WO2015068633A1 - 太陽電池封止用紫外線遮蔽性シリコーン接着剤シート並びにそれを用いた太陽電池モジュール - Google Patents

太陽電池封止用紫外線遮蔽性シリコーン接着剤シート並びにそれを用いた太陽電池モジュール Download PDF

Info

Publication number
WO2015068633A1
WO2015068633A1 PCT/JP2014/078872 JP2014078872W WO2015068633A1 WO 2015068633 A1 WO2015068633 A1 WO 2015068633A1 JP 2014078872 W JP2014078872 W JP 2014078872W WO 2015068633 A1 WO2015068633 A1 WO 2015068633A1
Authority
WO
WIPO (PCT)
Prior art keywords
silicone adhesive
adhesive sheet
mass
parts
solar cell
Prior art date
Application number
PCT/JP2014/078872
Other languages
English (en)
French (fr)
Inventor
山川 直樹
五十嵐 実
柳沼 篤
智欣 降籏
寛人 大和田
淳一 塚田
厚雄 伊藤
Original Assignee
信越化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 信越化学工業株式会社 filed Critical 信越化学工業株式会社
Priority to EP14859723.0A priority Critical patent/EP3070748B1/en
Priority to KR1020167013232A priority patent/KR102265852B1/ko
Priority to US15/035,625 priority patent/US20160300969A1/en
Priority to CN201480061597.9A priority patent/CN105765736B/zh
Publication of WO2015068633A1 publication Critical patent/WO2015068633A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/56Organo-metallic compounds, i.e. organic compounds containing a metal-to-carbon bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/02Non-macromolecular additives
    • C09J11/04Non-macromolecular additives inorganic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/02Non-macromolecular additives
    • C09J11/06Non-macromolecular additives organic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J183/00Adhesives based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Adhesives based on derivatives of such polymers
    • C09J183/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J183/00Adhesives based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Adhesives based on derivatives of such polymers
    • C09J183/04Polysiloxanes
    • C09J183/06Polysiloxanes containing silicon bound to oxygen-containing groups
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J183/00Adhesives based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Adhesives based on derivatives of such polymers
    • C09J183/04Polysiloxanes
    • C09J183/08Polysiloxanes containing silicon bound to organic groups containing atoms other than carbon, hydrogen, and oxygen
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J9/00Adhesives characterised by their physical nature or the effects produced, e.g. glue sticks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • H01L31/0481Encapsulation of modules characterised by the composition of the encapsulation material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • H01L31/049Protective back sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/12Photovoltaic modules
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/12Polysiloxanes containing silicon bound to hydrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/20Polysiloxanes containing silicon bound to unsaturated aliphatic groups
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2203/00Applications of adhesives in processes or use of adhesives in the form of films or foils
    • C09J2203/322Applications of adhesives in processes or use of adhesives in the form of films or foils for the production of solar panels
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to a silicone adhesive sheet useful for reliably sealing a crystalline or polycrystalline solar cell whose back panel is a back sheet containing polyethylene terephthalate (PET), and a solar cell module using the same. .
  • PET polyethylene terephthalate
  • the power generation element of the solar cell is generally made of a semiconductor such as silicon, and the solar cell module is mounted on a light-receiving surface glass substrate or the like in a state where individual solar cells are electrically interconnected.
  • the front or back side where the solar cell is exposed to light is covered with the encapsulating material, so that the solar cell is protected from the external environment such as rain, wind, snow, dust and the like.
  • the encapsulating material in general, an ethylene-vinyl acetate copolymer (EVA), which is a thermoplastic resin, is used from the viewpoints of sheet-like and easy handling and low cost.
  • EVA ethylene-vinyl acetate copolymer
  • Solar cells are modularized using EVA by stacking a light-receiving surface / EVA sheet / solar cell / EVA sheet / back panel (back sheet) in a vacuum laminator, and 15-30 at 130 to 150 ° C. A method of minute pressing is common.
  • EVA is not limited to the above-mentioned problems, and has a problem that the UV resistance is low, and discoloration occurs due to exposure to the outdoors for a long period of time, resulting in yellow or brown.
  • Silicone is an example of a sealing material that does not cause these problems.
  • the occurrence of acetic acid not only suppresses electrode corrosion, but also eliminates the yellow or brown discoloration problem.
  • the elastic modulus does not rapidly increase at a low temperature unlike EVA, and the reliability of electrode connection is improved.
  • Non-Patent Document 1 (Atsuo Ito, Hiroto Owada, Tomoaki Furugo, Kazuaki Kinjo, Naoki Yamakawa, Atsushi Yanaginuma, Tomoo Imabe, Momoki Watanabe, Sadao Sakamoto: Proceedings of the 9th Next Generation Solar Power System Symposium, 2012, p. 54) Re-evaluation of the silicone-sealed solar cell module exposed for 29 years outdoors, and the maximum output decrease is only -0.22% / year and has very high reliability. Has been introduced.
  • silicone is excellent in heat resistance and ultraviolet resistance, and is widely used as a sealing material for light emitting diodes (LEDs). Not only visible light but also blue (450 to 495 nm light) and violet (380 to 450 nm) light has a high transparency.
  • silicone which has higher weather resistance than EVA as described above, transmits low-wavelength light, and increases the amount of power generation, is not always advantageous when applied to solar cells.
  • a solar cell module generally referred to as a super straight type
  • solar cells are sealed between the light-receiving surface glass and the back sheet using EVA as a sealing material.
  • This back sheet has a thickness of 150 to 350 ⁇ m and is arranged to protect the solar cells and wiring members from outdoor environmental stresses for a long period of time.
  • the characteristics required for the backsheet are high water vapor barrier properties, electrical insulation properties, and light reflectivity.
  • Typical examples include TPT "PVF (polyvinyl fluoride) / adhesive / PET (polyethylene terephthalate) / adhesive.
  • PVF a laminate represented by TPE” PVF / adhesive / PET / adhesive / EVA ", and a laminate of a resin sandwiching an aluminum foil that completely blocks water vapor are commercially available.
  • Patent Document 1 Japanese Patent Publication No. 2007-527109
  • Patent Document 2 Japanese Patent Publication No. 2011-514680
  • a cell press having a movable plate is used, and bubbles are formed by placing solar cells on cured or semi-cured silicone under vacuum. It has been proposed to enclose without taking up.
  • Patent Document 3 International Publication No.
  • a sealing agent for sealing a glass substrate, and finally a back protective substrate is stacked to form a temporary laminate, and a vacuum at room temperature is used.
  • a method of sealing by press-contacting under pressure has been proposed, but it is considered difficult to develop a solar cell module to a practical size by this method.
  • any method includes a complicated process of applying or potting liquid silicone in the solar cell sealing process. This is because it is difficult for manufacturers to use EVA sheets for modularization of solar cells recently because new capital investment is required.
  • Patent Document 2 Japanese Patent Publication No. 2011-514680
  • a pigment may be included when the sealing material does not need to transmit light, but it is not necessarily in consideration of application to a low-cost backsheet. Absent.
  • cured products using low-viscosity silicone which is optimal for coating and potting, have lower physical strength than EVA, and have lower adhesive strength. Therefore, the development of silicone sealants with higher strength and higher adhesive strength has been developed. It was sought after.
  • the present invention has been made in view of the above circumstances, and particularly relates to a silicone sealing material in which a back sheet does not deteriorate due to ultraviolet rays even when a back sheet not containing a fluororesin is used. It aims at providing the ultraviolet shielding silicone adhesive sheet for solar cell sealing, and a solar cell module.
  • the present inventors have obtained a UV-shielding silicone adhesive sheet obtained by processing a silicone rubber adhesive composition that cuts off light having a wavelength of 380 nm or less into a sheet.
  • the solar cell is integrated between the adhesive sheet of the back layered body that is disposed on the back sheet and the light receiving area layer that is disposed on the light receiving surface panel with the same or different silicone adhesive sheet as described above.
  • the present invention provides the following silicone adhesive sheet having an ultraviolet shielding ability for sealing solar cells and a solar cell module using the same.
  • the back surface in a solar cell module comprising a light-receiving surface panel and a back panel, a silicone adhesive layer in contact with both panels, and a plurality of solar cells interposed and sealed between the adhesive layers.
  • An adhesive sheet for forming a silicone adhesive layer in contact with a panel characterized by providing a light transmittance of 30% or less when measuring a light transmittance of a wavelength of 380 nm for a cured product having a thickness of 2 mm
  • An ultraviolet shielding silicone adhesive sheet for sealing solar cells is provided.
  • the component (D) contains at least one of an alkoxy group, an epoxy group, an acrylic group, and a methacryl group, and is contained in an amount of 0.01 parts by mass or more with respect to 100 parts by mass of the component (A) [1] or [2]
  • the silicone adhesive sheet as described.
  • a laminate comprising a light receiving surface panel, a curable silicone adhesive sheet, a plurality of solar cells, the ultraviolet shielding silicone adhesive sheet according to any one of [1] to [6], and a back panel is laminated with a vacuum laminator.
  • a silicone-encapsulated solar battery module obtained by curing the two adhesive sheets and sealing the solar battery cells by heating and pressing under vacuum.
  • the silicone adhesive sheet of the present invention is a millable type adhesive sheet that can be extruded, calendered, etc., and includes a light receiving surface panel, a silicone adhesive sheet, a solar battery cell, a silicone adhesive sheet according to the present invention, and a back panel.
  • the laminate of (back sheet) can be modularized using a vacuum laminator. Thereby, the module which has high sealing property of a cell and can prevent deterioration of a back sheet from ultraviolet rays can be easily obtained without using conventional liquid silicone.
  • the ultraviolet shielding silicone adhesive sheet of the present invention it is possible to prevent deterioration of PET, which is a member of the back sheet, due to ultraviolet rays. For this reason, the transmittance
  • the ultraviolet shielding silicone adhesive sheet of the present invention is (A) R 1 a SiO (4-a) / 2 (I) (In the formula, R 1 represents the same or different unsubstituted or substituted monovalent hydrocarbon group, and a is a positive number of 1.95 to 2.05.) An organopolysiloxane having a degree of polymerization of 100 or more: 100 parts by mass, (B) Reinforcing silica having a specific surface area exceeding 200 m 2 / g: 10 to 150 parts by mass, (C) Curing agent: (A) An effective amount for curing the component, (D) Adhesion imparting agent: 0 to 10 parts by mass, (E) Filler having an average particle size of 0.1 to 10 ⁇ m (excluding component (B)): 0.1 to 50 parts by mass, Or (A) R 1 a SiO (4-a) / 2 (I) (In the formula, R 1 represents the same or different unsubstituted or substituted monovalent hydrocarbon group, and
