接近しないため、高周波誘導加熱時の熱がタンク3に悪影響を及ぼす虞がなく、タンク3を保護できる。
 また、第2分割部材12の縮径部12cが縮径していることで、本体13の熱マスを小さくでき、閉塞部材15の接合部のスムーズな昇温を実現できる。
加えて、閉塞部材15の接合部の接合面積を小さくでき、ろう材の使用量を少なくして材料コストを低く抑えることができる上、接合に掛かる時間を短縮できる。
さらに、閉塞部材15の接合部の接合面積を小さくしたことで、密閉度(耐圧性)を更に高くできる。
 また、コントローラ33による発信器31の制御により、閉塞部材15の接合部の昇温を制御でき、安定したろう付け接合を実現できる。
 このように、実施例1の熱交換器1では、閉塞部材15を本体13の上方開口端部13bに良好にろう付け接合でき、シール部材と螺子溝を用いた閉塞部材の密閉構造に比べて、非常に高い耐圧性を実現できる。
なお、実施例1の熱交換器では、閉塞部材15を本体13の上端部にワークコイル32による高周波誘導加熱にてろう付け接合したが、溶接で固定するようにしても良い。
この場合も同様の作用・効果を得ることができる。
 [閉塞部材の接合部位について]
次に、図17~24に基づいて、閉塞部材15の接合部Bの形態について説明する。
なお、図17~24において、ろう材40は毛細管現象により閉塞部材15の接合部Bに進入して、ろう付け接合されるが、その図示・説明は省略する。
 図17に示すように、閉塞部材15の接合部Bの上部付近に粉状のろう材40を設け、ここにフラックスを塗布して、ろう付け接合しても良いし、或いは、図18に示すように、フラックス入りリングロー(フラックスコワードワイヤー)部材を設けた後、ろう付け接合するようにしても良い。
 あるいは、図19(a)に示すように、本体13の上方開口端部13bの内周に環状の切欠段部41を形成して、図19(b)に示すように、この切欠段部41に閉塞部材15の挿入部15bを係止させることにより、閉塞部材15を本体13内に圧入する際の挿入代を容易に決定できるようにしても良い。
 あるいは、図20(a)に示すように、本体13の上方開口端部13bの内周に環状の切欠段部41を形成して、図20(b)に示すように、切欠段部41に円盤状の閉塞部材15を係止させても良い。
これにより、本体13内に圧入する際の挿入代を容易に決定できる上、閉塞部材15の軽量・小型化、室P3の拡大化(収容部材20の拡大化)、熱マスの低減等を図ることができる。
この場合、ろう材40は閉塞部材15の外面に設ける。
 あるいは、図21~23に示すように、閉塞部材15の挿入部15bを本体13側に湾曲して凹設した形状に形成すると共に、その外周部の複数箇所に本体13の上端部に係止する爪部42を設けるようにしても良い。
そして、この爪部43を避けた本体13の上方開口端部13bにろう材40を設けて、同様にろう付け接合する。
 あるいは、図24(a)に示すように、閉塞部材15の挿入部15bを本体13側に湾曲して凹設した形状に形成すると共に、本体13の開口端部13bをフレア加工して外側に拡開した拡開部43を形成するようにしても良い。
そして、拡径部43の内側にろう材40を設けて、図24(b)に示すように、前記のケースと同様にろう付け接合しても良い。
この場合、拡径部43の傾斜面によって、ろう材40を閉塞部材15の接合部に向かって積極的に導くことができる。
 [受液器の耐圧性について]
実施例1の熱交換器1の受液器5は、閉塞部材15がろう付け接合されているため、従来の熱交換器に比べて大幅に耐圧性を向上できる。
また、閉塞部材15の接合部の接合面積を小さくしたことで、密閉度(耐圧性)を更に高くでき、製品信頼性を向上できる。
さらに、高圧なCOを流通媒体とする車室内空調用冷却回路への対応が可能となる。
 [受液器内の設計自由度について]
実施例1の熱交換器1では、受液器5(第1分割部材11)の外周部に固定部11cを形成し、この固定部11cに中間部材8,9における受液器5との接続部となる座部8c,9cを固定して連通接続している。
これにより、中間部材8,9における受液器5との接続部Bとなる座部8c,9cが受液器5の収容部材に接近・接触する虞がなく、受液器5内の設計自由度を拡大できる。
従って、実施例1の熱交換器1では、金属製フィルタ17のサイズや配置等の設計自由度を拡大できる。
 [熱交換器の作動について]
このように構成された熱交換器1では、入力コネクタ6の入力ポート6aを介してコンプレッサ側からタンク2の室R1に流入した60℃前後の高温な流通媒体が、先ず、コア部4のそれぞれ対応するチューブ4aを介してタンク3の室R2、タンク2の室R3、タンク3の室R4の順番にターンしながら流通する間にコア部4を通過する車両走行風または図示しないファンの強制風と熱交換されて冷却される。
 次に、図9に示すように、タンク3の室R4に流入した流通媒体(破線矢印で図示)は、中間部材8の連通孔8aを介して受液器5の室P1に流入して気液分離した後、金属製フィルタ17を介して室P2に流入する。
