WO2010067509A1 - 電気二重層キャパシタ及びその製造方法 - Google Patents

電気二重層キャパシタ及びその製造方法 Download PDF

Info

Publication number
WO2010067509A1
WO2010067509A1 PCT/JP2009/005898 JP2009005898W WO2010067509A1 WO 2010067509 A1 WO2010067509 A1 WO 2010067509A1 JP 2009005898 W JP2009005898 W JP 2009005898W WO 2010067509 A1 WO2010067509 A1 WO 2010067509A1
Authority
WO
WIPO (PCT)
Prior art keywords
separator
electrode
pressure
double layer
electric double
Prior art date
Application number
PCT/JP2009/005898
Other languages
English (en)
French (fr)
Inventor
橋本泰宏
浅利琢磨
熊谷裕典
林茂生
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to US13/060,383 priority Critical patent/US8531818B2/en
Priority to JP2010541971A priority patent/JP5281100B2/ja
Priority to CN2009801265774A priority patent/CN102177563B/zh
Publication of WO2010067509A1 publication Critical patent/WO2010067509A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/10Multiple hybrid or EDL capacitors, e.g. arrays or modules
    • H01G11/12Stacked hybrid or EDL capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/26Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features
    • H01G11/28Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features arranged or disposed on a current collector; Layers or phases between electrodes and current collectors, e.g. adhesives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/36Nanostructures, e.g. nanofibres, nanotubes or fullerenes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Definitions

  • the present invention relates to an electric double layer capacitor using conductive fine fibers such as carbon nanotubes and a method for manufacturing the same.
  • nanowires such as nanowires, nanotubes, and nanohorns
  • materials constituting the nanowires silver, silicon, gold, copper, zinc oxide, titanium oxide, gallium nitride, and the like have been studied.
  • Carbon nanotubes are known as nanotubes
  • carbon nanohorns are known as nanohorns.
  • the most promising carbon nanotube as a conductive material has a structure in which a graphite sheet is rolled into a cylindrical shape.
  • the material has a hollow structure having a diameter of about 0.7 to 100 nm and a length of several ⁇ m to several mm.
  • the electrical properties of carbon nanotubes show semiconducting properties from metals depending on the diameter and chirality. Furthermore, since it does not have dangling bonds, it is chemically stable. It is also attracting attention as a material with low environmental impact because it consists of carbon atoms only.
  • carbon nanotubes have the properties described above, they are expected to be applied as electron emission sources for flat panel displays, electrode materials for lithium batteries, electrode materials for electric double layer capacitors, and probe probes. .
  • Carbon nanotubes can be synthesized by an arc discharge method using a carbon electrode, a thermal decomposition method of benzene, a laser deposition method, or the like. However, in these methods, graphite is synthesized together with carbon nanotubes. Therefore, when the carbon nanotube is applied to the electron source, battery electrode, probe probe, etc., it is necessary to remove impurities such as graphite and carbon nanoparticles in advance. In addition, since carbon nanotubes of various lengths are synthesized in random directions, the characteristics as an electron emission source are limited.
  • the electric double layer capacitor is a capacitor that uses an electric double layer generated between an active material and an electrolyte, and has been used as a backup power source. Growth is expected.
  • an active material of an electric double layer capacitor one using activated carbon is widely known (see, for example, Patent Document 1).
  • carbon nanotubes have an external surface area of 2600 to 3000 m 2 / g, which is higher than that of activated carbon. Electric double layer capacitors using carbon nanotubes as an active material have attracted attention because of their much larger and extremely tough mechanical properties and excellent electronic properties.
  • An electric double layer capacitor has a different operating principle from a battery using an oxidation-reduction reaction, and is an electricity storage device that performs charging and discharging by adsorbing and desorbing cations and anions in the electrolyte on the surface of the active material. is there.
  • An electric double layer capacitor has a long life because it does not involve a chemical reaction, has many advantages over batteries, such as easy measurement of residual charge and low environmental load.
  • FIG. 11 shows an example of a structure for illustrating the electrical operation principle of a general electric double layer capacitor.
  • the electric double layer capacitor 1100 includes a positive electrode 1111 and a negative electrode 1112.
  • the positive electrode 1111 includes a current collector 1107 and an active material layer 1108 provided on the current collector.
  • the negative electrode 1112 includes a current collector 1104 and an active material layer 1105 provided on the current collector.
  • the positive electrode 1111 and the negative electrode 1112 are in the electrolytic solution 1106.
  • An electric field is generated between the positive electrode 1111 and the negative electrode 1112 by applying a voltage from the power source 1101 to the positive electrode 1111 and the negative electrode 1112.
  • FIG. 12 shows an electrical equivalent circuit corresponding to FIG. As shown in FIG. 12, the electric double layer capacitor has a structure in which two capacitors 1202 and 1203 are connected in series.
  • Non-Patent Document 1 as a technique for increasing the density of carbon nanotubes, a simple high-pressure press (1 to 10 t / cm 2 (98 to 980 MPa)) is used to reduce the surface area and electric capacity to a maximum of about 0.00 at most. It has been reported that densification exceeding 6 g / cm 3 has been achieved.
  • Non-Patent Document 1 the carbon nanotube layer 1302 formed on the current collector 1301 is compressed using pressing plates 1303 and 1304.
  • the carbon nanotube layer is transferred to the pressing plate 1303 that is in contact with the carbon nanotube layer 1302, and there is a problem that a part of the carbon nanotube layer 1306 is peeled off from the current collector 1301.
  • the remaining carbon nanotube layer 1305 can achieve high density, a region not covered with the carbon nanotube layer is generated on the surface of the current collector. Therefore, the energy density cannot be sufficiently increased for the electric double layer capacitor as a whole.
  • the present invention is an electric double layer capacitor using conductive fine fibers such as carbon nanotubes as an active material, the electric double layer capacitor having an increased energy density by compressing the active material at a high density, and It aims at providing the manufacturing method.
  • the electric double layer capacitor of the present invention includes a positive electrode, a separator, and a negative electrode laminated in this order in a container, and a space between the positive electrode and the negative electrode is filled with an electrolyte.
  • the electric double layer capacitor one or both of the positive electrode and the negative electrode are erected such that one end thereof is electrically connected to the current collector and the surface of the current collector.
  • the electrode plate is covered with the separator, and the electrode plate and the separator are pressed and integrated with each other.
  • the method for producing an electric double layer capacitor of the present invention includes a positive electrode, a separator, and a negative electrode laminated in this order in a container, and an electric double layer in which a space between the positive electrode and the negative electrode is filled with an electrolyte.
  • a method of manufacturing a capacitor comprising: a current collector; and an electrode plate comprising a plurality of conductive fine fibers erected so that one end is electrically connected to the surface of the current collector, and a separator.
  • a pressure bonding step of forming a pressure-bonded laminate by pressing and integrating the plate and the separator, and an impregnation step of impregnating the pressure-bonded laminate with an electrolytic solution are included.
  • the active material layer is compressed by pressing and integrating the electrode plate and the separator, the active material layer made of conductive fine fibers is transferred to the pressure member. Without increasing the density of the active material layer, the energy density is increased.
  • an electric double layer capacitor of the present invention can be easily manufactured.
  • FIG.2 The figure showing the process flow of the manufacturing method of this invention, and the manufacturing method of a comparative example.
  • Schematic which shows the coating
  • Schematic which shows the coating process and compression process in the case of manufacturing the electrical double layer capacitor which has the structure of FIG.2 (b).
  • Schematic shows the pre-pressurization process in the case of manufacturing the electrical double layer capacitor which has the structure of Fig.2 (a), a coating process, and a compression process.
  • Schematic which shows the pre-pressurization process, coating
  • FIG. 2 is an electron micrograph of a cross section of a pressure-bonded laminate in Example 1.
  • FIG. The cyclic voltammogram of the electric double layer capacitor measured in Example 2.
  • FIG. 2 (a) is a conceptual diagram of an electric double layer capacitor according to an embodiment of the present invention.
  • the electric double layer capacitor 200 includes a separator 205, and a positive electrode 206 and a negative electrode 207 arranged to face each other with the separator 205 interposed therebetween.
  • the positive electrode 206 includes a current collector 201 and a plurality of fine fibers 202 erected on the current collector 201.
  • the negative electrode 207 includes a current collector 203 and a plurality of fine fibers 204 provided upright on the current collector 203.
  • the separator 205 is in contact with the fine fiber 202 on one side and in contact with the fine fiber 204 on the other side.
  • the separator 205, the positive electrode 206, and the negative electrode 207 are pressure-bonded and integrated. According to this embodiment, since there is only one separator, the resistance of the electric double layer capacitor can be reduced.
  • FIG. 2 (b) showing another embodiment is different from FIG. 2 (a) in that two separators 205a and 205b exist.
  • the positive electrode separator 205a facing the positive electrode 206 is disposed so as to be laminated with the positive electrode 206 so as to be in contact with the fine fibers 202, and these are integrated by pressure bonding.
  • the negative electrode separator 205b facing the negative electrode 207 is disposed so as to be laminated with the negative electrode 207 so as to be in contact with the fine fibers 204, and these are integrated by pressure bonding.
  • the two sets of pressure-bonded laminates are superposed so that the two separators 205a and 205b are in contact with each other. According to this embodiment, when only one separator is viewed, only one surface is pressure-bonded to the fine fiber, so that the risk of occurrence of a short circuit can be reduced.
  • the current collectors 201 and 203 are plate-shaped formed of a conductive material.
  • the conductive material include, but are not limited to, silicon, stainless steel, iron, aluminum, nickel, titanium, copper, and the like.
  • aluminum is used as a current collector of an electric double layer capacitor using activated carbon as an active material, and can be particularly preferably used in the present invention. This is because aluminum forms a thin passive film on the surface, so that aluminum does not melt even when a high voltage is applied.
  • Separator 205 or 205a, 205b is a material that separates both electrodes by being disposed between the positive electrode and the negative electrode, and retains the electrolytic solution to ensure ionic conductivity between the positive electrode and the negative electrode.
  • the material constituting the separator include organic materials such as cellulose, polypropylene, polytetrafluoroethylene, polyolefin, fluorine-containing resin, acrylic resin, polyamide resin, nylon, polyester, polycarbonate, sulfonic acid group-containing resin, and phenol resin; Although inorganic materials, such as glass fiber, are mentioned, it is not specifically limited.
  • the electric double layer capacitor of the present invention can be manufactured by separately preparing an electrode plate including a current collector and fine fibers and a separator, and then laminating and crimping the separator, the separator is a thermosetting resin. Even if it is made of a material other than the above, it is easy to manufacture. In this invention, what is generally marketed can be used as a separator for electric double layer capacitors.
  • the diameters of the fine fiber 202 and the fine fiber 204 are preferably 0.1 to 100 nm.
  • the fine fiber 202 and the fine fiber 204 can be erected at a high density on the current collector 201 and the current collector 203, and the energy density A high electric double layer capacitor can be constructed.
  • the fine fiber 202 and the fine fiber 204 include, but are not limited to, nanowires made of silver, gold, or copper, carbon nanotubes, carbon nanohorns, activated carbon fibers, and the like. Of these, carbon nanotubes are preferred because of the ease of orientation synthesis.
  • Carbon nanotubes are extremely fine tube (tube) -like substances having a hole diameter of nanometers and formed by bonding carbon atoms in a network.
  • the carbon nanotube When the carbon nanotube is used, it may be a single layer, that is, a single tube, or may be a multilayer, that is, a concentric plurality of different diameter tubes.
  • the diameter of the carbon nanotube is not limited, but considering that it is used for an electrode of an electric double layer capacitor, lithium ions having an ionic radius of 0.074 nm and electrolyte ions having an ionic radius of about 0.5 nm are present in the inside thereof. Since it is assumed to enter, the range of 0.1 nm to 10 nm is preferable, and the range of 0.1 nm to 3 nm is more preferable.
  • the space between the positive electrode and the negative electrode is filled with an electrolytic solution, and the electrolytic solution is held by a separator.
  • the electrolytic solution one composed of a solvent and an electrolytic solution can be used.
  • the solvent of the electrolytic solution is not particularly limited.
  • the electrolyte of the electrolytic solution is not particularly limited, but for example, selected from tetraethylammonium tetrafluoroborate, triethylmethylammonium tetrafluoroborate, triethylmethylammonium bis, tetraethylammonium hexafluorophosphate, and tetraethylammonium bis One or more combinations can be used.
  • an ionic liquid imidazolium-based, pyridinium-based, aliphatic-based, pyrrolidinium-based, ammonium-based, phosphonium-based, or sulfonium-based compound or a combination of a plurality of compounds is used. Also good.
  • the capacity per unit volume (F / cm 3 ) is proportional to the density of the active material. Therefore, in the case where the active material is an electrode composed of fine fibers, it is considered that the density and the capacity are proportional to each other as long as the surface area of the active material does not change. Therefore, it is considered that the energy per unit volume (energy density) increases if the density of the active material layer is increased.
  • the maximum density of the fine fiber layer achieved by the synthesis is not necessarily the ideal maximum density as the active material layer (per unit volume for adsorption / desorption of ions). It is not always the density that maximizes the surface area of In order to approach the ideal maximum density, in the present invention, compression is performed in a state in which the separator is laminated on the fine fiber layer, thereby increasing the density of the fine fiber layer and pressing the electrode plate and the separator together. Turn into. Thereby, since the density of a fine fiber layer can be raised without producing problems, such as peeling of a fine fiber layer, the energy density of an electric double layer capacitor can be improved. Moreover, since the electrode plate and the separator are integrated, handling is easy when they are stored in a container.
  • the separator and the current collector are integrated by being pressure-bonded with an active material layer made of fine fibers interposed therebetween.
  • the pressure bonding means that the separator and the electrode plate are fixed without using an adhesive, and specifically, 2.5 ⁇ 10 4 Pa or more for separating the separator and the electrode plate. This refers to the state where stress is required.
  • the separator and the electrode plate are not pressure-bonded and integrated, the separator and the electrode plate are easily separated when a stress of less than 2.5 ⁇ 10 4 Pa is applied.
  • FIG. 1 the process flow in the manufacturing method of this invention and the process flow in the manufacturing method of a comparative example were contrasted and shown.
  • two electrode plates (a positive electrode and a negative electrode) and a separator are prepared.
  • Either one or both of the two electrode plates are a current collector and a plurality of conductive fine particles erected so that one end is electrically connected to one or both surfaces of the current collector.
  • fine fibers can be used as described above, and a method for standing a plurality of carbon nanotubes on the surface of the current collector will be described below when the fine fibers are carbon nanotubes.