  • the component (A) is an organopolysiloxane having a degree of polymerization represented by the following average composition formula (I) of 100 or more.
  • R 1 a SiO (4-a) / 2 (I) (In the formula, R 1 represents the same or different unsubstituted or substituted monovalent hydrocarbon group, and a is a positive number of 1.95 to 2.05.)
  • R 1 represents the same or different unsubstituted or substituted monovalent hydrocarbon group, usually having 1 to 12 carbon atoms, particularly preferably having 1 to 8 carbon atoms.
  • alkyl groups such as methyl, ethyl, propyl, butyl, hexyl and octyl, cycloalkyl such as cyclopentyl and cyclohexyl, alkenyl such as vinyl, allyl and propenyl, cyclo
  • An aryl group such as an alkenyl group, a phenyl group or a tolyl group, an aralkyl group such as a benzyl group or a 2-phenylethyl group, or a group in which part or all of the hydrogen atoms of these groups are substituted with a halogen atom or a cyano group.
  • the main chain of the organopolysiloxane is composed of repeating dimethylsiloxane units, or a part of the dimethylpolysiloxane structure composed of repeating dimethylsiloxane units constituting the main chain is phenyl group, vinyl group, A diphenylsiloxane unit having a 3,3,3-trifluoropropyl group or the like, a methylphenylsiloxane unit, a methylvinylsiloxane unit, a methyl-3,3,3-trifluoropropylsiloxane unit or the like is preferred. .
  • the organopolysiloxane preferably has two or more aliphatic unsaturated groups such as alkenyl groups and cycloalkenyl groups in one molecule, and particularly preferably has a vinyl group.
  • the aliphatic unsaturated group may be bonded to a silicon atom at the molecular chain end, or may be bonded to a silicon atom in the middle of the molecular chain, or both. It is preferably bonded to the silicon atom.
  • A is a positive number of 1.95 to 2.05, preferably 1.98 to 2.02, more preferably 1.99 to 2.01.
  • the organopolysiloxane of component (A) is blocked with a triorganosiloxy group such as a trimethylsiloxy group, a dimethylphenylsiloxy group, a dimethylhydroxysiloxy group, a dimethylvinylsiloxy group, a methyldivinylsiloxy group, or a trivinylsiloxy group.
  • a triorganosiloxy group such as a trimethylsiloxy group, a dimethylphenylsiloxy group, a dimethylhydroxysiloxy group, a dimethylvinylsiloxy group, a methyldivinylsiloxy group, or a trivinylsiloxy group.
  • Preferred examples can be given.
  • Particularly preferred are methyl vinyl polysiloxane, methyl phenyl vinyl polysiloxane, methyl trifluoropropyl vinyl polysiloxane and the like.
  • Such an organopolysiloxane can be obtained by, for example, hydrolyzing and condensing one or more organohalogenosilanes, or by converting a cyclic polysiloxane (siloxane trimer, tetramer, etc.) to alkaline or acidic. It can obtain by ring-opening polymerization using the catalyst of.
  • These are basically linear diorganopolysiloxanes, but the component (A) may be a mixture of two or more different molecular weights (degree of polymerization) and molecular structures.
  • the degree of polymerization of the organopolysiloxane is 100 or more, preferably 100 to 100,000, particularly preferably 3,000 to 20,000. This degree of polymerization can be measured as a weight average degree of polymerization in terms of polystyrene by gel permeation chromatography (GPC) analysis.
  • GPC gel permeation chromatography
  • the BET specific surface area in order to improve the transparency of the silicone rubber composition, the BET specific surface area needs to exceed 200 m 2 / g, preferably 250 m 2 / g or more.
  • the BET specific surface area is 200 m 2 / g or less, the transparency of the cured product is lowered.
  • the upper limit is not particularly limited, but is usually 500 m 2 / g or less.
  • the reinforcing silica as the component (B) examples include fumed silica (dry silica or fumed silica), precipitated silica (wet silica), and the like. Further, those whose surfaces have been subjected to a hydrophobic treatment with chlorosilane, alkoxysilane, hexamethyldisilazane, or the like are also preferably used. In particular, the treatment with hexamethyldisilazane is preferable because of high transparency. In order to improve transparency, it is preferable to use fumed silica as reinforcing silica. Reinforcing silica may be used alone or in combination of two or more.
  • component (B) As the reinforcing silica of component (B), commercially available products can be used.
  • Aerosil series such as Aerosil 130, Aerosil 200, Aerosil 300, Aerosil R-812, Aerosil R-972, Aerosil R-974 (Japan) Aerosil Co., Ltd.
  • Cabosil MS-5, MS-7 (Cabot Corp.), Leorosil QS-102, 103, MT-10 (Tokuyama Corp.), etc.
  • Hydrophilic or hydrophobic fumed silica Toxeal US-F (manufactured by Tokuyama), NIPSIL-SS, NIPSIL-LP (manufactured by Nippon Silica), etc.
  • Examples include precipitated silica.
  • the blending amount of the reinforcing silica of the component (B) is 10 to 150 parts by weight, preferably 30 to 120 parts by weight, more preferably 50 to 50 parts by weight with respect to 100 parts by weight of the organopolysiloxane of the component (A). 100 parts by mass.
  • the blending amount of the component (B) is too small, the reinforcing effect before and after curing cannot be obtained, and the transparency of the silicone adhesive after curing is lowered.
  • the amount is too large, it is difficult to disperse silica in the silicone polymer, and at the same time, the processability into a sheet may be deteriorated.
  • the curing agent for component (C) is not particularly limited as long as it can cure component (A), but it is widely known as a curing agent for silicone rubber (a) addition reaction (hydrosilylation reaction) type curing agent, That is, a combination of an organohydrogenpolysiloxane (crosslinking agent) and a hydrosilylation catalyst, or (b) an organic peroxide is preferable.
  • a curing agent for silicone rubber a) addition reaction (hydrosilylation reaction) type curing agent, That is, a combination of an organohydrogenpolysiloxane (crosslinking agent) and a hydrosilylation catalyst, or (b) an organic peroxide is preferable.
  • the organohydrogenpolysiloxane as a crosslinking agent in the above contains hydrogen atoms (SiH groups) bonded to at least two silicon atoms in one molecule.
  • Specific examples include a methyl group, an ethyl group, Alkyl groups such as propyl group, butyl group, pentyl group and hexyl group, unsubstituted monovalent hydrocarbon groups such as cyclohexyl group, cyclohexenyl group and phenyl group, 3,3,3-trifluoropropyl group, cyanomethyl group, etc.
  • a substituted monovalent hydrocarbon group such as a substituted alkyl group in which at least a part of hydrogen atoms of the monovalent hydrocarbon group is substituted with a halogen atom or a cyano group, b is 0.7 to 2.1, c Is 0.01 to 1.0, and b + c is 0.8 to 3.0, preferably b is 0.8 to 2.0, c is 0.2 to 1.0, and b + c is 1.0 to 2. It is indicated by a positive number satisfying .5.)
  • a conventionally known organohydrogenpolysiloxane represented by the formula is applicable.
  • the molecular structure of the organohydrogenpolysiloxane may be any of linear, cyclic, branched, and three-dimensional network structures.
  • the number of silicon atoms in one molecule is preferably 2 to 300, particularly about 4 to 200, which is liquid at room temperature.
  • the hydrogen atom (SiH group) bonded to the silicon atom may be at the end of the molecular chain, at the side chain, or both, and at least two (usually 2 to 300) per molecule.
  • those containing 3 or more (for example, 3 to 200), more preferably about 4 to 150 are used.
  • organohydrogenpolysiloxane examples include 1,1,3,3-tetramethyldisiloxane, 1,3,5,7-tetramethylcyclotetrasiloxane, methylhydrogencyclopolysiloxane, and methylhydrogensiloxane.
  • Dimethylsiloxane cyclic copolymer tris (dimethylhydrogensiloxy) methylsilane, tris (dimethylhydrogensiloxy) phenylsilane, trimethylsiloxy group-blocked methylhydrogenpolysiloxane at both ends, trimethylsiloxy group-blocked dimethylsiloxane / methylhydro at both ends
  • Gensiloxane copolymer both ends dimethylhydrogensiloxy-blocked dimethylpolysiloxane, both ends dimethylhydrogensiloxy-blocked dimethylsiloxane methylhydro Polysiloxane copolymer, trimethylsiloxy group-capped
  • the compounding amount of the organohydrogenpolysiloxane is 0.1 to 30 parts by mass, more preferably 0.1 to 10 parts by mass, and still more preferably 0.3 to 100 parts by mass of the organopolysiloxane of the component (A). It is preferable that the amount be 10 parts by mass.
  • the organohydrogenpolysiloxane has a molar ratio of hydrogen atoms bonded to silicon atoms in the component (C) (that is, SiH groups) to alkenyl groups bonded to silicon atoms in the component (A) is 0.5. It is preferable to add in an amount of -5 mol / mol, preferably 0.8-4 mol / mol, more preferably 1-3 mol / mol.
  • hydrosilylation reaction catalyst used in the crosslinking reaction of the above (a) addition reaction can be applied, for example, platinum black, platinum chloride, chloroplatinic acid, platinum chloride.
  • platinum black platinum black
  • platinum chloride chloroplatinic acid
  • platinum chloride examples thereof include a reaction product of an acid and a monohydric alcohol, a complex of chloroplatinic acid and an olefin, a platinum-based catalyst such as platinum bisacetoacetate, a palladium-based catalyst, and a rhodium-based catalyst.
  • the blending amount of the hydrosilylation reaction catalyst can be a catalytic amount, and is usually preferably in the range of 1 to 100 ppm, particularly 5 to 100 ppm in terms of platinum group metal mass. If it is less than 1 ppm, the addition reaction may not proceed sufficiently and the curing may be insufficient, and it is uneconomical to add more than 100 ppm.
  • an addition reaction control agent may be used for the purpose of adjusting the curing rate or pot life.
  • Specific examples include ethynylcyclohexanol and tetramethyltetravinylcyclotetrasiloxane.
  • examples of (b) organic peroxides include benzoyl peroxide, 2,4-dichlorobenzoyl peroxide, p-methylbenzoyl peroxide, o-methylbenzoyl peroxide, 2,4-dicumyl peroxide, 2,5-dimethyl-bis (2,5-t-butylperoxy) hexane, di-t-butylperoxide, t-butylperbenzoate, 1,6-hexanediol-bis-t-butylperoxycarbonate, etc. Is mentioned.
  • the amount of (b) organic peroxide added is preferably 0.1 to 15 parts by mass, particularly preferably 0.2 to 10 parts by mass with respect to 100 parts by mass of component (A). If the addition amount is too small, the crosslinking reaction does not proceed sufficiently, which may result in a decrease in hardness or insufficient rubber strength, and if it is too much, not only is not preferable in terms of cost, but many decomposition products of the curing agent are generated, In some cases, discoloration of the sheet is increased.
  • Component (D) is added to improve adhesion to a solar cell panel or solar cell, or a back sheet whose surface is made of a fluororesin. It is preferable that it is a compound containing any one or more of them. Component (D) is preferably added in an amount of 0 to 10 parts by weight, preferably 0.01 to 8 parts by weight, more preferably 0.2 to 5 parts by weight per 100 parts by weight of component (A). is there. Specific examples of the component (D) include those shown below.
  • the adhesion to the glass cell widely used as the light-receiving surface panel, and the solar cell surface (SiN film) and back electrode (Al) contained in the same ceramic is also improved. It is considered that the adhesiveness after being left under an accelerated deterioration test, for example, 85 ° C./85% RH condition is also maintained. Even when these adhesive components are added to the (a) addition reaction (hydrosilylation reaction) system, the total amount of the organohydrogenpolysiloxanes of the components (C) and (D) is in the components (A) and (D).
  • the molar ratio of hydrogen atoms bonded to silicon atoms (ie, SiH groups) in the components (C) and (D) to alkenyl groups bonded to silicon atoms of 0.5 to 5 mol / mol, preferably 0.8 It is preferably blended in an amount of 4 mol / mol, more preferably 1 to 3 mol / mol.
  • Component is a filler added to block or reflect ultraviolet rays.
  • the reinforcing silica of the component (B) is not included.