この際、金属製フィルタ17のフィルタ本体部17aでもって流通媒体に含まれる異物を除去できる。
また、収容部材20を乾燥剤とした場合には、受液器5内の水分を吸収して気液分離性能を向上できる。
あるいは、収容部材20を蛍光剤とした場合には、受液器5内の密封性が何らかの原因により損なわれた際における流通媒体の漏れを容易に検出できる。
 次に、室P2の流通媒体は、中間部材9の連通孔9aを介してタンク3の室R5に流入する。
 最後に、タンク3の室R5に流入した流通媒体は、コア部4の対応するチューブ4aを介してタンク2の室R6に流入する間にコア部4を通過する車両走行風または図示しないファンの強制風と熱交換されて45℃前後まで過冷却された後、出力コネクタ7の出力ポート7aを介してエバポレータ側へ送出され、所謂コンデンサとして機能する。
 次に、この実施例1の熱交換器1およびその製造方法の効果を下記に列記する。
(1)所定間隔を置いて配置された一対のタンク2,3と、一対のタンク2,3に両端部が連通接続された複数のチューブ4aと、タンク3に沿って隣接して配置されると共に、タンク3に連通接続された長尺な受液器5と、受液器5内に収容された収容部材20を備え、受液器5の長手方向一方側に縮径した上方開口端部13bを設け、上方開口端部13bを閉塞部材15で閉塞するようにした熱交換器1であって、収容部材20及び閉塞部材15を除いた熱交換器1全体を、ろう付け処理により一体的に形成し、収容部材20を、ろう付け処理後に、上方開口端部13bから受液器5内に挿入配置し、閉塞部材15を、収容部材20の挿入配置後に、上方開口端部13bにろう付け接合した。
これにより、受液器5の閉塞部材15を良好に接合して受液器5の耐圧性を向上できる。
 (2)閉塞部材15を、収容部材20の挿入配置後に、ワークコイル32による高周波誘導加熱にて上方開口端部13bにろう付け接合した。
これにより、(1)と同様の作用・効果に加えて、簡便な方法でもって閉塞部材15を開口端部にろう付け接合できる。
加えて、ワークコイル32と本体13との所定距離を充分に確保できる。
 (3)受液器5を、略有底円筒状の第1分割部材11と、この第1分割部材11の長手方向一方側に連通接続され、且つ、上方開口端部13bの外径まで縮径された縮径部12cを有する略円筒状の第2分割部材12とから構成した。
 これにより、受液器5の長手方向一方側に縮径した上方開口端部13bを容易に形成できる。
また、受液器5を一体成形した場合に比べて切削等の加工量が少なくて済み、製造性が良い。また、閉塞部材15の接合部Bの面積を減少でき、この結果、接合材料(フラックスやろう材)の材料コストを削減できる。
 (4)タンク3と第1分割部材11を、中間部材8,9を介して連通接続し、第1分割部材11の外周部に、中間部材8,9との相対位置ずれを防止可能な規制部(固定部11c)を一体形成した。
これにより、中間部材8,9と受液器5を精度良く固定できる。
 (5)規制部(固定部11c)は、中間部材8,9における熱交換器1の幅方向への相対位置ずれを規制することとした。
これにより、ろう付け接合時において、特に問題となる中間部材8,9における熱交換器1の幅方向への位置ずれを防止できる。
 (6)規制部を(固定部11c)、熱交換器1のタンク3側に開口した略コ字状断面を有して第1分割部材11の長手方向に延設し、規制部(固定部11c)に中間部材8,9を摺動させて案内させた後、これら両者を位置決めしてろう付け接合した。
これにより、(5)と同様の作用・効果を得ることができる。
 (7)規制部(固定部11c)のコ字状断面の対向する両側壁11a,11aを中間部材8,9に加締め固定した。
これにより、中間部材8,9を安定した状態で位置決めできる。
 (8)第2分割部材12を、中間部材8,9と同一形状の保持部材16を介してタンク3に固定支持した。
これにより、部品種類を減らすことができる。
 (9)収容部材を乾燥剤20(または蛍光剤)とした。
これにより、乾燥剤または蛍光剤等のように、熱交換器1全体のろう付け処理時に収容不可能な収容部材を配設する場合に用いて好適となる。
 (10)所定間隔を置いて配置された一対のタンク2,3と、一対のタンク2,3に両端部が連通接続された複数のチューブ4aと、タンク3に沿って隣接して配置され、タンク3に連通接続された長尺な受液器5と、受液器5内に収容された収容部材20を備え、受液器5の長手方向一方側に縮径した上方開口端部13bを設け、上方開口端部13bを閉塞部材15で閉塞するようにした熱交換器1の製造方法であって、収容部材20及び閉塞部材15を除いた熱交換器1全体をろう付け処理して一体的に形成する工程と、ろう付け処理後に、収容部材20を上方開口端部13bから受液器5内に挿入配置する工程と、収容部材20の挿入配置後に、閉塞部材15を上方開口端部13bにろう付け接合する工程を備えることとした。
これにより、(1)と同様の作用・効果を得ることができる。
 以下、本発明に係る実施例2の熱交換器およびその製造方法を添付の図面に基づき説明する。
実施例2において、実施例1と同様の構成部材については同じ符号を付してその説明は省略し、相違点のみ詳述する。
 図25は実施例2の熱交換器およびその製造方法における高周波誘導加熱を説明する図である。
図25に示すように、実施例2の熱交換器およびその製造方法では、閉塞部材15の接合部位近傍に予め黒体塗料50を塗布しておき、この黒体塗料50の表面温度を測定可能な赤外線温度センサ51を備えている。
また、赤外線温度センサ51で検出された温度はコントローラ33に順次送信されている。
なお、実施例2では、閉塞部材15を実施例1の図21~23で説明したタイプを採用しているが、この限りではなく、黒体塗料50を設ける位置や数も適宜設定できる。
 そして、コントローラ33は、赤外線温度センサ51から順次送信される温度と実施例1の図16で説明した温度のプロフィルを照合し、これらが一致するように、フィードバック制御しながら発信器31に加熱調整の指令信号を送信している。
 従って、実施例2の熱交換器およびその製造方法では、閉塞部材15の接合部の昇温状況に応じて温度管理を行うことができ、良好なろう付け接合を実現できる。
即ち、高周波誘導加熱は、外気温度や湿度、閉塞部材15の接合部の個体別の僅かな相違によっても、ろう付け性が変化してしまうため、接合部の温度を測定することによって、常に安定したろう付け性を得ることができ、製品品質を向上できる。
 なお、非接触型の放射温度計等で閉塞部材15の温度を測定しても良い。
また、黒体塗料50を閉塞部材15の全面に設けても良く、この場合、赤外線温度センサ51に他の反射熱が進入せず、高精度に温度を検出できる。
 次に、この実施例2の熱交換器およびその製造方法は、実施例1の効果に加え下記に列記する効果を有する。
(11)閉塞部材15を、ワークコイル32による高周波誘導加熱にて上方開口端部12bにろう付け接合し、ろう付け接合時に閉塞部材15の接合部の温度を温度測定手段(黒体塗料50及び赤外線温度センサ51)で測定し、温度測定手段(黒体塗料50及び赤外線温度センサ51)で測定された接合部の温度変化に応じてワークコイル32による高周波誘導加熱の温度をフィードバック制御することとした。
これにより、安定した閉塞部材15のろう付け接合が可能となる。
 (12)温度測定手段は、閉塞部材15の接合部の近傍に設けられた黒体塗料50と、この黒体塗料50の温度変化を測定する赤外線温度センサ51で構成した。
これにより、(11)と同様の作用・効果を得ることができる。
 以下、本発明に係る実施例3の熱交換器およびその製造方法を、添付の図面に基づき説明する。
実施例3の熱交換器およびその製造方法において、実施例1のものと同様の構成部材については同じ符号を付してその説明は省略し、相違点のみ詳述する。
 図26は実施例3の熱交換器で用いる受液器の斜視図である。
 図26に示すように、実施例3の熱交換器では、受液器5の第1分割部材11の全長を第2分割部材12に比べて大幅に短く形成している。
 また、保持部材16と対応する位置には、第1分割部材11を短長にした形状のブラケット部材60が第2分割部材12の外周にろう付け接合されている。
これにより、保持部材16を、ブラケット部材60を介して第2分割部材12にろう付け接合できる。
また、ブラケット部材60は、第1分割部材11の製造時に切断する長さをブラケット部材60の全長に合わせて設定することにより、簡単に得ることができる。
 ここで、第1分割部材11は母材を押し出し加工にて形成した一体成形品とし、成形性を確保している。
これにより、固定部11cは第1分割部材11の長手方向全長に亘って形成されるが、実施例1では、第1分割部材11の長さを第2分割部材12よりも短く形成しているため、両側壁11a,11aの全長を短くでき、重量と熱マスを最小限に抑えることができる。
 従って、実施例3の熱交換器では、実施例1と同様の作用・効果に加えて、本体13の軽量・小型化と、熱マス減少による閉塞部材15の更なる良好なろう付け接合を実現できる。
 次に、この実施例3の熱交換器およびその製造方法は、実施例1の効果に加えて、下記に記載する効果を有する。
(13)第1分割部材11の全長を、第2分割部材12の全長よりも短くした。
これにより、本体13の軽量・小型化と、熱マス減少による閉塞部材15の更なる良好なろう付け接合を実現できる。
 以下、本発明に係る実施例4の熱交換器およびその製造方法を、添付の図面に基づき説明する。この実施例4の熱交換器にあっては、実施例1のように
受液器の本体を第1分割部材と第2分割材とに分割することなく、また本体の一部を縮径することなく、本体の長さを変えることで従来の問題点を解決する。
 図27は実施例4の熱交換器に用いる受液器の分解斜視図である。図28は同受液器の斜視図である。図29は受液器の上方内部を説明する側断面図である。
 実施例4の熱交換器およびその製造方法において、実施例1のものと同様の構成部材については同じ符号を付してその説明は省略し、相違点のみ詳述する。
 図27~図28に示すように、受液器5は、略円筒状の本体11と、この本体11の開口端部12a,12bを閉塞する略皿状の閉塞部材14,15とを備えている。
  本体11の上端部付近は、円筒状の円筒部13を形成する。この本体11は、母材を押し出し成形加工した後、固定部11cの上端一部を切削加工することにより、円筒状の円筒部13を形成している。
 一方、閉塞部材14は、円盤状の底部14aと、この底部14aの外周から本体11側に起立した環状突起状に形成し、且つ、本体11の下方開口端部12aの内周に挿入して嵌合可能な挿入部14bを形成する。
 閉塞部材15は、円盤状の底部15aと、この底部15aの外周から本体11側に起立した環状突起状に形成し、且つ、本体11の上方開口端部12bの内周に挿入して嵌合可能な挿入部15bを形成する。
 そして、図28に示すように、両閉塞部材14,15を本体11のそれぞれ対応する上下開口端部12a,12bの内側に圧入して、底部14a,15aを該端部12a,12bと面一状態にして固定できるようにしている。
 図29に示すように、本体11の上端部付近は、円筒部13がその高さ寸法L1だけタンク3に比べて長手方向外側へ突設している。この寸法L1は、閉塞部材15と本体11との接合部B(図30参照)がタンク3の上端より上にあって、閉塞部材15と本体11との接合時に接合作業スペースが確保でき、また接合部Bの加熱によるタンク3の変形を許容できる寸法に設定する。
 その他の構成は、実施例1と同様に構成する。
 上記のように構成した実施例4の熱交換器も、実施例1と同様に組み立てていく。この際、接合部Bの接合にあっては、図29に示すように、受液器5の円筒部13が高さ寸法L1だけタンク3に比べて上方に突出しているため、図30に示すように、ワークコイル32はタンク3より上方に位置する結果、本体11の上方開口端部12(閉塞部材15共)の周囲に接近する物はなく、接合作業のための十分なスペースを確保できる。
  これにより、ワークコイル32と本体11(閉塞部材15の接合部)との間に所定隙間を容易に確保できる。
  加えて、高周波誘導加熱時の熱がタンク3に悪影響を及ぼす虞がなく、タンク3を保護できる。
 その他の組立、作用は実施例1と同様であるので、説明を省略する。
 実施例4の熱交換器およびその製造方法にあっては、所定間隔を置いて配置された一対のタンク2,3と、一対のタンク2,3に両端部が連通接続された複数のチューブ4aと、タンク3に沿って隣接して配置されると共に、タンク3に連通接続された長尺な受液器5と、受液器5内に収容された収容部材20を備え、受液器5の長手方向一方側に、タンク3に比べて長手方向外側に突出した上方開口端部12bを設け、上方開口端部12bを閉塞部材15で閉塞するようにした熱交換器1であって、収容部材20及び閉塞部材15を除いた熱交換器1全体を、ろう付け処理により一体的に形成し、収容部材20を、ろう付け処理後に、上方開口端部12bから受液器5内に挿入配置し、閉塞部材15を、収容部材20の挿入配置後に、上方開口端部12bにろう付け接合した。また、閉塞部材15を、収容部材20の挿入配置後に、ワークコイル32による高周波誘導加熱にて上方開口端部12bにろう付け接合した。したがって、実施例1の上記(1)、(2)、(9)の効果に加えて、以下の効果を有する。
 (14) 受液器5の本体11をタンク3の上端より長くしただけで良いので、受液器5の製造を簡単にすることが可能となる。
 実施例5の熱交換器の製造方法は、実施例2と同様の高周波誘導加熱を、実施例4の熱交換器の加熱に適用したものである。
 図31に示すように、閉塞部材15の接合部位近傍に予め黒体塗料50を塗布しておき、この黒体塗料50の表面温度を測定可能な赤外線温度センサ51を備えるようにしている。
  また、赤外線温度センサ51で検出された温度はコントローラ33に順次送信している。
  なお、黒体塗料50を設ける位置や数も適宜設定できる。
 そして、コントローラ33は、赤外線温度センサ51から順次送信される温度と実施例1の図16で説明した温度のプロフィルを照合し、これらが一致するように、フィードバック制御しながら発信器31に加熱調整の指令信号を送信している。
 従って、実施例5では、閉塞部材15の接合部の昇温状況に応じて温度管理を行うことができ、良好なろう付け接合を実現できる。
  即ち、高周波誘導加熱は、外気温度や湿度、閉塞部材15の接合部の個体別の僅かな相違によっても、ろう付け性が変化してしまうため、接合部の温度を測定することによって、常に安定したろう付け性を得ることができ、製品品質を向上できる。
 なお、非接触型の放射温度計等で閉塞部材15の温度を測定しても良い。
  また、黒体塗料50を閉塞部材15の全面に設けても良く、この場合、赤外線温度センサ51に他の反射熱が進入せず、高精度に温度を検出できる。
 以上説明したように、次子異例5の熱交換器の製造方法にあっても、実施例2と同様の効果を得ることができる。
 以上、実施例を説明してきたが、本発明は上述の実施例に限られるものではなく、本発明の要旨を逸脱しない範囲の設計変更等があっても、本発明に含まれる。
例えば、収容部材は乾燥剤や蛍光剤に限らず、各種パイプや金属製フィルタ等の場合もあり得る。

Claims (19)

  1.  所定間隔を置いて配置された一対のタンクと、
     前記一対のタンクに両端部が連通接続された複数のチューブと、
     本体が前記一対のタンクのうちの一方のタンクに沿って隣接配置され、この一方のタンクに連通接続されると共に、前記本体の長手方向一方側に設けた開口端部を有する受液器と、
     前記開口端部から挿入可能な形状に形成されて前記受液器内に収容された収容部材と、
    前記開口端部に固着されて該開口端部を閉塞する閉塞部材と、を備え、
     前記開口端部を、この外径が前記本体の長手方向他方側の外径よりも小さくした縮径部で形成した、
     ことを特徴とする熱交換器。
  2.  請求項1記載の熱交換器において、
     前記受液器の本体を、略有底円筒状の第1分割部材と、この第1分割部材の長手方向一方側に連通接続され、且つ、前記開口端部まで縮径された縮径部を有する略円筒状の第2分割部材で構成したことを特徴とする熱交換器。
  3.  請求項2記載の熱交換器において、
     前記一方のタンクと第1分割部材とを、中間部材を介して連通接続し、
     前記第1分割部材の外周部に、前記中間部材との相対位置ずれを防止する規制部を一体形成したことを特徴とする熱交換器。
  4.  請求項3記載の熱交換器において、
     前記規制部は、前記中間部材における熱交換器の幅方向への相対位置ずれを規制することを特徴とする熱交換器。
  5.  請求項4記載の熱交換器において、
      前記規制部を、前記熱交換器のタンク側に開口した略コ字状断面を有して第1分割部材の長手方向に延設し、
     前記規制部と前記中間部材とを位置決めして接合したことを特徴とする熱交換器。
  6.  請求項5記載の熱交換器において、
    前記規制部のコ字状断面の対向する両側壁により前記中間部材を挟んで該中間部材を固定したことを特徴とする熱交換器。
  7.  請求項3乃至6のうちのいずれか一つに記載の熱交換器において、
     前記第2分割部材を、前記中間部材と同一形状の保持部材を介して一方のタンクに固定支持したことを特徴とする熱交換器。
  8.  請求項3乃至6のうちのいずれか一つに記載の熱交換器において、
     前記第1分割部材の全長を、前記第2分割部材の全長よりも短くしたことを特徴とする熱交換器。
  9.  請求項1乃至8のうちのいずれか一つに記載の熱交換器において、
     前記収容部材が乾燥剤または蛍光剤であることを特徴とする熱交換器。
  10.   所定間隔を置いて配置された一対のタンクと、
     前記一対のタンクに両端部が連通接続された複数のチューブと、
     本体が前記一対のタンクのうちの一方のタンクに沿って隣接配置されると共に、この一方のタンクに連通接続され、前記本体の長手方向一方側に設けた開口端部が設けられた受液器と、
     前記開口端部から挿入可能な形状に形成して前記受液器内に収容された収容部材と、
    前記開口端部に固着されて該開口端部を閉塞する閉塞部材と、を備え、
     前記開口端部を、前記一方のタンクに比べて前記長手方向外側へ突出させたことを特徴とする熱交換器。
  11.  請求項10に記載の熱交換器において、
     前記一方のタンクと受液器とを、中間部材を介して連通接続し、
     前記受液器の外周部に、前記中間部材との相対位置ずれを防止可能な規制部を一体形成したことを特徴とする熱交換器。
  12.  請求項11に記載の熱交換器において、
     前記規制部は、前記中間部材における熱交換器の幅方向への相対位置ずれを規制することを特徴とする熱交換器。
  13.  請求項12に記載の熱交換器において、
     前記規制部を、前記熱交換器のタンク側に開口した略コ字状断面を有して受液器の長手方向に延設し、
     前記規制部と前記中間部材とを位置決めして接合したことを特徴とする熱交換器。
  14.  請求項13に記載の熱交換器において、
     前記規制部のコ字状断面の対向する両側壁により前記中間部材を挟んで該中間部材を固定したことを特徴とする熱交換器。
  15.  請求項11乃至14のうちのいずれか一つに記載の熱交換器において、
     前記受液器を、前記中間部材と同一形状の保持部材を介して一方のタンクに固定支持したことを特徴とする熱交換器。
  16.  請求項10乃至15のうちのいずれか一つに記載の熱交換器において、
     前記収容部材が乾燥剤または蛍光剤であることを特徴とする熱交換器
  17.  所定間隔を置いて配置された一対のタンクと、
     前記一対のタンクに両端部が連通接続された複数のチューブと、
     本体が前記一対のタンクのうちの一方のタンクに沿って隣接配置され、この一方のタンクに連通接続されると共に、前記本体の長手方向一方側に設けた開口端部を有する受液器と、前記開口端部から挿入可能な形状に形成されて前記受液器内に収容された収容部材と、
     前記開口端部に固着されて該開口端部を閉塞する閉塞部材と、を備えた熱交換器の製造方法であって、
     外径を前記本体の長手他方向側の外径よりも小さく形成した前記開口端部と前記一方のタンクに比べて前記長手方向外側へ突出させた前記開口端部とのうちの一方を設けた前記受液器を用意する行程と、
     前記熱交換器を構成する前記タンク、前記複数のチューブ、前記収容部材、前記閉塞部材を用意する行程と、
     前記収容部材及び閉塞部材を除いた熱交換器全体をろう付け処理して一体的に形成する工程と、
     前記ろう付け処理後に、前記収容部材を前記開口端部から受液器内に挿入配置する工程と、
     前記収容部材の挿入配置後に、前記閉塞部材を前記開口端部に溶接又はろう付けのうちの一方で接合する工程と、を備えることを特徴とする熱交換器の製造方法。
  18.  請求項17に記載の熱交換器の製造方法において、
     前記閉塞部材を、ワークコイルによる高周波誘導加熱にて前記開口端部にろう付け接合し、
     前記ろう付け接合時に前記閉塞部材の接合部の温度を温度測定手段で測定し、
     前記温度測定手段で測定された接合部の温度に応じてワークコイルによる高周波誘導加熱の温度をフィードバック制御することを特徴とする熱交換器の製造方法。
  19.  請求項18に記載の熱交換器の製造方法において、
     前記温度測定手段は、閉塞部材の接合部の近傍に設けられた黒体塗料と、この黒体塗料の温度変化を測定するセンサで構成したことを特徴とする熱交換器の製造方法。
PCT/JP2009/070448 2008-12-15 2009-12-07 熱交換器及びその製造方法 WO2010071038A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US13/139,644 US20110247792A1 (en) 2008-12-15 2009-12-07 Heat exchanger and its manufacturing method
EP09833342.0A EP2369269A4 (en) 2008-12-15 2009-12-07 HEAT EXCHANGER AND METHOD FOR MANUFACTURING THE SAME
CN2009801505640A CN102245982A (zh) 2008-12-15 2009-12-07 换热器及其制造方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2008317823A JP5237074B2 (ja) 2008-12-15 2008-12-15 熱交換器及びその製造方法
JP2008-317823 2008-12-15
JP2008-317824 2008-12-15
JP2008317824A JP5237075B2 (ja) 2008-12-15 2008-12-15 熱交換器及びその製造方法

Publications (1)

Publication Number Publication Date
WO2010071038A1 true WO2010071038A1 (ja) 2010-06-24

Family

ID=42268709

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/070448 WO2010071038A1 (ja) 2008-12-15 2009-12-07 熱交換器及びその製造方法

Country Status (4)

Country Link
US (1) US20110247792A1 (ja)
EP (1) EP2369269A4 (ja)
CN (2) CN103090695B (ja)
WO (1) WO2010071038A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012097992A (ja) * 2010-11-04 2012-05-24 Denso Corp 受液器一体型熱交換器
JP2012233615A (ja) * 2011-04-28 2012-11-29 Showa Denko Kk 熱交換器
CN117282862A (zh) * 2023-11-27 2023-12-26 沈阳斯诺泰机械有限公司 冷凝器集流管与干燥瓶铆接机

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014209345A1 (en) * 2013-06-28 2014-12-31 Schneider Electric It Corporation Indirect evaporator cooler heat exchanger manufacturing method
FR3050020B1 (fr) * 2016-04-06 2018-04-27 Valeo Systemes Thermiques Echangeur thermique et procede de fabrication d'un echangeur thermique
JP6850058B2 (ja) * 2016-07-12 2021-03-31 マーレベーアサーマルシステムズジャパン株式会社 コンデンサ
CN106403695A (zh) * 2016-08-16 2017-02-15 合肥升园汽车配件有限公司 一种汽车空调的集流管总成
CN106382840B (zh) * 2016-08-16 2018-12-07 合肥升园汽车配件有限公司 一种汽车空调冷凝器的集流管总成
CN106382841A (zh) * 2016-08-16 2017-02-08 合肥升园汽车配件有限公司 一种汽车空调冷凝器用集流管
CN106403401A (zh) * 2016-08-16 2017-02-15 合肥升园汽车配件有限公司 一种汽车空调用集流管
JP6785144B2 (ja) * 2016-12-14 2020-11-18 株式会社ケーヒン・サーマル・テクノロジー 受液器およびこれを用いたコンデンサ
JP6905895B2 (ja) * 2017-08-28 2021-07-21 マーレベーアサーマルシステムズジャパン株式会社 コンデンサ
EP3483546A1 (en) * 2017-11-09 2019-05-15 Valeo Autosystemy SP. Z.O.O. A condenser
CN110748312B (zh) * 2019-11-26 2024-01-16 深圳大学 一种带有电机增压的取芯器主动补压结构及方法
JP7095182B2 (ja) * 2020-03-03 2022-07-04 株式会社デンソーエアクール 受液器一体凝縮器
CN112665440A (zh) * 2020-12-22 2021-04-16 浙江银轮机械股份有限公司 集流组件及散热器
DE102022211086A1 (de) 2022-10-19 2024-04-25 Mahle International Gmbh Fluidsammler

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06295782A (ja) 1993-04-09 1994-10-21 Denki Kogyo Co Ltd 高周波誘導加熱における加熱温度制御方法及び高周波誘導加熱温度制御装置
JPH06328240A (ja) * 1993-05-18 1994-11-29 Showa Alum Corp パイプ同志の接続方法
JPH079119A (ja) 1993-06-28 1995-01-13 Showa Alum Corp 高周波誘導加熱ろう付法
JPH08110125A (ja) 1994-10-06 1996-04-30 Nippondenso Co Ltd 受液器一体型冷媒凝縮器およびその製造方法
JP2000154993A (ja) * 1998-11-19 2000-06-06 Denso Corp 熱交換器
US6622517B1 (en) * 2002-06-25 2003-09-23 Visteon Global Technologies, Inc. Condenser assembly having readily varied volumetrics
JP2007024433A (ja) * 2005-07-20 2007-02-01 Fuji Koki Corp レシーバドライヤ
WO2007080350A2 (fr) * 2006-01-10 2007-07-19 Valeo Etudes Electroniques Procede de brasage entre eux d'au moins deux organes empiles
JP2008286475A (ja) * 2007-05-17 2008-11-27 Calsonic Kansei Corp コンデンサ