  • Carbon nanotubes can be formed by a transfer method. However, a method of directly synthesizing on the current collector is preferable from the viewpoint of obtaining a carbon nanotube with good orientation. In this case, the carbon nanotubes are synthesized through catalytic metal particles attached to the surface of the current collector.
  • the catalyst examples include nickel, iron, cobalt, zinc, molybdenum, gold, silver and copper metals; alloys of these combinations; oxides and carbides of these metals; And the synthesis method thereof.
  • ⁇ Catalyst metal particles are enlarged by performing heating at the time of carbon nanotube synthesis or preheating before synthesis. It is said that there is a correlation between the catalyst metal particle diameter and the synthesized carbon nanotube diameter. Therefore, when a carbon nanotube diameter of 1 to 100 nm is desired, the catalyst metal particle diameter is desirably adjusted to 1 to 100 nm.
  • Methods for directly synthesizing carbon nanotubes standing on a current collector include vapor phase chemical vapor deposition (CVD), laser ablation, arc discharge, and electrolytic synthesis in solution.
  • CVD vapor phase chemical vapor deposition
  • the CVD method is used. preferable.
  • CVD methods There are two main types of CVD methods: a thermal CVD method that thermally decomposes a source gas and a plasma CVD method that decomposes a source gas with plasma.
  • Carbon nanotubes can be synthesized by a CVD method at a temperature of 550 ° C. to 750 ° C. and a pressure of 200 Pa.
  • Carbon nanotubes are decomposed directly by flowing a hydrocarbon gas such as methane, ethylene or acetylene, or an alcohol such as methanol into the chamber, and directly decomposing the carbon source on a current collector equipped with catalytic metal particles. Synthesize. Furthermore, a gas such as argon, nitrogen, or hydrogen may be used as a carrier gas for the carbon source.
  • the growth time of the carbon nanotube is controlled according to the length of the target carbon nanotube. Although the growth time varies depending on the growth temperature, gas pressure, and the type of carbon source used, the growth time cannot be generally stated. Can be about 10 minutes to 4 hours.
  • the coating process is performed.
  • the surface of the electrode plate (the surface on the side where the fine fibers are erected) is covered with a separator to form a laminate composed of the electrode plate and the separator.
  • a crimping process is performed.
  • pressure is applied from above and below to the laminate obtained in the coating step.
  • the method of pressurization is not specifically limited, For example, the method of pressing a laminated body between plates, the method of pressing by pressing between rollers, etc. can be used.
  • compression-bonding process is not specifically limited, Since the density of an active material layer will be 0.5 g / cm ⁇ 2 > or less, for example, if a pressure is too small, the effect of an energy density improvement cannot fully be achieved. On the other hand, if the pressure is too high, the separator is broken during the pressure-bonding process, and a short circuit problem is likely to occur. In consideration of these circumstances, the pressure during the compression step can be appropriately determined, but specifically, it is preferably about 30 MPa to 70 MPa.
  • a cushioning material such as rubber is stacked on both sides of the laminate so that pressure is uniformly applied to the entire surface of the electrode plate.
  • the electrode plate and the separator are crimped and integrated.
  • the active material layer is composed of fine fibers standing upright
  • the separator is composed of a fibrous material such as cellulose
  • the fibrous material enters into the separator by pressurization and the fibrous material. It is considered that the electrode plate and the separator can be physically fixed.
  • the separator is composed of a sheet made of an organic material or the like, it is considered that physical adhesion between the electrode plate and the separator becomes possible by pressing fine fibers into the sheet by pressurization.
  • activated carbon is not composed of fine fibers, even if the separator is stacked on an electrode plate using activated carbon as an active material and compressed with a very high pressure (for example, 100 MPa or more), the activated carbon and the separator are not pressure-bonded.
  • the distance between the positive electrode and the negative electrode is closer than in the case where the compression process is not performed.
  • FIG. 3 schematically shows a coating process and a compression process in the case of manufacturing the electric double layer capacitor having the configuration of FIG.
  • the positive electrode 306 and the negative electrode 307 are compressed with the separator 305 interposed therebetween.
  • FIG. 14 is a modification of FIG. 3, in which a plurality of positive electrodes and a plurality of negative electrodes are produced by forming fine fibers on both sides of a current collector, and these positive electrodes and negative electrodes are alternately arranged with a separator in between.
  • stacks and compresses is shown.
  • FIG. 4 schematically shows a coating process and a compression process in the case of manufacturing the electric double layer capacitor having the configuration of FIG.
  • compression is performed in a state where the positive electrode 406 and the positive electrode separator 405a are laminated, and compression is performed separately in a state where the negative electrode 407 and the negative electrode separator 405b are laminated, and two sets of the pressure-bonded laminates thus obtained are obtained.
  • FIG. 15 is a modification of FIG. 4. After forming fine fibers on both sides of the current collector, a plurality of sets of compressed laminates are manufactured by covering both sides of the electrode plate with a separator and compressing them. The example which superimposes alternately is shown.
  • An electric double layer capacitor can be manufactured by impregnating an electrolyte solution into the pressure-bonded laminate obtained as described above and finally storing it in a container.
  • a pre-pressurizing step for inclining fine fibers before carrying out the coating step.
  • a weak pressure is applied to the fine fibers on the current collector that is smaller than the pressure in the crimping process and does not peel off the fine fibers.
  • by tilting the fine fibers in a direction that is not perpendicular to the current collector in the pre-pressurization step it is possible to prevent the occurrence of a short circuit between the two electrodes due to the fine fibers breaking through the separator during the crimping step. .
  • the material of the pressing plate in contact with the fine fibers when the pre-pressing is performed is not particularly limited, but it is preferable to use a material having a smooth surface in order to prevent the transfer of the fine fibers.
  • a material having a smooth surface in order to prevent the transfer of the fine fibers.
  • glass, alumina, silicon wafer or the like can be used.
  • the pressure during the pre-pressurization step may be appropriately determined in consideration of the above-mentioned purpose, but is preferably about 2.5 MPa to 5 MPa.
  • FIG. 5 schematically shows a pre-pressurization step, a covering step, and a compression step when manufacturing the electric double layer capacitor having the configuration of FIG.
  • the pre-pressing plate 510 is placed on the fine fiber 502, and pressure is applied to the pre-pressing plate 511 to compress the fine fiber 502 weakly.
  • the pre-pressurization plate 512 is placed on the fine fiber 504, and pressure is applied between the pre-pressurization plate 513 to weakly compress the fine fiber 504.
  • the positive electrode 506 and the negative electrode 507 are stacked with the separator 505 interposed therebetween, and then a pressure bonding step is performed.
  • FIG. 6 schematically shows a pre-pressurization step, a covering step, and a compression step when manufacturing the electric double layer capacitor having the configuration of FIG.
  • each electrode is covered with the separators 605a and 605b, and then a crimping process is performed.
  • a double layer capacitor is formed.
  • Comparative Example 1 Comparative Example 1
  • a method of directly compressing fine fibers erected on the surface of the current collector without being laminated with a separator was performed. Carbon nanotubes were used as the fine fibers.
  • an aluminum plate for an electric double layer capacitor having a size of 7 mm ⁇ 14 mm and a thickness of 300 ⁇ m was prepared and cleaned.
  • a cleaning solution in which DK Beakrya (Daiichi Kogyo Seiyaku Co., Ltd.) was dissolved in pure water at a concentration of 3 wt% was kept at 40 ° C. and washed by immersing the current collector in it.
  • the current collector was immersed in the cleaning solution for 5 minutes, and then rinsed with pure water for 5 minutes with an ultrasonic cleaner. The rinse was repeated 3 times. After rinsing, N 2 blow was performed to dry the current collector.
  • the current collector was set in an EB vapor deposition machine, and Al was deposited as a catalyst material at a layer thickness of 3 nm, and further Fe was deposited at a layer thickness of 1 nm.
  • the degree of vacuum before vapor deposition was set to 1.2 ⁇ 10 ⁇ 5 Pa.
  • the deposition rate of Al and Fe was 1 nm / s.
  • the current collector was heat-treated at 300 ° C. for 30 minutes in a vacuum to form catalytic metal particles. At this stage, when the diameter of the catalytic metal particles was measured by AFM, an average value of 2.9 nm was obtained.
  • carbon nanotubes with an average length of 638 ⁇ m that were vertically aligned from the current collector could be synthesized.
  • information such as the diameter of the carbon nanotube can be obtained. It was confirmed that the mixture was a single-walled carbon nanotube having a diameter of 3 nm and a double-walled carbon nanotube.
  • the above-mentioned aluminum plate with carbon nanotubes grown thereon was prepared, a Si wafer was placed on the carbon nanotubes, and the carbon nanotubes were compressed with a pressure that did not transfer to the Si wafer. Next, when a Si wafer was placed on the carbon nanotubes and compressed with a press at a pressure of 20 MPa, a part of the carbon nanotubes was transferred to the Si wafer.
  • the above-mentioned aluminum plate with carbon nanotubes grown thereon was prepared, a Si wafer was placed on the carbon nanotubes, and the carbon nanotubes were compressed with a pressure that did not transfer to the Si wafer.
  • a sapphire substrate was placed on the carbon nanotubes and compressed with a press at a pressure of 20 MPa, a part of the carbon nanotubes was transferred to the sapphire substrate.
  • photographed this state is shown in FIG.
  • the above-mentioned aluminum plate with carbon nanotubes grown thereon was prepared, a Si wafer was placed on the carbon nanotubes, and the carbon nanotubes were compressed with a pressure that did not transfer to the Si wafer.
  • a glass rod having a diameter of 4 mm was prepared and the glass rod was rolled while applying pressure on the carbon nanotube, a part of the carbon nanotube was transferred to the glass rod.
  • photographed this state is shown in FIG.
  • Example 1 an electrode for an electric double layer capacitor was manufactured by placing a separator on fine fibers standing on the surface of a current collector, and applying pressure to a laminate composed of an electrode plate and a separator. Carbon nanotubes were used as the fine fibers.
  • the Si wafer was placed on the carbon nanotube, and the carbon nanotube was compressed with a pressure (4 MPa) that does not transfer to the Si wafer.
  • the carbon nanotubes on the two current collectors were placed facing each other with a 25 ⁇ m-thick polypropylene separator in between, and pressurized with a press at a pressure of 50 MPa.
  • a rubber sheet was placed between both the current collectors side, that is, the aluminum side, and the press plate of the press machine in order to disperse the pressure evenly.
  • the positive electrode, the separator, and the negative electrode were pressure-bonded and integrated, and could not be easily separated. When the stress required for pulling off the five samples was measured, it was 2.5 ⁇ 10 4 to 5 ⁇ 10 4 MPa.
  • the stress was measured by applying a stress with a spring scale to a positive electrode and a negative electrode fixed to a stainless steel plate, and obtaining the stress when peeling. In addition, after separating the positive electrode and the negative electrode, carbon nanotubes were partially transferred to the separator.
  • the bonded structure was cut and cross-sectional observation was performed with an electron microscope.
  • the electron micrograph is shown in FIG.
  • the thickness of the 638 ⁇ m carbon nanotubes was compressed to 17 ⁇ m.
  • the density of the carbon nanotubes that prior to compression was 0.027 g / cm 3 becomes compressed after 1.0 g / cm 3.
  • the separator thickness was compressed from 25 ⁇ m to 20 ⁇ m.
  • Example 2 an electric double layer capacitor was produced using the electrode for electric double layer capacitor produced by integrating the positive electrode, separator and negative electrode produced in Example 1.
  • the electric double layer capacitor electrode was immersed in an electrolytic solution.
  • an electrolytic solution a solution obtained by dissolving tetraethylammonium tetrafluoroborate in propylene carbonate was used.
  • the concentration of tetraethylammonium tetrafluoroborate was 0.7 mol / l.
  • the pressure was reduced to such an extent that the electrolyte did not boil, and the electrolyte was infiltrated into the details of the active material.
  • Cyclic voltammogram measurement was performed on the electrode impregnated with the electrolytic solution as described above at a voltage sweep rate of 40 mV / sec and a voltage range of 0 V and 3.5 V. A graph obtained by the measurement is shown in FIG. As shown in FIG. 10, the electric double layer capacitor of this example exhibited good capacitor characteristics.
  • the energy density per liter of the active material was 5.1 Wh / L.
  • the energy density per liter of the active material was 0.26 Wh / L. Therefore, the energy density could be improved by about 20 times by performing the crimping process.
  • Example 3 In this example, the positive electrode and the positive electrode separator manufactured in Example 1 were bonded together by pressure bonding, and the negative electrode and the negative electrode separator were bonded and integrated, and then the separators were stacked to form an electric double layer. An example of manufacturing a capacitor will be described.
  • the method of impregnation is the same as the method described in Example 2 and will be omitted.
  • the capacitor characteristics were measured in the same manner as in Example 2. Since the measurement method and the method for obtaining the capacity are the same as those described in the second embodiment, a description thereof will be omitted. As a result, the capacitor capacity was 9 F / g. The energy density per liter of the active material was 1.0 Wh / L.
  • the energy density could be improved about 4 times by the configuration of this example.
  • Example 4 the advantages of carrying out a process of compressing the fine fibers with a weak pressure before the fine fibers and the separator standing on the current collector were pressure-bonded were examined. Carbon nanotubes were used as the fine fibers.
  • the prepared capacitor was charged and discharged from 0 to 2.5 V, and when (charge required for charge) / (discharged charge) was 1.3 or more, it was judged as a short circuit.
  • the results are shown in Table 1.
  • the electric double layer capacitor according to the present invention has a high density of fine fibers constituting the active material layer and can improve the energy density
  • the portable terminal device such as a mobile phone and a portable computer, an automobile, a bicycle, and a train It is useful as an energy source for mobile devices.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nanotechnology (AREA)
  • Materials Engineering (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