  • the filler used as the component (E) preferably has a cumulative volume average particle diameter d50 (or median diameter) of 0.1 to 10 ⁇ m by a laser diffraction / scattering method. If the particle diameter is smaller than 0.1 ⁇ m, the light shielding property may be lowered, and if it is larger than 10 ⁇ m, the solar battery cell may be damaged.
  • Examples of the filler for component (E) include crystalline silica, fused silica, titanium oxide, zinc oxide, calcium carbonate, kaolinite, carbon black, and iron oxide. Titanium oxide is preferable because it can be used.
  • the addition amount is preferably 0.1 to 50 parts by mass with respect to 100 parts by mass of component (A), and preferably 0.1 to 5 parts by mass when adding titanium oxide with high shielding properties.
  • the addition amount is less than 0.1 parts by mass, there is a risk of passing through ultraviolet rays.
  • (F) component is an organic ultraviolet absorbent added to absorb ultraviolet rays and prevent them from passing through.
  • ultraviolet absorbers many benzotriazole-based, hydroxyphenyltriazine-based, and malonic ester-based ones are commercially available.
  • Each UV absorber has its own absorption characteristics, but for this purpose, an appropriate amount of UV absorber that absorbs light of 380 nm or less is added for the purpose of preventing deterioration of the resin placed on the backsheet surface, especially PET. It is necessary to.
  • Examples of the component (F) include TINUVIN 326 and TINUVIN 328 manufactured by BASF, or RUVA-93 manufactured by Otsuka Chemical Co., Ltd.
  • a light stabilizer (HALS) can be used in combination so as not to affect the curing.
  • the blending amount is preferably 0.05 to 2 parts by weight, more preferably 0.1 to 0.5 parts by weight with respect to 100 parts by weight of component (A).
  • flame retardants, colorants, and the like can be added to the silicone rubber composition of the present invention within a range that does not impair the purpose of the present invention.
  • the silicone rubber composition of the present invention can be obtained by kneading predetermined amounts of the above-described components with a two-roll, kneader, Banbury mixer or the like.
  • the silicone rubber composition thus prepared has a plasticity of 150 to 1,000, preferably 200 to 800, more preferably 250 to 600. If the plasticity is less than 150, it is difficult to maintain the shape of the uncured sheet, and the tack is strong and difficult to use. On the other hand, if it exceeds 1,000, the sheet forming process becomes difficult.
  • the plasticity can be measured by the plasticity measuring method described in JIS K 6249.
  • the molding method is not particularly limited, and extrusion molding, calendar molding, and the like are used.
  • the obtained silicone adhesive sheet has a thickness of 0.3 to 2.5 mm, more preferably 0.3 to 1.0 mm. If it is thinner than 0.3 mm, it may be difficult to seal the unevenness of the extraction electrode and bus bar electrode without gaps in the next step of heat curing and solar cell sealing step.
  • the weight of the agent sheet is increased, resulting in an increase in the weight of the module.
  • the silicone adhesive sheet according to the present invention is in an uncured state, it does not have a dry surface like so-called EVA for solar cells, and has a surface tack and can be deformed. Therefore, when forming into a sheet, it is preferable to apply a laminate film on at least one surface and process the sheets so that they do not adhere to each other during winding. And when modularizing, it peels off and uses a laminate film. In this case, an embossed film can be used to emboss the front and back surfaces.
  • Modularization mainly uses i) formation of light-receiving surface side panel laminate, ii) formation of back side backsheet laminate, iii) bonding of panel laminates of i) and ii), and iv) vacuum laminator. It consists of four steps of encapsulating solar cells.
  • the light-receiving surface panel is a transparent member on the side on which sunlight is incident, and is required to be excellent in transparency, weather resistance, and impact resistance because it is exposed outdoors for a long time.
  • the light-receiving surface panel include white plate tempered glass, acrylic resin, fluororesin or polycarbonate resin, and white plate tempered glass having a thickness of about 3 to 5 mm is particularly preferable.
  • TPT "PVF (polyvinyl fluoride) / adhesive / PET (polyethylene terephthalate) / adhesive / PVF” or TPE is used for the back panel (back side back sheet) which is the surface opposite to the sunlight incident side.
  • Laminates shown in “PVF / adhesive / PET / adhesive / EVA” or in particular “PVF / adhesive / PET” can be used. Further, it may be a PET single layer, and in any case, one containing PET is preferable.
  • Step i An unvulcanized silicone adhesive sheet, which will be described later, is placed on the light-receiving surface panel, and cell strings having 2 to 60 solar cells connected thereto are attached so that the light-receiving surface faces downward.
  • This is a light-receiving surface panel laminate.
  • the solar cell one or two kinds of silicon semiconductors selected from general single crystal silicon or polycrystalline silicon can be used, and the solar cell string is a solar cell here. Are connected by a tab line to form a cell assembly.
  • the silicone adhesive sheet may or may not be the ultraviolet shielding silicone adhesive according to the present invention.
  • the components (E) and (F) are removed from the above-described silicone rubber composition.
  • a sheet obtained by forming a silicone rubber composition can be used.
  • the ultraviolet shielding silicone adhesive sheet according to the present invention is attached to the back sheet. This is a back panel laminate.
  • the cell back surface of the light receiving surface panel laminate and the silicone adhesive sheet of the back panel laminate are bonded together.
  • the light-receiving surface panel / rear panel laminate produced in step iii is set in a vacuum laminator, defoamed for a certain period of time in a reduced pressure space, and heated and pressed to seal solar cells.
  • the degree of decompression is not particularly limited, but is preferably -0.08 to -0.10 MPa.
  • the heating / pressing conditions are also selected as appropriate, but it is preferable to press at 5 to 30 minutes at atmospheric pressure after vacuum decompression for 3 to 5 minutes under heating at 70 to 150 ° C., particularly 100 to 130 ° C. At the time of this pressing, both silicone adhesive sheets are cross-linked, and the light receiving surface panel, the silicone adhesive sheet on the light receiving surface panel, the solar cell, the silicone adhesive sheet on the back panel, and the back panel are bonded.
  • the heating temperature is lower than 70 ° C, the curing speed is slow and the curing may not be completed completely within the molding time. If it is higher than 150 ° C, the curing speed is high and the curing starts during the evacuation time. There is a possibility that an air gap may remain between the light receiving surface and the rear panel.
  • the integrally molded body obtained by heat molding may be post-cured at 100 to 150 ° C. for about 10 minutes to 10 hours.
  • the silicone-sealed solar cell is modularized.
  • a module made of aluminum alloy or stainless steel is attached around the module and fixed with screws or the like to complete a module with impact resistance.
  • the unvulcanized rubber sheet laminated on the light-receiving surface panel may or may not contain the component (E) or (F) having an ultraviolet shielding effect.
  • FIG. 1 shows an example in which a solar cell module is formed by using a silicone adhesive sheet in which the unvulcanized rubber sheet to be laminated on the light-receiving surface panel does not contain the components (E) and (F), and FIG.
  • the unvulcanized silicone rubber sheet to be formed is a solar cell module using an ultraviolet shielding silicone adhesive sheet containing the component (E) or (F).
  • 1 is a light receiving surface panel
  • 2 is a back panel (back sheet)
  • 3 is an ultraviolet non-shielding silicone adhesive cured layer
  • 4 is an ultraviolet shielding silicone adhesive cured layer
  • 5 is a solar cell.
  • Example 1 100 parts by mass of an organopolysiloxane comprising 99.825 mol% of dimethylsiloxane units, 0.15 mol% of methylvinylsiloxane units and 0.025 mol% of dimethylvinylsiloxane units and having an average degree of polymerization of about 8,000, BET ratio 70 parts by mass of dry silica Arosil 300 (manufactured by Nippon Aerosil Co., Ltd.) having a surface area of 300 m 2 / g, 16 parts by mass of hexamethyldisilazane and 4 parts by mass of water were added as a dispersant, and kneaded with a kneader.
  • an organopolysiloxane comprising 99.825 mol% of dimethylsiloxane units, 0.15 mol% of methylvinylsiloxane units and 0.025 mol% of dimethylvinylsiloxane units and having an
  • the rubber compound was prepared by heat treatment for 2 hours.
  • -25B (organohydrogenpolysiloxane) both manufactured by Shin-Etsu Chemical Co., Ltd.
  • the ultraviolet ray shielding silicone rubber adhesive composition is molded to 50 mm ⁇ 50 mm ⁇ thickness 2 mm, heat-cured at 130 ° C. for 30 minutes, and light transmittance of 380 nm light using SPECTROTOPOMETER U-3310 (Hitachi). Was measured.
  • the mixture was added, kneaded with a kneader, and heat treated at 170 ° C. for 2 hours to prepare a compound.
  • C-25A platinum catalyst
  • C-25B organohydrogenpolysiloxane
  • 0.5 parts by mass / 2 0.0 part by mass was added after kneading with two rolls and mixed uniformly to obtain an uncured silicone rubber adhesive composition.
  • This silicone rubber adhesive composition was separated into a thickness of 0.7 mm with two rolls.
  • the embossed roll surface of a diamond embossed film (embossed NEF type; thickness 0.15 mm) manufactured by Ishijima Chemical Co., Ltd. is pressed on both sides of the obtained silicone adhesive sheet with a rubber roll. Embossing was performed by pasting embossed films.
  • a 340 mm ⁇ 360 mm white plate reinforced glass substrate (Asahi Glass Co., Ltd .: hereinafter, glass substrate) Affixed with a rubber roll.
  • the solar cell module is obtained by putting the light-receiving surface / back surface laminate obtained in the laminating step [4] into a vacuum laminator, depressurizing for 3 minutes while heating at 110 ° C., and then pressure bonding at atmospheric pressure for 15 minutes. Obtained. This solar cell module was visually evaluated for appearance, and the presence or absence of voids and cell cracks was confirmed.
  • Example 2 UV absorber TINUVIN326 (manufactured by BASF) dissolved in dimethyl silicone oil [KF-96-100cs (manufactured by Shin-Etsu Chemical Co., Ltd.)] in 100 parts by mass of the rubber compound described in Example 1 was added. 2 parts by mass was added, and the same amount of curing catalyst as in Example 1 was added to obtain an unvulcanized adhesive composition. Using this, the same test as in Example 1 was performed.
  • Example 3 UV absorber RUVA-93 (Otsuka Chemical Co., Ltd.) dissolved in dimethyl silicone oil [KF-96-100cs (manufactured by Shin-Etsu Chemical Co., Ltd.)] in 100 parts by mass of the rubber compound described in Example 1. 0.25 parts by mass) was added, and the same amount of curing catalyst as in Example 1 was added to obtain an unvulcanized adhesive composition. Using this, the same test as in Example 1 was performed.
  • FIG. 4 shows a solar cell module of a comparative example.
  • Table 1 shows the results. Moreover, in FIG. 5, the light transmittance of each wavelength of the hardened
  • an adhesive sheet having a low light transmittance of 380 nm By using an adhesive sheet having a low light transmittance of 380 nm, a member of a back sheet used for a solar cell such as PET could be prevented from being deteriorated by ultraviolet rays.
  • the solar battery cells can be reliably and effectively sealed, and the productivity of the module can be greatly improved without using conventional liquid silicone that is difficult to handle.
  • Photosensitive panel 2 Back panel (back sheet) 3 UV-non-shielding silicone adhesive cured layer 30 UV-non-shielding silicone adhesive uncured layer 4 UV-shielding silicone adhesive cured layer 40 UV-shielding silicone adhesive uncured layer 5 Solar cell

