WO2010070899A1 - 電力変換回路 - Google Patents

電力変換回路 Download PDF

Info

Publication number
WO2010070899A1
WO2010070899A1 PCT/JP2009/006930 JP2009006930W WO2010070899A1 WO 2010070899 A1 WO2010070899 A1 WO 2010070899A1 JP 2009006930 W JP2009006930 W JP 2009006930W WO 2010070899 A1 WO2010070899 A1 WO 2010070899A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
arm side
voltage
lower arm
upper arm
Prior art date
Application number
PCT/JP2009/006930
Other languages
English (en)
French (fr)
Inventor
田米正樹
北畠真
風間俊
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to US12/864,856 priority Critical patent/US8363440B2/en
Priority to CN2009801052392A priority patent/CN102017386B/zh
Priority to JP2010508538A priority patent/JP4512671B1/ja
Publication of WO2010070899A1 publication Critical patent/WO2010070899A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/20Contact mechanisms of dynamic converters
    • H02M1/28Contact mechanisms of dynamic converters incorporating electromagnetically-operated vibrating contacts

Definitions

  • the present invention relates to a power conversion circuit that is constituted by a plurality of upper and lower arms and particularly operates with high power and high frequency.
  • the upper and lower arms are alternately switched through a predetermined rest period (usually referred to as dead time) so that the upper and lower arms do not conduct simultaneously and short-circuit.
  • a switching operation is generally performed.
  • the higher the voltage applied to the switching element, or the higher the operating speed of the switching element the greater the rate of change of the voltage applied to the switching element (usually called dv / dt).
  • a charging current flows from the main terminal to the control terminal via the parasitic capacitance C of the other switching element, and the voltage of the control terminal changes in proportion to the value of the charging current.
  • the voltage at the control terminal may exceed the threshold voltage of the switching element. If the voltage at the control terminal changes and exceeds the threshold voltage during the specified pause period, the upper and lower arms are turned on at the same time, resulting in a short-circuit condition, switching element destruction, and power converter failure. Bring.
  • the malfunctioning mechanism of the lower arm 22u due to the turn-on operation of the upper arm 21u will be described with reference to FIG.
  • the upper and lower arms 21u and 22u be a rest period (so-called dead time) in which both are off.
  • This idle period is, for example, 1/20 or less of the switching frequency in the inverter.
  • the switching frequency is often 15 kHz or less.
  • the DC voltage Vdc of the battery 1 is applied between the drain and source of the lower arm 22u.
  • the parasitic capacitance 200 of the lower arm 22u is rapidly charged according to the switching speed of the upper arm 21u, and a current Ig flows through the lower arm side gate resistor 104u and the lower arm side arm drive circuit 102u.
  • a potential difference corresponding to the value of the lower arm side gate resistance 104u is generated at both ends of the lower arm side gate resistance 104u.
  • the potential difference generated at both ends of the lower arm side gate resistance 104u that is, the gate-source of the lower arm 22u.
  • the potential difference Vgs between them can be expressed by the following equation.
  • Vgs Rg ⁇ Cgd ⁇ (dVdc / dt) That is, the larger the values of the resistance Rg of the lower arm side gate resistance 104u that determines the switching speed of the lower arm 22u, the parasitic capacitance Cgd of the lower arm 21u, or the switching time dVdc / dt of the upper arm 21u, respectively, Vgs becomes larger. It becomes large and the lower arm 22u is liable to malfunction.
  • the resistance Rg of the lower arm side gate resistance 104u is a value that determines the switching speed of the lower arm 22u, it cannot be reduced freely. Moreover, since the parasitic capacitance Cgd of the lower arm 21u is determined by the internal structure of the lower arm 22u, it cannot be changed freely. Further, if the switching time dVdc / dt during the turn-on operation of the upper arm 21u is reduced, the switching speed of the upper arm 21u is reduced, resulting in an increase in switching loss.
  • Patent Document 1 a negative bias voltage is applied to the control terminal during the OFF operation of the switching element including the voltage change period so that a short-circuit state is not caused even if there is a voltage change of the control terminal due to the charging current. Apply. By doing so, it becomes possible to avoid simultaneous short-circuit operation. For example, it is proposed in the following Patent Document 1.
  • a negative bias voltage can be applied only by a circuit such as a capacitor, a diode, and an FET without outputting a negative bias voltage from the power source.
  • a circuit such as a capacitor, a diode, and an FET without outputting a negative bias voltage from the power source.
  • the above publication also discloses that the restriction can be reduced, and furthermore, the heat generation of the drive circuit can be suppressed.
  • the switching element is weak against the negative bias voltage applied to the control terminal, and the longer the time during which the negative bias voltage is applied, the more the switching element is deteriorated.
  • the negative bias circuit is composed of circuits such as capacitors, diodes, and FETs, it cannot cope with changes in the characteristics of the switching elements due to the operating state of the switching elements and the surrounding environment. Further, the capacitance of the capacitor constituting the negative bias circuit needs to be determined according to the characteristics of the switching element to be driven, and there is a problem such as lack of versatility.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide a power conversion circuit that suppresses malfunction caused by application of high dv / dt and greatly improves the life of a switching element in the power conversion circuit. There is.
  • the negative bias voltage is applied to the switching element during the off operation corresponding to both the upper arm operation and the lower arm operation. Limit it for a short time.
  • the power conversion circuit of the present invention drives the upper arm connected to the high voltage side and the lower arm connected to the low voltage side, the upper arm side gate drive circuit that drives the upper arm, and the lower arm.
  • the power conversion circuit including the lower arm side gate driving circuit, the upper arm side gate driving circuit and the lower arm side gate driving circuit are respectively an upper arm side gate driving power source and a lower arm side gate driving power source,
  • the upper arm side arm driving circuit and the lower arm side arm driving circuit receive a control signal for controlling the upper arm or lower arm of the upper arm side and the lower arm side arm driving circuit
  • the arm drive signal is output
  • the lower arm side gate drive circuit further includes a signal output circuit and an off-voltage control circuit, and the signal output circuit completes the turn-off operation of the lower arm and the upper arm.
  • the off-voltage control circuit receives the voltage adjustment signal from the signal output circuit and starts the turn-on operation of the upper arm from the end of the turn-off operation of the lower arm. Until a second voltage lower than the first voltage that satisfies the off-state of the lower arm is generated, and after the turn-on operation of the upper arm is completed, the second voltage is increased from the second voltage.
  • the output voltage of the lower arm side gate drive power supply is controlled so as to return to the above voltage.
  • the signal output circuit includes a timer circuit, and the timer circuit receives both control signals for the upper arm and the lower arm, and both the control signals are off. Both the arm and the upper arm are turned on during the turn-off state, and a timer signal that is turned off after a predetermined period of the on operation after the end of the turn-on operation of the upper arm is output.
  • the timer signal of the timer circuit may be received and the output voltage of the lower arm side gate drive power supply may be controlled based on the timer signal.
  • the signal output circuit includes an upper arm side main terminal voltage detection circuit and a lower arm side main terminal voltage detection circuit, an upper arm side determination circuit, and a lower arm side determination circuit, and the upper arm side
  • the side main terminal voltage detection circuit and the lower arm side main terminal voltage detection circuit each detect the main terminal voltage value of the upper arm or the lower arm
  • the upper arm side determination circuit and the lower arm side determination circuit are Receiving the main terminal voltage signal detected by the upper arm side main terminal voltage detection circuit or the lower arm side main terminal voltage detection circuit of the self, and based on the main terminal voltage signal, The end of the turn-off operation and the turn-on operation may be detected.
  • the upper arm side determination circuit and the lower arm side determination circuit are respectively main terminal voltage signals detected by the upper arm side main terminal voltage detection circuit or the lower arm side main terminal voltage detection circuit.
  • the end of the turn-on operation and the turn-off operation of its own arm may be determined based on a comparison between the voltage value of the main terminal voltage signal and a predetermined reference voltage.
  • the signal output circuit includes an upper arm side main terminal current detection circuit and a lower arm side main terminal current detection circuit, an upper arm side determination circuit, and a lower arm side determination circuit, and the upper arm side
  • the side main terminal current detection circuit and the lower arm side main terminal current detection circuit detect the main terminal current value of the upper arm or the lower arm, respectively, and the upper arm side determination circuit and the lower arm side determination circuit are , Based on the main terminal current signal detected by the upper arm side main terminal current detection circuit or the lower arm side main terminal current detection circuit, the turn-off operation and the turn-on operation of the upper arm or the lower arm are terminated. It may be detected.
  • each of the upper arm side determination circuit and the lower arm side determination circuit receives a main terminal current signal from the upper arm side main terminal current detection circuit or the lower arm side main terminal current detection circuit, and Based on the comparison between the current value of the main terminal current signal and a predetermined reference voltage, the end of the turn-on operation and the turn-off operation of its own arm may be determined.
  • the signal output circuit includes an upper arm side control terminal voltage detection circuit and a lower arm side control terminal voltage detection circuit, an upper arm side determination circuit, and a lower arm side determination circuit, and the upper arm side
  • the side control terminal voltage detection circuit and the lower arm side control terminal voltage detection circuit detect the voltage value of the control terminal of the upper arm or the lower arm, respectively
  • the upper arm side determination circuit and the lower arm side determination circuit Is a turn-off operation and a turn-on operation of its own upper arm or lower arm based on a control terminal voltage signal detected by its own upper arm side control terminal voltage detection circuit or lower arm side control terminal voltage detection circuit, respectively. It is also possible to detect the end of.
  • each of the upper arm side determination circuit and the lower arm side determination circuit receives a control terminal voltage signal detected by a control terminal voltage detection circuit of its own arm, and determines the voltage of the control terminal voltage signal.
  • the end of the turn-on operation and turn-off operation of its own arm may be determined based on comparison with a predetermined reference voltage.
  • the signal output circuit further includes a lower arm side main terminal voltage change rate detection circuit, and the lower arm side main terminal voltage change rate detection circuit is a main terminal voltage of the lower arm of itself.
  • the off-voltage control circuit receives a detection result of the lower arm side main terminal voltage change rate detection circuit, and a second arm generated by the lower arm side gate drive power supply based on the detection result. The voltage value of the voltage may be changed.
  • the off-voltage control circuit sets the voltage value of the second voltage generated by the lower arm side gate drive power supply to a lower voltage value as the change rate of the lower arm side main terminal voltage increases. It is also possible to adjust to.
  • the off-voltage control circuit sets a voltage value of a second voltage generated by the lower arm side gate drive power supply.
  • the first voltage may be maintained.
  • the signal output circuit further includes a lower arm side arm temperature detection circuit, and the lower arm side arm temperature detection circuit detects the temperature of the lower arm of itself and controls the off-voltage control.
  • the circuit may receive the detection result of the lower arm side arm temperature detection circuit and change the voltage value of the second voltage generated by the lower arm side gate drive power supply based on the detection result.
  • the off-voltage control circuit further lowers the second voltage generated by the lower arm side gate drive power supply as the arm temperature of the lower arm detected by the lower arm side arm temperature detection circuit is higher. It is good also as adjusting to a voltage value.
  • the power conversion circuit of the present invention drives the upper arm connected to the high voltage side and the lower arm connected to the low voltage side, the upper arm side gate drive circuit for driving the upper arm, and the lower arm.
  • the power conversion circuit including the lower arm side gate driving circuit, the upper arm side gate driving circuit and the lower arm side gate driving circuit are respectively an upper arm side gate driving power source and a lower arm side gate driving power source,
  • An arm side arm drive circuit and a lower arm side arm drive circuit, the upper arm side gate drive power supply and the lower arm side gate drive power supply supply a voltage to the control terminal of its own upper arm or lower arm
  • the upper arm side arm driving circuit and the lower arm side arm driving circuit receive a control signal for controlling the upper arm or the lower arm of the upper arm side arm driving circuit and the lower arm side arm driving circuit.
  • the upper arm side gate drive circuit further includes a signal output circuit and an off voltage control circuit, and the signal output circuit completes the turn-off operation of the upper arm and the lower arm.
  • the off-voltage control circuit receives a voltage adjustment signal from the signal output circuit and starts the turn-on operation of the lower arm from the end of the turn-off operation of the upper arm. And generating a second voltage lower than the first voltage that satisfies the OFF state of the upper arm, and after the turn-on operation of the lower arm, the second voltage is applied to the first voltage.
  • the output voltage of the upper arm side gate drive power supply is controlled so as to return to the above voltage.
  • the signal output circuit includes a timer circuit, and the timer circuit receives both control signals for the upper arm and the lower arm, and both the control signals are off. Both the arm and the upper arm are turned on during the turn-off state, and output a timer signal that is turned off after a predetermined period of the on-operation after the end of the turn-on operation of the lower arm.
  • the timer signal of the timer circuit may be received and the output voltage of the lower arm side gate drive power supply may be controlled based on the timer signal.
  • the signal output circuit includes an upper arm side main terminal voltage detection circuit and a lower arm side main terminal voltage detection circuit, an upper arm side determination circuit, and a lower arm side determination circuit, and the upper arm side
  • the side main terminal voltage detection circuit and the lower arm side main terminal voltage detection circuit each detect the main terminal voltage value of the upper arm or the lower arm
  • the upper arm side determination circuit and the lower arm side determination circuit are Receiving the main terminal voltage signal detected by the upper arm side main terminal voltage detection circuit or the lower arm side main terminal voltage detection circuit of the self, and based on the main terminal voltage signal, The end of the turn-off operation and the turn-on operation may be detected.
  • the upper arm side determination circuit and the lower arm side determination circuit are respectively main terminal voltage signals detected by the upper arm side main terminal voltage detection circuit or the lower arm side main terminal voltage detection circuit.
  • the end of the turn-on operation and the turn-off operation of its own arm may be determined based on a comparison between the voltage value of the main terminal voltage signal and a predetermined reference voltage.
  • the signal output circuit includes an upper arm side main terminal current detection circuit and a lower arm side main terminal current detection circuit, an upper arm side determination circuit, and a lower arm side determination circuit, and the upper arm side
  • the side main terminal current detection circuit and the lower arm side main terminal current detection circuit detect the main terminal current value of the upper arm or the lower arm, respectively, and the upper arm side determination circuit and the lower arm side determination circuit are , Based on the main terminal current signal detected by the upper arm side main terminal current detection circuit or the lower arm side main terminal current detection circuit, the turn-off operation and the turn-on operation of the upper arm or the lower arm are terminated. It may be detected.
  • each of the upper arm side determination circuit and the lower arm side determination circuit receives a main terminal current signal from the upper arm side main terminal current detection circuit or the lower arm side main terminal current detection circuit, and Based on the comparison between the current value of the main terminal current signal and a predetermined reference voltage, the end of the turn-on operation and the turn-off operation of its own arm may be determined.
  • the signal output circuit includes an upper arm side control terminal voltage detection circuit and a lower arm side control terminal voltage detection circuit, an upper arm side determination circuit, and a lower arm side determination circuit, and the upper arm side
  • the side control terminal voltage detection circuit and the lower arm side control terminal voltage detection circuit detect the voltage value of the control terminal of the upper arm or the lower arm, respectively
  • the upper arm side determination circuit and the lower arm side determination circuit Is a turn-off operation and a turn-on operation of its own upper arm or lower arm based on a control terminal voltage signal detected by its own upper arm side control terminal voltage detection circuit or lower arm side control terminal voltage detection circuit, respectively. It is also possible to detect the end of.
  • each of the upper arm side determination circuit and the lower arm side determination circuit receives a control terminal voltage signal detected by a control terminal voltage detection circuit of its own arm, and determines the voltage of the control terminal voltage signal.
  • the end of the turn-on operation and turn-off operation of its own arm may be determined based on comparison with a predetermined reference voltage.
  • the signal output circuit further includes an upper arm side main terminal voltage change rate detection circuit, and the upper arm side main terminal voltage change rate detection circuit includes the main terminal voltage of the upper arm of itself.
  • the off-voltage control circuit receives a detection result of the upper arm side main terminal voltage change rate detection circuit, and based on the detection result, the second arm generated by the upper arm side gate drive power supply is detected. The voltage value of the voltage may be changed.
  • the off-voltage control circuit sets the voltage value of the second voltage generated by the upper arm side gate drive power supply to a lower voltage value as the change rate of the upper arm side main terminal voltage is larger. It is also possible to adjust to.
  • the off-voltage control circuit sets a voltage value of a second voltage generated by the upper arm side gate drive power supply.
  • the first voltage may be maintained.
  • the signal output circuit further includes an upper arm side arm temperature detection circuit, and the upper arm side arm temperature detection circuit detects the temperature of the upper arm, and controls the off voltage.
  • the circuit may receive the detection result of the upper arm side arm temperature detection circuit and change the voltage value of the second voltage generated by the upper arm side gate drive power supply based on the detection result.
  • the off-voltage control circuit further lowers the second voltage generated by the upper arm side gate drive power supply as the arm temperature of the upper arm detected by the upper arm side arm temperature detection circuit is higher. It is good also as adjusting to a voltage value.
  • the upper arm and the lower arm may be composed of MOSFETs.
  • the upper arm and the lower arm may be formed of a wide band gap semiconductor containing silicon carbide or gallium nitride.
  • the arm drive signal having a voltage lower than the predetermined off-voltage is output from the time when the turn-off operation of the own arm is completed until the turn-on operation of the other arm is started. Immediately after the turn-on operation is completed, the voltage of the arm drive signal is returned to the predetermined off voltage, so that a voltage lower than the predetermined off voltage applied to the control terminal to turn off the arm composed of the switching element is applied. Time can be greatly shortened, and malfunctions due to application of high dv / dt can be suppressed. As a result, it is possible to provide a highly reliable power conversion circuit that can suppress the upper and lower arm short-circuit operation in the power conversion circuit and that greatly improves the life of the switching element.
  • the end time of the turn-off operation of its own arm and the end time of the turn-on operation of the other arm are grasped by directly detecting the main terminal voltage, main terminal current, or control terminal voltage of the arm.
  • the greater the rate of change of the main terminal voltage of the other arm during the on operation the easier it is for the own arm during the off operation to be on and the possibility of a short circuit between the upper and lower arms increases. Since the off voltage to be applied is adjusted to a voltage value lower than the predetermined off voltage, it is difficult to perform an unnecessary on operation of the own arm. Therefore, an off voltage corresponding to the change rate of the main terminal voltage is set to minimize the load applied to the control terminal of the switching element, and malfunction due to application of high dv / dt can be suppressed.
  • the off-voltage applied to the control terminal of the own arm is maintained at the predetermined off-voltage, so that it is applied to the control terminal of the switching element. It is possible to suppress malfunction due to application of high dv / dt after suppressing the load.
  • the arm threshold voltage reference voltage for turning on the arm
  • the arm during the off operation is easily turned on even with a relatively low off voltage. Since the off voltage applied to the control terminal of the arm during the off operation is controlled to be lower, the unnecessary turn-on operation is difficult to perform, and it is possible to realize a malfunction suppression by stable high dv / dt application.
  • the power conversion circuit of the present invention when a voltage lower than a predetermined off-voltage is applied to the control terminal of the switching element that is an arm, the application time is significantly shortened. Therefore, it is possible to provide a highly reliable power conversion circuit that suppresses the upper and lower arm short circuit operation in the power conversion circuit and greatly improves the life of the switching element. is there.
  • FIG. 1 is a circuit diagram showing an overall schematic configuration of a motor drive system for explaining a power conversion circuit according to a first embodiment of the present invention.
  • FIG. 2 is a circuit diagram showing an internal configuration of an inverter leg provided in the power conversion circuit.
  • FIG. 3 is a diagram showing an operation timing chart of the lower arm side gate drive circuit provided in the leg.
  • FIG. 4 is a diagram illustrating a malfunction mechanism of the lower arm due to the turn-on operation of the upper arm.
  • FIG. 5 is a circuit diagram showing an overall schematic configuration of a motor drive system for explaining a power conversion circuit according to a second embodiment of the present invention.
  • FIG. 6 is a circuit diagram showing an internal configuration of an inverter leg provided in the power conversion circuit.
  • FIG. 1 is a circuit diagram showing an overall schematic configuration of a motor drive system for explaining a power conversion circuit according to a first embodiment of the present invention.
  • FIG. 2 is a circuit diagram showing an internal configuration of an inverter leg provided in the power conversion circuit.
  • FIG. 7 is an operation timing chart of the upper arm side gate driving circuit and the lower arm side gate driving circuit provided in the leg.
