WO2010067803A1 - フッ素樹脂フィルム及びその使用 - Google Patents
フッ素樹脂フィルム及びその使用 Download PDFInfo
- Publication number
- WO2010067803A1 WO2010067803A1 PCT/JP2009/070559 JP2009070559W WO2010067803A1 WO 2010067803 A1 WO2010067803 A1 WO 2010067803A1 JP 2009070559 W JP2009070559 W JP 2009070559W WO 2010067803 A1 WO2010067803 A1 WO 2010067803A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- titanium oxide
- film
- silica
- particles
- fluororesin film
- Prior art date
Links
- 229920005989 resin Polymers 0.000 title claims abstract description 21
- 239000011347 resin Substances 0.000 title claims abstract description 21
- 229910052731 fluorine Inorganic materials 0.000 title claims abstract description 14
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 title claims abstract description 13
- 239000011737 fluorine Substances 0.000 title claims abstract description 13
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims abstract description 206
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 claims abstract description 205
- 239000002245 particle Substances 0.000 claims abstract description 110
- 229920000840 ethylene tetrafluoroethylene copolymer Polymers 0.000 claims abstract description 31
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 211
- 239000000377 silicon dioxide Substances 0.000 claims description 101
- 239000011246 composite particle Substances 0.000 claims description 75
- 239000010410 layer Substances 0.000 claims description 64
- 238000000034 method Methods 0.000 claims description 43
- 239000011247 coating layer Substances 0.000 claims description 39
- 239000003795 chemical substances by application Substances 0.000 claims description 32
- 229920001296 polysiloxane Polymers 0.000 claims description 13
- 239000002253 acid Substances 0.000 claims description 11
- 239000000758 substrate Substances 0.000 claims description 11
- 239000005749 Copper compound Substances 0.000 claims description 10
- 229910004298 SiO 2 Inorganic materials 0.000 claims description 10
- 150000001880 copper compounds Chemical class 0.000 claims description 10
- 150000001875 compounds Chemical class 0.000 claims description 9
- 239000006087 Silane Coupling Agent Substances 0.000 claims description 8
- 239000000945 filler Substances 0.000 claims description 8
- 125000000217 alkyl group Chemical group 0.000 claims description 4
- -1 titanium oxide compound Chemical class 0.000 abstract description 9
- 230000006866 deterioration Effects 0.000 abstract description 5
- 239000010408 film Substances 0.000 description 248
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 35
- 238000012360 testing method Methods 0.000 description 29
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 28
- 239000000853 adhesive Substances 0.000 description 19
- 230000001070 adhesive effect Effects 0.000 description 19
- 239000006260 foam Substances 0.000 description 17
- 230000000052 comparative effect Effects 0.000 description 15
- 229920002545 silicone oil Polymers 0.000 description 15
- 238000002834 transmittance Methods 0.000 description 15
- 239000012790 adhesive layer Substances 0.000 description 13
- 239000005038 ethylene vinyl acetate Substances 0.000 description 12
- 229920001200 poly(ethylene-vinyl acetate) Polymers 0.000 description 12
- 238000004049 embossing Methods 0.000 description 11
- 229910052751 metal Inorganic materials 0.000 description 11
- 239000002184 metal Substances 0.000 description 11
- 230000000694 effects Effects 0.000 description 10
- 238000004519 manufacturing process Methods 0.000 description 10
- 239000002002 slurry Substances 0.000 description 10
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 9
- 238000000465 moulding Methods 0.000 description 9
- 239000000344 soap Substances 0.000 description 8
- 230000007423 decrease Effects 0.000 description 7
- 238000010292 electrical insulation Methods 0.000 description 7
- 238000005187 foaming Methods 0.000 description 7
- 229920002620 polyvinyl fluoride Polymers 0.000 description 7
- 239000004115 Sodium Silicate Substances 0.000 description 6
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 6
- 239000011888 foil Substances 0.000 description 6
- 239000000178 monomer Substances 0.000 description 6
- 239000002985 plastic film Substances 0.000 description 6
- 238000007789 sealing Methods 0.000 description 6
- 229910052814 silicon oxide Inorganic materials 0.000 description 6
- NTHWMYGWWRZVTN-UHFFFAOYSA-N sodium silicate Chemical compound [Na+].[Na+].[O-][Si]([O-])=O NTHWMYGWWRZVTN-UHFFFAOYSA-N 0.000 description 6
- 229910052911 sodium silicate Inorganic materials 0.000 description 6
- 230000015572 biosynthetic process Effects 0.000 description 5
- 125000000118 dimethyl group Chemical group [H]C([H])([H])* 0.000 description 5
- 238000004898 kneading Methods 0.000 description 5
- 238000006386 neutralization reaction Methods 0.000 description 5
- 229920000728 polyester Polymers 0.000 description 5
- KHXKESCWFMPTFT-UHFFFAOYSA-N 1,1,1,2,2,3,3-heptafluoro-3-(1,2,2-trifluoroethenoxy)propane Chemical compound FC(F)=C(F)OC(F)(F)C(F)(F)C(F)(F)F KHXKESCWFMPTFT-UHFFFAOYSA-N 0.000 description 4
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 4
- 239000005977 Ethylene Substances 0.000 description 4
- 239000004594 Masterbatch (MB) Substances 0.000 description 4
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 4
- 229910052782 aluminium Inorganic materials 0.000 description 4
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 4
- 230000008859 change Effects 0.000 description 4
- 229920001577 copolymer Polymers 0.000 description 4
- QHSJIZLJUFMIFP-UHFFFAOYSA-N ethene;1,1,2,2-tetrafluoroethene Chemical compound C=C.FC(F)=C(F)F QHSJIZLJUFMIFP-UHFFFAOYSA-N 0.000 description 4
- 238000011156 evaluation Methods 0.000 description 4
- 239000011521 glass Substances 0.000 description 4
- HCDGVLDPFQMKDK-UHFFFAOYSA-N hexafluoropropylene Chemical group FC(F)=C(F)C(F)(F)F HCDGVLDPFQMKDK-UHFFFAOYSA-N 0.000 description 4
- 238000009434 installation Methods 0.000 description 4
- 229910052710 silicon Inorganic materials 0.000 description 4
- 239000010703 silicon Substances 0.000 description 4
- XYJRNCYWTVGEEG-UHFFFAOYSA-N trimethoxy(2-methylpropyl)silane Chemical compound CO[Si](OC)(OC)CC(C)C XYJRNCYWTVGEEG-UHFFFAOYSA-N 0.000 description 4
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- 229920002799 BoPET Polymers 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 150000001336 alkenes Chemical class 0.000 description 3
- CCDWGDHTPAJHOA-UHFFFAOYSA-N benzylsilicon Chemical compound [Si]CC1=CC=CC=C1 CCDWGDHTPAJHOA-UHFFFAOYSA-N 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 3
- 238000009413 insulation Methods 0.000 description 3
- 238000010030 laminating Methods 0.000 description 3
- 230000014759 maintenance of location Effects 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 3
- 230000003472 neutralizing effect Effects 0.000 description 3
- 239000003921 oil Substances 0.000 description 3
- 229920001921 poly-methyl-phenyl-siloxane Polymers 0.000 description 3
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 3
- 239000004576 sand Substances 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- 239000002904 solvent Substances 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 239000010936 titanium Substances 0.000 description 3
- 229910052719 titanium Inorganic materials 0.000 description 3
- RRZIJNVZMJUGTK-UHFFFAOYSA-N 1,1,2-trifluoro-2-(1,2,2-trifluoroethenoxy)ethene Chemical class FC(F)=C(F)OC(F)=C(F)F RRZIJNVZMJUGTK-UHFFFAOYSA-N 0.000 description 2
- YSYRISKCBOPJRG-UHFFFAOYSA-N 4,5-difluoro-2,2-bis(trifluoromethyl)-1,3-dioxole Chemical compound FC1=C(F)OC(C(F)(F)F)(C(F)(F)F)O1 YSYRISKCBOPJRG-UHFFFAOYSA-N 0.000 description 2
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- QPLDLSVMHZLSFG-UHFFFAOYSA-N Copper oxide Chemical compound [Cu]=O QPLDLSVMHZLSFG-UHFFFAOYSA-N 0.000 description 2
- 239000005751 Copper oxide Substances 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- 239000002033 PVDF binder Substances 0.000 description 2
- 239000004111 Potassium silicate Substances 0.000 description 2
- 229910010413 TiO 2 Inorganic materials 0.000 description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 2
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 2
- 150000007513 acids Chemical class 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- TZCXTZWJZNENPQ-UHFFFAOYSA-L barium sulfate Chemical compound [Ba+2].[O-]S([O-])(=O)=O TZCXTZWJZNENPQ-UHFFFAOYSA-L 0.000 description 2
- 125000004432 carbon atom Chemical group C* 0.000 description 2
- 238000004737 colorimetric analysis Methods 0.000 description 2
- 229910000431 copper oxide Inorganic materials 0.000 description 2
- GBRBMTNGQBKBQE-UHFFFAOYSA-L copper;diiodide Chemical compound I[Cu]I GBRBMTNGQBKBQE-UHFFFAOYSA-L 0.000 description 2
- 230000002542 deteriorative effect Effects 0.000 description 2
- FJKIXWOMBXYWOQ-UHFFFAOYSA-N ethenoxyethane Chemical compound CCOC=C FJKIXWOMBXYWOQ-UHFFFAOYSA-N 0.000 description 2
- 238000001125 extrusion Methods 0.000 description 2
- 125000001153 fluoro group Chemical group F* 0.000 description 2
- FFUAGWLWBBFQJT-UHFFFAOYSA-N hexamethyldisilazane Chemical compound C[Si](C)(C)N[Si](C)(C)C FFUAGWLWBBFQJT-UHFFFAOYSA-N 0.000 description 2
- 230000007062 hydrolysis Effects 0.000 description 2
- 238000006460 hydrolysis reaction Methods 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 239000012528 membrane Substances 0.000 description 2
- BDAGIHXWWSANSR-UHFFFAOYSA-N methanoic acid Natural products OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 description 2
- 125000000962 organic group Chemical group 0.000 description 2
- 230000035699 permeability Effects 0.000 description 2
- 239000000049 pigment Substances 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- NNHHDJVEYQHLHG-UHFFFAOYSA-N potassium silicate Chemical compound [K+].[K+].[O-][Si]([O-])=O NNHHDJVEYQHLHG-UHFFFAOYSA-N 0.000 description 2
- 229910052913 potassium silicate Inorganic materials 0.000 description 2
- 235000019353 potassium silicate Nutrition 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 239000002344 surface layer Substances 0.000 description 2
- 230000003746 surface roughness Effects 0.000 description 2
- ZVJOQYFQSQJDDX-UHFFFAOYSA-N 1,1,2,3,3,4,4,4-octafluorobut-1-ene Chemical compound FC(F)=C(F)C(F)(F)C(F)(F)F ZVJOQYFQSQJDDX-UHFFFAOYSA-N 0.000 description 1
- BLTXWCKMNMYXEA-UHFFFAOYSA-N 1,1,2-trifluoro-2-(trifluoromethoxy)ethene Chemical compound FC(F)=C(F)OC(F)(F)F BLTXWCKMNMYXEA-UHFFFAOYSA-N 0.000 description 1
- ADTHJEKIUIOLBX-UHFFFAOYSA-N 1,1,3,4,4,5,5,6,6,6-decafluoro-3-(trifluoromethyl)hex-1-ene Chemical compound FC(C(F)(F)F)(C(C(C(F)(F)F)(C=C(F)F)F)(F)F)F ADTHJEKIUIOLBX-UHFFFAOYSA-N 0.000 description 1
- BQCIDUSAKPWEOX-UHFFFAOYSA-N 1,1-Difluoroethene Chemical compound FC(F)=C BQCIDUSAKPWEOX-UHFFFAOYSA-N 0.000 description 1
- JSGITCLSCUKHFW-UHFFFAOYSA-N 2,2,4-trifluoro-5-(trifluoromethoxy)-1,3-dioxole Chemical compound FC1=C(OC(F)(F)F)OC(F)(F)O1 JSGITCLSCUKHFW-UHFFFAOYSA-N 0.000 description 1
- RFJVDJWCXSPUBY-UHFFFAOYSA-N 2-(difluoromethylidene)-4,4,5-trifluoro-5-(trifluoromethyl)-1,3-dioxolane Chemical compound FC(F)=C1OC(F)(F)C(F)(C(F)(F)F)O1 RFJVDJWCXSPUBY-UHFFFAOYSA-N 0.000 description 1
- OSWFIVFLDKOXQC-UHFFFAOYSA-N 4-(3-methoxyphenyl)aniline Chemical compound COC1=CC=CC(C=2C=CC(N)=CC=2)=C1 OSWFIVFLDKOXQC-UHFFFAOYSA-N 0.000 description 1
- 238000012935 Averaging Methods 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 1
- 239000005046 Chlorosilane Substances 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- JOYRKODLDBILNP-UHFFFAOYSA-N Ethyl urethane Chemical compound CCOC(N)=O JOYRKODLDBILNP-UHFFFAOYSA-N 0.000 description 1
- 229920006358 Fluon Polymers 0.000 description 1
- VQTUBCCKSQIDNK-UHFFFAOYSA-N Isobutene Chemical group CC(C)=C VQTUBCCKSQIDNK-UHFFFAOYSA-N 0.000 description 1
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 description 1
- 229920006172 Tetrafluoroethylene propylene Polymers 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 125000001931 aliphatic group Chemical group 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 150000001340 alkali metals Chemical class 0.000 description 1
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 1
- 150000001342 alkaline earth metals Chemical class 0.000 description 1
- 150000003863 ammonium salts Chemical class 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical group [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 150000007514 bases Chemical class 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 229910000019 calcium carbonate Inorganic materials 0.000 description 1
- 159000000007 calcium salts Chemical class 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 125000002843 carboxylic acid group Chemical group 0.000 description 1
- 229910000420 cerium oxide Inorganic materials 0.000 description 1
- 239000000460 chlorine Substances 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- KOPOQZFJUQMUML-UHFFFAOYSA-N chlorosilane Chemical class Cl[SiH3] KOPOQZFJUQMUML-UHFFFAOYSA-N 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000004040 coloring Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000007865 diluting Methods 0.000 description 1
- LIKFHECYJZWXFJ-UHFFFAOYSA-N dimethyldichlorosilane Chemical compound C[Si](C)(Cl)Cl LIKFHECYJZWXFJ-UHFFFAOYSA-N 0.000 description 1
- 239000002270 dispersing agent Substances 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000011067 equilibration Methods 0.000 description 1
- XBSVWZGULSYIEG-UHFFFAOYSA-N ethenyl hypofluorite Chemical class FOC=C XBSVWZGULSYIEG-UHFFFAOYSA-N 0.000 description 1
- 229920001038 ethylene copolymer Polymers 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- XUCNUKMRBVNAPB-UHFFFAOYSA-N fluoroethene Chemical class FC=C XUCNUKMRBVNAPB-UHFFFAOYSA-N 0.000 description 1
- 235000019253 formic acid Nutrition 0.000 description 1
- 239000002803 fossil fuel Substances 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- CZWLNMOIEMTDJY-UHFFFAOYSA-N hexyl(trimethoxy)silane Chemical compound CCCCCC[Si](OC)(OC)OC CZWLNMOIEMTDJY-UHFFFAOYSA-N 0.000 description 1
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 238000003475 lamination Methods 0.000 description 1
- 229910003002 lithium salt Inorganic materials 0.000 description 1
- 159000000002 lithium salts Chemical class 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 150000007522 mineralic acids Chemical class 0.000 description 1
- 239000003595 mist Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 150000007524 organic acids Chemical class 0.000 description 1
- 235000005985 organic acids Nutrition 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- BMMGVYCKOGBVEV-UHFFFAOYSA-N oxo(oxoceriooxy)cerium Chemical compound [Ce]=O.O=[Ce]=O BMMGVYCKOGBVEV-UHFFFAOYSA-N 0.000 description 1
- DCKVFVYPWDKYDN-UHFFFAOYSA-L oxygen(2-);titanium(4+);sulfate Chemical compound [O-2].[Ti+4].[O-]S([O-])(=O)=O DCKVFVYPWDKYDN-UHFFFAOYSA-L 0.000 description 1
- 238000010979 pH adjustment Methods 0.000 description 1
- 125000005010 perfluoroalkyl group Chemical group 0.000 description 1
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920006255 plastic film Polymers 0.000 description 1
- 229920000058 polyacrylate Polymers 0.000 description 1
- 229920000139 polyethylene terephthalate Polymers 0.000 description 1
- 239000005020 polyethylene terephthalate Substances 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 1
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 1
- 239000011342 resin composition Substances 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 150000004760 silicates Chemical class 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 229920002379 silicone rubber Polymers 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 125000000542 sulfonic acid group Chemical group 0.000 description 1
- BFKJFAAPBSQJPD-UHFFFAOYSA-N tetrafluoroethene Chemical group FC(F)=C(F)F BFKJFAAPBSQJPD-UHFFFAOYSA-N 0.000 description 1
- 125000000383 tetramethylene group Chemical group [H]C([H])([*:1])C([H])([H])C([H])([H])C([H])([H])[*:2] 0.000 description 1
- 238000005979 thermal decomposition reaction Methods 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 229910000348 titanium sulfate Inorganic materials 0.000 description 1
- 125000002023 trifluoromethyl group Chemical group FC(F)(F)* 0.000 description 1
- JLGNHOJUQFHYEZ-UHFFFAOYSA-N trimethoxy(3,3,3-trifluoropropyl)silane Chemical compound CO[Si](OC)(OC)CCC(F)(F)F JLGNHOJUQFHYEZ-UHFFFAOYSA-N 0.000 description 1
- 238000009834 vaporization Methods 0.000 description 1
- 230000008016 vaporization Effects 0.000 description 1
- 239000012463 white pigment Substances 0.000 description 1
- 230000002087 whitening effect Effects 0.000 description 1
- 239000011787 zinc oxide Substances 0.000 description 1
- XOOUIPVCVHRTMJ-UHFFFAOYSA-L zinc stearate Chemical compound [Zn+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O XOOUIPVCVHRTMJ-UHFFFAOYSA-L 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09C—TREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
- C09C1/00—Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
- C09C1/36—Compounds of titanium
- C09C1/3607—Titanium dioxide
- C09C1/3653—Treatment with inorganic compounds
- C09C1/3661—Coating
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J5/00—Manufacture of articles or shaped materials containing macromolecular substances
- C08J5/18—Manufacture of films or sheets
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B15/00—Layered products comprising a layer of metal
- B32B15/04—Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
- B32B15/08—Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B17/00—Layered products essentially comprising sheet glass, or glass, slag, or like fibres
- B32B17/06—Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
- B32B17/10—Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
- B32B17/10005—Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
- B32B17/10009—Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the number, the constitution or treatment of glass sheets
- B32B17/10018—Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the number, the constitution or treatment of glass sheets comprising only one glass sheet
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B17/00—Layered products essentially comprising sheet glass, or glass, slag, or like fibres
- B32B17/06—Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
- B32B17/10—Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
- B32B17/10005—Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
- B32B17/1055—Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer
- B32B17/10788—Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer containing ethylene vinylacetate
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/06—Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
- B32B27/08—Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/18—Layered products comprising a layer of synthetic resin characterised by the use of special additives
- B32B27/20—Layered products comprising a layer of synthetic resin characterised by the use of special additives using fillers, pigments, thixotroping agents
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/32—Layered products comprising a layer of synthetic resin comprising polyolefins
- B32B27/322—Layered products comprising a layer of synthetic resin comprising polyolefins comprising halogenated polyolefins, e.g. PTFE
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/36—Layered products comprising a layer of synthetic resin comprising polyesters
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B7/00—Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
- B32B7/04—Interconnection of layers
- B32B7/12—Interconnection of layers using interposed adhesives or interposed materials with bonding properties
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/18—Oxygen-containing compounds, e.g. metal carbonyls
- C08K3/20—Oxides; Hydroxides
- C08K3/22—Oxides; Hydroxides of metals
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L27/00—Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
- C08L27/02—Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
- C08L27/12—Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
- C08L27/18—Homopolymers or copolymers or tetrafluoroethene
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/04—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/04—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
- H01L31/042—PV modules or arrays of single PV cells
- H01L31/048—Encapsulation of modules
- H01L31/0481—Encapsulation of modules characterised by the composition of the encapsulation material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2250/00—Layers arrangement
- B32B2250/40—Symmetrical or sandwich layers, e.g. ABA, ABCBA, ABCCBA
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2264/00—Composition or properties of particles which form a particulate layer or are present as additives
- B32B2264/10—Inorganic particles
- B32B2264/102—Oxide or hydroxide
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2264/00—Composition or properties of particles which form a particulate layer or are present as additives
- B32B2264/10—Inorganic particles
- B32B2264/105—Metal
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/20—Properties of the layers or laminate having particular electrical or magnetic properties, e.g. piezoelectric
- B32B2307/206—Insulating
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/70—Other properties
- B32B2307/712—Weather resistant
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/70—Other properties
- B32B2307/724—Permeability to gases, adsorption
- B32B2307/7242—Non-permeable
- B32B2307/7246—Water vapor barrier
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2457/00—Electrical equipment
- B32B2457/12—Photovoltaic modules
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
- C01P2006/80—Compositional purity
- C01P2006/82—Compositional purity water content
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/24—Structurally defined web or sheet [e.g., overall dimension, etc.]
- Y10T428/24355—Continuous and nonuniform or irregular surface on layer or component [e.g., roofing, etc.]
- Y10T428/24372—Particulate matter
- Y10T428/2438—Coated
- Y10T428/24388—Silicon containing coating
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/25—Web or sheet containing structurally defined element or component and including a second component containing structurally defined particles
- Y10T428/256—Heavy metal or aluminum or compound thereof
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/25—Web or sheet containing structurally defined element or component and including a second component containing structurally defined particles
- Y10T428/259—Silicic material
Definitions
- the present invention relates to a fluororesin film, a method for using the fluororesin film, a back sheet for a solar cell module, and a solar cell module.
- a solar cell is used as a solar cell module in which a solar cell element is sealed with EVA (ethylene-vinyl acetate copolymer) and the front and back surfaces are sandwiched between a transparent glass substrate and a back sheet (back surface laminate). It is common.
- EVA ethylene-vinyl acetate copolymer
- the backsheet is provided to protect EVA and solar cell elements, but the film used for the outermost layer (a film used on the side of the solar cell module in contact with the outside air; hereinafter referred to as “outermost layer film”). , Sufficient electrical insulation (volume resistivity: 1 ⁇ 10 13 ⁇ ⁇ cm or more), and moisture resistance (water vapor transmission rate of 1 g / m 2 ⁇ 24 h or less under the conditions of 40 ° C. and relative humidity 90%) It is required to be. Further, since the solar cell module is exposed to the outdoors for a long period of time, the outermost layer film of the back sheet is required to have sufficient weather resistance and heat resistance.
- a fluororesin film using a fluororesin such as ETFE (ethylene-tetrafluoroethylene copolymer), PVF (polyvinyl fluoride), PVdF (polyvinylidene fluoride), etc.
- ETFE ethylene-tetrafluoroethylene copolymer
- PVF polyvinyl fluoride
- PVdF polyvinylidene fluoride
- the ETFE film and the PVdF film show no decrease in strength due to hydrolysis even under the conditions of 85 ° C. ⁇ relative humidity 85% ⁇ 1000 hours.
- the ETFE film is excellent in moisture resistance and heat resistance because the temperature at which the elongation decreases by half in a heat resistance test of 100,000 hours (about 10 years) is about 150 to 160 ° C. Since the ETFE film is relatively flexible, when used for the outermost layer film, the surface is embossed in order to suppress the glossiness of the surface and make the scratches inconspicuous.
- the fluororesin film is required to have an ultraviolet transmittance of less than 1% at a wavelength of 360 nm or less from the viewpoint of protecting the adhesive and plastic sheet used for the lamination from sunlight.
- permeability of the ultraviolet-ray with a wavelength of 360 nm or less is realizable by disperse
- Patent Document 2 discloses that a resin composition containing titanium oxide has a temperature of 300 ° C. and 100 ° C. of titanium oxide coated with silicon oxide in order to prevent foam streaks from being formed by foaming of water during molding. It has been proposed to reduce the amount of foaming water by reducing the difference in Karl Fischer moisture content ( ⁇ 300-100 ).
- the innermost layer film on the back sheet (the film on the side in contact with the filler such as EVA) reflects the sunlight leaked from between the solar cell elements in the filler to the back sheet side, and the reflected light is reflected on the surface. It is preferable to use a film having a high solar reflectance so that it can be returned to the solar cell element again through the transparent glass substrate. For this reason, for the purpose of improving the solar reflectance, it has been proposed to contain a white pigment such as titanium oxide in the innermost fluororesin film of the back sheet (for example, Patent Documents 3 and 4). However, these relate to the film of the innermost layer of the backsheet, and until now it has not been known that titanium oxide is contained in the outermost layer film.
- the film of Patent Document 1 is used for agricultural houses, membrane structures, and the like, and is a translucent or transparent film having a thickness of 100 to 250 ⁇ m that transmits visible light of 40% or more.
- the titanium concentration was less than 5% by mass.
- the outermost layer film of the back sheet is required to have a thickness of 50 ⁇ m or less from the viewpoint of economy. Further, the outermost layer film of the backsheet is required to have weather resistance higher than that of a film for use in an agricultural house or the like, and is required to block ultraviolet rays and conceal. Therefore, in the case of the outermost layer film of the back sheet, it is necessary to disperse more titanium oxide per unit volume.
- a titanium oxide coated with silicon oxide which has a reduced difference in Karl Fischer moisture content between 300 ° C. and 100 ° C. ( ⁇ 300-100), is a fluororesin that is the outermost layer film. It was considered that it was dispersed in a film. Although such a method can suppress the formation of foam streaks, it has been found that the weather resistance of the fluororesin film cannot be sufficiently obtained. For the above reasons, in the conventional technology, in the outermost layer film of the backsheet, foam streaks are not formed on the film, and the fluororesin forming the film is prevented from deteriorating, and a sufficient amount of titanium oxide is added. It turned out to be difficult to contain.
- the present invention even when a sufficient amount of titanium oxide is contained as a film for the back sheet of the solar cell module, foam streaks are not formed in the film, and deterioration of the fluororesin is suppressed, and the wavelength is 360 nm or less. It is an object of the present invention to provide a fluororesin film having a low ultraviolet transmittance and excellent heat resistance and weather resistance. In the present invention, even when a sufficient amount of titanium oxide is contained, foam streaks are not formed on the film, and the fluororesin is prevented from deteriorating, and the transmittance of ultraviolet rays having a wavelength of 360 nm or less is low and excellent.
- the present invention aims at providing the usage method of the fluororesin film which has heat resistance and a weather resistance.
- the present invention provides a solar cell module backsheet that has excellent heat resistance and weather resistance and can stably protect the solar cell module over a long period of time, and a solar cell module including the same. .
- the fluororesin film of the present invention is a fluororesin film mainly composed of an ethylene-tetrafluoroethylene copolymer, which is used for the outermost layer of a back sheet of a solar cell module, and contains the following titanium oxide composite particles.
- the arithmetic average roughness Ra based on JIS B0601 of the film surface in contact is 3 ⁇ m or less.
- Titanium oxide composite particles Titanium oxide composite particles obtained by hydrophobizing silica-coated titanium oxide particles having a silica coating layer formed on the surface of the titanium oxide particles with a hydrophobizing agent, wherein the following (a) to (c) Satisfy the particles.
- the amount of the silica coating layer with respect to 100 parts by mass of the titanium oxide particles is 1.5 to 5 parts by mass in terms of SiO 2 .
- the difference in Karl Fischer moisture content between 300 ° C. and 100 ° C. ( ⁇ 300-100 ) is 0.5% or less.
- the amount of the hydrophobizing agent is 0.5 to 10 parts by mass with respect to 100 parts by mass of the silica-coated titanium oxide particles.
- the content of the titanium oxide composite particles is preferably 6 to 25% by mass.
- the average particle size of the titanium oxide composite particles is preferably 0.1 to 0.4 ⁇ m.
- the acid solubility of the titanium oxide composite particles is preferably 15 to 50%.
- the hydrophobizing agent is preferably an alkyl group-containing silane coupling agent (S1) or a silicone compound (S2).
- the fluororesin film of the present invention preferably has a thickness of 12 to 100 ⁇ m.
- the arithmetic average roughness Ra is preferably 0.5 to 2.5 ⁇ m. Further, it is preferable to contain 5 to 500 ppm of a copper compound.
- the back sheet for a solar cell module according to the present invention is a back sheet made of a laminate including any one of the fluororesin films as an outermost layer.
- the solar cell module of the present invention includes a transparent substrate, a filler layer encapsulating the solar cell element, and the back sheet in this order.
- the method of using the fluororesin film of the present invention is a fluororesin film mainly composed of an ethylene-tetrafluoroethylene copolymer, which contains the following titanium oxide composite particles, and is defined by JIS B0601 on at least one film surface.
- a fluororesin film having an arithmetic average roughness Ra of 3 ⁇ m or less is used as an outermost layer of a back sheet of a solar cell module so that the film surface is in contact with the outside air.
- Titanium oxide composite particles Titanium oxide composite particles obtained by hydrophobizing silica-coated titanium oxide particles having a silica coating layer formed on the surface of the titanium oxide particles with a hydrophobizing agent, wherein the following (a) to (c) Satisfy the particles.
- the amount of the hydrophobizing agent is 0.5 to 10 parts by mass with respect to 100 parts by mass of the silica-coated titanium oxide particles.
- the fluororesin film of the present invention is a film for a back sheet of a solar cell module, and even when a sufficient amount of titanium oxide is contained, foam streaks are not formed on the film, and the fluororesin may deteriorate. It is suppressed. Moreover, the transmittance
- the solar cell module can be stably protected over a long period of time by using a fluororesin film having a low temperature and excellent heat resistance and weather resistance for the back sheet for the solar cell module. Moreover, the heat sheet
- the fluororesin film of the present invention is a film used for the outermost layer of the back sheet of the solar cell module.
- the fluororesin film of the present invention is a film mainly composed of ethylene-tetrafluoroethylene copolymer (ETFE), and hydrophobizes silica-coated titanium oxide particles having a silica coating layer formed on the surface of the titanium oxide particles. Containing titanium oxide composite particles hydrophobized with an agent.
- regulation of JISB0601 of the film surface which touches external air is 3 micrometers or less.
- the mass ratio of ETFE to 100 mass% of the total resin constituting the film is preferably 90 mass% or more, more preferably 98 mass% or more, and 100 mass%. It is particularly preferred that
- ETFE has a repeating unit based on tetrafluoroethylene (hereinafter referred to as “TFE”) and a repeating unit based on ethylene.
- TFE tetrafluoroethylene
- the molar ratio between them (TFE / ethylene) is preferably 20/80 to 80/20, more preferably 30/70 to 70/30, and still more preferably 40/60 to 60/40.
- ETFE may contain repeating units based on other monomers in addition to repeating units based on TFE and ethylene.
- n is preferably 2 to 6, and more preferably 2 to 4.
- CF 3 CF 2 CH CH 2
- CF 3 CF 2 CF 2 CF 2 CH CH 2
- CF 3 CF 2 CF 2 CF CH 2
- CF 2 HCF 2 CF 2 CF CH 2
- R f (OCFXCF 2) m OCF CF 2 , etc.
- the other monomers in ETFE are preferably the above-mentioned polyfluoroalkylethylene, HFP, and PPVE, and more preferably HFP, PPVE, CF 3 CF 2 CH ⁇ CH 2 , and CF 3 (CF 2 ) 3 CH 2 ⁇ CH. These other monomers may be used individually by 1 type, and may use 2 or more types together.
- the proportion of repeating units based on other monomers is preferably 10 mol% or less, more preferably 6 mol% or less, and even more preferably 3 mol% or less of all repeating units (100 mol%) of ETFE.
- the number average molecular weight of ETFE is not particularly limited, but is preferably 100,000 to 500,000, more preferably 200,000 to 400,000. If the number average molecular weight of ETFE is 100,000 or more, strength reduction in the heat resistance test hardly occurs. If the number average molecular weight of ETFE is 500,000 or less, it is easy to mold a thin film of about 10 ⁇ m.
- Polymers that can be used in addition to ETFE include vinyl fluoride polymers, vinylidene fluoride polymers, vinylidene fluoride-hexafluoropropylene copolymers, tetrafluoroethylene-hexafluoropropylene-vinylidene fluoride. Copolymer, tetrafluoroethylene-propylene copolymer, tetrafluoroethylene-vinylidene fluoride-propylene copolymer, hexafluoropropylene-tetrafluoroethylene copolymer, perfluoro (alkyl vinyl ether) -tetrafluoro Examples thereof include an ethylene copolymer.
- titanium oxide composite particles are particles obtained by further hydrophobizing a silica-coated titanium oxide particle having a silica coating layer formed on the surface of the titanium oxide particle with a hydrophobizing agent.
- Titanium oxide has a high refractive index of visible light, is superior in chemical resistance to white pigments such as calcium carbonate, zinc oxide, and barium sulfate, is robust, and can improve the weather resistance of the fluororesin film.
- the crystal form of the titanium oxide particles is preferably a rutile type that has a lower photoactivity.
- the titanium oxide particle obtained by the sulfuric acid method which hydrolyzes a titanium sulfate solution, and the chlorine method which vapor-phase-oxidizes a titanium halide may be sufficient.
- titanium oxide particles are robust as described above, they have photoactivity, so that the fluororesin film is decomposed by light irradiation. For this reason, a silica coating layer is formed on the surface of the titanium oxide particles to use it in a state in which the photoactivity of the titanium oxide particles is suppressed.
- the silica coating layer is preferably made of silicon dioxide or a hydrate thereof.
- the amount of the silica coating layer with respect to 100 parts by mass of the titanium oxide particles is 1.5 to 5 parts by mass in terms of SiO 2 , and preferably 2 to 5 parts by mass. If the said mass ratio of a silica coating layer is 1.5 mass parts or more, the photoactivity of a titanium oxide composite particle can fully be reduced. Moreover, if the said mass ratio of a silica coating layer is 5 mass parts or less, the water contained in a silica coating layer will foam at the time of film molding, and a foam streak will be formed on the surface of the obtained fluororesin film, and it will become a poor appearance. Can be prevented.
- ETFE resin Since ETFE resin has a high melting temperature of 300 ° C. or higher, it is necessary to process the titanium oxide composite particles at a high temperature in order to be blended with the fluororesin. However, since titanium oxide particles are inherently hydrophilic and highly hygroscopic, when they are processed at high temperatures, the moisture absorbed from the titanium oxide particles is vaporized during film formation to form foam streaks, resulting in poor appearance. Further, since the silica coating layer also has a hygroscopic property, if there is a lot of water contained in the silica coating layer, foaming occurs at the time of film molding as in the case of titanium oxide particles, resulting in poor appearance.
- the silica-coated titanium oxide particles in the present invention have a Karl Fischer water content difference between 300 ° C. and 100 ° C. ( ⁇ 300-100 ) (hereinafter simply referred to as “moisture content difference ( ⁇ 300-100 )”). .) Is 0.5% or less, preferably 0.3% or less. If the water content difference ( ⁇ 300-100 ) is 0.5% or less, it is possible to prevent the water absorbed in the silica coating layer from being foamed during molding and causing an appearance defect in the fluororesin film. Further, when the water content difference ( ⁇ 300-100 ) is 0.1% or more, the productivity of the titanium oxide composite particles is improved. In addition, the Karl Fischer water content in the present invention is based on mass%.
- the silica coating layer is preferably a dense layer from the viewpoint of obtaining excellent weather resistance of the film by suppressing the photoactivity of the titanium oxide particles.
- the denseness of the silica coating layer can be confirmed by measuring the acid solubility (unit:%) of neutralization shown below for the silica-coated titanium oxide particles.
- 0.2 g of a sample (silica-coated titanium oxide particles) is added to 10 ml of 98% sulfuric acid, dispersed by applying ultrasonic waves for 1 minute, and then heated at 180 ° C. for 1 hour.
- Acid solubility (%) (amount of titanium oxide in sulfuric acid (g) /0.2 (g)) ⁇ 100 The smaller the acid solubility, the denser the silica coating layer and the better the weather resistance, and it is preferably 15 to 50%, more preferably 15 to 30%.
- the silica-coated titanium oxide particles are further subjected to a hydrophobizing treatment with a hydrophobizing agent.
- a hydrophobizing treatment with the hydrophobizing agent, the dispersibility of the particles in the fluororesin is improved. As a result, it is possible to prevent the particles from agglomerating to change the color of the fluororesin or to form a hole in the film.
- a silane coupling agent (S1) having an alkyl group or a silicone compound (S2) is preferable.
- a silane coupling agent (S1) compared with the case where this is not used, hardening of a fluororesin film will advance easily when exposed outdoors for a long period of time.
- the silicone compound (S2) when used, it is difficult for the fluororesin film to harden even by long-term outdoor exposure, and flexibility is easily maintained.
- the silicone compound (S2) is preferable to the silane coupling agent (S1). Although the reason is not clear, it is presumed that the silicone compound has an effect of suppressing the crystallization of the fluororesin.
- silane coupling agent (S1) examples include trialkoxysilanes such as isobutyltrimethoxysilane, hexyltrimethoxysilane, (3,3,3-trifluoropropyl) trimethoxysilane; and silazanes such as hexamethyldisilazane. And chlorosilanes such as dimethyldichlorosilane. Of these, isobutyltrimethoxysilane is preferred.
- the silicone compound (S2) is an organopolysiloxane having an organic group.
- the organic group an alkyl group having 4 or less carbon atoms and a phenyl group are preferable.
- silicone oil can be used.
- the silicone oil include straight silicone oils such as dimethyl silicone oil and phenylmethyl silicone oil; alkyl-modified silicone oils, alkylaralkyl-modified silicone oils, and fluorinated alkyl-modified silicone oils. Of these, dimethyl silicone oil is preferable from the viewpoint of cost, and phenylmethyl silicone oil is preferable from the viewpoint of heat resistance.
- the molecular weight of the silicone oil is such that the oxygen functional group such as silicon oxide in the silica coating layer of the silica-coated titanium oxide particles reacts with the silicone oil with high efficiency to form a uniform and dense treatment film to form the inside of the fluororesin. It is preferable that it is 1500 or less from the point of obtaining the better dispersibility in.
- a commercially available product can be used as the silicone compound (S2).
- dimethyl silicone oil examples include SH200 (product name) manufactured by Toray Dow Corning Silicone, KF96 (product name) manufactured by Shin-Etsu Chemical, TSF451 (product name) manufactured by Toshiba Silicone, etc. having various molecular weights (viscosities). Can be mentioned.
- phenylmethyl silicone oil examples include SH510 (product name), SH550 (product name), and SH710 (product name) manufactured by Toray Dow Corning Silicone.
- the treatment amount of the hydrophobizing agent with respect to 100 parts by mass of silica-coated titanium oxide is 0.5 to 10 parts by mass, and preferably 1 to 5 parts by mass. If the treatment amount of the hydrophobizing agent is 0.5 parts by mass or more, coloring of the fluororesin can be prevented. Moreover, if the said processing amount of a hydrophobizing agent is 10 mass parts or less, it can prevent that a foam streak is formed in a fluororesin film by the influence of the thermal decomposition of a hydrophobizing agent, and a film external appearance falls.
- the average particle diameter of the titanium oxide composite particles is preferably 0.1 to 0.4 ⁇ m, and more preferably 0.15 to 0.30 ⁇ m.
- the average particle diameter of the titanium oxide composite particles in the present invention is a value obtained by measuring the particle diameters of a plurality of titanium oxide composite particles at random using an electron microscope and averaging them.
- the silica coating layer for suppressing the photoactivity due to the large specific surface area of the titanium oxide particles is 15 masses with respect to the entire titanium oxide composite particles. % Or more is required, and it is difficult to synthesize silica-coated titanium oxide with a low water content.
- the titanium oxide composite particles are contained at a concentration exceeding 6% by mass, and when the fluororesin film having a film thickness of 25 ⁇ m or less is molded, There is a possibility of opening a hole.
- the content of the titanium oxide composite particles in the fluororesin film (100% by mass) is preferably 6 to 25% by mass, and more preferably 8 to 25% by mass. If the content of the titanium oxide composite particles is 6% by mass or more, most of the ultraviolet rays are absorbed and blocked by the titanium oxide composite particles in the vicinity of the surface of the fluororesin film, so that it is difficult to enter the inside of the film and the entire film is exposed to ultraviolet rays. It is easy to suppress the occurrence of the initial phenomenon of photoactivity by reaching.
- the initial phenomenon of photoactivity is a whitening phenomenon where the surface becomes whiter.
- the binding force of the fluororesin decreases and the titanium oxide composite particles move to the surface layer, thereby reducing the ultraviolet transmittance of the fluororesin film without causing a decrease in mechanical strength and An increase in solar reflectance is induced.
- the fluororesin film (outermost layer film) has a low ultraviolet transmittance and a high solar reflectance. And from the point of aesthetics etc., it is preferable that the value of ultraviolet-ray transmittance and solar reflectance do not change during use.
- content of a titanium oxide composite particle is 25 mass% or less, it will be easy to disperse
- the fluororesin film of the present invention may contain other additives other than the titanium oxide composite particles.
- the additive include copper compounds such as copper oxide and copper iodide.
- the particle size of the copper compound is preferably 1 to 50 ⁇ m.
- the content of the copper compound in the fluororesin film is preferably 1 ⁇ 10 ⁇ 4 to 5 ⁇ 10 ⁇ 2 parts by mass (1 to 500 ppm) with respect to 100 parts by mass of ETFE, and 5 ⁇ 10 ⁇ 4 to 3 ⁇ 10 ⁇ 2 parts by mass (5 to 300 ppm) is more preferable, and 1 ⁇ 10 ⁇ 3 to 2 ⁇ 10 ⁇ 2 parts by mass (10 to 200 ppm) is most preferable. If content of a copper compound is 1 ppm or more, it will be easy to improve the heat resistance of a fluororesin film. Moreover, if content of a copper compound is 500 ppm or less, it will be easy to suppress the fall of electrical characteristics, such as insulation resistance, in a fluororesin film.
- the photoactivity of titanium oxide is suppressed by forming a silica coating layer, and the water content difference ( ⁇ 300 ⁇ 100 ) is 0.5% or less, the formation of foam streaks due to foaming of water during molding can be suppressed.
- the effect of suppressing the photoactivity of titanium oxide cannot be sufficiently maintained only by satisfying these two requirements, and excellent weather resistance cannot be obtained.
- the weather resistance was insufficient due to the following reasons.
- the outermost layer film of the back sheet is embossed for the purpose of making the surface scratches inconspicuous and for suppressing the regular reflection of sunlight on the film surface.
- the fluororesin film surface surface in contact with the outside air
- fine cracks are generated on the film surface, and the titanium oxide composite particles exposed at the cracked part are affected by moisture.
- the photoactivity of titanium oxide appears. Therefore, in the present invention, the relationship between the roughness of the film surface and the effect of maintaining the reduced photoactivity of titanium oxide is investigated, and the oxidation due to the formation of the silica coating layer when the roughness of the film surface satisfies a specific condition. It has been found that the effect of suppressing the photoactivity of titanium can be sufficiently maintained.
- the fluororesin film of the present invention has an arithmetic average roughness Ra (hereinafter, simply referred to as “arithmetic average roughness Ra”) based on JIS B0601 on the film surface in contact with the outside air of 3 ⁇ m or less, and 0.5 to 3 ⁇ m. It is preferably 0.5 to 2.5 ⁇ m, and most preferably 0.6 to 1.2 ⁇ m.
- the arithmetic average roughness Ra of the outermost layer film is 0. .1 to 0.4 ⁇ m.
- arithmetic average roughness Ra is 3.0 micrometers or less, it will be easy to suppress that a fine crack generate
- the arithmetic average roughness Ra can be measured using, for example, a contact-type surface roughness meter (manufactured by Kosaka Laboratory; Surfcoder SE-30H).
- the fluororesin film of the present invention may be any film as long as one side of the film (surface to be brought into contact with the outside air) satisfies the above arithmetic average roughness Ra, and the arithmetic average roughness Ra on both sides of the film is 3 ⁇ m or less. May be.
- the product of the difference in moisture content ( ⁇ 300-100 ) (%) of the silica-coated titanium oxide particles and the content (mass%) of the titanium oxide composite particles in the fluororesin film is 10
- the following is preferable.
- the moisture content difference ( ⁇ 300-100 ) is 0.4% or less, the fluororesin film is generated from the titanium oxide composite particles during molding. Since the amount of titanium oxide composite particles can be increased in a state where the total amount of water to be suppressed is kept low, it is easy to achieve both excellent weather resistance and film appearance.
- the thickness of the fluororesin film is preferably 12 to 100 ⁇ m, and more preferably 20 to 50 ⁇ m. If the thickness of the fluororesin film is 12 ⁇ m or more, it is difficult to make a hole in the fluororesin film even if it contains titanium oxide composite particles. Moreover, if the thickness of a fluororesin film is 100 micrometers or less, it will be easy to manufacture a fluororesin film at low cost.
- the preferred titanium oxide composite particle content is 6 to 25 masses per 100 mass parts of the fluororesin.
- the transmittance of ultraviolet light having a wavelength of 360 nm or less can be easily controlled to 0.1% or less.
- the transmittance of ultraviolet rays having a wavelength of 360 nm or less in the outermost layer film is less than 1%. According to the fluororesin film of the present invention, the adhesive and moisture-proof plastic sheet can be sufficiently protected.
- a thin fluororesin film alone does not require high insulation characteristics.
- the volume resistivity changes greatly before and after the weather resistance test and the heat resistance test, and those whose values change usually 10 times or more cannot be used for the back sheet for solar cells.
- the fluororesin film of the present invention has a sufficient electrical insulation property of 1 ⁇ 10 13 ⁇ ⁇ cm or more, and its value does not fluctuate greatly even after a weather resistance test or a heat resistance test.
- a basic compound such as hydroxide, carbonate or ammonium salt of alkali metal or alkaline earth metal can be used.
- sodium hydroxide is industrially preferable.
- a dispersant such as a silicate compound such as sodium silicate or potassium silicate may be used in combination.
- the solid content concentration of the titanium oxide particles in the aqueous slurry is preferably 50 to 300 g / l, and more preferably 100 to 200 g / l. If the solid content concentration of the titanium oxide particles is 50 g / l or more, industrial operability is further improved. Moreover, if the solid content concentration of the titanium oxide particles is 300 g / l or less, it is easy to suppress the viscosity of the aqueous slurry from becoming too high, and a dense and uniform silica coating layer is easily obtained.
- silica-coated titanium oxide particles having a silica coating layer formed on the surface of the titanium oxide particles are obtained by neutralizing the silicate with an acidic compound for 30 minutes or more in the prepared aqueous slurry of titanium oxide particles. It is done. By performing neutralization over 30 minutes or more, the water content difference ( ⁇ 300-100 ) of the silica-coated titanium oxide particles can be reduced to 0.5% or less. Further, the neutralization time is preferably 1 hour or longer from the viewpoint of easily reducing the water content difference ( ⁇ 300-100 ).
- the pH at the time of neutralization is preferably 4 to 7.5, and is preferably 4.5 to 7 from the viewpoint that a dense silica coating layer having a small water content difference ( ⁇ 300-100 ) is easily formed. More preferably.
- the temperature of the aqueous slurry at the time of neutralization is preferably 80 to 95 ° C. from the viewpoint that a dense silica coating layer having a small water content difference ( ⁇ 300-100 ) is easily formed, and is preferably 90 to 95 ° C. More preferably.
- the water content difference ( ⁇ 300-100 ) of the silica-coated titanium oxide particles can be further reduced by firing the silica-coated titanium oxide particles at 300 ° C. or higher after forming the silica coating layer.
- it is preferable that baking is 500 degrees C or less from the point which is easy to prevent that a silica covering titanium oxide particle changes in quality.
- silicates examples include sodium silicate and potassium silicate.
- an acidic compound inorganic acids, such as a sulfuric acid and hydrochloric acid, organic acids, such as an acetic acid and a formic acid, etc. can be used, for example.
- the hydrophobizing treatment of the silica-coated titanium oxide particles with the hydrophobizing agent may be performed by the method (1) performed in advance before the silica-coated titanium oxide particles are dispersed and kneaded in the fluororesin.
- the method (1) is performed.
- Some hydrophobizing agents, such as silicone oil, are selectively placed at the interface between the fluororesin and the silica-coated titanium oxide simply by mixing.
- the silane coupling agent (S1) for example, a necessary amount of the silane coupling agent (S1) is dissolved in an alcohol such as isopropyl alcohol, a solvent such as toluene and hexane.
- a method (dry treatment method) in which silicone oil is made into a mist state, sprayed onto silica-coated titanium oxide particles, and dried at about 70 ° C. can be used.
- metal soap may be added together with a hydrophobizing agent in order to further improve the dispersibility of the titanium oxide composite particles.
- a hydrophobizing agent By adding metal soap, heat generation due to contact between the metal part of the extruder screw or cylinder used to mold the fluororesin film and the oxide in the hydrophobizing agent is suppressed, and the fluororesin film turns brown or black. It becomes difficult to color.
- metal soaps include stearic acid zinc salt, calcium salt, and lithium salt.
- the addition amount of the metal soap is preferably 0.2 to 3 parts by mass, and more preferably 0.2 to 1 part by mass with respect to 100 parts by mass of the silica-coated titanium oxide particles. If the said addition amount of a metal soap is 0.2 mass part or more, the dispersibility improvement effect of a silica covering titanium oxide particle by a metal soap will be easy to be acquired. In addition, if the amount of the metal soap added is 3 parts by mass or less, the occurrence of “meani” (deposition of low molecular weight fluororesin on the die surface) at the time of film formation due to excessive metal soap. It is easy to suppress and it is easy to mold continuously.
- the method of kneading ETFE and titanium oxide composite particles and, if necessary, the copper compound or the like is not particularly limited, and a known method can be used. For example, a method of blending a predetermined amount of ETFE, titanium oxide composite particles and the like and extruding them with a twin screw extruder can be used. In order to sufficiently disperse the titanium oxide composite particles in ETFE, it is necessary to knead at a temperature equal to or higher than the melting point of ETFE, and the temperature at the time of kneading is preferably 300 to 340 ° C.
- the method for molding the fluororesin film is not particularly limited, and a known molding method can be used.
- Examples of the embossing method of the fluororesin film include a method of forming a film by supporting the melted fluororesin on an embossing roll in which sand (sand) is supported on silicon rubber or the like.
- sand sand
- silicon rubber or the like since the fluororesin is brought into contact with the embossing roll from the T-die extruder and is stretched rapidly, the fluororesin is easily oriented on the film surface layer.
- the Ra of the film surface in contact with the outside air when used as the back sheet of the solar cell module in the obtained fluororesin film is the sand particle size, the roll temperature, and the air gap (distance from the die outlet to the roll), It can be adjusted by adjusting the resin temperature.
- the method of using the fluororesin film of the present invention is such that the arithmetic roughness Ra based on the provision of JIS B0601 on the surface of at least one film (the surface of the film in contact with the outside air) includes titanium oxide composite particles as described above.
- a fluororesin film having a thickness of 3 ⁇ m or less is used as the outermost layer of the back sheet of the solar cell module.
- the outermost layer film of the back sheet of the solar cell module is formed so that the film surface (the above-mentioned film surface in contact with the outside air) having an arithmetic roughness Ra of 3 ⁇ m or less based on the JIS B0601 is in contact with the outside air.
- the film surface the above-mentioned film surface in contact with the outside air
- Ra arithmetic roughness Ra of 3 ⁇ m or less based on the JIS B0601
- FIG. 1 is a view showing the back sheet 1 of the first embodiment
- FIG. 2 is a view showing the back sheet 2 of the second embodiment.
- the back sheet 1 of the present embodiment includes a laminate in which a fluororesin film 11, an adhesive layer 12, and a moisture-proof layer 13 are laminated in this order.
- the fluororesin film 11 is the outermost layer of the back sheet 1 and is a layer in contact with the outside air on the back surface of the solar cell module.
- the fluororesin film 11 the fluororesin film of the present invention is used.
- the surface 11a of the fluororesin film 11 (the film surface in contact with the outside air) has an arithmetic average roughness Ra adjusted to 3 ⁇ m or less.
- the shape of the fluororesin film 11 is not particularly limited, and can be appropriately selected according to the shape of the solar cell module to be used.
- the thickness of the fluororesin film 11 is preferably 12 to 100 ⁇ m, and more preferably 20 to 50 ⁇ m. If the thickness of the fluororesin film 11 is 12 ⁇ m or more, it is easy to suppress the opening of the fluororesin film 11 and the effect of protecting the sealing resin such as EVA of the solar cell module and the solar cell element is sufficiently obtained. It is easy to be done. Moreover, if the thickness of the fluororesin film 11 is 100 ⁇ m or less, the manufacturing cost can be further reduced.
- the adhesive layer 12 is a layer that adheres the fluororesin film 11 and the moisture-proof layer 13.
- an adhesive usually used for a back sheet of a solar cell module can be used. From the viewpoint of excellent hydrolysis resistance, a two-component urethane comprising a main agent and a curing agent. System adhesives are preferred.
- the thickness of the adhesive 12 is preferably 1 to 10 ⁇ m, and more preferably 2 to 5 ⁇ m.
- the thickness of the adhesive 12 is preferably thin, but if the thickness of the adhesive 12 is less than 1 ⁇ m, the adhesive strength between the fluororesin film 11 and the moisture-proof layer 13 may be insufficient, and the thickness of the adhesive 12 Is 1 ⁇ m or more, an adhesion strength of 3 N / cm or more can be obtained.
- the moisture-proof layer 13 plays a role of reducing moisture permeation through the back sheet 1 and improving moisture resistance.
- Examples of the moisture-proof layer 13 include metal foils such as aluminum foil and moisture-proof plastics such as moisture-proof polyethylene terephthalate.
- the thickness of the moisture-proof layer 13 is preferably 20 to 250 ⁇ m.
- This moisture-proof layer has few structures having only a moisture-proof effect, and at the same time has many structures having electrical insulation performance.
- a structure in which a PET film having a thickness of about 25 to 150 ⁇ m is laminated on one side or both sides of an aluminum foil having a thickness of about several ⁇ m to 20 ⁇ m, or a metal foil such as an aluminum foil is used.
- a plastic film such as a moisture-proof PET film of about ⁇ 250 ⁇ m.
- a primer layer may be formed for the purpose of improving adhesion with EVA or the like that is a sealing resin for the solar cell element of the solar cell module.
- the primer agent for forming the primer layer is preferably an acrylic polymer primer, a polyester primer, or an ethylene-vinyl acetate copolymer.
- a known method can be used as a method for manufacturing the backsheet 1.
- the backsheet 1 After the surface of the fluororesin film 11 is treated by corona discharge or plasma discharge, it is composed of the fluororesin film 11, the adhesive layer 12, and the moisture-proof layer 13 by a laminating method using an adhesive that forms the adhesive layer 12.
- a method of manufacturing the back sheet 1 by forming a laminate is exemplified.
- the back sheet 2 of 2nd Embodiment is the fluororesin film 11, the adhesive bond layer 12, the moisture-proof layer 13, the adhesive bond layer 14, and the fluororesin film 15 in this order.
- the fluororesin film 11, the adhesive layer 12, and the moisture-proof layer 13 in the back sheet 2 are the same as those of the back sheet 1 of the first embodiment, description thereof is omitted.
- the adhesive layer 14 is a layer that bonds the moisture-proof layer 13 and the fluororesin film 15 together.
- the adhesive forming the adhesive layer 14 the same adhesives as those mentioned in the adhesive layer 12 of the first embodiment can be used.
- the preferable thickness of the adhesive layer 14 is the same as that of the adhesive layer 12.
- the fluororesin film 15 plays a role of further improving the effect of protecting the sealing resin such as EVA of the solar cell module and the solar cell element.
- the fluorine resin film 11 the fluorine resin film of the present invention can be used for the fluorine resin film 15.
- the thickness of the fluororesin film 15 is preferably 12 to 100 ⁇ m, and more preferably 20 to 50 ⁇ m. If the thickness of the fluororesin film 15 is 12 ⁇ m or more, the effect of protecting the sealing resin such as EVA of the solar cell module and the solar cell element is easily obtained. Moreover, if the thickness of the fluororesin film 15 is 100 ⁇ m or less, the manufacturing cost can be further reduced.
- a primer layer is formed on the surface of the fluororesin film 15 for the purpose of improving adhesiveness with EVA or the like, which is a sealing resin for the solar cell element of the solar cell module, similarly to the back sheet 1 of the first embodiment. May be.
- a manufacturing method of the back sheet 2 a known method can be used, and a manufacturing method using a laminating method can be used as in the case of the back sheet 1.
- the back sheet of the present invention described above has the outermost layer of the fluororesin film of the present invention, it has excellent weather resistance. Therefore, the quality of the solar cell module can be maintained over a long period of time as compared with the conventional backsheet. Moreover, it can use suitably as a back seat
- the backsheet of the present invention is not limited to the backsheet illustrated in FIG. 1 and FIG. 2, and the configuration other than the fluororesin film is publicly known as a laminate using the fluororesin film of the present invention as the outermost layer. Various configurations can be used.
- the solar cell module of the present invention is a module including the above-described solar cell module backsheet, and has a transparent substrate, a filler layer encapsulating the solar cell elements, and the above-mentioned fluororesin film as an outermost layer.
- the arithmetic average roughness Ra of the film surface in contact with the outside air in the fluororesin film is 3 ⁇ m or less.
- a solar cell module provided with the above-described back sheet 1 or back sheet 2 so that the film surface 11a is in contact with the outside air.
- substrate normally used for a solar cell module can be used,
- a glass substrate is mentioned.
- the transparent substrate preferably has a transmittance of 90% or more at a wavelength of 400 nm to 1000 nm.
- the shape of the transparent substrate is not particularly limited, and can be appropriately selected according to the application.
- the solar cell element is an element that converts sunlight into electric energy, and a solar cell element that is usually used in a solar cell module can be used.
- the filler layer for sealing the solar cell element can be formed of a filler that is usually used in a solar cell module.
- the filler include EVA (ethylene-vinyl acetate copolymer).
- fine cracks are generated on the film surface by setting the arithmetic average roughness Ra of the film surface in contact with the outside air in the outermost fluororesin film of the back sheet to 3 ⁇ m or less. It is possible to suppress the occurrence of photoactivity of titanium oxide in the fluororesin film due to the influence of water entering the cracks. Therefore, since it is protected by a back sheet having excellent heat resistance and weather resistance, it can be used stably over a long period of time.
- Acid solubility (%) (amount of titanium oxide in sulfuric acid (g) /0.2 (g)) ⁇ 100
- Karl Fischer moisture content The sample (silica-coated titanium oxide particles) was allowed to stand for 24 hours at a constant temperature and humidity of 25 ° C. and a relative humidity of 55%. After equilibration, 1 g of the sample was subjected to the Karl Fischer moisture measuring device and the moisture vaporization attached thereto. Karl Fischer water content was measured at 100 ° C. and 300 ° C. using an apparatus (both manufactured by Mitsubishi Chemical Corporation), and the difference ( ⁇ 300-100 ) was calculated.
- the arithmetic average roughness Ra of the fluororesin film was measured according to JIS B0601 using a contact type surface roughness meter (manufactured by Kosaka Laboratory; Surfcoder SE-30H).
- the ultraviolet transmittance (%) at a wavelength of 360 nm specified by JIS R 3106 was measured.
- the ultraviolet transmittance at 360 nm is required to be less than 1% in consideration of protection of an adhesive or the like.
- volume resistivity The volume specific resistance (10 13 ⁇ ⁇ cm) of the obtained fluororesin film was measured by using a digital ultrahigh resistance / microammeter R8340 (manufactured by ADC) and applying a voltage of 500V. . Further, after performing an accelerated weather resistance test (SWM (Sunshine Weather Meter), 5000 hours) or a heat resistance test at 230 ° C. ⁇ 168 hours, volume resistivity was measured in the same manner. In the accelerated weather resistance test, an accelerated weather resistance test apparatus (Suga Tester: Sunshine 300) was used, and the exposure condition was a black panel temperature of 63 ° C.
- a thin fluororesin film of about 25 ⁇ m alone is not required to have high insulation performance, but those whose volume resistivity changes by 10 times or more after a weather resistance test or heat test are for solar cells. It was evaluated that it could not be used for the back sheet.
- the rupture strength and the rupture elongation after the accelerated weather resistance test (SWM, 5000 hours) or after the heat resistance test at 230 ° C. ⁇ 168 hours were measured, and the values before the test (initial value) Value) was calculated.
- Example 1 Rutile titanium oxide particles having an average particle size of 0.25 ⁇ m (CR50 manufactured by Ishihara Sangyo Co., Ltd.) were mixed with water, the pH was adjusted to 10 with sodium hydroxide, and an aqueous slurry having a titanium oxide concentration of 250 g / l was prepared. . While maintaining the aqueous slurry at 80 ° C., 2 parts by mass of sodium silicate in terms of SiO 2 was added to 100 parts by mass of the titanium oxide particles while stirring. Subsequently, the pH was neutralized to 5 with sulfuric acid over 2 hours to form a dense silica coating layer to obtain silica-coated titanium oxide particles.
- the resulting silica-coated titanium oxide particles were filtered off from the aqueous slurry, washed, and dried at 120 ° C. for 16 hours. Thereafter, the aggregate of the silica-coated titanium oxide particles was pulverized by a jet mill. As a result of evaluating the acid solubility of the silica-coated titanium oxide particles, the acid solubility was 25%. Further, the water content of the silica-coated titanium oxide particles was measured by the Karl Fischer method, and as a result, the water content difference ( ⁇ 300-100 ) was 0.25%.
- dimethyl silicone oil hydrophobized titanium oxide composite particles.
- silica-coated titanium oxide particles were added to and mixed with Corning, and baked at 140 ° C. for 2 hours to obtain hydrophobized titanium oxide composite particles.
- a fluororesin 5 kg of the titanium oxide composite particles were mixed with 20 kg of Fluon C-88AX (ETFE resin, manufactured by Asahi Glass) and mixed well. Next, it was extruded at a discharge temperature of 20 kg per hour at a temperature of 320 ° C. with a 35 mm same-direction twin screw extruder (TEM35: manufactured by Toshiba Machine) to obtain a white masterbatch containing 20% by mass of titanium oxide composite particles. It was. The white masterbatch was dried at 150 ° C. for 1 hour, diluted with C-88AX, blended so that the titanium oxide composite particles were 8.3% by mass, and a 25 ⁇ m-thick fluororesin film was molded.
- EFE resin Fluon C-88AX
- the molding machine used a 30 mm short shaft extruder with a 450 mm T die attached to the tip, and the film from the T die was held at a mirror surface roll held at 150 ° C. and 100 ° C.
- the sheet was passed while being nipped between the silicon embossing rolls, and corona discharge was performed on both sides.
- Ra on the mirror roll side was 0.12 ⁇ m and the embossing roll side was 1.32 ⁇ m.
- Example 2 A fluororesin film was molded in the same manner as in Example 1 except that the titanium oxide composite particles were blended so as to be 16.6% by mass (Example 2) and 20.0% by mass (Example 3).
- Example 4 Except for obtaining silica-coated titanium oxide particles by using 1.5 parts by mass (Example 4) and 5 parts by mass (Example 5) of sodium silicate in terms of SiO 2 with respect to 100 parts by mass of the titanium oxide particles.
- Example 5 was a fluororesin film in the same manner as in Example 1.
- Example 6 When obtaining the silica-coated titanium oxide particles, the silica-coated layer was formed by neutralizing the pH to 5 with sulfuric acid over 1.5 hours, and with respect to 100 parts by mass of the obtained silica-coated titanium oxide particles, Titanium oxide composite particles were obtained in the same manner as in Example 1 except that 7 parts by mass of isobutyltrimethoxysilane was used as the agent. Next, the titanium oxide composite particles were mixed well with C-88AX, and then extruded with a 35 mm same-direction twin screw extruder (TEM35: manufactured by Toshiba Machine) at a temperature of 320 ° C. and a discharge amount of 20 kg per hour. After kneading, a fluororesin film was molded in the same manner as in Example 1.
- TEM35 same-direction twin screw extruder
- Example 7 A fluororesin film was molded in the same manner as in Example 1 except that the embossing was not performed with a mirror surface roll and a silicon embossing roll.
- Example 8 A fluororesin film was molded in the same manner as in Example 1 except that copper oxide was added to a content of 50 ppm when diluting the white masterbatch of Example 1.
- Example 9 A fluororesin film was molded in the same manner as in Example 1 except that copper iodide was added so as to have a content of 30 ppm when the white masterbatch of Example 1 was diluted.
- Example 1 A fluororesin film was molded in the same manner as in Example 1 except that the titanium oxide composite particles were not used.
- Table 1 shows the evaluation results of the silica-coated titanium oxide particles and the fluororesin films in Examples 1 to 9 and Comparative Examples 1 to 6.
- DMS represents dimethyl silicone oil
- IBS represents isobutyltrimethoxysilane.
- the mass ratio of the silica coating layer in Table 1 is a value in terms of SiO 2 with respect to 100 parts by mass of the titanium oxide particles.
- arithmetic average roughness Ra [ ⁇ m] indicates a larger value of both values on the film surface, and usually there is an emboss with a large Ra on the silicon embossing roll side than on the mirror surface roll side. It is formed.
- the retention rate after the weather resistance test of a fluororesin film and a breaking elongation and a heat test is shown in FIG.
- the fluororesin films of Examples 1 to 9 had an ultraviolet transmittance at a wavelength of 360 nm of 0.1% or less, and were able to sufficiently protect the adhesive and moisture-proof plastic sheet of the back sheet. Further, the values of the volume resistivity were all 1 ⁇ 10 13 ⁇ ⁇ cm or more and sufficient electrical insulation properties were obtained, and the values did not change greatly due to the accelerated weather resistance test and the heat resistance test.
- the fluororesin film of the present invention contains a sufficient amount of titanium oxide, no foam streaks are formed on the film. Moreover, deterioration of the fluororesin is suppressed. Since the fluororesin film of the present invention is excellent in electrical insulation and weather resistance and has a small amount of water vapor transmission, it is also suitably used for a back sheet in a solar cell module that is installed obliquely at an optimum angle according to the latitude of the installation location. be able to.
- the entire contents of the specification, claims, drawings, and abstract of Japanese Patent Application No. 2008-312736 filed on Dec. 8, 2008 are cited herein as disclosure of the specification of the present invention. Incorporated.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Medicinal Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Power Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Electromagnetism (AREA)
- Health & Medical Sciences (AREA)
- Polymers & Plastics (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Laminated Bodies (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Photovoltaic Devices (AREA)
Abstract
Description
また、太陽電池モジュールは長期間にわたって屋外に曝されるため、バックシートの最外層フィルムには充分な耐候性、耐熱性が要求される。具体的には、カーボンアーク型サンシャインウェザメータ(SWM)による250~500時間の暴露が屋外暴露の1年に相当することから、SWMによる5000時間(10~20年に相当)の暴露での強度低下が初期の半分以下に抑えられること(耐候性)が要求される。また、実際の太陽電池の温度が最高でも90℃程度であるとされていることから、90℃、20年間の条件において強度の低下を実用上問題のない程度に抑えられる耐熱性が要求される。
ETFEフィルムは比較的柔軟であることから、最外層フィルムに用いる場合は、表面の光沢度を抑えてこすれ傷を目立たなくするため、表面にエンボス加工が施される。
また、バックシートにおいては、フッ素樹脂フィルム(最外層フィルム)のみでは水蒸気透過量を充分に抑えきれないため、フッ素樹脂フィルムとアルミニウム箔または防湿プラスチックシートを積層して太陽電池モジュール内に侵入する水蒸気を遮断する方法が実施される。この場合、その積層に用いる接着剤やプラスチックシートを太陽光から保護する点から、フッ素樹脂フィルムには、波長360nm以下の紫外線の透過率が1%未満であることが要求される。そして、波長360nm以下の紫外線の透過率の低減は、フッ素樹脂フィルムに酸化チタン等の白色顔料を分散させることにより実現できる。
以上の理由から、これまでの技術では、バックシートの最外層フィルムにおいて、フィルムに発泡スジが形成されず、フィルムを形成するフッ素樹脂が劣化することを抑え、かつ、充分な量の酸化チタンを含有させることは困難であることがわかった。
また、本発明では、充分な量の酸化チタンを含有させても、フィルムに発泡スジが形成さず、フッ素樹脂が劣化することが抑制され、波長360nm以下の紫外線の透過率が低く、優れた耐熱性、耐候性を有するフッ素樹脂フィルムの使用方法を提供することを目的とする。
また、本発明では、優れた耐熱性、耐候性を有し、長期間にわたって安定して太陽電池モジュールを保護することのできる太陽電池モジュール用バックシート、およびそれを備えた太陽電池モジュールを提供する。
酸化チタン複合粒子:酸化チタン粒子表面にシリカ被覆層を形成したシリカ被覆酸化チタン粒子を疎水化剤で疎水化処理して得られた酸化チタン複合粒子であって、下記(a)~(c)を満たす粒子。
(a)シリカ被覆酸化チタン粒子において、酸化チタン粒子100質量部に対するシリカ被覆層の量がSiO2換算で1.5~5質量部である。
(b)シリカ被覆酸化チタン粒子において、300℃と100℃のカールフィッシャー水分量の差(△300-100)が0.5%以下である。
(c)酸化チタン複合粒子において、シリカ被覆酸化チタン粒子100質量部に対する疎水化剤の量が0.5~10質量部である。
また、前記酸化チタン複合粒子の平均粒子径が、0.1~0.4μmであることが好ましい。
また、前記酸化チタン複合粒子の酸溶解性が、15~50%であることが好ましい。
また、前記疎水化剤が、アルキル基を有するシランカップリング剤(S1)、またはシリコーン化合物(S2)であることが好ましい。
また、本発明のフッ素樹脂フィルムは、厚みが12~100μmであることが好ましい。
また、前記算術平均粗さRaが0.5~2.5μmであることが好ましい。
また、さらに銅化合物を5~500ppm含むことが好ましい。
酸化チタン複合粒子:酸化チタン粒子表面にシリカ被覆層を形成したシリカ被覆酸化チタン粒子を疎水化剤で疎水化処理して得られた酸化チタン複合粒子であって、下記(a)~(c)を満たす粒子。
(a)シリカ被覆酸化チタン粒子において、酸化チタン粒子100質量部に対するシリカ被覆層の量がSiO2換算で1.5~5質量部である。
(b)シリカ被覆酸化チタン粒子において、300℃と100℃のカールフィッシャー水分量の差(△300-100)が0.5%以下である。
(c)酸化チタン複合粒子において、シリカ被覆酸化チタン粒子100質量部に対する疎水化剤の量が0.5~10質量部である。
また、本発明の使用方法によれば、充分な量の酸化チタンを含有させても、フィルムに発泡スジが形成されず、フッ素樹脂が劣化することが抑制され、波長360nm以下の紫外線の透過率が低く、優れた耐熱性、耐候性を有するフッ素樹脂フィルムを太陽電池モジュール用バックシートに用いることにより、長期間にわたって安定して太陽電池モジュールを保護できる。
また、本発明の太陽電池モジュール用バックシートは、前記フッ素樹脂フィルムを用いることで優れた耐熱性、耐候性が得られる。そのため、長期間にわたって安定して太陽電池モジュールを保護できる。
また、本発明の太陽電池モジュールは、長期間にわたって安定して使用できる。
本発明のフッ素樹脂フィルムは、太陽電池モジュールのバックシートの最外層に用いるフィルムである。また、本発明のフッ素樹脂フィルムは、エチレン-テトラフルオロエチレン共重合体(ETFE)を主成分とするフィルムであり、酸化チタン粒子表面にシリカ被覆層を形成したシリカ被覆酸化チタン粒子を、疎水化剤で疎水化処理した酸化チタン複合粒子を含む。また、外気に接するフィルム表面のJIS B0601の規定に基づく算術平均粗さRaが3μm以下である。
ETFEを主成分とするフッ素樹脂フィルムは、フィルムを構成する全樹脂100質量%に対するETFEの質量割合が90質量%以上であることが好ましく、98質量%以上であることがより好ましく、100質量%であることが特に好ましい。
ETFEは、テトラフルオロエチレン(以下、「TFE」という。)に基づく繰返し単位とエチレンに基づく繰返し単位を有する。両者のモル比(TFE/エチレン)は、20/80~80/20が好ましく、30/70~70/30がより好ましく、40/60~60/40がさらに好ましい。
他の単量体としては、例えば、CF2=CFCl、CF2=CH2等のフルオロエチレン類(TFEを除く。);ヘキサフルオロプロピレン(HFP)、オクタフルオロブテン-1等のC3~5のパーフルオロオレフィン類;X(CF2)nCY=CH2(ここで、X、Yは、水素原子又はフッ素原子であり、nは2~8の整数を示す)で表されるポリフルオロアルキルエチレン類;RfOCFXCF2)nOCF=CF2(ただし、Rfは、炭素数1~6のパーフルオロアルキル基、Xは、フッ素原子またはトリフルオロメチル基、mは、0~5の整数を表す。)等のパーフルオロビニルエーテル類;CH3OC(=O)CF2CF2CF2OCF=CF2、FSO2CF2CF2OCF(CF3)CF2OCF=CF2等の容易にカルボン酸基またはスルホン酸基に変換可能な基を有するパーフルオロビニルエーテル類;CF2=CFOCF2CF=CF2、CF2=CFO(CF2)2CF=CF2等の不飽和結合を有するパーフルオロビニルエーテル類;ペルフルオロ(2,2-ジメチル-1,3-ジオキソール)(PDD)、2,2,4-トリフルオロ-5-トリフルオロメトキシ-1,3-ジオキソール、ペルフルオロ(2-メチレン-4-メチル-1,3-ジオキソラン)等の脂肪族環構造を有する含フッ素モノマー類;C3オレフィン(プロピレン等)、C4オレフィン(ブチレン、イソブチレン等)等のオレフィン類(エチレンを除く。)が挙げられる。
X(CF2)nCY=CH2で表されるポリフルオロアルキルエチレンにおいて、nは2~6が好ましく、2~4がより好ましい。その具体例としては、CF3CF2CH=CH2、CF3CF2CF2CF2CH=CH2、CF3CF2CF2CF2CF=CH2、CF2HCF2CF2CF=CH2、CF2HCF2CF2CF=CH2などが挙げられる。
Rf(OCFXCF2)mOCF=CF2等のパーフルオロビニルエーテル類の具体例としては、ペルフルオロ(メチルビニルエーテル)、ペルフルオロ(エチルビニルエーテル)(PEVE)、ペルフルオロ(プロピルビニルエーテル)(PPVE)、CF2=CFOCF2CF(CF3)O(CF2)2CF3、CF2=CFO(CF2)3O(CF2)2CF3、CF2=CFO(CF2CF(CF3)O)2(CF2)2CF3、CF2=CFOCF2CF(CF3)O(CF2)2CF3が挙げられる。
ETFEにおける他の単量体としては、前記ポリフルオロアルキルエチレン、HFP、PPVEが好ましく、HFP、PPVE、CF3CF2CH=CH2、CF3(CF2)3CH2=CHがより好ましい。
これらの他の単量体は、1種を単独で使用してもよく、2種以上を併用してもよい。
酸化チタン複合粒子は、酸化チタン粒子表面にシリカ被覆層を形成したシリカ被覆酸化チタン粒子を、さらに疎水化剤により疎水化処理した粒子である。酸化チタンは、可視光の屈折率が高く、炭酸カルシウムや酸化亜鉛、硫酸バリウムといった白色顔料よりも耐薬品性に優れ、堅牢であり、フッ素樹脂フィルムの耐候性を向上させることができる。
酸化チタン粒子の結晶型は、光活性がより低いとされるルチル型が好ましい。また、硫酸チタン溶液を加水分解する硫酸法や、ハロゲン化チタンを気相酸化する塩素法により得た酸化チタン粒子であってもよい。
試料(シリカ被覆酸化チタン粒子)0.2gを、98%硫酸10ml中に添加し、1分間超音波を当てて分散させた後、180℃で1時間加熱する。次いで、遠心分離機により試料を硫酸から固液分離し、硫酸中の酸化チタン量(TiO2換算)を比色法により測定し、その測定値から下式により酸溶解性を算出する。
酸溶解性(%)=(硫酸中の酸化チタン量(g)/0.2(g))×100
酸溶解性は、小さいほどシリカ被覆層が緻密でより優れた耐候性が得られ、15~50%であることが好ましく、15~30%であることがより好ましい。
シリコーンオイルとしては、例えば、ジメチルシリコーンオイル、フェニルメチルシリコーンオイル等のストレートシリコーンオイル;アルキル変性シリコーンオイル、アルキルアラルキル変性シリコーンオイル、フッ素化アルキル変性シリコーンオイル等が挙げられる。なかでも、コストの点でジメチルシリコーンオイルが好ましく、耐熱性の点からフェニルメチルシリコーンオイルが好ましい。
また、シリコーンオイルの分子量は、シリカ被覆酸化チタン粒子のシリカ被覆層における酸化ケイ素等の酸素官能基と、シリコーンオイルとを高効率で反応させ、均一かつ緻密な処理被膜を形成してフッ素樹脂内でのより良好な分散性を得る点から、1500以下であることが好ましい。
添加剤としては、酸化銅やヨウ化銅等の銅化合物が挙げられる。前記銅化合物を含有させることにより、得られるフッ素樹脂フィルムの耐熱性が向上する。前記銅化合物の粒子径は、1~50μmであることが好ましい。
フッ素樹脂フィルム中の銅化合物の含有量は、ETFE100質量部に対して、1×10-4~5×10-2質量部(1~500ppm)が好ましく、5×10-4~3×10-2質量部(5~300ppm)がより好ましく、1×10-3~2×10-2質量部(10~200ppm)が最も好ましい。銅化合物の含有量が1ppm以上であれば、フッ素樹脂フィルムの耐熱性を向上させやすい。また、銅化合物の含有量が500ppm以下であれば、フッ素樹脂フィルムにおける絶縁抵抗等の電気的特性の低下を抑制しやすい。
本発明における検討により、これら2要件を満たすだけでは、酸化チタンの光活性の抑制効果を充分に維持できず、優れた耐候性が得られないことがわかった。さらに検討を進めた結果、耐候性が不充分となるのは以下の理由によることがわかった。すなわち、バックシートの最外層フィルムには、表面のこすれ傷を目立たなくする目的や、フィルム表面での太陽光の正反射を抑制する目的から、エンボス加工が施される。しかし、最外層フィルムとなるフッ素樹脂フィルム表面(外気と接する面)が粗すぎると、該フィルム表面に微細なクラックが発生し、該クラック部分に露出した酸化チタン複合粒子が水分の影響を受けることで、酸化チタンの光活性が発現する可能性が高くなる。そこで、本発明では、フィルム表面の粗さと酸化チタンの光活性低減を維持する効果との関連を調べ、フィルム表面の粗さが特定の条件を満たす場合に、シリカ被覆層を形成したことによる酸化チタンの光活性の抑制効果を充分に維持できることを見い出した。
バックシートの最外層フィルムに従来用いられている白色PVF(ポリフッ化ビニル)やPVdF(ポリフッ化ビニリデン)のフッ素樹脂フィルムに施されるエンボス加工では、該最外層フィルムの算術平均粗さRaが0.1~0.4μmである。Raが小さい理由は、白色PVFやPVdFでは、フッ素樹脂そのものが伸びに乏しいためにエンボス加工がしくいこと、及び、フッ素樹脂そのものが硬いために傷が見えにくいため、この程度のRaが適用されると考えられる。
ETFEにおいては、外気に接するフィルム表面の算術平均粗さRaを0.5~3μmにすることにより、微細なクラックの発生が抑えられ、該クラックに浸入する水の影響で酸化チタンの光活性が発現することが防止される。また、算術平均粗さRaが0.5μm以上であれば、該フィルム表面に傷が形成されてもその傷が目立ち難い。また、算術平均粗さRaが3.0μm以下であれば、フィルムに微細なクラックが発生することを抑制しやすい。
算術平均粗さRaは、例えば、接触式表面粗さ計(小坂研究所製;サーフコーダーSE-30H)を用いて測定できる。
本発明のフッ素樹脂フィルムは、フィルム片面(外気と接触させる面)が、上記の算術平均粗さRaの条件を満たすものであればよく、フィルムの両面の算術平均粗さRaが3μm以下であってもよい。
以下、本発明のフッ素樹脂フィルムの製造方法の一例について説明する。
酸化チタン粒子表面にシリカ被覆層を形成する方法は、特開昭53-33228号公報、特開2006-37090号公報等に記載の方法を用いることができる。例えば、以下に示す方法が挙げられる。
まず、酸化チタン粒子を水中に分散させて水性スラリーを得る。該水性スラリーを得る際には、ボールミル等の湿式粉砕機を用いてもよい。また、酸化チタン粒子を水中に安定して分散させることができる点から、前記水性スラリーのpHは9以上に調整することが好ましい。pH調整には、アルカリ金属またはアルカリ土類金属の、水酸化物、炭酸塩又はアンモニウム塩等の塩基性化合物を用いることができる。なかでも、水酸化ナトリウムが工業的に好ましい。また、酸化チタン粒子の分散性を向上させる目的で、ケイ酸ナトリウム、ケイ酸カリウム等のケイ酸化合物等の分散剤を併用してもよい。
また、シリカ被覆酸化チタン粒子の水分量差(△300-100)は、シリカ被覆層を形成した後に、シリカ被覆酸化チタン粒子を300℃以上で焼成することにより、さらに小さくできる。また、焼成は、シリカ被覆酸化チタン粒子が変質することを防止しやすい点から、500℃以下であることが好ましい。
方法(1)は、シランカップリング剤(S1)の場合、例えば、シランカップリング剤(S1)をイソプロピルアルコール等のアルコール類、トルエン、ヘキサン等の溶剤に必要量を溶解する。次いで、シリカ被覆酸化チタン粒子を該溶剤に分散させてその表面に該疎水化剤を吸着・反応させ、100℃程度で溶剤を蒸発させ、次いで140℃~170℃で焼付けを行う方法(湿式処理方法)を用いることができる。また、シリコーン化合物(S2)の場合、例えば、シリコーンオイルをミスト状態にしてシリカ被覆酸化チタン粒子に吹き付け、70℃程度で乾燥する方法(乾式処理方法)を用いることができる。
金属石鹸としては、ステアリン酸の亜鉛塩やカルシウム塩、リチウム塩等が挙げられる。
酸化チタン複合粒子をETFEに充分に分散させるには、ETFEの融点以上で混練する必要があり、混練する際の温度は、300~340℃であることが好ましい。
得られるフッ素樹脂フィルムにおいて太陽電池モジュールのバックシートとして用いた際に外気に接するフィルム表面のRaは、サンド(砂)の粒径、ロール温度、およびエアギャップ(ダイス出口からロールまでの距離)、樹脂温度を調整することにより調整できる。
本発明のフッ素樹脂フィルムの使用方法は、前述したような、酸化チタン複合粒子を含み、かつ少なくとも一方のフィルム表面(前述の外気に接するフィルム表面)のJIS B0601の規定に基づく算術粗さRaが3μm以下であるフッ素樹脂フィルムを、太陽電池モジュールのバックシートの最外層として用いる方法である。
以下、本発明のフッ素樹脂フィルムを最外層として用いた太陽電池モジュールのバックシートについて説明する。
本発明の太陽電池モジュール用バックシート(以下、単に「バックシート」という。)は、前述の本発明のフッ素樹脂フィルムを最外層に備えた積層体からなる。以下、本発明のバックシートの実施形態の一例を示して詳細に説明する。図1は第1実施形態のバックシート1を示した図であり、図2は第2実施形態のバックシート2を示した図である。
本実施形態のバックシート1は、図1に示すように、フッ素樹脂フィルム11、接着剤層12、および防湿層13がこの順に積層された積層体からなる。
フッ素樹脂フィルム11の形状は特に限定されず、用いる太陽電池モジュールの形状に合わせて適宜選択することができる。
接着剤層12を形成する接着剤は、太陽電池モジュールのバックシートに通常用いられる接着剤を用いることができ、耐加水分解性に優れる点から、主剤と硬化剤とからなる2液型のウレタン系接着剤が好ましい。
防湿層13としては、例えば、アルミニウム箔等の金属箔や、防湿ポリエチレンテレフタレート等の防湿プラスチックが挙げられる。
この防湿層は防湿効果のみを持つ構成のものは少なく、同時に電気的な絶縁性能を持つ構成のものが多い。具体的には、厚さ数μm~20μm程度のアルミニウム箔に、厚さ25~150μm程度のPETフィルムを片側または両面に積層した構成のものや、アルミニウム箔等の金属箔を使用せず、60~250μm程度の防湿PETフィルム等のプラスチックフィルムのみからなるもの等がある。
接着剤層14を形成する接着剤としては、第1実施形態の接着剤層12で挙げたものと同じものを用いることができる。また、接着剤層14の好ましい厚みについても接着剤層12と同じである。
フッ素樹脂フィルム15には、フッ素樹脂フィルム11と同様に本発明のフッ素樹脂フィルムを用いることができる。また、ETFEを用いた白色または黒色の公知のフッ素樹脂フィルムを用いてもよい。また、PVFやPVdFからなる白色または黒色の公知のフッ素樹脂フィルムを用いてもよい。
バックシート2の製造方法は、公知の方法を用いることができ、バックシート1の場合と同様にラミネート法を利用した製造方法等を用いることができる。
尚、本発明のバックシートは図1および図2に例示したバックシートに限定されず、本発明のフッ素樹脂フィルムを最外層として用いた積層体とすれば、該フッ素樹脂フィルム以外の構成は公知の様々な構成を用いることができる。
本発明の太陽電池モジュールは、前述した太陽電池モジュール用バックシートを備えたモジュールであり、透明基板、太陽電池素子を封止した充填材層、および前述のフッ素樹脂フィルムを最外層に有するバックシートをこの順に備え、前記フッ素樹脂フィルムにおける外気に接するフィルム表面の算術平均粗さRaが3μm以下のモジュールである。
具体例としては、前述のバックシート1やバックシート2を、フィルム表面11aが外気に接するように備えた太陽電池モジュールが挙げられる。
また、透明基板の形状も特に限定されず、用途に応じて適宜選択することができる。
[評価方法]
以下、本実施例におけるシリカ被覆酸化チタン粒子の評価方法について説明する。
(酸溶解性)
試料(シリカ被覆酸化チタン粒子)の0.2gを、98%硫酸10ml中に添加し、1分間超音波を当てて分散させた後、180℃で1時間加熱する。次いで、遠心分離機により試料を硫酸から固液分離し、硫酸中の酸化チタン量(TiO2換算)を比色法により測定し、その測定値から下式により酸溶解性を算出する。
酸溶解性(%)=(硫酸中の酸化チタン量(g)/0.2(g))×100
試料(シリカ被覆酸化チタン粒子)を、温度25℃、相対湿度55%の恒温恒湿度下で24時間放置し、平衡状態にした後、その試料1gをカールフィッシャー水分測定装置およびそれに付属した水分気化装置(いずれも三菱化学製)を用いて100℃および300℃の温度でカールフィッシャー水分量を測定し、その差(△300-100)を算出した。
フッ素樹脂フィルムの算術平均粗さRaは、接触式表面粗さ計(小坂研究所製;サーフコーダーSE-30H)を用い、JIS B0601に準拠して測定した。
(フィルム外観)
フィルム外観については、発泡スジが発生しているかどうかを目視で検査した。発泡スジが発生しなかったものを「○」、発生したものを「×」とした。
島津製作所のUV-PC3300測定器を用い、JIS R 3106で規定される波長360nmの紫外線透過率(%)を測定した。太陽電池用のバックシートに本発明のフッ素樹脂フィルムを用いる場合、接着剤等の保護を考慮すると360nmの紫外線透過率は1%未満であることが要求される。
得られたフッ素樹脂フィルムの体積固有抵抗(1013Ω・cm)は、デジタル超高抵抗/微少電流計 R8340(エーディーシー製)を用い、500Vの電圧を印加した後の体積固有抵抗を測定した。また、促進耐候性試験(SWM(サンシャインウェザメータ)、5000時間)を行った後、または230℃×168時間の耐熱試験を行った後に、同様にして体積固有抵抗を測定した。促進耐候性試験は、促進耐候性試験装置(スガ試験機:サンシャイン300)を用い、暴露条件はブラックパネル温度を63℃とした。
電気絶縁性については、25μm程度の薄いフッ素樹脂フィルム単独で高い絶縁性能が要求されるわけではないが、体積固有抵抗が耐候性試験や耐熱試験の後で10倍以上変化するものは太陽電池用のバックシートには採用できないと評価した。
測定装置として試料回転型のギアオーブン(エスペック製GPHH-101)を用い、得られたフッ素樹脂フィルムを7cm×15cmのサイズに切り取ったものを投入し、ASTM D638 TYPE Vに定める形状にダンベル片を抜き、縦方向(MD方向)と横方向(TD方向)の破断強度(MPa)および破断伸度(%)を測定した。そして、縦方向と横方向との平均をフッ素樹脂フィルムの破断強度および破断伸度とした。
また、体積固有抵抗の場合と同様に、促進耐候性試験(SWM、5000時間)後または230℃×168時間の耐熱試験後の、破断強度と破断伸度を測定し、試験前の値(初期値)に対する保持率(%)を算出した。
得られたフッ素樹脂フィルムの鏡面ロール側に、所定の配合を行った接着剤(AD76P1:東洋モートン製)を塗布し、乾燥後に150μmのPETフィルム(製品名:メリネックス、帝人デュポンフィルム製)と張り合わせた。フィルム表面に硬さ4Bの鉛筆にて500gの加重をかけた後、フィルムに傷が有無を目視で判定した。傷がないものを「○」(良)、傷があるものを「×」(不良)とした。ただし、4B硬度試験の結果が「○」であることは、本発明のフッ素樹脂フィルムに必ずしも必要な条件ではない。
平均粒子径が0.25μmのルチル型酸化チタン粒子(石原産業製CR50)を水と混合し、水酸化ナトリウムでpHを10に調整し、酸化チタンの濃度が250g/lの水性スラリーを調製した。該水性スラリーを80℃に保持し、撹拌しながら、酸化チタン粒子の100質量部に対してSiO2換算で2質量部のケイ酸ナトリウムを加えた。続いて2時間かけて硫酸でpHを5に中和し、緻密なシリカ被覆層を形成してシリカ被覆酸化チタン粒子を得た。得られたシリカ被覆酸化チタン粒子を、水性スラリーから濾別、洗浄し、120℃で16時間乾燥した。その後、シリカ被覆酸化チタン粒子の凝集物を、ジェットミルにて粉砕した。
シリカ被覆酸化チタン粒子の酸溶解性を評価した結果、酸溶解性は25%であった。また、カールフィッシャー法により、シリカ被覆酸化チタン粒子の水分量の測定を行った結果、水分量差(△300-100)は0.25%であった。
その後、このシリカ被覆酸化チタン粒子100質量部に対して、2質量部となるように調整してイソプロピルアルコール(IPA)に分散させたジメチルシリコーンオイル(疎水化剤、商品名:SH200、東レ・ダウコーニーング製)に、シリカ被覆酸化チタン粒子を添加して混合し、140℃で2時間焼き付け、疎水化処理した酸化チタン複合粒子を得た。
前記白色マスターバッチを150℃で1時間乾燥後、C-88AXにて希釈し、酸化チタン複合粒子が8.3質量%となるように配合して厚み25μmのフッ素樹脂フィルムを成型した。押し出し条件については、成型機は先端に450mmのTダイを装着した30mm短軸押出し機を使用し、Tダイから出たフィルムは、150℃に保持された鏡面ロールと、100℃に保持されたシリコンエンボスロールの間でニップしながら通過させ、両面にコロナ放電を実施した。このフィルム表面の算術平均粗さRaを測定した結果、鏡面ロール側のRaは、0.12μm、エンボスロール側は1.32μmであった。
酸化チタン複合粒子が16.6質量%(実施例2)、20.0質量%(実施例3)となるように配合した以外は、実施例1と同様にしてフッ素樹脂フィルムを成型した。
酸化チタン粒子の100質量部に対して、SiO2換算で1.5質量部(実施例4)、5質量部(実施例5)のケイ酸ナトリウムを用いてシリカ被覆酸化チタン粒子を得た以外は、実施例1と同様にしてフッ素樹脂フィルムを成型した。
シリカ被覆酸化チタン粒子を得る際に、1.5時間かけて硫酸でpHを5に中和してシリカ被覆層を形成し、また得られたシリカ被覆酸化チタン粒子100質量部に対して、疎水化剤として7質量部のイソブチルトリメトキシシランを用いた以外は、実施例1と同様にして酸化チタン複合粒子を得た。
次いで、前記酸化チタン複合粒子をC-88AXによく混合した後、35mmの同方向2軸押出機(TEM35:東芝機械製)にて、温度320℃、1時間あたり20kgの吐出量にて押し出して混練した後、実施例1と同様にしてフッ素樹脂フィルムを成型した。
鏡面ロールとシリコンエンボスロールによりエンボス加工しなかった以外は、実施例1と同様にしてフッ素樹脂フィルムを成型した。
実施例1の前記白色マスターバッチの希釈の際に、酸化銅を含有量が50ppmとなるように添加した以外は、実施例1と同様にしてフッ素樹脂フィルムを成型した。
実施例1の前記白色マスターバッチの希釈の際に、ヨウ化銅を含有量が30ppmとなるように添加した以外は、実施例1と同様にしてフッ素樹脂フィルムを成型した。
酸化チタン複合粒子を用いなかった以外は、実施例1と同様にしてフッ素樹脂フィルムを成型した。
酸化チタン粒子の100質量部に対して、SiO2換算で1質量部(比較例2)、7質量部(比較例3)、10質量部(比較例4)のケイ酸ナトリウムを用いてシリカ被覆酸化チタン粒子を得た以外は、実施例1と同様にしてフッ素樹脂フィルムを成型した。
シリカ被覆酸化チタン粒子を得る際に、10分かけて硫酸でpHを5に中和してシリカ被覆層を形成した以外は、実施例1と同様にしてフッ素樹脂フィルムを成型した。
酸化チタン粒子の100質量部に対して、SiO2換算で3質量部のケイ酸ナトリウムを用い、シリカ被覆酸化チタン粒子を得る際に、0.5時間かけて硫酸でpHを5に中和してシリカ被覆層を形成した以外は、実施例1と同様にして酸化チタン複合粒子を得た。
また、押し出し条件については実施例1とほぼ同じであるが、異なる点はTダイ形式でフィルムを成型する際、Tダイとニップ(鏡面ロールとシリコンエンボスロールの接点)の間隔(いわゆるエアギャップ)を12cmから7cmに接近させ、樹脂が外気により冷やされる時間を短くしてエンボス加工を行った点である。
実施例1~9および比較例1~6における、シリカ被覆酸化チタン粒子およびフッ素樹脂フィルムの評価結果を表1に示す。ただし、表1中の「DMS」はジメチルシリコーンオイル、「IBS」はイソブチルトリメトキシシランを示す。また、表1中のシリカ被覆層の質量割合は、酸化チタン粒子の100質量部に対するSiO2換算での値である。また、「算術平均粗さRa[μm]」は、フィルム表面の両面の値のうち大きい値の方を示しており、通常は、鏡面ロール側よりも、シリコンエンボスロール側にRaが大きいエンボスが形成される。また、フッ素樹脂フィルムの破断強度および破断伸度の耐候性試験後および耐熱試験後の保持率を図3に示す。
実施例1~9のフッ素樹脂フィルムは、波長360nmの紫外線透過率が0.1%以下であり、バックシートの接着剤や防湿プラスチックシートを充分に保護できる性能を備えていた。また、体積固有抵抗の値は全て1×1013Ω・cm以上で充分な電気絶縁性を有しており、かつ、その値が促進耐候性試験や耐熱試験により大きく変化することがなかった。
また、酸化チタン複合粒子におけるシリカ被覆層の質量割合が多い比較例3および4のフッ素樹脂フィルムでは、シリカ被覆酸化チタン粒子の水分量差(△300-100)が大きく、耐熱試験後の破断強度および破断伸度が低い。それに加え、フィルム表面に発泡スジが形成され外観不良であった。また、酸化チタン複合粒子を得る際のシリカ被覆酸化チタン粒子の水分量差(△300-100)が0.55%の比較例5のフッ素樹脂フィルムでも、フィルム表面に発泡スジが形成され外観不良であった。
なお、2008年12月8日に出願された日本特許出願2008-312736号の明細書、特許請求の範囲、図面及び要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。
Claims (11)
- 太陽電池モジュールのバックシートの最外層に用いる、エチレン-テトラフルオロエチレン共重合体を主成分とするフッ素樹脂フィルムであって、
下記酸化チタン複合粒子を含み、外気に接するフィルム表面のJIS B0601の規定に基づく算術平均粗さRaが3μm以下である、フッ素樹脂フィルム。
酸化チタン複合粒子:酸化チタン粒子表面にシリカ被覆層を形成したシリカ被覆酸化チタン粒子を疎水化剤で疎水化処理して得られた酸化チタン複合粒子であって、下記(a)~(c)を満たす粒子。
(a)シリカ被覆酸化チタン粒子において、酸化チタン粒子100質量部に対するシリカ被覆層の量がSiO2換算で1.5~5質量部である。
(b)シリカ被覆酸化チタン粒子において、300℃と100℃のカールフィッシャー水分量の差(△300-100)が0.5%以下である。
(c)酸化チタン複合粒子において、シリカ被覆酸化チタン粒子100質量部に対する疎水化剤の量が0.5~10質量部である。 - 前記酸化チタン複合粒子の含有量が6~25質量%である、請求項1に記載のフッ素樹脂フィルム。
- 前記酸化チタン複合粒子の平均粒子径が、0.1~0.4μmである、請求項1または2に記載のフッ素樹脂フィルム。
- 前記酸化チタン複合粒子の酸溶解性が、15~50%である、請求項1~3のいずれかに記載のフッ素樹脂フィルム。
- 前記疎水化剤が、アルキル基を有するシランカップリング剤(S1)、またはシリコーン化合物(S2)である、請求項1~4のいずれかに記載のフッ素樹脂フィルム。
- 厚みが12~100μmである、請求項1~5のいずれかに記載のフッ素樹脂フィルム。
- 前記算術平均粗さRaが0.5~2.5μmである、請求項1~6のいずれかに記載のフッ素樹脂フィルム。
- さらに、銅化合物を1~500ppm含む、請求項1~7のいずれかに記載のフッ素樹脂フィルム。
- 請求項1~8のいずれかに記載のフッ素樹脂フィルムを最外層に備えた積層体からなる太陽電池モジュール用バックシート。
- 透明基板、太陽電池素子を封止した充填材層、および請求項9に記載のバックシートをこの順に備える太陽電池モジュール。
- エチレン-テトラフルオロエチレン共重合体を主成分とするフッ素樹脂フィルムであり、下記酸化チタン複合粒子を含み、少なくとも一方のフィルム表面のJIS B0601の規定に基づく算術平均粗さRaが3μm以下であるフッ素樹脂フィルムを、太陽電池モジュールのバックシートの最外層として、前記フィルム表面が外気に接するように用いる、フッ素樹脂フィルムの使用方法。
酸化チタン複合粒子:酸化チタン粒子表面にシリカ被覆層を形成したシリカ被覆酸化チタン粒子を疎水化剤で疎水化処理して得られた酸化チタン複合粒子であって、下記(a)~(c)を満たす粒子。
(a)シリカ被覆酸化チタン粒子において、酸化チタン粒子100質量部に対するシリカ被覆層の量がSiO2換算で1.5~5質量部である。
(b)シリカ被覆酸化チタン粒子において、300℃と100℃のカールフィッシャー水分量の差(△300-100)が0.5%以下である。
(c)酸化チタン複合粒子において、シリカ被覆酸化チタン粒子100質量部に対する疎水化剤の量が0.5~10質量部である。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP09831907A EP2357674B1 (en) | 2008-12-08 | 2009-12-08 | Fluorine resin film and use thereof |
CN200980149346.5A CN102246317B (zh) | 2008-12-08 | 2009-12-08 | 氟树脂薄膜及其使用 |
ES09831907T ES2397210T3 (es) | 2008-12-08 | 2009-12-08 | Película de resina fluorada y uso de la misma |
JP2010542111A JP5223929B2 (ja) | 2008-12-08 | 2009-12-08 | フッ素樹脂フィルム及びその使用 |
US13/114,204 US8802968B2 (en) | 2008-12-08 | 2011-05-24 | Fluororesin film and its use |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008312736 | 2008-12-08 | ||
JP2008-312736 | 2008-12-08 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/114,204 Continuation US8802968B2 (en) | 2008-12-08 | 2011-05-24 | Fluororesin film and its use |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2010067803A1 true WO2010067803A1 (ja) | 2010-06-17 |
Family
ID=42242792
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2009/070559 WO2010067803A1 (ja) | 2008-12-08 | 2009-12-08 | フッ素樹脂フィルム及びその使用 |
Country Status (8)
Country | Link |
---|---|
US (1) | US8802968B2 (ja) |
EP (1) | EP2357674B1 (ja) |
JP (1) | JP5223929B2 (ja) |
KR (1) | KR20110102316A (ja) |
CN (1) | CN102246317B (ja) |
ES (1) | ES2397210T3 (ja) |
TW (1) | TW201033259A (ja) |
WO (1) | WO2010067803A1 (ja) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102176480A (zh) * | 2011-03-25 | 2011-09-07 | 英利能源(中国)有限公司 | 具有散热功能的光伏组件金属层压背板及光伏组件 |
JP2012089780A (ja) * | 2010-10-22 | 2012-05-10 | Kobayashi:Kk | フッ素系樹脂コーティングシートとその製造方法及びそれを用いた太陽電池モジュール用保護シート並びに太陽電池モジュール |
WO2013008945A1 (ja) * | 2011-07-14 | 2013-01-17 | 富士フイルム株式会社 | 太陽電池用ポリマーシート及び太陽電池モジュール |
WO2013065854A1 (ja) * | 2011-11-04 | 2013-05-10 | ダイキン工業株式会社 | 太陽電池モジュールのバックシート、積層体、及び、太陽電池モジュール |
WO2013065852A1 (ja) * | 2011-11-04 | 2013-05-10 | ダイキン工業株式会社 | 太陽電池モジュールのバックシート、及び、太陽電池モジュール |
JP5234209B1 (ja) * | 2012-07-20 | 2013-07-10 | 東洋インキScホールディングス株式会社 | 太陽電池封止材用樹脂組成物 |
WO2014069482A1 (ja) * | 2012-10-30 | 2014-05-08 | 旭硝子株式会社 | 樹脂フィルム、太陽電池モジュールのバックシートおよび太陽電池モジュール |
US20140127434A1 (en) * | 2011-07-15 | 2014-05-08 | Solvay Specialty Polymers Italy S.P.A. | Fluoropolymer composition for multilayer assemblies |
WO2015068633A1 (ja) * | 2013-11-11 | 2015-05-14 | 信越化学工業株式会社 | 太陽電池封止用紫外線遮蔽性シリコーン接着剤シート並びにそれを用いた太陽電池モジュール |
WO2015133399A1 (ja) * | 2014-03-04 | 2015-09-11 | 株式会社クレハ | フッ素系樹脂フィルム、その製造方法、積層体及び太陽電池モジュール用バックシート |
Families Citing this family (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2711179B1 (en) * | 2011-05-16 | 2018-07-04 | LG Chem, Ltd. | Protection film for solar cell application and solar cell having same |
JP5302436B1 (ja) * | 2012-03-27 | 2013-10-02 | ファナック株式会社 | 射出成形機の樹脂の状態監視装置 |
CN102694080A (zh) * | 2012-06-18 | 2012-09-26 | 保定天威薄膜光伏有限公司 | 一种新型二氧化钛背反射结构硅基薄膜太阳能电池 |
US20130333756A1 (en) * | 2012-06-19 | 2013-12-19 | Richard A. DeLucca | Backsheet for a photovoltaic cell module and photovoltaic cell module including same |
CN104508037B (zh) * | 2012-08-02 | 2016-09-07 | 旭硝子株式会社 | 树脂膜、太阳能电池组件的背板、太阳能电池组件 |
JPWO2014104223A1 (ja) * | 2012-12-27 | 2017-01-19 | 旭硝子株式会社 | ポリマー組成物、その成形体および太陽電池用バックシート |
CN103280476A (zh) * | 2013-05-07 | 2013-09-04 | 友达光电股份有限公司 | 太阳能模块 |
JP6264755B2 (ja) * | 2013-06-12 | 2018-01-24 | 東洋インキScホールディングス株式会社 | 太陽電池裏面保護シート用樹脂組成物 |
CN103522658B (zh) * | 2013-09-18 | 2017-02-15 | 东莞市安派电子有限公司 | 一种金属穿孔式太阳能电池用背板及其制备方法 |
KR101640991B1 (ko) * | 2013-09-30 | 2016-07-19 | 주식회사 엘지화학 | 백시트 |
KR101591195B1 (ko) * | 2013-09-30 | 2016-02-18 | 주식회사 엘지화학 | 백시트 |
TWI700180B (zh) * | 2013-12-11 | 2020-08-01 | 日商凸版印刷股份有限公司 | 積層體、及阻氣性薄膜 |
KR102264949B1 (ko) * | 2013-12-27 | 2021-06-14 | 에이지씨 가부시키가이샤 | 수지 조성물 |
US9932429B2 (en) * | 2014-07-29 | 2018-04-03 | W. L. Gore & Associates, Inc. | Method for producing porous articles from alternating poly(ethylene tetrafluoroethylene) and articles produced therefrom |
KR101600777B1 (ko) * | 2014-12-05 | 2016-03-09 | 주식회사 에스에프씨 | 태양전지모듈용 백시트 및 이를 구비하는 태양전지모듈 |
CN105047831B (zh) * | 2015-09-14 | 2017-06-13 | 上海天马有机发光显示技术有限公司 | 一种封装薄膜、显示器件及其封装方法 |
EP3433863B1 (en) * | 2016-03-23 | 2020-01-29 | ABB Schweiz AG | Use of a linear octafluorobutene as a dielectric compound in an environmentally safe dielectric-insulation or arc-extinction fluid |
KR102628572B1 (ko) * | 2017-05-18 | 2024-01-23 | 에이지씨 가부시키가이샤 | 불소 수지 필름 및 적층체, 그리고, 열 프레스 적층체의 제조 방법 |
US10442950B2 (en) * | 2017-05-18 | 2019-10-15 | Canon Kabushiki Kaisha | Film formed on a sliding surface of a component |
JP7081608B2 (ja) * | 2017-09-26 | 2022-06-07 | Agc株式会社 | 農業用フッ素樹脂フィルムおよび農業用ハウス |
KR101886129B1 (ko) | 2018-02-12 | 2018-08-07 | (주)엘림엘이디 조명 | Led 조명기구의 커버. |
CN112724428A (zh) * | 2020-12-19 | 2021-04-30 | 天津西敦粉漆科技有限公司 | 一种耐候耐磨疏水助剂的制备方法及应用 |
CN115401969A (zh) * | 2022-08-12 | 2022-11-29 | 中天光伏材料有限公司 | 前膜材料及光伏组件 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5333228A (en) | 1976-09-09 | 1978-03-29 | Du Pont | Process for preparing durable titanium dioxide pigments |
JPH01212224A (ja) * | 1988-02-18 | 1989-08-25 | Nippon Sheet Glass Co Ltd | 絶縁体被覆半導体微粒子の製造方法 |
JPH08259731A (ja) | 1995-03-20 | 1996-10-08 | Nippon Carbide Ind Co Inc | 樹脂組成物及びそれからなる樹脂成形物 |
JP2006037090A (ja) | 2004-06-24 | 2006-02-09 | Ishihara Sangyo Kaisha Ltd | 二酸化チタン顔料及びその製造方法並びにそれを含む樹脂組成物 |
WO2007088930A1 (ja) * | 2006-02-02 | 2007-08-09 | Mitsubishi Plastics, Inc. | 遮熱シート |
JP2008053510A (ja) | 2006-08-25 | 2008-03-06 | Toppan Printing Co Ltd | 太陽電池用裏面保護シート |
JP2008085293A (ja) | 2006-08-30 | 2008-04-10 | Keiwa Inc | 太陽電池モジュール用バックシート及びこれを用いた太陽電池モジュール |
JP2008227203A (ja) * | 2007-03-14 | 2008-09-25 | Toppan Printing Co Ltd | 太陽電池モジュール用裏面保護シートおよびそれを用いた太陽電池モジュール |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1997045502A1 (fr) * | 1996-05-31 | 1997-12-04 | Toto Ltd. | Element anti-encrassement et composition pour revetement anti-encrassement |
DE60221780T2 (de) * | 2001-12-11 | 2008-06-05 | Asahi Glass Co., Ltd. | Wärmestrahlen blockierender Fluorharzfilm |
JP2005150318A (ja) * | 2003-11-14 | 2005-06-09 | Canon Inc | 太陽電池モジュール及びその製造方法 |
JP2007193271A (ja) * | 2006-01-23 | 2007-08-02 | Lintec Corp | 防眩性フィルムの製造方法及び防眩性フィルム |
KR20090018032A (ko) | 2006-04-25 | 2009-02-19 | 아사히 가라스 가부시키가이샤 | 반도체 수지 몰드용 이형 필름 |
JP2008004691A (ja) * | 2006-06-21 | 2008-01-10 | Toppan Printing Co Ltd | 太陽電池裏面封止用シート |
ATE507267T1 (de) * | 2007-04-13 | 2011-05-15 | Asahi Glass Co Ltd | Verfahren zur herstellung einer mit hydrophobiertem siliziumoxid belegter metalloxidpartikel |
CN101177514B (zh) * | 2007-11-08 | 2010-06-09 | 中国乐凯胶片集团公司 | 一种太阳能电池背板及其制备方法 |
-
2009
- 2009-12-08 ES ES09831907T patent/ES2397210T3/es active Active
- 2009-12-08 KR KR1020117012790A patent/KR20110102316A/ko not_active Application Discontinuation
- 2009-12-08 JP JP2010542111A patent/JP5223929B2/ja not_active Expired - Fee Related
- 2009-12-08 WO PCT/JP2009/070559 patent/WO2010067803A1/ja active Application Filing
- 2009-12-08 TW TW098141876A patent/TW201033259A/zh unknown
- 2009-12-08 CN CN200980149346.5A patent/CN102246317B/zh not_active Expired - Fee Related
- 2009-12-08 EP EP09831907A patent/EP2357674B1/en not_active Not-in-force
-
2011
- 2011-05-24 US US13/114,204 patent/US8802968B2/en not_active Expired - Fee Related
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5333228A (en) | 1976-09-09 | 1978-03-29 | Du Pont | Process for preparing durable titanium dioxide pigments |
JPH01212224A (ja) * | 1988-02-18 | 1989-08-25 | Nippon Sheet Glass Co Ltd | 絶縁体被覆半導体微粒子の製造方法 |
JPH08259731A (ja) | 1995-03-20 | 1996-10-08 | Nippon Carbide Ind Co Inc | 樹脂組成物及びそれからなる樹脂成形物 |
JP2006037090A (ja) | 2004-06-24 | 2006-02-09 | Ishihara Sangyo Kaisha Ltd | 二酸化チタン顔料及びその製造方法並びにそれを含む樹脂組成物 |
WO2007088930A1 (ja) * | 2006-02-02 | 2007-08-09 | Mitsubishi Plastics, Inc. | 遮熱シート |
JP2008053510A (ja) | 2006-08-25 | 2008-03-06 | Toppan Printing Co Ltd | 太陽電池用裏面保護シート |
JP2008085293A (ja) | 2006-08-30 | 2008-04-10 | Keiwa Inc | 太陽電池モジュール用バックシート及びこれを用いた太陽電池モジュール |
JP2008227203A (ja) * | 2007-03-14 | 2008-09-25 | Toppan Printing Co Ltd | 太陽電池モジュール用裏面保護シートおよびそれを用いた太陽電池モジュール |
Non-Patent Citations (1)
Title |
---|
See also references of EP2357674A4 * |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012089780A (ja) * | 2010-10-22 | 2012-05-10 | Kobayashi:Kk | フッ素系樹脂コーティングシートとその製造方法及びそれを用いた太陽電池モジュール用保護シート並びに太陽電池モジュール |
CN102176480A (zh) * | 2011-03-25 | 2011-09-07 | 英利能源(中国)有限公司 | 具有散热功能的光伏组件金属层压背板及光伏组件 |
WO2013008945A1 (ja) * | 2011-07-14 | 2013-01-17 | 富士フイルム株式会社 | 太陽電池用ポリマーシート及び太陽電池モジュール |
CN103650162A (zh) * | 2011-07-14 | 2014-03-19 | 富士胶片株式会社 | 太阳电池用聚合物片及太阳电池模组 |
US20140127434A1 (en) * | 2011-07-15 | 2014-05-08 | Solvay Specialty Polymers Italy S.P.A. | Fluoropolymer composition for multilayer assemblies |
JP2013201416A (ja) * | 2011-11-04 | 2013-10-03 | Daikin Ind Ltd | 太陽電池モジュールのバックシート、及び、太陽電池モジュール |
JP2014007371A (ja) * | 2011-11-04 | 2014-01-16 | Daikin Ind Ltd | 太陽電池モジュールのバックシート、積層体、及び、太陽電池モジュール |
WO2013065852A1 (ja) * | 2011-11-04 | 2013-05-10 | ダイキン工業株式会社 | 太陽電池モジュールのバックシート、及び、太陽電池モジュール |
WO2013065854A1 (ja) * | 2011-11-04 | 2013-05-10 | ダイキン工業株式会社 | 太陽電池モジュールのバックシート、積層体、及び、太陽電池モジュール |
JP5234209B1 (ja) * | 2012-07-20 | 2013-07-10 | 東洋インキScホールディングス株式会社 | 太陽電池封止材用樹脂組成物 |
WO2014069482A1 (ja) * | 2012-10-30 | 2014-05-08 | 旭硝子株式会社 | 樹脂フィルム、太陽電池モジュールのバックシートおよび太陽電池モジュール |
JPWO2014069482A1 (ja) * | 2012-10-30 | 2016-09-08 | 旭硝子株式会社 | 樹脂フィルム、太陽電池モジュールのバックシートおよび太陽電池モジュール |
WO2015068633A1 (ja) * | 2013-11-11 | 2015-05-14 | 信越化学工業株式会社 | 太陽電池封止用紫外線遮蔽性シリコーン接着剤シート並びにそれを用いた太陽電池モジュール |
JP2015095506A (ja) * | 2013-11-11 | 2015-05-18 | 信越化学工業株式会社 | 太陽電池封止用紫外線遮蔽性シリコーン接着剤シート並びにそれを用いた太陽電池モジュール |
WO2015133399A1 (ja) * | 2014-03-04 | 2015-09-11 | 株式会社クレハ | フッ素系樹脂フィルム、その製造方法、積層体及び太陽電池モジュール用バックシート |
Also Published As
Publication number | Publication date |
---|---|
CN102246317A (zh) | 2011-11-16 |
EP2357674A1 (en) | 2011-08-17 |
EP2357674B1 (en) | 2012-11-21 |
JP5223929B2 (ja) | 2013-06-26 |
CN102246317B (zh) | 2016-03-16 |
ES2397210T3 (es) | 2013-03-05 |
KR20110102316A (ko) | 2011-09-16 |
JPWO2010067803A1 (ja) | 2012-05-17 |
EP2357674A4 (en) | 2012-04-18 |
TW201033259A (en) | 2010-09-16 |
US8802968B2 (en) | 2014-08-12 |
US20110220184A1 (en) | 2011-09-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5223929B2 (ja) | フッ素樹脂フィルム及びその使用 | |
JP5482661B2 (ja) | 太陽電池モジュール用バックシート | |
JP6086121B2 (ja) | 樹脂フィルム、太陽電池モジュールのバックシート、太陽電池モジュール | |
TWI554399B (zh) | 用於太陽能電池之環保背板及其製備方法 | |
TWI461438B (zh) | 供光伏打電池應用而建基於不帶有丙烯酸系聚合物味道之氟聚合物與氧化鋅的膜 | |
WO2013031974A1 (ja) | 太陽電池用バックシート及び太陽電池モジュール | |
JP6137192B2 (ja) | 樹脂フィルム、太陽電池モジュールのバックシートおよび太陽電池モジュール | |
JP2015525472A (ja) | 親環境光電池モジュール用バックシート及びその製造方法 | |
WO2013008945A1 (ja) | 太陽電池用ポリマーシート及び太陽電池モジュール | |
JP2013058746A (ja) | 太陽電池用ポリマーシート及びその製造方法、並びに太陽電池モジュール | |
JP5484762B2 (ja) | 太陽電池モジュール用保護シートの製造方法 | |
WO2013008916A1 (ja) | ポリマーシートとその製造方法、太陽電池用バックシートおよび太陽電池モジュール | |
WO2015133399A1 (ja) | フッ素系樹脂フィルム、その製造方法、積層体及び太陽電池モジュール用バックシート | |
WO2013024884A1 (ja) | 太陽電池モジュール用ポリマーシートとその製造方法、太陽電池モジュール用バックシート及び太陽電池モジュール | |
JP2013055079A (ja) | 太陽電池用ポリマーシート及びその製造方法、並びに太陽電池モジュール | |
JP2013042006A (ja) | 太陽電池モジュール用ポリマーシートとその製造方法、太陽電池モジュール用バックシート及び太陽電池モジュール |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 200980149346.5 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 09831907 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2010542111 Country of ref document: JP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2009831907 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 20117012790 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |