WO2010070927A1 - 駆動回路一体型電動圧縮機 - Google Patents

駆動回路一体型電動圧縮機 Download PDF

Info

Publication number
WO2010070927A1
WO2010070927A1 PCT/JP2009/007027 JP2009007027W WO2010070927A1 WO 2010070927 A1 WO2010070927 A1 WO 2010070927A1 JP 2009007027 W JP2009007027 W JP 2009007027W WO 2010070927 A1 WO2010070927 A1 WO 2010070927A1
Authority
WO
WIPO (PCT)
Prior art keywords
drive circuit
semiconductor element
power semiconductor
refrigerant gas
electric compressor
Prior art date
Application number
PCT/JP2009/007027
Other languages
English (en)
French (fr)
Inventor
池田英夫
Original Assignee
サンデン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by サンデン株式会社 filed Critical サンデン株式会社
Priority to US13/141,072 priority Critical patent/US20110256002A1/en
Priority to EP09833234.9A priority patent/EP2378120B1/en
Priority to CN2009801515835A priority patent/CN102245899A/zh
Publication of WO2010070927A1 publication Critical patent/WO2010070927A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/04Heating; Cooling; Heat insulation
    • F04C29/047Cooling of electronic devices installed inside the pump housing, e.g. inverters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B35/00Piston pumps specially adapted for elastic fluids and characterised by the driving means to their working members, or by combination with, or adaptation to, specific driving engines or motors, not otherwise provided for
    • F04B35/04Piston pumps specially adapted for elastic fluids and characterised by the driving means to their working members, or by combination with, or adaptation to, specific driving engines or motors, not otherwise provided for the means being electric
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/06Cooling; Heating; Prevention of freezing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/008Hermetic pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/02Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • F04C18/0207Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form
    • F04C18/0215Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form where only one member is moving
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2210/00Fluid
    • F04C2210/26Refrigerants with particular properties, e.g. HFC-134a
    • F04C2210/261Carbon dioxide (CO2)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2210/00Fluid
    • F04C2210/26Refrigerants with particular properties, e.g. HFC-134a
    • F04C2210/263HFO1234YF
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/80Other components
    • F04C2240/808Electronic circuits (e.g. inverters) installed inside the machine

