WO2010070873A1 - 動力伝達装置 - Google Patents

動力伝達装置 Download PDF

Info

Publication number
WO2010070873A1
WO2010070873A1 PCT/JP2009/006861 JP2009006861W WO2010070873A1 WO 2010070873 A1 WO2010070873 A1 WO 2010070873A1 JP 2009006861 W JP2009006861 W JP 2009006861W WO 2010070873 A1 WO2010070873 A1 WO 2010070873A1
Authority
WO
WIPO (PCT)
Prior art keywords
power transmission
clutch means
drive
torque converter
vehicle
Prior art date
Application number
PCT/JP2009/006861
Other languages
English (en)
French (fr)
Inventor
大橋達之
朝付正司
大石晃央
千葉良平
石村潤
石川惠一
Original Assignee
株式会社エフ・シー・シー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社エフ・シー・シー filed Critical 株式会社エフ・シー・シー
Priority to DE112009003722T priority Critical patent/DE112009003722T5/de
Priority to CN200980156573.0A priority patent/CN102317652B/zh
Publication of WO2010070873A1 publication Critical patent/WO2010070873A1/ja
Priority to US13/160,432 priority patent/US8360914B2/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H47/00Combinations of mechanical gearing with fluid clutches or fluid gearing
    • F16H47/06Combinations of mechanical gearing with fluid clutches or fluid gearing the fluid gearing being of the hydrokinetic type
    • F16H47/08Combinations of mechanical gearing with fluid clutches or fluid gearing the fluid gearing being of the hydrokinetic type the mechanical gearing being of the type with members having orbital motion
    • F16H47/085Combinations of mechanical gearing with fluid clutches or fluid gearing the fluid gearing being of the hydrokinetic type the mechanical gearing being of the type with members having orbital motion with at least two mechanical connections between the hydraulic device and the mechanical transmissions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H37/00Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00
    • F16H37/02Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings
    • F16H37/021Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings toothed gearing combined with continuous variable friction gearing
    • F16H37/022Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings toothed gearing combined with continuous variable friction gearing the toothed gearing having orbital motion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H45/00Combinations of fluid gearings for conveying rotary motion with couplings or clutches
    • F16H45/02Combinations of fluid gearings for conveying rotary motion with couplings or clutches with mechanical clutches for bridging a fluid gearing of the hydrokinetic type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H45/00Combinations of fluid gearings for conveying rotary motion with couplings or clutches
    • F16H2045/005Combinations of fluid gearings for conveying rotary motion with couplings or clutches comprising a clutch between fluid gearing and the mechanical gearing unit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H45/00Combinations of fluid gearings for conveying rotary motion with couplings or clutches
    • F16H45/02Combinations of fluid gearings for conveying rotary motion with couplings or clutches with mechanical clutches for bridging a fluid gearing of the hydrokinetic type
    • F16H2045/0221Combinations of fluid gearings for conveying rotary motion with couplings or clutches with mechanical clutches for bridging a fluid gearing of the hydrokinetic type with damping means
    • F16H2045/0226Combinations of fluid gearings for conveying rotary motion with couplings or clutches with mechanical clutches for bridging a fluid gearing of the hydrokinetic type with damping means comprising two or more vibration dampers
    • F16H2045/0231Combinations of fluid gearings for conveying rotary motion with couplings or clutches with mechanical clutches for bridging a fluid gearing of the hydrokinetic type with damping means comprising two or more vibration dampers arranged in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H45/00Combinations of fluid gearings for conveying rotary motion with couplings or clutches
    • F16H45/02Combinations of fluid gearings for conveying rotary motion with couplings or clutches with mechanical clutches for bridging a fluid gearing of the hydrokinetic type
    • F16H2045/0221Combinations of fluid gearings for conveying rotary motion with couplings or clutches with mechanical clutches for bridging a fluid gearing of the hydrokinetic type with damping means
    • F16H2045/0252Combinations of fluid gearings for conveying rotary motion with couplings or clutches with mechanical clutches for bridging a fluid gearing of the hydrokinetic type with damping means having a damper arranged on input side of the lock-up clutch
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H45/00Combinations of fluid gearings for conveying rotary motion with couplings or clutches
    • F16H45/02Combinations of fluid gearings for conveying rotary motion with couplings or clutches with mechanical clutches for bridging a fluid gearing of the hydrokinetic type
    • F16H2045/0221Combinations of fluid gearings for conveying rotary motion with couplings or clutches with mechanical clutches for bridging a fluid gearing of the hydrokinetic type with damping means
    • F16H2045/0268Combinations of fluid gearings for conveying rotary motion with couplings or clutches with mechanical clutches for bridging a fluid gearing of the hydrokinetic type with damping means the damper comprising a gearing