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4238853C2 (de) * 1992-11-18 2001-05-03 Behr Gmbh & Co Kondensator für eine Klimaanlage eines Fahrzeuges
US5901573A (en) * 1995-11-02 1999-05-11 Calsonic Corporation Condenser structure with liquid tank
US5902507A (en) * 1997-03-03 1999-05-11 Chrysler Corporation Closed loop temperature control of induction brazing
FR2770896B1 (fr) * 1997-11-10 2000-01-28 Valeo Thermique Moteur Sa Condenseur de climatisation muni d'un reservoir de fluide a cartouche interchangeable
DE19918616C2 (de) * 1998-10-27 2001-10-31 Valeo Klimatechnik Gmbh Verflüssiger zum Kondensieren des inneren Kältemittels einer Kraftfahrzeugklimatisierung
EP1310748B1 (de) * 2001-11-08 2009-08-26 Behr GmbH & Co. KG Wärmetauscher
DE10164668A1 (de) * 2001-12-28 2003-07-10 Behr Lorraine S A R L Europole Gelöteter Kondensator
JP2004271101A (ja) * 2003-03-11 2004-09-30 Nikkei Nekko Kk 受液器付き熱交換器
US6694773B1 (en) * 2003-01-29 2004-02-24 Calsonickansei North America, Inc. Condenser system with nondetachably coupled receiver
DE10353939A1 (de) * 2003-11-18 2005-06-16 Modine Manufacturing Co., Racine Kondensator und Herstellungsverfahren
ATE463706T1 (de) * 2004-04-08 2010-04-15 Delphi Tech Inc Verflüssiger mit integriertem trocknersammler und verfahren zu dessen herstellung
US7007499B1 (en) * 2004-09-02 2006-03-07 Visteon Global Technologies, Inc. Condenser assembly having a mounting rib
US8029186B2 (en) * 2004-11-05 2011-10-04 International Business Machines Corporation Method for thermal characterization under non-uniform heat load
TW200722692A (en) * 2005-07-20 2007-06-16 Fujikoki Corp Receiver drier and condenser integrated with receiver dryer
JP5002797B2 (ja) * 2007-03-16 2012-08-15 株式会社ケーヒン・サーマル・テクノロジー 熱交換器
JP2008260049A (ja) * 2007-04-13 2008-10-30 Denso Corp 熱交換器およびその製造方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06295782A (ja) 1993-04-09 1994-10-21 Denki Kogyo Co Ltd 高周波誘導加熱における加熱温度制御方法及び高周波誘導加熱温度制御装置
JPH06328240A (ja) * 1993-05-18 1994-11-29 Showa Alum Corp パイプ同志の接続方法
JPH079119A (ja) 1993-06-28 1995-01-13 Showa Alum Corp 高周波誘導加熱ろう付法
JPH08110125A (ja) 1994-10-06 1996-04-30 Nippondenso Co Ltd 受液器一体型冷媒凝縮器およびその製造方法
JP2000154993A (ja) * 1998-11-19 2000-06-06 Denso Corp 熱交換器
US6622517B1 (en) * 2002-06-25 2003-09-23 Visteon Global Technologies, Inc. Condenser assembly having readily varied volumetrics
JP2007024433A (ja) * 2005-07-20 2007-02-01 Fuji Koki Corp レシーバドライヤ
WO2007080350A2 (fr) * 2006-01-10 2007-07-19 Valeo Etudes Electroniques Procede de brasage entre eux d'au moins deux organes empiles
JP2008286475A (ja) * 2007-05-17 2008-11-27 Calsonic Kansei Corp コンデンサ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2369269A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012097992A (ja) * 2010-11-04 2012-05-24 Denso Corp 受液器一体型熱交換器
JP2012233615A (ja) * 2011-04-28 2012-11-29 Showa Denko Kk 熱交換器
CN117282862A (zh) * 2023-11-27 2023-12-26 沈阳斯诺泰机械有限公司 冷凝器集流管与干燥瓶铆接机
CN117282862B (zh) * 2023-11-27 2024-01-23 沈阳斯诺泰机械有限公司 冷凝器集流管与干燥瓶铆接机

Also Published As

Publication number Publication date
EP2369269A1 (en) 2011-09-28
CN102245982A (zh) 2011-11-16
CN103090695A (zh) 2013-05-08
CN103090695B (zh) 2015-08-19
EP2369269A4 (en) 2014-02-26
US20110247792A1 (en) 2011-10-13

Similar Documents

Publication Publication Date Title
WO2010071038A1 (ja) 熱交換器及びその製造方法
JP5237074B2 (ja) 熱交換器及びその製造方法
JP5933757B2 (ja) 熱交換器
US20050173100A1 (en) Heat exchanger
WO2010038672A1 (ja) レシーバタンク付き熱交換器
US20070289727A1 (en) Heat Exchanger
US20040182558A1 (en) Header for use in heat exchanger, heat exchanger and method for manufacturing the same
JP5237075B2 (ja) 熱交換器及びその製造方法
JP2016200312A (ja) 熱交換器、および熱交換器の製造方法
JPWO2004081481A1 (ja) 熱交換器用タンクとコネクタとの接続構造
US9719735B2 (en) Heat exchanger
JP4713211B2 (ja) 熱交換器
JP5085492B2 (ja) 熱交換器
JP5225001B2 (ja) 熱交換器
JP5005400B2 (ja) 熱交換器
JP4418246B2 (ja) 熱交換器
JP4217478B2 (ja) 熱交換器
WO2003008891A1 (fr) Echangeur de chaleur
JP4575697B2 (ja) 熱交換器
KR100531017B1 (ko) 열교환 유동 플레이트의 메니폴드 접합용 브레이징재 및열교환 유동 플레이트의 메니폴드 접합방법
JP5393174B2 (ja) 熱交換器
JP5741470B2 (ja) 熱交換器、およびその製造方法
JP2006284163A (ja) 一体型熱交換装置
JP2563182Y2 (ja) 熱交換器
JP2009299926A (ja) 車両用コンデンサのコネクタ構造

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980150564.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09833342

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13139644

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2009833342

Country of ref document: EP