  • FIG. 8 is a circuit diagram showing the internal configuration of the legs of the inverter provided in the power conversion circuit according to the third embodiment of the present invention.
  • FIG. 9 is a circuit diagram showing an internal configuration of a leg of the inverter provided in the power conversion circuit according to the fourth embodiment of the present invention.
  • FIG. 10 is an operation timing chart of the upper arm side gate drive circuit and the lower arm side gate drive circuit provided in the leg.
  • FIG. 11 is a circuit diagram showing the internal configuration of the legs of the inverter provided in the power conversion circuit according to the fifth embodiment of the present invention.
  • FIG. 12 is an operation timing chart of the upper arm side gate driving circuit and the lower arm side gate driving circuit provided in the leg.
  • FIG. 13 is an operation timing chart of the upper arm side gate drive circuit and the lower arm side gate drive circuit provided in the inverter leg of the power conversion circuit according to the sixth embodiment of the present invention.
  • FIG. 14 is a circuit diagram showing an internal configuration of a leg of an inverter provided in the power conversion circuit according to the seventh embodiment of the present invention.
  • FIG. 15 is a diagram in which the horizontal axis represents the temperature of the switching element and the vertical axis represents the threshold voltage in a general switching element.
  • FIG. 1 is a schematic circuit diagram of a motor drive system for explaining a first embodiment of an inverter to which the present invention is applied.
  • the motor drive system includes a battery 1, an inverter 2, a motor 3, and a control circuit 4.
  • the battery 1 supplies DC power to the inverter 2, and the inverter 2 converts DC power supplied from the battery 1 to DC / AC, and supplies AC power to the motor 3.
  • the motor 3 is rotationally driven by AC power supplied from the inverter 2.
  • the control circuit 4 controls the inverter 2 so that the motor 3 performs a desired operation.
  • the inverter 2 is composed of the same number of legs 25u, 25v, 25w as the number of AC power to be output.
  • the legs 25u, 25v, 25w are upper arms (connected to the positive side) 21u connected in series between the positive and negative of the battery 1.
  • 21v, 21w and lower arms (connected to the negative side) 22u, 22v, 22w, upper arms 21u, 21v, 21w, and upper arm side gate drive circuits 23u, 23v corresponding to the lower arms 22u, 22v, 22w, 23w and lower arm side gate drive circuits 24u, 24v, 24w.
  • FIG. 2 is a circuit diagram for explaining the leg 25u in FIG. 1 in detail.
  • the lower arm side gate drive circuit 24u includes a lower arm side timer circuit 100u as a signal output circuit, a lower arm side off voltage control circuit 101u, a lower arm side arm drive circuit 102u, a lower arm side gate drive power supply 103u, It comprises an arm side gate resistor 105u.
  • the lower arm side gate drive power supply 103u outputs an on-voltage of about 10 to 30V with reference to the source potential of the lower arm 22u driven by the lower arm side gate drive circuit 24u, and the lower arm side gate drive circuit 24u An off-voltage of about 0 to -30V is output with reference to the source potential of the lower arm 22u to be driven.
  • the off voltage is determined by the threshold voltage that controls the on / off operation of the switching element and the device characteristics of the switching element. In general, in a switching element having a threshold voltage of about 3V, the off voltage is set to about 0 to ⁇ 15V. Moreover, since the reliability of a switching element falls, so that the voltage applied to the control terminal of a switching element becomes high, generally the maximum rated voltage is prescribed
  • Control signals Vg_u1 and Vg_u2 are input to the upper arm side gate drive circuit 23u and the lower arm side gate drive circuit 24u.
  • the control signals Vg_u1 and Vg_u2 are signals output from the control circuit 4 (not shown here) and are signals for controlling the switching operation of the upper arm 21u and the lower arm 22u.
  • the control signal Vg_u2 is input to the lower arm side gate drive power supply 103u, and the gate drive power supply 103u outputs a signal corresponding to the control signal Vg_u2.
  • the lower arm side gate drive power supply 103u outputs a signal corresponding to the control signal Vg_u2 to the lower arm side arm drive circuit 102u.
  • the lower arm side gate drive power supply 103u also supplies power to the lower arm side arm drive circuit 102.
  • the lower arm side arm drive circuit 102u amplifies the power of the input signal and outputs it.
  • the signal output from the lower arm side arm drive circuit 102u is input to the control terminal of the lower arm 22u via the lower arm side gate resistor 104u.
  • Control signals Vg_u1 and Vg_u2 output from the control circuit 4 are input to the lower arm side timer circuit 100u.
  • the lower arm side timer circuit 100u outputs a timer signal (voltage adjustment signal) determined by the on / off operation of the control signals Vg_u1 and Vg_u2 to the lower arm side off voltage control circuit 101u.
  • the lower arm side off voltage control circuit 101u outputs a Vg_off signal determined by the on / off operation of the timer signal to the lower arm side gate drive power supply 103u. Then, the lower arm side gate drive power supply 103u arbitrarily changes the output off voltage in accordance with the Vg_off signal.
  • the upper arm side gate drive circuits 23u, 23v, 23w and the lower arm side gate drive circuits 24u, 24v, 24w may all have the same circuit configuration.
  • FIG. 3 is a timing chart of the lower arm side gate drive circuit 24u for explaining the circuit operation.
  • Vg_u1 and Vg_u2 are control signals input from the control circuit 4 to the upper arm side gate drive circuit 23u and the lower arm side gate drive circuit 24u.
  • the timer signal (voltage adjustment signal) rises between the fall time t1 of the control signal Vg_u2 and the rise time t3 of the control signal Vg_u1, and then a predetermined time (timer time) Ts elapses from the rise time t3 of the control signal Vg_u1. It falls at the time.
  • the predetermined time Ts is set in advance to a time until the end of the turn-on operation when the upper arm 21u has actually performed the turn-on operation by the rising of the control signal Vg_u1, or a slightly longer time from the end of the turn-on operation.
  • the signal Vg_off operates almost in synchronization with the timer signal. By performing such an operation, it is possible to suppress the malfunction of the lower arm 22u caused by the rapid charging of the parasitic capacitance of the lower arm 22u during the turn-on operation of the upper arm 21u mainly in the high-speed switching operation. it can.
  • the period of the predetermined time Ts is desirably three times or less of the period of the falling time t1 of the control signal Vg_u2 and the rising time t3 of the control signal Vg_u1.
  • the switching operation of the lower arm 22u is set to a desired speed.
  • the malfunction described above can be reliably suppressed in the maintained state.
  • the fall time t4 of Vg_off is set after a predetermined time Ts has elapsed from the rise time t3 of the control signal Vg_u1.
  • the predetermined time Ts set by the timer circuit 100u is preferably set after the turn-on operation of the upper arm 21u is completed from the rising time t3 of the control signal Vg_u1.
  • the other arm of the upper and lower arms when one arm is turned on, only the other arm of the upper and lower arms is controlled to apply a voltage lower than a predetermined off voltage.
  • not only the lower arm belonging to the same leg but also all the lower arms belonging to other legs may be controlled to apply a voltage lower than a predetermined off voltage at the same timing.
  • the influence of the switching operation of the other phase can be suppressed, and a highly reliable gate drive circuit can be realized.
  • the time for applying a voltage lower than the gate voltage to be kept off can be greatly shortened, the device life can be extended.
  • the off voltage may be adjusted for each lower arm.
  • the off voltage may be adjusted for each lower arm.
  • the time for applying a voltage lower than the gate voltage to be kept off can be greatly shortened, the device life of the arm can be extended.
  • the predetermined time Ts may be arbitrarily varied according to the voltage and current applied to the device constituting the arm. In this way, the influence of the switching operation at different voltages and currents can be suppressed, and the end of the turn-on operation or turn-off operation can be detected more accurately. Therefore, a highly reliable gate driving circuit can be realized.
  • a voltage lower than a predetermined off voltage may be arbitrarily varied according to a voltage and a current applied to the device. In this way, the influence of the switching operation at different voltages and currents can be suppressed, and malfunctions can be suppressed more reliably. Therefore, a highly reliable gate driving circuit can be realized.
  • FIG. 5 is a schematic external view of a motor drive system for explaining a second embodiment of an inverter to which the present invention is applied.
  • the only difference from FIG. 1 is that the legs 25u, 25v, and 25w are replaced with the legs 250u, 250v, and 250w, and the rest of the configuration is the same.
  • FIG. 6 is a circuit diagram for explaining the leg 250u in FIG. 5 in detail.
  • the leg 250u includes an upper arm 21u and a lower arm 22u, and an upper arm side gate drive circuit 200u and a lower arm side gate drive circuit 300u corresponding to each of the upper arm 21u and the lower arm 22u.
  • the upper arm side gate drive circuit 200u includes an upper arm side gate drive power supply 201u, an upper arm side first determination circuit 203u, an upper arm side gate resistor 204u, an upper arm side arm drive circuit 205u, and an upper arm side off voltage control.
  • the lower arm side gate drive circuit 300u is composed of a lower arm side gate drive power supply 301u, a lower arm side first determination circuit 303u, a lower arm side gate resistor 304u, The lower arm side arm drive circuit 305u, the lower arm side off voltage control circuit 306u, and the lower arm side main terminal voltage detection circuit 307u are configured.
  • the upper arm and the lower arm are turned off by the upper arm side main terminal voltage detection circuit 207u, the upper arm side first determination circuit 203u, the lower arm side main terminal voltage detection circuit 307u, and the lower arm side first determination circuit 303u.
  • a signal output circuit for making a voltage adjustment signal corresponding to the end of the operation is configured.
  • the upper arm side gate drive power supply 201u and the lower arm side gate drive power supply 301u are based on the source potentials of the upper arm 21u and the lower arm 22u driven by the upper arm side gate drive circuit 200u and the lower arm side gate drive circuit 300u, respectively.
  • the on-state voltage of about 10 to 30 V is output, and the source potentials of the upper arm 21 u and the lower arm 22 u driven by the upper arm side gate drive circuit 200 u and the lower arm side gate drive circuit 300 u are set to 0 to An off voltage of about -30V is output.
  • Control signals Vg_u1 and Vg_u2 are input to the upper arm side gate drive circuit 200u and the lower arm side gate drive circuit 300u.
  • the control signals Vg_u1 and Vg_u2 are signals output from the control circuit 4 (not shown here) and are signals for controlling the switching operation of the upper arm 21u and the lower arm 22u.
  • the control signals Vg_u1 and Vg_u2 are input to the upper arm side gate driving power source 201u and the lower arm side gate driving power source 301u, and the upper arm side gate driving power source 201u and the lower arm side gate driving power source are supplied to the control signals Vg_u1 and Vg_u2, respectively. A corresponding signal is output.
  • the upper arm side gate drive power supply 201u and the lower arm side gate drive power supply 301u output signals corresponding to the control signals Vg_u1 and Vg_u2 to the upper arm side arm drive circuit 205u and the lower arm side arm drive circuit 305u. .
  • the upper arm side gate drive power supply 201u and the lower arm side arm drive circuit 305u also supply power to the upper arm side arm drive circuit 205u and the lower arm side arm drive circuit 305u.
  • the upper arm side arm drive circuit 205u and the lower arm side arm drive circuit amplify the power of the input signal and output it.
  • the signals output from the upper arm side arm driving circuit 205u and the lower arm side arm driving circuit 305u are passed through the upper arm side gate resistance 204u and the lower arm side gate resistance 304u, respectively, and are output from the upper arm 21u and the lower arm 22u, respectively. Input to the control terminal.
  • the control signals Vg_u1 and Vg_u2 output from the control circuit 4 are input to the first determination circuit 203u on the upper arm side, and further, the signals output from the upper arm side main terminal voltage detection circuit 207u. Is also entered.
  • the upper arm side main terminal voltage detection circuit 207u detects the voltage value of the main terminal voltage Vds_u1 of the upper arm 21u, and outputs the detected value to the first determination circuit 203u on the upper arm side.
  • the upper arm side first determination circuit 203u outputs a voltage adjustment signal to the upper arm side off voltage control circuit 206u.
  • the voltage adjustment signal output from the first determination circuit 203u on the upper arm side determines the rising timing by the on / off operation of the control signals Vg_u1 and Vg_u2, and further depends on the input voltage value of the upper arm 21u. To determine the falling timing. Then, the upper arm side off-voltage control circuit 206u outputs Vgoff (u1) to the upper arm side gate drive power supply 201u in accordance with the signal output from the upper arm side first determination circuit 203u.
  • the Vg_off (u1) signal determined by the on / off operation of the signal output from the upper arm side off voltage control circuit 206u is output to the lower arm side gate drive power supply 103u. Then, the lower arm side gate drive power supply 103u arbitrarily changes the output off voltage according to the Vg_off (u1) signal.
  • the lower arm side first determination circuit 303u, the lower arm side main terminal voltage detection circuit The operation of 307u is the same as the operation of the first determination circuit 203u on the upper arm side and the main terminal voltage detection circuit 207u on the upper arm side, and is therefore omitted.
  • the upper arm side gate drive circuits 23u, 23v, 23w and the lower arm side gate drive circuits 24u, 24v, 24w may all have the same circuit configuration.
  • FIG. 7 is a timing chart of the upper arm side gate drive circuit 200u and the lower arm side gate drive circuit 300u for explaining the circuit operation.
  • Vg_u1 and Vg_u2 in FIG. 7 are control signals input from the control circuit 4 to the upper arm side gate drive circuit 23u and the lower arm side gate drive circuit 24u.
  • Vds_u1, Vds_u2 and Ids_u1, Ids_u2 are the main terminal voltage and the main terminal current between the main terminals of the upper arm 21u and the lower arm 22u, respectively.
  • Vg_off (u1) and Vg_off (u2) are output signals of the upper arm side off voltage control circuit 206u and the lower arm side off voltage control circuit 306u.
  • the following can be generally said about the operation of the switching element. That is, by detecting the main terminal voltages Vds_u1 and Vds_u2 of the upper arm 21u and the lower arm 22u and comparing them with the reference values, the switching operation states of the upper arm 21u and the lower arm 22u can be grasped. That is, it is possible to accurately and promptly detect the end points of the turn-on operation and the turn-off operation.
  • the main terminal currents Ids_u1 and Ids_u2 of the upper arm 21u and the lower arm 22u are detected and compared with a reference value, so that the switching operation state of the upper arm 21u and the lower arm 22u can be grasped. That is, it is possible to accurately and promptly detect the end points of the turn-on operation and the turn-off operation.
  • the switching operation states of the upper arm 21u and the lower arm 22u can be grasped by detecting the control terminal voltages Vgs_u1 and Vgs_u2 of the upper arm 21u and the lower arm 22u and comparing them with reference values. That is, it is possible to accurately and promptly detect the end points of the turn-on operation and the turn-off operation.
  • the control signal Vg_u1 when the control signal Vg_u1 is in the off state and the control signal Vg_u2 is in the on state, the control signal Vg_u2 changes to the off state (time t1 in the figure). Then, since Vg_u2 is not a drive signal for directly driving the arm but a control signal, after a predetermined delay time has elapsed from Vg_u2, the voltage value of Vds_u2 starts to rise, and the current value of Ids_u2 rises in synchronization therewith. Start going down.
  • Vds_u2 becomes substantially equal to the voltage value of the battery 1, and Ids_u2 becomes almost 0 (time t1 ′ in the figure). In such a state, the turn-off operation is completed.
  • the voltage value of Vds_u2 is detected by the lower arm side main terminal voltage detection circuit 307u, and it is determined whether or not a predetermined value is exceeded in the lower arm side first determination circuit 303u.
  • a determination signal is output from the first determination circuit 303u to the lower arm side off-voltage control circuit 306u (not shown).
  • the Vg_off (u2) signal output from the lower arm side off voltage control circuit 306u to the lower arm side gate drive power supply 301u is turned on in accordance with the determination signal (at time t2 in the figure).
  • the time point t2 may be after the time point t1 ′, and may be substantially the same timing.
  • Vg_u1 changes to the on state (at time t3 in the figure). Then, since Vg_u1 is not a drive signal for directly driving the arm but a control signal, the voltage value of Vds_u1 starts to fall after a predetermined delay time has elapsed from Vg_u1, and the current value of Ids_u1 rises in synchronization with it. start. Then, the switching operation proceeds, and finally Vds_u1 becomes substantially equal to the voltage value of the battery 1, and Ids_u1 becomes almost 0 (time t3 ′ in the figure). In such a state, the turn-on operation is completed.
  • the voltage value of Vds_u1 is detected by the upper arm side main terminal voltage detection circuit 207u, and it is determined whether or not it is lower than the reference value of 1A in the upper arm side first determination circuit 203u. Is output from the upper arm side first determination circuit 203u to the upper arm side off voltage control circuit 306u (not shown). Next, the Vg_off (u2) signal output from the upper arm side off voltage control circuit 306u to the upper arm side gate drive power supply 301u is turned off in accordance with the determination signal.
  • the reference value of 1A used for determination is desirably 10% or less of the voltage value of the battery 1 applied when the upper arm is turned off.
  • Vg_u1 changes to the off state (at time t4 in the figure). Then, since Vg_u1 is not a drive signal for directly driving the arm but a control signal, after a predetermined delay time has elapsed from Vg_u1, the voltage value of Vds_u1 starts to rise, and the current value of Ids_u1 falls in synchronization with it. start. Then, the switching operation proceeds, and finally Vds_u1 becomes substantially equal to the voltage value of the battery 1, and Ids_u1 becomes almost 0 (at time t4 ′ in the figure).
  • Vds_u1 The voltage value of Vds_u1 is detected by the upper arm side main terminal voltage detection circuit 207u, and it is determined whether or not a predetermined value is exceeded in the upper arm side first determination circuit 203u. A determination signal is output from the first determination circuit 203u to the upper arm side off-voltage control circuit 206u (not shown).
  • the Vg_off (u1) signal output from the upper arm side off voltage control circuit 206u to the upper arm side gate drive power supply 201u is turned on in accordance with the determination signal (at time t5 in the figure).
  • the time point t5 may be after the time point t4 ′, and may be almost the same timing.
  • the upper arm side gate drive power supply 201u to which the Vg_off (u1) signal is input lowers the output voltage to a voltage that is not affected by voltage fluctuation due to high dv / dt.
  • Vg_u2 changes to the on state (at time t6 in the figure). Then, since Vg_u2 is not a drive signal for directly driving the arm but a control signal, after a predetermined delay time has elapsed from Vg_u2, the voltage value of Vds_u2 starts to fall, and the current value of Ids_u2 rises in synchronization with it. start. Then, the switching operation proceeds, and finally Vds_u2 becomes substantially equal to the voltage value of the battery 1, and Ids_u2 becomes almost 0 (at time t6 ′ in the figure). In such a state, the turn-on operation is completed.
  • the voltage value of Vds_u2 is detected by the lower arm side main terminal voltage detection circuit 307u, and it is determined whether or not it falls below the reference value of 1B in the lower arm side first determination circuit 303u. Is output from the lower arm side first determination circuit 303u to the lower arm side off voltage control circuit 206u (not shown). Next, the Vg_off (u1) signal output from the lower arm side off voltage control circuit 206u to the lower arm side gate drive power supply 201u is turned off in accordance with the determination signal.
  • the reference value of 1B used for determination is desirably 10% or less of the voltage value of the battery 1 applied when the lower arm is turned off.
  • FIG. 8 is a circuit diagram for explaining the leg 250u in FIG. 5 in detail.
  • the difference from FIG. 6 is that the upper arm side main terminal voltage detection circuit 207u and the lower arm side main terminal voltage detection circuit 307u are replaced with an upper arm side main terminal current detection circuit 217u and a lower arm side main terminal current detection circuit 317u, Furthermore, the upper arm side first determination circuit 203u and the lower arm side first determination circuit 303u are replaced with an upper arm side second determination circuit 213u and a lower arm side second determination circuit 313u.
  • the other configuration is the same as that in FIG.
  • the upper arm side main terminal current detection circuit 217u and the lower arm side main terminal current detection circuit 317u detect the current between the main terminals of the corresponding arms of the upper arm side gate drive circuit 200u and the lower arm side gate drive circuit 300u, A signal corresponding to the detected value is output to the upper arm side second determination circuit 213u and the lower arm side second determination circuit 313u.
  • the upper arm side second determination circuit 213u and the lower arm side second determination circuit 313u include control signals Vg_u1 and Vg_u2 for controlling the switching operation of the upper arm 21u and the lower arm 22u, and an upper arm side main terminal current detection circuit 213u.
  • a signal is output to the upper arm side off voltage control circuit 206u and the lower arm side off voltage control circuit 306u.
  • the upper arm side off voltage control circuit 206u and the lower arm side off voltage control circuit 306u are driven by the upper arm side gate according to the output signals of the upper arm side second determination circuit 213u and the lower arm side second determination circuit 313u.
  • Vg_off (u1) and Vg_off (u2) are output to the power supply 201u and the lower arm side gate drive power supply 301u, and the output voltages of the upper arm side gate drive power supply 201u and the lower arm side gate drive power supply 301u change to arbitrary values. .
  • the upper arm side arm drive circuit 205u and the lower arm side arm drive circuit 305u are supplied with power from the upper arm side gate drive power source 201u and the lower arm side gate drive power source 301u, and the upper arm side gate resistor 204u and the lower arm side gate resistor. Signals corresponding to the control signals Vg_u1 and Vg_u2 are output so that the upper arm 21u and the lower 22u are switched through 304u.
  • the upper arm side gate drive circuits 23u, 23v, 23w and the lower arm side gate drive circuits 24u, 24v, 24w have the same circuit configuration.
  • FIG. 7 is a timing chart of the upper arm side gate drive circuit 200u and the lower arm side gate drive circuit 300u for explaining the circuit operation.
  • Vg_u1 and Vg_u2 are control signals input from the control circuit 4 to the upper arm side gate drive circuit 23u and the lower arm side gate drive circuit 24u.
  • Vds_u1 and Vds_u2 Ids_u1 and Ids_u2 are the main terminal voltage and the main terminal current between the main terminals of the upper arm 21u and the lower arm 22u, respectively.
  • Vg_off (u1) and Vg_off (u2) are output signals of the upper arm side off voltage control circuit 206u and the lower arm side off voltage control circuit 306u.
  • Vg_u2 changes to an off state (time t1 in the figure). Then, since Vg_u2 is not a drive signal for directly driving the arm but a control signal, after a predetermined delay time has elapsed from Vg_u2, the voltage value of Vds_u2 starts to rise, and the current value of Ids_u2 falls in synchronization with it. start. Then, the switching operation proceeds, and finally Vds_u2 becomes substantially equal to the voltage value of the battery 1, and Ids_u2 becomes almost 0 (time t1 ′ in the figure). In such a state, the turn-off operation is completed.
  • the current value of Ids_u2 is detected by the lower arm side main terminal current detection circuit 317u, and it is determined in the lower arm side second determination circuit 313u whether or not the value is below a predetermined value.
  • a determination signal is output from the second determination circuit 313u to the lower arm side off-voltage control circuit 306u (not shown).
  • the Vg_off (u2) signal output from the lower arm side off voltage control circuit 306u to the lower arm side gate drive power supply 301u is turned on in accordance with the determination signal (at time t2 in the figure).
  • the time point t2 may be after the time point t1 ′, and may be substantially the same timing.
  • Vg_u1 changes to the on state (at time t3 in the figure). Then, since Vg_u1 is not a drive signal for directly driving the arm but a control signal, the voltage value of Vds_u1 starts to fall after a predetermined delay time has elapsed from Vg_u1, and the current value of Ids_u1 rises in synchronization with it. start. Then, the switching operation proceeds, and finally Vds_u1 becomes substantially equal to the voltage value of the battery 1, and Ids_u1 becomes almost 0 (at time t3 ′ in the figure). In such a state, the turn-on operation is completed.
  • the current value of Ids_u1 is detected by the upper arm side main terminal current detection circuit 217u, and it is determined in the upper arm side second determination circuit 213u whether or not the reference value of 2A has been exceeded. Is output from the upper arm side second determination circuit 213u to the lower arm side off voltage control circuit 306u (not shown).
  • the reference value of 2A used for determination is desirably 90% or more of the maximum current value applied when the upper arm is off.
  • Vg_off (u2) signal output from the lower arm side off voltage control circuit 306u to the lower arm side gate drive power supply 301u is turned off according to the determination signal.
  • Vg_u1 changes to the off state (at time t4 in the figure).
  • Vg_u1 is not a drive signal for directly driving the arm but a control signal
  • the voltage value of Vds_u1 starts to rise, and the current value of Ids_u1 falls in synchronization with it. start.
  • Vds_u1 becomes substantially equal to the voltage value of the battery 1, and Ids_u1 becomes almost 0 (time t4 ′ in the figure).
  • the turn-off operation is completed.
  • the current value of Ids_u1 is detected by the upper arm side main terminal current detection circuit 217u, and it is determined whether or not it falls below the reference value of 2B in the upper arm side second determination circuit 213u.
  • a determination signal is output from the upper arm side second determination circuit 213u to the upper arm side off voltage control circuit 206u (not shown).
  • the reference value of 2B used for determination is preferably 10% or more of the maximum current value applied when the upper arm is turned on.
  • the Vg_off (u1) signal output from the upper arm side off voltage control circuit 206u to the upper arm side gate drive power supply 201u is turned on in accordance with the determination signal (at time t5 in the figure).
  • the time point t5 may be after the time point t4 ′, and may be almost the same timing.
  • Vg_u2 changes to the on state (at time t6 in the figure).
  • Vg_u2 is not a drive signal for directly driving the arm but a control signal
  • Vg_u2 is not a drive signal for directly driving the arm but a control signal
  • the voltage value of Vds_u2 starts to fall, and the current value of Ids_u2 rises in synchronization with it. start.
  • the switching operation proceeds, and finally Vds_u2 becomes substantially equal to the voltage value of the battery 1, and Ids_u2 becomes almost 0 (time t6 ′ in the figure). In such a state, the turn-on operation is completed.
  • the current value of Ids_u2 is detected by the lower arm side main terminal current detection circuit 317u, and it is determined whether or not it exceeds a predetermined value in the lower arm side second determination circuit 313u.
  • a determination signal is output from the arm-side second determination circuit 313u to the off-voltage control circuit 206u (not shown).
  • the Vg_off (u1) signal output from the upper arm side off voltage control circuit 206u to the upper arm side gate drive power supply 201u is turned off in accordance with the determination signal.
  • FIG. 9 is a circuit diagram for explaining the leg 250u in FIG. 5 in detail.
  • FIG. 6 differs from FIG. 6 in that the upper arm side main terminal voltage detection circuit 207u and the lower arm side main terminal voltage detection circuit 307u are replaced with an upper arm side control terminal voltage detection circuit 227u and a lower arm side 327u, and further, the upper arm side The first determination circuit 203u and the lower arm side first determination circuit 303u are replaced with an upper arm side third determination circuit 223u and a lower arm side third determination circuit 323u.
  • the other configuration is the same as that in FIG.
  • the upper arm side control terminal voltage detection circuit 227u and the lower arm side control terminal voltage detection circuit 327u are the control terminal voltages (gate-source) of the arm corresponding to the upper arm side gate drive circuit 200u and the lower arm side gate drive circuit 300u, respectively. Voltage Vgs) and outputs a signal corresponding to the detected value to the upper arm side third determination circuit 223u and the lower arm side third determination circuit 323u.
  • the upper arm side third determination circuit 223u and the lower arm side third determination circuit 323u include control signals Vg_u1 and Vg_u2 for controlling switching operations of the upper arm 21u and the lower arm 22u, and an upper arm side control terminal voltage detection circuit 223u.
  • a signal is output to the upper arm side off voltage control circuit 206u and the lower arm side off voltage control circuit 306u.
  • the upper arm side off voltage control circuit 206u and the lower arm side off voltage control circuit 306u are driven by the upper arm side gate according to the output signals of the upper arm side third determination circuit 223u and the lower arm side third determination circuit 323u.
  • Vg_off (u1) and Vg_off (u2) are output to the power supply 201u and the lower arm side gate drive power supply 301u, and the output voltages of the upper arm side gate drive power supply 201u and the lower arm side gate drive power supply 301u change to arbitrary values. .
  • the upper arm side arm driving circuit 205u and the lower arm side arm driving circuit 305u are supplied with power from the upper arm side gate driving power source 201u and the lower arm side gate driving power source 301u, and the upper arm side gate resistance 204u and the lower arm side 304u Thus, signals corresponding to the control signals Vg_u1 and Vg_u2 are output so that the upper arm 21u and the lower 22u are switched.
  • the upper arm side gate drive circuits 23u, 23v, 23w and the lower arm side gate drive circuits 24u, 24v, 24w have the same circuit configuration.
  • FIG. 10 is an operation timing chart of the upper arm side gate drive circuit 200u and the lower arm side gate drive circuit 300u for explaining the circuit operation.
  • Vg_u1 and Vg_u2 are control signals input from the control circuit 4 to the upper arm side gate drive circuit 23u and the lower arm side gate drive circuit 24u.
  • Vgs_u1 and Vgs_u2 and Ids_u1 and Ids_u2 are the control terminal voltage and main terminal current of the upper arm 21u and the lower arm 22u, respectively.
  • Vg_off (u1) and Vg_off (u2) are output signals of the upper arm side off voltage control circuit 206u and the lower arm side off voltage control circuit 306u.
  • Vg_u2 changes to an off state (time t1 in the figure). Then, since Vg_u2 is not a drive signal for directly driving the arm but a control signal, after a predetermined delay time has elapsed from Vg_u2, the voltage value of Vgs_u2 starts to rise, and the current value of Ids_u2 falls in synchronization with it. start. Then, the switching operation proceeds, and finally Vgs_u2 becomes substantially equal to the voltage value of the on-state power supply 301u, and Ids_u2 becomes almost 0 (time t1 ′ in the figure).
  • Vgs_u2 The voltage value of Vgs_u2 is detected by the lower arm side control terminal voltage detection circuit 327u, and it is determined whether or not the predetermined value is exceeded in the lower arm side third determination circuit 323u. A determination signal is output from the third determination circuit 323u to the lower arm side off-voltage control circuit 306u (not shown).
  • the Vg_off (u2) signal output from the lower arm side off voltage control circuit 306u to the lower arm side gate drive power supply 301u is turned on in accordance with the determination signal (at time t2 in the figure).
  • the time point t2 may be after the time point t1 ′, and may be substantially the same timing.
  • Vg_u1 changes to the on state (at time t3 in the figure). Then, since Vg_u1 is not a drive signal for directly driving the arm but a control signal, the voltage value of Vgs_u1 starts to fall after a predetermined delay time has elapsed from Vg_u1, and the current value of Ids_u1 rises in synchronization with it. start. Then, the switching operation proceeds, and finally Vgs_u1 becomes substantially equal to the voltage value of the ON power supply 201u, and Ids_u1 becomes almost 0 (at time t3 ′ in the figure). In such a state, the turn-on operation is completed.
  • the voltage value of Vgs_u1 is detected by the upper arm side control terminal voltage detection circuit 227u, and it is determined whether or not the voltage value is lower than a predetermined value in the upper arm side third determination circuit 223u.
  • a determination signal is output from the upper arm side third determination circuit 223u to the lower arm side off voltage control circuit 306u (not shown).
  • Vg_off (u2) signal output from the lower arm side off voltage control circuit 306u to the lower arm side gate drive power supply 301u is turned off according to the determination signal.
  • Vg_u1 changes to the off state (at time t4 in the figure). Then, since Vg_u1 is not a drive signal for directly driving the arm but a control signal, after a predetermined delay time has elapsed from Vg_u1, the voltage value of Vgs_u1 starts to rise, and the current value of Ids_u1 falls in synchronization with it. start. Then, the switching operation proceeds, and finally Vgs_u1 becomes substantially equal to the voltage value of the upper arm side gate drive power supply 201u, and Ids_u1 becomes almost 0 (time t4 ′ in the figure).
  • Vgs_u1 is detected by the upper arm side control terminal voltage detection circuit 227u, and it is determined whether or not the reference value of 3A has been exceeded in the upper arm side third determination circuit 223u.
  • a determination signal is output from the upper arm side third determination circuit 223u to the upper arm side off voltage control circuit 206u (not shown).
  • the reference value of 3A used for determination is desirably 90% or more of the voltage value of the control terminal applied when the upper arm is turned on. By setting in this way, the end of the turn-off operation of the upper arm can be accurately detected, so that the reliability of the switching element can be improved. Furthermore, it is desirable to set the reference value of 3A according to the gate resistance value connected to the control terminal. In general, as the gate resistance value increases, the timing for turning on or off the switching element is delayed with respect to the timing for turning on or off the control terminal. Therefore, it is desirable to set the 3A reference value to a higher ratio with respect to the voltage value of the battery 1 as the gate resistance value connected to the control terminal is larger. By doing so, the reliability of the switching element can be improved.
  • the Vg_off (u1) signal output from the upper arm side off voltage control circuit 206u to the upper arm side gate drive power supply 201u is turned on in accordance with the determination signal (at time t5 in the figure).
  • the time point t5 may be after the time point t4 ′, and may be almost the same timing.
  • the upper arm-side power supply 202u to which the Vg_off (u1) signal is input reduces the output voltage to a voltage that is not affected by voltage fluctuation due to high dv / dt.
  • Vg_u2 changes to the on state (at time t6 in the figure). Then, since Vg_u2 is not a drive signal for directly driving the arm but a control signal, the voltage value of Vgs_u2 starts to fall after a predetermined delay time has elapsed from Vg_u2, and the current value of Ids_u2 rises in synchronization with it. start. Then, the switching operation proceeds, and finally Vgs_u2 becomes substantially equal to the voltage value of the lower arm side gate drive power supply 301u, and Ids_u2 becomes almost 0 (time t6 ′ in the figure). In such a state, the turn-on operation is completed.
  • the voltage value of Vgs_u2 is detected by the lower arm side control terminal voltage detection circuit 327u, and it is determined whether or not it falls below the reference value of 3B in the lower arm side third determination circuit 323u. Is output from the lower arm side third determination circuit 323u to the upper arm side off voltage control circuit 206u (not shown).
  • the reference value of 3B used for determination is preferably 10% or more of the voltage value of the control terminal applied when the upper arm is turned off. By setting in this way, the end of the turn-off operation of the upper arm can be accurately detected, so that the reliability of the switching element can be improved. Furthermore, it is desirable to set the reference value of 3B according to the gate resistance value connected to the control terminal. In general, as the gate resistance value increases, the timing for turning on or off the switching element is delayed with respect to the timing for turning on or off the control terminal. Therefore, it is desirable to set the 3B reference value to a higher ratio with respect to the voltage value of the battery 1 as the gate resistance value connected to the control terminal is larger. By doing so, the reliability of the switching element can be improved.
  • Vg_off (u1) signal output from the upper arm side off voltage control circuit 206u to the upper arm side gate drive power supply 201u is turned off in accordance with the determination signal.
  • FIG. 11 is a circuit diagram for explaining the leg 250u in FIG. 5 in detail. 6 differs from FIG. 6 in that an upper arm side main terminal voltage change rate detection circuit 208u and a lower arm side main terminal voltage change rate detection circuit 308u are added, an upper arm side off voltage control circuit 206u, and a lower arm side off voltage.
  • the control circuit 306u is replaced with an upper arm side first off voltage adjustment circuit 209u and a lower arm side first off voltage adjustment circuit 309u.
  • the other configuration is the same as that in FIG.
  • the “off voltage control circuit” in the claims corresponds to the upper arm side first off voltage adjustment circuit 209u and the lower arm side first off voltage adjustment circuit 309u in the fifth embodiment.
  • the upper arm side main terminal voltage change rate detection circuit 208u and the lower arm side main terminal voltage change rate detection circuit 308u are the main terminals detected by the upper arm side main terminal voltage detection circuit 207u and the lower arm side main terminal voltage detection circuit 307u.
  • the time change rate of voltage (so-called dv / dt) is detected.
  • Both output signals of the side main terminal voltage change rate detection circuit 208u and the lower arm side main terminal voltage change rate detection circuit 308u are input, and in accordance with these signals, the upper arm side gate drive power supply 201u and the lower arm side gate drive circuit The output voltage of 301u is adjusted.
  • FIG. 12 is a timing chart of the upper arm side gate drive circuit 200u and the lower arm side gate drive circuit 300u for explaining the circuit operation.
  • Vg_u1 and Vg_u2 are control signals input from the control circuit 4 to the upper arm side gate drive circuit 23u and the lower arm side gate drive circuit 24u.
  • Vds_u1 and Vds_u2 are main terminal voltages of the arms 21u and 22u, respectively.
  • Vg_off (u1) and Vg_off (u2) are output signals of the upper arm side first off voltage adjustment circuit 209u and the lower arm side first off voltage adjustment circuit 309u.
  • Vg_u1 when Vg_u1 is in an off state and Vg_u2 is in an on state, Vg_u2 changes to an off state (time t1 in the figure). Then, since Vg_u2 is not a signal for directly driving the arm but a control signal, the voltage value of Vds_u2 starts to rise after a predetermined delay time has elapsed from Vg_u2. Then, the switching operation proceeds, and finally Vds_u2 becomes substantially equal to the voltage value of the lower arm side gate drive power supply 301u (at time t1 ′ in the drawing). In such a state, the turn-off operation is completed.
  • the change rate of the main terminal voltage is detected by the lower arm side main terminal voltage change rate detection circuit 308u, and the detection signal dVds / dt_u2 is output.
  • the output value of the detection signal dVds / dt_u2 depends on the change rate of the main terminal voltage.
  • Vds_u2 It is determined whether or not the voltage value of Vds_u2 exceeds a predetermined value in the first determination circuit 303u on the lower arm side. If it exceeds, the first determination circuit 303u on the lower arm side determines the first value on the lower arm side. A determination signal is output to the off-voltage adjustment circuit 309u (not shown). Next, the Vg_off (u2) signal output from the lower arm side first off voltage adjustment circuit 309u to the lower arm side gate drive power supply 301u is turned on according to the determination signal (at time t2 in the figure). .
  • the time point t2 may be after the time point t1 ′, and may be substantially the same timing.
  • the output voltage value of the Vg_off (u2) signal is a value corresponding to the output voltage value of the output signal dVds / dt_u2 of the lower arm side main terminal voltage change rate detection circuit 308u (in the figure, the dVds / dt_u2 signal is In the case of dV / dt_s1, the Vg_off (u2) signal is Vg_off (u2) _s1).
  • Vg_u1 changes to the on state (at time t3 in the figure). Then, since Vg_u1 is not a drive signal for directly driving the arm but a control signal, the voltage value of Vds_u1 starts to fall after a predetermined delay time has elapsed from Vg_u1. Then, the switching operation proceeds, and finally Vds_u1 becomes substantially equal to the voltage value of the battery 1 (at time t3 ′ in the figure). In such a state, the turn-on operation is completed.
  • the voltage value of Vds_u1 is detected by the upper arm side main terminal voltage detection circuit 207u, and it is determined whether or not the voltage value is lower than a predetermined value in the upper arm side first determination circuit 203u.
  • a determination signal is output from the upper arm side first determination circuit 203u to the lower arm side first off voltage adjustment circuit 309u (not shown).
  • the Vg_off (u2) signal output from the lower arm side first off voltage adjustment circuit 309u to the lower arm side gate drive power supply 302u is turned off according to the determination signal.
  • the necessary minimum off voltage can be set according to the rate of change of the main terminal voltage, the above-described effects can be further improved.
  • FIG. 13 is a timing chart of the upper arm side gate drive circuit 200u and the lower arm side gate drive circuit 300u for explaining the circuit operation.
  • the signals in the figure are the same as those in FIG.
  • the lower arm side main terminal voltage change rate detection circuit 308u when the output voltage value of the output signal dVds / dt_u2 of the lower arm side main terminal voltage change rate detection circuit 308u is smaller than a predetermined reference value dV / dt_0, the lower arm side first off-voltage adjustment circuit. The output signal of 309u is stopped.
  • the rate of change of the main terminal voltage is smaller than the reference value, it is possible to control the application of a voltage lower than a predetermined off voltage, so that the above-described effect can be further improved.
  • Embodiment 7 of the present invention will be described with reference to FIG.
  • FIG. 14 is a circuit diagram for explaining the leg 250u in FIG. 5 in detail. 6 differs from FIG. 6 in that an upper arm side arm temperature detection circuit 210u and a lower arm side arm temperature detection circuit 310u are added, and an upper arm side off voltage control circuit 206u and a lower arm side off voltage control circuit 306u are This is the point that the arm-side second off-voltage adjusting circuit 219u and the lower arm-side second off-voltage adjusting circuit 319u are replaced.
  • the other configuration is the same as that in FIG.
  • the “off voltage control circuit” in the claims corresponds to the upper arm side second off voltage adjustment circuit 219u and the lower arm side second off voltage adjustment circuit 319u in the seventh embodiment.
  • the arm temperature detection circuits 210u and 310u detect the temperatures of the arms 21u and 22u, respectively, and output the detected values to the upper arm side second off-voltage adjustment circuit 219u and the lower arm side second off-voltage adjustment circuit 319u. To do.
  • the upper arm side second off voltage adjustment circuit 219u and the lower arm side second off voltage adjustment circuit 319u are arranged according to the detected arm temperatures of the upper arm 21u and the lower arm 22u, respectively.
  • the output voltage of the lower arm side gate drive power supply 301u is adjusted.
  • FIG. 15 is a graph of a general switching element in which the horizontal axis represents the temperature of the switching element and the vertical axis represents the threshold voltage. As can be seen from the figure, the threshold voltage gradually decreases as the temperature of the switching element increases. Therefore, when the switching element is in a high temperature state, there is a possibility of turning on even at a relatively low control terminal voltage.
  • the arm temperature is detected, and the output voltages of the upper arm side gate drive power supply 201u and the lower arm side gate drive power supply 301u are adjusted to a value lower than the threshold voltage drop value according to the detected values. This can solve this problem.
  • the temperature of the switching element to be detected is preferably a junction temperature, but any other temperature may be used as long as it is in the vicinity of the switching element and has a correlation with the threshold voltage.
  • the embodiments of the present invention have been specifically described above.
  • the lower arm when the upper arm is turned on, the lower arm is controlled to apply a voltage lower than a predetermined off voltage, and when the lower arm is turned on, the upper arm has a predetermined value.
  • control is performed so as to apply a voltage lower than the off-voltage, it is needless to say that the present invention may be applied to only one of them.
  • the second to seventh embodiments when one arm is turned on, only the other arm of the upper and lower arms is controlled to apply a voltage lower than a predetermined off voltage.
  • the turn-on operation not only the lower arm belonging to the same leg but also all the lower arms belonging to other legs may be controlled to apply a voltage lower than a predetermined off voltage at the same timing.
  • the inverter circuit the influence of the switching operation of the other phase can be suppressed, and a highly reliable gate drive circuit can be realized.
  • the time for applying a voltage lower than the gate voltage to be kept off can be greatly shortened, the device life can be extended.
  • the off voltage may be adjusted for each lower arm.
  • the off voltage may be adjusted for each lower arm.
  • the time for applying a voltage lower than the gate voltage to be kept off can be greatly shortened, the device life of the arm can be extended.
  • the voltage lower than the predetermined off-voltage may be arbitrarily varied according to the voltage and current applied to the device. In this way, the influence of the switching operation at different voltages and currents can be suppressed, and malfunctions can be suppressed more reliably. Therefore, a highly reliable gate driving circuit can be realized.
  • the six upper arms and lower arms constituting the inverter need not all be composed of the same switching element.
  • the present invention may be applied only to a gate drive circuit that performs a high-speed switching operation and may cause a malfunction due to a high dv / dt.
  • At least one of the upper arm and the lower arm constituting the inverter may be a MOSFET.
  • the switching operation of a MOSFET is high-speed and has a large parasitic capacitance, so that a malfunction due to high dv / dt is likely to occur.
  • a power conversion circuit can be provided.
  • At least one of the upper arm and the lower arm constituting the inverter may be a wide band gap semiconductor containing silicon carbide or gallium nitride.
  • Wide gap semiconductors are faster in switching operation and larger in parasitic capacitance than general silicon semiconductors due to their materials and structures, and thus are likely to cause malfunctions due to high dv / dt.
  • they are not suitable for gate drive circuits that drive wide gap semiconductors.
  • the reliability of the control terminal is an important issue. Therefore, as implemented in the present invention, the time for applying an excessive voltage that affects the device life to the control terminal is greatly reduced. Thus, the device life can be extended and a highly reliable power converter can be provided.
  • the present invention can realize a highly reliable gate drive circuit that suppresses the upper and lower arm short-circuit operation associated with high-speed switching (high dv / dt) of a power conversion circuit such as an inverter or converter that is driven at high frequency. Since the time for applying a voltage lower than the gate voltage for maintaining the arm in the off state can be greatly shortened and the device life can be extended, hybrid electric vehicles and electric vehicles, electric compressors, It is useful for all types of motor drive systems including power steering and elevators, as well as power generation systems such as wind power generation systems where miniaturization is strongly desired.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Power Conversion In General (AREA)
  • Inverter Devices (AREA)

Abstract

 高周波動作する電力変換回路において、下アーム側ゲート駆動回路24uのオフ電圧制御回路101uは、下アーム22uのターンオフ動作が終了した時点から上アーム21uのターンオン動作が開始するまでの間において、ゲート駆動電源103uが出力する電圧を所定のオフ電圧よりも低い電圧に変化させ、その後、上アーム21uのターンオン動作が終了すると、直ぐに前記ゲート駆動電源103uが出力する電圧を所定のオフ電圧に戻すように制御する。従って、高電圧変化dv/dtに起因して発生する上下アームの短絡動作を抑制でき、かつ電力変換回路を構成するスイッチング素子の寿命が向上して、電力変換回路の高信頼性化が実現される。

Description

電力変換回路
 本発明は、複数の上下アームにより構成され、特に、大電力かつ高周波動作する電力変換回路に関するものである。
 近年、インバータ及びコンバータなどの電力変換器に搭載されるスイッチング素子(IGBTやMOSFET、JFET)の高耐圧化及び高速化が進み、スイッチング素子の高耐圧化による電力変換器の大電力化及び、スイッチング素子の高速化、すなわち電力変換器の高周波動作による電力変換器の小型化などの研究開発が盛んに行われている。
 このような電力変換器におけるスイッチング素子の動作としては、上下アームが同時導通し短絡動作することのないように、所定の休止期間(通常、デッドタイムといわれる)を介して、上下アームを交互にスイッチング動作するのが一般的である。ここで、スイッチング素子に印加される電圧が高くなればなるほど、又は、スイッチング素子の動作速度が速くなればなるほど、スイッチング素子に印加される電圧の変化率(通常、dv/dtと呼ばれる)が大きくなる。その場合、他方のスイッチング素子の寄生容量Cを介して、主端子から制御端子に充電電流が流れることになり、制御端子の電圧が、充電電流の値に比例して変化する。このような動作をした場合、制御端子の電圧が、スイッチング素子のしきい値電圧を超えることもあり得る。仮に、所定の休止期間中に、制御端子の電圧が変化し、かつ、しきい値電圧を超えた場合、上下アームが同時導通し短絡状態となり、スイッチング素子の破壊、更には電力変換器の故障をもたらす。
 ここで、図4を用いて、上アーム21uのターンオン動作による下アーム22uの誤動作メカニズムについて説明する。最初に、上下アーム21u及び22uは、共にオフしている休止区間(いわゆる、デッドタイム)とする。この休止区間は、例えばインバータにおけるスイッチング周波数の1/20以下であり、また、一般的には、大電力の電力変換を行うインバータにおいては、スイッチング周波数は15kHz以下であるものが多い。
 前記休止期間の後、上アーム21uがターンオン動作すると、下アーム22uのドレイン-ソース間にバッテリ1の直流電圧Vdcが印加される。上アーム21uのスイッチング速度に応じて、下アーム22uの寄生容量200に急速に充電され、下アーム側ゲート抵抗104uと下アーム側アーム駆動回路102uを介して、電流Igが流れる。電流Igが流れることにより、下アーム側ゲート抵抗104uの値に応じた電位差が下アーム側ゲート抵抗104uの両端に発生する。ここで、下アーム22uのドレイン-ゲート間の寄生容量をCgdとし、下アーム側ゲート抵抗104uをRgとすると、下アーム側ゲート抵抗104uの両端に発生する電位差、つまり下アーム22uのゲート-ソース間の電位差Vgsは、下記の式で表せる。
      Vgs = Rg × Cgd × (dVdc/dt)
 すなわち、下アーム22uのスイッチング速度を決定する下アーム側ゲート抵抗104uの抵抗Rgか、下アーム21uの寄生容量Cgdか、上アーム21uのスイッチング時間dVdc/dtの値が、各々大きいほど、Vgsが大きくなり、下アーム22uの誤動作が生じ易くなる。
 下アーム側ゲート抵抗104uの抵抗Rgは、下アーム22uのスイッチング速度を決定する値であるため、自由に小さくすることはできない。また、下アーム21uの寄生容量Cgdは、下アーム22uの内部構造により決まっているため、これも自由に変化させることができない。また、上アーム21uのターンオン動作時のスイッチング時間dVdc/dtは、小さくすると上アーム21uのスイッチング速度を遅くすることになり、スイッチング損失の増大をもたらす。
 それらを回避するため、従来では、充電電流による制御端子の電圧変化があっても、短絡状態にならないように、電圧変化期間を含んだ、スイッチング素子がオフ動作中は、制御端子に負バイアス電圧を印加する。そうすることにより、同時導通の短絡動作を回避することが可能となる。たとえば下記特許文献1に提案されている。
 この公報のインバータは、スイッチング素子をオフさせるために、電源により負バイアス電圧を出力せずに、コンデンサ及びダイオード、FETなどの回路のみで、負バイアス電圧を印加できるようにしているため、電源電圧の制約も低減でき、更には、駆動回路の発熱抑制も行えることも、前記公報は開示している。
特開2004-159424号公報
 しかしながら、この種のインバータでは、スイッチング素子がオフ動作中、全期間で、スイッチング素子の制御端子に負バイアスが印加されることになる。
 一般的に、スイッチング素子は、制御端子に負バイアス電圧を印加されることに弱く、負バイアス電圧の印加される時間が長ければ長いほど、スイッチング素子の劣化が進む。
 よって、従来の方法では、負バイアス電圧が印加される期間が必要以上に長いため、スイッチング素子の劣化を加速し、スイッチング素子及びそれを搭載する電力変換器の信頼性を損ねる。また、負バイアス回路を、コンデンサ及びダイオード、FETなどの回路で構成しているため、スイッチング素子の動作状態及び周囲環境などによるスイッチング素子の特性変化に対応できない。更には、負バイアス回路を構成しているコンデンサ容量においても、駆動するスイッチング素子の特性に応じて決定する必要があり、汎用性に欠けるなどの問題がある。
 本発明は前記問題点に鑑みなされたものであり、その目的は、電力変換回路において、高dv/dt印加による誤動作を抑制し、かつスイッチング素子の寿命を大幅に改善した電力変換回路を提供することにある。
 前記目的を達成するため、本発明では、電力変換回路において、上アームの動作と下アームの動作との双方に対応して、オフ動作中のスイッチング素子への負バイアス電圧の印加期間を極く短期間に制限することとする。
 すなわち、本発明の電力変換回路は、高電圧側に接続される上アーム及び低電圧側に接続される下アームと、前記上アームを駆動する上アーム側ゲート駆動回路及び前記下アームを駆動する下アーム側ゲート駆動回路とを備えた電力変換回路において、前記上アーム側ゲート駆動回路及び前記下アーム側ゲート駆動回路は、各々、上アーム側ゲート駆動電源及び下アーム側ゲート駆動電源と、上アーム側アーム駆動回路及び下アーム側アーム駆動回路とを有し、前記上アーム側ゲート駆動電源及び下アーム側ゲート駆動電源は、自己の前記上アーム又は下アームの制御端子に電圧を供給し、前記上アーム側アーム駆動回路及び下アーム側アーム駆動回路は、自己の前記上アーム又は下アームを制御する制御信号を受け、この制御信号に応じてアーム駆動信号を出力し、更に、前記下アーム側ゲート駆動回路は、信号出力回路と、オフ電圧制御回路とを有し、前記信号出力回路は、前記下アームのターンオフ動作の終了及び前記上アームのターンオン動作の終了に応じた電圧調整信号を出力し、前記オフ電圧制御回路は、前記信号出力回路の電圧調整信号を受け、前記下アームのターンオフ動作の終了から前記上アームのターンオン動作の開始までの期間において、前記下アームのオフ状態を満足する第1の電圧よりも低い第2の電圧を生成し、かつ前記上アームのターンオン動作の終了以後において、前記第2の電圧から前記第1の電圧に戻すように前記下アーム側ゲート駆動電源の出力電圧を制御することを特徴とする。
 ここで、前記電力変換回路において、前記信号出力回路は、タイマ回路を有し、前記タイマ回路は、前記上アーム及び下アームの両制御信号を受け、この両制御信号が共にオフである前記下アーム及び上アームが共にターンオフ状態の期間でオン動作となり、前記上アームのターンオン動作の終了以後となる前記オン動作の所定期間経過後にオフ動作となるタイマ信号を出力し、前記オフ電圧制御回路は、前記タイマ回路のタイマ信号を受け、このタイマ信号に基づいて前記下アーム側ゲート駆動電源の出力電圧を制御することとしても良い。
 前記電力変換回路において、前記信号出力回路は、上アーム側主端子電圧検出回路及び下アーム側主端子電圧検出回路と、上アーム側判定回路及び下アーム側判定回路とを有し、前記上アーム側主端子電圧検出回路及び下アーム側主端子電圧検出回路は、各々、自己の前記上アーム又は前記下アームの主端子電圧値を検出し、前記上アーム側判定回路及び下アーム側判定回路は、前記自己の上アーム側主端子電圧検出回路又は下アーム側主端子電圧検出回路で検出された主端子電圧信号を受け、この主端子電圧信号に基づいて、自己の前記上アーム又は下アームのターンオフ動作及びターンオン動作の終了を検出することとしても良い。
 前記電力変換回路において、前記上アーム側判定回路及び下アーム側判定回路は、各々、自己の前記上アーム側主端子電圧検出回路又は下アーム側主端子電圧検出回路で検出された主端子電圧信号を受け、この主端子電圧信号の電圧値と所定の基準電圧との比較に基づいて、自己のアームのターンオン動作及びターンオフ動作の終了を判定することとしても良い。
 前記電力変換回路において、前記信号出力回路は、上アーム側主端子電流検出回路及び下アーム側主端子電流検出回路と、上アーム側判定回路及び下アーム側判定回路とを有し、前記上アーム側主端子電流検出回路及び下アーム側主端子電流検出回路は、各々、自己の前記上アーム又は前記下アームの主端子電流値を検出し、前記上アーム側判定回路及び下アーム側判定回路は、前記自己の上アーム側主端子電流検出回路又は下アーム側主端子電流検出回路で検出された主端子電流信号に基づいて、自己の前記上アーム又は下アームのターンオフ動作及びターンオン動作の終了を検出することとしても良い。
 前記電力変換回路において、前記上アーム側判定回路及び下アーム側判定回路は、各々、前記上アーム側主端子電流検出回路又は下アーム側主端子電流検出回路からの主端子電流信号を受け、この主端子電流信号の電流値と所定の基準電圧との比較に基づいて、自己のアームのターンオン動作及びターンオフ動作の終了を判定することとしても良い。
 前記電力変換回路において、前記信号出力回路は、上アーム側制御端子電圧検出回路及び下アーム側制御端子電圧検出回路と、上アーム側判定回路及び下アーム側判定回路とを有し、前記上アーム側制御端子電圧検出回路及び下アーム側制御端子電圧検出回路は、各々、自己の前記上アーム又は前記下アームの制御端子の電圧値を検出し、前記上アーム側判定回路及び下アーム側判定回路は、各々、前記自己の上アーム側制御端子電圧検出回路又は下アーム側制御端子電圧検出回路で検出された制御端子電圧信号に基づいて、自己の前記上アーム又は下アームのターンオフ動作及びターンオン動作の終了を検出することとしても良い。
 前記電力変換回路において、前記上アーム側判定回路及び下アーム側判定回路は、各々、自己のアームの制御端子電圧検出回路で検出された制御端子電圧信号を受け、この制御端子電圧信号の電圧と所定の基準電圧との比較に基づいて、自己のアームのターンオン動作及びターンオフ動作の終了を判定することとしても良い。
 前記電力変換回路において、前記信号出力回路は、更に、下アーム側主端子電圧変化率検出回路を有し、前記下アーム側主端子電圧変化率検出回路は、自己の前記下アームの主端子電圧の変化率を検出し、前記オフ電圧制御回路は、前記下アーム側主端子電圧変化率検出回路の検出結果を受け、この検出結果に基づいて、前記下アーム側ゲート駆動電源が生成する第2の電圧の電圧値を変更することとしても良い。
 前記電力変換回路において、前記オフ電圧制御回路は、前記下アーム側主端子電圧の変化率が大きいほど、前記下アーム側ゲート駆動電源が生成する第2の電圧の電圧値を、一層低い電圧値に調整することとしても良い。
 前記電力変換回路において、前記オフ電圧制御回路は、前記下アーム側主端子電圧の変化率が所定変化率よりも小さいときには、前記下アーム側ゲート駆動電源が生成する第2の電圧の電圧値を前記第1の電圧に維持することとしても良い。
 前記電力変換回路において、前記信号出力回路は、更に、下アーム側アーム温度検出回路を有し、前記下アーム側アーム温度検出回路は、自己の前記下アームの温度を検出し、前記オフ電圧制御回路は、前記下アーム側アーム温度検出回路の検出結果を受け、この検出結果に基づいて、前記下アーム側ゲート駆動電源が生成する第2の電圧の電圧値を変更することとしても良い。
 前記電力変換回路において、前記オフ電圧制御回路は、前記下アーム側アーム温度検出回路で検出した下アームのアーム温度が高いほど、前記下アーム側ゲート駆動電源が生成する第2の電圧を一層低い電圧値に調整することとしても良い。
 また、本発明の電力変換回路は、高電圧側に接続される上アーム及び低電圧側に接続される下アームと、前記上アームを駆動する上アーム側ゲート駆動回路及び前記下アームを駆動する下アーム側ゲート駆動回路とを備えた電力変換回路において、前記上アーム側ゲート駆動回路及び前記下アーム側ゲート駆動回路は、各々、上アーム側ゲート駆動電源及び下アーム側ゲート駆動電源と、上アーム側アーム駆動回路及び下アーム側アーム駆動回路とを有し、前記上アーム側ゲート駆動電源及び下アーム側ゲート駆動電源は、自己の前記上アーム又は下アームの制御端子に電圧を供給し、前記上アーム側アーム駆動回路及び下アーム側アーム駆動回路は、自己の前記上アーム又は下アームを制御する制御信号を受け、この制御信号に応じてアーム駆動信号を出力し、更に、前記上アーム側ゲート駆動回路は、信号出力回路と、オフ電圧制御回路とを有し、前記信号出力回路は、前記上アームのターンオフ動作の終了及び前記下アームのターンオン動作の終了に応じた電圧調整信号を出力し、前記オフ電圧制御回路は、前記信号出力回路の電圧調整信号を受け、前記上アームのターンオフ動作の終了から前記下アームのターンオン動作の開始までの期間において、前記上アームのオフ状態を満足する第1の電圧よりも低い第2の電圧を生成し、かつ前記下アームのターンオン動作の終了以後において、前記第2の電圧から前記第1の電圧に戻すように前記上アーム側ゲート駆動電源の出力電圧を制御することを特徴とする。
 ここで、前記電力変換回路において、前記信号出力回路は、タイマ回路を有し、前記タイマ回路は、前記上アーム及び下アームの両制御信号を受け、この両制御信号が共にオフである前記下アーム及び上アームが共にターンオフ状態の期間でオン動作となり、前記下アームのターンオン動作の終了以後となる前記オン動作の所定期間経過後にオフ動作となるタイマ信号を出力し、前記オフ電圧制御回路は、前記タイマ回路のタイマ信号を受け、このタイマ信号に基づいて前記下アーム側ゲート駆動電源の出力電圧を制御することとしても良い。
 前記電力変換回路において、前記信号出力回路は、上アーム側主端子電圧検出回路及び下アーム側主端子電圧検出回路と、上アーム側判定回路及び下アーム側判定回路とを有し、前記上アーム側主端子電圧検出回路及び下アーム側主端子電圧検出回路は、各々、自己の前記上アーム又は前記下アームの主端子電圧値を検出し、前記上アーム側判定回路及び下アーム側判定回路は、前記自己の上アーム側主端子電圧検出回路又は下アーム側主端子電圧検出回路で検出された主端子電圧信号を受け、この主端子電圧信号に基づいて、自己の前記上アーム又は下アームのターンオフ動作及びターンオン動作の終了を検出することとしても良い。
 前記電力変換回路において、前記上アーム側判定回路及び下アーム側判定回路は、各々、自己の前記上アーム側主端子電圧検出回路又は下アーム側主端子電圧検出回路で検出された主端子電圧信号を受け、この主端子電圧信号の電圧値と所定の基準電圧との比較に基づいて、自己のアームのターンオン動作及びターンオフ動作の終了を判定することとしても良い。
 前記電力変換回路において、前記信号出力回路は、上アーム側主端子電流検出回路及び下アーム側主端子電流検出回路と、上アーム側判定回路及び下アーム側判定回路とを有し、前記上アーム側主端子電流検出回路及び下アーム側主端子電流検出回路は、各々、自己の前記上アーム又は前記下アームの主端子電流値を検出し、前記上アーム側判定回路及び下アーム側判定回路は、前記自己の上アーム側主端子電流検出回路又は下アーム側主端子電流検出回路で検出された主端子電流信号に基づいて、自己の前記上アーム又は下アームのターンオフ動作及びターンオン動作の終了を検出することとしても良い。
 前記電力変換回路において、前記上アーム側判定回路及び下アーム側判定回路は、各々、前記上アーム側主端子電流検出回路又は下アーム側主端子電流検出回路からの主端子電流信号を受け、この主端子電流信号の電流値と所定の基準電圧との比較に基づいて、自己のアームのターンオン動作及びターンオフ動作の終了を判定することとしても良い。
 前記電力変換回路において、前記信号出力回路は、上アーム側制御端子電圧検出回路及び下アーム側制御端子電圧検出回路と、上アーム側判定回路及び下アーム側判定回路とを有し、前記上アーム側制御端子電圧検出回路及び下アーム側制御端子電圧検出回路は、各々、自己の前記上アーム又は前記下アームの制御端子の電圧値を検出し、前記上アーム側判定回路及び下アーム側判定回路は、各々、前記自己の上アーム側制御端子電圧検出回路又は下アーム側制御端子電圧検出回路で検出された制御端子電圧信号に基づいて、自己の前記上アーム又は下アームのターンオフ動作及びターンオン動作の終了を検出することとしても良い。
 前記電力変換回路において、前記上アーム側判定回路及び下アーム側判定回路は、各々、自己のアームの制御端子電圧検出回路で検出された制御端子電圧信号を受け、この制御端子電圧信号の電圧と所定の基準電圧との比較に基づいて、自己のアームのターンオン動作及びターンオフ動作の終了を判定することとしても良い。
 前記電力変換回路において、前記信号出力回路は、更に、上アーム側主端子電圧変化率検出回路を有し、前記上アーム側主端子電圧変化率検出回路は、自己の前記上アームの主端子電圧の変化率を検出し、前記オフ電圧制御回路は、前記上アーム側主端子電圧変化率検出回路の検出結果を受け、この検出結果に基づいて、前記上アーム側ゲート駆動電源が生成する第2の電圧の電圧値を変更することとしても良い。
 前記電力変換回路において、前記オフ電圧制御回路は、前記上アーム側主端子電圧の変化率が大きいほど、前記上アーム側ゲート駆動電源が生成する第2の電圧の電圧値を、一層低い電圧値に調整することとしても良い。
 前記電力変換回路において、前記オフ電圧制御回路は、前記上アーム側主端子電圧の変化率が所定変化率よりも小さいときには、前記上アーム側ゲート駆動電源が生成する第2の電圧の電圧値を前記第1の電圧に維持することとしても良い。
 前記電力変換回路において、前記信号出力回路は、更に、上アーム側アーム温度検出回路を有し、前記上アーム側アーム温度検出回路は、自己の前記上アームの温度を検出し、前記オフ電圧制御回路は、前記上アーム側アーム温度検出回路の検出結果を受け、この検出結果に基づいて、前記上アーム側ゲート駆動電源が生成する第2の電圧の電圧値を変更することとしても良い。
 前記電力変換回路において、前記オフ電圧制御回路は、前記上アーム側アーム温度検出回路で検出した上アームのアーム温度が高いほど、前記上アーム側ゲート駆動電源が生成する第2の電圧を一層低い電圧値に調整することとしても良い。
 前記電力変換回路において、前記上アーム及び下アームは、MOSFETで構成されることとしても良い。
 前記電力変換回路において、前記上アーム及び下アームは、炭化ケイ素又は窒化ガリウムを含むワイドバンドギャップ半導体により構成されることとしても良い。
 以上により、本発明では、自アームのターンオフ動作が終了した時点から他アームのターンオン動作が開始するまでの間において、所定のオフ電圧より低い電圧のアーム駆動信号を出力し、その後は、他アームのターンオン動作が終了後直ぐに、アーム駆動信号の電圧を所定のオフ電圧に戻したので、スイッチング素子より成るアームをオフ動作させるのにその制御端子に印加する所定のオフ電圧よりも低い電圧の印加時間を大幅に短縮して、高dv/dt印加による誤動作を抑制できる。その結果、電力変換回路における上下アーム短絡動作を抑制でき、かつスイッチング素子の寿命を大幅に改善した高信頼性な電力変換回路を提供できる。
 特に、自己のアームのターンオフ動作の終了時点や他のアームのターンオン動作の終了時点を、それ等アームの主端子電圧、主端子電流又は制御端子電圧を直接検出して把握したので、それ等アームのターンオフ動作や他のアームのターンオン動作の各終了時点を正確に検出して、アームのスイッチング素子の制御端子に印加する所定のオフ電圧よりも低い電圧の印加時間を最小限にして、高dv/dt印加による誤動作を有効に抑制できる。
 更に、オン動作中の他アームの主端子電圧の変化率が大きいほど、オフ動作中の自アームはオン動作し易くなって上下アームの短絡の可能性は高くなるものの、自アームの制御端子に印加するオフ電圧は所定のオフ電圧よりも一層低い電圧値に調整されるので、自アームの不要なオン動作がし難くなる。従って、主端子電圧の変化率に応じたオフ電圧を設定して、スイッチング素子の制御端子にかかる負荷を最小限にした上で、高dv/dt印加による誤動作を抑制できる。
 その場合、特に、主端子電圧の変化率が所定変化率よりも小さい場合には、自アームの制御端子に印加するオフ電圧は所定のオフ電圧に維持されるので、スイッチング素子の制御端子にかかる負荷を抑制した上で、高dv/dt印加による誤動作を抑制できる。
 加えて、アーム温度が高くなった場合には、アームのしきい値電圧(アームをオン動作させる基準電圧)が低くなるため、オフ動作中のアームは比較的低いオフ電圧でもターンオンし易くなるが、そのオフ動作中のアームの制御端子に印加するオフ電圧は一層低く制御されるので、その不要なターンオン動作がし難くなって、安定した高dv/dt印加による誤動作抑制が実現できる。
 以上説明したように、本発明の電力変換回路によれば、アームであるスイッチング素子の制御端子に所定のオフ電圧よりも低い電圧を印加する場合にも、その印加する時間を大幅に短縮した上で、高dv/dt印加による誤動作を抑制できるので、電力変換回路における上下アーム短絡動作を抑制し、かつスイッチング素子の寿命を大幅に改善した高信頼性な電力変換回路を提供することが可能である。
図1は本発明の実施形態1の電力変換回路を説明するためのモータ駆動システムの全体概略構成を示す回路図である。 図2は同電力変換回路に備えるインバータのレグの内部構成を示す回路図である。 図3は同レグに備える下アーム側ゲート駆動回路の動作タイミングチャートを示す図である。 図4は上アームのターンオン動作による下アームの誤動作メカニズムを説明する図である。 図5は本発明の実施形態2の電力変換回路を説明するためのモータ駆動システムの全体概略構成を示す回路図である。 図6は同電力変換回路に備えるインバータのレグの内部構成を示す回路図である。 図7は同レグに備える上アーム側ゲート駆動回路と下アーム側ゲート駆動回路の動作タイミングチャートを示す図である。 図8は本発明の実施形態3の電力変換回路に備えるインバータのレグの内部構成を示す回路図である。 図9は本発明の実施形態4の電力変換回路に備えるインバータのレグの内部構成を示す回路図である。 図10は同レグに備える上アーム側ゲート駆動回路と下アーム側ゲート駆動回路の動作タイミングチャートを示す図である。 図11は本発明の実施形態5の電力変換回路に備えるインバータのレグの内部構成を示す回路図である。 図12は同レグに備える上アーム側ゲート駆動回路と下アーム側ゲート駆動回路の動作タイミングチャートを示す図である。 図13は本発明の実施形態6の電力変換回路のインバータのレグに備える上アーム側ゲート駆動回路と下アーム側ゲート駆動回路の動作タイミングチャートを示す図である。 図14は本発明の実施形態7の電力変換回路に備えるインバータのレグの内部構成を示す回路図である。 図15は一般的なスイッチング素子において横軸をスイッチング素子の温度、縦軸をしきい値電圧とした図である。
 以下、本発明の電力変換回路としてのゲート駆動回路の好ましい実施形態を以下に説明する。
 (実施形態1)
 図1は、本発明が適用されるインバータの実施形態1を説明するためのモータ駆動システム概略回路図である。ここでは、スイッチング素子としてMOSFETを用いた例を説明する。モータ駆動システムは、バッテリ1、インバータ2、モータ3、制御回路4から構成されている。
 バッテリ1は直流電力をインバータ2へ供給し、インバータ2はバッテリ1から供給される直流電力を直流交流変換し、モータ3に交流電力を供給する。モータ3は、インバータ2から供給される交流電力により回転駆動する。このとき、制御回路4は、モータ3が所望の動作をするようにインバータ2を制御する。インバータ2は、出力する交流電力の数と同数のレグ25u、25v、25wで構成され、レグ25u、25v、25wは、バッテリ1の正負間に直列接続された上アーム(正側に接続)21u、21v、21wと下アーム(負側に接続)22u、22v、22wと、各上アーム21u、21v、21wと、下アーム22u、22v、22wに対応した上アーム側ゲート駆動回路23u、23v、23wと、下アーム側ゲート駆動回路24u、24v、24wで構成される。
 図2は、図1におけるレグ25uを、詳細に説明するための回路図である。ここで、下アーム側ゲート駆動回路24uは、信号出力回路としての下アーム側タイマ回路100u、下アーム側オフ電圧制御回路101u、下アーム側アーム駆動回路102u、下アーム側ゲート駆動電源103u、下アーム側ゲート抵抗105uとで構成される。
 下アーム側ゲート駆動電源103uは、下アーム側ゲート駆動回路24uが駆動する下アーム22uのソース電位を基準とした10~30V程度のオン電圧を出力し、また、下アーム側ゲート駆動回路24uが駆動する下アーム22uのソース電位を基準とした0~-30V程度のオフ電圧を出力する。オフ電圧は、スイッチング素子のオン/オフ動作を制御するしきい値電圧及びスイッチング素子のデバイス特性により決定される。一般的に、しきい値電圧が3V程度のスイッチング素子においては、オフ電圧は、0~-15V程度に設定される。また、スイッチング素子の制御端子に印加する電圧が高くなるほど、スイッチング素子の信頼性が低下するため、一般的には、最大定格電圧を±30V程度に規定している。
 上アーム側ゲート駆動回路23u、下アーム側ゲート駆動回路24uには、制御信号Vg_u1、Vg_u2が入力される。制御信号Vg_u1、Vg_u2は、制御回路4(ここでは図示しない)から出力される信号であり、かつ、上アーム21u、下アーム22uのスイッチング動作を制御する信号である。
 制御信号Vg_u2は、下アーム側ゲート駆動電源103uに入力され、ゲート駆動電源103uは、制御信号Vg_u2に応じた信号を出力する。次に、下アーム側ゲート駆動電源103uは、制御信号Vg_u2に応じた信号を、下アーム側アーム駆動回路102uへと出力する。また、下アーム側ゲート駆動電源103uは、下アーム側アーム駆動回路102へ、電力供給もあわせて行う。下アーム側アーム駆動回路102uは、入力された信号を電力増幅し、出力する。下アーム側アーム駆動回路102uから出力された信号は、下アーム側ゲート抵抗104uを経由して、下アーム22uの制御端子に入力される。
 次に、下アーム側タイマ回路(信号出力回路)100u及び下アーム側オフ電圧制御回路101uの動作について、説明する。下アーム側タイマ回路100uには、制御回路4(ここでは図示しない)から出力された制御信号Vg_u1、Vg_u2が入力される。下アーム側タイマ回路100uは、制御信号Vg_u1、Vg_u2のオン/オフ動作により決定されるtimer信号(電圧調整信号)を、下アーム側オフ電圧制御回路101uへと出力する。
 下アーム側オフ電圧制御回路101uは、timer信号のオン/オフ動作により決定されるVg_off信号を、下アーム側ゲート駆動電源103uへと出力する。そして、下アーム側ゲート駆動電源103uは、Vg_off信号に応じて、出力するオフ電圧を任意に変化させる。
 ここで、上アーム側ゲート駆動回路23u、23v、23w及び下アーム側ゲート駆動回路24u、24v、24wは、全て同一の回路構成でも良い。
 次に、下アーム側ゲート駆動回路24uの回路動作を説明する。図3は、回路動作を説明するための下アーム側ゲート駆動回路24uのタイミングチャート図である。
 図3において、Vg_u1及びVg_u2は、制御回路4から上アーム側ゲート駆動回路23uと下アーム側ゲート駆動回路24uに入力される制御信号である。timer信号(電圧調整信号)は、制御信号Vg_u2の立下り時間t1と制御信号Vg_u1の立上り時間t3の間で立ち上がり、その後、前記制御信号Vg_u1の立上り時間t3から所定時間(タイマー時間)Tsだけ経過した時点で立ち下がる。この所定時間Tsは、制御信号Vg_u1の立上りによって上アーム21uが実際にターンオン動作を遂行し終えたターンオン動作終了時までの時間、又はこのターンオン動作終了時から若干長い時間に予め設定される。信号Vg_offは、timer信号とほぼ同期して動作する。このような動作をすることにより、主に高速スイッチング動作において、上アーム21uのターンオン動作時に、下アーム22uの寄生容量が急速に充電されることで引き起こされる下アーム22uの誤動作を抑制することができる。
 尚、所定時間Tsの期間は、制御信号Vg_u2の立下り時間t1と制御信号Vg_u1の立上り時間t3の期間の3倍以下であることが望ましい。そのように設定することにより、前記のような誤動作を抑制し、かつ、オフ電圧を可変する期間を極力短くできるので、スイッチング素子の信頼性向上が図れる。
 本実施形態では、信号Vg_offの立上り時間t2を、制御信号の立下り時間t1の後でかつ制御信号Vg_u1の立上り時間t3より前に設定することにより、下アーム22uのスイッチング動作を所望の速度に維持した状態で、かつ、確実に上述した誤動作を抑制することができる。更に、Vg_offの立下り時間t4を、制御信号Vg_u1の立上り時間t3から所定時間Ts経過した後に設定する。ここで、タイマ回路100uにより設定される所定時間Tsは、制御信号Vg_u1の立上り時間t3から上アーム21uのターンオン動作が終了した後に設定することが望ましい。そうすることにより、上アーム21uのスイッチング動作による上述した誤動作を抑制した高信頼性のゲート駆動回路を実現できる。更に、下アーム22uをオフに維持するゲート電圧よりも低い電圧を印加する時間を大幅に短縮できるため、下アーム22uのデバイス寿命を長くすることが可能になる。
 以上、下アーム22uがオフ動作した後に上アーム21uがオン動作する場合を説明したが、逆に、上アーム21uがオフ動作した後に下アーム22uがオン動作する場合の動作は、既述の動作と反対の動作であり、容易に推測できるので、その詳細な説明は省略する。
 尚、本実施形態1では、図2において下アーム側ゲート駆動回路24uの内部構成のみを示したが、この内部構成を上アーム側ゲート駆動回路23uについて設けても良いし、下アーム側ゲート駆動回路24u及び上アーム側ゲート駆動回路23uの双方に設けても良い。
 また、本実施形態1では、一方のアームがターンオン動作する際に、上下アームの他方のアームのみ、所定のオフ電圧より低い電圧を印加するように制御したが、その他、例えば、上アームのターンオン動作時には、これと同一のレグに属する下アームだけでなく、他のレグに属する下アームの全てを同じタイミングで、所定のオフ電圧よりも低い電圧を印加するように制御しても良い。このようにすれば、インバータ回路において、他相のスイッチング動作の影響を抑制でき、高信頼性のゲート駆動回路を実現できる。更に、オフに維持するゲート電圧よりも低い電圧を印加する時間を大幅に短縮できるため、デバイス寿命を長くすることが可能になる。
 更に、他のレグのに属する下アームの全てを所定のオフ電圧よりも低い電圧を印加するように制御する場合には、それ等の下アーム別にオフ電圧を調整しても良い。このようにすれば、各レグの下アームを別種類のデバイスで構成する場合に、各レグの下アームを構成するデバイスの種類毎に、最適なオフ電圧を印加することが可能となり、高信頼性のゲート駆動回路を実現できる。更に、オフに維持するゲート電圧よりも低い電圧を印加する時間を大幅に短縮できるので、アームのデバイス寿命を長くすることが可能になる。
 加えて、所定時間Tsは、アームを構成するデバイスに印加される電圧及び電流に応じて、任意に可変しても良い。このようにすれば、異なる電圧及び電流でのスイッチング動作の影響を抑制でき、より正確にターンオン動作又はターンオフ動作の終了を検出できる。よって、高信頼性のゲート駆動回路を実現できる。
 また、所定のオフ電圧より低い電圧は、デバイスに印加される電圧及び電流に応じて、任意に可変しても良い。このようにすれば、異なる電圧及び電流でのスイッチング動作の影響を抑制でき、より確実に誤動作を抑制できる。よって、高信頼性のゲート駆動回路を実現できる。
 (実施形態2)
 図5は、本発明が適用されるインバータの実施形態2を説明するためのモータ駆動システム外略図である。図1に対して、レグ25u、25v、25wをレグ250u、250v、250wに置き換えていることのみが異なり、それ以外は、同様の構成である。
 図6は、図5におけるレグ250uを、詳細に説明するための回路図である。ここで、レグ250uは、上アーム21u及び下アーム22uと、各々に対応した上アーム側ゲート駆動回路200u及び下アーム側ゲート駆動回路300uで構成されている。
 また、上アーム側ゲート駆動回路200uは、上アーム側ゲート駆動電源201u、上アーム側第1の判定回路203u、上アーム側ゲート抵抗204u、上アーム側アーム駆動回路205u、上アーム側オフ電圧制御回路206u、上アーム側主端子電圧検出回路207uにより構成され、下アーム側ゲート駆動回路300uは、下アーム側ゲート駆動電源301u、下アーム側第1の判定回路303u、下アーム側ゲート抵抗304u、下アーム側アーム駆動回路305u、下アーム側オフ電圧制御回路306u、下アーム側主端子電圧検出回路307uにより構成される。前記上アーム側主端子電圧検出回路207uと上アーム側第1の判定回路203uと下アーム側主端子電圧検出回路307uと下アーム側第1の判定回路303uとにより、上アーム及び下アームのターンオフ動作の終了に応じた電圧調整信号をするための信号出力回路を構成する。
 上アーム側ゲート駆動電源201u、下アーム側ゲート駆動電源301uは、上アーム側ゲート駆動回路200u、下アーム側ゲート駆動回路300uが駆動する上アーム21u、下アーム22uの各々のソース電位を基準とした10~30V程度のオン電圧を出力し、また、上アーム側ゲート駆動回路200u、下アーム側ゲート駆動回路300uが駆動する上アーム21u、下アーム22uの各々のソース電位を基準とした0~-30V程度のオフ電圧を出力する。
 上アーム側ゲート駆動回路200u、下アーム側ゲート駆動回路300uには、制御信号Vg_u1、Vg_u2が入力される。制御信号Vg_u1、Vg_u2は、制御回路4(ここでは図示しない)から出力される信号であり、かつ、上アーム21u、下アーム22uのスイッチング動作を制御する信号である。
 制御信号Vg_u1、Vg_u2は、上アーム側ゲート駆動電源201u、下アーム側ゲート駆動電源301uに入力され、上アーム側ゲート駆動電源201u、下アーム側ゲート駆動電源は、各々、制御信号Vg_u1、Vg_u2に応じた信号を出力する。次に、上アーム側ゲート駆動電源201u、下アーム側ゲート駆動電源301uは、制御信号Vg_u1、Vg_u2に応じた信号を、上アーム側アーム駆動回路205u、下アーム側アーム駆動回路305uへと出力する。また、上アーム側ゲート駆動電源201u、下アーム側アーム駆動回路305uは、上アーム側アーム駆動回路205u、下アーム側アーム駆動回路305uへ、電力供給もあわせて行う。上アーム側アーム駆動回路205u、下アーム側アーム駆動回路は、入力された信号を電力増幅し、出力する。上アーム側アーム駆動回路205u、下アーム側アーム駆動回路305uから出力された信号は、上アーム側ゲート抵抗204u、下アーム側ゲート抵抗304uを経由して、各々、上アーム21u、下アーム22uの制御端子に入力される。
 次に、上アーム側第1の判定回路203u、上アーム側主端子電圧検出回路207uの動作について、説明する。上アーム側第1の判定回路203uには、制御回路4(ここでは図示しない)から出力された制御信号Vg_u1、Vg_u2が入力され、更に、上アーム側主端子電圧検出回路207uから出力された信号も入力される。ここで、上アーム側主端子電圧検出回路207uは、上アーム21uの主端子電圧Vds_u1の電圧値を検出し、検出値を上アーム側第1の判定回路203uへと出力する。次に、上アーム側第1の判定回路203uは、上アーム側オフ電圧制御回路206uへと電圧調整信号を出力する。
 ここで、上アーム側第1の判定回路203uが出力する電圧調整信号は、制御信号Vg_u1、Vg_u2のオン/オフ動作により立上がりタイミングを決定し、更に、入力される上アーム21uの電圧値に応じて、立下りタイミングを決定する。そして、上アーム側オフ電圧制御回路206uは、上アーム側第1判定回路203uから出力される信号に応じて、上アーム側ゲート駆動電源201uへとVgoff(u1)を出力する。
 上アーム側オフ電圧制御回路206uから出力される信号のオン/オフ動作により決定されるVg_off(u1)信号を、下アーム側ゲート駆動電源103uへと出力する。そして、下アーム側ゲート駆動電源103uは、Vg_off(u1)信号に応じて、出力するオフ電圧を任意に変化させる
 ここで、下アーム側第1の判定回路303u、下アーム側主端子電圧検出回路307uの動作については、上アーム側第1の判定回路203u、上アーム側主端子電圧検出回路207uの動作と同様であるため、省略する。
 また、上アーム側ゲート駆動回路23u、23v、23w及び下アーム側ゲート駆動回路24u、24v、24wは、全て同一の回路構成でも良い。
 次に、上アーム側ゲート駆動回路200u及び下アーム側ゲート駆動回路300uの回路動作を説明する。図7は、回路動作を説明するための上アーム側ゲート駆動回路200uと下アーム側ゲート駆動回路300uのタイミングチャートである。
 図7のVg_u1及びVg_u2は、制御回路4から上アーム側ゲート駆動回路23uと下アーム側ゲート駆動回路24uに入力される制御信号である。Vds_u1、Vds_u2及びIds_u1、Ids_u2は、上アーム21u、下アーム22u各々の主端子間における主端子電圧と主端子電流である。Vg_off(u1)及びVg_off(u2)は、上アーム側オフ電圧制御回路206u、下アーム側オフ電圧制御回路306uの出力信号である。
 ここで、一般的にスイッチング素子の動作については、以下のようなことがいえる。即ち、上アーム21u、下アーム22u各々の主端子電圧Vds_u1、Vds_u2を検出し、基準値と比較することにより、上アーム21u、下アーム22uのスイッチング動作状態を把握できる。すなわち、ターンオン動作及びターンオフ動作の終了時点を正確にかつ速やかに検出することが可能となる。
 同様に、上アーム21u、下アーム22u各々の主端子電流Ids_u1、Ids_u2を検出し、基準値と比較することにより、上アーム21u、下アーム22uのスイッチング動作状態を把握できる。すなわち、ターンオン動作及びターンオフ動作の終了時点を正確にかつ速やかに検出することが可能となる。
 同様に、上アーム21u、下アーム22u各々の制御端子電圧Vgs_u1、Vgs_u2を検出し、基準値と比較することにより、上アーム21u、下アーム22uのスイッチング動作状態を把握できる。すなわち、ターンオン動作及びターンオフ動作の終了時点を、正確にかつ速やかに検出することが可能となる。
 前記のことを踏まえて、本実施形態について、具体的な動作を以下に説明する。先ず、制御信号Vg_u1がオフ状態でかつ制御信号Vg_u2がオン状態である場合から、制御信号Vg_u2がオフ状態に変化する(図中のt1時点)。すると、前記Vg_u2はアームを直接駆動する駆動信号ではなく、制御信号であるため、Vg_u2から所定の遅延時間を経過した後、Vds_u2の電圧値が立上り始め、それに同期してIds_u2の電流値は立下り始める。
 そして、スイッチング動作が進み、最終的にはVds_u2はバッテリ1の電圧値にほぼ等しくなり、Ids_u2はほぼ0になる(図中のt1‘時点)。このような状態になると、ターンオフ動作が終了したことになる。Vds_u2の電圧値は、下アーム側主端子電圧検出回路307uにより検出され、下アーム側第1の判定回路303u内で所定値を超えたか否かを判定し、超えた場合には、下アーム側第1の判定回路303uから下アーム側オフ電圧制御回路306uへと判定信号が出力される(図示せず)。次に、判定信号に応じて、下アーム側オフ電圧制御回路306uから下アーム側ゲート駆動電源301uへと出力されるVg_off(u2)信号がオン状態となる(図中のt2時点)。ここで、t2時点は、t1‘時点以降であれば良く、ほぼ同タイミングでも良い。そして、Vg_off(u2)信号を入力された下アーム側ゲート駆動電源301uは、出力電圧を、高dv/dtによる電圧変動の影響がない電圧まで低くする。
 次に、Vg_u1がオン状態に変化する(図中のt3時点)。すると、Vg_u1はアームを直接駆動する駆動信号ではなく、制御信号であるため、Vg_u1から所定の遅延時間を経過した後、Vds_u1の電圧値が立下り始め、それに同期してIds_u1の電流値は立上り始める。そして、スイッチング動作が進み、最終的にはVds_u1はバッテリ1の電圧値にほぼ等しくなり、Ids_u1はほぼ0になる(図中のt3‘時点)。このような状態になると、ターンオン動作が終了したことになる。
 ここで、Vds_u1の電圧値は、上アーム側主端子電圧検出回路207uにより検出され、上アーム側第1の判定回路203u内で第1Aの基準値を下回ったか否かを判定し、下回った場合には上アーム側第1の判定回路203uから上アーム側オフ電圧制御回路306uへと判定信号が出力される(図示せず)。次に、判定信号に応じて、上アーム側オフ電圧制御回路306uから上アーム側ゲート駆動電源301uへと出力されるVg_off(u2)信号がオフ状態となる。
 上アーム側第1の判定回路203uの内部において、判定に使用する第1Aの基準値に関しては、上アームのオフ時に印加されるバッテリ1の電圧値の10%以下が望ましい。このように設定することにより、上アームのターンオン動作終了時を正確に検出できるので、スイッチング素子の信頼性向上が図れる。
 その後、Vg_u1がオン状態でかつVg_u2がオフ状態である場合がしばらく経過した後、Vg_u1がオフ状態に変化する(図中のt4時点)。すると、Vg_u1はアームを直接駆動する駆動信号ではなく、制御信号であるため、Vg_u1から所定の遅延時間を経過した後、Vds_u1の電圧値が立上り始め、それに同期してIds_u1の電流値は立下り始める。そしてスイッチング動作が進み、最終的にはVds_u1はバッテリ1の電圧値にほぼ等しくなり、Ids_u1はほぼ0になる(図中のt4‘時点)。
 このような状態になると、ターンオフ動作が終了したことになる。Vds_u1の電圧値は、上アーム側主端子電圧検出回路207uにより検出され、上アーム側第1の判定回路203u内で所定値を超えたか否かを判定し、超えた場合には、上アーム側第1の判定回路203uから上アーム側オフ電圧制御回路206uへと判定信号が出力される(図示せず)。次に、判定信号に応じて、上アーム側オフ電圧制御回路206uから上アーム側ゲート駆動電源201uへと出力されるVg_off(u1)信号がオン状態となる(図中のt5時点)。ここで、t5時点は、t4‘時点以降であれば良く、ほぼ同タイミングでも良い。そして、Vg_off(u1)信号を入力された上アーム側ゲート駆動電源201uは、出力電圧を、高dv/dtによる電圧変動の影響がない電圧まで低くする。
 次に、Vg_u2がオン状態に変化する(図中のt6時点)。すると、Vg_u2はアームを直接駆動する駆動信号ではなく、制御信号であるため、Vg_u2から所定の遅延時間を経過した後、Vds_u2の電圧値が立下り始め、それに同期してIds_u2の電流値は立上り始める。そしてスイッチング動作が進み、最終的にはVds_u2はバッテリ1の電圧値にほぼ等しくなり、Ids_u2はほぼ0になる(図中のt6‘時点)。このような状態になると、ターンオン動作が終了したことになる。
 ここで、Vds_u2の電圧値は、下アーム側主端子電圧検出回路307uにより検出され、下アーム側第1の判定回路303u内で第1Bの基準値を下回ったか否かを判定し、下回った場合には、下アーム側第1の判定回路303uから下アーム側オフ電圧制御回路206uへと判定信号が出力される(図示せず)。次に、判定信号に応じて、下アーム側オフ電圧制御回路206uから下アーム側ゲート駆動電源201uへと出力されるVg_off(u1)信号がオフ状態となる。
 下アーム側第1の判定回路303uの内部において、判定に使用する第1Bの基準値に関しては、下アームのオフ時に印加されるバッテリ1の電圧値の10%以下が望ましい。このように設定することにより、下アームのターンオン動作終了時を正確に検出できるので、スイッチング素子の信頼性向上が図れる。
 ゆえに、高dv/dtを発生させる高周波スイッチング動作などによる上下アーム短絡動作を抑制した高信頼性のゲート駆動回路を実現できる。更に、アームをオフ状態に維持するゲート電圧よりも低い電圧を印加する時間を大幅に短縮できるため、デバイス寿命を長くすることが可能になる。
 (実施形態3)
 次に、本発明の別の実施形態について、図8を用いて説明する。
 図8は、図5におけるレグ250uを、詳細に説明するための回路図である。図6と異なる点は、上アーム側主端子電圧検出回路207u、下アーム側主端子電圧検出回路307uを、上アーム側主端子電流検出回路217u、下アーム側主端子電流検出回路317uに置き換え、更に、上アーム側第1の判定回路203u、下アーム側第1の判定回路303uを、上アーム側第2の判定回路213u、下アーム側第2の判定回路313uに置き換えた点である。それ以外の構成は、図6と同じであるので、説明を省略する。
 上アーム側主端子電流検出回路217u、下アーム側主端子電流検出回路317uは、上アーム側ゲート駆動回路200u、下アーム側ゲート駆動回路300uが各々対応したアームの主端子間電流を検出し、検出した値に応じた信号を上アーム側第2の判定回路213u、下アーム側第2の判定回路313uへと出力する。上アーム側第2の判定回路213u、下アーム側第2の判定回路313uは、上アーム21u、下アーム22uをスイッチング動作を制御する制御信号Vg_u1、Vg_u2と、上アーム側主端子電流検出回路213u、下アーム側主端子電流検出回路313uの出力信号に応じて、上アーム側オフ電圧制御回路206u、下アーム側オフ電圧制御回路306uへと信号を出力する。上アーム側オフ電圧制御回路206u、下アーム側オフ電圧制御回路306uは、上アーム側第2の判定回路213u、下アーム側第2の判定回路313uの出力信号に応じて、上アーム側ゲート駆動電源201u、下アーム側ゲート駆動電源301uへとVg_off(u1)、Vg_off(u2)を出力し、上アーム側ゲート駆動電源201u、下アーム側ゲート駆動電源301uの出力電圧は任意の値に変化する。上アーム側アーム駆動回路205u、下アーム側アーム駆動回路305uは、上アーム側ゲート駆動電源201u、下アーム側ゲート駆動電源301uから電力を供給され、上アーム側ゲート抵抗204u、下アーム側ゲート抵抗304uを介して、上アーム21u、下22uをスイッチング動作するように、制御信号Vg_u1、Vg_u2に応じた信号を出力する。
 上アーム側ゲート駆動回路23u、23v、23w及び下アーム側ゲート駆動回路24u、24v、24wは、同一の回路構成が望ましい。
 次に、上アーム側ゲート駆動回路200uと下アーム側ゲート駆動回路300uの回路動作を説明する。図7は、回路動作を説明するための上アーム側ゲート駆動回路200uと下アーム側ゲート駆動回路300uのタイミングチャートである。
 図7において、Vg_u1とVg_u2は、制御回路4から上アーム側ゲート駆動回路23uと下アーム側ゲート駆動回路24uに入力される制御信号である。Vds_u1及びVds_u2、Ids_u1及びIds_u2は、上アーム21u、下アーム22u各々の主端子間における主端子電圧と主端子電流である。Vg_off(u1)、Vg_off(u2)は、上アーム側オフ電圧制御回路206u、下アーム側オフ電圧制御回路306uの出力信号である。
 次に、本実施形態について、具体的な動作を以下に説明する。
 先ず、Vg_u1がオフ状態でかつVg_u2がオン状態である場合から、Vg_u2がオフ状態に変化する(図中のt1時点)。すると、Vg_u2はアームを直接駆動する駆動信号ではなく、制御信号であるため、Vg_u2から所定の遅延時間を経過した後、Vds_u2の電圧値が立上り始め、それに同期してIds_u2の電流値は立下り始める。そして、スイッチング動作が進み、最終的にはVds_u2はバッテリ1の電圧値にほぼ等しくなり、Ids_u2はほぼ0になる(図中のt1‘時点)。このような状態になると、ターンオフ動作が終了したことになる。Ids_u2の電流値は、下アーム側主端子電流検出回路317uにより検出され、下アーム側第2の判定回路313u内で所定値を下回ったか否かを判定し、下回った場合には下アーム側第2の判定回路313uから下アーム側オフ電圧制御回路306uへと判定信号が出力される(図示せず)。次に、判定信号に応じて、下アーム側オフ電圧制御回路306uから下アーム側ゲート駆動電源301uへと出力されるVg_off(u2)信号がオン状態となる(図中のt2時点)。ここで、t2時点は、t1‘時点以降であれば良く、ほぼ同タイミングでも良い。そして、Vg_off(u2)信号を入力された下アーム側ゲート駆動電源301uは、出力電圧を高dv/dtによる電圧変動の影響がない電圧まで低くする。
 次に、Vg_u1がオン状態に変化する(図中のt3時点)。すると、Vg_u1はアームを直接駆動する駆動信号ではなく、制御信号であるため、Vg_u1から所定の遅延時間を経過した後、Vds_u1の電圧値が立下り始め、それに同期してIds_u1の電流値は立上り始める。そしてスイッチング動作が進み、最終的にはVds_u1はバッテリ1の電圧値にほぼ等しくなり、Ids_u1はほぼ0になる(図中のt3‘時点)。このような状態になると、ターンオン動作が終了したことになる。
 ここで、Ids_u1の電流値は、上アーム側主端子電流検出回路217uにより検出され、上アーム側第2の判定回路213u内で第2Aの基準値を超えたか否かを判定し、超えた場合には上アーム側第2の判定回路213uから下アーム側オフ電圧制御回路306uへと判定信号が出力される(図示せず)。
 上アーム側第2の判定回路213uの内部において、判定に使用する第2Aの基準値に関しては、上アームがオフ時に印加される最大電流値の90%以上が望ましい。このように設定することにより、上アームのターンオン動作終了時を正確に検出できるので、スイッチング素子の信頼性向上が図れる。
 次に、判定信号に応じて、下アーム側オフ電圧制御回路306uから下アーム側ゲート駆動電源301uへと出力されるVg_off(u2)信号がオフ状態となる。次に、Vg_u1がオン状態でかつVg_u2がオフ状態である場合がしばらく経過した後、Vg_u1がオフ状態に変化する(図中のt4時点)。すると、Vg_u1はアームを直接駆動する駆動信号ではなく、制御信号であるため、Vg_u1から所定の遅延時間を経過した後、Vds_u1の電圧値が立上り始め、それに同期してIds_u1の電流値は立下り始める。そして、スイッチング動作が進み、最終的にはVds_u1はバッテリ1の電圧値にほぼ等しくなり、Ids_u1はほぼ0になる(図中のt4‘時点)。このような状態になると、ターンオフ動作が終了したことになる。Ids_u1の電流値は、上アーム側主端子電流検出回路217uにより検出され、上アーム側第2の判定回路213u内で第2Bの基準値を下回ったか否かを判定し、下回った場合には、上アーム側第2の判定回路213uから上アーム側オフ電圧制御回路206uへと判定信号が出力される(図示せず)。
 上アーム側第2の判定回路213uの内部において、判定に使用する第2Bの基準値に関しては、上アームがオン時に印加される最大電流値の10%以上が望ましい。このように設定することにより、上アームのターンオフ動作終了時を正確に検出できるので、スイッチング素子の信頼性向上が図れる。
 次に、判定信号に応じて、上アーム側オフ電圧制御回路206uから上アーム側ゲート駆動電源201uへと出力されるVg_off(u1)信号がオン状態となる(図中のt5時点)。ここで、t5時点は、t4‘時点以降であれば良く、ほぼ同タイミングでも良い。そして、Vg_off(u1)信号を入力された上アーム側ゲート駆動電源201uは、出力電圧を高dv/dtによる電圧変動の影響がない電圧まで低くする。次に、Vg_u2がオン状態に変化する(図中のt6時点)。すると、Vg_u2はアームを直接駆動する駆動信号ではなく、制御信号であるため、Vg_u2から所定の遅延時間を経過した後、Vds_u2の電圧値が立下り始め、それに同期してIds_u2の電流値は立上り始める。そして、スイッチング動作が進み、最終的にはVds_u2はバッテリ1の電圧値にほぼ等しくなり、Ids_u2はほぼ0になる(図中のt6‘時点)。このような状態になると、ターンオン動作が終了したことになる。
 ここで、Ids_u2の電流値は、下アーム側主端子電流検出回路317uにより検出され、下アーム側第2の判定回路313u内で所定値を超えたか否かを判定し、超えた場合には下アーム側第2の判定回路313uからオフ電圧制御回路206uへと判定信号が出力される(図示せず)。次に、判定信号に応じて、上アーム側オフ電圧制御回路206uから上アーム側ゲート駆動電源201uへと出力されるVg_off(u1)信号がオフ状態となる。
 ゆえに、高dv/dtを発生させる高周波スイッチング動作などによる上下アーム短絡動作を抑制した高信頼性のゲート駆動回路を実現できる。更に、アームをオフ状態に維持するゲート電圧よりも低い電圧を印加する時間を大幅に短縮できるので、デバイス寿命を長くすることが可能になる。
 (実施形態4)
 次に、本発明の別の実施形態について、図9を用いて説明する。
 図9は、図5におけるレグ250uを詳細に説明するための回路図である。
 図6と異なる点は、上アーム側主端子電圧検出回路207u、下アーム側主端子電圧検出回路307uを、上アーム側制御端子電圧検出回路227u、下アーム側327uに置き換え、更に、上アーム側第1の判定回路203u、下アーム側第1の判定回路303uを、上アーム側第3の判定回路223u、下アーム側第3の判定回路323uに置き換えた点である。それ以外の構成は、図6と同じであるので、説明を省略する。
 上アーム側制御端子電圧検出回路227u及び下アーム側制御端子電圧検出回路327uは、上アーム側ゲート駆動回路200u、下アーム側ゲート駆動回路300uが各々対応したアームの制御端子間電圧(ゲート-ソース間電圧Vgs)を検出し、検出した値に応じた信号を上アーム側第3の判定回路223u、下アーム側第3の判定回路323uへと出力する。上アーム側第3の判定回路223u、下アーム側第3の判定回路323uは、上アーム21u、下アーム22uのスイッチング動作を制御する制御信号Vg_u1、Vg_u2と、上アーム側制御端子電圧検出回路223u、下アーム側制御端子電圧検出回路323uの出力信号とに応じて、上アーム側オフ電圧制御回路206u、下アーム側オフ電圧制御回路306uへと信号を出力する。上アーム側オフ電圧制御回路206u、下アーム側オフ電圧制御回路306uは、上アーム側第3の判定回路223u、下アーム側第3の判定回路323uの出力信号に応じて、上アーム側ゲート駆動電源201u、下アーム側ゲート駆動電源301uへとVg_off(u1)、Vg_off(u2)を出力し、上アーム側ゲート駆動電源201u、下アーム側ゲート駆動電源301uの出力電圧は任意の値に変化する。上アーム側アーム駆動回路205u、下アーム側アーム駆動回路305uは、上アーム側ゲート駆動電源201u、下アーム側ゲート駆動電源301uから電力を供給され、上アーム側ゲート抵抗204u、下アーム側304uを介して、上アーム21u、下22uをスイッチング動作するように、制御信号Vg_u1、Vg_u2に応じた信号を出力する。
 上アーム側ゲート駆動回路23u、23v、23w及び下アーム側ゲート駆動回路24u、24v、24wは、同一の回路構成が望ましい。
 次に、上アーム側ゲート駆動回路200uと下アーム側ゲート駆動回路300uの回路動作を説明する。図10は、回路動作を説明するための上アーム側ゲート駆動回路200u及び下アーム側ゲート駆動回路300uの動作タイミングチャートである。
 図10において、Vg_u1とVg_u2は、制御回路4から上アーム側ゲート駆動回路23uと下アーム側ゲート駆動回路24uに入力される制御信号である。Vgs_u1とVgs_u2、Ids_u1とIds_u2は、上アーム21u、下アーム22u各々の制御端子電圧と主端子電流である。
 Vg_off(u1)、Vg_off(u2)は、上アーム側オフ電圧制御回路206u、下アーム側オフ電圧制御回路306uの出力信号である。
 続いて、本実施形態について、具体的な動作を以下に説明する。
 先ず、Vg_u1がオフ状態でかつVg_u2がオン状態である場合から、Vg_u2がオフ状態に変化する(図中のt1時点)。すると、Vg_u2はアームを直接駆動する駆動信号ではなく、制御信号であるため、Vg_u2から所定の遅延時間を経過した後、Vgs_u2の電圧値が立上り始め、それに同期してIds_u2の電流値は立下り始める。そしてスイッチング動作が進み、最終的にはVgs_u2はオン用電源301uの電圧値にほぼ等しくなり、Ids_u2はほぼ0になる(図中のt1‘時点)。このような状態になると、ターンオフ動作が終了したことになる。Vgs_u2の電圧値は、下アーム側制御端子電圧検出回路327uにより検出され、下アーム側第3の判定回路323u内で所定値を超えたか否かを判定し、超えた場合には、下アーム側第3の判定回路323uから下アーム側オフ電圧制御回路306uへと判定信号が出力される(図示せず)。次に、判定信号に応じて、下アーム側オフ電圧制御回路306uから下アーム側ゲート駆動電源301uへと出力されるVg_off(u2)信号がオン状態となる(図中のt2時点)。ここで、t2時点は、t1‘時点以降であれば良く、ほぼ同タイミングでも良い。そして、Vg_off(u2)信号を入力された下アーム側ゲート駆動電源301uは、出力電圧を高dv/dtによる電圧変動の影響がない電圧まで低くする。
 次に、Vg_u1がオン状態に変化する(図中のt3時点)。すると、Vg_u1はアームを直接駆動する駆動信号ではなく、制御信号であるため、Vg_u1から所定の遅延時間を経過した後、Vgs_u1の電圧値が立下り始め、それに同期してIds_u1の電流値は立上り始める。そして、スイッチング動作が進み、最終的にはVgs_u1はオン用電源201uの電圧値にほぼ等しくなり、Ids_u1はほぼ0になる(図中のt3‘時点)。このような状態になると、ターンオン動作が終了したことになる。
 ここで、Vgs_u1の電圧値は、上アーム側制御端子電圧検出回路227uにより検出され、上アーム側第3の判定回路223u内で所定値を下回ったか否かを判定し、下回った場合には、上アーム側第3の判定回路223uから下アーム側オフ電圧制御回路306uへと判定信号が出力される(図示せず)。
 次に、判定信号に応じて、下アーム側オフ電圧制御回路306uから下アーム側ゲート駆動電源301uへと出力されるVg_off(u2)信号がオフ状態となる。
 次に、Vg_u1がオン状態でかつVg_u2がオフ状態である場合がしばらく経過した後、Vg_u1がオフ状態に変化する(図中のt4時点)。すると、Vg_u1はアームを直接駆動する駆動信号ではなく、制御信号であるため、Vg_u1から所定の遅延時間を経過した後、Vgs_u1の電圧値が立上り始め、それに同期してIds_u1の電流値は立下り始める。そして、スイッチング動作が進み、最終的にはVgs_u1は上アーム側ゲート駆動電源201uの電圧値にほぼ等しくなり、Ids_u1はほぼ0になる(図中のt4‘時点)。このような状態になると、ターンオフ動作が終了したことになる。Vgs_u1の電圧値は、上アーム側制御端子電圧検出回路227uにより検出され、上アーム側第3の判定回路223u内で第3Aの基準値を超えたか否かを判定し、超えた場合には、上アーム側第3の判定回路223uから上アーム側オフ電圧制御回路206uへと判定信号が出力される(図示せず)。
 上アーム側第3の判定回路223uの内部において、判定に使用する第3Aの基準値に関しては、上アームがターンオン動作時に印加される制御端子の電圧値の90%以上が望ましい。このように設定することにより、上アームのターンオフ動作終了時を正確に検出できるので、スイッチング素子の信頼性向上が図れる。更に、第3Aの基準値は、制御端子に接続されるゲート抵抗値に応じて設定することが望ましい。一般的に、ゲート抵抗値が大きいほど、スイッチング素子のターンオン又はオフ動作するタイミングは、制御端子のオン又はオフするタイミングに対し、遅延する。よって、制御端子に接続されるゲート抵抗値が大きいほど、第3Aの基準値をバッテリ1の電圧値に対し高い比率に設定することが望ましい。そのようにすることにより、スイッチング素子の信頼性の向上が図れる。
 次に、判定信号に応じて、上アーム側オフ電圧制御回路206uから上アーム側ゲート駆動電源201uへと出力されるVg_off(u1)信号がオン状態となる(図中のt5時点)。ここで、t5時点は、t4‘時点以降であれば良く、ほぼ同タイミングでも良い。そして、Vg_off(u1)信号を入力された上アーム側オフ用電源202uは、出力電圧を高dv/dtによる電圧変動の影響がない電圧まで低くする。
 次に、Vg_u2がオン状態に変化する(図中のt6時点)。すると、Vg_u2はアームを直接駆動する駆動信号ではなく、制御信号であるため、Vg_u2から所定の遅延時間を経過した後、Vgs_u2の電圧値が立下り始め、それに同期してIds_u2の電流値は立上り始める。そして、スイッチング動作が進み、最終的にはVgs_u2は下アーム側ゲート駆動電源301uの電圧値にほぼ等しくなり、Ids_u2はほぼ0になる(図中のt6‘時点)。このような状態になると、ターンオン動作が終了したことになる。
 ここで、Vgs_u2の電圧値は、下アーム側制御端子電圧検出回路327uにより検出され、下アーム側第3の判定回路323u内で第3Bの基準値を下回ったか否かを判定し、下回った場合には、下アーム側第3の判定回路323uから上アーム側オフ電圧制御回路206uへと判定信号が出力される(図示せず)。
 上アーム側第3の判定回路323uの内部において、判定に使用する第3Bの基準値に関しては、上アームがターンオフ動作時に印加される制御端子の電圧値の10%以上が望ましい。このように設定することにより、上アームのターンオフ動作終了時を正確に検出できるので、スイッチング素子の信頼性向上が図れる。更に、第3Bの基準値は、制御端子に接続されるゲート抵抗値に応じて設定することが望ましい。一般的に、ゲート抵抗値が大きいほど、スイッチング素子のターンオン又はオフ動作するタイミングは、制御端子のオン又はオフするタイミングに対し、遅延する。よって、制御端子に接続されるゲート抵抗値が大きいほど、第3Bの基準値をバッテリ1の電圧値に対し高い比率に設定することが望ましい。そのようにすることにより、スイッチング素子の信頼性の向上が図れる。
 次に、判定信号に応じて、上アーム側オフ電圧制御回路206uから上アーム側ゲート駆動電源201uへと出力されるVg_off(u1)信号がオフ状態となる。
 ゆえに、高dv/dtを発生させる高周波スイッチング動作などによる上下アーム短絡動作を抑制した高信頼性のゲート駆動回路を実現できる。更に、アームをオフ状態に維持するゲート電圧よりも低い電圧を印加する時間を大幅に短縮できるので、デバイス寿命を長くすることが可能になる。
 (実施形態5)
 次に、本発明の別の実施形態について、図11を用いて説明する。
 図11は、図5におけるレグ250uを、詳細に説明するための回路図である。図6と異なる点は、上アーム側主端子電圧変化率検出回路208u、下アーム側主端子電圧変化率検出回路308uを追加した点と、上アーム側オフ電圧制御回路206u、下アーム側オフ電圧制御回路306uを、上アーム側第1のオフ電圧調整回路209u、下アーム側第1のオフ電圧調整回路309uに置き換えた点である。それ以外の構成は、図6と同じであるので、説明を省略する。請求項における「オフ電圧制御回路」は、本実施形態5においては、上アーム側第1のオフ電圧調整回路209uと、下アーム側第1のオフ電圧調整回路309uに対応する。
 上アーム側主端子電圧変化率検出回路208u、下アーム側主端子電圧変化率検出回路308uは、上アーム側主端子電圧検出回路207u、下アーム側主端子電圧検出回路307uで検出される主端子電圧の時間変化率(いわゆる、dv/dt)を検出する。
 また、上アーム側第1のオフ電圧調整回路209u、下アーム側第1のオフ電圧調整回路309uは、上アーム側第1の判定回路203u、下アーム側第1の判定回路303uと、上アーム側主端子電圧変化率検出回路208u、下アーム側主端子電圧変化率検出回路308uの両出力信号が入力され、それらの信号に応じて、上アーム側ゲート駆動電源201u、下アーム側ゲート駆動回路301uの出力電圧を調整する。
 次に、上アーム側ゲート駆動回路200uと下アーム側ゲート駆動回路300uの回路動作を説明する。図12は、回路動作を説明するための上アーム側ゲート駆動回路200uと下アーム側ゲート駆動回路300uのタイミングチャートである。
 図12において、Vg_u1とVg_u2は、制御回路4から上アーム側ゲート駆動回路23uと下アーム側ゲート駆動回路24uに入力される制御信号である。Vds_u1とVds_u2は、アーム21u、22u各々の主端子電圧である。
 Vg_off(u1)、Vg_off(u2)は、上アーム側第1のオフ電圧調整回路209u、下アーム側第1のオフ電圧調整回路309uの出力信号である。
 ここで、本実施形態について、具体的な動作を以下に説明する。
 先ず、Vg_u1がオフ状態でかつVg_u2がオン状態である場合から、Vg_u2がオフ状態に変化する(図中のt1時点)。すると、Vg_u2はアームを直接駆動する信号ではなく、制御信号であるため、Vg_u2から所定の遅延時間を経過した後、Vds_u2の電圧値が立上り始める。そして、スイッチング動作が進み、最終的にはVds_u2は下アーム側ゲート駆動電源301uの電圧値にほぼ等しくなる(図中のt1‘時点)。このような状態になると、ターンオフ動作が終了したことになる。ここで、下アーム側主端子電圧変化率検出回路308uにより、主端子電圧の変化率を検出し、検出信号dVds/dt_u2を出力する。検出信号dVds/dt_u2の出力値は、主端子電圧の変化率に依存する。
 Vds_u2の電圧値は、下アーム側第1の判定回路303u内で所定値を超えたか否かを判定され、超えた場合には、下アーム側第1の判定回路303uから下アーム側第1のオフ電圧調整回路309uへと判定信号が出力される(図示せず)。次に、判定信号に応じて、下アーム側第1のオフ電圧調整回路309uから下アーム側ゲート駆動電源301uへと出力されるVg_off(u2)信号がオン状態となる(図中のt2時点)。ここで、t2時点は、t1‘時点以降であれば良く、ほぼ同タイミングでも良い。
 また、Vg_off(u2)信号の出力電圧値は、下アーム側主端子電圧変化率検出回路308uの出力信号dVds/dt_u2の出力電圧値に応じた値とする(図中では、dVds/dt_u2信号がdV/dt_s1の場合、Vg_off(u2)信号は、Vg_off(u2)_s1としている)。
 次に、Vg_u1がオン状態に変化する(図中のt3時点)。すると、Vg_u1はアームを直接駆動する駆動信号ではなく、制御信号であるため、Vg_u1から所定の遅延時間を経過した後、Vds_u1の電圧値が立下り始める。そして、スイッチング動作が進み、最終的にはVds_u1はバッテリ1の電圧値にほぼ等しくなる(図中のt3‘時点)。このような状態になると、ターンオン動作が終了したことになる。
 ここで、Vds_u1の電圧値は、上アーム側主端子電圧検出回路207uにより検出され、上アーム側第1の判定回路203u内で所定値を下回ったか否かを判定し、下回った場合には、上アーム側第1の判定回路203uから下アーム側第1のオフ電圧調整回路309uへと判定信号が出力される(図示せず)。次に、判定信号に応じて、下アーム側第1のオフ電圧調整回路309uから下アーム側ゲート駆動電源302uへと出力されるVg_off(u2)信号がオフ状態となる。
 ゆえに、高dv/dtを発生させる高周波スイッチング動作などによる上下アーム短絡動作を抑制した高信頼性のゲート駆動回路を実現できる。更に、アームオフ状態に維持するゲート電圧よりも低い電圧を印加する時間を大幅に短縮できるので、デバイス寿命を長くすることが可能になる。
 また、主端子電圧の変化率に応じた、必要最低限のオフ電圧に設定することができるので、上述した効果を更に向上できる。
 尚、主端子電圧変化率により、オフ電源の出力電圧を調整する例を説明したが、主端子電流の変化率によっても、同様の効果を得ることができる。
 (実施形態6)
 次に、本発明の別の実施形態について、図13を用いて説明する。
 図13は、回路動作を説明するための上アーム側ゲート駆動回路200uと下アーム側ゲート駆動回路300uのタイミングチャートである。図中の信号は、図12と同じであるので、説明を省略する。
 ここで、下アーム側主端子電圧変化率検出回路308uの出力信号dVds/dt_u2の出力電圧値が、所定の基準値dV/dt_0よりも小さい場合には、下アーム側第1のオフ電圧調整回路309uの出力信号を停止する。
 ゆえに、高dv/dtを発生させる高周波スイッチング動作などによる上下アーム短絡動作を抑制した高信頼性のゲート駆動回路を実現できる。更に、アームをオフ状態に維持するゲート電圧よりも低い電圧を印加する時間を大幅に短縮できるので、デバイス寿命を長くすることが可能になる。
 また、主端子電圧の変化率が基準値より小さい場合に、所定のオフ電圧より低い電圧を印加することを制御できるので、上述した効果を更に向上できる。
 (実施形態7)
 次に、本発明の実施形態7について、図14を用いて説明する。
 図14は、図5におけるレグ250uを、詳細に説明するための回路図である。図6と異なる点は、上アーム側アーム温度検出回路210u、下アーム側アーム温度検出回路310uを追加した点と、上アーム側オフ電圧制御回路206u、下アーム側オフ電圧制御回路306uを、上アーム側第2のオフ電圧調整回路219u、下アーム側第2のオフ電圧調整回路319uに置き換えた点である。それ以外の構成は、図6と同じであるので、説明を省略する。請求項における「オフ電圧制御回路」は、本実施形態7においては、上アーム側第2のオフ電圧調整回路219uと、下アーム側第2のオフ電圧調整回路319uに対応する。
 アーム温度検出回路210u、310uは、各々アーム21u、22uの温度を検出し、検出した値を上アーム側第2のオフ電圧調整回路219u、下アーム側第2のオフ電圧調整回路319uへと出力する。
 上アーム側第2のオフ電圧調整回路219u、下アーム側第2のオフ電圧調整回路319uは、上アーム21u、下アーム22uの検出されたアーム温度に応じて、上アーム側ゲート駆動電源201u、下アーム側ゲート駆動電源301uの出力電圧を調整する。
 ここで、アームとなるスイッチング素子の温度としきい値電圧との関係について説明する。
 図15は、一般的なスイッチング素子における、横軸をスイッチング素子の温度、縦軸をしきい値電圧としたグラフである。同図からも判るように、スイッチング素子の温度が高くなるにつれてしきい値電圧は徐々に低くなる。よって、スイッチング素子が高温状態にある場合には、比較的低い制御端子電圧においても、ターンオン動作する可能性がある。
 従って、アームの温度を検出し、検出した値に応じて、上アーム側ゲート駆動電源201u、下アーム側ゲート駆動電源301uの出力電圧を、しきい値電圧が低下した値以上に低い値に調整することにより、この問題を解決できる。
 尚、検出するスイッチング素子の温度は、ジャンクション温度が望ましいが、それ以外でもスイッチング素子近傍でかつ、しきい値電圧と相関のある温度であれば良い。
 以上、本発明の各実施形態を具体的に説明した。しかし、前記実施形態2~7では、上アームがターンオン動作する際に下アームに所定のオフ電圧より低い電圧を印加するように制御すると共に、下アームがターンオン動作する際に上アームに所定のオフ電圧より低い電圧を印加するように制御したが、その何れか一方の場合のみに本発明を適用しても良いのは勿論である。
 また、実施形態2~7では、一方のアームがターンオン動作する際に、上下アームの他方のアームのみ、所定のオフ電圧より低い電圧を印加するように制御したが、その他、例えば、上アームのターンオン動作時には、これと同一のレグに属する下アームだけでなく、他のレグに属する下アームの全てを同じタイミングで、所定のオフ電圧よりも低い電圧を印加するように制御しても良い。このようにすれば、インバータ回路において、他相のスイッチング動作の影響を抑制でき、高信頼性のゲート駆動回路を実現できる。更に、オフに維持するゲート電圧よりも低い電圧を印加する時間を大幅に短縮できるため、デバイス寿命を長くすることが可能になる。
 更に、他のレグのに属する下アームの全てを所定のオフ電圧よりも低い電圧を印加するように制御する場合には、それ等の下アーム別にオフ電圧を調整しても良い。このようにすれば、各レグの下アームを別種類のデバイスで構成する場合に、各レグの下アームを構成するデバイスの種類毎に、最適なオフ電圧を印加することが可能となり、高信頼性のゲート駆動回路を実現できる。更に、オフに維持するゲート電圧よりも低い電圧を印加する時間を大幅に短縮できるので、アームのデバイス寿命を長くすることが可能になる。
 加えて、所定のオフ電圧より低い電圧は、デバイスに印加される電圧及び電流に応じて、任意に可変しても良い。このようにすれば、異なる電圧及び電流でのスイッチング動作の影響を抑制でき、より確実に誤動作を抑制できる。よって、高信頼性のゲート駆動回路を実現できる。
 尚、インバータを構成する6個の上アーム及び下アームは、全て同じスイッチング素子で構成する必要はない。その場合、高速スイッチング動作をし、高dv/dtによる誤動作を引き起こす可能性のあるゲート駆動回路においてのみ、本発明を適用すれば良い。
 更に、インバータを構成する上アーム及び下アームの少なくとも1つは、MOSFETであっても良い。一般的にMOSFETのスイッチング動作は高速で、かつ、寄生容量が大きいため、高dv/dtによる誤動作を引き起こし易いが、MOSFETを駆動するゲート駆動回路に本発明を適用することにより、信頼性の高い電力変換回路を提供できる。
 加えて、インバータを構成する上アーム及び下アームの少なくとも1つは、炭化ケイ素又は窒化ガリウムを含むワイドバンドギャップ半導体であっても良い。ワイドギャップ半導体は、材料及び構造上、一般的なシリコン半導体よりも高速スイッチング動作でかつ寄生容量が大きいため、高dv/dtによる誤動作を引き起こし易いが、ワイドギャップ半導体を駆動するゲート駆動回路に本発明を適用することにより、信頼性の高い電力変換回路を提供できる。
 また、ワイドギャップ半導体においては、制御端子の信頼性が重要課題であるため、本発明で実施するように、デバイス寿命に影響を与える過大な電圧を制御端子に印加する時間を大幅に短縮することにより、デバイス寿命を長くでき、信頼性の高い電力変換器を提供できる。
 以上説明したように、本発明は、高周波駆動するインバータやコンバータ等の電力変換回路の高速スイッチング(高dv/dt)に伴う上下アーム短絡動作を抑制した高信頼性のゲート駆動回路を実現できると共に、アームをオフ状態に維持するゲート電圧よりも低い電圧を印加する時間を大幅に短縮できて、デバイス寿命を長くできるので、小型化が強く要求されるハイブリッド電気自動車及び電気自動車、電動コンプレッサ、電動パワーステアリング、エレベータを含めたあらゆるモータ駆動システム、また同じく小型化が強く望まれる風力発電システムなどの発電システム、等々に有用である。
1           バッテリ
2           インバータ
3           モータ
4           制御回路
21u~21w     上アーム
22u~22w     下アーム
23u~23w、
 200u~200w  上アーム側ゲート駆動回路
24u~24w、
 300u~300w  下アーム側ゲート駆動回路
25u~25w、
 250u~250w  レグ
100u        下アーム側タイマ回路(信号出力回路)
101u、306u   下アーム側オフ電圧制御回路
206u        上アーム側オフ電圧制御回路
102u、305u   下アーム側アーム駆動回路
205u        上アーム側アーム駆動回路
103u、301u   下アーム側ゲート駆動電源
201u        上アーム側ゲート駆動電源
104u、105u、304u   下アーム側ゲート抵抗
204u        上アーム側ゲート抵抗
200         寄生容量
203u        上アーム側第1の判定回路
303u        下アーム側第1の判定回路
213u        上アーム側第2の判定回路
313u        下アーム側第2の判定回路
223u        上アーム側第3の判定回路
323u        下アーム側第3の判定回路
206u        上アーム側オフ電圧制御回路
306u        下アーム側オフ電圧制御回路
207u        上アーム側主端子電圧検出回路
307u        下アーム側主端子電圧検出回路
208u        上アーム側主端子電圧変化率検出回路
308u        下アーム側主端子電圧変化率検出回路
209u        上アーム側第1のオフ電圧調整回路
             (オフ電圧制御回路)
309u        下アーム側第1のオフ電圧調整回路
             (オフ電圧制御回路)
219u        上アーム側第2のオフ電圧調整回路
             (オフ電圧制御回路)
319u        下アーム側第2のオフ電圧調整回路
             (オフ電圧制御回路)
210u        上アーム側アーム温度検出回路
310u        下アーム側アーム温度検出回路
217u        上アーム側主端子電流検出回路
317u        下アーム側主端子電流検出回路
227u        上アーム側制御端子電圧検出回路
327u        下アーム側制御端子電圧検出回路

Claims (28)

  1.  高電圧側に接続される上アーム及び低電圧側に接続される下アームと、前記上アームを駆動する上アーム側ゲート駆動回路及び前記下アームを駆動する下アーム側ゲート駆動回路とを備えた電力変換回路において、
     前記上アーム側ゲート駆動回路及び前記下アーム側ゲート駆動回路は、各々、上アーム側ゲート駆動電源及び下アーム側ゲート駆動電源と、上アーム側アーム駆動回路及び下アーム側アーム駆動回路とを有し、
     前記上アーム側ゲート駆動電源及び下アーム側ゲート駆動電源は、自己の前記上アーム又は下アームの制御端子に電圧を供給し、
     前記上アーム側アーム駆動回路及び下アーム側アーム駆動回路は、自己の前記上アーム又は下アームを制御する制御信号を受け、この制御信号に応じてアーム駆動信号を出力し、
     更に、前記下アーム側ゲート駆動回路は、信号出力回路と、オフ電圧制御回路とを有し、
     前記信号出力回路は、前記下アームのターンオフ動作の終了及び前記上アームのターンオン動作の終了に応じた電圧調整信号を出力し、
     前記オフ電圧制御回路は、前記信号出力回路の電圧調整信号を受け、前記下アームのターンオフ動作の終了から前記上アームのターンオン動作の開始までの期間において、前記下アームのオフ状態を満足する第1の電圧よりも低い第2の電圧を生成し、かつ前記上アームのターンオン動作の終了以後において、前記第2の電圧から前記第1の電圧に戻すように前記下アーム側ゲート駆動電源の出力電圧を制御する
     ことを特徴とする電力変換回路。
  2.  前記請求項1記載の電力変換回路において、
     前記信号出力回路は、タイマ回路を有し、
     前記タイマ回路は、前記上アーム及び下アームの両制御信号を受け、この両制御信号が共にオフである前記下アーム及び上アームが共にターンオフ状態の期間でオン動作となり、前記上アームのターンオン動作の終了以後となる前記オン動作の所定期間経過後にオフ動作となるタイマ信号を出力し、
     前記オフ電圧制御回路は、前記タイマ回路のタイマ信号を受け、このタイマ信号に基づいて前記下アーム側ゲート駆動電源の出力電圧を制御する
     ことを特徴とする電力変換回路。
  3.  前記請求項1記載の電力変換回路において、
     前記信号出力回路は、上アーム側主端子電圧検出回路及び下アーム側主端子電圧検出回路と、上アーム側判定回路及び下アーム側判定回路とを有し、
     前記上アーム側主端子電圧検出回路及び下アーム側主端子電圧検出回路は、各々、自己の前記上アーム又は前記下アームの主端子電圧値を検出し、
     前記上アーム側判定回路及び下アーム側判定回路は、前記自己の上アーム側主端子電圧検出回路又は下アーム側主端子電圧検出回路で検出された主端子電圧信号を受け、この主端子電圧信号に基づいて、自己の前記上アーム又は下アームのターンオフ動作及びターンオン動作の終了を検出する
     ことを特徴とする電力変換回路。
  4.  前記請求項3記載の電力変換回路において、
     前記上アーム側判定回路及び下アーム側判定回路は、各々、自己の前記上アーム側主端子電圧検出回路又は下アーム側主端子電圧検出回路で検出された主端子電圧信号を受け、この主端子電圧信号の電圧値と所定の基準電圧との比較に基づいて、自己のアームのターンオン動作及びターンオフ動作の終了を判定する
     ことを特徴とする電力変換回路。
  5.  前記請求項1記載の電力変換回路において、
     前記信号出力回路は、上アーム側主端子電流検出回路及び下アーム側主端子電流検出回路と、上アーム側判定回路及び下アーム側判定回路とを有し、
     前記上アーム側主端子電流検出回路及び下アーム側主端子電流検出回路は、各々、自己の前記上アーム又は前記下アームの主端子電流値を検出し、
     前記上アーム側判定回路及び下アーム側判定回路は、前記自己の上アーム側主端子電流検出回路又は下アーム側主端子電流検出回路で検出された主端子電流信号に基づいて、自己の前記上アーム又は下アームのターンオフ動作及びターンオン動作の終了を検出する
     ことを特徴とする電力変換回路。
  6.  前記請求項5記載の電力変換回路において、
     前記上アーム側判定回路及び下アーム側判定回路は、各々、前記上アーム側主端子電流検出回路又は下アーム側主端子電流検出回路からの主端子電流信号を受け、この主端子電流信号の電流値と所定の基準電圧との比較に基づいて、自己のアームのターンオン動作及びターンオフ動作の終了を判定する
     ことを特徴とする電力変換回路。
  7.  前記請求項1記載の電力変換回路において、
     前記信号出力回路は、上アーム側制御端子電圧検出回路及び下アーム側制御端子電圧検出回路と、上アーム側判定回路及び下アーム側判定回路とを有し、
     前記上アーム側制御端子電圧検出回路及び下アーム側制御端子電圧検出回路は、各々、自己の前記上アーム又は前記下アームの制御端子の電圧値を検出し、
     前記上アーム側判定回路及び下アーム側判定回路は、各々、前記自己の上アーム側制御端子電圧検出回路又は下アーム側制御端子電圧検出回路で検出された制御端子電圧信号に基づいて、自己の前記上アーム又は下アームのターンオフ動作及びターンオン動作の終了を検出する
     ことを特徴とする電力変換回路。
  8.  前記請求項7記載の電力変換回路において、
     前記上アーム側判定回路及び下アーム側判定回路は、各々、自己のアームの制御端子電圧検出回路で検出された制御端子電圧信号を受け、この制御端子電圧信号の電圧と所定の基準電圧との比較に基づいて、自己のアームのターンオン動作及びターンオフ動作の終了を判定する
     ことを特徴とする電力変換回路。
  9.  前記請求項3記載の電力変換回路において、
     前記信号出力回路は、更に、下アーム側主端子電圧変化率検出回路を有し、
     前記下アーム側主端子電圧変化率検出回路は、自己の前記下アームの主端子電圧の変化率を検出し、
     前記オフ電圧制御回路は、前記下アーム側主端子電圧変化率検出回路の検出結果を受け、この検出結果に基づいて、前記下アーム側ゲート駆動電源が生成する第2の電圧の電圧値を変更する
     ことを特徴とする電力変換回路。
  10.  前記請求項9記載の電力変換回路において、
     前記オフ電圧制御回路は、前記下アーム側主端子電圧の変化率が大きいほど、前記下アーム側ゲート駆動電源が生成する第2の電圧の電圧値を、一層低い電圧値に調整する
     ことを特徴とする電力変換回路。
  11.  前記請求項9記載の電力変換回路において、
     前記オフ電圧制御回路は、前記下アーム側主端子電圧の変化率が所定変化率よりも小さいときには、前記下アーム側ゲート駆動電源が生成する第2の電圧の電圧値を前記第1の電圧に維持する
     ことを特徴とする電力変換回路。
  12.  前記請求項3記載の電力変換回路において、
     前記信号出力回路は、更に、下アーム側アーム温度検出回路を有し、
     前記下アーム側アーム温度検出回路は、自己の前記下アームの温度を検出し、
     前記オフ電圧制御回路は、前記下アーム側アーム温度検出回路の検出結果を受け、この検出結果に基づいて、前記下アーム側ゲート駆動電源が生成する第2の電圧の電圧値を変更する
     ことを特徴とする電力変換回路。
  13.  前記請求項12記載の電力変換回路において、
     前記オフ電圧制御回路は、前記下アーム側アーム温度検出回路で検出した下アームのアーム温度が高いほど、前記下アーム側ゲート駆動電源が生成する第2の電圧を一層低い電圧値に調整する
     ことを特徴とする電力変換回路。
  14.  高電圧側に接続される上アーム及び低電圧側に接続される下アームと、前記上アームを駆動する上アーム側ゲート駆動回路及び前記下アームを駆動する下アーム側ゲート駆動回路とを備えた電力変換回路において、
     前記上アーム側ゲート駆動回路及び前記下アーム側ゲート駆動回路は、各々、上アーム側ゲート駆動電源及び下アーム側ゲート駆動電源と、上アーム側アーム駆動回路及び下アーム側アーム駆動回路とを有し、
     前記上アーム側ゲート駆動電源及び下アーム側ゲート駆動電源は、自己の前記上アーム又は下アームの制御端子に電圧を供給し、
     前記上アーム側アーム駆動回路及び下アーム側アーム駆動回路は、自己の前記上アーム又は下アームを制御する制御信号を受け、この制御信号に応じてアーム駆動信号を出力し、
     更に、前記上アーム側ゲート駆動回路は、信号出力回路と、オフ電圧制御回路とを有し、
     前記信号出力回路は、前記上アームのターンオフ動作の終了及び前記下アームのターンオン動作の終了に応じた電圧調整信号を出力し、
     前記オフ電圧制御回路は、前記信号出力回路の電圧調整信号を受け、前記上アームのターンオフ動作の終了から前記下アームのターンオン動作の開始までの期間において、前記上アームのオフ状態を満足する第1の電圧よりも低い第2の電圧を生成し、かつ前記下アームのターンオン動作の終了以後において、前記第2の電圧から前記第1の電圧に戻すように前記上アーム側ゲート駆動電源の出力電圧を制御する
     ことを特徴とする電力変換回路。
  15.  前記請求項14記載の電力変換回路において、
     前記信号出力回路は、タイマ回路を有し、
     前記タイマ回路は、前記上アーム及び下アームの両制御信号を受け、この両制御信号が共にオフである前記下アーム及び上アームが共にターンオフ状態の期間でオン動作となり、前記下アームのターンオン動作の終了以後となる前記オン動作の所定期間経過後にオフ動作となるタイマ信号を出力し、
     前記オフ電圧制御回路は、前記タイマ回路のタイマ信号を受け、このタイマ信号に基づいて前記下アーム側ゲート駆動電源の出力電圧を制御する
     ことを特徴とする電力変換回路。
  16.  前記請求項14記載の電力変換回路において、
     前記信号出力回路は、上アーム側主端子電圧検出回路及び下アーム側主端子電圧検出回路と、上アーム側判定回路及び下アーム側判定回路とを有し、
     前記上アーム側主端子電圧検出回路及び下アーム側主端子電圧検出回路は、各々、自己の前記上アーム又は前記下アームの主端子電圧値を検出し、
     前記上アーム側判定回路及び下アーム側判定回路は、前記自己の上アーム側主端子電圧検出回路又は下アーム側主端子電圧検出回路で検出された主端子電圧信号を受け、この主端子電圧信号に基づいて、自己の前記上アーム又は下アームのターンオフ動作及びターンオン動作の終了を検出する
     ことを特徴とする電力変換回路。
  17.  前記請求項16記載の電力変換回路において、
     前記上アーム側判定回路及び下アーム側判定回路は、各々、自己の前記上アーム側主端子電圧検出回路又は下アーム側主端子電圧検出回路で検出された主端子電圧信号を受け、この主端子電圧信号の電圧値と所定の基準電圧との比較に基づいて、自己のアームのターンオン動作及びターンオフ動作の終了を判定する
     ことを特徴とする電力変換回路。
  18.  前記請求項14記載の電力変換回路において、
     前記信号出力回路は、上アーム側主端子電流検出回路及び下アーム側主端子電流検出回路と、上アーム側判定回路及び下アーム側判定回路とを有し、
     前記上アーム側主端子電流検出回路及び下アーム側主端子電流検出回路は、各々、自己の前記上アーム又は前記下アームの主端子電流値を検出し、
     前記上アーム側判定回路及び下アーム側判定回路は、前記自己の上アーム側主端子電流検出回路又は下アーム側主端子電流検出回路で検出された主端子電流信号に基づいて、自己の前記上アーム又は下アームのターンオフ動作及びターンオン動作の終了を検出する
     ことを特徴とする電力変換回路。
  19.  前記請求項18記載の電力変換回路において、
     前記上アーム側判定回路及び下アーム側判定回路は、各々、前記上アーム側主端子電流検出回路又は下アーム側主端子電流検出回路からの主端子電流信号を受け、この主端子電流信号の電流値と所定の基準電圧との比較に基づいて、自己のアームのターンオン動作及びターンオフ動作の終了を判定する
     ことを特徴とする電力変換回路。
  20.  前記請求項14記載の電力変換回路において、
     前記信号出力回路は、上アーム側制御端子電圧検出回路及び下アーム側制御端子電圧検出回路と、上アーム側判定回路及び下アーム側判定回路とを有し、
     前記上アーム側制御端子電圧検出回路及び下アーム側制御端子電圧検出回路は、各々、自己の前記上アーム又は前記下アームの制御端子の電圧値を検出し、
     前記上アーム側判定回路及び下アーム側判定回路は、各々、前記自己の上アーム側制御端子電圧検出回路又は下アーム側制御端子電圧検出回路で検出された制御端子電圧信号に基づいて、自己の前記上アーム又は下アームのターンオフ動作及びターンオン動作の終了を検出する
     ことを特徴とする電力変換回路。
  21.  前記請求項20記載の電力変換回路において、
     前記上アーム側判定回路及び下アーム側判定回路は、各々、自己のアームの制御端子電圧検出回路で検出された制御端子電圧信号を受け、この制御端子電圧信号の電圧と所定の基準電圧との比較に基づいて、自己のアームのターンオン動作及びターンオフ動作の終了を判定する
     ことを特徴とする電力変換回路。
  22.  前記請求項16記載の電力変換回路において、
     前記信号出力回路は、更に、上アーム側主端子電圧変化率検出回路を有し、
     前記上アーム側主端子電圧変化率検出回路は、自己の前記上アームの主端子電圧の変化率を検出し、
     前記オフ電圧制御回路は、前記上アーム側主端子電圧変化率検出回路の検出結果を受け、この検出結果に基づいて、前記上アーム側ゲート駆動電源が生成する第2の電圧の電圧値を変更する
     ことを特徴とする電力変換回路。
  23.  前記請求項22記載の電力変換回路において、
     前記オフ電圧制御回路は、前記上アーム側主端子電圧の変化率が大きいほど、前記上アーム側ゲート駆動電源が生成する第2の電圧の電圧値を、一層低い電圧値に調整する
     ことを特徴とする電力変換回路。
  24.  前記請求項22記載の電力変換回路において、
     前記オフ電圧制御回路は、前記上アーム側主端子電圧の変化率が所定変化率よりも小さいときには、前記上アーム側ゲート駆動電源が生成する第2の電圧の電圧値を前記第1の電圧に維持する
     ことを特徴とする電力変換回路。
  25.  前記請求項16記載の電力変換回路において、
     前記信号出力回路は、更に、上アーム側アーム温度検出回路を有し、
     前記上アーム側アーム温度検出回路は、自己の前記上アームの温度を検出し、
     前記オフ電圧制御回路は、前記上アーム側アーム温度検出回路の検出結果を受け、この検出結果に基づいて、前記上アーム側ゲート駆動電源が生成する第2の電圧の電圧値を変更する
     ことを特徴とする電力変換回路。
  26.  前記請求項25記載の電力変換回路において、
     前記オフ電圧制御回路は、前記上アーム側アーム温度検出回路で検出した上アームのアーム温度が高いほど、前記上アーム側ゲート駆動電源が生成する第2の電圧を一層低い電圧値に調整する
     ことを特徴とする電力変換回路。
  27.  前記請求項1~26記載の電力変換回路において、
     前記上アーム及び下アームは、MOSFETで構成される
     ことを特徴とする電力変換回路。
  28.  前記請求項1~26記載の電力変換回路において、
     前記上アーム及び下アームは、炭化ケイ素又は窒化ガリウムを含むワイドバンドギャップ半導体により構成される
     ことを特徴とする電力変換回路。
PCT/JP2009/006930 2008-12-17 2009-12-16 電力変換回路 WO2010070899A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US12/864,856 US8363440B2 (en) 2008-12-17 2009-12-16 Power conversion circuit having off-voltage control circuit
CN2009801052392A CN102017386B (zh) 2008-12-17 2009-12-16 功率转换电路
JP2010508538A JP4512671B1 (ja) 2008-12-17 2009-12-16 電力変換回路

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-320956 2008-12-17
JP2008320956 2008-12-17

Publications (1)

Publication Number Publication Date
WO2010070899A1 true WO2010070899A1 (ja) 2010-06-24

Family

ID=42268578

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/006930 WO2010070899A1 (ja) 2008-12-17 2009-12-16 電力変換回路

Country Status (4)

Country Link
US (1) US8363440B2 (ja)
JP (1) JP4512671B1 (ja)
CN (1) CN102017386B (ja)
WO (1) WO2010070899A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013046420A1 (ja) * 2011-09-30 2013-04-04 株式会社日立製作所 半導体駆動回路およびそれを用いた電力変換装置
CN103222171A (zh) * 2010-11-24 2013-07-24 三菱电机株式会社 电动机驱动电路
US10547304B2 (en) 2017-09-05 2020-01-28 Fuji Electric Co., Ltd. Semiconductor integrated circuit for driving switching device with integrated negative voltage clamp diode
US10848145B2 (en) 2015-05-13 2020-11-24 Panasonic Semiconductor Solutions Co., Ltd. Driver circuit, switching control circuit, and switching device

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5206757B2 (ja) * 2010-10-07 2013-06-12 株式会社デンソー 電子装置
US9780716B2 (en) * 2010-11-19 2017-10-03 General Electric Company High power-density, high back emf permanent magnet machine and method of making same
FI20115771L (fi) * 2011-07-28 2013-01-29 Kone Corp Sähkönsyöttölaite sekä hissijärjestelmä
CN102611288B (zh) * 2012-03-19 2014-05-14 南京航空航天大学 氮化镓功率晶体管三电平驱动方法
EP2851631B1 (en) * 2012-04-16 2020-03-11 Mitsubishi Electric Corporation Heat pump device, air conditioner, and cooling machine
KR102038119B1 (ko) 2012-11-09 2019-10-29 삼성전자주식회사 전자 장치, 전원 공급 장치 및 전원 공급 방법
US9444448B2 (en) * 2013-12-10 2016-09-13 General Electric Company High performance IGBT gate drive
EP3651352B1 (en) * 2017-07-07 2022-11-09 Mitsubishi Electric Corporation Motor drive system and air conditioner
JP6853147B2 (ja) * 2017-09-06 2021-03-31 株式会社日立製作所 電力変換装置、電動機制御システム、および電力変換装置の診断方法
JP7151605B2 (ja) * 2019-04-16 2022-10-12 株式会社デンソー 電力変換器

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0479760A (ja) * 1990-07-23 1992-03-13 Toshiba Corp 転流失敗検出装置
JPH0491660A (ja) * 1990-08-03 1992-03-25 Hitachi Medical Corp インバータ回路及びそれを用いたインバータ式x線装置
JP2004159424A (ja) * 2002-11-06 2004-06-03 Mitsubishi Electric Corp インバータ

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6747884B2 (en) * 2001-04-13 2004-06-08 Mitsubishi Denki Kabushiki Kaisha Power converter device
JP2006094594A (ja) * 2004-09-22 2006-04-06 Nsk Ltd 車載用モータ制御装置、これを使用した電動パワーステアリング装置及び電動ブレーキ装置
JP5230068B2 (ja) * 2006-01-13 2013-07-10 オムロンオートモーティブエレクトロニクス株式会社 インバータ装置
JP4279886B2 (ja) * 2007-02-28 2009-06-17 株式会社日立製作所 同期モータ駆動装置および方法
JP4320743B2 (ja) * 2007-03-02 2009-08-26 株式会社デンソー 回転機の制御装置
JP4438833B2 (ja) * 2007-07-04 2010-03-24 トヨタ自動車株式会社 電力変換装置の異常検出装置および異常検出方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0479760A (ja) * 1990-07-23 1992-03-13 Toshiba Corp 転流失敗検出装置
JPH0491660A (ja) * 1990-08-03 1992-03-25 Hitachi Medical Corp インバータ回路及びそれを用いたインバータ式x線装置
JP2004159424A (ja) * 2002-11-06 2004-06-03 Mitsubishi Electric Corp インバータ

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103222171A (zh) * 2010-11-24 2013-07-24 三菱电机株式会社 电动机驱动电路
CN103222171B (zh) * 2010-11-24 2015-11-25 三菱电机株式会社 电动机驱动电路
WO2013046420A1 (ja) * 2011-09-30 2013-04-04 株式会社日立製作所 半導体駆動回路およびそれを用いた電力変換装置
JP5629386B2 (ja) * 2011-09-30 2014-11-19 株式会社日立製作所 半導体駆動回路およびそれを用いた電力変換装置
US8928363B2 (en) 2011-09-30 2015-01-06 Hitachi, Ltd. Semiconductor drive circuit and power conversion apparatus using same
US10848145B2 (en) 2015-05-13 2020-11-24 Panasonic Semiconductor Solutions Co., Ltd. Driver circuit, switching control circuit, and switching device
US10547304B2 (en) 2017-09-05 2020-01-28 Fuji Electric Co., Ltd. Semiconductor integrated circuit for driving switching device with integrated negative voltage clamp diode

Also Published As

Publication number Publication date
JPWO2010070899A1 (ja) 2012-05-24
US20100301784A1 (en) 2010-12-02
CN102017386B (zh) 2013-10-16
CN102017386A (zh) 2011-04-13
US8363440B2 (en) 2013-01-29
JP4512671B1 (ja) 2010-07-28

Similar Documents

Publication Publication Date Title
JP4512671B1 (ja) 電力変換回路
JP4343897B2 (ja) 電力変換装置
US8680897B2 (en) Switching element control apparatus
JP4915158B2 (ja) 電力用スイッチング素子の駆動装置
JP6255766B2 (ja) ゲート駆動回路
US11152857B2 (en) Gate driver circuit for half bridge MOSFET switches providing protection of the switch devices
JP5545308B2 (ja) 駆動回路
JP2011211836A (ja) スイッチングデバイス駆動装置および半導体装置
JP5736243B2 (ja) 電源回路
JP2012199763A (ja) ゲートドライブ回路
JP2021013259A (ja) ゲート駆動装置及び電力変換装置
JP2009011013A (ja) 電力変換装置
WO2015111154A1 (ja) スイッチング回路、インバータ回路、及びモータ制御装置
JP2009194514A (ja) パワー半導体のゲート駆動回路
CN111869068B (zh) 开关装置以及开关装置的控制方法
JP6122542B1 (ja) アクティブクランプ回路
WO2023062745A1 (ja) 電力用半導体素子の駆動回路、電力用半導体モジュール、および電力変換装置
KR101841159B1 (ko) 스위칭 게이트 드라이브
JP2020096444A (ja) スイッチング回路
JP2007104739A (ja) 電力用半導体モジュールの駆動回路
US10680598B2 (en) Active gate bias driver
JP7259570B2 (ja) 駆動装置およびスイッチ装置
JP7310555B2 (ja) 電力変換回路
US20240178829A1 (en) Driving circuit
WO2024004469A1 (ja) コンバータ回路

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980105239.2

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2010508538

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 12864856

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09833206

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09833206

Country of ref document: EP

Kind code of ref document: A1