Definitions

  • the present invention relates to a power transmission device which is disposed in the middle of a power transmission system from a drive source of a vehicle to a wheel, and which can optionally transmit or cut off the driving force of the drive source to the wheel.
  • Conventional power transmission devices for vehicles include a torque converter (a start system called a torque converter type) and a start clutch (a so-called start clutch type). (Starting system)) has been proposed.
  • a torque converter a start system called a torque converter type
  • a start clutch a so-called start clutch type
  • (Starting system)) has been proposed.
  • the start performance can be improved by the torque amplification function of the torque converter at the time of start.
  • a start clutch type automatic transmission of the start system for example, during steady traveling, there is no slip such as a torque converter, so that power transmission efficiency can be improved.
  • Patent Document 1 there has been proposed an automatic transmission of a torque converter type starting system to which a lockup clutch is added.
  • a lockup clutch usually has a clutch piston connected to a turbine in a torque converter, and moves between a connected position where the clutch piston abuts on the inner circumferential wall of the torque converter cover and a separated nonconnected position. In the coupled position, the torque converter cover and the turbine are configured to be directly coupled via the clutch piston.
  • the automatic transmission of the torque type start system has a technical advantage that the start performance can be improved by the torque amplification function of the torque converter at the time of start, but, for example, the slip of the torque converter during steady traveling Has a technical disadvantage that the power transmission efficiency is reduced.
  • a starting clutch type automatic transmission has a technical merit that power transmission efficiency can be improved because there is no slip like a torque converter during steady traveling, for example.
  • the starting performance is degraded because the torque amplification function is not provided.
  • the present invention has been made in view of such circumstances, and can improve the starting performance by the torque amplification function of the torque converter, as well as improve the power transmission efficiency during steady traveling, and miniaturize the device.
  • Power transmission device capable of achieving
  • a power transmission device which is disposed in the middle of a power transmission system extending from a drive source of a vehicle to a wheel and which can optionally transmit or cut off the driving force of the drive source to the wheel.
  • a torque converter having a torque amplification function, first clutch means operable while the vehicle is moving forward, and transmitting the driving force of the drive source to the wheel via a drive transmission system of the torque converter; Clutch means having second clutch means for transmitting the driving force of the drive source to the wheels without via the drive transmission system of the torque converter, and the first clutch means or the first clutch means according to the state of the vehicle at the time of forward
  • the second clutch means is optionally operated to transmit the driving force of the drive source to the wheel via the drive transmission system of the torque converter, or Selection means capable of transmitting the driving force of the drive source to the wheels without via the drive transmission system of the K-converter, selection of the power transmission path when the vehicle is moving forward, and switching of the power transmission path when the vehicle is moving backward And an optional planetary gear mechanism.
  • the power transmission device in the power transmission device according to the first aspect, is rotatable by a driving force of the drive source through a drive transmission system of the torque converter, and is connected to the first clutch means.
  • the invention according to claim 3 is characterized in that, in the power transmission device according to claim 2, an oil pump is connected to the second drive shaft, and the oil pump is driven by the rotational force of the second drive shaft.
  • the planetary gear mechanism is configured to reverse and accelerate input rotation during vehicle reverse movement. It features.
  • the invention according to claim 5 is characterized in that, in the power transmission device according to any one of claims 1 to 3, the planetary gear mechanism is configured to reverse and decelerate input rotation during vehicle reverse movement. I assume.
  • the invention according to claim 6 is characterized in that, in the power transmission device according to any one of claims 1 to 3, the planetary gear mechanism is configured to reverse and decelerate input rotation at the time of forward movement of the vehicle. I assume.
  • the invention according to claim 7 is that in the power transmission device according to any one of claims 1 to 3, the planetary gear mechanism is configured to reverse and accelerate input rotation when the vehicle is advancing. It features.
  • a power transmission for transmitting the driving force of the drive source to the wheel without via the drive transmission system of the torque converter is characterized by having a damper mechanism capable of damping torque fluctuation.
  • the invention according to claim 9 is the power transmission apparatus according to any one of claims 1 to 8, wherein power transmission for transmitting the driving force of the drive source to the wheel via a drive transmission system of the torque converter.
  • a path or at least one of the power transmission paths for transmitting the driving force of the drive source to the wheels without passing through the drive transmission system of the torque converter is input while being torque-divided from two places to the planetary gear mechanism It is characterized by
  • the invention according to a tenth aspect is the power transmission apparatus according to any one of the first to ninth aspects, wherein the clutch means comprises the first clutch means, the second clutch means, and the first means in the same housing. Having two hydraulic pistons corresponding to the clutch means and the second clutch means, and optionally operating the first clutch means or the second clutch means by controlling the hydraulic pressure for operating the hydraulic pistons It is characterized by
  • the invention according to claim 11 is the power transmission apparatus according to claim 10, further comprising: a canceller hydraulic chamber separated by a canceller plate on the working side of the hydraulic piston, wherein the canceller hydraulic chamber is operated with respect to the canceller hydraulic chamber. It is characterized in that a canceller mechanism is provided which can introduce oil and cancel and cancel centrifugal hydraulic pressure generated by rotation of the clutch means.
  • the invention according to a twelfth aspect is characterized in that, in the power transmission device according to the eleventh aspect, the canceller plate is also used as a hub for forming a clutch plate of the clutch means.
  • the invention according to claim 13 is the power transmission apparatus according to any one of claims 10 to 12, wherein the first clutch means and the second clutch means are axially juxtaposed in the housing. It is characterized by
  • the invention according to a fourteenth aspect is the power transmission apparatus according to any one of the tenth to twelfth aspects, wherein the first clutch means and the second clutch means are radially juxtaposed in the housing. It is characterized by
  • the invention according to claim 15 is characterized in that, in the power transmission device according to any one of claims 1 to 14, an automatic transmission is interposed in a power transmission system between the clutch means and the wheels. I assume.
  • the invention according to claim 16 is characterized in that, in the power transmission device according to claim 15, the automatic transmission comprises a continuously variable transmission.
  • the first clutch means or the second clutch means is optionally operated according to the state of the vehicle at the time of forward movement including the time of start-up to drive via the drive transmission system of the torque converter.
  • the driving force of the source can be transmitted to the wheels, or the driving force of the driving source can be transmitted to the wheels without passing through the drive transmission system of the torque converter. Power transmission efficiency can be improved.
  • selection of the power transmission path at the time of forward movement of the vehicle and switching of the power transmission path at the time of reverse movement of the vehicle can be performed by the planetary gear mechanism, selection of the power transmission path and switching of the power transmission path This can be performed coaxially, and the device can be miniaturized.
  • the power is higher than that in which the first drive shaft and the second drive shaft are respectively extended.
  • the entire transmission device can be further miniaturized.
  • the oil pump is connected to the second drive shaft, and the oil pump is driven by the rotational force of the second drive shaft, so that the freedom of the layout of the torque converter can be improved. . That is, although the oil pump is normally installed in connection with the hub of the torque converter, the freedom degree of the layout on the torque converter side can be improved by connecting it to the second drive shaft instead. It is
  • the planetary gear mechanism is configured to reverse and accelerate the input rotation at the time of vehicle reverse, the driving force at the time of reverse start can be reduced compared to that at the time of forward movement. It is possible to prevent sudden start of the day.
  • the driving force at the time of reverse start can be increased compared to that at the time of forward movement.
  • the planetary gear mechanism is configured to reverse and decelerate the input rotation at the time of forward movement of the vehicle, for example, the output shaft of the transmission provided behind and the differential gear provided by the vehicle It is possible to eliminate the need for a separate shaft between them and to achieve further miniaturization, and to reduce the driving force at the time of reverse start as compared with the time of forward movement, and to prevent sudden start at reverse be able to.
  • the planetary gear mechanism is configured to reverse and accelerate the input rotation at the time of forward movement of the vehicle, for example, the output shaft of the transmission provided behind and the differential gear provided by the vehicle Can eliminate the need for a separate shaft between them, which can further reduce the size, and can increase the driving force at the time of reverse start as compared with the time of forward movement, and requires a large driving force at the time of reverse movement It can be made compatible with various vehicle types.
  • the second clutch means is provided with the damper mechanism capable of damping the torque fluctuation in the power transmission path for transmitting the driving force of the drive source to the wheel without passing through the drive transmission system of the torque converter. The vibration of the drive source transmitted to the
  • the drive force of the drive source is transmitted to the wheels without passing through the drive transmission system for transmitting the drive force of the drive source to the wheels via the drive transfer system of the torque converter, or the drive transfer system of the torque converter. Since at least one of the power transmission paths to be transmitted is input while being divided by two torques from the two points to the planetary gear mechanism, the clutch capacity of the first clutch means or the second clutch means can be set small, and the clutch The means can be miniaturized.
  • the clutch means has the first clutch means, the second clutch means, and two hydraulic pistons corresponding to the first clutch means and the second clutch means in the same housing, By controlling the hydraulic pressure to operate the hydraulic piston, the first clutch means or the second clutch means can be optionally operated, so that the entire power transmission apparatus can be further simplified and miniaturized. .
  • the operation side of the hydraulic piston has the canceller hydraulic chamber separated by the canceller plate, and the hydraulic oil is introduced into the canceller hydraulic chamber to rotate the clutch means. Since the canceller mechanism capable of canceling out the generated centrifugal hydraulic pressure is provided, the return spring load of the hydraulic piston can be reduced, and the size of the return spring can be reduced.
  • the canceller plate is also used as the hub for forming the clutch plate of the clutch means, the number of parts can be reduced compared to the case where the respective plates are separately provided. While being possible, the power transmission can be further miniaturized.
  • the dimension in the radial direction of the housing can be further reduced. Can contribute to the radial miniaturization of the
  • the axial dimension of the housing can be further reduced, and the power transmission device Can contribute to the axial miniaturization of the
  • the automatic transmission is composed of a continuously variable transmission, it is possible to adjust the driving force and continuously adjust the running condition with good fuel efficiency.
  • a schematic view showing a planetary gear mechanism (reverse mode) in the same power transmission device Operation table showing control contents of selection means in the same power transmission device The schematic diagram which shows the power transmission device which concerns on the 4th Embodiment of this invention A schematic view showing a planetary gear mechanism (torque converter mode) in the same power transmission device A schematic view showing a planetary gear mechanism (reverse mode) in the same power transmission device Operation table showing control contents of selection means in the same power transmission device
  • the schematic diagram which shows the power transmission device which concerns on the 5th Embodiment of this invention A schematic view showing a planetary gear mechanism (reverse mode) in the same power transmission device Operation table showing control contents of selection means in the same power transmission device
  • the schematic diagram which shows the power transmission device which concerns on the 6th Embodiment of this invention A schematic view showing a planetary gear mechanism (torque converter mode) in the same power transmission device A schematic view showing a planetary gear mechanism (reverse mode) in the same power transmission device Operation table showing control contents of selection means
  • a schematic view showing a planetary gear mechanism (start clutch mode or torque converter mode) in the same power transmission device Operation table showing control contents of selection means in the same power transmission device The schematic diagram which shows the power transmission device which concerns on 10th Embodiment of this invention A schematic view showing a planetary gear mechanism (start clutch mode or torque converter mode) in the same power transmission device A schematic view showing a planetary gear mechanism (reverse mode) in the same power transmission device Operation table showing control contents of selection means in the same power transmission device
  • the longitudinal cross-sectional view which shows the power transmission device which concerns on 11th Embodiment of this invention The longitudinal cross-sectional view which shows the power transmission device which concerns on 12th Embodiment of this invention
  • the schematic diagram which shows the power transmission device which concerns on other embodiment The thing using the double pinion type planetary gear mechanism) of this invention
  • the power transmission apparatus is for transmitting or interrupting the driving force by the engine (drive source) of a car (vehicle) to the wheels (driving wheels), as shown in FIG. 1, FIG. 2 and FIG.
  • FIG. 1 is a longitudinal cross-sectional view showing the principal part of the power transmission device which concerns on this embodiment
  • FIG. 2, 6 shows the schematic diagram which represented the power transmission device which concerns on the embodiment. .
  • the torque converter 1 and the transmission 2 are disposed in the middle of the power transmission system from the engine E as a drive source of the vehicle to the wheels (drive wheels D), Among them, the transmission 2 is provided with a transmission A in addition to the clutch means 3 and the third clutch means 8.
  • reference numeral 11 denotes an input shaft extended from the engine E
  • reference numeral 15 denotes an output shaft extended to the transmission A.
  • the torque converter 1 has a torque amplification function of amplifying torque from the engine E and transmitting it to the transmission 2.
  • the driving force of the engine E is transmitted to be rotatable about an axis and liquid (Hydraulic fluid) in a fluid-tight state, the pump P formed on the torquer cover 1a side and rotating with the torquer cover 1a, and facing the pump P at the torquer cover 13 side It mainly comprises a rotatably arranged turbine T.
  • the input shaft 11 is connected to the torque converter cover 13 via the cover member 12. Then, when the input shaft 11 is rotated by the driving force of the engine E and the cover member 12, the torque converter covers 13 and 1a and the pump P are rotated, the rotational torque is amplified to the turbine T side via the liquid (hydraulic oil) Being transmitted while being Then, when the torque is amplified and the turbine T rotates, the first drive shaft 5 splined with the turbine T via the connecting member 16 rotates, and the torque is transmitted to the transmission 2.
  • the "drive transmission system of the torque converter” in the present invention refers to the drive transmission system formed by the torque converter cover 1a, the pump P and the turbine T described above.
  • the torque converter cover 13 is connected to the cover member 12 via the damper mechanism 7 including the connection member 14 and the coil spring 7 a, and the cover member 12 is connected to the input shaft 11.
  • the first drive shaft 5 can be rotated by the driving force of the engine E via the drive transmission system of the torque converter 1, and is connected to the first clutch means 3 a via the housing 10 of the clutch means 3.
  • the second drive shaft 6 can be directly rotated by the driving force of the engine E without passing through the drive transmission system of the torque converter 1, and is connected to the second clutch means 3b.
  • the first drive shaft 5 is a cylindrical member, and the second drive shaft 6 is rotatably disposed therein, and the rotation axes of these are equal. It is done. That is, the first drive shaft 5 and the second drive shaft 6 are formed concentrically.
  • first drive shaft 5 is rotatable on the outside of the second drive shaft 6, and the second drive shaft 6 is rotatable on the inside of the first drive shaft 5.
  • the first drive shaft 5 and the second drive shaft 6 can be independently rotated by selective operation of the clutch means 3.
  • the clutch means 3 is operable when the automobile (vehicle) advances, and transmits the driving force of the engine E (drive source) to the wheels (drive wheel D) via the drive transmission system of the torque converter 1.
  • the clutch means 3a and the second clutch means 3b for transmitting the driving force of the engine E (drive source) to the wheels (drive wheels D) without passing through the drive transmission system of the torque converter 1 are provided.
  • the first clutch means 3a and the second clutch means 3b are formed with a plurality of drive side clutch plates 3aa, 3ba and driven side clutch plates 3ba, 3bb which are slidable in the lateral direction in FIG.
  • the drive side clutch plate 3aa is formed in the housing 10, and the driven side clutch plate 3ab is formed in the interlocking member 17 connected to the output shaft 15, and these drive side clutch plates 3aa and the driven side clutch plate 3ab are alternately stacked.
  • the drive side clutch plate 3aa and the driven side clutch plate 3ab are brought into pressure contact or separation, and power can be interrupted.
  • the drive side clutch plate 3ba is formed on the interlocking member 18 linked and interlocked with the second drive shaft 6, and the driven side clutch plate 3bb is formed on the housing 10
  • the drive side clutch plate 3ba and the driven side clutch plate 3bb are alternately stacked.
  • the drive side clutch plate 3ba and the driven side clutch plate 3bb are brought into pressure contact or separation, and power can be interrupted.
  • separation means not only physical separation but also a state in which the pressure contact is released, and while the drive force is transmitted in the pressure contact state, the transmission of the drive force is interrupted in the separated state. Be done.
  • the clutch means 3 corresponds to the first clutch means 3a, the second clutch means 3b, and the first clutch means 3a and the second clutch means 3b in the same housing 10.
  • the first clutch means 3a or the second clutch means 3b can be optionally operated by controlling the hydraulic pressure for operating the hydraulic pistons P1 and P2 as well as having two hydraulic pistons P1 and P2.
  • the first clutch means 3a is pressed to bring the drive side clutch plate 3aa and the driven side clutch plate 3ab into pressure contact with each other.
  • the drive-side clutch plate 3ba and the driven-side clutch plate 3bb in the second clutch means 2b are formed in an uneven shape at their respective peripheral edges, and the tip of the hydraulic piston P1 is configured to be inserted in the recess thereof. .
  • the hydraulic piston P2 is moved to the left in FIG. 3 against the biasing force of the return spring 3c by injecting hydraulic fluid into the hydraulic chamber S2 between the hydraulic piston P1 and the hydraulic piston P2, and the tip thereof is
  • the second clutch means 3b is pressed to bring the drive side clutch plate 3ba and the driven side clutch plate 3bb into pressure contact with each other.
  • the first clutch means 3a or the second clutch means 3b can be optionally operated by controlling the hydraulic pressure for operating the hydraulic pistons P1, P2.
  • reference numeral 22 denotes a canceller plate for forming a canceller hydraulic chamber.
  • the canceller mechanism provided with such a canceller plate is described in the eleventh embodiment (see FIG. 40). And the twelfth embodiment (see FIG. 41).
  • the housing 10 constituting the clutch means 3 is connected to a ring gear 9 c constituting the planetary gear mechanism 9.
  • a planetary gear mechanism 9 is extended from a sun gear 9a rotatable in the center, a pair of planetary gears 9b meshing with the sun gear 9a and capable of rotating and revolving, and the planetary gear 9b. It comprises a carrier 9ba which can be installed and interlocked, and a ring gear 9c which can rotate in mesh with the planetary gear 9b. Then, when the housing 10 is rotated by the driving force of the engine E, the driving force is input from the ring gear 9 c and transmitted to the output shaft 15 through the planetary gear 9 b and the sun gear 9 a.
  • the carrier 9 ba is extended to the third clutch means 8, and the rotation can be permitted or restricted by the third clutch means 8.
  • the third clutch means 8 is fixed to the drive side clutch plate 8a formed at the end of the carrier 9ba, the fixed side clutch plate 8b formed on the fixed member 19, and the drive side clutch plate 8a.
  • a piston P3 for pressing the side clutch plate 8b is fixed to the drive side clutch plate 8a formed at the end of the carrier 9ba, the fixed side clutch plate 8b formed on the fixed member 19, and the drive side clutch plate 8a.
  • a piston P3 for pressing the side clutch plate 8b.
  • the hydraulic piston P3 moves to the right in the figure against the biasing force of the disc spring h, and the third clutch means 8 is pressed by the tip, and the drive side
  • the third clutch means 8 can be arbitrarily operated by controlling the hydraulic pressure for operating the hydraulic piston P3.
  • the revolution of the carrier 9ba can be restricted by operating the third clutch means 8, when the casing 10 is rotated by the driving force of the engine E, the driving force is inputted from the ring gear 9c, It is configured to be transmitted to the output shaft 15 via the sun gear 9a while reversing the direction of rotation by the planetary gear 9b. This allows the vehicle to move backward.
  • the selection means 4 injects hydraulic oil into the hydraulic chamber S1 or S2 at a predetermined pressure according to the state of the automobile (vehicle) at the time of forward movement (vehicle speed, inclination angle of vehicle body, etc.)
  • the drive power of the engine E is transmitted via the drive transmission system of the torque converter 1 to the wheels (drive wheels
  • the drive power of the engine E can be transmitted to the wheels (drive wheels D) without being transmitted to D) or via the drive transmission system of the torque converter 1.
  • the selection means 4 is formed, for example, in an ECU (not shown) for controlling the engine E, and in the present embodiment, as shown in FIG.
  • the selection means 4 When transmitting the driving force of the engine E to the drive wheel D via the drive transmission system, it is selected to operate the first clutch means 3a and to deactivate the second clutch means 3b and the third clutch means 8 Control by means 4 is performed.
  • the second clutch means 3b When the driving force of the engine E is transmitted to the drive wheel D without passing through the drive transmission system of the torque converter 1 at the time of forward movement of the vehicle, the second clutch means 3b is operated in addition to the first clutch means 3a.
  • the control by the selection means 4 is performed to deactivate the third clutch means 8.
  • the selection means 4 controls the first clutch means 3a and the second clutch means 3b to be inoperative and the third clutch means 8 to be operated.
  • the first clutch means 3a or the second clutch means 3b is optionally operated according to the state of the vehicle at the time of forward movement including the time of start-up, via the drive transmission system of the torque converter 1. Since the driving force of the engine E can be transmitted to the driving wheel D or the driving force of the engine E can be transmitted to the driving wheel D without passing through the drive transmission system of the torque converter 1, the torque amplification function of the torque converter 1 It is possible to improve power transmission efficiency during steady traveling as well as to improve.
  • selection of the power transmission path at the time of forward movement of the vehicle and switching of the power transmission path at the time of reverse movement of the vehicle can be performed by the planetary gear mechanism 9
  • selection of the power transmission path and switching of the power transmission path Can be performed on the same axis, and the device can be miniaturized.
  • the damper mechanism 7 capable of damping torque fluctuations is provided in the middle of the power transmission system between the engine E (drive source) and the torque converter 1. ing.
  • the torque converter 1 can be miniaturized, and the degree of freedom in the layout in the torque converter 1 can be further improved.
  • the weight (primary mass) on the engine E side (drive source side) from the damper mechanism 7 can be reduced, the load on the engine E can be reduced, and the torque converter 1 side from the damper mechanism 7 Since the weight (secondary mass) of H can be increased, the inertial mass can be increased to further increase the vibration damping effect.
  • the clutch means 3 has a first clutch means 3a, a second clutch means 2b, and two hydraulic pistons P1, P2 corresponding to the first clutch means 3a and the second clutch means 3b in the same housing 10.
  • the first clutch means 3a or the second clutch means 3b can be optionally operated by controlling the hydraulic pressure for operating the hydraulic pistons P1 and P2, the entire power transmission apparatus is further simplified. And can be miniaturized.
  • the transmission A in this embodiment is preferably an automatic transmission, and more preferably a continuously variable transmission (so-called CVT).
  • CVT continuously variable transmission
  • the continuously variable transmission 20 has two pulleys Q1 and Q2 and a belt V suspended therebetween, and the movable sheaves of the pulleys Q1 and Q2 are operated by the hydraulic control circuit to independently operate the belts.
  • the diameter of the V suspension portion is changed to perform desired gear change.
  • the continuously variable transmission 20 has a CVTECU electrically connected to a brake switch of a brake pedal and a position sensor of a shift lever in a vehicle, an engine ECU and the like (all not shown). Control is performed by the hydraulic control circuit.
  • the above-described hydraulic pistons P1 to P3 can be arbitrarily operated by the hydraulic control circuit.
  • the automatic transmission is interposed in the power transmission system between the clutch means 3 and the wheels (drive wheels D), it is possible to easily adjust the driving power and the running condition with good fuel efficiency. If the automatic transmission is made up of the continuously variable transmission 20 as shown in FIG. 6, it is possible to adjust the driving power and continuously adjust the running condition with good fuel efficiency.
  • symbol F in the same figure has shown the differential gear which a vehicle comprises.
  • the power transmission device in the present embodiment is for transmitting or interrupting the driving force by the engine (drive source) of the automobile (vehicle) to the wheels (driving wheels), and the third clutch means 8 in the first embodiment.
  • the oil pump 21 for discharging hydraulic oil for operating the hydraulic pistons P1 to P3 is connected to the end of the second drive shaft 6, and the second drive shaft 6 is The oil pump 21 is driven by a rotational force.
  • the freedom degree of the layout of the torque converter 1 can be improved. That is, the oil pump 21 is normally connected to the hub of the torque converter 1 and installed. Alternatively, the oil pump 21 is connected to the second drive shaft 6 to allow freedom in the layout on the torque converter 1 side. It is possible to improve
  • symbol G1 in the figure has shown the output gear, and the said output gear G1 is connected with the continuously variable transmission 20. As shown in FIG. The output gear G1 may not be provided, and as shown in FIG. 11, the output gear G1 may be directly coupled to the input-side pulley Q1.
  • the power transmission device in the present embodiment is for transmitting or blocking the driving force by the engine (drive source) of a car (vehicle) to the wheels (driving wheels), and in particular, the planetary gear mechanism 9 is shown in FIG. As shown, it is configured to accelerate the input rotation at the time of vehicle reverse movement. That is, in the present embodiment, when the third clutch means 8 is actuated when the vehicle reverses, as shown in FIG. 13, the carrier 9ba is fixed and the driving force input to the ring gear 9c is output from the sun gear 9a. Therefore, the rotation input to the planetary gear mechanism 9 is accelerated. As a result, when the setting of the rear automatic transmission 20 is the same ratio, the driving force at the time of reverse start can be reduced as compared to that at the time of forward movement, and sudden start at reverse can be prevented.
  • the power transmission device in the present embodiment is for transmitting or interrupting the driving force by the engine (drive source) of the automobile (vehicle) to the wheels (driving wheels), and in particular, the planetary gear mechanism 9 is shown in FIG.
  • the power transmission path for transmitting the driving force of the engine E to the drive wheel D via the drive transmission system of the torque converter 1 is increased with respect to the planetary gear mechanism 9 while accelerating the input rotation when the vehicle reverses. It is comprised so that it may be input, carrying out torque division from two places.
  • the driving force of the engine E transmitted to the first drive shaft 5 via the torque converter 1 (the driving force via the drive transmission system of the torque converter 1 in the torque converter mode) is shown in FIG.
  • the torque is split and input to the ring gear 9c of the planetary gear mechanism 9 and the carrier 9ba at two points, and is output from the sun gear 9a.
  • a power transmission path for transmitting the driving force of the engine E to the drive wheel D without via the drive transmission system of the torque converter 1 is configured to be input to the planetary gear mechanism 9 while being divided by two torques. It may be one.
  • the power transmission path for transmitting the driving force of the engine E to the drive wheel D through the drive transmission system of the torque converter 1 or the engine without the drive transmission system of the torque converter 1 Since at least one of the power transmission paths (start clutch mode) for transmitting the driving force of E to the drive wheel D is input while being divided into torques from two points to the planetary gear mechanism 9, the first clutch means 3a or The clutch capacity of the two clutch means 3b can be set small, and the clutch means 3 can be miniaturized.
  • the carrier 9ba is fixed and input to the ring gear 9c. Since the driving force is output from the sun gear 9a, the rotation input to the planetary gear mechanism 9 is accelerated. As a result, when the setting of the rear automatic transmission 20 is the same ratio, the driving force at the time of reverse start can be reduced as compared to that at the time of forward movement, and sudden start at reverse can be prevented.
  • the power transmission device in this embodiment is for transmitting or interrupting the driving force by the engine (drive source) of a car (vehicle) to the wheels (driving wheels), and in particular, the planetary gear mechanism 9 is shown in FIG. As shown, it is configured to decelerate input rotation at the time of vehicle reverse movement. That is, in the present embodiment, when the third clutch means 8 is actuated when the vehicle reverses, as shown in FIG. 20, the carrier 9ba is fixed, and the driving force input to the sun gear 9a is output from the ring gear 9c. Therefore, the rotation input to the planetary gear mechanism 9 is decelerated.
  • the driving power at the time of reverse start can be increased compared to that at the time of forward movement, and it can be made compatible with vehicle types that require a large driving power at reverse. it can.
  • the power transmission device in the present embodiment is for transmitting or interrupting the driving force by the engine (drive source) of the automobile (vehicle) to the wheels (driving wheels), and in particular, the planetary gear mechanism 9 shown in FIG.
  • the power transmission path for transmitting the driving force of the engine E to the drive wheel D via the drive transmission system of the torque converter 1 while decelerating the input rotation at the time of vehicle reverse movement is 2 with respect to the planetary gear mechanism 9. It is comprised so that it may be input, carrying out torque division from a location.
  • the driving force of the engine E transmitted to the first drive shaft 5 via the torque converter 1 (the driving force via the drive transmission system of the torque converter 1 in the torque converter mode) is shown in FIG.
  • the torque is split and input to the sun gear 9a of the planetary gear mechanism 9 and the carrier 9ba at two locations, and is output from the ring gear 9c.
  • a power transmission path for transmitting the driving force of the engine E to the drive wheel D without via the drive transmission system of the torque converter 1 is configured to be input to the planetary gear mechanism 9 while being divided by two torques. It may be one.
  • the power transmission path for transmitting the driving force of the engine E to the drive wheel D through the drive transmission system of the torque converter 1 or the engine without the drive transmission system of the torque converter 1 Since at least one of the power transmission paths (start clutch mode) for transmitting the driving force of E to the drive wheel D is input while being divided into torques from two points to the planetary gear mechanism 9, the first clutch means 3a or The clutch capacity of the two clutch means 3b can be set small, and the clutch means 3 can be miniaturized.
  • the power transmission device in the present embodiment is for transmitting or interrupting the driving force by the engine (drive source) of the automobile (vehicle) to the wheels (driving wheels), and in particular, the planetary gear mechanism 9 is shown in FIG. As shown, it is configured to reverse and decelerate input rotation when the vehicle is moving forward. That is, in the present embodiment, when the first clutch means 3a operates or both the first clutch means 3a and the second clutch means 3b operate when the vehicle is moving forward, as shown in FIG. 27, the carrier 9ba is fixed. Since the driving force input to the sun gear 9a is output from the ring gear 9c, the rotation input to the planetary gear mechanism 9 is reversed and decelerated.
  • a separate shaft between the output shaft of the continuously variable transmission 20 and the differential gear F of the vehicle can be dispensed with, and further miniaturization can be achieved.
  • the driving force at the time of reverse start can be reduced as compared to that at the time of forward movement, and sudden start at the time of reverse can be prevented.
  • the power transmission device in the present embodiment is for transmitting or blocking the driving force by the engine (drive source) of a car (vehicle) to the wheels (driving wheels), and in particular, the planetary gear mechanism 9 is shown in FIG.
  • the power transmission path at the time of reverse movement is configured to be input to the planetary gear mechanism 9 while being divided by two torques. That is, in the present embodiment, as shown in FIG.
  • the driving force (driving force via the drive transmission system of the torque converter 1 in the torque converter mode) at the time of reverse travel is the sun gear 9a of the planetary gear mechanism 9 and the carrier 9ba.
  • the torque is divided and input to the two points, and is output from the ring gear 9c.
  • the clutch capacity of the third clutch means 8 can be set small Can be implemented.
  • the power transmission device in the present embodiment is for transmitting or blocking the driving force by the engine (drive source) of a car (vehicle) to the wheels (driving wheels), and in particular, the planetary gear mechanism 9 is shown in FIG. As shown, it is configured to reverse and accelerate input rotation when the vehicle is moving forward. That is, in the present embodiment, when the first clutch means 3a is operated or both the first clutch means 3a and the second clutch means 3b are operated at the time of forward movement of the vehicle, the carrier 9ba is fixed as shown in FIG. Since the driving force input to the ring gear 9c is output from the sun gear 9a, the rotation input to the planetary gear mechanism 9 is reversed and accelerated.
  • a separate shaft between the output shaft of the continuously variable transmission 20 and the differential gear F of the vehicle can be dispensed with, and further miniaturization can be achieved.
  • the driving power at the time of reverse start can be increased compared to that at the time of forward movement, and it can be made compatible with a vehicle type that requires a large driving force at the time of reverse driving.
  • the power transmission device in the present embodiment is for transmitting or blocking the driving force by the engine (drive source) of a car (vehicle) to the wheels (driving wheels), and in particular, the planetary gear mechanism 9 is shown in FIG.
  • the input rotation at the time of forward movement of the vehicle is reversed and accelerated, and the power transmission path at the time of reverse movement is configured to be input while being divided by two torques to the planetary gear mechanism 9. . That is, in the present embodiment, as shown in FIG.
  • the driving force (driving force through the drive transmission system of the torque converter 1 in the torque converter mode) at the time of reverse travel is the ring gear 9c of the planetary gear mechanism 9 and the carrier 9ba.
  • the torque is divided and input to the two points, and output from the sun gear 9a.
  • the clutch capacity of the third clutch means 8 can be set small Can be implemented.
  • the power transmission device in the present embodiment is for transmitting or interrupting the driving force by the engine (drive source) of the automobile (vehicle) to the wheels (driving wheels), and in particular, the operating side of the hydraulic piston P2 (hydraulic piston A canceller hydraulic chamber Sa separated by the canceller plate 22 is provided on the opposite side to the hydraulic chamber S2 for operating P2 and hydraulic fluid is introduced into the canceller hydraulic chamber Sa to provide clutch means A canceller mechanism is provided which can cancel and cancel the centrifugal hydraulic pressure generated by the rotation of (3). According to the present embodiment, by providing such a canceller mechanism, the load of the return spring 3c of the hydraulic piston P2 can be reduced, and the spring size of the return spring 3c can be reduced.
  • the canceller plate 22 for forming the canceller hydraulic chamber Sa is a hub for forming the clutch plate of the clutch means 3 (the driven side clutch plate 3bb of the second clutch means 3b). Since it corresponds to the interlocking member in the first embodiment), the number of parts can be reduced and the power transmission device can be further miniaturized as compared with the case where each member is separately disposed. be able to. Furthermore, in the present embodiment, since the first clutch means 3a and the second clutch means 3b are juxtaposed in the radial direction (vertical direction in the figure) in the housing 10, the dimensions of the housing 10 in the axial direction Can be made smaller, which contributes to the axial miniaturization of the power transmission device.
  • the power transmission device in the present embodiment is for transmitting or interrupting the driving force by the engine (drive source) of the automobile (vehicle) to the wheels (driving wheels), and in particular, the operating side of the hydraulic piston P2 (hydraulic piston A canceller hydraulic chamber Sb separated by the canceller plate 23 is provided on the opposite side to the hydraulic chamber S2 for operating P2), and hydraulic fluid is introduced into the canceller hydraulic chamber Sb for clutch means
  • a canceller mechanism is provided which can cancel and cancel the centrifugal hydraulic pressure generated by the rotation of (3). According to the present embodiment, by providing such a canceller mechanism, the load of the return spring 3c of the hydraulic piston P2 can be reduced, and the spring size of the return spring 3c can be reduced.
  • the canceller plate 23 for forming the canceller hydraulic chamber Sb is a hub for forming the clutch plate of the clutch means 3 (the drive side clutch plate 3bb of the second clutch means 3b). Since it corresponds to the interlocking member in the first embodiment), the number of parts can be reduced and the power transmission device can be further miniaturized as compared with the case where each member is separately disposed. be able to. Furthermore, in the present embodiment, since the first clutch means 3a and the second clutch means 3b are juxtaposed in the radial direction (vertical direction in the figure) in the housing 10, the dimensions of the housing 10 in the axial direction Can be made smaller, which contributes to the axial miniaturization of the power transmission device.
  • the present invention is not limited to this, for example, selection of a power transmission path at the time of advance of vehicles, and a planet which can change power transmission paths at the time of reverse of vehicles.
  • the gear mechanism in addition to the single pinion type (the planetary gear is formed concentrically as a pair between the ring gear and the sun gear) as in the above embodiment, the double pinion type (the planetary gear is the ring gear and the sun gear). It is good also as two pairs formed concentrically in between.
  • a planetary gear mechanism 9 'as shown in FIGS. 42 to 44 can be provided.
  • the planetary gear mechanism 9 ' includes a sun gear 9'a rotatable in the center, a pair of planetary gears 9'ba capable of rotating and revolving by meshing with the sun gear 9'a, and the planetary gear 9'ba. And a pair of planetary gears 9'bb that can rotate and revolve in rotation, a carrier 9'bc that can be extended and interlocked from these planetary gears 9'ba and 9'bb, and meshing with the planetary gear 9'bb And a rotatable ring gear 9'c.
  • the first drive shaft 5 and the second drive shaft 6 are formed concentrically, but may be separately provided separately.
  • the drive source is the engine E, but the present invention is not limited to this, and the internal combustion engine may of course be, for example, a motor.
  • the selection means 4 is formed in ECU, you may form in the microcomputer arrange
  • the power transmission device can select the power transmission path at the time of forward movement of the vehicle and switch the power transmission path at the time of backward movement of the vehicle by the planetary gear mechanism, the external shape and the shape of each component differ It can be applied to those to which other functions are added.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Transmission Devices (AREA)
  • Arrangement Of Transmissions (AREA)
  • Structure Of Transmissions (AREA)

Abstract

【課題】トルクコンバータのトルク増幅機能により発進性能の向上を図るとともに定常走行中における動力伝達効率を向上させることができ、且つ、装置の小型化を図ることができる動力伝達装置を提供する。 【解決手段】トルク増幅機能を有するトルクコンバータ1と、車両の前進時に作動可能とされるとともに、トルクコンバータ1の駆動伝達系を介してエンジンの駆動力を駆動輪に伝達させる第1クラッチ手段3a、及びトルクコンバータ1の駆動伝達系を介さずエンジンの駆動力を駆動輪に伝達させる第2クラッチ手段3bを有するクラッチ手段3と、車両の状態に応じて第1クラッチ手段3a又は第2クラッチ手段3bを任意選択的に作動させ得る選択手段4と、車両の前進時における動力伝達経路の選択、及び車両の後進時における動力伝達経路の切り換えを行わせ得る遊星歯車機構9とを備えたものである。

Description

動力伝達装置
 本発明は、車両の駆動源から車輪に至る動力伝達系の途中に配設され、当該駆動源の駆動力を車輪に対して任意選択的に伝達又は遮断可能な動力伝達装置に関するものである。
 従来の車両の動力伝達装置(自動変速機)においては、トルクコンバータを具備したもの(所謂トルコンタイプと称される発進方式のもの)と、発進クラッチを具備したもの(所謂発進クラッチタイプと称される発進方式のもの)とが提案されている。このうち、トルコンタイプの発進方式の自動変速機では、発進時においてトルクコンバータが有するトルク増幅機能により発進性能の向上を図ることができる。一方、発進クラッチタイプの発進方式の自動変速機では、例えば定常走行中においてはトルクコンバータの如きスリップがないため動力伝達効率を向上させることができる。
 然るに、例えば特許文献1にて開示されているように、トルコンタイプの発進方式の自動変速機において、ロックアップクラッチを付加させたものも提案されるに至っている。かかるロックアップクラッチは、通常、トルクコンバータにおけるタービンと連結されたクラッチピストンを有しており、かかるクラッチピストンがトルコンカバー内周壁に当接した連結位置と、離間した非連結位置との間で移動可能とされ、連結位置のとき、トルコンカバーとタービンとがクラッチピストンを介して直結されるよう構成されたものである。
特開2005-3193号公報
 しかしながら、上記従来の動力伝達装置においては、以下の如き問題があった。
 トルコンタイプの発進方式の自動変速機では、発進時においてトルクコンバータが有するトルク増幅機能により発進性能の向上を図ることができるという技術的メリットがあるものの、例えば定常走行中においては、トルクコンバータのスリップにより動力伝達効率が低下してしまうという技術的デメリットがあった。
 一方、発進クラッチタイプの発進方式の自動変速機では、例えば定常走行中においてはトルクコンバータの如きスリップがないため動力伝達効率を向上させることができるという技術的メリットがあるものの、発進時には、トルクコンバータの如きトルク増幅機能を有さないため、発進性能が低下してしまうという技術的デメリットがあった。尚、発進性能の低下を防止するため変速機の減速レシオを大きくしなければならないという課題がある。
 加えて、車両の後進時に別個の出力軸(後進用の出力軸)が必要とされることから、その分だけ装置が大型化してしまうという問題があった。即ち、車両の前進時においては、出力軸は同一軸上で変速が可能であるものの、車両の後進時においては、駆動源の回転を逆転させつつ駆動輪に伝達させる必要があるため、アイドルギア等を介在させて接続可能な後進用の出力軸が別個必要とされるのである。
 本発明は、このような事情に鑑みてなされたもので、トルクコンバータのトルク増幅機能により発進性能の向上を図るとともに定常走行中における動力伝達効率を向上させることができ、且つ、装置の小型化を図ることができる動力伝達装置を提供することにある。
 請求項1記載の発明は、車両の駆動源から車輪に至る動力伝達系の途中に配設され、当該駆動源の駆動力を車輪に対して任意選択的に伝達又は遮断可能な動力伝達装置において、トルク増幅機能を有するトルクコンバータと、車両の前進時に作動可能とされるとともに、前記トルクコンバータの駆動伝達系を介して前記駆動源の駆動力を前記車輪に伝達させる第1クラッチ手段、及び前記トルクコンバータの駆動伝達系を介さず前記駆動源の駆動力を前記車輪に伝達させる第2クラッチ手段を有するクラッチ手段と、発進時を含む前進時における車両の状態に応じて前記第1クラッチ手段又は第2クラッチ手段を任意選択的に作動させて、前記トルクコンバータの駆動伝達系を介して前記駆動源の駆動力を前記車輪に伝達させ、又は前記トルクコンバータの駆動伝達系を介さず前記駆動源の駆動力を前記車輪に伝達させ得る選択手段と、車両の前進時における動力伝達経路の選択、及び車両の後進時における動力伝達経路の切り換えを行わせ得る遊星歯車機構とを備えたことを特徴とする。
 請求項2記載の発明は、請求項1記載の動力伝達装置において、前記トルクコンバータの駆動伝達系を介して前記駆動源の駆動力で回転可能とされ、前記第1クラッチ手段と連結された第1駆動シャフトと、前記トルクコンバータの駆動伝達系を介さず前記駆動源の駆動力で回転可能とされ、前記第2クラッチ手段と連結された第2駆動シャフトとを具備し、前記第1駆動シャフトと第2駆動シャフトとは同心円状に形成されたことを特徴とする。
 請求項3記載の発明は、請求項2記載の動力伝達装置において、前記第2駆動シャフトにオイルポンプを連結させ、当該第2駆動シャフトの回転力にて前記オイルポンプを駆動させることを特徴とする。
 請求項4記載の発明は、請求項1~3の何れか1つに記載の動力伝達装置において、前記遊星歯車機構は、車両後進時の入力回転を逆転及び増速させるよう構成されたことを特徴とする。
 請求項5記載の発明は、請求項1~3の何れか1つに記載の動力伝達装置において、前記遊星歯車機構は、車両後進時の入力回転を逆転及び減速させるよう構成されたことを特徴とする。
 請求項6記載の発明は、請求項1~3の何れか1つに記載の動力伝達装置において、前記遊星歯車機構は、車両前進時の入力回転を逆転及び減速させるよう構成されたことを特徴とする。
 請求項7記載の発明は、請求項1~3の何れか1つに記載の動力伝達装置において、前記遊星歯車機構は、車両前進時の入力回転を逆転及び増速させるよう構成されたことを特徴とする。
 請求項8記載の発明は、請求項1~7の何れか1つに記載の動力伝達装置において、前記トルクコンバータの駆動伝達系を介さず前記駆動源の駆動力を前記車輪に伝達させる動力伝達経路にトルク変動を減衰し得るダンパ機構を有することを特徴とする。
 請求項9記載の発明は、請求項1~8の何れか1つに記載の動力伝達装置において、前記トルクコンバータの駆動伝達系を介して前記駆動源の駆動力を前記車輪に伝達させる動力伝達経路、又は前記トルクコンバータの駆動伝達系を介さず前記駆動源の駆動力を前記車輪に伝達させる動力伝達経路の少なくとも一方は、前記遊星歯車機構に対して2箇所からトルク分割されつつ入力されることを特徴とする。
 請求項10記載の発明は、請求項1~9の何れか1つに記載の動力伝達装置において、前記クラッチ手段は、同一筐体内に前記第1クラッチ手段、第2クラッチ手段、及び当該第1クラッチ手段及び第2クラッチ手段に対応する2つの油圧ピストンを有するとともに、当該油圧ピストンを作動させる油圧を制御することにより、当該第1クラッチ手段又は第2クラッチ手段を任意選択的に作動可能とされたことを特徴とする。
 請求項11記載の発明は、請求項10記載の動力伝達装置において、前記油圧ピストンの作動側にキャンセラ用プレートで隔成されたキャンセラ用油圧室を有し、当該キャンセラ用油圧室内に対して作動油を導入させてクラッチ手段の回転により発生する遠心油圧を相殺してキャンセルさせ得るキャンセラ機構を具備したことを特徴とする。
 請求項12記載の発明は、請求項11記載の動力伝達装置において、前記キャンセラ用プレートは、クラッチ手段のクラッチ板を形成させるためのハブを兼用させて成ることを特徴とする。
 請求項13記載の発明は、請求項10~12の何れか1つに記載の動力伝達装置において、前記第1クラッチ手段及び第2クラッチ手段は、前記筐体内において軸方向に並設されたことを特徴とする。
 請求項14記載の発明は、請求項10~12の何れか1つに記載の動力伝達装置において、前記第1クラッチ手段及び第2クラッチ手段は、前記筐体内において径方向に並設されたことを特徴とする。
 請求項15記載の発明は、請求項1~14の何れか1つに記載の動力伝達装置において、前記クラッチ手段と車輪との間の動力伝達系に自動変速機が介装されたことを特徴とする。
 請求項16記載の発明は、請求項15記載の動力伝達装置において、前記自動変速機は、無段変速機から成ることを特徴とする。
 請求項1の発明によれば、発進時を含む前進時における車両の状態に応じて第1クラッチ手段又は第2クラッチ手段を任意選択的に作動させて、トルクコンバータの駆動伝達系を介して駆動源の駆動力を車輪に伝達させ、又はトルクコンバータの駆動伝達系を介さず駆動源の駆動力を車輪に伝達させ得るので、トルクコンバータのトルク増幅機能により発進性能の向上を図るとともに定常走行中における動力伝達効率を向上させることができる。加えて、遊星歯車機構にて、車両の前進時における動力伝達経路の選択、及び車両の後進時における動力伝達経路の切り換えを行わせ得るので、当該動力伝達経路の選択及び動力伝達経路の切り換えを同軸上で行わせることができ、装置の小型化を図ることができる。
 請求項2の発明によれば、第1駆動シャフトと第2駆動シャフトとは同心円状に形成されたので、当該第1駆動シャフトと第2駆動シャフトとがそれぞれ延設されたものに比べ、動力伝達装置全体をより小型化することができる。
 請求項3の発明によれば、第2駆動シャフトにオイルポンプを連結させ、当該第2駆動シャフトの回転力にてオイルポンプを駆動させるので、トルクコンバータのレイアウトの自由度を向上させることができる。即ち、オイルポンプは、通常、トルクコンバータのハブに連結させて設置されるのであるが、これに代えて第2駆動シャフトに連結させることにより、当該トルクコンバータ側のレイアウトの自由度を向上させ得るのである。
 請求項4の発明によれば、遊星歯車機構は、車両後進時の入力回転を逆転及び増速させるよう構成されたので、前進時に比べて後進発進時の駆動力を低減させることができ、後進時の急な発進を防止することができる。
 請求項5の発明によれば、遊星歯車機構は、車両後進時の入力回転を逆転及び減速させるよう構成されたので、前進時に比べて後進発進時の駆動力を増加させることができ、後進時において大きな駆動力が必要な車種に対応させることができる。
 請求項6の発明によれば、遊星歯車機構は、車両前進時の入力回転を逆転及び減速させるよう構成されたので、例えば後設される変速機の出力軸と車両が具備するディファレンシャルギアとの間の別個のシャフトを不要とすることができ、一層の小型化を図ることができるとともに、前進時に比べて後進発進時の駆動力を低減させることができ、後進時の急な発進を防止することができる。
 請求項7の発明によれば、遊星歯車機構は、車両前進時の入力回転を逆転及び増速させるよう構成されたので、例えば後設される変速機の出力軸と車両が具備するディファレンシャルギアとの間の別個のシャフトを不要とすることができ、一層の小型化を図ることができるとともに、前進時に比べて後進発進時の駆動力を増加させることができ、後進時において大きな駆動力が必要な車種に対応させることができる。
 請求項8の発明によれば、トルクコンバータの駆動伝達系を介さず前記駆動源の駆動力を前記車輪に伝達させる動力伝達経路にトルク変動を減衰し得るダンパ機構を有するので、第2クラッチ手段に伝達される駆動源の振動を減衰させることができる。
 請求項9の発明によれば、トルクコンバータの駆動伝達系を介して駆動源の駆動力を車輪に伝達させる動力伝達経路、又はトルクコンバータの駆動伝達系を介さず駆動源の駆動力を車輪に伝達させる動力伝達経路の少なくとも一方は、前記遊星歯車機構に対して2箇所からトルク分割されつつ入力されるので、第1クラッチ手段又は第2クラッチ手段のクラッチ容量を小さく設定することができ、クラッチ手段の小型化を図ることができる。
 請求項10の発明によれば、クラッチ手段は、同一筐体内に前記第1クラッチ手段、第2クラッチ手段、及び当該第1クラッチ手段及び第2クラッチ手段に対応する2つの油圧ピストンを有するとともに、当該油圧ピストンを作動させる油圧を制御することにより、当該第1クラッチ手段又は第2クラッチ手段を任意選択的に作動可能とされたので、動力伝達装置全体を更に簡素化及び小型化することができる。
 請求項11の発明によれば、油圧ピストンの作動側にキャンセラ用プレートで隔成されたキャンセラ用油圧室を有し、当該キャンセラ用油圧室内に対して作動油を導入させてクラッチ手段の回転により発生する遠心油圧を相殺してキャンセルさせ得るキャンセラ機構を具備したので、油圧ピストンのリターンスプリング荷重を下げることができ、当該リターンスプリングのスプリングサイズを小さくすることができる。
 請求項12の発明によれば、キャンセラ用プレートは、クラッチ手段のクラッチ板を形成させるためのハブを兼用させて成るので、それぞれを別個配設させたものに比べ、部品点数を削減することができるとともに、動力伝達装置のより一層の小型化を図ることができる。
 請求項13の発明によれば、第1クラッチ手段及び第2クラッチ手段は、筐体内において軸方向に並設されたので、筐体の径方向の寸法をより小さくすることができ、動力伝達装置の径方向の小型化に寄与させることができる。
 請求項14の発明によれば、第1クラッチ手段及び第2クラッチ手段は、筐体内において径方向に並設されたので、筐体の軸方向の寸法をより小さくすることができ、動力伝達装置の軸方向の小型化に寄与させることができる。
 請求項15の発明によれば、クラッチ手段と車輪との間の動力伝達系に自動変速機が介装されたので、駆動力の調整や燃費効率のよい走行状態に容易に調整することができる。
 請求項16の発明によれば、自動変速機は、無段変速機から成るので、駆動力の調整や燃費効率のよい走行状態に連続的に調整することができる。
本発明の実施形態に係る動力伝達装置を示す縦断面図 同動力伝達装置を示す模式図 同動力伝達装置におけるクラッチ手段を示す拡大図 同動力伝達装置における第3クラッチ手段を示す拡大図 同動力伝達装置を示す模式図 同動力伝達装置におけるミッションAが無段変速機とされた場合を示す模式図 同動力伝達装置における遊星歯車機構を示す模式図 同動力伝達装置における選択手段の制御内容を示す作動表 本発明の第2の実施形態に係る動力伝達装置を示す縦断面図 同動力伝達装置を示す模式図 他の実施形態に係る動力伝達装置を示す模式図 本発明の第3の実施形態に係る動力伝達装置を示す模式図 同動力伝達装置における遊星歯車機構(リバースモード)を示す模式図 同動力伝達装置における選択手段の制御内容を示す作動表 本発明の第4の実施形態に係る動力伝達装置を示す模式図 同動力伝達装置における遊星歯車機構(トルコンモード)を示す模式図 同動力伝達装置における遊星歯車機構(リバースモード)を示す模式図 同動力伝達装置における選択手段の制御内容を示す作動表 本発明の第5の実施形態に係る動力伝達装置を示す模式図 同動力伝達装置における遊星歯車機構(リバースモード)を示す模式図 同動力伝達装置における選択手段の制御内容を示す作動表 本発明の第6の実施形態に係る動力伝達装置を示す模式図 同動力伝達装置における遊星歯車機構(トルコンモード)を示す模式図 同動力伝達装置における遊星歯車機構(リバースモード)を示す模式図 同動力伝達装置における選択手段の制御内容を示す作動表 本発明の第7の実施形態に係る動力伝達装置を示す模式図 同動力伝達装置における遊星歯車機構(スタートクラッチモード又はトルコンモード)を示す模式図 同動力伝達装置における選択手段の制御内容を示す作動表 本発明の第8の実施形態に係る動力伝達装置を示す模式図 同動力伝達装置における遊星歯車機構(スタートクラッチモード又はトルコンモード)を示す模式図 同動力伝達装置における遊星歯車機構(リバースモード)を示す模式図 同動力伝達装置における選択手段の制御内容を示す作動表 本発明の第9の実施形態に係る動力伝達装置を示す模式図 同動力伝達装置における遊星歯車機構(スタートクラッチモード又はトルコンモード)を示す模式図 同動力伝達装置における選択手段の制御内容を示す作動表 本発明の第10の実施形態に係る動力伝達装置を示す模式図 同動力伝達装置における遊星歯車機構(スタートクラッチモード又はトルコンモード)を示す模式図 同動力伝達装置における遊星歯車機構(リバースモード)を示す模式図 同動力伝達装置における選択手段の制御内容を示す作動表 本発明の第11の実施形態に係る動力伝達装置を示す縦断面図 本発明の第12の実施形態に係る動力伝達装置を示す縦断面図 本発明の他の実施形態(ダブルピニオン型の遊星歯車機構を用いたもの)に係る動力伝達装置を示す模式図 同動力伝達装置における遊星歯車機構(リバースモード)を示す模式図 同動力伝達装置における選択手段の制御内容を示す作動表
 以下、本発明の実施形態について図面を参照しながら具体的に説明する。
 第1の実施形態に係る動力伝達装置は、自動車(車両)のエンジン(駆動源)による駆動力を車輪(駆動輪)に伝達又は遮断するためのものであり、図1、図2及び図6に示すように、トルクコンバータ1と、クラッチ手段3と、選択手段4と、第1駆動シャフト5と、第2駆動シャフト6と、ダンパ機構7と、第3クラッチ手段8と、遊星歯車機構9とを主に有している。尚、図1は、本実施形態に係る動力伝達装置の主要部を表す縦断面図であり、図2、6は、同実施形態に係る動力伝達装置を模式化した模式図を示すものである。
 然るに、図2、6に示すように、車両の駆動源としてのエンジンEから車輪(駆動輪D)に至るまでの動力伝達系の途中に、トルクコンバータ1及びトランスミッション2が配設されており、このうちトランスミッション2には、クラッチ手段3及び第3クラッチ手段8の他、変速機Aが配設されている。尚、同図中、符号11は、エンジンEから延設された入力軸を示しており、符号15は変速機Aまで延設された出力軸を示している。
 トルクコンバータ1は、エンジンEからのトルクを増幅してトランスミッション2に伝達するトルク増幅機能を有して成るもので、当該エンジンEの駆動力が伝達されて軸回りに回転可能とされるとともに液体(作動油)を液密状態で収容したトルコンカバー1a、13と、該トルコンカバー1a側に形成されて当該トルコンカバー1aと共に回転するポンプPと、該ポンプPと対峙しつつトルコンカバー13側で回転可能に配設されたタービンTとを主に具備している。
 また、入力軸11は、カバー部材12を介してトルコンカバー13と連結されている。そして、エンジンEの駆動力にて入力軸11が回転し、カバー部材12、トルコンカバー13、1a及びポンプPが回転すると、その回転トルクが液体(作動油)を介してタービンT側にトルク増幅されつつ伝達される。しかして、トルク増幅されてタービンTが回転すると、該タービンTと連結部材16を介してスプライン嵌合した第1駆動シャフト5が回転し、トランスミッション2に当該トルクが伝達される。ここで、本発明における「トルクコンバータの駆動伝達系」は、上記したトルコンカバー1a、ポンプP及びタービンTが成す駆動伝達系を指すものである。
 一方、トルコンカバー13は、連結部材14及びコイルスプリング7aを有して成るダンパ機構7を介してカバー部材12と連結されており、当該カバー部材12は入力軸11と連結されている。これにより、エンジンEの駆動力にて入力軸11が回転すると、カバー部材12、ダンパ機構7、トルコンカバー13、連結部材16及び第1駆動シャフト5が回転し、トランスミッション2にエンジンEの駆動トルクが伝達される。
 然るに、第1駆動シャフト5は、トルクコンバータ1の駆動伝達系を介してエンジンEの駆動力で回転可能とされ、クラッチ手段3の筐体10を介して第1クラッチ手段3aと連結されるとともに、第2駆動シャフト6は、トルクコンバータ1の駆動伝達系を介さずエンジンEの駆動力で直接回転可能とされ、第2クラッチ手段3bと連結されている。また、本実施形態においては、第1駆動シャフト5が円筒状部材とされるとともに、その内部に第2駆動シャフト6が回転自在に配設されており、これらの回転軸が同一となるよう構成されている。即ち、当該第1駆動シャフト5と第2駆動シャフト6とは同心円状に形成されているのである。これにより、第1駆動シャフト5は、第2駆動シャフト6の外側にて回転自在とされるとともに、第2駆動シャフト6は、第1駆動シャフト5の内側で回転自在とされており、当該第1駆動シャフト5と第2駆動シャフト6とは、クラッチ手段3による選択的作動により、別個独立に回転可能とされる。
 クラッチ手段3は、自動車(車両)の前進時に作動可能とされるとともに、トルクコンバータ1の駆動伝達系を介してエンジンE(駆動源)の駆動力を車輪(駆動輪D)に伝達させる第1クラッチ手段3a、及びトルクコンバータ1の駆動伝達系を介さずエンジンE(駆動源)の駆動力を車輪(駆動輪D)に伝達させる第2クラッチ手段3bを有するものである。第1クラッチ手段3a及び第2クラッチ手段3bには、同図中左右方向に対して摺動自在な複数の駆動側クラッチ板3aa、3ba及び被動側クラッチ板3ba、3bbが形成され、多板クラッチを成している。
 然るに、第1クラッチ手段3aにおいては、筐体10に駆動側クラッチ板3aaが形成されるとともに、出力軸15と連結された連動部材17に被動側クラッチ板3abが形成され、これら駆動側クラッチ板3aaと被動側クラッチ板3abとが交互に積層形成されている。これにより、隣り合う駆動側クラッチ板3aaと被動側クラッチ板3abとが圧接又は離間して動力の断続が可能となっている。
 また、第2クラッチ手段3bにおいては、第2駆動シャフト6と連結されて連動する連動部材18に駆動側クラッチ板3baが形成されるとともに、筐体10に被動側クラッチ板3bbが形成され、これら駆動側クラッチ板3baと被動側クラッチ板3bbとが交互に積層形成されている。これにより、隣り合う駆動側クラッチ板3baと被動側クラッチ板3bbとが圧接又は離間して動力の断続が可能となっている。然るに、ここでいう離間とは、物理的離間に限らず、圧接が解かれた状態のことをいい、圧接状態にて駆動力が伝達されるとともに、離間状態にて当該駆動力の伝達が遮断される。
 また、かかるクラッチ手段3は、図3に示すように、同一筐体10内に第1クラッチ手段3a、第2クラッチ手段3b、及び当該第1クラッチ手段3a及び第2クラッチ手段3bに対応する2つの油圧ピストンP1、P2を有するとともに、当該油圧ピストンP1、P2を作動させる油圧を制御することにより、当該第1クラッチ手段3a又は第2クラッチ手段3bを任意選択的に作動可能とされている。
 即ち、筐体10と油圧ピストンP1との間の油圧室S1に作動油を注入させることにより、油圧ピストンP1がリターンスプリング3cの付勢力に抗して同図中左側へ移動し、その先端で第1クラッチ手段3aを押圧して、駆動側クラッチ板3aaと被動側クラッチ板3abとを圧接させるよう構成されている。尚、第2クラッチ手段2bにおける駆動側クラッチ板3ba及び被動側クラッチ板3bbは、それぞれの周縁に凹凸形状が形成されており、その凹部において油圧ピストンP1の先端が挿通されるよう構成されている。
 また、油圧ピストンP1と油圧ピストンP2との間の油圧室S2に作動油を注入させることにより、油圧ピストンP2がリターンスプリング3cの付勢力に抗して図3中左側へ移動し、その先端で第2クラッチ手段3bを押圧して、駆動側クラッチ板3baと被動側クラッチ板3bbとを圧接させるよう構成されている。これにより、油圧ピストンP1、P2を作動させる油圧を制御することにより、第1クラッチ手段3a又は第2クラッチ手段3bを任意選択的に作動可能とされている。
 然るに、本実施形態においては、図1に示すように、第1クラッチ手段3a及び第2クラッチ手段3bは、筐体10内において軸方向(同図中左右方向)に並設されたので、筐体10の径方向の寸法をより小さくすることができ、動力伝達装置の径方向の小型化に寄与させることができる。尚、同図中符号22は、キャンセラ用油圧室を形成するためのキャンセラ用プレートを示しているが、かかるキャンセラ用プレートを具備したキャンセラ機構については、後述する第11の実施形態(図40参照)及び第12の実施形態(図41参照)で詳細に説明する。
 クラッチ手段3を構成する筐体10は、遊星歯車機構9を構成するリングギア9cと連結されている。かかる遊星歯車機構9は、図7に示すように、中央で回転自在とされたサンギア9aと、該サンギア9aと噛み合って自転及び公転が可能な一対のプラネタリギア9bと、該プラネタリギア9bから延設されて連動可能なキャリア9baと、該プラネタリギア9bと噛み合って回転可能なリングギア9cとを有して構成されている。そして、エンジンEの駆動力にて筐体10が回転すると、その駆動力がリングギア9cから入力され、プラネタリギア9b及びサンギア9aを介して出力軸15に伝達されるよう構成されている。
 一方、キャリア9baは、第3クラッチ手段8まで延設されており、当該第3クラッチ手段8にて回転が許容又は規制され得るようになっている。かかる第3クラッチ手段8は、図4に示すように、キャリア9ba先端に形成された駆動側クラッチ板8aと、固定部材19に形成された固定側クラッチ板8bと、駆動側クラッチ板8aと固定側クラッチ板8bとを圧接させるピストンP3とを有している。そして、油圧室S3に作動油を注入させることにより、油圧ピストンP3が皿ばねhの付勢力に抗して図中右側へ移動し、その先端で第3クラッチ手段8を押圧して、駆動側クラッチ板8aと固定側クラッチ板8bとを圧接させるよう構成されている。これにより、油圧ピストンP3を作動させる油圧を制御することにより、第3クラッチ手段8を任意に作動可能とされている。
 然るに、第3クラッチ手段8を作動させることにより、キャリア9baの公転を規制させることができるので、エンジンEの駆動力にて筐体10が回転すると、その駆動力がリングギア9cから入力され、プラネタリギア9bで回転方向を逆としつつサンギア9aを介して出力軸15に伝達されるよう構成されている。これにより、車両の後進が可能とされるのである。
 選択手段4は、前進時における自動車(車両)の状態(車速や車体の傾斜角度など)に応じて、油圧室S1又はS2に作動油を所定の圧力で注入して油圧ピストンP1、P2を任意選択的に作動させることにより第1クラッチ手段3a又は第2クラッチ手段3bを任意選択的に作動させ、トルクコンバータ1の駆動伝達系を介してエンジンE(駆動源)の駆動力を車輪(駆動輪D)に伝達させ、又はトルクコンバータ1の駆動伝達系を介さずエンジンE(駆動源)の駆動力を車輪(駆動輪D)に伝達させ得るものである。
 かかる選択手段4は、例えばエンジンEを制御するためのECU(不図示)内に形成されたもので、本実施形態においては、図8に示すように、車両の前進時において、トルクコンバータ1の駆動伝達系を介してエンジンEの駆動力を駆動輪Dに伝達させる際には、第1クラッチ手段3aを作動させるとともに、第2クラッチ手段3b及び第3クラッチ手段8を非作動とするよう選択手段4による制御がなされる。また、車両の前進時において、トルクコンバータ1の駆動伝達系を介さずエンジンEの駆動力を駆動輪Dに伝達させる際には、第1クラッチ手段3aに加えて第2クラッチ手段3bを作動させるとともに、第3クラッチ手段8を非作動とするよう選択手段4による制御がなされる。更に、車両の後進時においては、第1クラッチ手段3a及び第2クラッチ手段3bを非作動とするとともに、第3クラッチ手段8を作動するよう選択手段4による制御がなされる。
 本実施形態によれば、発進時を含む前進時における車両の状態に応じて第1クラッチ手段3a又は第2クラッチ手段3bを任意選択的に作動させて、トルクコンバータ1の駆動伝達系を介してエンジンEの駆動力を駆動輪Dに伝達させ、又はトルクコンバータ1の駆動伝達系を介さずエンジンEの駆動力を駆動輪Dに伝達させ得るので、トルクコンバータ1のトルク増幅機能により発進性能の向上を図るとともに定常走行中における動力伝達効率を向上させることができる。加えて、遊星歯車機構9にて、車両の前進時における動力伝達経路の選択、及び車両の後進時における動力伝達経路の切り換えを行わせ得るので、当該動力伝達経路の選択及び動力伝達経路の切り換えを同軸上で行わせることができ、装置の小型化を図ることができる。
 尚、本実施形態においては、上記したように、エンジンE(駆動源)とトルクコンバータ1との間における動力伝達系の途中にトルク変動を減衰し得るダンパ機構7を有して成るものとされている。これにより、トルクコンバータ1内にロックアップクラッチやダンパ機構等を配設させる必要がなく、トルクコンバータ1を小型化し得るとともに当該トルクコンバータ1内のレイアウトの自由度をより向上させることができる。更に、ダンパ機構7よりエンジンE側(駆動源側)の重量(1次マス)を低減させることができるので、エンジンEに対する負荷を低減させることができるとともに、当該ダンパ機構7よりトルクコンバータ1側の重量(2次マス)を増加させることができるので、慣性マスが増大して振動減衰効果をより増大させることができる。
 また、第1駆動シャフト5と第2駆動シャフト6とは同心円状に形成されたので、当該第1駆動シャフト5と第2駆動シャフト6とがそれぞれ延設されたもの(2本が併設されたもの)に比べ、動力伝達装置全体をより小型化することができる。更に、クラッチ手段3は、同一筐体10内に第1クラッチ手段3a、第2クラッチ手段2b、及び当該第1クラッチ手段3a及び第2クラッチ手段3bに対応する2つの油圧ピストンP1、P2を有するとともに、当該油圧ピストンP1、P2を作動させる油圧を制御することにより、当該第1クラッチ手段3a又は第2クラッチ手段3bを任意選択的に作動可能とされたので、動力伝達装置全体を更に簡素化及び小型化することができる。
 ところで、本実施形態における変速機Aは、自動変速機が好ましく、更には無段変速機(Continuously Variable Transmission:所謂CVT)から成るものが好ましく、その場合、図6に示すように、車両の駆動源(エンジンE)から車輪(駆動輪D)に至る動力伝達系の途中であってクラッチ手段3の第2クラッチ手段3bと車輪(駆動輪D)との間において、無段変速機20を介装させたものとされる。
 かかる無段変速機20は、2つのプーリQ1、Q2と、その間に懸架されたベルトVとを有しており、油圧制御回路によりプーリQ1、Q2の可動シーブを動作させて互いに独立してベルトV懸架部の径を変化させ、所望の変速を行わせるものである。一方、無段変速機20は、車両におけるブレーキペダルのブレーキスイッチやシフトレバーのポジションセンサ、及びエンジンECU等(何れも不図示)と電気的に接続されて成るCVTECUを有しており、かかるCVTECUにより油圧制御回路による制御が成されるよう構成されている。尚、かかる油圧制御回路により、既述の油圧ピストンP1~P3が任意作動し得るようになっている。
 而して、クラッチ手段3と車輪(駆動輪D)との間の動力伝達系に自動変速機が介装されたので、駆動力の調整や燃費効率のよい走行状態に容易に調整することができるとともに、自動変速機を図6で示す如き無段変速機20から成るようにすれば、駆動力の調整や燃費効率のよい走行状態に連続的に調整することができる。尚、同図中符号Fは、車両が具備するディファレンシャルギアを示している。
 次に、本発明の第2の実施形態について、図9、10を用いて説明する。
 本実施形態における動力伝達装置は、自動車(車両)のエンジン(駆動源)による駆動力を車輪(駆動輪)に伝達又は遮断するためのものであり、第1の実施形態における第3クラッチ手段8のピストンP3’の形態が異なる他、第2駆動シャフト6の端部に油圧ピストンP1~P3を作動させるための作動オイルを吐出するためのオイルポンプ21を連結させ、当該第2駆動シャフト6の回転力にてオイルポンプ21を駆動させるよう構成されたものである。
 これにより、トルクコンバータ1のレイアウトの自由度を向上させることができる。即ち、オイルポンプ21は、通常、トルクコンバータ1のハブに連結させて設置されるのであるが、これに代えて第2駆動シャフト6に連結させることにより、当該トルクコンバータ1側のレイアウトの自由度を向上させ得るのである。尚、図中符号G1は、出力ギアを示しており、当該出力ギアG1が無段変速機20と連結されている。かかる出力ギアG1を設けず、図11に示すように、入力側のプーリQ1と直接連結されるよう構成してもよい。
 次に、本発明の第3の実施形態について、図12~14を用いて説明する。
 本実施形態における動力伝達装置は、自動車(車両)のエンジン(駆動源)による駆動力を車輪(駆動輪)に伝達又は遮断するためのものであり、特に、遊星歯車機構9は、図12に示すように、車両後進時の入力回転を増速させるよう構成されたものである。即ち、本実施形態においては、車両の後進時、第3クラッチ手段8が作動すると、図13に示すように、キャリア9baが固定され、リングギア9cに入力された駆動力がサンギア9aから出力されるよう構成されているので、遊星歯車機構9に入力された回転が増速されることとなる。これにより、後設の自動変速機20の設定が同一レシオの場合、前進時に比べて後進発進時の駆動力を低減させることができ、後進時の急な発進を防止することができる。
 次に、本発明の第4の実施形態について、図15~18を用いて説明する。
 本実施形態における動力伝達装置は、自動車(車両)のエンジン(駆動源)による駆動力を車輪(駆動輪)に伝達又は遮断するためのものであり、特に、遊星歯車機構9は、図15に示すように、車両後進時の入力回転を増速させるとともに、トルクコンバータ1の駆動伝達系を介してエンジンEの駆動力を駆動輪Dに伝達させる動力伝達経路が、遊星歯車機構9に対して2箇所からトルク分割されつつ入力されるよう構成されたものである。
 即ち、本実施形態においては、トルクコンバータ1を介して第1駆動シャフト5に伝達されたエンジンEの駆動力(トルコンモードにおけるトルクコンバータ1の駆動伝達系を介した駆動力)は、図16に示すように、遊星歯車機構9のリングギア9cとキャリア9baとの2箇所にトルク分割されつつ入力され、サンギア9aから出力されることとなる。尚、トルクコンバータ1の駆動伝達系を介さずエンジンEの駆動力を駆動輪Dに伝達させる動力伝達経路が、遊星歯車機構9に対して2箇所からトルク分割されつつ入力されるよう構成されたものであってもよい。
 上記の如き構成によれば、トルクコンバータ1の駆動伝達系を介してエンジンEの駆動力を駆動輪Dに伝達させる動力伝達経路(トルコンモード)、又はトルクコンバータ1の駆動伝達系を介さずエンジンEの駆動力を駆動輪Dに伝達させる動力伝達経路(スタートクラッチモード)の少なくとも一方は、遊星歯車機構9に対して2箇所からトルク分割されつつ入力されるので、第1クラッチ手段3a又は第2クラッチ手段3bのクラッチ容量を小さく設定することができ、クラッチ手段3の小型化を図ることができる。
 更に、本実施形態においても、第3の実施形態と同様、車両の後進時、第3クラッチ手段8が作動すると、図17に示すように、キャリア9baが固定され、リングギア9cに入力された駆動力がサンギア9aから出力されるよう構成されているので、遊星歯車機構9に入力された回転が増速されることとなる。これにより、後設の自動変速機20の設定が同一レシオの場合、前進時に比べて後進発進時の駆動力を低減させることができ、後進時の急な発進を防止することができる。
 次に、本発明の第5の実施形態について、図19~21を用いて説明する。
 本実施形態における動力伝達装置は、自動車(車両)のエンジン(駆動源)による駆動力を車輪(駆動輪)に伝達又は遮断するためのものであり、特に、遊星歯車機構9は、図19に示すように、車両後進時の入力回転を減速させるよう構成されたものである。即ち、本実施形態においては、車両の後進時、第3クラッチ手段8が作動すると、図20に示すように、キャリア9baが固定され、サンギア9aに入力された駆動力がリングギア9cから出力されるよう構成されているので、遊星歯車機構9に入力された回転が減速されることとなる。これにより、後設の自動変速機20の設定が同一レシオの場合、前進時に比べて後進発進時の駆動力を増加させることができ、後進時において大きな駆動力が必要な車種に対応させることができる。
 次に、本発明の第6の実施形態について、図22~25を用いて説明する。
 本実施形態における動力伝達装置は、自動車(車両)のエンジン(駆動源)による駆動力を車輪(駆動輪)に伝達又は遮断するためのものであり、特に、遊星歯車機構9は、図22に示すように、車両後進時の入力回転を減速させるとともに、トルクコンバータ1の駆動伝達系を介してエンジンEの駆動力を駆動輪Dに伝達させる動力伝達経路が、遊星歯車機構9に対して2箇所からトルク分割されつつ入力されるよう構成されたものである。
 即ち、本実施形態においては、トルクコンバータ1を介して第1駆動シャフト5に伝達されたエンジンEの駆動力(トルコンモードにおけるトルクコンバータ1の駆動伝達系を介した駆動力)は、図23に示すように、遊星歯車機構9のサンギア9aとキャリア9baとの2箇所にトルク分割されつつ入力され、リングギア9cから出力されることとなる。尚、トルクコンバータ1の駆動伝達系を介さずエンジンEの駆動力を駆動輪Dに伝達させる動力伝達経路が、遊星歯車機構9に対して2箇所からトルク分割されつつ入力されるよう構成されたものであってもよい。
 上記の如き構成によれば、トルクコンバータ1の駆動伝達系を介してエンジンEの駆動力を駆動輪Dに伝達させる動力伝達経路(トルコンモード)、又はトルクコンバータ1の駆動伝達系を介さずエンジンEの駆動力を駆動輪Dに伝達させる動力伝達経路(スタートクラッチモード)の少なくとも一方は、遊星歯車機構9に対して2箇所からトルク分割されつつ入力されるので、第1クラッチ手段3a又は第2クラッチ手段3bのクラッチ容量を小さく設定することができ、クラッチ手段3の小型化を図ることができる。
 更に、本実施形態においても、第5の実施形態と同様、車両の後進時、第3クラッチ手段8が作動すると、図24に示すように、キャリア9baが固定され、サンギア9aに入力された駆動力がリングギア9cから出力されるよう構成されているので、遊星歯車機構9に入力された回転が減速されることとなる。これにより、後設の自動変速機20の設定が同一レシオの場合、前進時に比べて後進発進時の駆動力を増加させることができ、後進時において大きな駆動力が必要な車種に対応させることができる。
 次に、本発明の第7の実施形態について、図26~28を用いて説明する。
 本実施形態における動力伝達装置は、自動車(車両)のエンジン(駆動源)による駆動力を車輪(駆動輪)に伝達又は遮断するためのものであり、特に、遊星歯車機構9は、図26に示すように、車両前進時の入力回転を逆転及び減速させるよう構成されたものである。即ち、本実施形態においては、車両の前進時、第1クラッチ手段3aが作動若しくは第1クラッチ手段3a及び第2クラッチ手段3bの両方が作動すると、図27に示すように、キャリア9baが固定され、サンギア9aに入力された駆動力がリングギア9cから出力されるよう構成されているので、遊星歯車機構9に入力された回転が逆転及び減速されることとなる。これにより、例えば後設される無段変速機20の出力軸と車両が具備するディファレンシャルギアFとの間の別個のシャフトを不要とすることができ、一層の小型化を図ることができるとともに、後設の自動変速機20の設定が同一レシオの場合、前進時に比べて後進発進時の駆動力を低減させることができ、後進時の急な発進を防止することができる。
 次に、本発明の第8の実施形態について、図29~32を用いて説明する。
 本実施形態における動力伝達装置は、自動車(車両)のエンジン(駆動源)による駆動力を車輪(駆動輪)に伝達又は遮断するためのものであり、特に、遊星歯車機構9は、図29に示すように、車両前進時の入力回転を逆転及び減速させるとともに、後進時の動力伝達経路が、遊星歯車機構9に対して2箇所からトルク分割されつつ入力されるよう構成されたものである。即ち、本実施形態においては、後進時の駆動力(トルコンモードにおけるトルクコンバータ1の駆動伝達系を介した駆動力)は、図31に示すように、遊星歯車機構9のサンギア9aとキャリア9baとの2箇所にトルク分割されつつ入力され、リングギア9cから出力されることとなる。かかる構成によれば、後進時の動力伝達経路は、遊星歯車機構9に対して2箇所からトルク分割されつつ入力されるので、第3クラッチ手段8のクラッチ容量を小さく設定することができ、小型化を図ることができる。
 更に、本実施形態においても、第7の実施形態と同様、車両の前進時、第1クラッチ手段3aが作動若しくは第1クラッチ手段3a及び第2クラッチ手段3bの両方が作動すると、図30に示すように、キャリア9baが固定され、サンギア9aに入力された駆動力がリングギア9cから出力されるよう構成されているので、遊星歯車機構9に入力された回転が逆転及び減速されることとなる。これにより、例えば後設される無段変速機20の出力軸と車両が具備するディファレンシャルギアFとの間の別個のシャフトを不要とすることができ、一層の小型化を図ることができるとともに、後設の自動変速機20の設定が同一レシオの場合、前進時に比べて後進発進時の駆動力を低減させることができ、後進時の急な発進を防止することができる。
 次に、本発明の第9の実施形態について、図33~35を用いて説明する。
 本実施形態における動力伝達装置は、自動車(車両)のエンジン(駆動源)による駆動力を車輪(駆動輪)に伝達又は遮断するためのものであり、特に、遊星歯車機構9は、図33に示すように、車両前進時の入力回転を逆転及び増速させるよう構成されたものである。即ち、本実施形態においては、車両の前進時、第1クラッチ手段3aが作動若しくは第1クラッチ手段3a及び第2クラッチ手段3bの両方が作動すると、図34に示すように、キャリア9baが固定され、リングギア9cに入力された駆動力がサンギア9aから出力されるよう構成されているので、遊星歯車機構9に入力された回転が逆転及び増速されることとなる。これにより、例えば後設される無段変速機20の出力軸と車両が具備するディファレンシャルギアFとの間の別個のシャフトを不要とすることができ、一層の小型化を図ることができるとともに、後設の自動変速機20の設定が同一レシオの場合、前進時に比べて後進発進時の駆動力を増加させることができ、後進時において大きな駆動力が必要な車種に対応させることができる。
 次に、本発明の第10の実施形態について、図36~39を用いて説明する。
 本実施形態における動力伝達装置は、自動車(車両)のエンジン(駆動源)による駆動力を車輪(駆動輪)に伝達又は遮断するためのものであり、特に、遊星歯車機構9は、図36に示すように、車両前進時の入力回転を逆転及び増速させるとともに、後進時の動力伝達経路が、遊星歯車機構9に対して2箇所からトルク分割されつつ入力されるよう構成されたものである。即ち、本実施形態においては、後進時の駆動力(トルコンモードにおけるトルクコンバータ1の駆動伝達系を介した駆動力)は、図38に示すように、遊星歯車機構9のリングギア9cとキャリア9baとの2箇所にトルク分割されつつ入力され、サンギア9aから出力されることとなる。かかる構成によれば、後進時の動力伝達経路は、遊星歯車機構9に対して2箇所からトルク分割されつつ入力されるので、第3クラッチ手段8のクラッチ容量を小さく設定することができ、小型化を図ることができる。
 更に、本実施形態においても、第9の実施形態と同様、車両の前進時、第1クラッチ手段3aが作動若しくは第1クラッチ手段3a及び第2クラッチ手段3bの両方が作動すると、図37に示すように、キャリア9baが固定され、リングギア9cに入力された駆動力がサンギア9aから出力されるよう構成されているので、遊星歯車機構9に入力された回転が逆転及び増速されることとなる。これにより、例えば後設される無段変速機20の出力軸と車両が具備するディファレンシャルギアFとの間の別個のシャフトを不要とすることができ、一層の小型化を図ることができるとともに、後設の自動変速機20の設定が同一レシオの場合、前進時に比べて後進発進時の駆動力を増加させることができ、後進時において大きな駆動力が必要な車種に対応させることができる。
 次に、本発明の第11の実施形態について、図40を用いて説明する。
 本実施形態における動力伝達装置は、自動車(車両)のエンジン(駆動源)による駆動力を車輪(駆動輪)に伝達又は遮断するためのものであり、特に、油圧ピストンP2の作動側(油圧ピストンP2を作動させる油圧室S2に対して反対側)にキャンセラ用プレート22で隔成されたキャンセラ用油圧室Saを有し、当該キャンセラ用油圧室Sa内に対して作動油を導入させてクラッチ手段3の回転により発生する遠心油圧を相殺してキャンセルさせ得るキャンセラ機構を具備したものである。本実施形態によれば、かかるキャンセラ機構を具備することにより、油圧ピストンP2のリターンスプリング3cの荷重を下げることができ、当該リターンスプリング3cのスプリングサイズを小さくすることができる。
 また、本実施形態においては、キャンセラ用油圧室Saを形成させるためのキャンセラ用プレート22は、クラッチ手段3のクラッチ板(第2クラッチ手段3bにおける被動側クラッチ板3bb)を形成させるためのハブ(第1の実施形態における連動部材に相当)を兼用させて成るので、それぞれを別個配設させたものに比べ、部品点数を削減することができるとともに、動力伝達装置のより一層の小型化を図ることができる。更に、本実施形態においては、第1クラッチ手段3a及び第2クラッチ手段3bは、筐体10内において径方向(同図中上下方向)に並設されたので、筐体10の軸方向の寸法をより小さくすることができ、動力伝達装置の軸方向の小型化に寄与させることができる。
 次に、本発明の第12の実施形態について、図41を用いて説明する。
 本実施形態における動力伝達装置は、自動車(車両)のエンジン(駆動源)による駆動力を車輪(駆動輪)に伝達又は遮断するためのものであり、特に、油圧ピストンP2の作動側(油圧ピストンP2を作動させる油圧室S2に対して反対側)にキャンセラ用プレート23で隔成されたキャンセラ用油圧室Sbを有し、当該キャンセラ用油圧室Sb内に対して作動油を導入させてクラッチ手段3の回転により発生する遠心油圧を相殺してキャンセルさせ得るキャンセラ機構を具備したものである。本実施形態によれば、かかるキャンセラ機構を具備することにより、油圧ピストンP2のリターンスプリング3cの荷重を下げることができ、当該リターンスプリング3cのスプリングサイズを小さくすることができる。
 また、本実施形態においては、キャンセラ用油圧室Sbを形成させるためのキャンセラ用プレート23は、クラッチ手段3のクラッチ板(第2クラッチ手段3bにおける駆動側クラッチ板3bb)を形成させるためのハブ(第1の実施形態における連動部材に相当)を兼用させて成るので、それぞれを別個配設させたものに比べ、部品点数を削減することができるとともに、動力伝達装置のより一層の小型化を図ることができる。更に、本実施形態においては、第1クラッチ手段3a及び第2クラッチ手段3bは、筐体10内において径方向(同図中上下方向)に並設されたので、筐体10の軸方向の寸法をより小さくすることができ、動力伝達装置の軸方向の小型化に寄与させることができる。
 以上、本実施形態について説明したが、本発明はこれに限定されるものではなく、例えば車両の前進時における動力伝達経路の選択、及び車両の後進時における動力伝達経路の切り換えを行わせ得る遊星歯車機構については、上記実施形態の如きシングルピニオン型(プラネタリギアがリングギアとサンギアとの間において同心円状に一対形成されたもの)の他、ダブルピニオン型(プラネタリギアがリングギアとサンギアとの間において同心円状に二対形成されたもの)としてもよい。
 ダブルピニオン型の遊星歯車機構を具備したものの場合、例えば図42~44に示すような遊星歯車機構9’を具備した構成とすることができる。かかる遊星歯車機構9’は、中央で回転自在とされたサンギア9’aと、該サンギア9’aと噛み合って自転及び公転が可能な一対のプラネタリギア9’baと、該プラネタリギア9’baと噛み合って自転及び公転可能な一対のプラネタリギア9’bbと、これらプラネタリギア9’ba及び9’bbから延設されて連動可能なキャリア9’bcと、該プラネタリギア9’bbと噛み合って回転可能なリングギア9’cとを有して構成されている。
 そして、車両後進時の入力回転を増速させるよう構成されたものである。即ち、本実施形態においては、車両の後進時、第3クラッチ手段8が作動すると、図43に示すように、リングギア9’cが固定され、キャリア9’bcに入力された駆動力がサンギア9’aから出力されるよう構成されているので、遊星歯車機構9’に入力された回転が増速されることとなる。
 また、本実施形態においては、第1駆動シャフト5と第2駆動シャフト6とが同心円状に形成されているが、それぞれ別個に併設されたものであってもよい。更に、本実施形態においては、駆動源がエンジンEとされているが、本発明はこれに限定されず、内燃機関は勿論、例えばモータであってもよい。また、本実施形態においては、選択手段4がECU内に形成されているが、例えば別個配設されたマイコン内に形成するものであってもよい。
 遊星歯車機構により、車両の前進時における動力伝達経路の選択、及び車両の後進時における動力伝達経路の切り換えを行わせ得る動力伝達装置であれば、外観形状や各構成部品の形状が異なるもの或いは他の機能が付加されたものにも適用することができる。
 1  トルクコンバータ
 2  トランスミッション
 3  クラッチ手段
 3a 第1クラッチ手段
 3b 第2クラッチ手段
 4  選択手段
 5  第1駆動シャフト
 6  第2駆動シャフト
 7  ダンパ機構
 7a コイルスプリング(ダンパ)
 8  第3クラッチ手段
 9、9’ 遊星歯車機構
 10 筐体
 11 入力軸
 12 カバー部材
 13 トルコンカバー
 14 連結部材
 15 出力軸
 16 連結部材
 17、18 連動部材
 19 固定部材
 20 無段変速機
 21 オイルポンプ
 22、23 キャンセラ用プレート
 E  エンジン(駆動源)
 A  変速機
 D  駆動輪(車輪)
 P1~P3 油圧ピストン
 Sa、Sb キャンセラ用油圧室

Claims (16)

  1.  車両の駆動源から車輪に至る動力伝達系の途中に配設され、当該駆動源の駆動力を車輪に対して任意選択的に伝達又は遮断可能な動力伝達装置において、
     トルク増幅機能を有するトルクコンバータと、
     車両の前進時に作動可能とされるとともに、前記トルクコンバータの駆動伝達系を介して前記駆動源の駆動力を前記車輪に伝達させる第1クラッチ手段、及び前記トルクコンバータの駆動伝達系を介さず前記駆動源の駆動力を前記車輪に伝達させる第2クラッチ手段を有するクラッチ手段と、
     発進時を含む前進時における車両の状態に応じて前記第1クラッチ手段又は第2クラッチ手段を任意選択的に作動させて、前記トルクコンバータの駆動伝達系を介して前記駆動源の駆動力を前記車輪に伝達させ、又は前記トルクコンバータの駆動伝達系を介さず前記駆動源の駆動力を前記車輪に伝達させ得る選択手段と、
     車両の前進時における動力伝達経路の選択、及び車両の後進時における動力伝達経路の切り換えを行わせ得る遊星歯車機構と、
    を備えたことを特徴とする動力伝達装置。
  2.  前記トルクコンバータの駆動伝達系を介して前記駆動源の駆動力で回転可能とされ、前記第1クラッチ手段と連結された第1駆動シャフトと、
     前記トルクコンバータの駆動伝達系を介さず前記駆動源の駆動力で回転可能とされ、前記第2クラッチ手段と連結された第2駆動シャフトと、
    を具備し、前記第1駆動シャフトと第2駆動シャフトとは同心円状に形成されたことを特徴とする請求項1記載の動力伝達装置。
  3.  前記第2駆動シャフトにオイルポンプを連結させ、当該第2駆動シャフトの回転力にて前記オイルポンプを駆動させることを特徴とする請求項2記載の動力伝達装置。
  4.  前記遊星歯車機構は、車両後進時の入力回転を逆転及び増速させるよう構成されたことを特徴とする請求項1~3の何れか1つに記載の動力伝達装置。
  5.  前記遊星歯車機構は、車両後進時の入力回転を逆転及び減速させるよう構成されたことを特徴とする請求項1~3の何れか1つに記載の動力伝達装置。
  6.  前記遊星歯車機構は、車両前進時の入力回転を逆転及び減速させるよう構成されたことを特徴とする請求項1~3の何れか1つに記載の動力伝達装置。
  7.  前記遊星歯車機構は、車両前進時の入力回転を逆転及び増速させるよう構成されたことを特徴とする請求項1~3の何れか1つに記載の動力伝達装置。
  8.  前記トルクコンバータの駆動伝達系を介さず前記駆動源の駆動力を前記車輪に伝達させる動力伝達経路にトルク変動を減衰し得るダンパ機構を有することを特徴とする請求項1~7の何れか1つに記載の動力伝達装置。
  9.  前記トルクコンバータの駆動伝達系を介して前記駆動源の駆動力を前記車輪に伝達させる動力伝達経路、又は前記トルクコンバータの駆動伝達系を介さず前記駆動源の駆動力を前記車輪に伝達させる動力伝達経路の少なくとも一方は、前記遊星歯車機構に対して2箇所からトルク分割されつつ入力されることを特徴とする請求項1~8の何れか1つに記載の動力伝達装置。
  10.  前記クラッチ手段は、同一筐体内に前記第1クラッチ手段、第2クラッチ手段、及び当該第1クラッチ手段及び第2クラッチ手段に対応する2つの油圧ピストンを有するとともに、当該油圧ピストンを作動させる油圧を制御することにより、当該第1クラッチ手段又は第2クラッチ手段を任意選択的に作動可能とされたことを特徴とする請求項1~9の何れか1つに記載の動力伝達装置。
  11.  前記油圧ピストンの作動側にキャンセラ用プレートで隔成されたキャンセラ用油圧室を有し、当該キャンセラ用油圧室内に対して作動油を導入させてクラッチ手段の回転により発生する遠心油圧を相殺してキャンセルさせ得るキャンセラ機構を具備したことを特徴とする請求項10記載の動力伝達装置。
  12.  前記キャンセラ用プレートは、クラッチ手段のクラッチ板を形成させるためのハブを兼用させて成ることを特徴とする請求項11記載の動力伝達装置。
  13.  前記第1クラッチ手段及び第2クラッチ手段は、前記筐体内において軸方向に並設されたことを特徴とする請求項10~12の何れか1つに記載の動力伝達装置。
  14.  前記第1クラッチ手段及び第2クラッチ手段は、前記筐体内において径方向に並設されたことを特徴とする請求項10~12の何れか1つに記載の動力伝達装置。
  15.  前記クラッチ手段と車輪との間の動力伝達系に自動変速機が介装されたことを特徴とする請求項1~14の何れか1つに記載の動力伝達装置。
  16.  前記自動変速機は、無段変速機から成ることを特徴とする請求項15記載の動力伝達装置。
PCT/JP2009/006861 2008-12-15 2009-12-14 動力伝達装置 WO2010070873A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE112009003722T DE112009003722T5 (de) 2008-12-15 2009-12-14 Kraftübertragungsvorrichtung
CN200980156573.0A CN102317652B (zh) 2008-12-15 2009-12-14 动力传递装置
US13/160,432 US8360914B2 (en) 2008-12-15 2011-06-14 Power transmitting apparatuses

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-318380 2008-12-15
JP2008318380A JP5398250B2 (ja) 2008-12-15 2008-12-15 動力伝達装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/160,432 Continuation US8360914B2 (en) 2008-12-15 2011-06-14 Power transmitting apparatuses

Publications (1)

Publication Number Publication Date
WO2010070873A1 true WO2010070873A1 (ja) 2010-06-24

Family

ID=42268553

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/006861 WO2010070873A1 (ja) 2008-12-15 2009-12-14 動力伝達装置

Country Status (5)

Country Link
US (1) US8360914B2 (ja)
JP (1) JP5398250B2 (ja)
CN (1) CN102317652B (ja)
DE (1) DE112009003722T5 (ja)
WO (1) WO2010070873A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITPD20110292A1 (it) * 2011-09-15 2013-03-16 Carraro Drive Tech S P A Sistema di trasmissione per veicoli industriali

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2463911B (en) * 2008-09-30 2012-06-06 Jcb Transmissions Vehicle transmission
JP5814148B2 (ja) * 2012-02-02 2015-11-17 トヨタ自動車株式会社 車両用動力伝達装置
US9587726B2 (en) * 2012-05-23 2017-03-07 Toyota Jidosha Kabushiki Kaisha Power transmission unit for vehicle
CN105164448B (zh) * 2013-03-19 2018-01-16 株式会社F.C.C. 动力传递设备
GB2517925A (en) * 2013-09-04 2015-03-11 Jc Bamford Excavators Ltd Transmission arrangement
CN105813877B (zh) * 2013-12-09 2019-05-14 舍弗勒技术股份两合公司 Cvt驱动系
US9347537B2 (en) * 2014-09-04 2016-05-24 Gm Global Technology Operations, Llc Multi-mode continuously variable transmission with selectable transfer gears
JP6363720B2 (ja) 2014-09-25 2018-07-25 ユニプレス株式会社 ダイナミックダンパ
DE102017100665A1 (de) * 2017-01-16 2018-07-19 Schaeffler Technologies AG & Co. KG Drehmomentübertragungseinrichtung
JP7450341B2 (ja) * 2019-04-10 2024-03-15 株式会社エクセディ 駆動ユニット

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5244977U (ja) * 1975-09-26 1977-03-30
JPS5247168A (en) * 1975-10-13 1977-04-14 Komatsu Ltd Speed change gear
JPS52109077A (en) * 1976-03-08 1977-09-12 Ntn Toyo Bearing Co Ltd Power transmission gear
JPS63308266A (ja) * 1987-06-05 1988-12-15 Honda Motor Co Ltd トルクコンバ−タ内蔵ロックアップクラッチの制御装置
JPS6424760U (ja) * 1987-07-31 1989-02-10
JPH03288050A (ja) * 1990-04-04 1991-12-18 Kayseven Co Ltd 無段変速装置
JPH0979346A (ja) * 1995-09-12 1997-03-25 Exedy Corp 自動変速装置
JPH1078091A (ja) * 1996-08-14 1998-03-24 Taishu Sai 無段変速装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3442155A (en) 1966-11-02 1969-05-06 Gen Motors Corp Countershaft transmission
US3597999A (en) * 1969-11-21 1971-08-10 Ford Motor Co Extreme ratio overdrive power transmission mechanism
JPS51102772A (ja) 1975-03-06 1976-09-10 Toyota Motor Co Ltd
JPS53140466A (en) 1977-05-13 1978-12-07 Nissan Motor Co Ltd Transmission
US4682518A (en) * 1984-10-24 1987-07-28 Toyota Jidosha Kabushiki Kaisha Method and apparatus for controlling hydraulically-operated power transmitting system including continuously variable transmission
JPS6424760A (en) 1987-07-20 1989-01-26 Seikosha Kk Preparation of printing wire
JP2502241Y2 (ja) * 1988-04-11 1996-06-19 日産自動車 株式会社 Vベルト式無段変速機のライン圧制御装置
JP2804229B2 (ja) * 1994-04-25 1998-09-24 アイシン・エィ・ダブリュ株式会社 自動変速機の制御装置
US6561938B1 (en) * 1998-03-06 2003-05-13 Die Voith Turbo Gmbh & Co Kg Hydrodynamic-mechanical multi-speed compound transmission, especially a six-speed torque-converter transmission
DE19961275C2 (de) * 1999-12-18 2002-07-18 Zahnradfabrik Friedrichshafen Automatgetriebe für ein Kraftfahrzeug
JP2005003193A (ja) 2003-05-16 2005-01-06 Toyota Motor Corp 車両用ロックアップクラッチの制御装置
US7926635B2 (en) * 2006-12-27 2011-04-19 Schaeffler Technologies Gmbh & Co. Kg Piston assembly and a force transfer device, particularly a force transfer device with a piston assembly

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5244977U (ja) * 1975-09-26 1977-03-30
JPS5247168A (en) * 1975-10-13 1977-04-14 Komatsu Ltd Speed change gear
JPS52109077A (en) * 1976-03-08 1977-09-12 Ntn Toyo Bearing Co Ltd Power transmission gear
JPS63308266A (ja) * 1987-06-05 1988-12-15 Honda Motor Co Ltd トルクコンバ−タ内蔵ロックアップクラッチの制御装置
JPS6424760U (ja) * 1987-07-31 1989-02-10
JPH03288050A (ja) * 1990-04-04 1991-12-18 Kayseven Co Ltd 無段変速装置
JPH0979346A (ja) * 1995-09-12 1997-03-25 Exedy Corp 自動変速装置
JPH1078091A (ja) * 1996-08-14 1998-03-24 Taishu Sai 無段変速装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITPD20110292A1 (it) * 2011-09-15 2013-03-16 Carraro Drive Tech S P A Sistema di trasmissione per veicoli industriali
WO2013038380A1 (en) 2011-09-15 2013-03-21 Carraro Drive Tech S.R.L. A transmission system for vehicles
CN104011433A (zh) * 2011-09-15 2014-08-27 卡拉罗传动技术股份公司 车辆的传动系统

Also Published As

Publication number Publication date
US8360914B2 (en) 2013-01-29
CN102317652A (zh) 2012-01-11
DE112009003722T5 (de) 2012-06-14
JP2010139038A (ja) 2010-06-24
US20110312465A1 (en) 2011-12-22
CN102317652B (zh) 2014-09-10
JP5398250B2 (ja) 2014-01-29

Similar Documents

Publication Publication Date Title
WO2010070873A1 (ja) 動力伝達装置
EP2853779B1 (en) Vehicle power transmission device
EP1945475B1 (en) Triple-axle- drive variable transmission for heavy machinery
WO2010038338A1 (ja) 動力伝達装置
KR100788102B1 (ko) 분류식 무단 변속기
JP5536329B2 (ja) 動力伝達装置
KR102284192B1 (ko) 차량용 전동 구동 장치의 더블 클러치 어셈블리 및 이를 포함하는 전동 구동 장치
JP2015031312A (ja) 動力伝達機構
US7367915B2 (en) Automatic speed changer
JP3830129B2 (ja) 動力伝達装置
KR102240315B1 (ko) 차량용 전동 구동 장치
KR102284199B1 (ko) 차량용 전동 구동 장치의 더블 클러치 어셈블리 및 이를 포함하는 전동 구동 장치
KR102284191B1 (ko) 차량용 전동 구동 장치의 변속 구조 및 이를 포함하는 전동 구동 장치
JP5039647B2 (ja) 動力伝達装置
KR100242063B1 (ko) 차량용 무단 변속장치
JP7166735B2 (ja) 車両用変速機
JP4516655B2 (ja) 発進クラッチ
JP2010216613A (ja) 車両用駆動装置
JP3449004B2 (ja) 車両の動力伝達装置
JP4792791B2 (ja) トルクカム装置およびベルト式無段変速機
US6860832B2 (en) Transmission assembly
JPH10274320A (ja) 車両用ベルト式変速装置
KR200195843Y1 (ko) 차량용 무단 변속장치
KR0183220B1 (ko) 차량용 무단 변속장치
JPH09315168A (ja) 車両用駆動装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980156573.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09833181

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 112009003722

Country of ref document: DE

Ref document number: 1120090037224

Country of ref document: DE

WWE Wipo information: entry into national phase

Ref document number: 2731/KOLNP/2011

Country of ref document: IN

122 Ep: pct application non-entry in european phase

Ref document number: 09833181

Country of ref document: EP

Kind code of ref document: A1