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Inorganic Chemistry (AREA)
  • Photovoltaic Devices (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Sealing Material Composition (AREA)
  • Laminated Bodies (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Adhesive Tapes (AREA)

Abstract

 受光面パネル及び背面パネルと、これら両パネルにそれぞれ接するシリコーン接着剤層と、これら両接着剤層間に介装されて封止される複数の太陽電池セルとを備えた太陽電池モジュールにおける、上記背面パネルに接するシリコーン接着剤層を形成する接着剤シートであって、厚み2mmの硬化物に対し380nm光の波長の光透過率を測定した場合に30%以下の光透過率を与えることを特徴とする太陽電池封止用紫外線遮蔽性シリコーン接着剤シート。 本発明のシリコーン接着剤シートは、押し出し成形、カレンダー成形等が可能なミラブルタイプの接着剤シートであり、受光面パネル、シリコーン接着剤シート、太陽電池セル、本発明によるシリコーン接着剤シート、背面パネル(バックシート)の積層体を真空ラミネーターを用いてモジュール化することができる。

Description

太陽電池封止用紫外線遮蔽性シリコーン接着剤シート並びにそれを用いた太陽電池モジュール
 本発明は、特に背面パネルがポリエチレンテレフタレート(PET)を含むバックシートである結晶型又は多結晶太陽電池を信頼性高く封止するのに有用なシリコーン接着剤シート並びにそれを用いた太陽電池モジュールに関する。
 近年、太陽光を利用したエネルギー資源として、太陽光発電に対する関心が高まっている。ここで太陽電池の発電素子は、一般的にシリコン等の半導体からなり、太陽電池モジュールは、個々の太陽電池セルを電気的に相互接続した状態で、受光面ガラス基板などに積載される。
 その際、太陽電池セルに光が当たる表面又は裏面側は、封入材料で覆われることにより、太陽電池は外的環境、例えば雨、風、雪、埃などから保護されることになる。封入材料として、一般的にはシート状で取り扱いやすく、低コストなどの観点から熱可塑性樹脂であるエチレン-酢酸ビニル共重合体(EVA)が使用されている。EVAを用いて太陽電池をモジュール化するのは、受光面/EVAシート/太陽電池セル/EVAシート/背面パネル(バックシート)を積層したものを真空ラミネーターに入れ、130~150℃で15~30分プレスする方法が一般的である。
 しかしながら、封止材としてEVAを使用した場合、特に高温高湿環境下において酢酸が発生するため、この発生酢酸が原因となって、太陽電池セル電極を腐食するなどの影響により、発電性能が劣化するという問題があった。特に、太陽電池は数十年単位の長期使用が期待されるため、経時劣化は保証の観点から早急な解決が望まれている。
 また、EVAは、上記問題に留まらず、UV耐性が低く、長期間屋外に暴露されることにより変色が生じ、黄色或いは褐色となるために、外観を損ねるという問題もあった。
 これらの問題が生じない封止材として、シリコーンが挙げられる。例えば、シリコーンを封止材として使用した場合、酢酸の発生がないことにより電極腐食が抑えられるだけでなく、黄色又は褐色の変色問題も解消される。また、EVAのように低温で弾性率が急激に上昇するようなことがなく、電極の接続の信頼性も高くなる。例えば、非特許文献1(伊藤厚雄,大和田寛人,降籏智欣,金享培,山川直樹,柳沼篤,今瀧智雄,渡邉百樹,阪本貞夫:第9回次世代の太陽光発電システムシンポジウム予稿集,2012,p.54)では、屋外に29年暴露されたシリコーン封止太陽電池モジュールの再評価が行われ、最大出力の低下が僅か-0.22%/年と非常に高い信頼性を有することが紹介されている。
 シリコーンは近年、耐熱性・耐紫外線に優れ、発光ダイオード(LED)の封止材として広く使用されている。可視光だけでなく、青(450~495nm光)や紫(380~450nm)の光に対しても高い透過性を有する特徴を有する。
 しかし、このようにEVAに比べ耐候性が高く、低波長光も透過し、発電量が高くなるシリコーンも、太陽電池に適用するにあたって必ずしも有利なものばかりでない。
 太陽電池はその生産量並びに設置量が世界的に急激に伸びている。それに伴い低コスト化が厳しく求められている。
 一般的にスーパーストレート型といわれる太陽電池モジュールは、受光面ガラスとバックシートの間にEVAを封止材として太陽電池セルが封止されている。このバックシートは、厚みが150~350μmで、太陽電池セルや配線部材を屋外の環境ストレスから長期間保護するために配置されている。バックシートに求められる特性としては、高い水蒸気バリア性、電気絶縁性、光反射性があり、代表的なものとして、TPT「PVF(ポリフッ化ビニル)/接着剤/PET(ポリエチレンテレフタレート)/接着剤/PVF」や、TPE「PVF/接着剤/PET/接着剤/EVA」で示される積層体や、水蒸気を完全に遮断するアルミホイルを挟んだ樹脂の積層体が市販されている。
 近年、バックシートに対しても低コスト化が進められ、PVFのようなフッ素樹脂が使われず、PET単層のものも現れている。封止材がEVAの場合、添加されている紫外線吸収剤の効果により低波長光は吸収されてPETへの影響は小さくなるが、低波長光も透過するシリコーン封止材を適用する場合、直ちに劣化してしまう。フッ素系樹脂の期待される特性としては、汚れ防止性能だけでなく、芯材のPETを劣化から防ぐ紫外線カット能も挙げられるが、このようなフッ素系樹脂を含まない低コストバックシートへのシリコーン封止材の適用は困難であった。
 シリコーン封止太陽電池を得るために、これまでにさまざまな封止方法が検討されてきた。特許文献1(特表2007-527109号公報)では、基板上にコーティングされた液状のシリコーン材料上又はシリコーン材料中に、接続された太陽電池を多軸ロボットにより配置し、その後でシリコーン材料を硬化することにより気泡を取り込まずに封入することが提案されている。また、特許文献2(特表2011-514680号公報)では、移動可能なプレートを有したセルプレスを使用し、真空下で太陽電池セルを硬化或いは半硬化のシリコーン上に配置することにより気泡を取り込まずに封入することが提案されている。一方、特許文献3(国際公開第2009/091068号)では、ガラス基板に封止剤、太陽電池素子、シリコーン液状物質を配置し、最後に裏面保護基板を重ねて仮積層体とし、室温の真空下で加圧密着させて密封する方法が提案されているが、この方法では太陽電池モジュールの実用サイズへの展開は難しいと考えられる。
 ここで、いずれの方法においても、太陽電池セル封止工程において液状シリコーンを塗布或いはポッティングするという煩雑な工程を含む。このことは、昨今太陽電池のモジュール化にEVAシートを用いているという製造メーカーには新たな設備投資が必要となるため、受け入れられ難い現状がある。また、特許文献2(特表2011-514680号公報)では、封止材が光を通す必要がない場合に顔料を含んでもよいとあるものの、必ずしも低コストバックシートへの適用を鑑みたものではない。更に、塗布、ポッティングに最適な低粘度のシリコーンを用いた硬化物はEVAに比べ物理強度が弱く、更に接着強度も低いことから、より高強度・高接着力を有するシリコーン封止材の開発が求められていた。
 本発明は上記事情に鑑みなされたもので、特にフッ素樹脂を含まないバックシートを用いても紫外線によりバックシートが劣化しないシリコーン封止材に関するものであり、液状ではなくシート状で取り扱い性に優れる太陽電池封止用紫外線遮蔽性シリコーン接着剤シート並びに太陽電池モジュールを提供することを目的とする。
 本発明者らは、上記目的を達成するために鋭意検討を重ねた結果、特に380nm以下の波長の光を遮断するシリコーンゴム接着剤組成物をシート状に加工した紫外線遮蔽性のシリコーン接着剤シートをバックシート上に配置した背面積層体と、受光面パネル上に上記と同じ又は異なるシリコーン接着剤シートを配置した受光面積層体との両接着剤シートの間に太陽電池セルを配置するよう一体積層体を作成し、これを真空・加熱下で押圧することで、取り扱いが容易で封止性が高く、更に低コストバックシートを用いても紫外線による表面のPETの劣化を防ぐことができることを見出し、本発明をなすに至った。
 即ち、本発明は下記の太陽電池封止用紫外線遮蔽能を有するシリコーン接着剤シート並びにそれを用いた太陽電池モジュールを提供する。
〔1〕
 受光面パネル及び背面パネルと、これら両パネルにそれぞれ接するシリコーン接着剤層と、これら両接着剤層間に介装されて封止される複数の太陽電池セルとを備えた太陽電池モジュールにおける、上記背面パネルに接するシリコーン接着剤層を形成する接着剤シートであって、厚み2mmの硬化物に対し380nm光の波長の光透過率を測定した場合に30%以下の光透過率を与えることを特徴とする太陽電池封止用紫外線遮蔽性シリコーン接着剤シート。
〔2〕
 (A)R1 aSiO(4-a)/2   (I)
(式中、R1は同一又は異種の非置換又は置換の1価炭化水素基を示し、aは1.95~2.05の正数である。)
で表され、重合度が100以上のオルガノポリシロキサン:100質量部、
(B)比表面積が200m2/gを超える補強性シリカ:10~150質量部、
(C)硬化剤:(A)成分を硬化させる有効量、
(D)接着付与剤:0~10質量部、
(E)平均粒子径が0.1~10μmである充填剤(但し、(B)成分を除く):0.1~50質量部
を含有してなる〔1〕記載のシリコーン接着剤シート。
〔3〕
 (A)R1 aSiO(4-a)/2   (I)
(式中、R1は同一又は異種の非置換又は置換の1価炭化水素基を示し、aは1.95~2.05の正数である。)
で表され、重合度が100以上のオルガノポリシロキサン:100質量部、
(B)比表面積が200m2/gを超える補強性シリカ:10~150質量部、
(C)硬化剤:(A)成分を硬化させる有効量、
(D)接着付与剤:0~10質量部、
(F)紫外線吸収剤:0.05~2質量部
を含有してなる〔1〕記載のシリコーン接着剤シート。
〔4〕
 (D)成分が、アルコキシ基、エポキシ基、アクリル基、メタクリル基のいずれかを1つ以上含み、(A)成分100質量部に対し0.01質量部以上含有する〔1〕又は〔2〕記載のシリコーン接着剤シート。
〔5〕
 厚みが0.3~2.5mmである〔1〕~〔4〕のいずれかに記載のシリコーン接着剤シート。
〔6〕
 両面がエンボス加工されてなる〔1〕~〔5〕のいずれかに記載のシリコーン接着剤シート。
〔7〕
 受光面パネル、硬化性シリコーン接着剤シート、複数の太陽電池セル、〔1〕~〔6〕のいずれかに記載の紫外線遮蔽性シリコーン接着剤シート、及び背面パネルを積層した積層体を真空ラミネーターを用いて真空下加熱押圧することにより、上記両接着剤シートを硬化して上記太陽電池セルを封止してなるシリコーン封止太陽電池モジュール。
〔8〕
 背面パネルが、ポリエチレンテレフタレートを含有するバックシートである〔7〕記載の太陽電池モジュール。
 本発明のシリコーン接着剤シートは、押し出し成形、カレンダー成形等が可能なミラブルタイプの接着剤シートであり、受光面パネル、シリコーン接着剤シート、太陽電池セル、本発明によるシリコーン接着剤シート、背面パネル(バックシート)の積層体を真空ラミネーターを用いてモジュール化することができる。これにより、セルの封止性が高く、紫外線からバックシートの劣化を防ぐことができるモジュールを従来の液状シリコーンを用いず簡便に得ることができる。
本発明の一実施例に係る太陽電池モジュールの概略断面図である。 本発明の他の実施例に係る太陽電池モジュールの概略断面図である。 本発明の実施例における真空ラミネーターにセットする積層体の一例を示す概略断面図である。 比較例の太陽電池モジュールの概略断面図である。 実施例2の紫外線遮蔽性シリコーン接着剤シート硬化物の波長と光透過率との関係を示すグラフである。 比較例の紫外線遮蔽性シリコーン接着剤シート硬化物の波長と光透過率との関係を示すグラフである。
 本発明の紫外線遮蔽性シリコーン接着剤シートによれば、バックシートの部材であるPETを紫外線による劣化を防ぐことができる。このため、バックシートの上に配置するシリコーン接着剤層の380nm光の透過率が太陽電池封止用EVA並みの30%以下とするものである。380nm光の光透過率が30%を超えると太陽の紫外線によってバックシート(PET)が劣化してしまうおそれがある。一方、380nm光の透過率は低いほどよい。
 本発明の紫外線遮蔽性シリコーン接着剤シートは、
(A)R1 aSiO(4-a)/2   (I)
(式中、R1は同一又は異種の非置換又は置換の1価炭化水素基を示し、aは1.95~2.05の正数である。)
で表され、重合度が100以上のオルガノポリシロキサン:100質量部、
(B)比表面積が200m2/gを超える補強性シリカ:10~150質量部、
(C)硬化剤:(A)成分を硬化させる有効量、
(D)接着付与剤:0~10質量部、
(E)平均粒子径が0.1~10μmである充填剤(但し、(B)成分を除く):0.1~50質量部、
又は、
(A)R1 aSiO(4-a)/2   (I)
(式中、R1は同一又は異種の非置換又は置換の1価炭化水素基を示し、aは1.95~2.05の正数である。)
で表され、重合度が100以上のオルガノポリシロキサン:100質量部、
(B)比表面積が200m2/gを超える補強性シリカ:10~150質量部、
(C)硬化剤:(A)成分を硬化させる有効量、
(D)接着付与剤:0~10質量部、
(F)紫外線吸収剤:0.05~2質量部
を含有してなるシリコーンゴム組成物をカレンダーロール又は押し出し成形加工等によってシート状に形成したものであり、従って未硬化状態のものである。
 以下、このシリコーンゴム組成物について詳述する。
 本発明のシリコーンゴム組成物において、(A)成分は下記平均組成式(I)で表される重合度が100以上のオルガノポリシロキサンである。
