JP2004159424A - インバータ - Google Patents
インバータ Download PDFInfo
- Publication number
- JP2004159424A JP2004159424A JP2002322383A JP2002322383A JP2004159424A JP 2004159424 A JP2004159424 A JP 2004159424A JP 2002322383 A JP2002322383 A JP 2002322383A JP 2002322383 A JP2002322383 A JP 2002322383A JP 2004159424 A JP2004159424 A JP 2004159424A
- Authority
- JP
- Japan
- Prior art keywords
- voltage
- voltage side
- low
- arm switch
- negative bias
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Inverter Devices (AREA)
Abstract
【解決手段】高電圧側駆動回路23uは高電圧側アームスイッチ21uと並列に接続された高電圧側負バイアス回路を有するとともに、低電圧側駆動回路24uは低電圧側アームスイッチ22uと並列に接続された低電圧側負バイアス回路を有する。高電圧側負バイアス回路は高電圧側アームスイッチ21uをターンOFFしたのち低電圧側アームスイッチ22uをターンONする前に負バイアス電圧を発生させ、低電圧側負バイアス回路は低電圧側アームスイッチ22uをターンOFFしたのち高電圧側アームスイッチ21uをターンONする前に負バイアス電圧を発生させる。
【選択図】 図2
Description
【発明の属する技術分野】
本発明は、インバータに関するものである。とくに、ハイブリッド自動車、電気自動車もしくはスタータージェネレーターを搭載した自動車の駆動用モータに電力を供給するインバータに関する。
【0002】
【従来の技術】
ハイブリッド自動車等に用いられるインバータでは、UVW各相において高電圧側アームスイッチと低電圧側アームスイッチとを有しており、これらのアームスイッチにはFET(電界効果トランジスタ)等が用いられている。ここで、例えば高電圧側アームスイッチをターンONし、低電圧側アームスイッチをターンOFFしたときに、低電圧側アームスイッチのドレイン−ソース間電圧が上昇した際にゲート電圧が持ちあがり、ターンOFFした低電圧側アームスイッチが誤動作して再びターンONするおそれがあるため、さまざまな対策が施されてきた。従来の駆動回路では、FETとは直列接続されたコンデンサを有する負バイアス回路を備え、FETのターンON時にコンデンサに発生した電圧を、FETのターンOFF時に負バイアス電圧として印加している(例えば、特許文献1参照。)。
【0003】
【特許文献1】
特開平8−149796号公報(第5頁、図4)
【0004】
【発明が解決しようとする課題】
しかしながら、このような負バイアス回路を備えた駆動回路をハイブリッド自動車などのインバータに適用した場合、負バイアス電圧を大きくとろうとすると、電源電圧の制約があるために、アームスイッチのON駆動電圧がその分小さくならざるを得ない。ここで、ハイブリッド自動車などの駆動用モータは始動時には最高約18000rpmといった高速回転が求められ、それに伴なってインバータは数十kHzのスイッチング周波数を要求される。この場合、FETのターンON時のスイッチング損失、ON状態時の定常損失を小さくしようとすると、ON駆動電圧を大きくする必要がある。ON駆動電圧が小さいと、ターンON時のゲート電圧の立ち上がりが遅くなるためスイッチング損失が増大し、またON状態時のFETのON抵抗が大きくなるため定常損失も増大する。したがって、駆動回路が発熱するという問題がある。
【0005】
この発明は、上記のような問題点を解決するためになされたものであり、アームスイッチの誤動作を防止したうえでON駆動電圧を十分に大きくとることができ、駆動回路の発熱を抑制したインバータを提供する。
【0006】
【課題を解決するための手段】
この発明におけるインバータは、高電圧側アームスイッチと高電圧側駆動回路とからなる高電圧側アームと、低電圧側アームスイッチと低電圧側駆動回路とからなる低電圧側アームとを備えるものである。ここで、高電圧側駆動回路は高電圧側アームスイッチと並列に接続された高電圧側負バイアス回路を有するとともに、低電圧側駆動回路は低電圧側アームスイッチと並列に接続された低電圧側負バイアス回路を有し、高電圧側負バイアス回路は高電圧側アームスイッチをターンOFFしたのち低電圧側アームスイッチをターンONする前に負バイアス電圧を発生させ、低電圧側負バイアス回路は低電圧側アームスイッチをターンOFFしたのち高電圧側アームスイッチをターンONする前に負バイアス電圧を発生させるものである。
【0007】
また、高電圧側アームスイッチと低電圧側アームスイッチと駆動回路とからなるアームを備えるものである。ここで、駆動回路は、高電圧側アームスイッチの電力端子間の電圧が所定値を超過した場合を検知する高電圧側電圧超過検知手段と、高電圧側電圧超過検知手段によって所定値を超過したと検知された電圧を利用して低電圧側アームスイッチの制御端子電圧を低下させる低電圧側制御端子電圧制御手段とを備えるとともに、低電圧側アームスイッチの電力端子間の電圧が所定値を超過した場合を検知する低電圧側電圧超過検知手段と、低電圧側電圧超過検知手段によって所定値を超過したと検知された電圧を利用して高電圧側アームスイッチの制御端子電圧を低下させる高電圧側制御端子電圧制御手段とを備えるものである。
【0008】
【発明の実施の形態】
実施の形態1.
図1は、本発明が適用されるインバータの実施の形態1を説明するための電気駆動システム概略回路図である。ここでは、アームスイッチとしてFETを用いた例を説明する。電気駆動システムは、バッテリー1、インバータ2、モータ3及びインバータ制御回路4から構成されている。バッテリー1からの直流をインバータ2で3相交流に変換してモータ3に供給する。このとき、インバータ制御回路4はインバータ2の動作を制御する。インバータ2は、UVW各相に対応して配置されバッテリー1の正電圧線と相線間をスイッチングする高電圧側アームスイッチ21u、21v、21wと、同様にバッテリー1の負電圧線と相線間をスイッチングする低電圧側アームスイッチ22u、22v、22w、さらに、各高電圧側アームスイッチに対応した高電圧側駆動回路23u、23v、23w、各低電圧側アームスイッチに対応した低電圧側駆動回路24u、24v、24wで構成されている。
【0009】
図2は、図1におけるアームスイッチ21uと駆動回路23uとからなるアームを詳細に説明するためのアーム回路図である。なお、アームの構成は、高電圧側及び低電圧側、あるいはUVW各相に共通である。駆動回路23uは駆動制御電源23uVccにより動作される。駆動制御電源23uVccはアームスイッチ21uのソース電位を基準とした電源であり、その電圧Vccは12〜15Vである。アームスイッチ21uに並列接続されたダイオード21uDは寄生ダイオードである。なお、アームスイッチ21uとしてn型MOS−FETを例示するが、これに限定するものではない。
【0010】
駆動回路は、ON駆動用スイッチ231u、ON駆動時の電流制限用抵抗232u、OFF駆動時の電流制限用抵抗233u、OFF駆動用スイッチ234uが駆動制御電源23uVccに対して直列に接続され、ON駆動用スイッチ231u及びOFF駆動用スイッチ234uは、インバータ制御回路から送られるスイッチング制御信号Vsgnによりスイッチングする。ここでは、ON駆動用スイッチ231uとしてp型MOS−FET、OFF駆動用スイッチ234uとしてn型MOS−FETを例示する。
【0011】
また、OFF駆動用スイッチ234uのソースはダイオード23uDのアノード及びコンデンサ23uCに接続され、ダイオード23uDのカソードは負バイアス発生スイッチ23uSのソース及びアームスイッチ21uのソースに接続されている。負バイアス発生スイッチ23uSのドレインはコンデンサ23uC及びツェナーダイオード23uZDのアノードに接続されている。さらにツェナーダイオード23uZDのカソードは抵抗23uRZDを介して駆動制御電源23uVccに接続されている。負バイアス発生スイッチ23uSはインバータ制御回路から送られる負バイアス発生制御信号Vbiasによりスイッチングする。ダイオード23uD、コンデンサ23uC、負バイアス発生スイッチ23uS、ツェナーダイオード23uZD及び抵抗23uRZDは負バイアス回路を構成する。この負バイアス回路とアームスイッチ21uとは、駆動制御電源23uVccに対して並列に接続されている。なお、スイッチング制御信号Vsgnと負バイアス発生制御信号Vbiasとが共通ラインであってもかまわない。
【0012】
次に、U相を例として動作について説明する。まず、低電圧側アームスイッチ(以下ULFET)22uをON状態からターンOFFし、高電圧側アームスイッチ(以下UHFET)21uをターンONする場合について説明する。なお、UHとはU相高電圧側、ULとはU相低電圧側を意味する。図3はこの実施の形態を説明するための電圧波形図である。UHVsgn、ULVsgnはそれぞれ高電圧側及び低電圧側のスイッチング制御信号、ULVgsはULFET22uのゲート電圧、V1は駆動回路24uの負バイアス発生スイッチのドレイン電圧、V2は駆動回路24uのOFF駆動用スイッチのソース電圧を示す。ここでは高電圧側、低電圧側ともに、スイッチング制御信号Vsgnと負バイアス発生制御信号Vbiasとは共通ラインとし、例えばULFETがターンOFFしUHFETがターンONした場合、ULVsgnはULVbiasとしても機能する。
【0013】
期間t1において、ULVsgnがON電圧、UHVsgnがOFF電圧になっている。ULVgsは定常の正電位でありULFET22uはON状態、UHFET21uはOFF状態である。期間t1では、ULFET22uにはソースからドレインへ寄生ダイオード及びULFET22u内部を介して還流電流が流れている。駆動回路24uのツェナーダイオードのツェナー電圧をVZDとすると、電圧V1はVcc−VZDになる。また、駆動回路24uのダイオードの順方向電圧をVfとすると、電圧V2はVfになる。このとき、ULVgsは駆動回路24uの駆動制御電源の電圧Vccと等しい。
【0014】
期間t2において、ULVsgnがOFF電圧になってULFET22uはターンOFFする。UHVsgnはOFF電圧のままである。期間t2はデッドタイム(Td)と呼ばれ、高電圧側アームスイッチと低電圧側アームスイッチとが同時にONするのを防止するための時間である。このデッドタイムで、高電圧側アームスイッチのターンON時の直前に負バイアス発生制御信号を受けて低電圧側アームスイッチの制御端子電圧を低下させる。ハイブリッド自動車などのインバータでは数十kHzのスイッチング周波数が要求されることから、デッドタイムは10マイクロ秒以下であることが好ましい。さらに、寄生ダイオードのみに電流を流している期間を短くしアームスイッチ部での発熱を小さくするために、デッドタイムは1〜3マイクロ秒であることが一層好ましい。
【0015】
期間t2では、駆動回路24uの負バイアス発生スイッチがONするので電圧V1は0Vになる。そのとき、駆動回路24uのコンデンサに蓄積された電圧が負バイアス電圧となるため、電圧V2は瞬間的にULFET22uのソース電圧−(Vcc−VZD−Vf)になる。その後、ULFET22uのゲート容量、駆動回路24uのOFF駆動時の電流制御用抵抗、OFF駆動用スイッチ、コンデンサ、負バイアス発生スイッチの経路で電流が流れるので、電圧V2は徐々に上昇していく。駆動回路24uのツェナーダイオードは、電圧V2の瞬間的な負電位を調節し、ノイズ発生時の負バイアス電圧を決めている。必要以上に負バイアス電圧を印加しないようにし、駆動回路24uのツェナーダイオードに接続された抵抗、コンデンサの充放電による損失を抑える作用がある。この損失が駆動回路24uの損失と比較して無視できる程度のものならば、ツェナーダイオードは無くてもかまわない。
【0016】
期間t3において、UHVsgnがON電圧になってUHFET21uがターンONする。UHFET21uのドレインからソースに流れる電流が増加し、ULFET22uのソースからドレインに流れる電流は減少し、ULFET22uは完全にOFF状態になる。このとき、ULFET22uのドレイン−ソース間の寄生容量を充電するために、ドレイン−ソース間電圧が急速に上昇し、ULVgsが一時的に持ち上がる。しかし、期間t2においてULVgsは十分な負電位となっているため、期間t3におけるULVgsの持ち上がりが発生してもULFET22uの閾値電圧を超えることはなく、誤動作を防止できる。
【0017】
続いて、UHFET21uをON状態からターンOFFし、ULFET22uをターンONする場合について説明する。期間t4において、UHVsgnがOFF電圧となってUHFET21uをターンOFFする。期間t4もデッドタイムで、ここでは低電圧側アームスイッチのターンON時の直前に負バイアス発生制御信号を受けて高電圧側アームスイッチの制御端子電圧を低下させる。
【0018】
期間t5において、ULVsgnのON信号を受けて、ULVgsがOFF電圧となってULFET22uをターンONする。駆動回路24uの負バイアス発生スイッチがOFFになるので、電圧V1は上昇して再びVcc−VZDになり、電圧V2も再びVfになる。
【0019】
ここで、ON駆動電圧と損失について述べる。図4は、この実施の形態において、アームスイッチのゲート電圧Vgs(ON駆動電圧)と、ドレイン−ソース電流が100Aの場合におけるアームスイッチの定常損失との関係を示した特性図である。ON駆動電圧が7V程度までの場合、ON駆動電圧が大きくなるほど損失が急激に低下する。さらに、ON駆動電圧が10V以上では損失がほぼ一定となることから、このようなON駆動電圧を得られることが好ましい。また、ON駆動電圧が大きいと、アームスイッチの入力容量を十分に充電できる時間が短くなる。このため、ターンON時間も短くなりスイッチング時の損失も小さくなる。
【0020】
したがって、このようなインバータでは、負バイアス回路とアームスイッチとが駆動制御電源に対して並列に接続されているため、負バイアス電圧を大きくとってもアームスイッチのON駆動電圧がその分小さくなることはない。そのため、アームスイッチの誤動作を防止したうえでON駆動電圧を十分に大きくとることができ、アームスイッチのスイッチング損失及び定常損失を最小化によって駆動回路の発熱を抑制したインバータを提供できる。
【0021】
実施の形態2.
図5は、本発明が適用されるインバータの実施の形態2を説明するためのアーム回路図である。ここではU相を例とする。UHFET21u、ULFET22u、これらのアームスイッチを駆動するための駆動回路25uが示されている。駆動回路25uは、UHFET21uに対応したON駆動用スイッチ(以下UHDrvOn)251u、ON駆動時の電流制限用抵抗(以下UHRgON)252u、OFF駆動時の電流制限用抵抗(以下UHRgOFF)253u、OFF駆動用スイッチ(以下UHDrvOFF)254u、及びULFET22uに対応したON駆動用スイッチ(以下ULDrvOn)255u、ON駆動時の電流制限用抵抗(以下ULRgON)256u、OFF駆動時の電流制限用抵抗(ULRgOFF)257u、OFF駆動用スイッチ(ULDrvOFF)258uが備えられている。UHDrvOn251u及びUHDrvOFF254uはインバータ制御回路から送られるスイッチング制御信号UHVsgnによりスイッチングし、ULDrvOn255u及びULDrvOFF258uは同様にスイッチング制御信号ULVsgnによりスイッチングする。
【0022】
まず、ULFET22uの誤動作防止を目的とした、低電圧側検知回路及び高電圧側制御端子電圧制御回路の構成について説明する。ULFET22uのドレインに、コンデンサZC2とツェナーダイオードZD2との並列回路におけるツェナーダイオードZD2のカソード側を接続し、この並列回路におけるツェナーダイオードZD2のアノード側を抵抗R8及び抵抗R9に接続する。このコンデンサZC2とツェナーダイオードZD2の並列回路を低電圧側検知回路と呼び、コンデンサZC2は低電圧側検知コンデンサに該当する。抵抗R9のもう一方はULFET22uのソースに接続され、抵抗R8のもう一方はnpnバイポーラトランジスタTr1のベースに接続されている。トランジスタTr1のエミッタはULFET22uのソースに、コレクタは抵抗R6を介してpnpバイポーラトランジスタTr2のベースに接続され、またトランジスタTr2のベースは抵抗R1を介してUHFET21uのゲートに接続し、トランジスタTr2のエミッタはUHFET21uのゲートに、コレクタは抵抗R2を介してUHFET21uのソースに接続されている。検知回路以外の部分すなわち抵抗R1、R2、R6、R8、R9及びトランジスタTr1、Tr2を高電圧側制御端子電圧制御回路と呼ぶ。トランジスタTr1は高電圧側トランジスタに該当する。同様の機能を果たす回路は適宜設計できる。
【0023】
次に動作について説明する。ULFET22uを還流状態からターンOFFし、UHFET21uをターンONする場合について述べる。図6はこの実施の形態を説明するための電圧波形図である。ULVgsはULFET22uのゲート電圧、ULVdsはULFET22uのドレイン−ソース間電圧である。UHVgsはUHFET21uのゲート電圧、UHVdsはUHFET21uのドレイン−ソース間電圧である。図6において、期間T1でULFET22uは還流状態であり、期間T2でターンOFFする。期間T2では、ULFET22u、UHFET21uはともにOFFである。期間T3でUHFET21uをターンONする。
【0024】
スイッチング周波数が数十kHzと比較的高く駆動されるので、スイッチング損失を低く抑えるために、UHRgON252u、UHRgOFF253u、ULRgON256u、ULRgOFF257uは数Ω〜数十Ωと低い値になっており、スイッチングの立ち上がりや立ち下がりは急峻である。ULFET22uのドレイン−ソース間電圧ULVdsの立ち上がりが急峻であるためにコンデンサZC2を介した交流の電圧がトランジスタTr1の閾値電圧を超過すると、トランジスタTr1がONする。あるいは、この交流の電圧がツェナーダイオードZD2のツェナー電圧値を超えることにより、トランジスタTr1がONする。トランジスタTr1のONに伴いトランジスタTr2がONする。トランジスタTr2がONすると、駆動回路25uの高電圧側駆動制御電源の電圧UHVccはUHRgON252uと抵抗R2とで分圧される。このとき、抵抗R2はUHRgON252uと比較して低い抵抗値であるため、UHFET21uのゲート電圧UHVgsは急激に低下する。UHRgON252uと抵抗R2の分圧値はいずれも、UHFET21uの閾値電圧よりもわずかに高くなっている。UHVgsが低下すると、UHFET21uのON抵抗が大きくなり、バッテリーからの配線のインダクタンスを通ってULFET22uのドレイン−ソース間寄生容量に充電されるエネルギーを急速に損失させるため、ULVdsのピーク電圧値が抑制され、またULVdsの立ち上がりも抑制される。
【0025】
その結果、UHFET21uのターンON時において、ULFET22uのドレイン−ソース間寄生容量の急速な充電現象によるULVgsの持ち上がりも抑えることになる。したがって、ULVgsがULFET22uの閾値電圧を超えることはないため、誤ったON動作を防止できる。この検知回路の検知レベルが低くなれば、トランジスタTr1、Tr2がOFFし、UHFET21uのゲート電圧UHVgsには高電圧側駆動制御電源の電圧UHVccが印加され、UHFET21uは完全なON状態となる。UHFET21uのON抵抗が低くなり、再びULFET22uのドレイン−ソース間電圧ULVdsが急速に上昇するか、あるいはツェナーダイオードZD2のツェナー電圧を超えるかすると、再度上述のような動作を繰り返し、ULFET22uのゲート電圧ULVgsの持ち上がりを抑える。