 容器内に、正極206、セパレータ205及び負極207をこの順で積層して含み、正極206と負極207との間が電解液で満たされている電気二重層キャパシタ200において、正極206及び負極207のうちいずれか一方又は双方の極板が、集電体201、203と、前記集電体の表面に一端が電気的に接続するように立設された複数本の導電性微細繊維202、204とからなり、前記極板の前記表面側がセパレータ205で被覆され、前記極板とセパレータ205とが圧着され一体化している。カーボンナノチューブ等の導電性微細繊維を活物質とする電気二重層キャパシタにおいて、活物質を高密度に圧縮することでエネルギー密度を高めることができる。

Description

電気二重層キャパシタ及びその製造方法
 本発明は、カーボンナノチューブ等の導電性微細繊維を利用した電気二重層キャパシタ及びその製造方法に関するものである。
 近年ナノワイヤー、ナノチューブ、ナノホーンといった微細繊維の研究が盛んに行われている。ナノワイヤーを構成する材料としては銀、シリコン、金、銅、酸化亜鉛、酸化チタン、窒化ガリウム等が検討されている。ナノチューブとしてはカーボンナノチューブ等、ナノホーンとしてはカーボンナノホーン等が知られている。
 導電性材料として最も有望なカーボンナノチューブはグラファイトシートを円筒状に丸めた構造を持つ。そして、直径が0.7~100nm程度で長さが数μm~数mmの、中空構造を持つ材料である。カーボンナノチューブの電気的性質は、直径やカイラリティーに依存して金属から半導体的性質を示す。さらに、ダングリングボンドを有しないため化学的に安定である。また炭素原子のみから構成されるため環境負荷の低い材料としても注目されている。
 カーボンナノチューブは上記のような物性を持つことから、フラットパネルディスプレイの電子放出源として、リチウム電池の電極材料として、電気二重層キャパシタの電極材料として、またプローブ探針への応用が期待されている。
 カーボンナノチューブは炭素電極を用いたアーク放電法やベンゼンの熱分解法、レーザー蒸着法等によって合成され得る。しかしながらこれらの方法では、カーボンナノチューブの他にグラファイトが一緒に合成される。そのためカーボンナノチューブを前記の電子源、電池の電極、プローブ探針等に応用する場合、グラファイトやカーボンナノパーティクル等の不純物を予め除去する必要がある。また、種々の長さのカーボンナノチューブがランダムな方向を向いて合成されるので電子放出源としての特性に制限が生じる。
 近年、配向したカーボンナノチューブを直接合成する方法が発表された。例えば、プラズマCVD法を用いて、Siウエハー上に密集して垂直配向したシングルウォールナノチューブを得る方法が示されている。この方法によるとグラファイトやカーボンナノパーティクル等の不純物が少なく、かつ繊維の方向が揃っているカーボンナノチューブが得られる。これにより、作製されたカーボンナノチューブを電子源、電池の電極、プローブ探針等に応用することが容易になる。
 また、表面積の大きさを利用してカーボンナノチューブを電気二重層キャパシタ用電極に応用する研究開発が盛んに行われている。さらに前述の技術を用いて集電体表面に垂直成長させたカーボンナノチューブを電極に用いた例がある。
 電気二重層キャパシタは、活物質と電解液との間に生じる電気二重層を利用したコンデンサであり、バックアップ用電源として用いられてきたほか、最近では電気自動車に採用されるようになり今後の急成長が予想される。従来、電気二重層キャパシタの活物質としては、活性炭が用いられたものが広く知られているが(例えば、特許文献1参照)、カーボンナノチューブは外部表面積が2600~3000m/gと活性炭よりもはるかに大きく、極めて強靭な機械的特性、優れた電子物性などを示すことからカーボンナノチューブを活物質として用いた電気二重層キャパシタが注目されている。
 電気二重層キャパシタは、酸化還元反応を利用した電池とは作動原理が異なっており、活物質の表面に電解液中の陽イオンと陰イオンが吸脱着することにより充電と放電を行う蓄電デバイスである。電気二重層キャパシタは化学反応を伴わないため長寿命であり、残存電荷の計測が容易である、環境負荷が小さい等、電池に比べて優れた点が多い。
 図11に一般的な電気二重層キャパシタの電気的作動原理を示すための構造の一例を示す。電気二重層キャパシタ1100は、正極1111と負極1112からなる。正極1111は、集電体1107と集電体上に設けられた活物質層1108とからなる。負極1112は、集電体1104と集電体上に設けられた活物質層1105とからなる。正極1111と負極1112は、電解液1106内にある。正極1111と負極1112に対して電源1101により電圧を加えることにより、正極1111と負極1112の間に電界を発生させる。その電界の効果により正極1111の活物質層1108の内部には正電荷1109が発生し、正極1111に陰イオン1110が引き寄せられる。また、負極1112の活物質層1105の内部には負電荷1103が発生し、負極1112に陽イオン1102が引き寄せられる。このようにして、電気が蓄電される。正極1111と負極1112の間に印加することにより生じた電界は、正極1111に陰イオン1110、負極1112に陽イオン1102が吸着することにより正極1111と負極1112の間の電界は消滅する。その代わりに正極1111と陰イオン1110間、負極1112と陽イオン1102間で電気二重層が生成する。これら2つの電気二重層の電位差の合計が両極の電位差となる。
 図11に対応する電気的等価回路を図12に示す。図12に示されるとおり電気二重層キャパシタは2つのコンデンサ1202、1203が直列接続した構造をしている。
 コンデンサに蓄積される電荷Qは、コンデンサの容量をC、電圧差をVとすると一般的にQ=CVと表される。コンデンサに蓄積されるエネルギーEは、E=1/2CVと表される。したがって活物質単位体積当たりの蓄積エネルギーは活物質単位体積当たりのコンデンサの容量に比例する。したがってイオンが吸着する面積を低下させない程度において活物質層の密度を高めることにより、活物質単位体積当たりの蓄積エネルギーを増大させることができる。
 非特許文献1には、カーボンナノチューブの高密度化技術として、単純な高圧プレス(1~10t/cm(98~980MPa))により、表面積や電気容量をほとんど低下させずに、最大で0.6g/cmを超える高密度化を達成したことが報告されている。
特公平2-847号公報
独立行政法人 新エネルギー・産業技術総合開発機構 平成18年度中間年報 ナノテクノロジープログラム カーボンナノチューブキャパシタ開発プロジェクト
 非特許文献1に記載の単純な高圧プレス(図13)では、集電体1301上に形成されたカーボンナノチューブ層1302を、押さえ板1303、1304を用いて圧縮する。しかしながら、高圧力下では、カーボンナノチューブ層1302に接触する押さえ板1303にカーボンナノチューブ層が転写され、一部のカーボンナノチューブ層1306が集電体1301から剥離してしまう問題が生じる。残留したカーボンナノチューブ層1305では高密度化を達成できているものの、集電体表面にカーボンナノチューブ層で被覆されていない領域が生じる。そのため、電気二重層キャパシタ全体としては十分にエネルギー密度を高めることができない。
 本発明は、上記現状に鑑み、カーボンナノチューブ等の導電性微細繊維を活物質とする電気二重層キャパシタであって、活物質を高密度に圧縮することでエネルギー密度を高めた電気二重層キャパシタ及びその製造方法を提供することを目的とする。
 上記目的を達成するために、本発明の電気二重層キャパシタは、容器内に、正極、セパレータ及び負極をこの順で積層して含み、前記正極と前記負極との間が電解液で満たされている電気二重層キャパシタであって、前記正極及び前記負極のうちいずれか一方又は双方の極板が、集電体と、前記集電体の表面に一端が電気的に接続するように立設された複数本の導電性微細繊維とからなり、前記極板の前記表面側が前記セパレータで被覆され、前記極板とセパレータとが圧着され一体化していることを特徴とする。
 また本発明の電気二重層キャパシタの製造方法は、容器内に、正極、セパレータ及び負極をこの順で積層して含み、前記正極と前記負極との間が電解液で満たされている電気二重層キャパシタの製造方法であって、集電体と、前記集電体の表面に一端が電気的に接続するように立設された複数本の導電性微細繊維とからなる極板、及び、セパレータを準備する準備工程、前記極板の前記表面側を前記セパレータで被覆して、前記極板と前記セパレータからなる積層体を形成する被覆工程、前記積層体に上下から圧力をかけることで、前記極板とセパレータとを圧着し、一体化することで、圧着積層体を形成する圧着工程、前記圧着積層体に電解液を含浸させる含浸工程、を含む。
 本発明の電気二重層キャパシタによれば、極板とセパレータが圧着され、一体化していることで活物質層が圧縮されているので、導電性微細繊維からなる活物質層が加圧部材に転写することなく、当該活物質層の密度が高められており、これによりエネルギー密度が高くなる。
 また本発明の電気二重層キャパシタの製造方法によれば、このような電気二重層キャパシタを簡便に製造することができる。
本発明の製造方法と比較例の製造方法の工程フローを表す図。 本発明の実施形態の電気二重層キャパシタの概念図。 図2(a)の構成を有する電気二重層キャパシタを製造する場合の被覆工程及び圧縮工程を示す概略図。 図2(b)の構成を有する電気二重層キャパシタを製造する場合の被覆工程及び圧縮工程を示す概略図。 図2(a)の構成を有する電気二重層キャパシタを製造する場合の予備加圧工程、被覆工程及び圧縮工程を示す概略図。 図2(b)の構成を有する電気二重層キャパシタを製造する場合の予備加圧工程、被覆工程及び圧縮工程を示す概略図。 比較例1で圧縮によりサファイア基板に微細繊維が転写された状態を撮影した写真。 比較例1で圧縮によりガラス板に微細繊維が転写された状態を撮影した写真。 実施例1で圧着積層体の断面を撮影した電子顕微鏡写真。 実施例2で測定した、電気二重層キャパシタのサイクリックボルタモグラム。 一般的な電気二重層キャパシタの構造の一例を示す図。 一般的な電気二重層キャパシタの電気的等価回路の一例を示す図。 従来法による集電体上の微細繊維層の直接的な圧縮方法の一例を示す図。 図3の変形例を示す概略図。 図4の変形例を示す概略図。
 以下、本発明の実施の形態を詳細に説明する。
 図2(a)は、本発明の実施形態の電気二重層キャパシタの概念図である。図2に示すように電気二重層キャパシタ200は、セパレータ205と、セパレータ205を介して互いに対向して配置された正極206と負極207とからなる。正極206は、集電体201とこれに立設された複数本の微細繊維202とからなる。負極207は、集電体203とこれに立設された複数本の微細繊維204とからなる。セパレータ205は片面で微細繊維202と接触し、もう一方の面で微細繊維204と接触している。この実施形態では、セパレータ205と正極206と負極207が圧着され、一体化している。この実施形態によると、セパレータが1枚のみであるので、電気二重層キャパシタの抵抗を小さくすることができる。
 別の実施形態を示す図2(b)では、2枚のセパレータ205a、205bが存在している点で図2(a)と異なっている。正極206に対向する正極用のセパレータ205aは、微細繊維202と接触するように正極206と積層して配置され、これらが圧着することで一体化している。負極207と対向する負極用のセパレータ205bは、微細繊維204と接触するように負極207と積層して配置され、これらが圧着することで一体化している。この二組の圧着積層体は、2枚のセパレータ205a、205bが互いに接触するように重ね合わせられている。この実施形態によると、セパレータ1枚でみると片面のみが微細繊維と圧着しているので、短絡が発生する危険性を低減することができる。
 集電体201、203は、導電性を有する材料から形成された板状のものである。当該導電性材料としては、例えば、シリコン、ステンレス、鉄、アルミニウム、ニッケル、チタン、銅等が挙げられるが、これらに限定されるものではない。なかでもアルミニウムは、活性炭を活物質とした電気二重層キャパシタの集電体として用いられており、本発明でも特に好ましく使用することができる。アルミニウムは表面に薄い不動態皮膜を形成するため、高電圧を印加してもアルミニウムが溶け出さないためである。
 セパレータ205又は205a、205bは正極と負極の間に配置されることにより両極を隔離し、かつ電解液を保持して正極と負極との間のイオン伝導性を確保する材料である。セパレータを構成する材料としては、例えば、セルロース、ポリプロピレン、ポリテトラフルオロエチレン、ポリオレフィン、フッ素含有樹脂、アクリル樹脂、ポリアミド樹脂、ナイロン、ポリエステル、ポリカーボネート、スルホン酸基含有樹脂、フェノール樹脂等の有機材料;ガラス繊維等の無機材料等が挙げられるが、特に限定されない。本発明の電気二重層キャパシタは、集電体と微細繊維とを含む極板、及び、セパレータを別個に準備した後、両者を積層し、圧着することで製造できるので、セパレータが熱硬化性樹脂以外の材料からなる場合であっても製造が容易である。本発明では、電気二重層キャパシタ用のセパレータとして一般に市販されているものを使用できる。
 微細繊維202と微細繊維204は、その直径が0.1~100nmであることが好ましい。直径がかかる範囲にある微細繊維202と微細繊維204を用いることにより、集電体201と集電体203上に微細繊維202と微細繊維204を高密度で立設させることができ、エネルギー密度の高い電気二重層キャパシタを構成することができる。微細繊維202と微細繊維204としては、例えば、銀、金、又は銅からなるナノワイヤーや、カーボンナノチューブ、カーボンナノホーン、活性炭繊維等が挙げられるが、これらに限定されるものではない。なかでも配向合成の容易さから、カーボンナノチューブが好ましい。
 カーボンナノチューブは、炭素原子が網目状に結合してできた穴径がナノメートルサイズの極微細な筒(チューブ)状の物質である。カーボンナノチューブを用いる場合、単層すなわち単一のチューブであってもよいし、多層すなわち同心状の複数の異径チューブからなるものであってもよい。カーボンナノチューブの直径は限定されることはないが、電気二重層キャパシタの電極に用いられることを考えると、イオン半径0.074nmのリチウムイオンや、イオン半径約0.5nmの電解質イオンがその内部に進入することが想定されるので、0.1nm~10nmの範囲が好ましく、さらには0.1nm~3nmの範囲が好ましい。
 電気二重層キャパシタでは、正極と負極との間が電解液で満たされており、当該電解液はセパレータによって保持されている。電解液は溶媒と電解液から構成されるものを使用することができる。電解液の溶媒としては特に限定されないが、例えば、プロピレンカーボネート、エチレンカーボネート、ブチルカーボネート、γ-ブチロラクトン、γ-バレロラクトン、N-メチル-2-ピロリドン、N,N-ジメチルホルムアミド、1,3-ジメチル-2-イミダゾリジノン、N,N-ジメチルアセトアミド、アセトニトリル、プロピオニトリル、テトラヒドロフラン、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート、スルホラン、及び、ジメチルスルホキシドから選ばれる一つ又は複数の組み合わせを用いることができる。
 電解液の電解質としては特に限定されないが、例えば、四フッ化ホウ酸テトラエチルアンモニウム、四フッ化ホウ酸トリエチルメチルアンモニウム、トリエチルメチルアンモニウムビス、六フッ化リン酸テトラエチルアンモニウム、及び、テトラエチルアンモニウムビスから選ばれる一つ又は複数の組み合わせを用いることができる。
 また、電解液として、イオン性液体であるイミダゾリウム系、ピリジニウム系、脂肪族系、ピロリジニウム系、アンモニウム系、ホスホニウム系、及び、スルホニウム系から選ばれる一つの化合物又は複数の化合物の組み合わせを用いても良い。
 電気二重層キャパシタにおいて、コンデンサに蓄積される電荷Qは、コンデンサの容量をC、電圧差をVとすると一般的にQ=CVと表される。さらにコンデンサに蓄積されるエネルギーEは、E=1/2CVと表される。単位体積当たりの容量(F/cm)は活物質の密度に比例する。従って活物質が微細繊維からなる電極の場合は、活物質の表面積が変化しない範囲では、密度と容量が比例すると考えられる。したがって活物質層の密度を上げれば単位体積当たりのエネルギー(エネルギー密度)が上がると考えられる。なお、微細繊維を集電体上に立設する場合、合成により達成される微細繊維層の最大密度が必ずしも、活物質層としての理想的な最大密度(イオンが吸脱着するための単位体積当たりの表面積が最大となる密度)になるとは限らない。理想的な最大密度に近づけるために、本発明では、微細繊維層上にセパレータを積層した状態で圧縮を行うことで、微細繊維層の密度を高めるとともに、極板とセパレータとを圧着し、一体化する。これにより、微細繊維層の剥離等の問題を生じることなく、微細繊維層の密度を高めることができるので、電気二重層キャパシタのエネルギー密度を向上させることができる。また、極板とセパレータとが一体化しているので、これらを容器に収納する際に取扱いが容易である。
 本発明の電気二重層キャパシタは、セパレータと集電体が、微細繊維からなる活物質層を間に挟んで圧着され、一体化している。ここで、圧着とは、接着剤を使用せずに、セパレータと極板が固着していることをいい、具体的には、セパレータと極板を分離するのに2.5×10Pa以上の応力が必要な状態を指す。従来の電気二重層キャパシタでは、セパレータと極板は圧着されておらず、一体化されていないので、2.5×10Pa未満の応力をかけると容易にセパレータと極板が分離する。
 次に、本実施形態の電気二重層キャパシタを製造する方法について説明する。図1では、本発明の製造方法における工程フローと、比較例の製造方法における工程フローを対比して示した。
 本発明の製造方法では、まず準備工程において、2枚の極板(正極及び負極)とセパレータとを準備する。2枚の極板のうちいずれか一方又は双方の極板が、集電体と、当該集電体の片面又は両面に一端が電気的に接続するように立設された複数本の導電性微細繊維とからなる。
 微細繊維としては上述のように種々のものを使用できるが、以下に微細繊維がカーボンナノチューブである場合について、集電体表面に複数本のカーボンナノチューブを立設する方法を説明する。
 カーボンナノチューブは転写法により形成することができる。しかしながら、配向性の良いカーボンナノチューブが得られるという観点から、集電体上に直接合成する方法が好ましい。この場合、カーボンナノチューブは集電体の表面に付着された触媒金属粒子を介して合成される。
 触媒としては、例えば、ニッケル、鉄、コバルト、亜鉛、モリブデン、金、銀、銅の金属;これらの組み合わせの合金等;これらの金属の酸化物、炭化物等が挙げられるが、所望のカーボンナノチューブ径とその合成方法によって適宜選択すればよい。
 カーボンナノチューブ合成時の加熱または合成前の予備加熱を実施することで、触媒金属粒子は肥大化する。その際の触媒金属粒子径と合成されるカーボンナノチューブ径には相関関係があるとされている。したがって、カーボンナノチューブ径として1~100nmを所望する場合は、触媒金属粒子径は1~100nmに調整することが望ましい。
 集電体上に立設したカーボンナノチューブを直接合成する方法としては、気相化学蒸着(CVD)法、レーザーアブレーション法、アーク放電、溶液中電解合成法等があるが、本発明ではCVD法が好ましい。CVD法の主な種類として、原料ガスを熱分解する熱CVD法、および原料ガスをプラズマで分解するプラズマCVD法の2種類がある。カーボンナノチューブは、CVD法により、550℃~750℃の温度、200Paの圧力で合成することができる。チャンバー内に炭素源として、メタン、エチレン、アセチレンなどの炭化水素系ガス、または、メタノールなどのアルコールを流し、触媒金属粒子を搭載した集電体上で炭素源を直接分解することによってカーボンナノチューブを合成する。さらに炭素源のキャリアガスとして、アルゴン、窒素、水素などのガスを用いてもよい。カーボンナノチューブの成長時間は目的とするカーボンナノチューブの長さに応じて制御する。なお、成長温度、ガス圧力、用いる炭素源の種類により成長速度が異なるので成長時間について一概には言えないが、上述の条件の範囲では、例えば長さ100μmのカーボンナノチューブを成長させるために成長時間を約10分~4時間とすることができる。
 準備工程の後、被覆工程を行う。被覆工程では、極板の表面(微細繊維が立設している側の表面)をセパレータで被覆することで、極板とセパレータとからなる積層体を形成する。
 次いで、圧着工程を行う。ここでは、被覆工程で得られた積層体に対して上下から圧力をかける。加圧の方法は特に限定されないが、例えば、積層体を板の間に挟んでプレスする方法、ローラーの間に挟んでプレスする方法等を用いることができる。
 圧着工程時の圧力は特に限定されないが、圧力が小さすぎると、例えば活物質層の密度が0.5g/cm以下となるためエネルギー密度向上の効果を十分に達成できない。逆に圧力が高すぎると、圧着工程時にセパレータが破れて、短絡の問題が発生しやすくなる。これらの事情を考慮して圧縮工程時の圧力は適宜決定することができるが、具体的には30MPa以上70MPa以下程度が良い。
 加圧を実施する際には、極板全面に均等に圧力がかかるように、積層体の両面にゴムなどの緩衝材を重ねることが好ましい。
 本発明ではこの圧着工程を実施することにより、極板とセパレータが圧着して一体化する。本発明では活物質層が立設した微細繊維からなるので、セパレータがセルロース等の繊維状材料から構成される場合には、加圧により、セパレータの内部に微細繊維が侵入して前記繊維状材料と絡み合うために、極板とセパレータが物理的に固着することが可能になると考えられる。また、セパレータが有機材料等のシートから構成される場合には、加圧により当該シートに微細繊維が突き刺さることで極板とセパレータの物理的な固着が可能になると考えられる。一方、活性炭は微細繊維から構成されないので、活性炭を活物質とする極板にセパレータを重ねて非常に高い圧力(例えば100MPa以上)で圧縮しても、活性炭とセパレータが圧着することはない。
 この圧縮工程により活物質層の密度が高まることのほか、圧縮工程を行わない場合と比較して正極と負極の距離が近くなるため、抵抗が小さくなり出力密度が向上するという利点も生じる。
 図3では、図2(a)の構成を有する電気二重層キャパシタを製造する場合の被覆工程及び圧縮工程を概略的に示す。ここでは、正極306と負極307とをセパレータ305を間に挟んで積層した状態で圧縮している。図14は図3の変形例であり、複数の正極と複数の負極を、集電体の両面に微細繊維を形成することで製造し、これら正極と負極を、セパレータを間に挟んで交互に積層して、圧縮を行う例を示している。
 図4では、図2(b)の構成を有する電気二重層キャパシタを製造する場合の被覆工程及び圧縮工程を概略的に示す。ここでは、正極406と正極用のセパレータ405aとを積層した状態で圧縮を行い、別途、負極407と負極用のセパレータ405bとを積層した状態で圧縮を行い、得られた2組の圧着積層体を、セパレータ同士が接触するように重ね合わせる。図15は図4の変形例であり、集電体の両面に微細繊維を形成した後、極板の両面をセパレータで被覆して圧縮を行うことで複数組の圧縮積層体を製造し、これらを交互に重ね合わせる例を示している。
 以上のようにして得られた圧着積層体に電解液を含浸させ、最後に容器に収納することにより、電気二重層キャパシタを製造することができる。
 本発明の製造方法では、前記被覆工程を実施する前に、微細繊維を傾斜させるための予備加圧工程を実施することが好ましい。この工程では、集電体上の微細繊維に対して、圧着工程における圧力よりも小さく、微細繊維が剥離しない程度の弱い圧力をかける。この工程を実施することにより、高圧で圧着、一体化を行う圧着工程時に微細繊維を一定の方向に倒すことが可能になる。また予備加圧工程で、集電体に対して垂直でない方向に微細繊維を傾斜させておくことにより、圧着工程時に微細繊維がセパレータを突き破ることで両極のショートが発生するのを防ぐことができる。
 予備加圧を実施する際に微細繊維と接触する部分の加圧用板の材質は特に限定されないが、微細繊維の転写を防止するために、表面が平滑な材料を使用することが好ましい。具体的にはガラス、アルミナ、シリコンウエハーなどを用いることができる。
 予備加圧工程時の圧力は、上記目的を考慮して適宜決定すればよいが、2.5MPa以上5MPa以下程度が好ましい。
 図5では、図2(a)の構成を有する電気二重層キャパシタを製造する場合の予備加圧工程、被覆工程及び圧縮工程を概略的に示す。正極506については、予備加圧用板510を微細繊維502上に置き、予備加圧用板511との間で圧力をかけて微細繊維502を弱く圧縮する。負極507についても同様に、予備加圧用板512を微細繊維504上に置き、予備加圧用板513との間で圧力をかけて微細繊維504を弱く圧縮する。この後、正極506と負極507を、セパレータ505を間に挟んで積層した後、圧着工程を実施する。
 図6では、図2(b)の構成を有する電気二重層キャパシタを製造する場合の予備加圧工程、被覆工程及び圧縮工程を概略的に示す。上記と同様に、正極606と負極607をそれぞれ弱く圧縮した後、それぞれの電極をセパレータ605aと605bで被覆した後、圧着工程を行い、得られた2組の圧着積層体を積層することで電気二重層キャパシタを構成する。
 以下に実施例及び比較例を掲げて本発明をさらに詳細に説明するが、本発明は以下の実施例に限定されるものではない。
 (比較例1)
 本比較例では、図1の比較例に従い、セパレータと積層せずに、集電体の表面に立設した微細繊維を直接圧縮する方法を行った。微細繊維としてカーボンナノチューブを用いた。
 まず、7mm×14mm、厚さ300μmの電気二重層キャパシタ用アルミニウム板を準備し、洗浄を行った。DKビークリヤ(第一工業製薬製)を3wt%の濃度で純水に溶解した洗浄液を40℃に保温し、その中に集電体を浸すことにより洗浄した。洗浄液の中に集電体を5分間浸し、次に超音波洗浄機で純水を用いて5分間すすいだ。すすぎは3回繰り返した。すすいだ後、Nブローを行い、集電体を乾燥させた。
 集電体上に触媒金属層を形成するために集電体をEB蒸着機に入れてセットし、触媒材料としてAlを3nm、さらにその上にFeを1nmの層厚で蒸着した。蒸着前の真空度は1.2×10-5Paとした。AlとFeの蒸着レートは1nm/sとした。Feの蒸着後、集電体を真空中300℃で30分間加熱処理し触媒金属粒子を形成した。この段階で、触媒金属粒子の直径をAFMで計測すると、平均2.9nmという数値が得られた。
 次にカーボンナノチューブの合成を行なった。カーボンナノチューブの合成にはプラズマCVD法を用いた。反応ガスとしてCHを、キャリアガスとして水素を用いた。上記で作製した構造物を反応炉中にセットし、ロータリーポンプおよびターボ分子ポンプを用いて真空引きを行なった。到達真空度は5×10-4Paであった。この状態でポンプを止め、キャリアガスである水素を流した。水素の流量を60sccmとした。水素ガスを流し、反応炉が大気圧となったところで、反応炉内の圧力を大気圧で保ちつつ、炭素源であるCHを10sccm流し、熱処理を開始した。反応温度を620℃とし、120分合成を行なった。これによって、集電体から垂直に配向した平均長さ638μmのカーボンナノチューブを合成することができた。TEM観察を行なうことにより、カーボンナノチューブの直径等の情報が得られる。直径3nmの単層カーボンナノチューブと2層カーボンナノチューブの混合物であることを確認することができた。
 前述のアルミ板にカーボンナノチューブを成長させたものを用意し、カーボンナノチューブ上にSiウエハーを置き、Siウエハーに転写しない程度の圧力でカーボンナノチューブを圧縮した。次に、カーボンナノチューブ上にSiウエハーを置き、プレス機で20MPaの圧力で圧縮したところ、カーボンナノチューブの一部がSiウエハーに転写された。
 前述のアルミ板にカーボンナノチューブを成長させたものを用意し、カーボンナノチューブ上にSiウエハーを置き、Siウエハーに転写しない程度の圧力でカーボンナノチューブを圧縮した。次に、カーボンナノチューブ上にサファイア基板を置き、プレス機で20MPaの圧力で圧縮したところ、カーボンナノチューブの一部がサファイア基板に転写された。この状態を撮影した写真を図7に示す。
 前述のアルミ板にカーボンナノチューブを成長させたものを用意し、カーボンナノチューブ上にSiウエハーを置き、Siウエハーに転写しない程度の圧力でカーボンナノチューブを圧縮した。次に、直径4mmのガラス棒を用意し、カーボンナノチューブ上を圧力をかけながらガラス棒を転がしたところ、カーボンナノチューブの一部がガラス棒に転写された。この状態を撮影した写真を図8に示す。
 本比較例より、カーボンナノチューブを直接高圧で圧縮する方法では、カーボンナノチューブが集電体から剥離するため、電気二重層キャパシタ用の電極を製造することができないことが分かる。
 (実施例1)
 本実施例では、集電体の表面に立設した微細繊維の上にセパレータを置き、極板とセパレータとからなる積層体に圧力をかけることにより、電気二重層キャパシタ用電極を製造した。微細繊維としてカーボンナノチューブを用いた。
 集電体上にカーボンナノチューブを形成する方法は比較例1と同じであるので省略する。
 カーボンナノチューブ上にSiウエハーを置き、Siウエハーに転写しない程度の圧力(4MPa)でカーボンナノチューブを圧縮した。
 厚さ25μmのポリプロピレン製セパレータを挟んで2つの集電体上のカーボンナノチューブが対向するように置き、プレス機を用いて50MPaの圧力で加圧した。加圧するとき両方の集電体側、即ちアルミ側とプレス機のプレス用板の間には圧力を均等に分散させるためにゴムシートを入れた。加圧後、正極とセパレータと負極は圧着、一体化しており、簡単には分離できなかった。5試料について引き離すのに必要な応力を測定したところ、2.5×10~5×10MPaであった。応力の測定は、正極と負極をステンレス板に固定したものにバネはかりで応力を印加し、剥がれるときの応力を求めた。なお、正極と負極を分離した後、セパレータにはカーボンナノチューブが一部転写されていた。
 圧着した構造体を切断し電子顕微鏡で断面観察をした。その電子顕微鏡写真を図9に示す。638μmのカーボンナノチューブの厚さが17μmに圧縮された。カーボンナノチューブの密度は圧縮前には0.027g/cmであったものが圧縮後1.0g/cmとなった。またセパレータ厚は25μmから20μmへ圧縮された。
 また、上記のように集電体の表面に立設したカーボンナノチューブ上にセパレータを重ね合わせて、上記と同様に圧縮しても、上記と同様の結果が得られた。
 本実施例から、セパレータと微細繊維を重ねて圧縮すると、高密度に微細繊維が圧縮され、電極とセパレータが圧着、一体化することが分かる。
 (実施例2)
 本実施例では、実施例1で製造した、正極とセパレータと負極とが圧着されて一体化した電気二重層キャパシタ用電極を用いて、電気二重層キャパシタを製造した。
 当該電気二重層キャパシタ用電極を電解液に浸した。電解液は、四フッ化ホウ酸テトラエチルアンモニウムをプロピレンカーボネートに溶解したものを用いた。四フッ化ホウ酸テトラエチルアンモニウムの濃度は0.7mol/lとした。次に電解液が沸騰しない程度に減圧して電解液を活物質の細部にまで浸透させた。
 上記のようにして電解液を含浸した電極に対して電圧掃引速度40mV/sec、0Vと3.5Vの電圧範囲でサイクリックボルタモグラム測定を行った。測定を行って得たグラフを図10に示す。図10に示されるように本実施例の電気二重層キャパシタは、良好なキャパシタ特性を示した。
 また上記の電極について充放電特性を測定した。0.2A/gの一定電流で3.5Vまで充電し、その後0.2A/gの一定電流で放電した。コンデンサ容量は放電時の時間と電圧についてプロットした直線の傾きから計算した。コンデンサ容量Cは放電電流をI、時間変化Δtに対する電圧変化をΔVとすると、C=I×Δt/ΔVで求められる。その結果、キャパシタ容量は13F/gであった。活物質1L当たりのエネルギー密度は5.1Wh/Lであった。
 一方、カーボンナノチューブを圧縮せずに、セパレータを挟んで正極と負極を対向させて電気二重層キャパシタを製造したとき、活物質1L当たりのエネルギー密度は0.26Wh/Lであった。したがって、圧着工程の実施によりエネルギー密度を約20倍も向上させることができた。
 (実施例3)
 本実施例では、実施例1で製造した、正極と正極用のセパレータとを圧着して一体化し、負極と負極用のセパレータとを圧着して一体化した後、セパレータ同士を重ねて電気二重層キャパシタを製造した例について説明する。
 実施例1に記載のようにして製造した正極と正極用セパレータとからなる圧縮積層体と、負極と負極用セパレータとからなる圧縮積層体とを、セパレータ同士が対向するように重ねたものを、テフロン(登録商標)製板で固定し、電解液を含浸した。含浸する方法は実施例2に記載の方法と同じなので省略する。
 実施例2と同様にしてキャパシタ特性を測定した。測定方法、容量の求め方は実施例2で説明した方法と同じであるので省略する。その結果、キャパシタ容量は9F/gであった。活物質1L当たりのエネルギー密度は1.0Wh/Lであった。
 したがって、本実施例の構成によりエネルギー密度を約4倍も向上させることができた。
 (実施例4)
 本実施例では、高圧で集電体上に立設した微細繊維とセパレータとを圧着する前に、微細繊維を弱い圧力で圧縮する行程を実施することによる利点を検討した。微細繊維としてカーボンナノチューブを用いた。
 カーボンナノチューブ上にSiウエハーを置き、Siウエハーに転写しない程度の圧力でカーボンナノチューブを4MPa圧縮(予備加圧)した場合と、圧縮(予備加圧)しなかった場合について、得られた電気二重層キャパシタにおいて正極と負極の短絡が発生するかどうかを調べた。また、圧着工程時の圧力を30~70MPaの範囲で種々変更した点以外は、電気二重層キャパシタの製造方法は実施例2で説明した方法と同様である。
 作製したキャパシタに対して0~2.5Vまで充電と放電を行い、(充電に要した電荷)/(放電した電荷)が1.3以上となる場合、短絡と判断した。結果を表1に示す。
 表1より、予備加圧工程を実施すると圧着工程時の圧力にかかわらず短絡が発生しなかったが、予備加圧工程を実施しない場合は、圧着工程時の圧力が60MPa以上になると短絡が発生した。予備加圧工程を行うことにより、圧縮に用いるセパレータに対して垂直又は垂直に近い方向に位置する微細繊維(カーボンナノチューブ)の先端が、セパレータに対して平行又は平行に近い方向に曲げられるため、高圧で圧縮したときセパレータを突き破ることなく、微細繊維(カーボンナノチューブ)が圧縮されるためである。
Figure JPOXMLDOC01-appb-T000001
 本発明に係る電気二重層キャパシタは、活物質層を構成する微細繊維の密度が高く、エネルギー密度を向上させることができるので、携帯電話、携帯型コンピュータなどの携帯端末装置、自動車、自転車、電車などの移動装置などのエネルギー源として有用である。
200 電気二重層キャパシタ
201、203 集電体
202、204 微細繊維
205、205a、205b セパレータ
206 正極
207 負極
301、303 集電体
302、304 微細繊維
305 セパレータ
306 正極
307 負極
401、403 集電体
402、404 微細繊維
405a、405b セパレータ
406 正極
407 負極
501、503 集電体
502、504 微細繊維
505 セパレータ
506 正極
507 負極
510、511、512、513 予備加圧用板
601、603 集電体
602、604 微細繊維
605a、605b セパレータ
606 正極
607 負極
610、611、612、613 予備加圧用板
1100 電気二重層キャパシタ
1101 電源
1102 陽イオン
1103 負電荷
1104 集電体
1105 活物質
1106 電解液
1107 集電体
1108 活物質
1109 正電荷
1110 陰イオン
1111 正極
1112 負極
1201 電源
1202 正極に発生したコンデンサ
1203 負極に発生したコンデンサ
1301 集電体
1302 微細繊維
1303、1304 圧縮用板
1305 集電体に残った微細繊維
1306 転写された微細繊維

Claims (14)

  1.  容器内に、正極、セパレータ及び負極をこの順で積層して含み、前記正極と前記負極との間が電解液で満たされている電気二重層キャパシタであって、
     前記正極及び前記負極のうちいずれか一方又は双方の極板が、集電体と、前記集電体の表面に一端が電気的に接続するように立設された複数本の導電性微細繊維とからなり、
     前記極板の前記表面側が前記セパレータで被覆され、
     前記極板とセパレータとが圧着され一体化していることを特徴とする電気二重層キャパシタ。
  2.  前記正極と1枚のセパレータと前記負極がこの順序で、圧着され一体化している、請求項1記載の電気二重層キャパシタ。
  3.  前記セパレータは、正極用のセパレータと負極用のセパレータを含み、
     前記正極と前記正極用のセパレータとが圧着され一体化しており、前記負極と前記負極用のセパレータとが圧着され一体化している、請求項1記載の電気二重層キャパシタ。
  4.  前記微細繊維は、直径が0.1nm~100nmである、請求項1~3のいずれかに記載の電気二重層キャパシタ。
  5.  前記微細繊維は、カーボンナノチューブである、請求項1~4のいずれかに記載の電気二重層キャパシタ。
  6.  前記セパレータは、熱硬化性樹脂以外の材料からなる、請求項1~5のいずれかに記載の電気二重層キャパシタ。
  7.  容器内に、正極、セパレータ及び負極をこの順で積層して含み、前記正極と前記負極との間が電解液で満たされている電気二重層キャパシタの製造方法であって、
     集電体と、前記集電体の表面に一端が電気的に接続するように立設された複数本の導電性微細繊維とからなる極板、及び、セパレータを準備する準備工程、
     前記極板の前記表面側を前記セパレータで被覆して、前記極板と前記セパレータからなる積層体を形成する被覆工程、
     前記積層体に上下から圧力をかけることで、前記極板とセパレータとを圧着し、一体化することで、圧着積層体を形成する圧着工程、
     前記圧着積層体に電解液を含浸させる含浸工程、を含む、電気二重層キャパシタの製造方法。
  8.  前記準備工程において、2枚の極板及び1枚のセパレータを準備し、
     前記被覆工程において、前記2枚の極板それぞれの前記表面が前記1枚のセパレータを間に挟んで対向するように、前記2枚の極板と前記1枚のセパレータとを積層し、
     前記圧着工程において、前記2枚の極板と前記1枚のセパレータとが圧着してなる圧着積層体を形成する、請求項7に記載の製造方法。
  9.  前記準備工程において、2枚の極板及び2枚のセパレータを準備し、
     前記被覆工程において、前記2枚の極板における前記表面を各々1枚のセパレータで被覆して二組の積層体を形成し、
     前記圧着工程において、1枚の極板と1枚のセパレータとが圧着してなる圧着積層体を二組形成し、
     前記含浸工程の前後に、前記二組の圧着積層体を、前記セパレータ同士が接触するように重ね合わせる工程をさらに含む、請求項7に記載の製造方法。
  10.  前記圧着工程における前記圧力は、30MPa以上70MPa以下である、請求項7~9のいずれかに記載の製造方法。
  11.  前記準備工程の後で前記被覆工程の前に、前記集電体上の前記導電性微細繊維に対して、前記圧着工程における前記圧力よりも小さい圧力をかけることで、前記微細繊維を傾斜させる予備加圧工程をさらに含む、請求項7~10のいずれかに記載の製造方法。
  12.  前記微細繊維は、直径が0.1nm~100nmである、請求項7~11のいずれかに記載の製造方法。
  13.  前記微細繊維は、カーボンナノチューブである、請求項7~12のいずれかに記載の製造方法。
  14.  前記カーボンナノチューブは、触媒を介して前記集電体の前記表面上に立設されている、請求項13に記載の製造方法。
PCT/JP2009/005898 2008-12-08 2009-11-06 電気二重層キャパシタ及びその製造方法 WO2010067509A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US13/060,383 US8531818B2 (en) 2008-12-08 2009-11-06 Electric double layer capacitor and method for manufacturing the same
JP2010541971A JP5281100B2 (ja) 2008-12-08 2009-11-06 電気二重層キャパシタ及びその製造方法
CN2009801265774A CN102177563B (zh) 2008-12-08 2009-11-06 双电层电容器及其制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-312358 2008-12-08
JP2008312358 2008-12-08

Publications (1)

Publication Number Publication Date
WO2010067509A1 true WO2010067509A1 (ja) 2010-06-17

Family

ID=42242507

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/005898 WO2010067509A1 (ja) 2008-12-08 2009-11-06 電気二重層キャパシタ及びその製造方法

Country Status (4)

Country Link
US (1) US8531818B2 (ja)
JP (1) JP5281100B2 (ja)
CN (1) CN102177563B (ja)
WO (1) WO2010067509A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012224530A (ja) * 2011-04-06 2012-11-15 Panasonic Corp 基板複合体、カーボンナノチューブ複合体、エネルギーデバイス、電子機器および輸送デバイス
US20130045413A1 (en) * 2011-08-16 2013-02-21 Hon Hai Precision Industry Co., Ltd. Current collector and lithium ion battery
US20130084235A1 (en) * 2010-08-04 2013-04-04 Aisin Seiki Kabushiki Kaisha Carbon nanotube device, process for production of carbon nanotube, and device for production of carbon nanotube
JP2014523841A (ja) * 2011-06-07 2014-09-18 ファーストキャップ・システムズ・コーポレイション ウルトラキャパシタのためのエネルギー貯蔵媒体
US10600582B1 (en) 2016-12-02 2020-03-24 Fastcap Systems Corporation Composite electrode
US10886074B2 (en) 2014-10-09 2021-01-05 Fastcap Systems Corporation Nanostructured electrode for energy storage device
US11270850B2 (en) 2013-12-20 2022-03-08 Fastcap Systems Corporation Ultracapacitors with high frequency response
US11557765B2 (en) 2019-07-05 2023-01-17 Fastcap Systems Corporation Electrodes for energy storage devices

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9001495B2 (en) * 2011-02-23 2015-04-07 Fastcap Systems Corporation High power and high energy electrodes using carbon nanotubes
CN104271880A (zh) 2011-05-24 2015-01-07 快帽系统公司 用于高温应用的具有可再充电能量存储器的电力系统
US9558894B2 (en) 2011-07-08 2017-01-31 Fastcap Systems Corporation Advanced electrolyte systems and their use in energy storage devices
CN104221110B (zh) 2011-07-08 2019-04-05 快帽系统公司 高温能量储存装置
CA2854404C (en) 2011-11-03 2021-05-25 Fastcap Systems Corporation Production logging instrument
CN103377836A (zh) * 2012-04-20 2013-10-30 海洋王照明科技股份有限公司 一种双电层电容器电解液
JP2013243205A (ja) * 2012-05-18 2013-12-05 Seiko Instruments Inc 電気化学セル
GB2505166B (en) 2012-08-03 2018-04-04 Bae Systems Plc Component including a structural supercapacitor
US20140340817A1 (en) * 2013-05-20 2014-11-20 Amotech Co., Ltd. Super capacitor
US10872737B2 (en) 2013-10-09 2020-12-22 Fastcap Systems Corporation Advanced electrolytes for high temperature energy storage device
WO2015095858A2 (en) 2013-12-20 2015-06-25 Fastcap Systems Corporation Electromagnetic telemetry device
CN107533919A (zh) 2015-01-27 2018-01-02 快帽系统公司 宽温度范围超级电容器
US9759699B1 (en) * 2015-05-22 2017-09-12 Council On Postsecondary Education Systems and methods for the detection of compounds
CN106611654A (zh) * 2015-10-24 2017-05-03 湖北圣融科技有限公司 双高压无机系超级电容器
CN107230557B (zh) * 2016-03-25 2023-04-11 华北电力大学(保定) 一种扣式超级电容
US11948740B2 (en) * 2017-09-25 2024-04-02 National University Corporation Chiba University Porous conductor having conductive nanostructure and electricity storage device using same
US11703471B1 (en) 2018-12-20 2023-07-18 University Of Rhode Island Board Of Trustees Trace detection of chemical compounds via catalytic decomposition and redox reactions
US11298564B2 (en) 2020-03-10 2022-04-12 Dennis M. Anderson Medical, surgical and patient lighting apparatus, system, method and controls with pathogen killing electromagnetic radiation
WO2022150229A2 (en) 2020-11-06 2022-07-14 Pgr Holdings, Llc Decoupled thermodynamic sensing system
US11340183B1 (en) 2021-06-23 2022-05-24 Pgr Holdings, Llc Ultrasensitive, ultrathin vapor sensors and arrays

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001284188A (ja) * 2000-04-03 2001-10-12 Asahi Glass Co Ltd 電気二重層キャパシタ電極用炭素材料の製造方法及びこの炭素材料を用いた電気二重層キャパシタの製造方法
JP2002299169A (ja) * 2001-03-29 2002-10-11 Japan Vilene Co Ltd 電気二重層キャパシタ用セパレータ及び電気二重層キャパシタ
JP2005145743A (ja) * 2003-11-13 2005-06-09 Kenjiro Oura カーボンナノチューブ、その製造方法、カーボンナノチューブデバイスおよび電気二重層キャパシタ

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02847A (ja) 1988-01-21 1990-01-05 Fuji Electric Co Ltd 有機積層体ならびにその製造方法
JPH07320987A (ja) * 1994-05-27 1995-12-08 Fuji Elelctrochem Co Ltd 電極構造
JPH10241656A (ja) 1997-02-28 1998-09-11 Asahi Chem Ind Co Ltd 電 池
JPH1197295A (ja) 1997-09-18 1999-04-09 Isuzu Advanced Engineering Center Ltd 電気二重層コンデンサ及びその製造方法並びに電極、セパレータ
JPH11135369A (ja) * 1997-10-28 1999-05-21 Nec Corp 電気二重層コンデンサ
AUPQ065099A0 (en) 1999-05-28 1999-06-24 Commonwealth Scientific And Industrial Research Organisation Substrate-supported aligned carbon nanotube films
JP2001250742A (ja) * 2000-03-07 2001-09-14 Nec Corp 電気二重層コンデンサとその製造方法
JP2005007861A (ja) 2003-05-27 2005-01-13 Mitsubishi Gas Chem Co Inc 三層構造の配向性カーボンナノチューブ膜複合シート、および該配向性カーボンナノチューブ膜の固定化方法
JP2005123044A (ja) * 2003-10-17 2005-05-12 Nok Corp 燃料電池用セパレータ
JP2005252116A (ja) 2004-03-08 2005-09-15 Sanyo Electric Co Ltd 電気二重層キャパシタ用電極材料及び電気二重層キャパシタ
JP5153056B2 (ja) * 2004-12-24 2013-02-27 パナソニック株式会社 カーボンナノファイバを含む、非水電解質二次電池用または電気二重層キャパシタ用複合集電体および電極の製造法
JP2006236647A (ja) * 2005-02-23 2006-09-07 Asahi Kasei Chemicals Corp セパレータ電極一体型蓄電部材
JP4696751B2 (ja) * 2005-07-26 2011-06-08 日立造船株式会社 カーボンナノチューブを用いた電極の製造方法
JP2007173039A (ja) 2005-12-22 2007-07-05 Toyota Motor Corp 燃料電池用単セルの製造方法及び燃料電池用単セル

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001284188A (ja) * 2000-04-03 2001-10-12 Asahi Glass Co Ltd 電気二重層キャパシタ電極用炭素材料の製造方法及びこの炭素材料を用いた電気二重層キャパシタの製造方法
JP2002299169A (ja) * 2001-03-29 2002-10-11 Japan Vilene Co Ltd 電気二重層キャパシタ用セパレータ及び電気二重層キャパシタ
JP2005145743A (ja) * 2003-11-13 2005-06-09 Kenjiro Oura カーボンナノチューブ、その製造方法、カーボンナノチューブデバイスおよび電気二重層キャパシタ

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130084235A1 (en) * 2010-08-04 2013-04-04 Aisin Seiki Kabushiki Kaisha Carbon nanotube device, process for production of carbon nanotube, and device for production of carbon nanotube
JP2012224530A (ja) * 2011-04-06 2012-11-15 Panasonic Corp 基板複合体、カーボンナノチューブ複合体、エネルギーデバイス、電子機器および輸送デバイス
JP2022070918A (ja) * 2011-06-07 2022-05-13 ファーストキャップ・システムズ・コーポレイション ウルトラキャパシタのためのエネルギー貯蔵媒体
JP7022779B2 (ja) 2011-06-07 2022-02-18 ファーストキャップ・システムズ・コーポレイション ウルトラキャパシタのためのエネルギー貯蔵媒体
JP2014523841A (ja) * 2011-06-07 2014-09-18 ファーストキャップ・システムズ・コーポレイション ウルトラキャパシタのためのエネルギー貯蔵媒体
JP2018131381A (ja) * 2011-06-07 2018-08-23 ファーストキャップ・システムズ・コーポレイションFastCAP SYSTEMS Corporation ウルトラキャパシタのためのエネルギー貯蔵媒体
JP7030570B2 (ja) 2011-06-07 2022-03-07 ファーストキャップ・システムズ・コーポレイション ウルトラキャパシタのためのエネルギー貯蔵媒体
JP2020120124A (ja) * 2011-06-07 2020-08-06 ファーストキャップ・システムズ・コーポレイションFastCAP SYSTEMS Corporation ウルトラキャパシタのためのエネルギー貯蔵媒体
US20130045413A1 (en) * 2011-08-16 2013-02-21 Hon Hai Precision Industry Co., Ltd. Current collector and lithium ion battery
US8785053B2 (en) * 2011-08-16 2014-07-22 Tsinghua University Current collector and lithium ion battery
US11270850B2 (en) 2013-12-20 2022-03-08 Fastcap Systems Corporation Ultracapacitors with high frequency response
US10886074B2 (en) 2014-10-09 2021-01-05 Fastcap Systems Corporation Nanostructured electrode for energy storage device
US11664173B2 (en) 2014-10-09 2023-05-30 Fastcap Systems Corporation Nanostructured electrode for energy storage device
US11942271B2 (en) 2014-10-09 2024-03-26 Fastcap Systems Corporation Nanostructured electrode for energy storage device
US10600582B1 (en) 2016-12-02 2020-03-24 Fastcap Systems Corporation Composite electrode
US11450488B2 (en) 2016-12-02 2022-09-20 Fastcap Systems Corporation Composite electrode
US11557765B2 (en) 2019-07-05 2023-01-17 Fastcap Systems Corporation Electrodes for energy storage devices
US11848449B2 (en) 2019-07-05 2023-12-19 Fastcap Systems Corporation Electrodes for energy storage devices

Also Published As

Publication number Publication date
US8531818B2 (en) 2013-09-10
CN102177563A (zh) 2011-09-07
JP5281100B2 (ja) 2013-09-04
CN102177563B (zh) 2013-10-09
JPWO2010067509A1 (ja) 2012-05-17
US20110149465A1 (en) 2011-06-23

Similar Documents

Publication Publication Date Title
JP5281100B2 (ja) 電気二重層キャパシタ及びその製造方法
JP7022779B2 (ja) ウルトラキャパシタのためのエネルギー貯蔵媒体
JP5351264B2 (ja) カーボンナノチューブ形成用基板、カーボンナノチューブ複合体、エネルギーデバイス、その製造方法及びそれを搭載した装置
KR101817260B1 (ko) 그래핀-나노소재 복합체, 이를 채용한 전극 및 전기소자, 및 상기 그래핀-나노소재 복합체의 제조방법
CN102282706B (zh) 使用碳纳米结构材料的高效能量转换和存储系统
EP2387805B1 (en) A process for producing carbon nanostructure on a flexible substrate, and energy storage devices comprising flexible carbon nanostructure electrodes
JP6004198B2 (ja) 電極、その製造方法、それを含むエネルギーデバイス、電子機器および輸送デバイス
JP6138007B2 (ja) 導電部材、電極、二次電池、キャパシタ、ならびに、導電部材および電極の製造方法
JP2014523841A5 (ja)
JP5500547B2 (ja) 電気二重層キャパシタ
KR101614299B1 (ko) 밀도가 향상된 울트라커패시터 전극의 제조방법 및 이를 이용하여 제조된 울트라커패시터 전극을 적용한 울트라커패시터 셀
Senokos et al. Transparent and flexible high-power supercapacitors based on carbon nanotube fibre aerogels
JP2007194354A (ja) 分極性電極およびこれを備えた電気二重層キャパシタ
JP2008192695A (ja) 電極体、その製造方法及び電気二重層キャパシタ
KR20210020991A (ko) 탄소 나노튜브(cnt)-금속 복합 제품 및 그 제조방법
JP2009021400A (ja) 構造体
KR101774253B1 (ko) 적층형 슈퍼커패시터의 제조방법
US20180218846A1 (en) Ultrathin Asymmetric Nanoporous-Nickel Graphene-Copper Based Supercapacitor
JP2016012714A (ja) 導電性複合体及びその製造方法並び電気二重層キャパシタ及びその製造方法
KR20110000099A (ko) 수퍼커패시터 및 이의 제조방법
NO20201116A1 (ja)
WO2009101806A1 (ja) 電気二重層キャパシタおよびその製造方法
WO2021006327A1 (ja) 炭素材料付き金属シート、蓄電デバイス用電極、及び蓄電デバイス
Storage et al. Multifunctional (Nano) Composite Materials for

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980126577.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09831617

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010541971

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13060383

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09831617

Country of ref document: EP

Kind code of ref document: A1