Definitions

  • the present invention relates to an electric compressor integrated with a drive circuit in which a motor is incorporated and the motor drive circuit is also integrated, and in particular, a drive capable of efficiently cooling a power semiconductor element provided in the motor drive circuit.
  • the present invention relates to a circuit-integrated electric compressor.
  • Patent Document 1 discloses a scroll-type electric compressor integrated with a drive circuit in which a motor for driving a compression mechanism section is incorporated and the motor drive circuit is also integrated.
  • a power semiconductor element is particularly incorporated in the inverter, and the power semiconductor element generates heat. Therefore, in order to ensure normal operation, it is generally preferable to cool the power semiconductor element.
  • Currently used semiconductors, including power semiconductor elements are usually made of silicon (Si). Since the maximum operating temperature of such a conventional power semiconductor element is about 150 ° C., it is preferably cooled so as not to exceed this temperature. In Patent Document 1, a refrigerant sucked into the compressor is used, This cooling is performed.
  • the suction refrigerant gas may be overheated by the heat of the power semiconductor element, the compression efficiency of the compressor may be reduced. Further, when the intake gas is overheated, the temperature of the compressed gas also rises, which may cause a heat resistance problem in each part inside the compressor, which may reduce the life of the compressor. Furthermore, since the suction gas passes through the heat exchange route formed for cooling the power semiconductor element, the pressure loss in the refrigerant path inside the compressor increases, which may also reduce the compression efficiency.
  • An object of the present invention is to pay attention to the problems in the method of cooling the power semiconductor element of the motor drive circuit with the suction refrigerant gas as described above, and basically, without increasing the temperature of the suction refrigerant gas,
  • An object of the present invention is to provide an electric compressor integrated with a drive circuit capable of efficiently cooling a power semiconductor element of a motor drive circuit while suppressing an increase in pressure loss of a path for the purpose.
  • a drive circuit integrated electric compressor is a drive circuit integrated electric compressor in which a motor drive circuit including a power semiconductor element is integrally incorporated.
  • the power semiconductor element is configured to be cooled with discharged refrigerant gas.
  • the power semiconductor element is cooled by using the refrigerant gas discharged after passing through the compression mechanism portion of the compressor, not by the conventional cooling by the suction refrigerant gas.
  • the discharge refrigerant gas is used for cooling the power semiconductor element, there is a problem with the use of the intake refrigerant gas, that is, the compression efficiency is reduced due to the rise in the temperature of the intake refrigerant gas, and the life of the compressor is reduced due to the increase in the temperature of the compressed gas
  • the problem of an increase in pressure loss due to the intake refrigerant gas passing through the heat exchange route for cooling and a decrease in compression efficiency associated therewith basically disappear.
  • the suction refrigerant gas is not used for cooling, the suction refrigerant gas is compressed and the gas temperature before being discharged does not rise as in the conventional structure, so that high compression efficiency is ensured and the compression is performed.
  • the power semiconductor element is cooled only to a higher temperature than the conventional structure. Become. Therefore, it is necessary to use a power semiconductor element having heat resistance, that is, a higher maximum operating temperature.
  • a wide band gap semiconductor element can be used as the power semiconductor element. That is, as described above, all semiconductors currently used, including power semiconductors, are made of silicon (Si). In recent years, wide band gap (WBG) power semiconductors have been developed as a semiconductor material that replaces silicon.
  • the conventional Si power semiconductor has a maximum operating temperature of about 150 ° C., whereas the WBG semiconductor is 200 ° C. or higher. Therefore, the discharge refrigerant gas temperature, which is generally the first half of the 100 ° C. range, is sufficiently high. It becomes possible to cool to.
  • the wide band gap semiconductor element has a high heat-resistant temperature, it is not necessary to create an unnecessarily low temperature as a cooling source, so that the total efficiency when viewed as a whole cooling circuit system is improved.
  • the power semiconductor element of the motor drive circuit may be configured to be cooled by the discharged refrigerant gas, and various forms of specific cooling structures are available. It can be taken.
  • the power semiconductor element is provided on a circuit board having high thermal conductivity, and the back surface of the circuit board is cooled by discharged refrigerant gas through a compressor wall (wall in the compressor). Can take the form.
  • a circuit board made of a material having high thermal conductivity for example, high thermal conductivity ceramic, the power semiconductor element is cooled with high efficiency through the circuit board.
  • the power semiconductor element may be covered with a low thermal conductive resin.
  • the form with which the heat shielding member of the low heat conductivity is provided between the said power semiconductor element and other electronic components can be taken.
  • the type of refrigerant used in the electric compressor integrated with a drive circuit according to the present invention is not particularly limited, and CO2 and HFC1234yf can be used as refrigerants as well as refrigerants that have been conventionally used.
  • CO2 refrigerant it is used at a higher temperature and pressure, but it can be used sufficiently for cooling the wide bandgap semiconductor element as described above.
  • HFC1234yf which is a new refrigerant recently announced, can be used sufficiently for cooling power semiconductor elements.
  • the discharge refrigerant gas for cooling the power semiconductor element of the drive circuit for example, after passing through a built-in motor and a compression unit (compression mechanism unit) in this order.
  • the discharge refrigerant gas can be used, the discharge refrigerant gas after passing through the compression unit and the built-in motor in this order can be used, or the discharge refrigerant gas passing through the built-in motor unit after passing through the compression unit (for example, As in the embodiment described later, it is also possible to use a discharge refrigerant gas that passes through a discharge gas passage formed between the stator of the built-in motor and the drive circuit housing after passing through the compression section.
  • the drive circuit integrated electric compressor according to the present invention is particularly suitable for a scroll compressor, for example. That is, in the case of a scroll type compressor, the motor drive circuit can be easily disposed near the path of the discharged refrigerant gas, and the power semiconductor element of the motor drive circuit can be efficiently cooled.
  • the drive circuit integrated electric compressor according to the present invention is particularly suitable when the compressor is mounted on a vehicle.
  • An efficient cooling structure of the power semiconductor element can be realized with a simple configuration without substantially increasing the weight.
  • it is especially suitable when it consists of the compressor provided in the freezing circuit of a vehicle air conditioner.
  • the electric compressor integrated with a drive circuit since the power semiconductor element is cooled using the discharged refrigerant gas, the suction refrigerant gas is compressed and discharged as before. Therefore, it is possible to achieve a high compression efficiency and improve the coefficient of performance (COP) of the compressor.
  • the power semiconductor element can be efficiently cooled using discharged refrigerant gas.
  • the refrigerant gas is compressed and does not raise the gas temperature before it is discharged, the durability and life of the compressor can be improved. Furthermore, since the suction refrigerant gas does not have to pass through the heat exchange route for cooling as in the conventional structure, the pressure loss can be reduced.
  • FIG. 1 shows a drive circuit integrated electric compressor 100 according to a first embodiment of the present invention.
  • reference numeral 1 denotes a drive circuit housing
  • 2 denotes a compressor housing
  • 3 denotes a suction housing.
  • the suction housing 3 includes a stator 4, a rotor 5, and a motor winding 6.
  • a motor 13 is built in. By this motor 13, the drive shaft 7 rotatably supported by the bearing 23 is rotationally driven, and the compression part 8 (compression mechanism part) is operated.
  • the compression unit 8 is configured as a school type, for example.
  • a refrigerant gas path as shown by an arrow is formed in the compressor 100, and the refrigerant gas is sucked from the suction port 9 formed in the suction housing 3, passes through the motor unit, and is compressed by the compression unit 8. Then, the ink is discharged from the discharge port 10 formed in the drive circuit housing 1 to the external circuit.
  • Reference numeral 11 denotes a sealed terminal A
  • 12 denotes a sealed terminal B. The lead wire 24 and the power from the motor drive circuit 30 are fed to the motor 13.
  • the motor drive circuit 30 has a power semiconductor element 15, and the power semiconductor element 15 is provided on the power circuit board 14.
  • a wide band gap power semiconductor element is used as the power semiconductor element 15.
  • the power circuit board 14 is fixed to a wall 26 in the drive circuit housing 1 where the discharged refrigerant gas passes through the insulating material 16, and the power circuit board 14 uses the discharged refrigerant gas passing through the discharge chamber 25.
  • the power semiconductor element 15 on 14 is cooled.
  • the power circuit board 14 and further the insulating material 16 are made of ceramics having high thermal conductivity.
  • Reference numeral 17 denotes a control circuit board for controlling the motor drive circuit 30, and a microcontroller 18 constituting the control circuit is provided on the control circuit board 17. Power is supplied from an external power source via the connector 22, and then is supplied to the motor drive circuit 30 via the noise filter 20 and the smoothing capacitor 19. These circuit parts are covered with a lid 21 and are blocked from the outside. Further, in this embodiment, the power circuit board 14 is provided with an insulating resin 27 having a low thermal conductivity, and the power semiconductor element 15 is covered with the resin 27 so that heat from the power semiconductor element 15 to other electronic components is covered. Radiation is prevented. In addition, 28 in FIG. 1 has shown the volt
  • the motor drive circuit 30 and its control circuit are configured, for example, as shown in FIG. In FIG. 2, the electric compressor 100 is provided with the motor drive circuit 30 as described above, and the output from the motor drive circuit 30 is fed to each motor winding 6 of the built-in motor 13 via the sealing terminal 11. As a result, the motor 13 is rotationally driven, and compression by the compression unit 8 is performed. Electric power from an external power source 42 (for example, a battery) is supplied to the motor drive circuit 30 through the high voltage connector 22, and the inverter is connected through the noise filter 20 in which the coil and the capacitor are incorporated, and the smoothing capacitor 19. 41, and the direct current from the power source 42 is converted into a pseudo three-phase alternating current by the inverter 41 and then supplied to the motor 13.
  • an external power source 42 for example, a battery
  • a signal for controlling the compressor is supplied to the motor control circuit 45 from the air conditioning control device 44 of the vehicle via the control signal connector 43.
  • the inverter 41 is provided with a total of six power semiconductor elements 15 each including a Schottky barrier diode SiC-SBD 47 and a SiC-MOSFET 46 which are wide band gap semiconductors.
  • the same motor drive circuit and control circuit can be used also in the drive circuit integrated electric compressors according to the second and third embodiments described later.
  • the power semiconductor element 15 is efficiently cooled as follows.
  • the conventional Si power semiconductor has a maximum operating temperature of about 150 ° C., whereas the wide band gap power semiconductor is 200 ° C. or higher. It is possible to sufficiently cool even at a discharge refrigerant gas temperature that is the temperature of Therefore, an increase in the intake refrigerant gas temperature due to the conventional cooling method can be prevented, and the compression efficiency can be improved. Further, the life of each part in the compressor can be improved by suppressing the rise in the intake refrigerant gas temperature. Further, it is not necessary to form a special gas path for cooling the power semiconductor element by the sucked refrigerant gas, so that the pressure loss can be reduced.
  • the wide band gap power semiconductor has a low on-resistance of the element and a small switching loss, the heat generated from the element itself is small, so that the amount of heat for cooling is less than that of the Si power semiconductor. I'll do it. Therefore, even the discharged refrigerant gas can be sufficiently cooled.
  • the power semiconductor element 15 is covered with the resin 27 having low thermal conductivity, so that, for example, the electronic component mounted on the control circuit board 17, the smoothing capacitor 19, and the noise filter 20 on the other hand, heat radiation can be eliminated, temperature rise can be prevented, and proper operation of these electronic components can be ensured.
  • the resin 27 having low thermal conductivity
  • the position of the intake port 9 is not limited, so that the degree of freedom in design is increased and the attachment to the vehicle is facilitated.
  • the wide band gap semiconductor element since the wide band gap semiconductor element has a high heat-resistant temperature, it is not necessary to create an unnecessarily low temperature as a cooling source, so that the total efficiency of the cooling circuit system is improved.
  • the motor 13 uses a neodymium magnet for the rotor, the magnet is demagnetized due to the temperature rise, but when the power semiconductor element is cooled by the conventional suction refrigerant gas, the suction refrigerant gas temperature is increased by heat exchange.
  • the magnet since there is a possibility that the magnet is demagnetized because it passes through the motor, this problem is also solved.
  • FIG. 3 shows a drive circuit integrated electric compressor 200 according to the second embodiment of the present invention.
  • the refrigerant gas sucked from the suction port 9 is directly introduced into the compression unit 8 through the suction gas chamber 31, passes through the motor 13, cools the power semiconductor element 15, and is discharged from the discharge port 10. It has become so. Since the magnet of the motor 13 is exposed to the discharged refrigerant gas, it is preferable to use a ferrite magnet or the like having a low temperature demagnetization characteristic instead of a neodymium magnet having a high temperature demagnetization characteristic. In addition, it is also preferable to use a motor (such as an induction motor or a switched reluctance motor) that does not have to worry about demagnetization. Other configurations are the same as those in the first embodiment.
  • FIG. 4 shows a drive circuit integrated electric compressor 300 according to the third embodiment of the present invention.
  • the drive circuit is mounted in the radial direction of the motor 13, and the discharged refrigerant gas discharged from the compression unit 8 is discharged gas passage 33 formed between the stator 4 of the motor 13 and the drive circuit housing 32. Then, the power semiconductor element 15 of the motor drive circuit is cooled.
  • a drive circuit is incorporated in the drive circuit housing 32, and the motor 13 is incorporated in the drive circuit housing 32.
  • a compression unit 8 is incorporated in the suction housing 3, and the suction refrigerant gas enters the suction gas chamber 26 and is sent to the compression unit 8.
  • Other configurations are the same as those in the first embodiment.
  • the structure of the electric compressor integrated with a drive circuit according to the present invention can be applied to any electric compressor incorporating a power semiconductor element, and is particularly suitable for a compressor mounted on a vehicle, particularly a compressor for a vehicle air conditioner. is there.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Compressor (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)
  • Rotary Pumps (AREA)

Abstract

【課題】吸入冷媒ガスの温度を上昇させずに、かつ、冷却のための経路の圧力損失の増加を抑制しつつ、モータ駆動回路のパワー半導体素子を効率よく冷却できるようにした駆動回路一体型電動圧縮機を提供する。 【解決手段】パワー半導体素子を備えたモータ駆動回路が一体的に組み込まれた電動圧縮機において、駆動回路のパワー半導体素子を吐出冷媒ガスで冷却するように構成したことを特徴とする駆動回路一体型電動圧縮機。

Description

駆動回路一体型電動圧縮機
 本発明は、モータが内蔵され、かつそのモータ駆動回路も一体的に組み込まれた駆動回路一体型電動圧縮機に関し、とくに、モータ駆動回路に設けられるパワー半導体素子を効率よく冷却できるようにした駆動回路一体型電動圧縮機に関する。
 特許文献1には、圧縮機構部駆動用のモータが内蔵され、かつそのモータ駆動回路も一体的に組み込まれた駆動回路一体型のスクロール型電動圧縮機が開示されている。このモータ駆動回路には、とくにそのインバータには、パワー半導体素子が組み込まれており、パワー半導体素子は発熱するので、正常な作動を確保するためには一般に冷却されることが好ましい。現在使用されている半導体は、パワー半導体素子を含め、通常シリコン(Si)を材料とするものである。このような従来のパワー半導体素子の最高動作温度は約150℃であるので、これを超えないように冷却されることが好ましく、特許文献1では、圧縮機に吸入される冷媒を利用して、この冷却を行うようになっている。
特開2000-291557号公報
 ところが、上記のように吸入冷媒ガスを利用してモータ駆動回路のパワー半導体素子を冷却する方式では、以下のような問題が生じるおそれがある。すなわち、吸入冷媒ガスがパワー半導体素子の熱で過熱されるおそれがあるため、圧縮機の圧縮効率が低下するおそれがある。また、吸入ガスが過熱されると、圧縮ガスの温度も上昇するので、圧縮機内部の各部における耐熱性の問題が生じる可能性があり、それによって圧縮機の寿命が低下するおそれがある。さらに、吸入ガスが、パワー半導体素子を冷却するために形成された熱交換ルートを通ることとなるため、圧縮機内部の冷媒経路における圧力損失が増加し、やはり圧縮効率を低下させるおそれがある。
本発明の課題は、上記のような吸入冷媒ガスによってモータ駆動回路のパワー半導体素子を冷却する方式における問題点に着目し、基本的に吸入冷媒ガスの温度を上昇させずに、かつ、冷却のための経路の圧力損失の増加を抑制しつつ、モータ駆動回路のパワー半導体素子を効率よく冷却できるようにした駆動回路一体型電動圧縮機を提供することにある。
 上記課題を解決するために、本発明に係る駆動回路一体型電動圧縮機は、パワー半導体素子を備えたモータ駆動回路が一体的に組み込まれた駆動回路一体型電動圧縮機において、前記駆動回路のパワー半導体素子を吐出冷媒ガスで冷却するように構成したことを特徴とするものからなる。すなわち、従来のような吸入冷媒ガスによる冷却ではなく、圧縮機の圧縮機構部を経た後の吐出冷媒ガスを利用してパワー半導体素子を冷却するように構成したものである。
 すなわち、パワー半導体素子の冷却に吐出冷媒ガスを用いるので、吸入冷媒ガスを用いた場合の問題点、つまり吸入冷媒ガスの温度上昇による圧縮効率の低下、圧縮ガスの温度上昇による圧縮機の寿命低下、吸入冷媒ガスが冷却のための熱交換ルートを通ることによる圧力損失の増加、それに伴う圧縮効率の低下の問題は、基本的に発生しなくなる。換言すれば、吸入冷媒ガスが冷却に使用されないため、吸入冷媒ガスが圧縮され、吐出される手前までのガス温が、従来構造のようには上昇しなくなるので、高い圧縮効率が確保され、圧縮機の成績係数(COP)の向上に寄与できる。また、圧縮機内の冷媒の経路において、吸入冷媒ガスが圧縮され、吐出される手前までのガス温の上昇が抑えられるので、圧縮機の耐久性が向上され寿命が向上される。さらに、吸入冷媒ガスが従来構造のように冷却のための熱交換ルートを通らなくてもよくなるので、圧縮機内における冷媒通路の圧力損失が低減される。さらにまた、圧縮機内蔵モータとしてネオジウム磁石をローターに使用する構成の場合、温度上昇でその磁石を減磁させてしまうが、従来の吸入冷媒ハスでパワー半導体を冷却する場合には吸入冷媒ガス温度が熱交換で上昇し、その後モータを通過するため磁石を減磁させてしまうおそれがあったが、本発明ではモータ通過後の吐出冷媒ガスで冷却するので、そのような問題も解消される。
 ただし、本発明においては、吸入冷媒ガスよりも温度の高い吐出冷媒ガスをパワー半導体素子の冷却に用いることとなるので、パワー半導体素子は従来構造に比べてより高い温度にまでしか冷却されないことになる。したがって、パワー半導体素子として、耐熱性、つまり最高動作温度のより高いものを使用する必要が生じる。
 この必要性を満たすために、本発明では、上記パワー半導体素子として、ワイドバンドギャップ半導体素子を用いることができる。すなわち、前述したように、現在使用されている半導体はパワー半導体も含め、全てシリコン(Si)を材料とするものである。近年このシリコンに変わる半導体材料としてワイドバンドギャップ(WBG)パワー半導体が開発されてきている。従来のSiパワー半導体は最高動作温度が約150℃であるのに対し、WBG半導体は200℃以上であるため、一般に100℃代の前半の温度である吐出冷媒ガス温度でも十分に所望の温度にまで冷却することが可能となる。そして、吐出冷媒ガスでパワー半導体を冷却することで、従来の吸入冷媒ガスを用いる場合の問題点が一挙に解決されることになる。なお、ワイドバンドギャップパワー半導体としては、炭化珪素(SiC)や窒化ガリウム(GaN)、ダイヤモンドなどを使用したものが知られているが、上記のような最高動作温度を有するものであれば、いずれのタイプのワイドバンドギャップパワー半導体素子も使用可能である。
 また、このようなワイドバンドギャップパワー半導体素子は、オン抵抗が小さく、かつ、スイッチング損失が小さいことから、素子自体から発生する熱も小さいため、Siパワー半導体素子に比べ、冷却に要する熱量も少なくて済む。この面からも、吐出冷媒ガスによる冷却で、ワイドバンドギャップパワー半導体素子を十分に効率よく冷却することが可能である。
 さらに、ワイドバンドギャップ半導体素子は耐熱温度が高いため、冷却源として必要以上の低温を作る必要がないため、冷却回路システム全体として見た場合のトータル効率も向上する。
 上記本発明に係る駆動回路一体型電動圧縮機においては、モータ駆動回路のパワー半導体素子が吐出冷媒ガスで冷却されるように構成されていればよく、具体的な冷却構造については種々の形態を採り得る。例えば、上記パワー半導体素子が高熱伝導性の回路基板上に設けられており、該回路基板の背面が圧縮機の壁(圧縮機内の壁)を介して吐出冷媒ガスで冷却されるように構成されている形態を採ることができる。高熱伝導性の、例えば高熱伝導性のセラミックなどの材料からなる回路基板が用いられることにより、該回路基板を介してパワー半導体素子が高い効率をもって冷却されることになる。
 また、本発明に係る駆動回路一体型電動圧縮機においては、上記パワー半導体素子が低熱伝導性の樹脂で覆われている形態を採り得る。また、上記パワー半導体素子と他の電子部品との間に低熱伝導性の熱遮蔽部材が設けられている形態を採り得る。このような熱伝導性の低い樹脂や熱伝導性の低い部材で遮蔽することで、他の電子部品への熱放射を防止できるので、他の電子部品の温度上昇が抑制でき、モータ駆動回路全体として、さらには圧縮機全体として信頼性が向上する。
 本発明に係る駆動回路一体型電動圧縮機における使用冷媒の種類は特に限定されず、従来から一般的に使用されている冷媒は勿論のこと、CO2 やHFC1234yfも冷媒として使用できる。CO2冷媒の場合は、より高温、高圧で使用されるが、上記のようなワイドバンドギャップ半導体素子の冷却には十分に使用可能である。また、最近発表された新冷媒であるHFC1234yfの場合も、パワー半導体素子の冷却に十分に使用可能である。
 また、本発明に係る駆動回路一体型電動圧縮機において、上記駆動回路のパワー半導体素子を冷却する吐出冷媒ガスとしては、例えば、内蔵モータ、圧縮部(圧縮機構部)をこの順に通過した後の吐出冷媒ガスを用いることもできるし、圧縮部、内蔵モータをこの順に通過した後の吐出冷媒ガスを用いることもできるし、圧縮部を通過した後内蔵モータ部を通過する吐出冷媒ガス(例えば、後述の実施態様の如く、圧縮部を通過した後内蔵モータのステータと駆動回路ハウジングとの間に形成された吐出ガス通路を通過する吐出冷媒ガス)を用いることもできる。
 また、本発明に係る駆動回路一体型電動圧縮機は、例えばスクロール型圧縮機にとくに好適なものである。つまり、スクロール型圧縮機の場合には、吐出冷媒ガスの経路近傍に容易にモータ駆動回路を配置することができ、モータ駆動回路のパワー半導体素子を効率よく冷却することが可能である。
 さらに、本発明に係る駆動回路一体型電動圧縮機は、とくに車両に搭載される圧縮機からなる場合に好適なものである。簡単な構成にて実質的に重量増加を伴うことなく、効率のよいパワー半導体素子の冷却構造を実現できる。中でも、車両用空調装置の冷凍回路に設けられる圧縮機からなる場合にとくに好適なものである。
 本発明に係る駆動回路一体型電動圧縮機によれば、吐出冷媒ガスを利用してパワー半導体素子を冷却するようにしたので、吸入冷媒ガスが圧縮され、吐出される手前までの従来方式のようなガス温の上昇を招かないで済み、高い圧縮効率を達成でき、圧縮機の成績係数(COP)を向上させることができる。とくに、パワー半導体素子としてワイドバンドギャップパワー半導体素子を用いる場合には、吐出冷媒ガスを利用して該パワー半導体素子を効率よく冷却することができる。
 また、吸入冷媒ガスが圧縮され、吐出される手前までのガス温を上げないため、圧縮機の耐久性、寿命を向上できる。さらに、吸入冷媒ガスが従来構造のような冷却のための熱交換ルートを通らなくてもよいため、圧力損失を低減することもできる。
本発明の第1実施態様に係る駆動回路一体型電動圧縮機の概略縦断面図である。 図1の圧縮機におけるモータ駆動回路および制御回路の回路図である。 本発明の第2実施態様に係る駆動回路一体型電動圧縮機の概略縦断面図である。 本発明の第3実施態様に係る駆動回路一体型電動圧縮機の概略縦断面図である。
 以下に、本発明の望ましい実施の形態を、図面を参照して説明する。
 図1は、本発明の第1実施態様に係る駆動回路一体型電動圧縮機100を示している。図1において、1は駆動回路ハウジング、2は圧縮部ハウジング、3は吸入ハウジングを示しており、本実施態様では、吸入ハウジング3内に、ステータ4、ロータ5、モータ巻線6で構成されるモータ13が内蔵されている。このモータ13によって、軸受23により回転自在に支持された駆動シャフト7が回転駆動され、圧縮部8(圧縮機構部)が作動される。圧縮部8は、例えばスクール型に構成されている。
 圧縮機100内には矢印で示すような冷媒ガスの経路が形成され、冷媒ガスは吸入ハウジング3に形成された吸入口9から吸入され、モータ部を通過し、圧縮部8で圧縮された後、駆動回路ハウジング1に形成された吐出口10から外部回路に吐出される。11は密封端子A、12は密封端子Bを示しており、リード線24とともに、モータ駆動回路30からの電力をモータ13へと給電している。
 モータ駆動回路30は、パワー半導体素子15を有しており、パワー半導体素子15はパワー回路基板14上に設けられている。本実施態様では、このパワー半導体素子15としてワイドバンドギャップパワー半導体素子が用いられている。パワー回路基板14は絶縁材16を介して吐出冷媒ガスが通過する部位の駆動回路ハウジング1内の壁26に固定されており、吐出チャンバ25を通過する吐出冷媒ガスを利用して、パワー回路基板14上のパワー半導体素子15が冷却されるようになっている。冷却効率を高めるために、パワー回路基板14、さらには絶縁材16は、高熱伝導性のセラミックなどから構成されている。
 17は、モータ駆動回路30を制御するための制御回路用の基板を示しており、該制御回路基板17上に、制御回路を構成するマイクロコントローラ18が設けられている。外部電源から、コネクタ22を介して給電され、そこからノイズフィルタ20、平滑コンデンサ19を介してモータ駆動回路30に給電される。これら回路部は、蓋21で覆われており、外部から遮断されている。さらに本実施態様では、パワー回路基板14には低熱伝導性の絶縁樹脂27が配されており、該樹脂27でパワー半導体素子15が覆われて、パワー半導体素子15から他の電子部品への熱放射が防止されている。なお、図1における28は、各ハウジング同士を連結するボルトを示している。
 モータ駆動回路30およびその制御回路は、例えば図2に示すように構成されている。図2において、電動圧縮機100には、前述の如くモータ駆動回路30が設けられており、モータ駆動回路30からの出力が密封端子11を介して内蔵モータ13の各モータ巻線6に給電されることによりモータ13が回転駆動され、圧縮部8による圧縮が行われる。このモータ駆動回路30には、外部電源42(例えば、バッテリー)からの電力が、高電圧用コネクタ22を介して給電され、コイルおよびコンデンサが内蔵されたノイズフィルタ20、平滑コンデンサ19を介してインバータ41に供給され、インバータ41で電源42からの直流が疑似三相交流に変換された後、モータ13へと供給される。モータ制御回路45へは、例えば、車両の空調制御装置44から、圧縮機を制御する信号が制御信号用コネクタ43を介して供給される。上記インバータ41には、ワイドバンドギャップ半導体であるショットキーバリアダイオードSiC-SBD47とSiC-MOSFET46からなるパワー半導体素子15が3組合計6個設けられている。後述の第2、第3実施態様に係る駆動回路一体型電動圧縮機においても、同様のモータ駆動回路および制御回路を使用できる。
 このように構成された本実施態様においては、パワー半導体素子15が次のように効率よく冷却される。前述したように、従来のSiパワー半導体は最高動作温度が約150℃であるのに対し、ワイドバンドギャップパワー半導体は200℃以上であるため、吸入冷媒ガスによることなく、一般に100℃代の前半の温度である吐出冷媒ガス温度でも十分冷却することが可能となる。したがって、従来の冷却方式による吸入冷媒ガス温度上昇を防止でき、圧縮効率の向上をはかることができる。また、吸入冷媒ガス温度上昇の抑制により、圧縮機内各部の寿命向上をはかることができる。また、吸入冷媒ガスによるパワー半導体素子冷却のためのガス経路を特別に形成しなくても済むため、圧力損失の低減をはかることもできる。
 また、前述したように、ワイドバンドギャップパワー半導体は素子のオン抵抗が小さいことと、スイッチング損失が小さいことから、素子自体から発生する熱も小さいため、Siパワー半導体に比べ冷却用の熱量も少なくて済む。したがって、吐出冷媒ガスであっても、十分に冷却することが可能となる。
 また、本実施態様のように、パワー半導体素子15が熱伝導性の低い樹脂27で覆われていることにより、例えば制御回路基板17に実装されている電子部品や平滑コンデンサ19、ノイズフィルタ20に対して、熱放射をなくし、温度上昇を防止することができ、それら電子部品の適正な作動を確保することができる。また、図示は省略するが、パワー半導体素子15と制御回路基板17の間に熱遮蔽板で仕切ることも有効である。
 また、本実施態様の構造では、吸入冷媒ガスの経路を考慮する必要がなく、吸入口9の位置が制限されないため、設計の自由度が上がり、車両への取り付けも容易になる。
 さらに、前述の如く、ワイドバンドギャップ半導体素子は耐熱温度が高いため、冷却源として必要以上の低温を作る必要がないため、冷却回路システムのトータル効率が向上する。また、モータ13がネオジウム磁石をローターに使用する場合、磁石が温度上昇で減磁してしまうが、従来の吸入冷媒ガスでパワー半導体素子を冷却する場合には吸入冷媒ガス温度が熱交換で上昇し、その後モータを通過するため磁石を減磁させてしまうおそれがあったが、この問題も解消されることになる。
 図3は本発明の第2実施態様に係る駆動回路一体型電動圧縮機200を示している。本実施態様においては、吸入口9より吸入された冷媒ガスは、吸入ガスチャンバ31を通して直接圧縮部8に導入され、モータ13を通過し、パワー半導体素子15を冷却し、吐出口10より吐出されるようになっている。モータ13のマグネットは吐出冷媒ガスにさらされるため高温減磁特性を持つネオジウム磁石ではなく、低温減磁特性を持つ、フェライトマグネットなどを使用することが好ましい。また、減磁の心配のない磁石のないモータ(誘導モータ、スイッチトリラクタンスモータなど)を使用することも好ましい。その他の構成は前記第1実施態様に準じる。
 このような構成においては、吸入冷媒ガスがモータ13を通る前に直接圧縮部8に入るため、加熱されない。したがって、さらに圧縮効率の向上が可能である。また、吸入冷媒ガスがモータ13を通らずに直接圧縮部8に入るため、この間での圧力損失は実質的に生じない。
 図4は本発明の第3実施態様に係る駆動回路一体型電動圧縮機300を示している。本実施態様においては、モータ13の径方向に駆動回路が搭載されており、圧縮部8から出た吐出冷媒ガスはモータ13のステータ4と駆動回路ハウジング32の間に形成された吐出ガス通路33を通り、モータ駆動回路のパワー半導体素子15を冷却する。駆動回路ハウジング32には駆動回路が組み込まれ、駆動回路ハウジング32内にモータ13が組み込まれている。吸入ハウジング3には圧縮部8が組み込まれており、吸入冷媒ガスが吸入ガスチャンバ26に入り、圧縮部8に送られる。その他の構成は前記第1実施態様に準じる。
 このような構成においては、優れたパワー半導体素子15の冷却効果が得られながら、電動圧縮機300の軸方向長さが短くなり、車両への搭載性が向上する。
 図1、図3、図4ではいずれもパワー半導体素子が高熱伝導性の回路基板上に搭載されている構造のものを示しているが、図示はしないが、ディスクリートタイプのワイドバンドギャップパワー半導体素子を直接圧縮機の壁に取り付けても同じ効果が得られることは言うまでもない。
 本発明に係る駆動回路一体型電動圧縮機の構造は、パワー半導体素子を組み込んだあらゆる電動圧縮機に適用でき、とくに車両に搭載される圧縮機、中でも車両空調装置用圧縮機に好適なものである。
1 駆動回路ハウジング
2 圧縮部ハウジング
3 吸入ハウジング
4 ステータ
5 ロータ
6 モータ巻線
7 駆動シャフト
8 圧縮部
9 吸入口
10 吐出口
11、12 密封端子
13 モータ
14 パワー回路基板
15 パワー半導体素子
16 絶縁材
17 制御回路基板
18 マイクロコントローラ
19 平滑コンデンサ
20 ノイズフィルタ
21 蓋
22 コネクタ
23 軸受
24 リード線
25 吐出チャンバ
26 壁
27 樹脂
28 ボルト
30 モータ駆動回路
31 吸入ガスチャンバ
32 駆動回路ハウジング
33 吐出ガス通路
41 インバータ
42 外部電源
43 制御信号用コネクタ
44 空調制御装置
45 モータ制御回路
46 SiC-MOSFET
47 SiC-SBD
100、200、300 駆動回路一体型電動圧縮機

Claims (13)

  1.  パワー半導体素子を備えたモータ駆動回路が一体的に組み込まれた駆動回路一体型電動圧縮機において、前記駆動回路のパワー半導体素子を吐出冷媒ガスで冷却するように構成したことを特徴とする駆動回路一体型電動圧縮機。
  2.  前記パワー半導体素子がワイドバンドギャップ半導体素子であることを特徴とする、請求項1に記載の駆動回路一体型電動圧縮機。
  3.  前記パワー半導体素子が高熱伝導性の回路基板上に設けられており、該回路基板の背面が圧縮機の壁を介して吐出冷媒ガスで冷却されるように構成されている、請求項1または2に記載の駆動回路一体型電動圧縮機。
  4.  前記パワー半導体素子が低熱伝導性の樹脂で覆われている、請求項1~3のいずれかに記載の駆動回路一体型電動圧縮機。
  5.  前記パワー半導体素子と他の電子部品との間に低熱伝導性の熱遮蔽部材が設けられている、請求項1~4のいずれかに記載の駆動回路一体型電動圧縮機。
  6.  使用冷媒がCO2 である、請求項1~5のいずれかに記載の駆動回路一体型電動圧縮機。
  7.  使用冷媒がHFC1234yfである、請求項1~5のいずれかに記載の駆動回路一体型電動圧縮機。
  8.  前記駆動回路のパワー半導体素子を冷却する吐出冷媒ガスが、内蔵モータ、圧縮部をこの順に通過した後の吐出冷媒ガスである、請求項1~7のいずれかに記載の駆動回路一体型電動圧縮機。
  9.  前記駆動回路のパワー半導体素子を冷却する吐出冷媒ガスが、圧縮部、内蔵モータをこの順に通過した後の吐出冷媒ガスである、請求項1~7のいずれかに記載の駆動回路一体型電動圧縮機。
  10.  前記駆動回路のパワー半導体素子を冷却する吐出冷媒ガスが、圧縮部を通過した後内蔵モータ部を通過する吐出冷媒ガスである、請求項1~7のいずれかに記載の駆動回路一体型電動圧縮機。
  11.  スクロール型圧縮機からなる、請求項1~10のいずれかに記載の駆動回路一体型電動圧縮機。
  12.  車両に搭載される圧縮機からなる、請求項1~11のいずれかに記載の駆動回路一体型電動圧縮機。
  13.  車両用空調装置の冷凍回路に設けられる圧縮機からなる、請求項1~12のいずれかに記載の駆動回路一体型電動圧縮機。
PCT/JP2009/007027 2008-12-18 2009-12-18 駆動回路一体型電動圧縮機 WO2010070927A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US13/141,072 US20110256002A1 (en) 2008-12-18 2009-12-18 Electric Compressor Having Drive Circuit Integrated Thereinto
EP09833234.9A EP2378120B1 (en) 2008-12-18 2009-12-18 Electric compressor having drive circuit integrated thereinto
CN2009801515835A CN102245899A (zh) 2008-12-18 2009-12-18 驱动电路一体型电动压缩机

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-322254 2008-12-18
JP2008322254A JP5531186B2 (ja) 2008-12-18 2008-12-18 駆動回路一体型電動圧縮機

Publications (1)

Publication Number Publication Date
WO2010070927A1 true WO2010070927A1 (ja) 2010-06-24

Family

ID=42268607

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/007027 WO2010070927A1 (ja) 2008-12-18 2009-12-18 駆動回路一体型電動圧縮機

Country Status (5)

Country Link
US (1) US20110256002A1 (ja)
EP (1) EP2378120B1 (ja)
JP (1) JP5531186B2 (ja)
CN (1) CN102245899A (ja)
WO (1) WO2010070927A1 (ja)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5308917B2 (ja) * 2009-05-29 2013-10-09 サンデン株式会社 インバータ一体型電動圧縮機
JP5522009B2 (ja) * 2010-12-02 2014-06-18 株式会社豊田自動織機 電動圧縮機
JP5505356B2 (ja) * 2011-03-31 2014-05-28 株式会社豊田自動織機 電動圧縮機
JP5697038B2 (ja) * 2011-08-08 2015-04-08 サンデン株式会社 電動圧縮機の電気回路耐振構造
JP5413435B2 (ja) * 2011-10-31 2014-02-12 株式会社豊田自動織機 電動コンプレッサ
JP5353992B2 (ja) * 2011-10-31 2013-11-27 株式会社豊田自動織機 電動コンプレッサ
JP2013164048A (ja) * 2012-02-13 2013-08-22 Panasonic Corp 電動コンプレッサ
JP6134127B2 (ja) * 2012-11-21 2017-05-24 三菱重工業株式会社 ヒートシンクを有する機器
EP2932582A2 (de) * 2012-12-14 2015-10-21 Continental Automotive GmbH Aktuator
JP6132567B2 (ja) * 2013-01-31 2017-05-24 ジョンソンコントロールズ ヒタチ エア コンディショニング テクノロジー(ホンコン)リミテッド スクロール圧縮機
JP5831484B2 (ja) * 2013-03-26 2015-12-09 株式会社豊田自動織機 電動圧縮機
JP2015121196A (ja) * 2013-12-25 2015-07-02 株式会社豊田自動織機 電動圧縮機用の半導体装置
JP2015126648A (ja) * 2013-12-27 2015-07-06 株式会社日立産機システム 電力変換装置および電力変換装置の制御方法
FR3019406B1 (fr) * 2014-03-31 2017-09-01 Valeo Systemes De Controle Moteur Convertisseur de tension pour une machine electrique embarquee dans un vehicule
CN107636404B (zh) * 2015-07-03 2020-03-27 三菱电机株式会社 热泵装置
US10907636B2 (en) * 2016-05-09 2021-02-02 Hitachi Industrial Equipment Systems Co., Ltd. Package-type compressor
EP3586149B1 (en) * 2017-02-22 2023-07-26 Stackpole International Engineered Products, Ltd. Pump assembly having a controller including a circuit board and 3d rotary sensor for detecting rotation of its pump
CN107476951B (zh) * 2017-08-08 2019-03-22 中山大洋电机股份有限公司 一体化电动空气压缩机及应用其的燃料电池空气进气系统
CN108334687B (zh) * 2018-01-29 2021-06-25 扬州大学 一种大中型电机运行温升可靠度的预测方法
CN108916050A (zh) * 2018-08-30 2018-11-30 苏州中成新能源科技股份有限公司 一种控制器侧装式电动压缩机及压缩机用控制器盖
IT201900014913A1 (it) * 2019-08-22 2021-02-22 Vhit Spa Pompa

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000357890A (ja) * 1999-06-15 2000-12-26 Matsushita Refrig Co Ltd 冷凍システムのパワー制御装置およびコンプレッサ
JP2004316615A (ja) * 2003-04-21 2004-11-11 Calsonic Compressor Seizo Kk 電動圧縮機
JP2008057425A (ja) * 2006-08-31 2008-03-13 Daikin Ind Ltd 流体機械及びヒートポンプ装置
JP2008057426A (ja) * 2006-08-31 2008-03-13 Daikin Ind Ltd 流体機械及びヒートポンプ装置
JP2008267211A (ja) * 2007-04-18 2008-11-06 Daikin Ind Ltd 流体機械及びヒートポンプ装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2885281B2 (ja) * 1996-11-20 1999-04-19 日本電気株式会社 Dcオフセットキャンセル回路及びそれを用いた差動増幅回路
MY125381A (en) * 2000-03-10 2006-07-31 Sanyo Electric Co Refrigerating device utilizing carbon dioxide as a refrigerant.
JP2002070743A (ja) * 2000-08-29 2002-03-08 Sanden Corp 冷媒圧縮用電動式圧縮機
US6467295B2 (en) * 2000-12-01 2002-10-22 Lg Electronics Inc. Refrigerated cooling apparatus for semiconductor device
DE10302791B4 (de) * 2002-01-30 2016-03-17 Denso Corporation Elektrokompressor
LU90890B1 (en) * 2002-02-15 2003-08-18 Delphi Tech Inc Cooling of electronics in an electrically driven refrigeration system
GB2388404B (en) * 2002-05-09 2005-06-01 Dana Automotive Ltd Electric pump
US7708903B2 (en) * 2005-11-01 2010-05-04 E.I. Du Pont De Nemours And Company Compositions comprising fluoroolefins and uses thereof
EP2022984A1 (en) * 2006-05-16 2009-02-11 Calsonic Kansei Corporation Electric compressor
JP2008061421A (ja) * 2006-08-31 2008-03-13 Daikin Ind Ltd モータ制御装置
JP4719134B2 (ja) * 2006-11-22 2011-07-06 三菱重工業株式会社 インバータ一体型電動圧縮機
JP2008196317A (ja) * 2007-02-08 2008-08-28 Calsonic Kansei Corp 電動コンプレッサ

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000357890A (ja) * 1999-06-15 2000-12-26 Matsushita Refrig Co Ltd 冷凍システムのパワー制御装置およびコンプレッサ
JP2004316615A (ja) * 2003-04-21 2004-11-11 Calsonic Compressor Seizo Kk 電動圧縮機
JP2008057425A (ja) * 2006-08-31 2008-03-13 Daikin Ind Ltd 流体機械及びヒートポンプ装置
JP2008057426A (ja) * 2006-08-31 2008-03-13 Daikin Ind Ltd 流体機械及びヒートポンプ装置
JP2008267211A (ja) * 2007-04-18 2008-11-06 Daikin Ind Ltd 流体機械及びヒートポンプ装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2378120A4 *

Also Published As

Publication number Publication date
EP2378120B1 (en) 2015-02-11
EP2378120A1 (en) 2011-10-19
JP5531186B2 (ja) 2014-06-25
JP2010144607A (ja) 2010-07-01
EP2378120A4 (en) 2012-12-26
US20110256002A1 (en) 2011-10-20
CN102245899A (zh) 2011-11-16

Similar Documents

Publication Publication Date Title
JP5531186B2 (ja) 駆動回路一体型電動圧縮機
US8303270B2 (en) Motor-driven compressor
KR101911768B1 (ko) 유체 기계
WO2009113298A1 (ja) 電力変換装置
JP3744522B2 (ja) 電動圧縮機
JP2008057870A (ja) 冷凍装置
US7179068B2 (en) Electric compressor
JP5611179B2 (ja) 空気調和装置
JP2004293445A (ja) 電動圧縮機
JP6177161B2 (ja) 室外機及びこれを用いた空気調和装置
KR20140027638A (ko) 차량용 전동 압축기
JP2006125302A (ja) オイルフリースクリュー圧縮機
JP2012127650A (ja) 冷凍装置
JP2004293554A (ja) インバータ装置一体型電動圧縮機
KR20140038088A (ko) 차량용 전동 압축기
JP4225101B2 (ja) 電動圧縮機
JP2013164048A (ja) 電動コンプレッサ
CN112994287A (zh) 旋转电机
JP5273232B2 (ja) 電動圧縮機
JP2006037726A (ja) インバータ装置一体型電動圧縮機
JP2009041402A (ja) 気体圧縮機
JP2009257110A (ja) パッケージ型空冷式スクリュー圧縮機
CN113374687B (zh) 压缩装置和车辆用压缩装置单元
JP2004144026A (ja) 冷媒圧縮機
JP6491761B2 (ja) 電力変換回路

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980151583.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09833234

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13141072

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2009833234

Country of ref document: EP