WO2010070900A1 - 永久磁石式回転電機 - Google Patents

永久磁石式回転電機 Download PDF

Info

Publication number
WO2010070900A1
WO2010070900A1 PCT/JP2009/006935 JP2009006935W WO2010070900A1 WO 2010070900 A1 WO2010070900 A1 WO 2010070900A1 JP 2009006935 W JP2009006935 W JP 2009006935W WO 2010070900 A1 WO2010070900 A1 WO 2010070900A1
Authority
WO
WIPO (PCT)
Prior art keywords
permanent magnet
magnetic
rotor
magnet
type rotating
Prior art date
Application number
PCT/JP2009/006935
Other languages
English (en)
French (fr)
Inventor
高橋則雄
堺和人
橋場豊
結城和明
新政憲
松岡佑将
徳増正
Original Assignee
株式会社 東芝
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 東芝 filed Critical 株式会社 東芝
Priority to EP09833207.5A priority Critical patent/EP2378632B1/en
Priority to CN200980150960.3A priority patent/CN102257702B/zh
Priority to US13/140,669 priority patent/US8653710B2/en
Publication of WO2010070900A1 publication Critical patent/WO2010070900A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2753Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
    • H02K1/276Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2753Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
    • H02K1/276Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM]
    • H02K1/2766Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM] having a flux concentration effect
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2201/00Specific aspects not provided for in the other groups of this subclass relating to the magnetic circuits
    • H02K2201/06Magnetic cores, or permanent magnets characterised by their skew

Definitions

  • the present invention relates to a permanent magnet type rotating electrical machine having a permanent magnet built into a rotor, and in particular, the permanent magnet can be disposed so as to penetrate in the axial direction of the iron core and obtain a skew function.
  • the permanent magnet type rotating electrical machine having a permanent magnet built into a rotor, and in particular, the permanent magnet can be disposed so as to penetrate in the axial direction of the iron core and obtain a skew function.
  • the magnetic protrusions (d-axis) in which the magnetic flux easily passes and the magnetic concave parts (q-axis) in which the magnetic flux hardly passes are formed on the outer periphery of the rotor as many as the number of poles.
  • the magnetic flux density between the magnetic convex part and the armature is high in the magnetic convex part, and the magnetic flux density is low in the magnetic concave part having a large magnetic resistance, and reluctance torque is generated by such a change in magnetic flux density.
  • a permanent magnet having a low coercive force (hereinafter referred to as a variable magnetic force magnet) in which the magnetic flux density is irreversibly changed by a magnetic field generated by the d-axis current of the stator winding, and a variable magnetic force magnet are included in the rotor.
  • a high coercivity permanent magnet hereinafter referred to as a fixed magnet
  • the total flux linkage by the variable magnet and the fixed magnet is Techniques have been proposed for adjusting the total flux linkage so as to reduce. (See Patent Document 2 and Patent Document 3)
  • the coercive force as the variable magnetic magnet is A permanent magnet having a small product in the magnetization direction thickness is used, and a permanent magnet having a large product of the coercive force and the magnetization direction thickness is used as the fixed magnet.
  • an Alnico magnet, a samarium cobalt magnet (Samacoba magnet) or a ferrite magnet is used as the variable magnetic magnet, and a neodymium magnet (NdFeB magnet) is used as the fixed magnetic magnet.
  • the rotor cores 2a, 2b and the end surfaces of the permanent magnets 30a, 30b are in contact with each other at the divided skew surface S, and the demagnetizing field due to the armature reaction from the rotor cores 2a, 2b is affected by the end surfaces of the permanent magnets 30a, 30b. Since it is added to the corners and its resistance to demagnetization is weak, it causes demagnetization of the permanent magnet.
  • the rotor core is divided as shown in FIG. 21 in order to reduce torque ripple, vibration, and noise in the same manner.
  • the position of the variable magnetic magnet differs between the divided cores. Since the magnetization direction differs in the axial direction (see FIG. 22), it becomes difficult to magnetize the variable magnetic force magnet, so that sufficient magnetization cannot be performed and the magnetization current increases.
  • variable magnetic force magnet type rotating electrical machine as shown in FIG. 23, a conductive short coil 8 in which a short circuit current flows by a magnetic flux generated during magnetization when the variable magnetic force magnet 3 is magnetized is provided in the rotor. Therefore, it is necessary to bend the short-circuit coil 8 on the divided skew surface, It is difficult to insert and assemble the short-circuit coil 8, and the manufacturability of the rotor is very poor.
  • some of the variable magnetic magnet type rotating electric machines have fixed magnetic force magnets 4a and 4b arranged on both sides of the variable magnetic force magnets 3a and 3b.
  • the short-circuit coil 8 is variable in each divided iron core.
  • the magnets 3a and 3b and the fixed magnets 4a and 4b adjacent to the magnets 3a and 3b are arranged so as to surround the magnets 3a and 3b, it is difficult to incorporate the short-circuit coil 8 in the iron core when the short-circuit coil 8 is bent on the divided skew surface. Work.
  • An object of the present invention is to provide a permanent magnet type rotating electrical machine capable of irreversibly changing and magnetizing a variable magnetic force magnet.
  • the permanent magnet type rotating electrical machine of the present invention adopts a configuration in which the magnetic characteristics in each part of the iron core are different while the mounting position of the permanent magnet in the rotor iron core is the same. It is characterized by exhibiting a skew function.
  • the configuration in which the magnetic characteristics of each iron core are different is, for example, (1)
  • the outer periphery of the rotor of the rotor core is formed in a convex shape, and the center in the circumferential direction of the permanent magnet embedding hole and the center of the outer periphery of the rotor are arbitrarily shifted.
  • a magnetic barrier made of a nonmagnetic material is arranged so as to be asymmetric with respect to the outer peripheral side of the permanent magnet and the center in the circumferential direction of the permanent magnet embedding hole.
  • a plurality of magnets having different magnetic forces are arranged in the rotor core radial cross section, and the magnet arrangement is different for each iron core.
  • a slit is arranged on the outer peripheral side of the permanent magnet and at the boundary position between magnets having different magnetic forces.
  • Only the outer peripheral projections provided on each magnetic pole of the rotor are arranged unevenly in the circumferential direction for each magnetic pole, thereby shifting the position of the magnetic pole within the radial cross section.
  • the outer peripheral convex portions are unevenly distributed in the circumferential direction, and the circumferential positions of the permanent magnets in the respective magnetic poles are also shifted unevenly in the opposite direction to the outer peripheral convex portions.
  • a rotor stage skew effect (reduction of torque ripple, vibration, and noise) can be obtained. Moreover, since the permanent magnet and its mounting hole are in the same position and shape along the axial direction of the iron core, the demagnetizing field due to the armature reaction is not applied to the magnet, so that demagnetization can be suppressed, and Since it is not necessary to divide the permanent magnet, the number of parts is reduced and the productivity is improved.
  • the expanded perspective view of the rotor in the 1st Embodiment of this invention The perspective view of the permanent magnet in the 1st Embodiment of this invention
  • the radial cross-section enlarged view of the rotor in the 1st Embodiment of this invention Radial cross-sectional enlarged view of a rotor in the second embodiment of the present invention Radial cross-sectional enlarged view of a rotor in the third embodiment of the present invention
  • the perspective view of the permanent magnet in the 3rd Embodiment of this invention Radial cross-sectional enlarged view of a rotor in the fourth embodiment of the present invention
  • Radial cross-sectional enlarged view of a rotor in the fifth embodiment of the present invention Sectional drawing of the rotor in the 6th Embodiment of this invention Sectional drawing of the rotor in the 7th Embodiment of this invention
  • the perspective view of the rotor and stator in the 9th Embodiment of this invention The expanded perspective view of the rotor in the 9th Embodiment of this invention
  • the expanded perspective view of the permanent magnet and short circuit coil in the 9th Embodiment of this invention Radial section enlarged view of a rotor in a ninth embodiment of the present invention It is a radial cross-section enlarged view of the permanent magnet rotating electric machine in the ninth embodiment of the present invention, and shows a state where magnetic flux due to a magnetizing current passes through the protrusions 30a and 30b of the second iron core portion.
  • Axial cross-sectional enlarged view of a conventional split core rotor Perspective view of permanent magnet in conventional split iron core type variable magnetic force permanent magnet type rotating electrical machine
  • Radial cross-sectional enlarged view of a conventional split iron core variable magnetic permanent magnet type rotating electrical machine An enlarged perspective view of a permanent magnet and a short-circuit coil in a conventional split iron core type variable magnetic force permanent magnet type rotating electrical machine
  • the permanent magnet type rotating electrical machine of the present embodiment includes rotor cores 2a and 2b that are divided into two in the axial direction.
  • Permanent magnets 30 are mounted at the positions of the magnetic poles in the rotor core.
  • the permanent magnet 30 of each magnetic pole is constituted by a single plate-like member that penetrates the two divided rotor cores 2a and 2b in the actual direction. That is, the permanent magnet 30 is disposed at the same position in each magnetic pole of the divided rotor cores 2a and 2b. Therefore, one permanent magnet 30 constitutes iron core portions 30a and 30b arranged at the magnetic poles of the rotor iron cores 2a and 2b.
  • Projections 31a and 31b are provided along the axial direction of the rotor on the outer circumferences of the magnetic poles of the rotor cores 2a and 2b, respectively.
  • the convex portions 31a and 31b are provided at positions shifted for each of the two divided rotor cores 2a and 2b. That is, as shown in the cross-sectional view of FIG. 3, the convex portions 31a and 31b are provided at positions shifted by the same angle in either direction with the center line of the magnetic pole as a boundary.
  • the two rotor cores 2a and 2b are overlapped, and a single permanent magnet 30 is inserted into the mounting hole so that the convex portions 31a and 31b are displaced by the same angle with respect to the magnetic pole center line, and the permanent magnet 30 obtains the rotor cores 2a and 2b of this embodiment provided at the same position of the magnetic poles.
  • the rotor magnetic flux density is increased in the convex portions 31a and 31b on the outer periphery of the rotor, and the portion becomes the magnetic pole center of the magnetic pole. Therefore, the convex portions 31a and 31b are pivoted.
  • the rotor cores 2a and 2b are configured by being shifted in the circumferential direction in the direction of the rotor, whereby the rotor stage skew effect (reduction in torque ripple, vibration, and noise) can be obtained.
  • the permanent magnet 30 and the embedded hole have the same position and shape along the axial direction, a demagnetizing field due to the armature reaction is not applied to the magnet, so that demagnetization can be suppressed.
  • FIG. 4 is a cross-sectional view showing a second embodiment of the present invention.
  • the permanent magnets 30 provided in the rotor cores 2a and 2b are arranged such that the gap, which is the nonmagnetic portion 32, is shifted to one side with respect to the center line in the circumferential direction.
  • the direction in which the nonmagnetic portion 32 is displaced from the magnetic pole center is the same angle in the opposite direction.
  • the shape of the nonmagnetic part 32 and the shape of the permanent magnet 30 are the same shape.
  • the rotor cores 2a and 2b are manufactured by the same method as in the first embodiment.
  • the rotor cores 2a and 2b having the same shape are manufactured, and one of the rotor cores 2a and 2b is turned over, and the nonmagnetic portion 32 is displaced.
  • the rotor 1 is configured by stacking in the axial direction.
  • the magnetic flux generated from the permanent magnet 30 is biased by the presence of the non-magnetic portion 32, and the center of the magnetic pole is shifted to one side. Therefore, similarly to the first embodiment, demagnetization of the permanent magnet can be suppressed, and it is not necessary to divide the magnet. Therefore, the number of parts is small, and the productivity is improved. Further, in the second embodiment, since the protrusions 31a and 31b do not exist on the outer periphery of the rotor, the same is maintained while maintaining the minimum gap of the average gap (air gap) between the rotor 1 and the stator 10. The skew effect can be obtained.
  • FIG. 5 is a cross-sectional view showing a third embodiment of the present invention.
  • the permanent magnet 33 having a strong magnetic force and the permanent magnet 34 having a weak magnetic force are arranged side by side, the magnetic flux density on the side of the permanent magnet 33 having a strong magnetic force is increased, and the magnetic pole center of the magnetic pole has a magnetic force. It shifts to the strong permanent magnet 33 side. Then, the permanent magnet having such a configuration is inserted into the rotor cores 2a and 2b. In this case, as shown in FIG.
  • the rotor 1 is configured by inserting the rotor cores 2a and 2b in which the one permanent magnet is laminated.
  • the individual permanent magnets can be sequentially mounted in the rotor cores 2a and 2b.
  • the rotor cores 2a and 2b can also be manufactured from laminated silicon steel sheets and other materials as one block. Further, as in the above embodiments, the rotor cores 2a and 2b having the same shape, including the arrangement of the permanent magnets 33 and 34, can be prepared, and one of them can be turned over and then overlapped. .
  • the rotor cores 2a and 2b are stacked by rearranging the arrangement of the permanent magnets 33 and 34 in the axial direction. Therefore, as in the first embodiment, the demagnetization of the permanent magnet can be suppressed, and the magnet embedding hole is an axial straight, so the magnet can be integrally molded (adhered) in advance and incorporated. There are few parts and manufacturability improves. In addition, since the rotor cores 2a and 2b do not require convex shapes or gaps, the cross-sectional shape is simple, and it is possible to manufacture an iron core mold at a low cost. Since it is kept low, a robust rotor can be obtained.
  • FIG. 7 shows a fourth embodiment of the present invention.
  • the fourth embodiment is a modification of the third embodiment, in which one permanent magnet 33 having a strong magnetic force and two permanent magnets 34-1 and 34-2 having different weak magnetic forces are rotated. It is incorporated in the cores 2a and 2b.
  • the permanent magnets 33, 34-1 and 34-2 having magnetic force of three stages (multiple stages) are arranged in the magnetic pole, the axial direction is smooth (fine). Skew can be performed.
  • the magnet embedding hole is divided in the fourth embodiment, the magnet can be easily inserted and assembled.
  • the permanent magnet mounting hole is divided into a plurality of divisions, the rotational centrifugal force of the permanent magnet is dispersed, so that the rotor core stress can be kept low and a robust rotor can be obtained. Is possible.
  • FIG. 8 is a cross-sectional view of a fifth embodiment of the present invention.
  • the rotor cores 2a and 2b of the third embodiment are further provided with slits 35 on the outer periphery thereof.
  • the slit is provided at a target position across the center line of the magnetic pole. That is, similarly to the first or second embodiment, the rotor cores 2a and 2b having the same shape are produced and turned over and stacked.
  • the demagnetization of the permanent magnet can be suppressed, and the magnet embedding hole is straight in the axial direction, so that the magnet can be integrally molded (adhered) and incorporated in advance. Therefore, the number of parts is small and the manufacturability is improved.
  • the magnetic path on the outer circumference of the permanent magnet 33 having a strong magnetic force and the permanent magnet 34 having a low magnetic force is partitioned and the magnetic path is effectively divided, the magnetic pole center is located on the permanent magnet 33 side having a strong magnetic force. Can be further shifted, and the skew effect can be enhanced. Further, demagnetization of the permanent magnet can be suppressed.
  • the magnetic path of the permanent magnet outer peripheral portion core is divided, so that the magnetic fluxes of different magnetic magnets are difficult to mix. Therefore, the magnetic pole center can be further shifted, and a high skew effect can be obtained.
  • the magnetic pole position can be confirmed at a glance at the outer periphery of the rotor core, mistakes during assembly of the rotor core can be prevented.
  • FIG. 9 is a cross-sectional view of a sixth embodiment of the present invention.
  • the permanent magnets are arranged so that the angle of the magnetic pole center indicated by ⁇ in the figure (the center of the variable magnetic force magnet 3 of each magnetic pole) is the same for all the magnetic poles, and the outer peripheral convex portion 31 has an angle for each adjacent magnetic pole.
  • ⁇ or ⁇ are provided differently such as ⁇ or ⁇ .
  • the rotor core 2 does not need to be divided in the axial direction.
  • three permanent magnets are arranged for each magnetic pole, for example, the variable magnetic magnet 3 is arranged in the center, and the fixed magnetic magnets 4 and 4 are arranged on both sides, but a single permanent magnet is arranged.
  • the nonmagnetic portion 32, the permanent magnets 33 and 34, the slit 35, and the like having the shapes described in the second to fifth embodiments may be disposed.
  • the rotor core 2 has a configuration in which only the outer peripheral convex portion is arranged unevenly in the circumferential direction, it is not necessary to be reversed and stacked to assemble in the axial direction, so that the productivity is improved.
  • FIG. 10 is a cross-sectional view of a seventh embodiment of the present invention.
  • the outer circumferential convex portions 31 are not evenly distributed in the circumferential direction, and the circumferential positions of the permanent magnets 3, 4, 4 in each magnetic pole are also outer circumferential convex portions 31.
  • the skew angle (shift angle) can be made larger by unequally shifting in the opposite direction. That is, in the seventh embodiment, that is, with respect to the angle of the magnetic pole center indicated by ⁇ in the figure, the angle between the center in the circumferential direction of the permanent magnet 3 and the center of the rotor outer circumferential convex portion 31 is the angle between the magnetic poles.
  • the outer peripheral convex portion 31 is also provided with an angle of ⁇ or ⁇ different for each adjacent magnetic pole. Moreover, when it sees as the whole rotor, the permanent magnet 3 and the rotor outer peripheral convex part 31 are arrange
  • the seventh embodiment it is not necessary to divide the rotor core in the axial direction by simply arranging the outer circumferential convex portion 31 and the permanent magnets 3, 4, 4 in an irregular manner in the circumferential direction of the rotor 1. Therefore, it is not necessary to invert and assemble the rotor core 2 in the axial direction, so that the productivity is improved. Moreover, similarly to the above embodiment, it is possible to suppress the demagnetization of the permanent magnet while obtaining the skew effect. In addition, since it is possible to obtain a skew effect with a single cross-sectional shape, it is not necessary to manufacture a plurality of iron core dies, and the manufacturing cost can be suppressed.
  • FIG. 11 is a perspective view showing an eighth embodiment of the present invention.
  • the eighth embodiment only the outer peripheral convex portions 31 provided on the magnetic poles of the rotor 1 shown as the sixth embodiment are arranged with two rotor cores 2a, 2a arranged unevenly in the circumferential direction for each magnetic pole. In between, the rotor cores 2a, 2a are turned upside down, and the rotor core 2b is laminated. In this case, the rotor core 2b disposed in the center is twice as thick as the rotor cores 2a on both sides.
  • the eighth embodiment only the outer peripheral convex portion 31 is arranged unevenly in the circumferential direction, and the rotor core 2b is reversed and stacked in the axial direction to constitute the rotor 2, thereby the sixth embodiment.
  • the skew effect can be further obtained as compared with the above configuration.
  • it is inverted and the iron core is stacked, so that the skew amount (deviation angle) ) Can be increased, and the skew effect can be increased.
  • the permanent magnets 3 and 4 and their mounting holes are in the same position and shape along the axial direction, so that the demagnetizing field due to the armature reaction is not easily applied to the permanent magnet. Therefore, demagnetization can be suppressed and there is no need to divide the permanent magnet, so the number of parts is reduced and the productivity is improved.
  • FIGS. 12 to 18 show a ninth embodiment of the present invention.
  • a pair of fixed magnetic magnets 4 and 4 are provided with a variable magnetic magnet 3 sandwiched in one magnetic pole.
  • the rotor 1 of the ninth embodiment includes a rotor core 2, a variable magnetic force magnet 3, and a fixed magnetic force magnet 4, as shown in FIGS.
  • the rotor core 2 is formed by laminating silicon steel plates, and the permanent magnet is embedded in the rotor core 2.
  • the variable magnetic force magnet 3 is a ferrite magnet or an alnico magnet.
  • a ferrite magnet is used.
  • the fixed magnetic magnet 4 was an NdFeB magnet.
  • the coercive force of this variable magnetic magnet is 280 kA / m, and the coercive force of the fixed magnetic magnet is 1000 kA / m.
  • the variable magnetic force magnet 3 is disposed in the rotor core 2 along the d-axis at the center of the magnetic pole, and the magnetization direction is substantially the circumferential direction.
  • the fixed magnetic magnet 4 is disposed in the rotor core 2 on both sides of the variable magnetic magnet 3 so that the magnetization direction has a predetermined angle with respect to the d-axis direction.
  • a short-circuit coil 8 is provided so as to surround the fixed magnetic magnet 4 embedded in the rotor core 2.
  • the short-circuit coil 8 is composed of a ring-shaped conductive member and is provided in a magnetic path portion of the fixed magnetic magnet 4 excluding the variable magnetic magnet 3.
  • a short-circuit coil 8 is provided around the fixed magnetic magnet 4 with the magnetization direction of the fixed magnetic magnet 4 as the central axis.
  • the short-circuit coils 8 are respectively provided above and below the fixed magnetic force magnet 4, but may be either one above or below. Further, although the short-circuit coil 8 is provided in parallel with the upper and lower surfaces (direction perpendicular to the magnetization direction) of the fixed magnetic magnet, one or two X-shaped can be provided in the diagonal direction of the short-circuit coil. Further, in addition to being provided in close contact with the surface of the fixed magnetic magnet, it may be provided so as to surround the fixed magnetic magnet and the bridge portion 6 between the fixed magnetic magnet and the variable magnetic magnet as illustrated. Also, instead of the short-circuit coil, a conductive member, for example, Conductive plates can also be provided on the upper and lower surfaces and the outer periphery of the fixed magnetic magnet 4.
  • the short-circuit coil 8 has a short-circuit current to the extent that the magnetization of the variable magnetic force magnet 3 changes within 1 second and then attenuates the short-circuit current by 50% or more within 1 second. Further, if the inductance value and the resistance value of the short-circuiting coil 8 are set to such values that a short-circuit current that changes the magnetization of the variable magnetic force magnet 3 flows, the efficiency is good.
  • a stator 10 is provided on the outer periphery of the rotor 2 through an air gap 9.
  • the stator 10 has an armature core 11 and an armature winding 12.
  • An induced current is induced in the short circuit coil 8 by the magnetizing current flowing through the armature winding 12, and a magnetic flux penetrating the short circuit coil 8 is formed by the induced current. Due to the magnetization current flowing through the armature winding 12, the magnetization direction of the variable magnetic force magnet 3 changes reversibly.
  • the permanent magnet 3 is magnetized by a magnetic field generated by the d-axis current during operation of the permanent magnet type rotating electric machine, and the amount of magnetic flux of the variable magnetic magnet 3 is irreversibly changed.
  • the d-axis current for magnetizing the variable magnetic force magnet 3 is passed, and at the same time, the torque of the rotating electrical machine is controlled by the q-axis current.
  • the magnetic flux generated by the d-axis current causes the amount of interlinkage magnetic flux of the armature windings (of the rotating electric machine) generated by the current (total current obtained by combining the q-axis current and the d-axis current), the variable magnetic magnet, and the fixed magnetic magnet.
  • the amount of interlinkage magnetic flux in the entire armature winding composed of the magnetic flux generated in the armature winding by the total current and the magnetic flux generated by the variable magnetic magnet and the fixed magnetic magnet on the rotor side is reversibly changed.
  • the variable magnetic force magnet 3 is irreversibly changed by a magnetic field generated by an instantaneous large d-axis current. In this state, operation is carried out by continuously supplying a d-axis current in a range where little or no irreversible demagnetization occurs.
  • the d-axis current at this time acts to adjust the terminal voltage by advancing the current phase.
  • the rotor cores 2 a and 2 b have outer circumferential protrusions 31 a and 31 b that are shifted in the circumferential direction.
  • the permanent magnets 3 and 4 and the short-circuiting coil 8 are one rectangular bar-like member and penetrate the two rotor cores 2a and 2b.
  • the rotor cores 2a and 2b having the same shape are overlapped with each other. To do.
  • the outer peripheral convex portions 31a and 31b that are offset in order to exert a skew effect between the divided rotor cores 2a and 2b are used.
  • the non-peripheral portions as in the second to fifth embodiments are not used. It is also possible to obtain a skew effect by the magnetic part 32 and the slit 35. Even in that case, the permanent magnets 3 and 4 and the short-circuit coil 8 use one rod-like member and penetrate the two rotor cores 2a and 2b into which they are divided.
  • a magnetic field is formed by passing a pulsed current that is an extremely short current of about 0.1 ms to 100 ms through the armature winding 12 of the stator 10, and the magnetic field A is applied to the variable magnetic force magnet 3. Act (see FIG. 12).
  • the pulse current that forms the magnetic field A for magnetizing the permanent magnet is the d-axis current component of the armature winding 12 of the stator 10.
  • the change in the magnetization state of the permanent magnet due to the acting magnetic field due to the d-axis current will vary depending on the magnitude of the coercive force.
  • a negative d-axis current that generates a magnetic field in the direction opposite to the magnetization direction of the permanent magnet is pulsed through the armature winding 12. If the magnetic field A in the magnet changed by the negative d-axis current becomes ⁇ 280 kA / m, the coercive force of the variable magnetic magnet 3 is 280 kA / m, so that the magnetic force of the variable magnetic magnet 3 is irreversibly greatly reduced.
  • the coercive force of the fixed magnetic magnet 4 is 1000 kA / m, the magnetic force does not decrease irreversibly.
  • the pulsed d-axis current becomes zero, only the variable magnetic force magnet 3 is demagnetized, and the amount of interlinkage magnetic flux by the entire magnet can be reduced.
  • a reverse magnetic field greater than ⁇ 280 kA / m is applied, the variable magnetic force magnet 3 is magnetized in the reverse direction and the polarity is reversed. In this case, since the magnetic flux of the variable magnetic magnet 3 and the magnetic flux of the fixed magnetic magnet 4 cancel each other, the total interlinkage magnetic flux of the permanent magnet is minimized.
  • the direction of the magnetic force of the fixed magnetic force magnet 4 is from the fixed magnetic force magnet 4 to the variable magnetic force magnet 3 as shown in FIG. Since they match, a strong magnetic force acts in the direction of demagnetizing the variable magnetic force magnet 3.
  • an induced current that cancels the magnetic field A of the armature winding 12 is generated in the short-circuit coil 8, and a magnetic field having a magnetic force direction as indicated by an arrow C in FIG. 12 is generated by the induced current.
  • the magnetic force C generated by the short-circuit coil 8 also acts so as to direct the magnetization direction of the variable magnetic force magnet 3 in the reverse direction.
  • the process of increasing the total flux linkage of the permanent magnet and restoring it to the maximum will be described.
  • the demagnetization completed state as shown in FIG. 13, the polarity of the variable magnetic force magnet 3 is reversed, and a positive magnetic field that generates a magnetic field in a direction opposite to the reversed magnetization (the initial magnetization direction shown in FIG. 12) is generated.
  • a d-axis current is passed through the armature winding 12.
  • the magnetic force of the reversed reversed polarity variable magnetic magnet 3 decreases as the magnetic field increases and becomes zero.
  • the polarity is reversed and magnetized in the direction of the initial polarity.
  • 350 kA / m which is a magnetic field necessary for almost complete magnetization, is applied, the variable magnetic force magnet 3 is magnetized and generates a magnetic force almost at its maximum.
  • the magnetic force of the variable magnetic magnet 3 is irreversibly changed, and the total interlinkage magnetic flux of the permanent magnet Can be arbitrarily changed.
  • the short-circuit coil 8 is disposed on the fixed magnetic magnet 4 and the surrounding bridge portion 6.
  • the short-circuit coil 8 is arranged with the magnetization direction of the fixed magnetic magnet 4 as the central axis.
  • the magnetic field A ⁇ b> 1 due to the d-axis current acts on the fixed magnetic force magnet 4
  • an induced current that cancels the magnetic field A flows to the short-circuit coil 8.
  • the magnetic field A1 caused by the d-axis current and the magnetic field C caused by the short-circuit current act and cancel each other, so that the magnetic field hardly increases or decreases. That is, since the magnetic field A1 ⁇ 0, the variable magnetic force magnet 3 can be effectively magnetized with a small magnetization current.
  • the fixed magnetic magnet 4 is not affected by the d-axis current due to the short-circuit coil 8 and the magnetic flux hardly increases, so that the magnetic saturation of the armature core 11 due to the d-axis current can be reduced. That is, in the armature core 11, when the magnetic field A generated by the d-axis current passes through the magnetic path formed between the armature windings 12, there is a possibility that magnetic saturation of that portion occurs. However, in the present embodiment, the portion of the magnetic field C of the short-circuit coil 8 that passes through the magnetic path of the armature core 11 acts in the opposite direction to the magnetic field A caused by the d-axis current, so that A1 ⁇ 0. Magnetic saturation of the magnetic path of the child core 11 is alleviated.
  • the short-circuit coil 8 is provided so as to surround the bridge portion 6, a short-circuit current flows through the short-circuit coil 8 also by the magnetic field A 2 acting on the bridge portion 6.
  • the short-circuit coil 8 is disposed in the vicinity of the variable magnetic force magnet 3, it is possible to efficiently cancel out the magnetic field acting other than the variable magnetic force magnet.
  • the magnetic saturation of the armature core 11 due to the d-axis current can be reduced. That is, in the armature core 11, when the magnetic field A generated by the d-axis current passes through the magnetic path formed between the armature windings 12, there is a possibility that magnetic saturation of the portion occurs. However, in the present embodiment, the magnetic field C of the short-circuit coil 8 cancels the magnetic field A1 + the magnetic field A2, and the magnetic field A1 + the magnetic field A2 ⁇ 0. Therefore, among the magnetic flux passing through the magnetic path of the armature core 11, the magnetic field A1 and the magnetic field A2 This reduces the magnetic saturation of the magnetic path of the armature core 11.
  • the center of the magnetic field that magnetizes the variable magnetic magnet 3 created by the armature winding, and the magnetic pole center of the variable magnetic magnet 3 of the rotor 2 that is, when the outer circumferential convex portion 31 of the rotor matches the stator teeth 13, sufficient magnetization can be performed even in the variable magnetic force magnet 3 having a different magnetic pole center in the axial direction. Thus, the magnetizing current can be reduced.
  • the present invention is not limited to the above-described embodiments, and includes the following other embodiments.
  • the ski function is exhibited by shifting the outer peripheral convex portion 31, but instead of this outer peripheral convex portion, the second embodiment to the fifth embodiment show.
  • the gaps and strengths of the permanent magnets as in the second embodiment to the fifth embodiment are made permanent.
  • the skew angle (shift angle) can be made larger.
  • the outer peripheral convex portion 31 provided on each magnetic pole of the rotor 1 is disposed between two rotor cores 2a, 2a that are unevenly arranged in the circumferential direction for each magnetic pole. It is also possible to stack the rotor core 2b with the rotor cores 2a, 2a upside down. In this case, the rotor core 2b disposed in the center can be twice as thick as the rotor cores 2a on both sides.
  • each of the above embodiments has a variable magnetic magnet arranged in the center and fixed magnetic magnets arranged on both sides thereof, but can be applied to other arrangements of variable magnetic magnets and fixed magnetic magnets.
  • the rotor cores 2a and 2b having different shapes with different positions of the outer peripheral convex portions 31a and 31b can be prepared.
  • the non-magnetic portion 32 and the like may be prepared by superimposing rotor cores 2a and 2b having different shapes.

Abstract

 モータ特性を低下させることなく、永久磁石の減磁を抑制し、製造が容易な永久磁石式回転電機を提供する。回転子1は、軸方向に2分割された回転子鉄心2a,2bを備える。この回転子鉄心における各磁極の位置には、永久磁石30を装着する。各磁極の永久磁石30は、分割された2つの回転子鉄心2a,2bを実方向に貫通する1本の板状の部材によって構成する。各回転子鉄心2a,2bの各磁極の外周には、それぞれ凸部31a,31bを回転子の軸方向に沿って設ける。この凸部31a,31bは、分割された2つの回転子鉄心2a,2bごとにずれた位置に設ける。回転子外周の凸部31a,31bにおいて回転子磁束密度が高くなり、その部分が磁極の磁極中心となる。2つの回転子鉄心2a,2bにおいて、外周凸部31a,31bの位置がずれているため、永久磁石30の位置は同じでもスキュー機能が発揮される。

Description

永久磁石式回転電機
 本発明は、回転子内部に永久磁石を内蔵した永久磁石式回転電機に関するものであって、特に、永久磁石を鉄心の軸方向に貫通するように配置し、しかもスキュー機能を得ることを可能とした永久磁石式回転電機に係る。
 近年、永久磁石の目覚しい研究開発により、高磁気エネルギー積の永久磁石が開発され、回転電機の小型・高出力化が進められている。特にハイブリット自動車向けのような車両用を用途とする回転電機では、排出ガスの抑制、燃費向上のため、高効率化を強く求められている。また、搭載スペースが小さく、限られた空間の中で高トルク、高出力化を要求されており、これまでになく高エネルギー密度の回転電機となっていることから、これに伴い回転電機の電磁加振力も増加し、振動、騒音の増加が問題となっている。特に、ハイブリット自動車向けでは、車室内の静粛性、並びに車外への騒音低減が厳しく求められている。
 そこで、回転子積層鉄心をブロック状にし、それらを円周方向にずらし、結束することにより、スキューと類似する効果を得ることで、トルクリップル、振動、騒音を減少させることができるリラクタンス型回転電機の回転子が提案されている。(例えば、特許文献1参照)。
 すなわち、このリラクタンス型回転電機は、回転子の外周に磁束が通り易い磁気的凸部(d軸)と磁束が通り難い磁気的凹部(q軸)とが極数と同数形成されている。この回転電機は磁気的凸部では電機子との間の空隙磁束密度が高く、磁気抵抗の大きい磁気的凹部では空隙磁束密度が低く、このような磁束密度の変化によってリラクタンストルクが発生する。特に、回転子に永久磁石を埋め込み磁気的突極性を持たせた永久磁石型リラクタンス回転電機では、リラクタンストルクに加え永久磁石と電機子磁極との間の磁気吸引力及び磁気反発力によるトルクが発生し、総じて大きなトルクが得られ、回転電機の体積当たりの出力密度を高くすることができる。
 この種の回転子内に永久磁石を内蔵した永久磁石式回転電機では、永久磁石の鎖交磁束が常に一定の強さで発生しているので、永久磁石による誘導電圧は回転速度に比例して高くなる。そのため、低速から高速まで可変速運転する場合、高速回転では永久磁石による誘導電圧(逆起電圧)が極めて高くなる。永久磁石による誘導電圧がインバータの電子部品に印加されてその耐電圧以上になると、電子部品が絶縁破壊する。そのため、永久磁石の磁束量が耐電圧以下になるように削減された設計を行うことが考えられるが、その場合には永久磁石式回転電機の低速域での出力及び効率が低下する。
 そこで、回転子内に、固定子巻線のd軸電流で作る磁界により不可逆的に磁束密度が変化する程度の低保磁力の永久磁石(以下、可変磁力磁石という)と、可変磁力磁石の2倍以上の保磁力を有する高保磁力の永久磁石(以下、固定磁力磁石という)を配置し、電源電圧の最大電圧以上となる高速回転域では、可変磁力磁石と固定磁力磁石による全鎖交磁束が減じるように、全鎖交磁束量を調整する技術が提案されている。(特許文献2、特許文献3参照)
 永久磁石の磁束量は、保磁力と磁化方向厚の積によって決定されるため、実際に回転子鉄心内に可変磁力磁石と固定磁力磁石とを組み込む場合には、可変磁力磁石としては保磁力と磁化方向厚の積が小の永久磁石を、固定磁力磁石としては保磁力と磁化方向厚の積が大の永久磁石を使用する。一般に、可変磁力磁石としては、アルニコ磁石やサマリウムコバルト磁石(サマコバ磁石)、フェライト磁石を使用し、固定磁力磁石としてはネオジム磁石(NdFeB磁石)を使用する。
 この種の永久磁石式回転電機において、高速回転域でいったん減磁した可変磁力磁石を増磁する場合に、可変磁力磁石に近接配置した固定磁力磁石の磁界が、d軸電流が作る増磁用の磁界の妨げとなり、その分増磁のためのd軸電流(磁化電流)が増大する現象がある。このような現象に対応するため、本発明者等は、固定磁力磁石の近傍に短絡コイルを配置し、この短絡コイルを貫通するd軸電流による磁界によって短絡コイルに誘導電流を発生させ、その誘導電流により前記固定磁力磁石により発生する磁界を打ち消すことにより、増磁時のd軸電流の増加を押さえた永久磁石式回転電機を提案した(特願2008-162203)。
特開2005-51897号公報 特開2006-280195号公報 特開2008-48514号公報
 ところで、小型、高出力が求められる永久磁石式回転電機では、高トルク、高出力を得るため、大電流、起磁力が必要となり、それに伴い電機子反作用磁界が永久磁石に加わるため、永久磁石の減磁が生じる問題が発生している。加えて、前記従来のリラクタンス型回転電機においては、図19及び図20に示すように、ブロック状の回転子積層鉄心2a,2b及びそれに内蔵した永久磁石30a,30bを周方向にずらし、結束する段スキューにより、トルクリップル、振動、騒音を減少させている。しかし、分割スキュー面Sにおいて回転子鉄心2a,2bと永久磁石30a,30bの端面が接触しており、回転子鉄心2a,2bからの電機子反作用による反磁界が、永久磁石30a,30bの端面、角部に加わり、且つ耐減磁性が弱いことから、永久磁石の減磁が発生する原因となっている。
 また、従来の可変磁力磁石式回転電機では、同様にトルクリップル、振動、騒音を軽減させるため、図21のように回転子鉄心を分割して段スキューを行なっている。この回転電機において、電機子巻線が作る磁界により回転子の磁極を構成する可変磁力の永久磁石を磁化させる場合、分割した鉄心部間で可変磁力磁石の位置が異なることから、可変磁力磁石の磁化方向が軸方向で異なるため(図22参照)、可変磁力磁石を磁化することが困難となるため、十分な磁化ができず、磁化電流が増加する。
 加えて、可変磁力磁石式回転電機において、図23に示すように、可変磁力磁石3の磁化を行なう際に磁化時に発生する磁束によって短絡電流が流れる導電性の短絡コイル8を回転子内に設けているため、分割スキュー面で短絡コイル8を折り曲げる必要があって、
 短絡コイル8の挿入組立が難しく、回転子の製造性が非常に悪い。特に、可変磁力磁石式回転電機の中には、可変磁力磁石3a,3bの両側に固定磁力磁石4a,4bを配置するものがあるが、この短絡コイル8は、分割された各鉄心中の可変磁力磁石3a,3bとそれに隣接する固定磁力磁石4a,4bを取り囲むように配置されるため、分割スキュー面で短絡コイル8が屈曲していると、鉄心内に短絡コイル8を組み込むためには困難な作業が伴う。
 本発明は上述した課題を解決するためになされたものであり、モータ特性を低下させることなく、永久磁石の減磁を抑制し、製造が容易となり、且つ少ない磁化電流で効果的に磁束量を不可逆的に変化させて可変磁力磁石を増磁することができる永久磁石式回転電機を提供することを目的とする。
 前記の目的を達成するために、本発明の永久磁石式回転電機は、回転子鉄心内における永久磁石の装着位置は同一としながらも、鉄心各部における磁気特性を異ならせる構成を採用することで、スキュー機能を発揮させることを特徴とする。
 この場合、各鉄心における磁気特性を異ならせる構成とは、例えば、
 (1) 回転子鉄心の回転子外周を凸形状とし、当該永久磁石埋め込み穴の周方向中心と回転子外周凸部中心とを任意にずらし配置する。
 (2) 永久磁石外周側、且つ永久磁石埋め込み穴の周方向中心に対し、非対称となるよう非磁性材からなる磁気障壁を配置する。
 (3) 回転子鉄心半径断面内に複数の磁力の異なる磁石を配置し、且つその磁石配列を各鉄心で異ならせる。
 (4) 永久磁石外周側、且つ磁力の異なる磁石の境界位置にスリットを配置する。
 (5) 回転子の各磁極に設けた外周凸部のみ、磁極ごとに周方向に不等配に配置することより、半径断面内において磁極の位置をずらす。
 (6) 外周凸部を周方向に不等配とすると共に、各磁極における永久磁石の周方向位置も外周凸部と逆方向に不等配にずらす。
 などの手段を単独あるいは組み合わせて使用する。
 また、可変磁力磁石と短絡コイルを組み合わせた永久磁石式回転電機に前記(1) から(6) の構成を組み合わせること、電機子巻線が作る可変磁力磁石を磁化する磁界の中心と回転子の可変磁力磁石の磁極中心が一致した時に、磁化を行なうことも本発明の一態様である。
 前記のような構成を有する本発明の永久磁石式回転電機では、回転子の段スキュー効果(トルクリップル、振動、騒音の低減)を得ることができる。しかも、永久磁石及びその装着孔は鉄心の軸方向に沿って同一位置、形状であることから、電機子反作用による反磁界が磁石に加わることがないため、減磁を抑制することができ、且つ永久磁石を分割する必要がないことから、部品点数が減り、製造性が向上する。
本発明の第1の実施形態における回転子の拡大斜視図 本発明の第1の実施形態における永久磁石の斜視図 本発明の第1の実施形態における回転子の半径断面拡大図 本発明の第2の実施形態における回転子の半径断面拡大図 本発明の第3の実施形態における回転子の半径断面拡大図 本発明の第3の実施形態における永久磁石の斜視図 本発明の第4の実施形態における回転子の半径断面拡大図 本発明の第5の実施形態における回転子の半径断面拡大図 本発明の第6の実施形態における回転子の断面図 本発明の第7の実施形態における回転子の断面図 本発明の第8の実施形態における回転子の斜視図 本発明の第9の実施形態における回転子の半径断面拡大図で、可変磁力磁石3をd軸電流により減磁する状態を示す 本発明の第9の実施形態における回転子の半径断面拡大図で、可変磁力磁石3をd軸電流により増磁する状態を示す 本発明の第9の実施形態における回転子及び固定子の斜視図 本発明の第9の実施形態における回転子の拡大斜視図 本発明の第9の実施形態における永久磁石と短絡コイルの拡大斜視図 本発明の第9の実施形態における回転子の半径断面拡大図 本発明の第9の実施形態における永久磁石回転電機の半径断面拡大図で、第2の鉄心部の突起30a,30bを磁化電流による磁束が通過する状態を示す 従来の分割鉄心型回転子の軸断面拡大図 従来の分割鉄心型可変磁力永久磁石式回転電機における永久磁石の斜視図 従来の分割鉄心型可変磁力永久磁石式回転電機における回転子の斜視図 従来の分割鉄心型可変磁力永久磁石式回転電機の半径断面拡大図 従来の分割鉄心型可変磁力永久磁石式回転電機における永久磁石と短絡コイルの拡大斜視図
(1)第1実施形態
 本発明の第1実施形態を図1により説明する。
 本実施形態の永久磁石式回転電機は、軸方向に2分割された回転子鉄心2a,2bを備えている。この回転子鉄心における各磁極の位置には、永久磁石30が装着されている。 各磁極の永久磁石30は、図2に示すように、分割された2つの回転子鉄心2a,2bを実方向に貫通する1本の板状の部材によって構成される。すなわち、分割された回転子鉄心2a,2bの各磁極において、永久磁石30は同一位置に配置される。そのため、一つの永久磁石30が各回転子鉄心2a,2bの磁極に配置される鉄心部30a,30bを構成する。
 各回転子鉄心2a,2bの各磁極の外周には、それぞれ凸部31a,31bが回転子の軸方向に沿って設けられている。この凸部31a,31bは、分割された2つの回転子鉄心2a,2bごとにずれた位置に設けられている。すなわち、図3の断面図に示すように、凸部31a,31bは、磁極の中心線を境としていずれかの方向に同角度ずれた位置に設けられる。
 このような構成の回転子鉄心2a,2bを作製するには、図3(A)に示すように、磁極内に永久磁石30をその中心線に対して対称形に配置するような積層珪素鋼板により一方の回転子鉄心2aを作製する。この場合、まだ、永久磁石30は、その装着孔にはめ込まないで置く。同様な形状の積層珪素鋼板を使用して、図3(A)のような鉄心ブロックを作製し、それを表裏反転させることで、図3(B)に示す他方の回転子鉄心2bを作製する。その後、2つの回転子鉄心2a,2bを重ね合わせ、その装着穴内に一本の永久磁石30を挿入することで、磁極中心線に対して凸部31a,31bが同じ角度だけずれ、かつ永久磁石30は磁極の同位置に設けられた本実施形態の回転子鉄心2a,2bを得る。
 このような構成を有する第1実施形態では、回転子外周の凸部31a,31bにおいて回転子磁束密度が高くなり、その部分が磁極の磁極中心となることから、この凸部31a,31bを軸方向で周方向にずらして、積み重ねて回転子鉄心2a,2bを構成することにより、回転子の段スキュー効果(トルクリップル、振動、騒音の低減)を得ることができる。しかも、永久磁石30及びその埋め込み穴は軸方向に沿って同一位置、形状であることから、電機子反作用による反磁界が磁石に加わることがないため、減磁を抑制することができる。且つ永久磁石を分割する必要がないことから、部品点数が減り、製造性が向上する。また、回転子鉄心を裏返して積み重ねることでスキュー効果を得ることができ、 断面一つの形状で良いため、鉄心金型を複数製作する必要がなく、製造コストが抑制できる。また、回転子鉄心外周部で磁極位置が一目で確認できることから、回転子鉄心組立時のミスを防止することができる。
(2)第2実施形態
 図4は、本発明の第2実施形態を示す断面図である。この第2実施形態では、回転子鉄心2a,2b内に設ける永久磁石30を、その周方向中央に対し、非磁性部32である空隙を磁極の中心線に対して片側にずらし配置している。この場合、分割された各回転子鉄心2a,2bについて、非磁性部32が磁極中心に対してずれる方向は反対方向の同角度である。また、非磁性部32の形状、永久磁石30の形状は同一形状である。
 この回転子鉄心2a,2bは、前記第1実施形態と同様な手法で作製するものであり、同一形状の回転子鉄心2a,2bを作製して、その一方を裏返し、非磁性部32がずれるように軸方向に積み重ねて回転子1を構成する。
 このような構成を有する第2実施形態では、前記非磁性部32の存在により、永久磁石30より発する磁束が偏り、磁極の中心が片方にずれる。そのため、第1実施形態と同様に、永久磁石の減磁を抑制でき、磁石を分割する必要がないことから、部品点数が少なく、製造性が向上する。また、第2実施形態では、回転子の外周に凸部31a,31bが存在しないことから、回転子1と固定子10との平均的な間隙(エアギャップ)の最小ギャップを維持したまま、同等のスキュー効果を得ることが可能なる。
(3)第3実施形態
 図5は、本発明の第3実施形態を示す断面図である。この第3実施形態では、磁力の強い永久磁石33と弱い永久磁石34とを並べ配置していることから、磁力の強い永久磁石33側の磁束密度が高くなり、当該磁極の磁極中心が磁力の強い永久磁石33側にずれる。そして、このような構成の永久磁石を回転子鉄心2a,2bに挿入するが、この場合、図6に示すように、一方の回転子鉄心2a用と、他方の回転子鉄心2b用とで、強弱2つの永久磁石33,34の位置を異ならせた2種類の磁石を用意し、これらを更に一体化して、装着用の1本の永久磁石を作製する。その後、この1本の永久磁石を積層した回転子鉄心2a,2b内に挿入して回転子1を構成する。
 この場合、永久磁石を1本に接合する必要はなく、個々の永久磁石を順番に回転子鉄心2a,2b内に装着することもできる。また、回転子鉄心2a,2bも一つのブロックとして積層珪素鋼板その他の材料から製作することも可能である。更に、前記各実施形態のように、永久磁石33,34の配置も含めて同一形状の回転子鉄心2a,2bを作製しておき、その一方を裏返してから両者を重ね合わせることも可能である。
 この第3実施形態によれば、回転子鉄心2a,2bを軸方向に永久磁石33,34の配列を組み替えて積み重ねて回転子1を構成している。そのため、第1実施形態と同様に、永久磁石の減磁を抑制でき、且つ磁石埋め込み穴が軸方向ストレートであるため、磁石を予め一体成型(接着)し、組み込みことが可能であることから、部品点数が少なく、製造性が向上する。また、回転子鉄心2a,2bに凸形状や空隙が不要であるため、断面形状が単純であり、鉄心金型を安価で製作することが可能で、加えて回転遠心力による回転子鉄心応力も低く抑えられることから、堅牢な回転子を得ることが可能である。
(4)第4実施形態
 図7は、本発明の第4実施形態を示すものである。この第4実施形態は、前記第3実施形態の変形例であって、1本の磁力の強い永久磁石33と、2本の磁力の弱さが異なる永久磁石34-1,34-2を回転子鉄心2a,2b内に組み込んだものである。この第3実施形態では、磁極内で3段階(複数段階)の磁力を有する永久磁石33,34-1,34-2を配置した構成であるからことから、軸方向に滑らかな(細かな)スキューを行なうことが可能となる。
 また、前記第3実施形態では、一つの穴に異なる磁力の磁石を挿入するため、予め接着剤等で一体化していないと、反発して磁石埋め込み穴に挿入することが困難である。一方、この第4実施形態は磁石埋め込み穴が分割されているため、磁石の挿入組立を容易に行なうことができる。また、分割数を複数にして永久磁石の装着孔を分割していることから、永久磁石の回転遠心力を分散されるため、回転子鉄心応力も低く抑えられ、堅牢な回転子を得ることが可能である。
(5)第5実施形態
 図8は、本発明の第5実施形態の断面図である。この第5実施形態では、前記第3実施形態の回転子鉄心2a,2bに対して、さらにその外周部にスリット35を設けている。 この場合、スリットは、分割された回転子鉄心2a,2bでは、磁極の中心線を挟んで対象の位置に設ける。すなわち、前記第1あるいは第2実施形態と同様に、同一形状の回転子鉄心2a,2bを作製し、それを裏返して積層したものである。
 この第5実施形態では、第3実施形態と同様に、永久磁石の減磁を抑制でき、且つ磁石埋め込み穴が軸方向ストレートであるため、磁石を予め一体成型(接着)し、組み込みことが可能であることから、部品点数が少なく、製造性が向上する。しかも、磁力の強い永久磁石33と磁力の弱い永久磁石34の外周側磁路が仕切られそこが磁気障壁となって磁路を効果的に分断するので、磁力の強い永久磁石33側に磁極中心をよりずらすことが可能となり、スキュー効果を高めることができる。また、永久磁石の減磁も抑制できる。
 特に、異なる磁力の永久磁石33,34の境界付近にスリット35が配置されているため、永久磁石外周部鉄心部の磁路を分断されているため、異なる磁力磁石の磁束が混ざり合いにくいことから、磁極中心をよりずらすことが可能となり、高いスキュー効果を得ることができる。また、回転子鉄心外周部で磁極位置が一目で確認できることから、回転子鉄心組立時のミスを防止することができる。
(6)第6実施形態
 図9は、本発明の第6実施形態の断面図である。この第6実施形態は、回転子1の各磁極に設けた外周凸部31のみ、磁極ごとに周方向に不等配に配置することより、半径断面内において磁極の位置をずらして、スキュー効果を得るものである。すなわち、図中τで示す磁極中心(各磁極の可変磁力磁石3の中心)の角度がすべての磁極において等しくなるように永久磁石を配置すると共に、外周凸部31は隣接する磁極ごとにその角度がαまたはβというように異なって設けられる。
 この場合、前記第1実施形態とは異なり、回転子鉄心2は、その軸方向に分割する必要はない。また、第6実施形態では、各磁極にそれぞれ3つの永久磁石、一例として中央に可変磁力磁石3、両側に固定磁力磁石4,4を配置しているが、単一の永久磁石を配置したものや、前記の第2実施形態~第5実施形態に記載のような形状の非磁性部32、永久磁石33,34、スリット35などを配置しても良い。
 この第6実施形態では、永久磁石とその装着孔は軸方向に沿って同一位置、形状であることから、電機子反作用による反磁界が磁石に加わりにくいため、減磁を抑制することができ、且つ永久磁石を分割する必要がないことから、部品点数が減り、製造性が向上する。また、回転子鉄心2は、外周凸部のみ周方向に不等配に配置するだけの構成であるから、軸方向に反転して積み重ねて組み立てる必要がないため、製造性が向上する。特に、断面一形状でスキュー効果を得ることが可能であることから、鉄心金型を複数製作する必要がなく、製造コストが抑制できる。その結果、前記各実施形態と同様に、スキュー効果を得つつ、永久磁石の減磁を抑制することが可能である。
(7)第7実施形態
 図10は、本発明の第7実施形態の断面図である。この第7実施形態は、前記第6実施形態と同様に、外周凸部31を周方向に不等配とすると共に、各磁極における永久磁石3,4,4の周方向位置も外周凸部31と逆方向に不等配にずらすことで、よりスキュー角度(ずれ角度)を大きく取ることを可能としたものである。すなわち、この第7実施形態では、すなわち、図中τで示す磁極中心の角度に対して、永久磁石3の周方向の中心と回転子外周凸部31の中心の角度を、各磁極間の角度がα,βと異なるように任意にずらし配置する。また、外周凸部31も、隣接する磁極ごとにその角度がαまたはβというように異なって設ける。また、回転子全体として見た場合に、永久磁石3と回転子外周凸部31とを、回転軸対称となるよう配置する。
 この第7実施形態では、外周凸部31及び各永久磁石3,4,4を回転子1の周方向に不等配に配置するだけで、回転子鉄心は軸方向に分割する必要はない。そのため、回転子鉄心2を軸方向に反転して積み重ねて組み立てる必要がないため、製造性が向上する。しかも、前記実施形態と同様に、スキュー効果を得つつ、永久磁石の減磁を抑制することが可能である。また、断面一形状でスキュー効果を得ることが可能であることから、鉄心金型を複数製作する必要がなく、製造コストが抑制できる。
 また、凸部形状のみ、または永久磁石位置のみの不等配配置では、特に回転子極数に対し、固定子スロット数が少ない場合、大きな磁極のズレ量(スキュー量)が必要となるが、限られた回転子鉄心面積の中で磁石位置を変更することが難しく、加えて回転子鉄心の強度的な問題(不等配となると回転遠心力による変形量が均等とならないため、発生する応力が増大する)で磁極のズレ量を大きく取ることができない。従って、凸部形状、磁石位置の双方を組み合わせることにより、ズレ量を大きく取ることが可能となり、スキュー効果を十分得ることが可能となる。
(8)第8実施形態
 図11は、本発明の第8実施形態を示す斜視図である。この第8実施形態は、前記第6実施形態として示した回転子1の各磁極に設けた外周凸部31のみ磁極ごとに周方向に不等配に配置した2つの回転子鉄心2a,2aの間に、その回転子鉄心2a,2aを裏返しにした回転子鉄心2bを積層したものである。この場合、中央に配置する回転子鉄心2bは、両側の回転子鉄心2aの2倍の厚さとする。
 この第8実施形態では、外周凸部31のみ周方向に不等配に配置し、且つ回転子鉄心2bを反転させ、軸方向に積み重ねて回転子2を構成することにより、前記第6実施形態の構成よりもさらにスキュー効果を得ることができる。特に、外周凸部31のオフセットだけでは、スキュー効果を十分に得ることができない可能性があり、外周凸部31をオフセットしたのに加え、反転して鉄心を積むことで、スキュー量(ズレ角度)を大きく取ることができ、スキュー効果を増大できる。
 なお、回転子鉄心2bを反転させて積み重ねても、永久磁石3,4及びその装着孔は軸方向に沿って同一位置、形状であることから、電機子反作用による反磁界が永久磁石に加わりにくいため、減磁を抑制することができ、且つ永久磁石を分割する必要がないことから、部品点数が減り、製造性が向上する。
 なお、この第8実施形態の変形例として、回転子鉄心2a,2bの外周凸部31をオフセットしてスキュー効果を得る代わりに、第2実施形態から第5実施形態のような空隙や強弱の永久磁石の配置によってスキュー効果を得ることも可能である。この場合には、積層する回転子鉄心2a,2bの構成は全く変えずに、前記第8実施形態と同様な効果を得ることができる。
 (9)第9実施形態
 図12から図18は、本発明の第9実施形態を示すものである。この第9実施形態は、1つの磁極内に可変磁力磁石3これを挟んで一対の固定磁力磁石4,4を設けたものである。以下、この実施形態の構成並びに作用を詳細に説明する。
 (9-1)基本的な構成
 第9の実施形態の回転子1は、図12及び図13に示すように回転子鉄心2、可変磁力磁石3、固定磁力磁石4から構成される。回転子鉄心2は珪素鋼板を積層して構成し、前記の永久磁石は回転子鉄心2内に埋め込む。本実施形態では、可変磁力磁石3はフェライト磁石またはアルニコ磁石とし、この実施形態ではフェライト磁石を使用した。固定磁力磁石4は、NdFeB磁石を使用した。この可変磁力磁石の保磁力は280kA/mとし、固定磁力磁石の保磁力は1000kA/mとする。可変磁力磁石3は磁極中央のd軸に沿って回転子鉄心2内に配置し、その磁化方向はほぼ周方向である。固定磁力磁石4は磁化方向がd軸方向に対して所定の角度を持つように、前記可変磁力磁石3の両側の回転子鉄心2内に配置する。
 前記回転子鉄心2内に埋め込まれた固定磁力磁石4を取り囲むように、短絡コイル8を設ける。この短絡コイル8は、リング状の導電性部材から構成し、可変磁力磁石3を除いた固定磁力磁石4の磁路部分に設ける。その場合、固定磁力磁石4の磁化方向を中心軸として、固定磁力磁石4周囲に短絡コイル8を設ける。
 本実施形態では、この短絡コイル8は、固定磁力磁石4の上下にそれぞれ設けられているが、上下いずれか一方でも良い。また、短絡コイル8を固定磁力磁石の上下の面(磁化方向と直行する方向)と平行に設けたが、短絡コイルの対角線方向に1本あるいはX字状に2本設けることもできる。さらに、固定磁力磁石の表面に密着して設ける以外に、図示のように固定磁力磁石、及び固定磁力磁石と可変磁力磁石との間のブリッジ部分6を取り囲むように設けることもできる。また、短絡コイルの代わりに、導電性の部材、例えば、
 導電板を固定磁力磁石4の上下の表面、外周部に設けることもできる。
 短絡コイル8は、可変磁力磁石3の磁化が変化する程度の短絡電流が1秒以内に流れ、その後1秒以内にその短絡電流を50%以上減衰させるものであることが好ましい。また、短絡コイル8のインダクタンス値と抵抗値を、可変磁力磁石3の磁化が変化する程度の短絡電流が流れるような値とすると、効率が良い。
 図14に示すように、前記回転子2の外周には、エアギャップ9を介して固定子10を設ける。この固定子10は、電機子鉄心11と電機子巻線12とを有する。この電機子巻線12に流れる磁化電流により、短絡コイル8には誘導電流が誘起され、その誘導電流によって短絡コイル8を貫通する磁束が形成される。この電機子巻線12に流れる磁化電流により、可変磁力磁石3の磁化方向が可逆的に変化する。すなわち、可変磁力磁石と固定磁力磁石に対しては、永久磁石式回転電機の運転時において、d軸電流による磁界で永久磁石3を磁化させて可変磁力磁石3の磁束量を不可逆的に変化させる。その場合、可変磁力磁石3を磁化するd軸電流を流すと同時にq軸電流により回転電機のトルクを制御する。
 また、d軸電流で生じる磁束により、電流(q軸電流とd軸電流とを合成した全電流)と可変磁力磁石と固定磁力磁石とで生じる電機子巻線の鎖交磁束量(回転電機の全電流によって電機子巻線に生じる磁束と、回転子側の可変磁力磁石と固定磁力磁石とによって生じる磁束とから構成される電機子巻線全体の鎖交磁束量)をほぼ可逆的に変化させる。特に、本実施形態では、瞬時の大きなd軸電流による磁界で可変磁力磁石3を不可逆変化させる。この状態で不可逆減磁がほとんど生じないか、僅かの不可逆減磁が生じる範囲のd軸電流を連続的に流して運転する。このときのd軸電流は電流位相を進めて端子電圧を調整するように作用する。
(9-2)分割鉄心について
 本実施形態では、回転子は、図15に示すように、各回転子鉄心2a,2bには、外周凸部31a,31bが周方向にずれて配置されているが、永久磁石3,4と短絡コイル8は、図16に示すように1本の角棒状の部材で、2つの回転子鉄心2a,2bを貫通している。このような回転子を作製する手法としては、前記第1実施形態と同様、図17(A)から(C)に示すように、同一形状の回転子鉄心2a,2bを裏返しに重ね合わせて構成する。
 なお、この実施形態では、分割した回転子鉄心2a,2b間にスキュー効果を発揮させるためにオフセットされた外周凸部31a,31bを使用したが、前記第2から第5実施形態のような非磁性部32やスリット35によってスキュー効果を得ることも可能である。その場合でも、永久磁石3,4及び短絡コイル8については、1本の棒状の部材を使用し、それらが分割された2つの回転子鉄心2a,2bを貫通する。
(9-3)減磁及び増磁作用
 次に、前記のような構成を有する本実施形態の永久磁石式回転電機における増磁時と減磁時の作用について説明する。なお、各図中に、電機子巻線12や短絡コイル8によって発生した磁力の方向を矢印により示す。
 本実施形態では、固定子10の電機子巻線12に通電時間が0.1ms~100ms程度の極短時間となるパルス的な電流を流して磁界を形成し、可変磁力磁石3に磁界Aを作用させる(図12参照)。永久磁石を磁化するための磁界Aを形成するパルス電流は、固定子10の電機子巻線12のd軸電流成分とする。
 2種類の永久磁石の厚みはほぼ同等するとd軸電流による作用磁界による永久磁石の磁化状態変化は保磁力の大きさにより変る。永久磁石の磁化方向とは逆方向の磁界を発生する負のd軸電流を電機子巻線12にパルス的に通電する。負のd軸電流によって変化した磁石内の磁界Aが-280kA/mになったとすると、可変磁力磁石3の保磁力が280kA/mなので可変磁力磁石3の磁力は不可逆的に大幅に低下する。
 一方、固定磁力磁石4の保磁力が1000kA/mなので磁力は不可逆的に低下しない。その結果、パルス的なd軸電流が0になると可変磁力磁石3のみが減磁した状態となり、全体の磁石による鎖交磁束量を減少することができる。さらに-280kA/mよりも大きな逆磁界をかけると可変磁力磁石3は逆方向に磁化して極性は反転する。この場合、可変磁力磁石3の磁束と固定磁力磁石4の磁束は打ち消しあうので永久磁石の全鎖交磁束は最小になる。
 この場合、固定磁力磁石4の磁力の方向は、図12のBに示すように、固定磁力磁石4から可変磁力磁石3の方向となるので、前記電機子巻線12による磁界の磁力の方向と一致するため、可変磁力磁石3の減磁させる方向に強い磁力が作用する。同時に、短絡コイル8には、電機子巻線12の磁界Aを打ち消すような誘導電流が発生し、その誘導電流によって図12矢印Cで示すような磁力の方向を有する磁界が発生する。この短絡コイル8による磁力Cも、可変磁力磁石3の磁化方向を逆方向に向けるように作用する。これらより、可変磁力磁石3の減磁及び極性の反転が効率的に行われる。
 つぎに、永久磁石の全鎖交磁束を増加させて最大に復元させる過程(増磁過程)を説明する。減磁完了の状態では、図13に示すように、可変磁力磁石3の極性は反転しており、反転した磁化とは逆方向(図12に示す初期の磁化方向)の磁界を発生する正のd軸電流を電機子巻線12に通電する。反転した逆極性の可変磁力磁石3の磁力は前記磁界が増すに連れて減少し、0になる。さらに正のd軸電流による磁界を増加させると極性は反転して初期の極性の方向に磁化される。ほぼ完全な着磁に必要な磁界である350kA/mをかけると、可変磁力磁石3は着磁されてほぼ最大に磁力を発生する。
 この場合、減磁時と同様に、d軸電流は連続通電で増加させる必要はなく、目標の磁力にする電流を瞬間的なパルス電流を流せばよい。一方、固定磁力磁石4の保磁力が1000kA/mなので、d軸電流による磁界が作用しても固定磁力磁石4の磁力は不可逆的に変化しない。その結果、パルス的な正のd軸電流が0になると可変磁力磁石3のみが増磁した状態となり、全体の磁石による鎖交磁束量を増加することができる。これにより元の最大の鎖交磁束量に戻すことが可能となる。
 以上のようにd軸電流による瞬時的な磁界を可変磁力磁石3と固定磁力磁石4に作用させることにより、可変磁力磁石3の磁力を不可逆的に変化させて、永久磁石の全鎖交磁束量を任意に変化させることが可能となる。
(9-4)短絡コイル8の作用
 つぎに、短絡コイル8の作用について述べる。可変磁力磁石3と固定磁力磁石4は回転子鉄心2内に埋め込まれて磁気回路を構成しているので、前記d軸電流による磁界は可変磁力磁石3のみでなく、固定磁力磁石4にも作用する。本来、前記d軸電流による磁界は可変磁力磁石3の磁化を変化させるために行う。そこで、前記d軸電流による磁界が固定磁力磁石4に作用しないようにし、可変磁力磁石3に集中するようにすればよい。
 本実施形態では、固定磁力磁石4とその周囲のブリッジ部6に短絡コイル8を配置している。この場合、短絡コイル8は、固定磁力磁石4の磁化方向を中心軸として配置する。 図13に示す、可変磁力磁石3の増磁方向の磁化を行う場合、前記d軸電流による磁界A1が固定磁力磁石4に作用すると、前記磁界Aを打ち消すような誘導電流が短絡コイル8に流れる。したがって、固定磁力磁石4中には、前記d軸電流による磁界A1と短絡電流による磁界Cが作用し両者が打ち消し合うために、磁界の増減はほとんど生じない。つまり磁界A1≒0にできるので少ない磁化電流により、可変磁力磁石3を効果的に増磁することができる。
 このとき、固定磁力磁石4は短絡コイル8により前記d軸電流の影響を受けなく、磁束の増加はほとんど生じないので、d軸電流による電機子鉄心11の磁気飽和も緩和できる。すなわち、電機子鉄心11は、d軸電流によって発生する磁界Aが電機子巻線12間に形成された磁路を通過することにより、その部分の磁気飽和が生じる可能性がある。しかし、本実施形態では、短絡コイル8の磁界Cのうち、電機子鉄心11の磁路を通過する部分が、d軸電流による磁界Aと逆方向に作用し、A1≒0とできるので、電機子鉄心11の磁路が磁気飽和することが緩和される。
 また、本実施形態では、短絡コイル8がブリッジ部6を取り囲むように設けたので、ブリッジ部6に作用する磁界A2によっても短絡コイル8に短絡電流が流れることになる。 この場合、可変磁力磁石3の近傍に短絡コイル8を配置することになるため、可変磁力磁石以外に作用する磁界を効率よく打ち消すことが可能である。
 さらに、固定磁力磁石4は短絡コイル8により前記d軸電流の影響を受けなく、磁束の増加はほとんど生じないので、d軸電流による電機子鉄心11の磁気飽和も緩和できる。 すなわち、電機子鉄心11は、d軸電流によって発生する磁界Aが電機子巻線12間に形成された磁路を通過することにより、その部分の磁気飽和が生じる可能性がある。しかし、本実施形態では、短絡コイル8の磁界Cは磁界A1+磁界A2を打ち消し、磁界A1+磁界A2≒0とできるので、電機子鉄心11の磁路を通過する磁束の内、磁界A1及び磁界A2による成分が減少するので、電機子鉄心11の磁路が磁気飽和することが緩和される。
(9-5)第9実施形態の効果
 この第9実施形態では、可変磁力磁石3は保磁力が小さいため、電機子反作用による減磁が発生しやすいため、通常のロータ段スキューを行なう際は、スキュー面での減磁が発生し、モータ特性を大きく低下させてしまう。本実施形態では、段スキューする必要がないことから、スキュー効果を得つつ、可変磁磁力磁石3並びに固定磁力磁石4,4の減磁を抑制することができる。また、短絡コイル8をスキュー面で折り曲げる必要がないことから、短絡コイル8の組立、並びに回転子の組立を容易に行なうことが可能となり、製造コストの低減が可能となる。
 特に、第9実施形態において、図18(A)(B)に示すように、電機子巻線が作る可変磁力磁石3を磁化する磁界の中心と、回転子2の可変磁力磁石3の磁極中心が一致した時、即ち回転子の外周凸部31が固定子ティース13と一致した時に、磁化を行なうことで、軸方向で磁極中心が異なる可変磁力磁石3においても、十分な磁化を行なうことが可能となり、磁化電流を低減することができる。
(10)他の実施形態
 本発明は、前記実施形態に限定されるものではなく、次のような他の実施形態も包含する。
 (a) 第6実施形態から第8実施形態において、外周凸部31をずらすことによりスキー機能を発揮させたが、この外周凸部に代えて、前記第2実施形態から第5実施形態に示した、永久磁石配置、非磁性部、スリット位置などでスキュー機能を発揮させる手段を採用することができる。
 (b) 可変磁力磁石式回転電機において、回転子鉄心2a,2bの外周凸部31をオフセットしてスキュー効果を得る代わりに、第2実施形態から第5実施形態のような空隙や強弱の永久磁石の配置によってスキュー効果を得ることも可能である。この場合には、積層する回転子鉄心2a,2bの構成は全く変えずに、前記第9実施形態と同様な効果を得ることができる。
 (c) 可変磁力磁石式回転電機において、図9または図10に示したような鉄心を分割しない構成とすることもできる。すなわち、回転子1の各磁極に設けた外周凸部31のみ、磁極ごとに周方向に不等配に配置したり、外周凸部31を周方向に不等配とすると共に、各磁極における永久磁石3,4,4の周方向位置も外周凸部31と逆方向に不等配にずらすことで、よりスキュー角度(ずれ角度)を大きく取ることもできる。
 (d) 可変磁力磁石式回転電機において、回転子1の各磁極に設けた外周凸部31のみ磁極ごとに周方向に不等配に配置した2つの回転子鉄心2a,2aの間に、その回転子鉄心2a,2aを裏返しにした回転子鉄心2bを積層することもできる。また、その場合に、中央に配置する回転子鉄心2bは、両側の回転子鉄心2aの2倍の厚さとすることも可能である。
 (e) 第9実施形態では、請求項14、及び請求項15の永久磁石式回転電機において、電機子巻線が作る可変磁力磁石を磁化する磁界の中心と回転子の可変磁力磁石の磁極中心が一致した時、即ち回転子の外周凸形状が当該固定子ティースと一致した時に、磁化を行なうことで、軸方向で磁極中心が異なる可変磁力磁石においても、十分な磁化を行なうことが可能となり、磁化電流を低減することができる。
 (f) 前記各実施形態では8極の回転電機を示したが、12極等の多極の回転電機にも本発明を適用できるのは当然である。極数に応じて永久磁石の配置位置、形状が幾分変ることはもちろんであり、作用と効果は同様に得られる。特に、前記各実施形態は、中央に可変磁力磁石を、その両側に固定磁力磁石を配置したものであるが、可変磁力磁石と固定磁力磁石との他の配置にも適用できる。
(g) 前記回転子鉄心2において、固定磁力磁石の外周側に磁気障壁を構成するために設ける空洞の形状や位置、また、固定磁力磁石の内周側にその磁路断面積を決定するために設ける空洞の位置などは、使用する永久磁石の保磁力や磁化電流によって生じる磁界の強さなどに応じて、適宜変更できる。この場合、第1実施形態のように回転子鉄心2a,2bを反転して重ね合わせる場合には、外周凸部31a,31b、非磁性部32、永久磁石の装着孔に加えて、他の空洞などを磁極中心に対して、対称形に設ける必要がある。
(h) 回転子鉄心2a,2bを同一形状ものを反転して重ね合わせない場合には、外周凸部31a,31bの位置が異なる別々の形状の回転子鉄心2a,2bを用意することもできる。また、非磁性部32などについても、異なる形状の回転子鉄心2a,2bを用意して、重ね合わせても良い。
1…回転子
2,2a,2b…回転子鉄心
3,3a,3b…可変磁力磁石
4,4a.4b…固定磁力磁石
8…短絡コイル
9…エアギャップ
10…固定子
11…電機子鉄心
12…電機子巻線
13…固定子ティース
30,30a,30b…永久磁石
31,31a,31b…回転子外周凸部
32…非磁性部
33,34…永久磁石
35…スリット
S…分割スキュー面

Claims (15)

  1.  固定子鉄心に電機子巻線を有する固定子と、回転子鉄心内に永久磁石を埋設してなる回転子を備えた永久磁石式回転電機において、
     前記回転子鉄心を軸方向において2つ以上に分割し、この分割した回転子鉄心間において永久磁石の装着位置を同一とすると共に、分割された各回転子鉄心における磁気特性を異ならせる手段を設け、この手段により回転子鉄心にスキュー機能を発揮させることを特徴とする永久磁石式回転電機。
  2.  前記磁気特性を異ならせる手段が、分割された各回転子鉄心の回転子外周にそれぞれ凸部を形成し、この凸部と当該永久磁石の周方向中心と回転子外周凸部中心とをずらして配置したものであることを特徴とする請求項1に記載の永久磁石式回転電機。
  3.  前記磁気特性を異ならせる手段が、分割された各回転子鉄心における永久磁石外周側で、永久磁石装着孔の周方向中心に対して非対称となるよう非磁性材若しくは空隙部からなる磁気障壁を配置したものであることを特徴とする請求項1または請求項2に記載の永久磁石式回転電機。
  4.  前記磁気特性を異ならせる手段が、前記分割された回転子鉄心内に複数の磁力の異なる磁石を配置し、且つその磁石配列を分割された各回転子鉄心ごとに異ならせたことを特徴とする請求項1から請求項3のいずれか1項に記載の永久磁石式回転電機。
  5.  前記磁気特性を異ならせる手段が、各鉄心における永久磁石外周側にスリットを配置し、このスリットの位置を分割された各鉄心ごとに永久磁石の周方向中心部に対してずらしたことを特徴とする請求項1から請求項4のいずれか1項に記載の永久磁石式回転電機。
  6.  固定子鉄心に電機子巻線を有する固定子と、回転子鉄心内に永久磁石を埋設してなる回回転子を備えた永久磁石式回転電機において、
     前記回転子鉄心における各磁極部分には、回転子鉄心をその軸方向に貫通する1つまたは複数の永久磁石を、回転子の周方向等配に配置し、
     前記回転子鉄心の各磁極部には各磁極部ごとに磁気特性を異ならせる手段を設け、この磁気特性を異ならせる手段を周方向に不等配となるように配置して、回転子鉄心にスキュー機能を発揮させることを特徴とする永久磁石式回転電機。
  7.  固定子鉄心に電機子巻線を有する固定子と、回転子鉄心内に永久磁石を埋設してなる回回転子を備えた永久磁石式回転電機において、
     前記回転子鉄心における各磁極部分には、回転子鉄心をその軸方向に貫通する1つまたは複数の永久磁石を、極ピッチで決まる角度から任意の角度ずらして配置し、
     前記回転子鉄心の各磁極部には各磁極部ごとに磁気特性を異ならせる手段を設け、この磁気特性を異ならせる手段を周方向に不等配となるように配置して、回転子鉄心にスキュー機能を発揮させることを特徴とする永久磁石式回転電機。
  8.  固定子鉄心に電機子巻線を有する固定子と、回転子鉄心内に永久磁石を埋設してなる回回転子を備えた永久磁石式回転電機において、
     前記回転子鉄心を軸方向において2つ以上に分割し、この分割した各回転子鉄心の各磁極部には各磁極部ごとに磁気特性を異ならせる手段を設け、この磁気特性を異ならせる手段を周方向に不等配となるように配置すると共に、
     分割された各鉄心間において、前記磁気特性を異ならせる手段を周方向にずらして配置して、回転子鉄心にスキュー機能を発揮させることを特徴とする永久磁石式回転電機。
  9.  前記磁気特性を異ならせる手段が、回転子鉄心の各磁極部には回転子外周にその軸方向に伸びる凸部を形成し、この凸部を前記回転子の周方向に不等配となるように配置したものであることを特徴とする請求項6から請求項8のいずれか1項に記載の永久磁石式回転電機。
  10.  前記磁気特性を異ならせる手段が、回転子鉄心における永久磁石外周側で、永久磁石装着孔の周方向中心に対して非対称となるよう非磁性材若しくは空隙部からなる磁気障壁を配置したものであることを特徴とする請求項6から請求項9のいずれか1項に記載の永久磁石式回転電機。
  11.  前記磁気特性を異ならせる手段が、回転子鉄心の各磁極に複数の磁力の異なる磁石を配置し、且つその磁石配列を分割された各回転子鉄心ごとに異ならせたことを特徴とする請求項6から請求項10のいずれか1項に記載の永久磁石式回転電機。
  12.  前記磁気特性を異ならせる手段が、回転子鉄心における永久磁石外周側にスリットを配置し、このスリットの位置を永久磁石の周方向中心部に対してずらしたことを特徴とする請求項6から請求項11のいずれか1項に記載の永久磁石式回転電機。
  13.  前記永久磁石が、保持力と磁化方向厚さの積が互いに異なる2種類以上の永久磁石であって、前記電機子巻線が作る磁界により前記回転子の磁極を構成する永久磁石の少なくとも1個である可変磁力磁石を磁化させることを特徴とする請求項6から請求項12のいずれか1項に記載の永久磁石式回転電機。
  14.  前記回転子が、可変磁力磁石の磁化を行なう際に磁化時に発生する磁束によって短絡電流が流れるような導電性の部材を回転子内に設けたことを特徴とする請求項13に記載の永久磁石式回転電機。
  15.  電機子巻線が作る可変磁力磁石を磁化する磁界の中心と回転子の可変磁力磁石の磁極中心が一致した時に、磁化を行なうことを特徴とする請求項13または請求項14に記載の永久磁石式回転電機。
PCT/JP2009/006935 2008-12-18 2009-12-16 永久磁石式回転電機 WO2010070900A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP09833207.5A EP2378632B1 (en) 2008-12-18 2009-12-16 Permanent magnet type rotary electric machine
CN200980150960.3A CN102257702B (zh) 2008-12-18 2009-12-16 永磁式旋转电机
US13/140,669 US8653710B2 (en) 2008-12-18 2009-12-16 Permanent magnet electric motor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008322612A JP5305887B2 (ja) 2008-12-18 2008-12-18 永久磁石式回転電機
JP2008-322612 2008-12-18

Publications (1)

Publication Number Publication Date
WO2010070900A1 true WO2010070900A1 (ja) 2010-06-24

Family

ID=42268579

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/006935 WO2010070900A1 (ja) 2008-12-18 2009-12-16 永久磁石式回転電機

Country Status (5)

Country Link
US (1) US8653710B2 (ja)
EP (1) EP2378632B1 (ja)
JP (1) JP5305887B2 (ja)
CN (1) CN102257702B (ja)
WO (1) WO2010070900A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012038377A3 (de) * 2010-09-20 2012-10-18 Robert Bosch Gmbh Maschinenkomponente für eine elektrische maschine
US20130009508A1 (en) * 2010-01-06 2013-01-10 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Axial gap type brushless motor
US20130181566A1 (en) * 2012-01-16 2013-07-18 Samsung Electronics Co., Ltd. Rotor and motor including the same
US20140001907A1 (en) * 2011-02-08 2014-01-02 Hisayoshi Fukuyanagi High-efficiency power generator
WO2014115435A1 (ja) * 2013-01-28 2014-07-31 三菱電機株式会社 永久磁石式回転電機

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5469955B2 (ja) * 2009-08-12 2014-04-16 日立オートモティブシステムズ株式会社 車両用回転電機
US20130127280A1 (en) * 2010-07-30 2013-05-23 Hitachi, Ltd. Electric rotating machine and electric vehicle using the same
JP2013062889A (ja) * 2011-09-10 2013-04-04 Nidec Servo Corp ブラシレスdcモータ
JP5974599B2 (ja) * 2012-04-12 2016-08-23 株式会社デンソー 回転電機
CN104488171B (zh) * 2012-06-26 2017-05-17 日产自动车株式会社 可变磁动势旋转电机以及用于可变磁动势旋转电机的控制装置
JP5975759B2 (ja) * 2012-06-29 2016-08-23 株式会社日立製作所 回転電機
CN103580324B (zh) * 2012-08-01 2017-09-01 德昌电机(深圳)有限公司 永磁转子及具有该转子的永磁马达
JP5737250B2 (ja) * 2012-09-21 2015-06-17 株式会社デンソー ロータおよび回転電機
KR20140079633A (ko) * 2012-12-18 2014-06-27 현대중공업 주식회사 2 Piece 전동기 회전자
JP6440349B2 (ja) * 2013-09-06 2018-12-19 株式会社日立産機システム 回転電機
KR102118152B1 (ko) 2013-11-25 2020-06-02 삼성전자주식회사 전동기
CN103647422B (zh) * 2013-12-09 2016-08-17 江苏大学 一种采用混合永磁材料的磁路串联型电机
US10760196B2 (en) * 2015-04-23 2020-09-01 Lg Electronics Inc. Laundry treatment apparatus and magnetic gear device
JP6436114B2 (ja) * 2016-02-19 2018-12-12 株式会社豊田自動織機 永久磁石式回転電機
JP2017208910A (ja) * 2016-05-17 2017-11-24 オークマ株式会社 同期電動機の回転子
US11005313B2 (en) * 2016-11-21 2021-05-11 Unison Industries, Llc Skewed rotor designs for hybrid homopolar electrical machines
CN110100373B (zh) * 2016-12-28 2022-04-29 日本电产株式会社 转子和马达
DE102017207940A1 (de) * 2017-05-11 2018-11-15 Robert Bosch Gmbh Rotor und elektrische Maschine
US10516305B2 (en) * 2017-05-23 2019-12-24 Ford Global Technologies, Llc Variable flux bridge for rotor of an electric machine
JP6828723B2 (ja) * 2017-08-01 2021-02-10 株式会社デンソー 磁石の製造方法
CN111033947B (zh) * 2017-08-30 2022-02-25 三菱电机株式会社 转子、电动机、压缩机及空调装置
WO2019069538A1 (ja) * 2017-10-06 2019-04-11 日本電産株式会社 ロータ、モータおよび電動パワーステアリング装置
US10873227B2 (en) * 2017-11-30 2020-12-22 Steering Solutions Ip Holding Corporation Interior permanent magnet synchronous machine
US11005320B2 (en) 2018-05-04 2021-05-11 Ford Global Technologies, Llc Variable flux bridge for rotor of an electric machine
JP7056743B2 (ja) * 2018-08-16 2022-04-19 三菱電機株式会社 回転電機
US11711003B2 (en) 2019-05-31 2023-07-25 MagniX USA, Inc. High voltage converter for use as electric power supply
JP6896029B2 (ja) * 2019-08-19 2021-06-30 三菱電機株式会社 回転電機
US11462960B2 (en) * 2019-12-02 2022-10-04 Hiwin Mikrosystem Corp. Rotor with first and second permanent magnets having support members and slots
CN112421924B (zh) * 2020-11-09 2021-09-10 广东威灵电机制造有限公司 电机和家用电器
JPWO2022219942A1 (ja) * 2021-04-13 2022-10-20

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10174324A (ja) * 1996-12-06 1998-06-26 Matsushita Electric Ind Co Ltd 永久磁石回転子
JP2000134891A (ja) * 1998-10-28 2000-05-12 Okuma Corp 同期電動機およびその制御装置
JP2000175389A (ja) * 1998-12-03 2000-06-23 Sanyo Electric Co Ltd 集中巻方式のブラシレスdcモータ
JP2000278895A (ja) * 1999-03-26 2000-10-06 Nissan Motor Co Ltd 電動機のロータ
JP2004328992A (ja) * 2003-04-24 2004-11-18 Minebea Co Ltd モータ用ロータ本体、およびモータ
JP2005051897A (ja) 2003-07-31 2005-02-24 Toshiba Corp リラクタンス型回転電機の回転子
JP2006280195A (ja) 2005-03-01 2006-10-12 Toshiba Corp 永久磁石式回転電機
JP2008048514A (ja) 2006-08-11 2008-02-28 Toshiba Corp 永久磁石式回転電機の回転子
JP2008162203A (ja) 2006-12-29 2008-07-17 Toyobo Co Ltd 感光性樹脂組成物およびそれから得られるレーザー彫刻用感光性樹脂原版
JP2008245368A (ja) * 2007-03-26 2008-10-09 Toshiba Corp 永久磁石式回転電機及び永久磁石電動機ドライブシステム

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2211786B1 (ja) * 1972-12-23 1978-11-10 Eda Overseas Ltd
US3898491A (en) * 1973-10-10 1975-08-05 Westinghouse Electric Corp Damper winding for turbine generator rotors
JPS52139905A (en) * 1976-05-17 1977-11-22 Hitachi Ltd Armature for commutator type rotary electric machine
JPH0823664A (ja) * 1994-05-02 1996-01-23 Aisin Aw Co Ltd モータ
JP3133224B2 (ja) * 1994-12-27 2001-02-05 財団法人鉄道総合技術研究所 車両用永久磁石励磁同期電動機
US5747909A (en) * 1996-03-14 1998-05-05 Ecoair Corp. Hybrid alternator
US5663605A (en) * 1995-05-03 1997-09-02 Ford Motor Company Rotating electrical machine with electromagnetic and permanent magnet excitation
US6087751A (en) * 1997-07-01 2000-07-11 Kabushiki Kaisha Toshiba Reluctance type rotating machine with permanent magnets
US6800977B1 (en) 1997-12-23 2004-10-05 Ford Global Technologies, Llc. Field control in permanent magnet machine
FR2775849B1 (fr) * 1998-03-09 2004-10-01 Valeo Equip Electr Moteur Machine electrique a double excitation, et notamment alternateur de vehicule automobile
US6274960B1 (en) * 1998-09-29 2001-08-14 Kabushiki Kaisha Toshiba Reluctance type rotating machine with permanent magnets
JP3172504B2 (ja) * 1998-09-29 2001-06-04 株式会社東芝 永久磁石式リラクタンス型回転電機の回転子
JP2000139063A (ja) * 1998-11-02 2000-05-16 Meidensha Corp 永久磁石形同期回転電機
US6331741B1 (en) * 1998-11-16 2001-12-18 Canon Kabushiki Kaisha Electromagnetic driving device
JP4363746B2 (ja) * 2000-05-25 2009-11-11 株式会社東芝 永久磁石式リラクタンス型回転電機
KR100429990B1 (ko) * 2001-06-14 2004-05-04 엘지전자 주식회사 단상 라인 스타트 영구자석 동기전동기
JP3811426B2 (ja) * 2002-05-15 2006-08-23 株式会社日立製作所 永久磁石式回転電機
EP1471621A3 (de) 2003-04-24 2005-12-14 Minebea Co., Ltd. Rotorkörper für einen Elektromotor
US6989619B2 (en) * 2003-05-22 2006-01-24 Ut-Battelle Llc Rotor apparatus for high strength undiffused brushless electric machine
JP4270942B2 (ja) * 2003-05-29 2009-06-03 株式会社日立製作所 電動機
JP4311182B2 (ja) * 2003-12-08 2009-08-12 日産自動車株式会社 回転電機の回転子
JP2006060952A (ja) * 2004-08-23 2006-03-02 Matsushita Electric Ind Co Ltd 永久磁石埋込み型電動機
JP2006121765A (ja) * 2004-10-19 2006-05-11 Mitsubishi Electric Corp リラクタンス式回転電機
JP2006254599A (ja) * 2005-03-10 2006-09-21 Asmo Co Ltd 埋込磁石型モータ
JP4489002B2 (ja) * 2005-10-26 2010-06-23 三菱電機株式会社 ハイブリッド励磁回転電機、及びハイブリッド励磁回転電機を備えた車両
US7436096B2 (en) * 2005-10-31 2008-10-14 Caterpillar Inc. Rotor having permanent magnets and axialy-extending channels
JP4898201B2 (ja) * 2005-12-01 2012-03-14 アイチエレック株式会社 永久磁石回転機
EP2061132B1 (en) * 2006-08-23 2023-07-19 Kabushiki Kaisha Toshiba Permanent magnetic type electric motor
US8324768B2 (en) * 2008-01-11 2012-12-04 Mitsubishi Electric Corporation Rotational angle detection device and method for permanent magnet dynamo-electric machine and electric power steering device

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10174324A (ja) * 1996-12-06 1998-06-26 Matsushita Electric Ind Co Ltd 永久磁石回転子
JP2000134891A (ja) * 1998-10-28 2000-05-12 Okuma Corp 同期電動機およびその制御装置
JP2000175389A (ja) * 1998-12-03 2000-06-23 Sanyo Electric Co Ltd 集中巻方式のブラシレスdcモータ
JP2000278895A (ja) * 1999-03-26 2000-10-06 Nissan Motor Co Ltd 電動機のロータ
JP2004328992A (ja) * 2003-04-24 2004-11-18 Minebea Co Ltd モータ用ロータ本体、およびモータ
JP2005051897A (ja) 2003-07-31 2005-02-24 Toshiba Corp リラクタンス型回転電機の回転子
JP2006280195A (ja) 2005-03-01 2006-10-12 Toshiba Corp 永久磁石式回転電機
JP2008048514A (ja) 2006-08-11 2008-02-28 Toshiba Corp 永久磁石式回転電機の回転子
JP2008162203A (ja) 2006-12-29 2008-07-17 Toyobo Co Ltd 感光性樹脂組成物およびそれから得られるレーザー彫刻用感光性樹脂原版
JP2008245368A (ja) * 2007-03-26 2008-10-09 Toshiba Corp 永久磁石式回転電機及び永久磁石電動機ドライブシステム

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130009508A1 (en) * 2010-01-06 2013-01-10 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Axial gap type brushless motor
US9160219B2 (en) * 2010-01-06 2015-10-13 Kobe Steel, Ltd. Axial gap type brushless motor
WO2012038377A3 (de) * 2010-09-20 2012-10-18 Robert Bosch Gmbh Maschinenkomponente für eine elektrische maschine
CN103141010A (zh) * 2010-09-20 2013-06-05 罗伯特·博世有限公司 用于电机的机器部件
US20140001907A1 (en) * 2011-02-08 2014-01-02 Hisayoshi Fukuyanagi High-efficiency power generator
US20130181566A1 (en) * 2012-01-16 2013-07-18 Samsung Electronics Co., Ltd. Rotor and motor including the same
US9831729B2 (en) * 2012-01-16 2017-11-28 Samsung Electronics Co., Ltd. Electric motor's sectional rotor with asymmetric poles having permanent magnets
WO2014115435A1 (ja) * 2013-01-28 2014-07-31 三菱電機株式会社 永久磁石式回転電機
JP5805334B2 (ja) * 2013-01-28 2015-11-04 三菱電機株式会社 永久磁石式回転電機
US9912204B2 (en) 2013-01-28 2018-03-06 Mitsubishi Electric Corporation Permanent magnet type rotating electric machine

Also Published As

Publication number Publication date
EP2378632B1 (en) 2017-08-23
CN102257702B (zh) 2014-07-16
EP2378632A1 (en) 2011-10-19
EP2378632A4 (en) 2016-10-12
US20110309706A1 (en) 2011-12-22
CN102257702A (zh) 2011-11-23
JP5305887B2 (ja) 2013-10-02
US8653710B2 (en) 2014-02-18
JP2010148235A (ja) 2010-07-01

Similar Documents

Publication Publication Date Title
JP5305887B2 (ja) 永久磁石式回転電機
JP5085071B2 (ja) 永久磁石式回転電機の回転子
JP5159577B2 (ja) 永久磁石式回転電機
JP5159171B2 (ja) 永久磁石式回転電機
JP5542423B2 (ja) 回転電機の回転子、および回転電機
WO2009154007A1 (ja) 永久磁石式回転電機
JP5361260B2 (ja) 永久磁石回転式電機
JP5787673B2 (ja) 永久磁石型回転電機
JP2010004673A (ja) 永久磁石式回転電機
CN108028565B (zh) 转子
JP6539004B1 (ja) 回転子および回転電機
JP2012175738A (ja) 永久磁石式回転電機
JP2019068577A (ja) 可変磁力モータ
JP5355055B2 (ja) 永久磁石式回転電機
JP4574297B2 (ja) 回転電機のロータ
JP3871873B2 (ja) 永久磁石型回転子
JP2006081338A (ja) 回転電機のロータ
US7388309B2 (en) Magnetic circuit structure for rotary electric machine
WO2022113181A1 (ja) 永久磁石同期モータ
JP5197551B2 (ja) 永久磁石式回転電機
WO2023144957A1 (ja) 回転電機
JP2023151657A (ja) 永久磁石電動機
JP2018201287A (ja) 電動機

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980150960.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09833207

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2009833207

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2009833207

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13140669

Country of ref document: US