 R1 aSiO(4-a)/2   (I)
(式中、R1は同一又は異種の非置換又は置換の1価炭化水素基を示し、aは1.95~2.05の正数である。)
 上記平均組成式(I)中、R1は同一又は異種の非置換又は置換の1価炭化水素基を示し、通常、炭素数1~12、特に炭素数1~8のものが好ましく、具体的には、メチル基、エチル基、プロピル基、ブチル基、ヘキシル基、オクチル基等のアルキル基、シクロペンチル基、シクロヘキシル基等のシクロアルキル基、ビニル基、アリル基、プロペニル基等のアルケニル基、シクロアルケニル基、フェニル基、トリル基等のアリール基、ベンジル基、2-フェニルエチル基等のアラルキル基、或いはこれらの基の水素原子の一部又は全部をハロゲン原子又はシアノ基等で置換した基が挙げられ、メチル基、ビニル基、フェニル基、トリフルオロプロピル基が好ましく、特にメチル基、ビニル基が好ましい。
 具体的には、該オルガノポリシロキサンの主鎖がジメチルシロキサン単位の繰り返しからなるもの、又はこの主鎖を構成するジメチルシロキサン単位の繰り返しからなるジメチルポリシロキサン構造の一部にフェニル基、ビニル基、3,3,3-トリフルオロプロピル基等を有するジフェニルシロキサン単位、メチルフェニルシロキサン単位、メチルビニルシロキサン単位、メチル-3,3,3-トリフルオロプロピルシロキサン単位等を導入したものなどが好適である。
 特に、オルガノポリシロキサンは、一分子中に2個以上のアルケニル基、シクロアルケニル基等の脂肪族不飽和基を有するものが好ましく、特にビニル基を有するものであることが好ましい。この場合、全R1中0.01~20モル%、特に0.02~10モル%が脂肪族不飽和基であることが好ましい。なお、この脂肪族不飽和基は、分子鎖末端でケイ素原子に結合していても、分子鎖の途中のケイ素原子に結合していても、その両方であってもよいが、少なくとも分子鎖末端のケイ素原子に結合していることが好ましい。また、aは1.95~2.05、好ましくは1.98~2.02、より好ましくは1.99~2.01の正数である。
 (A)成分のオルガノポリシロキサンは、分子鎖末端がトリメチルシロキシ基、ジメチルフェニルシロキシ基、ジメチルヒドロキシシロキシ基、ジメチルビニルシロキシ基、メチルジビニルシロキシ基、トリビニルシロキシ基等のトリオルガノシロキシ基で封鎖されたものを好ましく挙げることができる。
 特に好ましいものとしては、メチルビニルポリシロキサン、メチルフェニルビニルポリシロキサン、メチルトリフルオロプロピルビニルポリシロキサン等を挙げることができる。
 このようなオルガノポリシロキサンは、例えばオルガノハロゲノシランの1種又は2種以上を(共)加水分解縮合することにより、或いは環状ポリシロキサン(シロキサンの3量体、4量体等)をアルカリ性又は酸性の触媒を用いて開環重合することによって得ることができる。これらは基本的に直鎖状のジオルガノポリシロキサンであるが、(A)成分としては、分子量(重合度)や分子構造の異なる2種又は3種以上の混合物であってもよい。
 なお、上記オルガノポリシロキサンの重合度は100以上、好ましくは100~100,000、特に好ましくは3,000~20,000である。なお、この重合度は、ゲルパーミエーションクロマトグラフィ(GPC)分析によるポリスチレン換算の重量平均重合度として測定することができる。
 (B)成分のBET比表面積50m2/gを超える補強性シリカは、硬化前後の機械的強度の優れたゴム組成物を得るために添加されるものである。この場合、シリコーンゴム組成物の透明性向上のためには、BET比表面積が200m2/gを超える必要があり、好ましくは250m2/g以上である。BET比表面積が200m2/g以下だと、硬化物の透明性が低下してしまう。なお、その上限は特に制限されないが、通常500m2/g以下である。
 このような(B)成分の補強性シリカとしては、煙霧質シリカ(乾式シリカ又はヒュームドシリカ)、沈降シリカ(湿式シリカ)等が挙げられる。また、これらの表面をクロロシラン、アルコキシシラン、ヘキサメチルジシラザン等で疎水化処理したものも好適に用いられる。特にヘキサメチルジシラザンによる処理が、透明性が高くなり、好ましい。透明性を高めるには、補強性シリカとして煙霧質シリカの使用が好ましい。補強性シリカは、1種単独で使用しても2種以上を併用してもよい。
 (B)成分の補強性シリカとしては、市販品を用いることができ、例えば、アエロジル130、アエロジル200、アエロジル300、アエロジルR-812、アエロジルR-972、アエロジルR-974等のアエロジルシリーズ(日本アエロジル(株)製)、Cabosil MS-5、MS-7(キャボット社製)、レオロシールQS-102、103、MT-10(トクヤマ社製)等の表面未処理又は表面疎水化処理された(即ち、親水性又は疎水性の)ヒュームドシリカや、トクシールUS-F(トクヤマ社製)、NIPSIL-SS、NIPSIL-LP(日本シリカ(株)製)等の表面未処理又は表面疎水化処理された沈降シリカ等が挙げられる。
 (B)成分の補強性シリカの配合量は、(A)成分のオルガノポリシロキサン100質量部に対して10~150質量部であり、好ましくは30~120質量部であり、更に好ましくは50~100質量部である。(B)成分の配合量が少なすぎる場合には硬化前後の補強効果が得られず、またシリコーン接着剤の硬化後の透明性が低下する。多すぎる場合、シリコーンポリマー中へのシリカの分散が困難になると同時にシート状への加工性が悪くなるおそれがある。
 (C)成分の硬化剤としては、(A)成分を硬化させ得るものであれば特に限定されないが、広くシリコーンゴムの硬化剤として公知の(a)付加反応(ヒドロシリル化反応)型硬化剤、即ちオルガノハイドロジェンポリシロキサン(架橋剤)とヒドロシリル化触媒との組み合わせ、又は(b)有機過酸化物が好ましい。
 上記(a)付加反応(ヒドロシリル化反応)における架橋剤としてのオルガノハイドロジェンポリシロキサンは、一分子中に少なくとも2個のケイ素原子と結合した水素原子(SiH基)を含有するもので、下記平均組成式(II)
 R2 bcSiO(4-b-c)/2   (II)
(ここで、R2は炭素数1~6の非置換又は置換の1価炭化水素基で、好ましくは脂肪族不飽和結合を有さないものである。具体例としてはメチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基等のアルキル基、シクロヘキシル基、シクロヘキセニル基、フェニル基等の非置換の1価炭化水素基、3,3,3-トリフルオロプロピル基、シアノメチル基等の上記1価炭化水素基の水素原子の少なくとも一部がハロゲン原子やシアノ基で置換された置換アルキル基等の置換の1価炭化水素基である。bは0.7~2.1、cは0.01~1.0、かつb+cは0.8~3.0、好ましくはbは0.8~2.0、cは0.2~1.0、かつb+cは1.0~2.5を満足する正数で示される。)
で示される従来から公知のオルガノハイドロジェンポリシロキサンが適用可能である。また、オルガノハイドロジェンポリシロキサンの分子構造は、直鎖状、環状、分岐状、三次元網目状のいずれの構造であってもよい。この場合、一分子中のケイ素原子の数(又は重合度)は2~300個、特に4~200個程度の室温で液状のものが好適に用いられる。なお、ケイ素原子に結合する水素原子(SiH基)は分子鎖末端にあっても側鎖にあっても、その両方にあってもよく、一分子中に少なくとも2個(通常2~300個)、好ましくは3個以上(例えば3~200個)、より好ましくは4~150個程度含有するものが使用される。
 このオルガノハイドロジェンポリシロキサンとして具体的には、1,1,3,3-テトラメチルジシロキサン、1,3,5,7-テトラメチルシクロテトラシロキサン、メチルハイドロジェンシクロポリシロキサン、メチルハイドロジェンシロキサン・ジメチルシロキサン環状共重合体、トリス(ジメチルハイドロジェンシロキシ)メチルシラン、トリス(ジメチルハイドロジェンシロキシ)フェニルシラン、両末端トリメチルシロキシ基封鎖メチルハイドロジェンポリシロキサン、両末端トリメチルシロキシ基封鎖ジメチルシロキサン・メチルハイドロジェンシロキサン共重合体、両末端ジメチルハイドロジェンシロキシ基封鎖ジメチルポリシロキサン、両末端ジメチルハイドロジェンシロキシ基封鎖ジメチルシロキサン・メチルハイドロジェンシロキサン共重合体、両末端トリメチルシロキシ基封鎖メチルハイドロジェンシロキサン・ジフェニルシロキサン共重合体、両末端トリメチルシロキシ基封鎖メチルハイドロジェンシロキサン・ジフェニルシロキサン・ジメチルシロキサン共重合体、環状メチルハイドロジェンポリシロキサン、環状メチルハイドロジェンシロキサン・ジメチルシロキサン共重合体、環状メチルハイドロジェンシロキサン・ジフェニルシロキサン・ジメチルシロキサン共重合体、(CH32HSiO1/2単位とSiO4/2単位とからなる共重合体、(CH32HSiO1/2単位とSiO4/2単位と(C65)SiO3/2単位とからなる共重合体等や上記各例示化合物において、メチル基の一部又は全部がエチル基、プロピル基等の他のアルキル基やフェニル基等のアリール基で置換されたものなどが挙げられる。
 このオルガノハイドロジェンポリシロキサンの配合量は、(A)成分のオルガノポリシロキサン100質量部に対して0.1~30質量部、より好ましくは0.1~10質量部、更に好ましくは0.3~10質量部とすることが好ましい。
 また、このオルガノハイドロジェンポリシロキサンは、(A)成分中のケイ素原子に結合したアルケニル基に対する(C)成分中のケイ素原子に結合した水素原子(即ち、SiH基)のモル比が0.5~5モル/モル、好ましくは0.8~4モル/モル、より好ましくは1~3モル/モルとなる量で配合することが好ましい。
 また、上記(a)付加反応(ヒドロシリル化反応)の架橋反応に使用されるヒドロシリル化反応触媒は、公知のものが適用可能で、例えば、白金黒、塩化第二白金、塩化白金酸、塩化白金酸と1価アルコールとの反応物、塩化白金酸とオレフィン類との錯体、白金ビスアセトアセテート等の白金系触媒、パラジウム系触媒、ロジウム系触媒等が挙げられる。なお、このヒドロシリル化反応触媒の配合量は触媒量とすることができ、通常、白金族金属質量に換算して、1~100ppm、特に5~100ppmの範囲が好ましい。1ppm未満であると付加反応が十分に進まず硬化不十分となるおそれがあり、100ppmを超える量添加するのは不経済である。
 また、上記の反応触媒のほかに、硬化速度或いはポットライフを調整する目的で、付加反応制御剤を使用してもよい。具体的にはエチニルシクロヘキサノールやテトラメチルテトラビニルシクロテトラシロキサン等が挙げられる。
 一方、(b)有機過酸化物としては、例えば、ベンゾイルパーオキサイド、2,4-ジクロロベンゾイルパーオキサイド、p-メチルベンゾイルパーオキサイド、o-メチルベンゾイルパーオキサイド、2,4-ジクミルパーオキサイド、2,5-ジメチル-ビス(2,5-t-ブチルパーオキシ)ヘキサン、ジ-t-ブチルパーオキサイド、t-ブチルパーベンゾエート、1,6-ヘキサンジオール-ビス-t-ブチルパーオキシカーボネート等が挙げられる。
 この(b)有機過酸化物の添加量は、(A)成分100質量部に対して0.1~15質量部、特に0.2~10質量部が好ましい。添加量が少なすぎると架橋反応が十分に進行せず、硬度低下やゴム強度不足を生じる場合があり、多すぎるとコスト的に好ましくないばかりでなく、硬化剤の分解物が多く発生して、シートの変色を増大させる場合がある。
 (D)成分は、太陽電池パネルや太陽電池セル、或いは表面がフッ素樹脂からなるバックシートへの接着力向上のために添加されるものであり、アルコキシ基、エポキシ基、アクリル基、メタクリル基のうちいずれか1つ以上のものを含む化合物であることが好ましい。(D)成分の添加量は、(A)成分100質量部に対し0~10質量部であることが好ましく、好ましくは0.01~8質量部、より好ましくは0.2~5質量部である。(D)成分は、具体的には、下記に示されるものが例示される。
Figure JPOXMLDOC01-appb-C000001
 これらの接着付与剤を微量添加することにより、受光面パネルとして広く使用されるガラス、及び同じセラミックスに含まれる太陽電池セル表面(SiN膜)や裏面電極(Al)への接着性も向上し、加速劣化試験、例えば85℃/85%RH条件下放置後の接着性も維持されると考えられる。なお、これらの接着成分を(a)付加反応(ヒドロシリル化反応)系に添加した場合でも、(C),(D)成分のオルガノハイドロジェンポリシロキサン総量は、(A),(D)成分中のケイ素原子に結合したアルケニル基に対する(C),(D)成分中のケイ素原子に結合した水素原子(即ち、SiH基)のモル比が0.5~5モル/モル、好ましくは0.8~4モル/モル、より好ましくは1~3モル/モルとなる量で配合することが好ましい。
 (E)成分は、紫外線を遮蔽或いは反射するために添加する充填剤である。なお、上記(B)成分の補強性シリカは含まれない。(E)成分として用いる充填剤は、レーザー回折・散乱法による累積体積平均粒径d50(又はメジアン径)が0.1~10μmであることが好ましい。粒子径が0.1μmより小さいと光の遮蔽性が低下するおそれがあり、10μmより大きい場合、太陽電池セルを傷つけるおそれがある。(E)成分の充填剤としては、結晶性シリカ、溶融シリカ、酸化チタン、酸化亜鉛、炭酸カルシウム、カオリナイト、カーボンブラック、酸化鉄等が挙げられるが、絶縁性があり効果的に紫外線を遮蔽できるという点で、酸化チタンが好ましい。添加量は、(A)成分100質量部に対して0.1~50質量部が好ましく、遮蔽性が高い酸化チタンを添加する場合には0.1~5質量部であることが好ましい。0.1質量部より添加量が少ない場合、紫外線を通してしまうおそれがある。
 (F)成分は、紫外線を吸収して通さないようにするために添加する有機紫外線吸収剤である。紫外線吸収剤としては、ベンゾトリアゾール系、ヒドロキシフェニルトリアジン系、マロン酸エステル系のものが多く市販されている。紫外線吸収剤はそれぞれ固有の吸収特性を有するが、本用途にはバックシート表層に配置される樹脂、特にPETの劣化防止を目的としていることから380nm以下の光を吸収する紫外線吸収剤を適量添加することが必要である。(F)成分の一例としては、BASF社製 TINUVIN326やTINUVIN328、或いは大塚化学(株)製のRUVA-93が挙げられる。また、硬化に影響を及ぼさない程度に光安定剤(HALS)を併用することができる。その配合量は、(A)成分100質量部に対し0.05~2質量部、特に0.1~0.5質量部であることが好ましい。
 本発明のシリコーンゴム組成物には、上記成分以外に、本発明の目的を損なわない範囲で、難燃性付与剤、着色剤等を添加することができる。
 本発明のシリコーンゴム組成物は、上述した成分の所定量を2本ロール、ニーダー、バンバリーミキサー等で混練りすることによって得ることができる。
 このように調製されたシリコーンゴム組成物は、可塑度150~1,000、好ましくは200~800、より好ましくは250~600である。可塑度が150より小さいと未硬化シートの形状維持が困難となったり、タックが強く使いづらくなる。また、1,000を超えるとボソボソとなり、シート化工程が困難となる。なお、可塑度の測定は、JIS K 6249に記載されている可塑度測定方法によって行うことができる。
 本発明のシリコーンゴム組成物をシート状に成形する場合、成形方法としては、特に限定されないが、押し出し成形、カレンダー成形等が用いられる。この際、得られたシリコーン接着剤シートの厚みは0.3~2.5mm、より好ましくは0.3~1.0mmである。0.3mmより薄い場合、次工程である加熱硬化・太陽電池セルの封止工程において取り出し電極やバスバー電極の凹凸を空隙なく封止するのが困難な場合があり、2.5mmより厚いと接着剤シートの重量が高くなり、結果としてモジュールの重量が増すことになる。
 本発明によるシリコーン接着剤シートは未硬化状態であるため、いわゆる太陽電池用EVAのような表面がさらっとしたものではなく、表面タックを有し変形可能なものである。そこで、シート化する際、少なくとも片方の面にラミネートフィルムを施し、巻き取り時にシート同士が接着しないよう加工するのが好ましい。そして、モジュール化の際には、ラミネートフィルムを剥がして使用する。この場合、エンボスフィルムを用い、表面及び裏面をエンボス加工することができる。
 以下、本発明による太陽電池のモジュール化方法について説明する。モジュール化は主に、i)受光面側パネル積層体の形成、ii)背面側バックシート積層体の形成、iii)i)及びii)のパネル積層体の貼り合わせ、iv)真空ラミネーターを用いた太陽電池セルの封入、の4工程からなる。
 ここで、受光面パネルとは、太陽光を入射させる側となる透明部材であるが、長期間屋外暴露されることから、透明性、耐候性、耐衝撃性に優れることが求められる。受光面パネルとしては、例えば白板強化ガラス、アクリル樹脂、フッ素樹脂又はポリカーボネート樹脂等が挙げられ、特に厚さ3~5mm程度の白板強化ガラスが好ましい。また、太陽光入射と反対側となる面である背面パネル(背面側バックシート)には、TPT「PVF(ポリフッ化ビニル)/接着剤/PET(ポリエチレンテレフタレート)/接着剤/PVF」や、TPE「PVF/接着剤/PET/接着剤/EVA」、或いは特に「PVF/接着剤/PET」に示される積層体を使用することができる。また、PET単層でもよく、いずれにしてもPETを含有するものが好ましい。
 次に各工程について説明する。
[工程i]
 受光面パネルに後述する未加硫のシリコーン接着剤シートを載せ、その上に2~60個の太陽電池セルが接続されたセルストリングスを、受光面を下にするよう貼り付ける。これを、受光面パネル積層体とする。ここで、太陽電池セルは、一般的な単結晶シリコン又は多結晶シリコンのうちから選ばれる1種もしくは2種のシリコン半導体を用いることができ、太陽電池セルストリングスは、ここでは、上記太陽電池セルをタブ線で接続し組みセルとしたものが挙げられる。また、シリコーン接着剤シートは、本発明に係る紫外線遮蔽性シリコーン接着剤であっても、そうでなくてもよく、例えば上述したシリコーンゴム組成物から、(E),(F)成分を除去したシリコーンゴム組成物をシート化したものを使用し得る。
[工程ii]
 バックシートに本発明に係る紫外線遮蔽性シリコーン接着剤シートを貼り付ける。これを、背面パネル積層体とする。
[工程iii]
 受光面パネル積層体のセル裏面と背面パネル積層体のシリコーン接着剤シートが接するように貼り合わせる。
[工程iv]
 工程iiiで作成した受光面パネル/背面パネル積層体を真空ラミネーターにセットし、減圧空間内に一定時間脱泡後加熱しながら押圧して太陽電池セルを封止する。
 ここで、受光面パネル/背面パネル積層体を減圧空間内に配置する場合、その減圧度は特に制限されないが、-0.08~-0.10MPaであることが好ましい。また、加熱・押圧条件も適宜選定されるが、70~150℃、特に100~130℃の加熱下、3~5分の真空減圧後に大気圧で5~30分押圧することが好ましい。この押圧時に両シリコーン接着剤シートは架橋し、受光面パネル、受光面パネル上のシリコーン接着剤シート、太陽電池セル、背面パネル上のシリコーン接着剤シート、及び背面パネルは接着する。加熱温度が70℃より低い場合、硬化速度が遅く、成形時間内に硬化が完全に完了しない可能性があり、150℃より高い場合、硬化速度が速くなり、真空引き時間中に硬化が始まることで受光面或いは背面パネルとの間に空隙が残る可能性がある。ここで、効果的に真空減圧するために、エンボス加工を行い、未硬化のシリコーン接着剤シートにゼブラ状或いはひし形状の凹凸を形成することが有効である。また、加熱成形により得られた一体成形体を100~150℃で10分~10時間程度ポストキュアーしてもよい。
 上記工程を経て、シリコーン封止太陽電池がモジュール化される。このモジュールの周囲にアルミニウム合金やステンレス鋼材からなるフレームを取り付け、ねじ等により固定されることにより、耐衝撃性が付与されたモジュールが完成する。
 ここで、受光面パネルに積層する未加硫ゴムシートは、紫外線遮蔽効果のある(E)又は(F)成分を含んでも含まなくてもよい。
 図1は、受光面パネルに積層する未加硫ゴムシートが(E),(F)成分を含まないシリコーン接着剤シートを用いて太陽電池モジュールを形成した例、図2は受光面パネルに積層する未加硫シリコーンゴムシートが(E)又は(F)成分を含む紫外線遮蔽性シリコーン接着剤シートを用いて太陽電池モジュールを形成した例である。図中、1は受光面パネル、2は背面パネル(バックシート)、3は紫外線非遮蔽性シリコーン接着剤硬化層、4は紫外線遮蔽性シリコーン接着剤硬化層、5は太陽電池セルである。
 以下、実施例及び比較例を示し、本発明を具体的に説明するが、本発明は下記の実施例に制限されるものではない。
  [実施例1]
 ジメチルシロキサン単位99.825モル%、メチルビニルシロキサン単位0.15モル%、ジメチルビニルシロキサン単位0.025モル%からなり、平均重合度が約8,000であるオルガノポリシロキサン100質量部、BET比表面積300m2/gの乾式シリカ Arosil300(日本エアロジル(株)製)70質量部、分散剤としてヘキサメチルジシラザン16質量部、水4質量部を添加し、ニーダーにて混練りし、170℃にて2時間加熱処理してゴムコンパウンドを調製した。上記コンパウンド100質量部に対し、平均粒子径が0.26μmの酸化チタンR-820(石原産業(株)製)を1.0質量部と付加架橋硬化剤としてC-25A(白金触媒)/C-25B(オルガノハイドロジェンポリシロキサン)(共に、信越化学工業(株)製)をそれぞれ0.5質量部/2.0質量部を2本ロールで混練後添加し、均一に混合し、未硬化の紫外線遮蔽性を有するシリコーンゴム接着剤組成物を得た。
[光透過率の測定]
 上記紫外線遮蔽性シリコーンゴム接着剤組成物を50mm×50mm×厚み2mmに成形し、これを130℃,30分で加熱硬化させ、SPECTROPHOTOMETER U-3310(日立製作所)を用いて380nm光の光透過率を測定した。
[紫外線によるバックシートの劣化に関する評価]
 25mm×25mmに成形したPETフィルム(ルミラー:東レ(株))及びPCテストピース(パンライト:帝人化成(株)製)の上に、上記紫外線遮蔽性シリコーンゴム接着剤組成物を130℃,30分硬化させた硬化物を載せ、超促進耐候試験機 アイスーパーUVテスター(岩崎電気(株)製)を用い、70℃下120mW/cm2(365nm)の紫外線を6時間照射した。このときのPETフィルム及びPCテストピースの外観を確認した。
[太陽電池モジュールの試作]
[1]受光面に配置するシリコーン接着剤の調製
 ジメチルシロキサン単位99.825モル%、メチルビニルシロキサン単位0.15モル%、ジメチルビニルシロキサン単位0.025モル%からなり、平均重合度が約8,000であるオルガノポリシロキサン100質量部、BET比表面積300m2/gの乾式シリカ Arosil300(日本エアロジル(株)製)70質量部、分散剤としてヘキサメチルジシラザン16質量部、水4質量部を添加し、ニーダーにて混練りし、170℃にて2時間加熱処理してコンパウンドを調製した。上記コンパウンド100質量部に対し、付加架橋硬化剤としてC-25A(白金触媒)/C-25B(オルガノハイドロジェンポリシロキサン)(共に、信越化学工業(株)製)それぞれ0.5質量部/2.0質量部を2本ロールで混練後添加し、均一に混合し、未硬化のシリコーンゴム接着剤組成物を得た。
 このシリコーンゴム接着剤組成物を2本ロールで0.7mm厚みに分だしした。得られたシリコーン接着剤シートの両面に石島化学工業株式会社製のダイヤエンボスフィルム(エンボスNEFタイプ;厚さ0.15mm)のエンボスロール面をゴムロールにて押し付けて、該シリコーン接着剤シートの両面にエンボスフィルムを貼り合わせることでエンボス加工を施した。
[2]受光面積層体の調製
 上記エンボス加工を施したシリコーン接着剤シートの片面のエンボスフィルムを剥離した後、340mm×360mmの白板強化ガラス基板(旭ガラス(株)製:以下、ガラス基板)にゴムロールにて貼り付けた。
[3]背面積層体の調製
 250μm厚みの単層のPETフィルムをバックシートとして用い、上記未硬化の紫外線遮蔽性を有するシリコーンゴム接着剤組成物をシート状に成形し、上記と同様にエンボス加工を施した紫外線遮蔽性シリコーン接着剤シートの片面のエンボスフィルムを剥離した後、PETフィルムに紫外線遮蔽性シリコーン接着剤シートをゴムロールで貼り付けた。
[4]受光面/背面積層体の調製
 上記ガラス基板に貼り付けたシリコーン接着剤シートのもう片面のエンボスフィルムを剥離した後、その上に太陽電池素子を縦横方向に2行2列に接続した合計4直の単結晶シリコン太陽電池セルストリングスを載置し、更に上記PETに貼り付けた紫外線遮蔽性シリコーン接着剤シートのもう片面のエンボスフィルムを剥離した後、その剥離面を下にして太陽電池セルストリングス上に載置した。これにより、図3に示す受光面ガラス/シリコーン接着剤シート/太陽電池セル/紫外線遮蔽性シリコーン接着剤シート/透明PETの受光面/背面積層体が得られた。なお、図中30は、紫外線非遮蔽性シリコーン接着剤シート(未硬化)、40は紫外線遮蔽性シリコーン接着剤シート(未硬化)を示す。
[5]ラミネート工程
[4]で得られた受光面/背面積層体を真空ラミネーター装置に入れ、110℃加熱下、3分間減圧した後、15分間大気圧で圧着することにより、太陽電池モジュールが得られた。この太陽電池モジュールについて外観目視評価を行い、空隙並びにセル割れの有無を確認した。
  [実施例2]
 実施例1記載のゴムコンパウンド100質量部に、ジメチルシリコーンオイル[KF-96-100cs(信越化学工業(株)製)]に加熱しながら溶解させたUV吸収剤 TINUVIN326(BASF社製)を0.2質量部添加し、実施例1と同量の硬化触媒を添加して未加硫の接着剤組成物を得た。これを用い、実施例1と同様の試験を行った。
  [実施例3]
 実施例1記載のゴムコンパウンド100質量部に、ジメチルシリコーンオイル[KF-96-100cs(信越化学工業(株)製)]に加熱しながら溶解させたUV吸収剤 RUVA-93(大塚化学(株)製)を0.25質量部添加し、実施例1と同量の硬化触媒を添加して未加硫の接着剤組成物を得た。これを用い、実施例1と同様の試験を行った。
  [比較例]
 受光面に配置する未加硫の接着剤シートと同じもの、すなわち、ジメチルシロキサン単位99.825モル%、メチルビニルシロキサン単位0.15モル%、ジメチルビニルシロキサン単位0.025モル%からなり、平均重合度が約8,000であるオルガノポリシロキサン100質量部、BET比表面積300m2/gの乾式シリカ Arosil300(日本エアロジル(株)製)70質量部、分散剤としてヘキサメチルジシラザン16質量部、水4質量部を添加し、ニーダーにて混練りし、170℃にて2時間加熱処理してコンパウンドを調製し、この上記コンパウンド100質量部に対し、付加架橋硬化剤としてC-25A(白金触媒)/C-25B(オルガノハイドロジェンポリシロキサン)(共に、信越化学工業(株)製)それぞれ0.5質量部/2.0質量部を2本ロールで混練後添加し、均一に混合したものをバックシートに貼り付けた。これを用い、実施例1と同様の試験を行った。なお、図4は比較例の太陽電池モジュールを示す。
 表1に結果を示す。また、図5には、実施例2の紫外線遮蔽性シリコーン接着剤シートの硬化物の各波長の光の透過率を示し、図6には、比較例のシリコーン接着剤シートの硬化物の各波長の光の透過率を示す。
Figure JPOXMLDOC01-appb-T000002
 380nmの光透過率が低い接着剤シートを用いることで、PET等太陽電池に使用されるバックシートの部材を紫外線による劣化から防ぐことができた。また、太陽電池セルを信頼性高く効果的に封止でき、従来の取り扱いづらい液状シリコーンを用いることなくモジュールの生産性を大幅に向上することができた。
1 受光面パネル
2 背面パネル(バックシート)
3 紫外線非遮蔽性シリコーン接着剤硬化層
30 紫外線非遮蔽性シリコーン接着剤未硬化層
4 紫外線遮蔽性シリコーン接着剤硬化層
40 紫外線遮蔽性シリコーン接着剤未硬化層
5 太陽電池セル

Claims (8)

  1.  受光面パネル及び背面パネルと、これら両パネルにそれぞれ接するシリコーン接着剤層と、これら両接着剤層間に介装されて封止される複数の太陽電池セルとを備えた太陽電池モジュールにおける、上記背面パネルに接するシリコーン接着剤層を形成する接着剤シートであって、厚み2mmの硬化物に対し380nm光の波長の光透過率を測定した場合に30%以下の光透過率を与えることを特徴とする太陽電池封止用紫外線遮蔽性シリコーン接着剤シート。
  2.  (A)R1 aSiO(4-a)/2   (I)
    (式中、R1は同一又は異種の非置換又は置換の1価炭化水素基を示し、aは1.95~2.05の正数である。)
    で表され、重合度が100以上のオルガノポリシロキサン:100質量部、
    (B)比表面積が200m2/gを超える補強性シリカ:10~150質量部、
    (C)硬化剤:(A)成分を硬化させる有効量、
    (D)接着付与剤:0~10質量部、
    (E)平均粒子径が0.1~10μmである充填剤(但し、(B)成分を除く):0.1~50質量部
    を含有してなる請求項1記載のシリコーン接着剤シート。
  3.  (A)R1 aSiO(4-a)/2   (I)
    (式中、R1は同一又は異種の非置換又は置換の1価炭化水素基を示し、aは1.95~2.05の正数である。)
    で表され、重合度が100以上のオルガノポリシロキサン:100質量部、
    (B)比表面積が200m2/gを超える補強性シリカ:10~150質量部、
    (C)硬化剤:(A)成分を硬化させる有効量、
    (D)接着付与剤:0~10質量部、
    (F)紫外線吸収剤:0.05~2質量部
    を含有してなる請求項1記載のシリコーン接着剤シート。
  4.  (D)成分が、アルコキシ基、エポキシ基、アクリル基、メタクリル基のいずれかを1つ以上含み、(A)成分100質量部に対し0.01質量部以上含有する請求項1又は2記載のシリコーン接着剤シート。
  5.  厚みが0.3~2.5mmである請求項1~4のいずれか1項記載のシリコーン接着剤シート。
  6.  両面がエンボス加工されてなる請求項1~5のいずれか1項記載のシリコーン接着剤シート。
  7.  受光面パネル、硬化性シリコーン接着剤シート、複数の太陽電池セル、請求項1~6のいずれか1項記載の紫外線遮蔽性シリコーン接着剤シート、及び背面パネルを積層した積層体を真空ラミネーターを用いて真空下加熱押圧することにより、上記両接着剤シートを硬化して上記太陽電池セルを封止してなるシリコーン封止太陽電池モジュール。
  8.  背面パネルが、ポリエチレンテレフタレートを含有するバックシートである請求項7記載の太陽電池モジュール。
PCT/JP2014/078872 2013-11-11 2014-10-30 太陽電池封止用紫外線遮蔽性シリコーン接着剤シート並びにそれを用いた太陽電池モジュール WO2015068633A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP14859723.0A EP3070748B1 (en) 2013-11-11 2014-10-30 Silicone adhesive sheet having ultraviolet ray shielding properties for sealing solar cell and solar cell module using same
KR1020167013232A KR102265852B1 (ko) 2013-11-11 2014-10-30 태양전지 밀봉용 자외선 차폐성 실리콘 접착제 시트 및 그것을 사용한 태양전지 모듈
US15/035,625 US20160300969A1 (en) 2013-11-11 2014-10-30 Silicone adhesive sheet having ultraviolet ray shielding properties for sealing solar cell and solar cell module using same
CN201480061597.9A CN105765736B (zh) 2013-11-11 2014-10-30 太阳能电池封装用紫外线屏蔽性有机硅粘接剂片及使用其的太阳能电池组件

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-232886 2013-11-11
JP2013232886A JP6217328B2 (ja) 2013-11-11 2013-11-11 太陽電池封止用紫外線遮蔽性シリコーン接着剤シート並びにそれを用いた太陽電池モジュール

Publications (1)

Publication Number Publication Date
WO2015068633A1 true WO2015068633A1 (ja) 2015-05-14

Family

ID=53041413

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/078872 WO2015068633A1 (ja) 2013-11-11 2014-10-30 太陽電池封止用紫外線遮蔽性シリコーン接着剤シート並びにそれを用いた太陽電池モジュール

Country Status (7)

Country Link
US (1) US20160300969A1 (ja)
EP (1) EP3070748B1 (ja)
JP (1) JP6217328B2 (ja)
KR (1) KR102265852B1 (ja)
CN (1) CN105765736B (ja)
TW (1) TWI550051B (ja)
WO (1) WO2015068633A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017163062A (ja) * 2016-03-11 2017-09-14 信越化学工業株式会社 太陽電池モジュール及び太陽電池モジュールの製造方法

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI648345B (zh) 2013-12-16 2019-01-21 道康寧公司 選擇性遮光之光物理材料及包括此等選擇性遮光之光物理材料的光學裝置
JP6492996B2 (ja) * 2015-06-15 2019-04-03 信越化学工業株式会社 黄変シリコーンゴム硬化物の黄変を低減する方法
JP6736899B2 (ja) * 2016-02-05 2020-08-05 住友ゴム工業株式会社 ゴム部材の製造方法
JP6589701B2 (ja) * 2016-03-11 2019-10-16 信越化学工業株式会社 難燃性太陽電池モジュールの製造方法
JP2017163064A (ja) * 2016-03-11 2017-09-14 信越化学工業株式会社 太陽電池モジュール及び太陽電池モジュールの製造方法
JP2017191813A (ja) * 2016-04-11 2017-10-19 信越化学工業株式会社 太陽電池モジュール及びその製造方法
US10074626B2 (en) * 2016-06-06 2018-09-11 Shin-Etsu Chemical Co., Ltd. Wafer laminate and making method
JP6867794B6 (ja) * 2016-12-16 2021-06-23 ソーラーフロンティア株式会社 光電変換モジュール
JP2019110327A (ja) * 2019-03-07 2019-07-04 信越化学工業株式会社 太陽電池モジュール及び太陽電池モジュールの製造方法
JP7111041B2 (ja) * 2019-03-25 2022-08-02 信越化学工業株式会社 積層体の製造方法
US20230142071A1 (en) * 2020-04-23 2023-05-11 Wacker Chemie Ag Optical bonding silicone with uv blocker for outdoor application
DE102022108483A1 (de) 2022-04-07 2023-10-12 Schott Ag Vorderseitensubstrat für ein Solarmodul

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007527109A (ja) 2003-07-07 2007-09-20 ダウ・コ−ニング・コ−ポレ−ション 太陽電池の封入
JP2009010097A (ja) * 2007-06-27 2009-01-15 Tomoegawa Paper Co Ltd 接着剤および太陽電池用保護シート
WO2009091068A1 (ja) 2008-01-15 2009-07-23 Affinity Co., Ltd. 太陽電池モジュールおよびその製造方法
JP2009290201A (ja) * 2008-04-28 2009-12-10 Asahi Kasei Chemicals Corp 太陽電池バックシート用積層体およびそれを有するバックシート
WO2010067803A1 (ja) * 2008-12-08 2010-06-17 旭硝子株式会社 フッ素樹脂フィルム及びその使用
JP2011514680A (ja) 2008-03-14 2011-05-06 ダウ・コーニング・コーポレイション 光電池セルモジュールを形成する方法
JP2011116014A (ja) * 2009-12-02 2011-06-16 Asahi Kasei E-Materials Corp 太陽電池封止シートの製造方法
JP2012071502A (ja) * 2010-09-29 2012-04-12 Toray Ind Inc 太陽電池封止材用エチレン−酢酸ビニル共重合体(eva)シートの製造方法
JP2012200981A (ja) * 2011-03-25 2012-10-22 Fujifilm Corp 積層フィルム、太陽電池用バックシートおよび積層フィルムの製造方法
JP2013058747A (ja) * 2011-08-17 2013-03-28 Fujifilm Corp 太陽電池用バックシート及びその製造方法、並びに太陽電池モジュール
JP2013056543A (ja) * 2011-08-17 2013-03-28 Fujifilm Corp 太陽電池モジュール用ポリマーシート、太陽電池モジュール用バックシートおよび太陽電池モジュール
JP2013145807A (ja) * 2012-01-13 2013-07-25 Keiwa Inc 太陽電池モジュール用フロントシート及びこれを用いた太陽電池モジュール

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010100839A (ja) * 2008-09-26 2010-05-06 Kaneka Corp 太陽電池モジュール用硬化性組成物および太陽電池モジュール
KR101074505B1 (ko) * 2010-01-25 2011-10-17 주식회사 엘지화학 광전지 모듈
WO2011107592A1 (en) * 2010-03-05 2011-09-09 Momentive Performance Materials Gmbh Curable polyorganosiloxane composition for use as an encapsulant for a solar cell module
JP2011254009A (ja) * 2010-06-03 2011-12-15 Shin Etsu Chem Co Ltd 太陽電池モジュール用シリコーン樹脂組成物及び太陽電池モジュール
EP2395558A1 (de) * 2010-06-11 2011-12-14 Kuraray Europe GmbH Photovoltaikmodule mit reflektierenden Klebefolien geringer Verfärbungsneigung
JP5484293B2 (ja) * 2010-11-12 2014-05-07 富士フイルム株式会社 太陽電池用バックシート及びその製造方法、並びに太陽電池モジュール
CN103329284B (zh) * 2011-01-24 2016-08-03 Lg化学株式会社 光伏电池模块
CN102321450A (zh) * 2011-08-23 2012-01-18 杭州之江有机硅化工有限公司 一种太阳能光伏组件有机硅密封胶材料及其制备方法
KR101997921B1 (ko) * 2011-09-05 2019-07-08 엘지전자 주식회사 태양전지 모듈
JP2013132755A (ja) * 2011-12-26 2013-07-08 Nippon Zeon Co Ltd 多層シート及びその利用
JP2013153085A (ja) * 2012-01-25 2013-08-08 Shin Etsu Chem Co Ltd 太陽電池モジュールの製造方法及び太陽電池モジュール

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007527109A (ja) 2003-07-07 2007-09-20 ダウ・コ−ニング・コ−ポレ−ション 太陽電池の封入
JP2009010097A (ja) * 2007-06-27 2009-01-15 Tomoegawa Paper Co Ltd 接着剤および太陽電池用保護シート
WO2009091068A1 (ja) 2008-01-15 2009-07-23 Affinity Co., Ltd. 太陽電池モジュールおよびその製造方法
JP2011514680A (ja) 2008-03-14 2011-05-06 ダウ・コーニング・コーポレイション 光電池セルモジュールを形成する方法
JP2009290201A (ja) * 2008-04-28 2009-12-10 Asahi Kasei Chemicals Corp 太陽電池バックシート用積層体およびそれを有するバックシート
WO2010067803A1 (ja) * 2008-12-08 2010-06-17 旭硝子株式会社 フッ素樹脂フィルム及びその使用
JP2011116014A (ja) * 2009-12-02 2011-06-16 Asahi Kasei E-Materials Corp 太陽電池封止シートの製造方法
JP2012071502A (ja) * 2010-09-29 2012-04-12 Toray Ind Inc 太陽電池封止材用エチレン−酢酸ビニル共重合体(eva)シートの製造方法
JP2012200981A (ja) * 2011-03-25 2012-10-22 Fujifilm Corp 積層フィルム、太陽電池用バックシートおよび積層フィルムの製造方法
JP2013058747A (ja) * 2011-08-17 2013-03-28 Fujifilm Corp 太陽電池用バックシート及びその製造方法、並びに太陽電池モジュール
JP2013056543A (ja) * 2011-08-17 2013-03-28 Fujifilm Corp 太陽電池モジュール用ポリマーシート、太陽電池モジュール用バックシートおよび太陽電池モジュール
JP2013145807A (ja) * 2012-01-13 2013-07-25 Keiwa Inc 太陽電池モジュール用フロントシート及びこれを用いた太陽電池モジュール

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
A. ITO; H. OWADA; T. FURIHATA; T. KIM; N. YAMAKAWA; A. YAGINUMA; T. IMATAKI; M. WATANABE; S. SAKAMOTO, PREPRINTS OF 9TH NEXT-GENERATION PHOTOVOLTAIC SYSTEM SYMPOSIUM, 2012, pages 54

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017163062A (ja) * 2016-03-11 2017-09-14 信越化学工業株式会社 太陽電池モジュール及び太陽電池モジュールの製造方法

Also Published As

Publication number Publication date
EP3070748B1 (en) 2018-07-25
KR102265852B1 (ko) 2021-06-16
CN105765736B (zh) 2018-01-02
JP6217328B2 (ja) 2017-10-25
EP3070748A1 (en) 2016-09-21
CN105765736A (zh) 2016-07-13
EP3070748A4 (en) 2017-06-21
KR20160085274A (ko) 2016-07-15
TWI550051B (zh) 2016-09-21
US20160300969A1 (en) 2016-10-13
JP2015095506A (ja) 2015-05-18
TW201531546A (zh) 2015-08-16

Similar Documents

Publication Publication Date Title
JP6217328B2 (ja) 太陽電池封止用紫外線遮蔽性シリコーン接着剤シート並びにそれを用いた太陽電池モジュール
JP6233196B2 (ja) 太陽電池モジュールの製造方法
EP2930214B1 (en) Solar cell encapsulant silicone composition and solar cell module
WO2012169418A1 (ja) 太陽電池モジュール及びその製造方法
JP6784186B2 (ja) 太陽電池モジュールの製造方法
JP6269527B2 (ja) 太陽電池モジュールの製造方法
KR102165215B1 (ko) 태양 전지 밀봉용 실리콘 접착제 시트 및 그를 이용한 태양 전지 모듈의 제조 방법
JP5983549B2 (ja) 太陽電池モジュールの製造方法
JP2017163064A (ja) 太陽電池モジュール及び太陽電池モジュールの製造方法
JP6319118B2 (ja) 太陽電池モジュール及び太陽電池モジュールの製造方法
WO2023136147A1 (ja) 太陽電池モジュール及びその製造方法、並びに太陽電池封止材
JP2018082073A (ja) 太陽電池モジュールの製造方法
JP6589701B2 (ja) 難燃性太陽電池モジュールの製造方法
JP6070527B2 (ja) 太陽電池モジュールの製造方法
JP6540560B2 (ja) 太陽電池モジュールの製造方法
JP2017191813A (ja) 太陽電池モジュール及びその製造方法
KR20150026778A (ko) 태양전지 모듈의 제조 방법
JP2017123430A (ja) 太陽電池モジュールの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14859723

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2014859723

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014859723

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15035625

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20167013232

Country of ref document: KR

Kind code of ref document: A