【0026】
次に、UHFET21uの誤動作防止を目的とした、高電圧側検知回路及び低電圧側制御端子電圧制御回路の構成について説明する。UHFET21uのドレインに、コンデンサZC1とツェナーダイオードZD1との並列回路におけるツェナーダイオードZD1のカソード側を接続し、この並列回路におけるツェナーダイオードZD1のアノード側を、抵抗R4を介してUHFET21uのソースと、抵抗R3を介してnpnバイポーラトランジスタTr3のベースとに接続している。このコンデンサZC1とツェナーダイオードZD1の並列回路を高電圧側検知回路と呼び、コンデンサZC1は高電圧側検知コンデンサに該当する。トランジスタTr3のエミッタはUHFET21uのソースに接続され、コレクタはpnpバイポーラトランジスタTr4のベースに接続されている。トランジスタTr4のベースは抵抗R5を介してトランジスタTr4のエミッタに接続され、トランジスタTr4のエミッタは駆動回路25uの高電圧側駆動制御電源の端子に接続されている。トランジスタTr4のコレクタは抵抗R7を介してnpnバイポーラトランジスタTr5のベースに接続され、トランジスタTr5のベースは抵抗R11を介してULFET22uのソースに接続されている。トランジスタTr5のエミッタもULFET22uのソースに接続され、トランジスタTr5のコレクタは抵抗R10を介してULFET22uのゲートに接続されている。検知回路以外の部分すなわち抵抗R3、R4、R5、R7、R10、R11及びトランジスタTr3、Tr4、Tr5を低電圧側制御端子電圧制御回路と呼ぶ。トランジスタTr3は低電圧側トランジスタに該当する。同様の機能を果たす回路は適宜設計できる。
【0027】
動作について説明する。UHFET21uを還流状態からターンOFFし、ULFET22uをターンONする場合について述べる。スイッチング周波数が数十kHzと比較的高く駆動され、スイッチングの立ち上がりや立ち下がりは急峻である。UHFET21uのドレイン−ソース間電圧UHVdsの立ち上がりが急峻であるためにコンデンサZC1を介した交流の電圧がトランジスタTr3の閾値電圧を超過すると、トランジスタTr3がONする。あるいは、この交流の電圧がツェナーダイオードZD1のツェナー電圧値を超えることにより、トランジスタTr3がONする。トランジスタTr3のONに伴いトランジスタTr4、Tr5が順次ONする。このとき、トランジスタTr5がONすると、抵抗R10はULRgON256uと比較して低い抵抗値であるため、ULFET22uのゲート電圧ULVgsは急激に低下する。ULRgON256uと抵抗R10の分圧値はいずれも、ULFET22uの閾値電圧よりもわずかに高くなっている。ULVgsが低下すると、ULFET22uのON抵抗が大きくなり、バッテリーからの配線のインダクタンスを通ってUHFET21uのドレイン−ソース間寄生容量に充電されるエネルギーを急速に損失させるため、UHVdsのピーク電圧値が抑制され、またUHVdsの立ち上がりも抑制される。
【0028】
その結果、ULFET22uのターンON時において、UHFET21uのドレイン−ソース間寄生容量の急速な充電現象によるゲート電圧UHVgsの持ち上がりも抑えることになる。したがって、UHVgsがUHFET21uの閾値電圧を超えることはないため、誤ったON動作を防止できる。この検知回路の検知レベルが低くなれば、トランジスタTr3、Tr4、Tr5がOFFし、ULFET22uのゲート電圧ULVgsには低電圧側駆動制御電源の電圧ULVccが印加され、ULFET22uは完全なON状態となる。ULFET22uのON抵抗が低くなり、再びUHFET21uのドレイン−ソース間電圧UHVdsが急速に上昇するか、あるいはツェナーダイオードZD1のツェナー電圧を超えるかすると、再度上述のような動作を繰り返し、UHFET21uのゲート電圧UHVgsの持ち上がりを抑える。
【0029】
したがって、このようなインバータでは、高電圧側検知コンデンサを介する交流の電圧が低電圧側トランジスタの閾値電圧を超過した場合に低電圧側制御端子電圧制御回路が動作し、低電圧側検知コンデンサを介する交流の電圧が高電圧側トランジスタの閾値電圧を超過した場合に高電圧側制御端子電圧制御回路が動作するため、負バイアス電圧をとる必要がない。そのため、アームスイッチの誤動作を防止したうえでON駆動電圧を十分に大きくとることができ、アームスイッチのスイッチング損失及び定常損失を最小化によって駆動回路の発熱を抑制したインバータを提供できる。
【0030】
【発明の効果】
この発明によれば、アームスイッチの誤動作を防止したうえでON駆動電圧を十分に大きくとることができ、駆動回路の発熱を抑制したインバータを提供できる。
【図面の簡単な説明】
【図1】実施の形態1を説明するための電気駆動システム概略回路図である。
【図2】実施の形態1を説明するためのアーム回路図である。
【図3】実施の形態1を説明するための電圧波形図である。
【図4】実施の形態1を説明するためのON駆動電圧の特性図である。
【図5】実施の形態2を説明するためのアーム回路図である。
【図6】実施の形態2を説明するための電圧波形図である。
【符号の説明】
1 バッテリー、2 インバータ、3 モータ、4 インバータ制御回路、21u〜21w 高電圧側アームスイッチ、22u〜22w 低電圧側アームスイッチ、23u〜23w 高電圧側駆動回路、23uD ダイオード、23uC コンデンサ、23uS 負バイアス発生スイッチ、23uZD ツェナーダイオード、23uRZD 抵抗、24u〜24w 低電圧側駆動回路、25u 駆動回路、Vsgn スイッチング制御信号、Vbias 負バイアス発生制御信号、ZC1〜ZC2 検知コンデンサ、ZD1〜ZD2 ツェナーダイオード、Tr1〜Tr5 トランジスタ、R1〜R11 抵抗。
Claims (4)
- 高電圧側アームスイッチと高電圧側駆動回路とからなる高電圧側アームと、低電圧側アームスイッチと低電圧側駆動回路とからなる低電圧側アームとを備えるインバータにおいて、
前記高電圧側駆動回路は前記高電圧側アームスイッチと並列に接続された高電圧側負バイアス回路を有するとともに、前記低電圧側駆動回路は前記低電圧側アームスイッチと並列に接続された低電圧側負バイアス回路を有し、
前記高電圧側負バイアス回路は前記高電圧側アームスイッチをターンOFFしたのち前記低電圧側アームスイッチをターンONする前に負バイアス電圧を発生させ、前記低電圧側負バイアス回路は前記低電圧側アームスイッチをターンOFFしたのち前記高電圧側アームスイッチをターンONする前に負バイアス電圧を発生させることを特徴とするインバータ。 - 前記高電圧側負バイアス回路は、前記低電圧側アームスイッチをターンONする1〜3マイクロ秒前に負バイアス発生制御信号を受けて前記高電圧側アームスイッチの制御端子電圧を低下させ、
前記低電圧側負バイアス回路は、前記高電圧側アームスイッチをターンONする1〜3マイクロ秒前に負バイアス発生制御信号を受けて前記高電圧側アームスイッチの制御端子電圧を低下させることを特徴とする請求項1記載のインバータ。 - 高電圧側アームスイッチと低電圧側アームスイッチと駆動回路とからなるアームを備えるインバータにおいて、
前記駆動回路は、前記高電圧側アームスイッチの電力端子間の電圧が所定値を超過した場合を検知する高電圧側電圧超過検知手段と、前記高電圧側電圧超過検知手段によって所定値を超過したと検知された電圧を利用して低電圧側アームスイッチの制御端子電圧を低下させる低電圧側制御端子電圧制御手段とを備えるとともに、
前記低電圧側アームスイッチの電力端子間の電圧が所定値を超過した場合を検知する低電圧側電圧超過検知手段と、前記低電圧側電圧超過検知手段によって所定値を超過したと検知された電圧を利用して高電圧側アームスイッチの制御端子電圧を低下させる高電圧側制御端子電圧制御手段とを備えることを特徴としたインバータ。 - 前記高電圧側電圧超過検知手段は高電圧側検知コンデンサを備えるとともに、前記低電圧側電圧超過検知手段は低電圧側検知コンデンサを備え、
前記高電圧側制御端子電圧制御手段は高電圧側トランジスタを備えるとともに、前記低電圧側制御端子電圧制御手段は低電圧側トランジスタを備え、
前記高電圧側検知コンデンサを介する交流の電圧が前記低電圧側トランジスタの閾値電圧を超過した場合に前記低電圧側制御端子電圧制御手段が動作し、前記低電圧側検知コンデンサを介する交流の電圧が前記高電圧側トランジスタの閾値電圧を超過した場合に前記高電圧側制御端子電圧制御手段が動作することを特徴とする請求項3記載のインバータ。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002322383A JP4100134B2 (ja) | 2002-11-06 | 2002-11-06 | インバータ |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002322383A JP4100134B2 (ja) | 2002-11-06 | 2002-11-06 | インバータ |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004159424A true JP2004159424A (ja) | 2004-06-03 |
JP4100134B2 JP4100134B2 (ja) | 2008-06-11 |
Family
ID=32802582
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002322383A Expired - Lifetime JP4100134B2 (ja) | 2002-11-06 | 2002-11-06 | インバータ |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4100134B2 (ja) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009021823A (ja) * | 2007-07-12 | 2009-01-29 | Hitachi Ltd | 電圧駆動型半導体素子のドライブ回路及びインバータ装置 |
JP2009022106A (ja) * | 2007-07-12 | 2009-01-29 | Renesas Technology Corp | Dc−dcコンバータ、ドライバic、およびシステムインパッケージ |
JP2009200891A (ja) * | 2008-02-22 | 2009-09-03 | Fuji Electric Holdings Co Ltd | ゲート駆動回路 |
WO2010070899A1 (ja) * | 2008-12-17 | 2010-06-24 | パナソニック株式会社 | 電力変換回路 |
JP2012228035A (ja) * | 2011-04-18 | 2012-11-15 | Mitsubishi Electric Corp | インバータ装置 |
JP2012249399A (ja) * | 2011-05-27 | 2012-12-13 | Hitachi Ltd | 半導体装置 |
EP2367271A3 (en) * | 2010-03-17 | 2014-11-26 | Hitachi Ltd. | Gate drive circuit of the voltage drive type semiconductor element and power converter |
US9100019B2 (en) | 2012-04-05 | 2015-08-04 | Hitachi, Ltd. | Semiconductor driver circuit and power conversion device |
JP2017085893A (ja) * | 2017-02-15 | 2017-05-18 | 三菱電機株式会社 | 半導体モジュール及び昇圧整流回路 |
DE112014006834B4 (de) | 2014-08-25 | 2020-01-02 | Hitachi, Ltd. | Ansteuerschaltung, Leistungswandler und Motorsystem |
-
2002
- 2002-11-06 JP JP2002322383A patent/JP4100134B2/ja not_active Expired - Lifetime
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4682173B2 (ja) * | 2007-07-12 | 2011-05-11 | 株式会社日立製作所 | 電圧駆動型半導体素子のドライブ回路及びインバータ装置 |
JP2009022106A (ja) * | 2007-07-12 | 2009-01-29 | Renesas Technology Corp | Dc−dcコンバータ、ドライバic、およびシステムインパッケージ |
JP2009021823A (ja) * | 2007-07-12 | 2009-01-29 | Hitachi Ltd | 電圧駆動型半導体素子のドライブ回路及びインバータ装置 |
JP2009200891A (ja) * | 2008-02-22 | 2009-09-03 | Fuji Electric Holdings Co Ltd | ゲート駆動回路 |
WO2010070899A1 (ja) * | 2008-12-17 | 2010-06-24 | パナソニック株式会社 | 電力変換回路 |
CN102017386A (zh) * | 2008-12-17 | 2011-04-13 | 松下电器产业株式会社 | 功率转换电路 |
JP4512671B1 (ja) * | 2008-12-17 | 2010-07-28 | パナソニック株式会社 | 電力変換回路 |
US8363440B2 (en) | 2008-12-17 | 2013-01-29 | Panasonic Corporation | Power conversion circuit having off-voltage control circuit |
EP2367271A3 (en) * | 2010-03-17 | 2014-11-26 | Hitachi Ltd. | Gate drive circuit of the voltage drive type semiconductor element and power converter |
JP2012228035A (ja) * | 2011-04-18 | 2012-11-15 | Mitsubishi Electric Corp | インバータ装置 |
JP2012249399A (ja) * | 2011-05-27 | 2012-12-13 | Hitachi Ltd | 半導体装置 |
US9100019B2 (en) | 2012-04-05 | 2015-08-04 | Hitachi, Ltd. | Semiconductor driver circuit and power conversion device |
DE112014006834B4 (de) | 2014-08-25 | 2020-01-02 | Hitachi, Ltd. | Ansteuerschaltung, Leistungswandler und Motorsystem |
JP2017085893A (ja) * | 2017-02-15 | 2017-05-18 | 三菱電機株式会社 | 半導体モジュール及び昇圧整流回路 |
Also Published As
Publication number | Publication date |
---|---|
JP4100134B2 (ja) | 2008-06-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8841870B2 (en) | Driver for switching element and control system for rotary machine using the same | |
US10511218B2 (en) | Gate drive circuit, that supplies power to a gate of a semiconductor switching element, and carries out a driving on and off of the gate | |
WO2020158853A1 (ja) | 過電流保護回路及びスイッチング回路 | |
US7764524B2 (en) | Inverter for driving a load including a capacitive element in an input stage | |
JP4779549B2 (ja) | 電圧駆動型半導体素子のゲート駆動回路。 | |
JP2002010694A (ja) | 界磁巻線型回転電機の制御装置 | |
JP2006324963A (ja) | 電圧駆動型スイッチング素子の駆動装置 | |
US7248093B2 (en) | Bipolar bootstrap top switch gate drive for half-bridge semiconductor power topologies | |
JP4100134B2 (ja) | インバータ | |
JP4925719B2 (ja) | ゲート駆動回路 | |
JP2003218675A (ja) | 半導体素子の駆動装置ならびにそれを用いた電力変換装置 | |
KR20160134206A (ko) | 친환경자동차용 전기동력시스템의 능동형 커패시터 방전회로장치 | |
JP2013187940A (ja) | 電力変換装置 | |
JP2002233167A (ja) | ハーフブリッジ形インバータ回路 | |
JP2006324794A (ja) | 電圧駆動型半導体素子の駆動装置 | |
US11404953B2 (en) | Drive circuit for power semiconductor element and power semiconductor module employing the same | |
JP2001045740A (ja) | パワー半導体素子の駆動回路 | |
JP2014165932A (ja) | パワー半導体素子駆動回路 | |
US20220337234A1 (en) | Universal clamping circuit for automotive switch gate drives | |
US20080037299A1 (en) | Method for driving dc-ac converter | |
JP3568024B2 (ja) | 電圧駆動型半導体素子のゲート駆動回路 | |
WO2018203422A1 (ja) | 半導体素子の駆動装置および電力変換装置 | |
CN118077128A (zh) | 电力用半导体元件的驱动电路、电力用半导体模块以及电力变换装置 | |
JP2018093638A (ja) | 保護回路、及びモータユニット | |
KR100329386B1 (ko) | 아이지비티 소자의 게이트 드라이브 회로 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD01 | Notification of change of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7421 Effective date: 20040712 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050107 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20071112 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20071120 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080117 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20080226 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20080310 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110328 Year of fee payment: 3 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 4100134 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110328 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120328 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130328 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130328 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140328 Year of fee payment: 6 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |