WO2010067500A1 - 半導体レーザ装置及びその製造方法 - Google Patents

半導体レーザ装置及びその製造方法 Download PDF

Info

Publication number
WO2010067500A1
WO2010067500A1 PCT/JP2009/005359 JP2009005359W WO2010067500A1 WO 2010067500 A1 WO2010067500 A1 WO 2010067500A1 JP 2009005359 W JP2009005359 W JP 2009005359W WO 2010067500 A1 WO2010067500 A1 WO 2010067500A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser device
semiconductor laser
mask
optical waveguide
active layer
Prior art date
Application number
PCT/JP2009/005359
Other languages
English (en)
French (fr)
Inventor
左文字克哉
川口真生
春日井秀紀
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to CN2009801044447A priority Critical patent/CN101939881A/zh
Priority to US12/745,385 priority patent/US8422526B2/en
Publication of WO2010067500A1 publication Critical patent/WO2010067500A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/16Window-type lasers, i.e. with a region of non-absorbing material between the active region and the reflecting surface
    • H01S5/164Window-type lasers, i.e. with a region of non-absorbing material between the active region and the reflecting surface with window regions comprising semiconductor material with a wider bandgap than the active layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/0201Separation of the wafer into individual elements, e.g. by dicing, cleaving, etching or directly during growth
    • H01S5/0202Cleaving
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/2201Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure in a specific crystallographic orientation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • H01S5/3403Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers having a strained layer structure in which the strain performs a special function, e.g. general strain effects, strain versus polarisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • H01S5/343Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
    • H01S5/34333Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser with a well layer based on Ga(In)N or Ga(In)P, e.g. blue laser

Definitions

  • the present invention relates to a semiconductor laser device and a manufacturing method thereof, and more particularly to a nitride semiconductor laser device having an end face window structure and a manufacturing method thereof.
  • a semiconductor laser device using a nitride semiconductor typified by gallium nitride (GaN) is an important element as a light source of a high-density optical disc device typified by a Blu-ray disc and a light source of a laser display device.
  • GaN gallium nitride
  • blue-violet light having a wavelength of about 405 nm is used, and in the laser display apparatus, blue light having a wavelength of about 450 nm is used.
  • a light output of several hundreds mW class is required in order to improve recording speed and reliability of multi-layer recording. Further, in the field of laser display devices, a light output of several W class is required for improving the brightness of the screen.
  • the end face of the resonator is usually formed by cleaving the crystal. For this reason, high-density dangling bonds (unbonded hands) are formed on the end face. A dangling bond acts as a non-radiative recombination center. At the end face, carriers injected into the active layer are lost by the non-radiative recombination centers, so that heat generation is locally greater at the end face than in the resonator. Due to the temperature rise due to heat generation, the forbidden band width is reduced at the end face portion, and the laser oscillation light reciprocating through the resonator is absorbed at the end face portion.
  • the absorbed laser oscillation light further increases the temperature of the end face portion, and the band gap is further reduced. Reduction of the forbidden band width due to heat generation and increase in light absorption are repeated, and at the end face portion, the crystal melts due to local temperature rise. This phenomenon is called optical damage (Catastrophic Optical Damage: COD).
  • an end face window structure in which the forbidden band width of the active layer is made larger at the end face portion than inside the resonator.
  • the end face window structure By forming the end face window structure, light absorption at the end face portion is effectively suppressed, and a local temperature rise can be suppressed.
  • GaAs gallium arsenide
  • a technique of disordering an active layer by impurity diffusion or ion implantation is used to realize an end face window structure (see, for example, Patent Document 1).
  • a metal impurity layer such as zinc (Zn) having a large diffusion constant is formed in a portion corresponding to the end face portion, and the metal impurity is diffused to the active layer by heat.
  • the periphery of the active layer is disordered, and an end face window structure having a large forbidden band width can be formed.
  • the present disclosure solves the problems described above, enables the formation of an end face window structure that does not depend on impurity diffusion, ion implantation, or the like, and realizes a semiconductor laser device having an end face window structure even when a nitride semiconductor is used.
  • the purpose is to.
  • an exemplary semiconductor laser device includes a semiconductor layer stack formed by selective growth using a mask, and is prohibited in a region including a front end face in an active layer as compared with a portion that contributes to light emission. A portion having a large band width is formed.
  • the exemplary semiconductor laser device includes a semiconductor layer stack that is selectively grown on the substrate except on a predetermined region of the substrate, and the semiconductor layer stack includes a first conductivity type cladding layer. And an active layer and a second conductivity type clad layer, having a stripe-shaped optical waveguide extending in a direction intersecting with the front end face from which light is emitted, and the active layer is an abnormal growth formed at a peripheral portion of a predetermined region And an optical waveguide having a forbidden band width increasing portion formed around the abnormally grown part and having a larger forbidden band width compared to other parts of the active layer excluding the abnormally grown part.
  • the front end face is formed so as to include a forbidden band width increasing portion.
  • the exemplary semiconductor laser device includes a semiconductor layer stack formed on a substrate by selective growth using a mask. For this reason, a forbidden band width increasing portion having a larger forbidden band width than other portions can be formed in a region including the front end face of the active layer without performing impurity diffusion or the like. Therefore, even when disordering by impurity diffusion or ion implantation is difficult, an end face window structure can be formed and COD can be suppressed.
  • a mask that inhibits the growth of the semiconductor layer stack may be formed on a predetermined region of the substrate.
  • the mask may be a dielectric or a refractory metal.
  • the semiconductor layer stack may have an opening formed on a predetermined region.
  • the predetermined region has a distance from the end on the front end face side to the front end face of 50 ⁇ m or less, and a distance from the end on the optical waveguide side to the center line of the optical waveguide is 20 ⁇ m or more and 60 ⁇ m.
  • the depth in the direction along the optical waveguide is 5 ⁇ m or more and 200 ⁇ m or less.
  • the abnormally grown portion may be formed on both sides of the optical waveguide.
  • the forbidden band width increasing portion may be formed in a region including the front end face of the optical waveguide and a region including the rear end face of the optical waveguide.
  • the active layer may be a nitride semiconductor layer containing indium.
  • the semiconductor layer stack may be made of a nitride semiconductor having a ⁇ 0001 ⁇ plane as a main surface, and the optical waveguide may be formed along the ⁇ 1-100> direction.
  • An exemplary method of manufacturing a semiconductor laser device includes a step (a) of forming a mask on a predetermined region of a substrate and a step of growing a semiconductor layer stack including an active layer on the substrate on which the mask is formed ( b), a step (c) of forming a striped optical waveguide at an interval from the region where the mask is formed, and a step (d) of forming an end face in a direction intersecting the optical waveguide by cleavage,
  • an abnormally grown portion caused by abnormal growth is formed at the peripheral portion of the mask in the active layer, and a forbidden band width is formed around the abnormally grown portion compared to other portions of the active layer excluding the abnormally grown portion.
  • a large forbidden band width increasing portion is formed, and in step (c), the optical waveguide is formed to be spaced from the abnormally grown portion and positioned on the forbidden band width increasing portion, and in step (d), the forbidden band is formed.
  • the width increasing part emits light out of the end face And carrying out the cleavage to be out.
  • a mask is formed on a predetermined region of a substrate, and then a semiconductor layer stack including an active layer is grown. For this reason, the portion of the active layer grown in the vicinity of the mask becomes a forbidden band width increasing portion in which no abnormal surface morphology is observed but the forbidden band width is larger than that of other regions.
  • the optical waveguide By forming the optical waveguide on the forbidden band width increasing portion and cleaving so that the forbidden band width increasing portion is exposed on the front end face, it becomes possible to suppress absorption of laser oscillation light on the front end face. Therefore, even when it is difficult to form an end face window structure by impurity diffusion or ion implantation, COD can be suppressed.
  • a first conductivity type cladding layer is formed between the substrate and the active layer, and a second conductivity type cladding layer is formed on the active layer.
  • a stripe-shaped ridge portion may be formed by selectively etching the second conductivity type cladding layer.
  • a first conductivity type cladding layer is formed between the substrate and the active layer, and a lower second conductivity type cladding layer and a current blocking layer are sequentially formed on the active layer from the lower side,
  • the current blocking layer may be selectively etched to form a stripe-shaped opening, and then the upper second conductivity type cladding layer may be formed so as to fill the opening.
  • the exemplified method for manufacturing a semiconductor laser device may further include a step (e) of removing the mask after the step (b).
  • the semiconductor layer stack in step (b), may be grown so that an opening is formed on the mask.
  • the mask may be a dielectric or a refractory metal.
  • the mask in step (a), has a distance from the end on the front end face side to the front end face of 50 ⁇ m or less, and extends from the end on the optical waveguide side to the center line of the optical waveguide.
  • the distance may be 20 ⁇ m or more and 60 ⁇ m or less, and the depth along the optical waveguide may be 5 ⁇ m or more and 200 ⁇ m or less.
  • the active layer may be a nitride semiconductor layer containing indium.
  • the semiconductor layer stack is formed of a nitride semiconductor having a ⁇ 0001 ⁇ plane as a main surface, and in step (c), the optical waveguide is ⁇ 1-100. > May be formed along the direction.
  • the semiconductor laser device and the manufacturing method thereof of the present disclosure it is possible to form an end face window structure without using impurity diffusion or ion implantation, and a semiconductor laser apparatus having an end face window structure even when a nitride semiconductor is used. realizable.
  • FIG. 1 shows a semiconductor laser device according to an embodiment
  • (a) is a plan view
  • (b) is a cross-sectional view taken along line Ib-Ib in (a)
  • (c) is shown in FIG. It is sectional drawing in a front end surface.
  • It is a scanning electron micrograph which shows the structure of the active layer formed in the peripheral area
  • FIG. 1A to 1C show a semiconductor laser device according to an embodiment, where FIG. 1A shows a planar configuration, FIG. 1B shows a cross-sectional configuration taken along line Ib-Ib in FIG. c) shows a sectional configuration of the front end face 20A.
  • FIG. 1 shows a plane orientation of a typical crystal of a nitride semiconductor that is a hexagonal crystal, c represents a plane equivalent to the ⁇ 0001 ⁇ plane or a normal vector thereof, and a represents ⁇ 11-20 ⁇ .
  • a surface equivalent to the surface or its normal vector is shown, and m denotes a surface equivalent to the ⁇ 1-100 ⁇ surface or its normal vector.
  • the minus sign “ ⁇ ” attached to the Miller index in the plane orientation represents the inversion of one index following the minus sign for convenience.
  • the front end face is an end face with a large light output of the two end faces of the resonator, and the rear end face is an end face with a smaller light output than the front end face opposite to the front end face.
  • the semiconductor laser device of this embodiment is a nitride semiconductor laser device having a striped ridge portion 20a.
  • a mask 22 made of SiO 2 having a thickness of 400 nm is selectively formed on a predetermined region of the substrate 11 made of n-type GaN (n-GaN) having a ⁇ 0001 ⁇ plane as a main surface.
  • a semiconductor layer stack 20 is formed on the substrate 11 except for the region where the mask 22 is formed.
  • the semiconductor layer stack includes an n-type semiconductor layer 12, an active layer 14, and a p-type semiconductor layer 16 that are sequentially grown from the substrate 11 side.
  • the n-type semiconductor layer 12 is composed of an n-type cladding layer 12A made of n-Al 0.03 Ga 0.97 N having a thickness of 2 ⁇ m and a n-Al 0.003 Ga 0.997 N having a thickness of 0.1 ⁇ m. and an n-type light guide layer 12B.
  • a barrier layer made of In 0.02 Ga 0.98 N having a thickness of 8 nm and a well layer made of In 0.12 Ga 0.88 N having a thickness of 3 nm are alternately stacked.
  • the p-type semiconductor layer 16 includes a p-type light guide layer 16A made of p-GaN having a thickness of 0.1 ⁇ m, a p-type cladding layer 16B made of p-Al 0.03 Ga 0.97 N having a thickness of 0.5 ⁇ m, And a contact layer 16C made of p-GaN having a thickness of 60 nm.
  • the p-type cladding layer 16B is etched except for a part, and a striped ridge portion 20a extending in the m-axis direction is formed.
  • the contact layer 16C is formed on the ridge portion 20a.
  • a p-side electrode 24 is formed on the contact layer 16C, and an n-side electrode 26 is formed on the side of the substrate 11 opposite to the semiconductor layer stack 20.
  • a dielectric layer 18 is formed on the entire surface of the substrate 11 except on the ridge portion 20a, and a pad electrode 28 is formed across the p-side electrode 24 and the dielectric layer 18.
  • the pad electrode 28 is formed at a distance from the resonator end surface and the resonator side surface.
  • the single crystal semiconductor layer does not grow on the portion of the substrate 11 where the mask 22 is formed. For this reason, the semiconductor layer stack 20 has an opening 22 a formed on the upper side of the mask 22. In the periphery of the mask 22, abnormal growth occurs that grows faster than other portions. As a result, the portion grown around the mask 22 in the semiconductor layer stack 20 has a surface morphology that is different from the other portions and is raised.
  • FIG. 2 shows the result of observing the area around the mask 22 with a scanning electron microscope (SEM). However, the semiconductor layer stack 20 was observed until the active layer 14 was grown and the p-type semiconductor layer 16 was not formed. As shown in FIG. 2, an opening in which the single crystal semiconductor layer is not grown and the mask 22 is exposed is formed on the region of the substrate where the mask 22 is formed (strictly speaking, the mask 22 Since the polycrystalline semiconductor layer is thinly formed on the upper surface, an opening in which the polycrystalline semiconductor layer on the surface of the mask 22 is exposed is formed.
  • SEM scanning electron microscope
  • a portion of the active layer 14 grown on the peripheral portion of the mask 22, that is, a portion serving as a side surface of the opening is an abnormally grown portion 14 a having a surface morphology different from that of the other portions of the active layer 14.
  • the abnormally grown portion 14a is formed with a width of about 30 ⁇ m in the a-axis direction from the end of the SiO 2 mask.
  • FIG. 3 shows the result of evaluation of the forbidden band width (Eg) of the active layer 14 based on the emission peak wavelength of cathodoluminescence (CL) along the line III-III in FIG.
  • the value of Eg in the active layer 14 is larger in the portion grown on the periphery of the mask 22 than in other portions of the active layer 14.
  • the portion where the value of Eg is large includes an abnormally grown portion 14a having a surface morphology different from that of other portions and a forbidden band width increasing portion 14b in which no difference in surface morphology is observed.
  • the abnormally grown portion 14a is formed closer to the mask 22 than the forbidden band width increasing portion 14b.
  • Eg increases in the portion of the active layer 14 grown on the peripheral portion of the mask 22 is considered to be that the content of indium (In) decreases in the peripheral portion of the mask during growth.
  • the increase in Eg is about 330 meV at the maximum.
  • the maximum is about 1100 meV.
  • the forbidden band width of the end face window portion may be at least about 50 meV larger than the forbidden band width of the portion contributing to light emission, and is preferably increased by 100 meV or more.
  • the abnormally grown portion 14a and the forbidden band width increasing portion 14b formed on the periphery of the mask 22 sufficiently satisfy the condition for obtaining the effect of suppressing COD.
  • the forbidden band width increasing portion 14b in which no change is observed in the surface morphology it is possible to form the end face window structure by forming it at a position that becomes the front end face of the optical waveguide.
  • the optical waveguide refers to the entire region where the laser light is distributed. Specifically, in the case of a ridge type semiconductor laser device, not only the ridge portion but also a region where the laser light on the side of the ridge portion is distributed is included. In the case of a buried type semiconductor laser device, it includes not only the opening of the current blocking layer but also a region where the surrounding laser light is distributed.
  • the semiconductor laser device of this embodiment is formed so that the optical waveguide is spaced from the abnormal growth portion 14a and includes the forbidden band width increasing portion 14b on the front end face 20A.
  • the ridge portion 20a is spaced from the abnormally grown portion 14a of the active layer 14, and the forbidden band width increasing portion 14b is formed in a region including the front end face 20A on the lower side of the ridge portion 20a.
  • the formation position of the portion 20a and the formation position of the mask 22 are adjusted.
  • the forbidden band width increasing portion 14b is formed in a region including the front end surface 20A of the optical waveguide formed below and in the vicinity of the ridge portion 20a, and becomes an end surface window portion in which absorption of laser oscillation light is suppressed. .
  • the planar dimension of the mask 22 is 20 ⁇ m square, and the distance from the end surface of the mask 22 on the ridge portion 20a side to the center line of the ridge portion 20a along the ridge portion 20a. The distance was 40 ⁇ m.
  • the mask 22 was formed so that the end face was exposed to the front end face 20A.
  • at least the region below the ridge portion 20a in the active layer 14 has a value of Eg as compared to the portion other than the abnormally grown portion 14a in the range from the front end face 20A to about 50 ⁇ m, that is, the portion contributing to light emission. Becomes a large forbidden bandwidth increasing portion 14b.
  • Eg in the portion below the ridge portion 20a in the forbidden band width increasing portion 14b is about 150 meV larger than the portion contributing to light emission in the active layer 14 as shown in FIG. Is sufficiently suppressed, and COD can be suppressed.
  • the width of the abnormal growth portion 14a varies depending on the growth conditions of the semiconductor layer, such as temperature and gas flow rate, the crystal orientation of the semiconductor layer, and the like.
  • the position and size of the mask 22 need to be determined according to the manufacturing conditions.
  • the distance s that is, the distance between the center line of the optical waveguide and the mask 22 is preferably at least 20 ⁇ m or more, more preferably 30 ⁇ m or more.
  • the distance from the mask 22 becomes too large, the lower portion of the ridge portion 20a of the active layer 14 does not become the forbidden band width increasing portion 14b, and therefore the ridge portion 20a from the end portion of the mask 22 on the ridge portion 20a side.
  • the distance s to the center line is preferably 60 ⁇ m or less, and more preferably 50 ⁇ m or less.
  • the mask 22 may be formed from the front end face 20A. However, the mask 22 may be formed at a distance from the front end face 20A. Considering the expansion of the forbidden band width increasing portion 14b, the forbidden band width increasing portion 14b sufficiently reaches the front end face 20A if the distance between the front end face side end of the mask 22 and the front end face 20A is smaller than about 50 ⁇ m.
  • the depth of the end face window portion is determined by the depth d of the mask 22 in the direction along the ridge portion 20a.
  • the depth d of the mask 22 is preferably 5 ⁇ m or more.
  • the effective length of the resonator decreases.
  • the resonator length is about 600 ⁇ m
  • the depth d of the mask 22 is preferably 200 ⁇ m or less.
  • the resonator length is generally set to various lengths from about 200 ⁇ m to about 2000 ⁇ m, and the depth d of the mask 22 may be adjusted according to the required effective length of the resonator.
  • the width w in the direction along the front end face 20A of the mask 22 is not particularly limited. About 10 ⁇ m is sufficient. Considering the ease of formation, the thickness may be 100 ⁇ m or less. However, there is no problem even if the length is longer or the side of the resonator is reached.
  • a mask 22 is also formed on the rear end face 20B side which is the end face opposite to the front end face 20A.
  • the mask 22 may be formed only on the front end face 20A side.
  • the mask 22 may be formed on both sides of the ridge portion 20a.
  • the mask 22 is unnecessary after the semiconductor layer stack 20 is grown. For this reason, the mask 22 may be removed after the semiconductor layer stack 20 is formed.
  • the semiconductor laser device of this embodiment may be formed as follows. First, as shown in FIG. 4A, after a mask 22 is formed on a predetermined region of the substrate 11, the n-type cladding layer 12A, the n-type light guide layer 12B, the active layer 14, and the p-type light guide layer 16A. Then, the p-type cladding layer 16B and the contact layer 16C are sequentially grown to form the semiconductor layer stack 20.
  • the mask 22 is made of SiO 2 , it may be formed using a thermal chemical vapor deposition (thermal CVD) method or the like.
  • the semiconductor layer stack 20 may be formed by a metal organic chemical vapor deposition (MOCVD) method or a molecular beam epitaxy (MBE) method.
  • MOCVD metal organic chemical vapor deposition
  • MBE molecular beam epitaxy
  • trimethylgallium (TMG) is used as the Ga material
  • trimethylindium (TMI) is used as the In material
  • trimethylaluminum (TMA) is used as the Al material
  • ammonia (NH 3 ) is used as the N material.
  • silane (SiH 4 ) gas may be used for the Si raw material that is an n-type impurity
  • biscyclopentadienyl magnesium (Cp 2 Mg) may be used for the Mg raw material that is a p-type impurity.
  • the portion of the semiconductor layer stack 20 including the active layer 14 that has grown on the peripheral portion of the mask 22 becomes an abnormally grown portion 14a that protrudes from the other portion due to abnormal growth. Further, the portion around the abnormally grown portion 14a becomes a forbidden band width increasing portion 14b having a flat surface and a larger Eg value than other portions excluding the abnormally grown portion 14a.
  • a mask film made of SiO 2 having a thickness of 0.2 ⁇ m is formed on the contact layer 16C by thermal CVD.
  • the mask film is patterned in a stripe shape having a width parallel to the m-axis direction of 1.5 ⁇ m by lithography and etching.
  • the contact layer 16C and part of the p-type cladding layer 16B are etched by an inductively coupled plasma (ICP) dry etching apparatus using Cl 2 as an etching gas.
  • ICP inductively coupled plasma
  • a light confinement dielectric layer 18 made of SiO 2 having a thickness of 400 nm is deposited by thermal CVD.
  • An opening is formed in a region including the top of the ridge 20a in the dielectric layer 18 by photolithography and wet etching, and then 40 nm of palladium (Pd) is contacted with the top of the ridge stripe using a lift-off method.
  • a p-side electrode 24 made of platinum Pt having a thickness of 35 nm is formed.
  • a pad electrode 28 made of titanium (Ti) having a thickness of 50 nm, platinum (Pt) having a thickness of 35 nm, and gold (Au) having a thickness of 500 nm is formed by a lift-off method.
  • an n-side electrode comprising Ti having a thickness of 5 nm, Pt having a thickness of 100 nm, and Au having a thickness of 1 ⁇ m. 26 is formed.
  • primary cleavage is performed along the primary cleavage line to form a strip-shaped laser bar.
  • secondary cleavage is performed along the secondary cleavage line. As shown in FIG. 4B, when the cleavage line for performing the primary cleavage crosses the mask 22, the semiconductor laser device in which the forbidden band width increasing portion 14b is formed on both the front end face 20A and the rear end face 20B, Become.
  • the mask 22 may use a silicon nitride film (SiN film) instead of the SiO 2 film.
  • a refractory metal film such as titanium (Ti) or molybdenum (Mo) may be used. Cleaving accuracy is improved when the primary cleavage line does not cross the mask 22. For this reason, if the forbidden band width increasing portion 14b is exposed at the front end face, the primary cleavage may be performed at a position where the mask 22 is not formed. In this case, the mask 22 may be formed on both sides of the primary cleavage line.
  • the substrate on which the semiconductor layer stack 20 is formed may be a sapphire substrate or a silicon carbide (SiC) substrate instead of the GaN substrate.
  • SiC silicon carbide
  • the ridge portion 20a may be formed in another crystal orientation.
  • the ridge stripe type semiconductor laser device has been described.
  • the same effect can be obtained also in an embedded semiconductor laser device.
  • the opening of the current blocking layer is formed so as to be spaced from the abnormally grown portion 14a of the active layer 14 and to be above the forbidden band width increasing portion 14b on the front end face 20A. That's fine.
  • the end face window structure is formed by the forbidden band width increasing portion formed by selective growth using a mask. For this reason, unlike the end face window portion formed by impurity diffusion, ion implantation, or the like, in the forbidden band width increasing portion, metal impurities for disordering such as Zn are not diffused. Accordingly, both the forbidden band width increasing portion in the active layer and the portion contributing to light emission of the active layer contain almost no impurities, and if included, the content is almost constant.
  • the semiconductor laser device and the manufacturing method thereof of the present disclosure can form an end face window structure that does not depend on impurity diffusion or ion implantation, and can realize a semiconductor laser device having an end face window structure even when a nitride semiconductor is used.
  • it is useful as a semiconductor laser device using a nitride semiconductor that can be used as a light source for an optical disk, a light source for a laser display, and the like, a manufacturing method thereof, and the like.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biophysics (AREA)
  • Geometry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Semiconductor Lasers (AREA)

Abstract

 半導体レーザ装置は、基板の所定の領域の上を除いて基板の上に選択的に成長した半導体層積層体20を備えている。半導体層積層体20は、活性層14を含み、光を出射する前方端面20Aと交差する方向に延びるストライプ状の光導波路を有している。活性層14は、所定の領域の周縁部に形成された異常成長部14aと、異常成長部14aの周囲に形成され、異常成長部14aを除く活性層14の他の部分と比べて禁制帯幅が大きい禁制帯幅増大部14bとを有している。光導波路は、異常成長部14aと間隔をおき且つ前方端面20Aにおいて禁制帯幅増大部14bを含むように形成されている。

Description

半導体レーザ装置及びその製造方法
 本発明は半導体レーザ装置及びその製造方法に関し、特に端面窓構造を有する窒化物半導体レーザ装置及びその製造方法に関する。
 窒化ガリウム(GaN)に代表される窒化物半導体を用いた半導体レーザ装置は、ブルーレイ(Blu-ray)ディスクに代表される高密度光ディスク装置の光源及びレーザディスプレイ装置の光源等として重要な素子である。ブルーレイディスク装置においては波長405nm付近の青紫光が用いられ、レーザディスプレイ装置においては波長450nm付近の青色光が用いられている。光ディスク装置の分野では、記録速度の向上及び多層記録の信頼性を向上するために数百mWクラスの光出力が求められる。さらに、レーザディスプレイ装置の分野では画面の輝度向上のため数Wクラスの光出力が求められている。
 高出力のレーザ光を半導体レーザ装置から取り出すためには、共振器の端面形成が重要となる。共振器の端面は通常、結晶の劈開によって形成される。このため、端面には高密度のダングリングボンド(未結合手)が形成される。ダングリングボンドは、非発光再結合中心として作用する。端面部では活性層に注入されたキャリアが非発光再結合中心によって失われるため、共振器内部よりも端面部では発熱が局所的に大きくなる。発熱による温度上昇により端面部においては禁制帯幅が縮小し、共振器を往復するレーザ発振光が端面部において吸収される。吸収されたレーザ発振光は、端面部の温度を上昇させるためさらに禁制帯幅が縮小する。発熱による禁制帯幅の縮小と光吸収の増大が繰り返され、端面部では局所的な温度上昇にともなう結晶の融解が発生する。この現象は光学損傷(Catastrophic Optical Damage:COD)とよばれている。
 CODを抑制するために、端面部において活性層の禁制帯幅を共振器内部よりも大きくした端面窓構造とよばれる構造が知られている。端面窓構造を形成することにより、端面部における光吸収が効果的に抑制され、局所的な温度上昇を抑えることができる。砒化ガリウム(GaAs)系のレーザ装置においては、端面窓構造を実現するために、不純物拡散又はイオン注入による活性層の無秩序化という手法が用いられる(例えば、特許文献1を参照。)。例えば、不純物拡散法の場合は、端面部に相当する部分に拡散定数の大きな亜鉛(Zn)等の金属不純物層を形成し、熱によって金属不純物を活性層まで拡散させる。これにより、活性層の周辺が無秩序化されて、禁制帯幅が大きい端面窓構造を形成できる。
特開昭63-196088号公報
 しかしながら、不純物拡散又はイオン注入による端面窓構造の形成方法は、GaN系の半導体レーザ装置に適用することが困難である。GaN等の窒化物半導体は、結晶中の結晶中のガリウム(Ga)と窒素(N)との結合が強いため、不純物拡散又はイオン注入等を行っても活性層周辺に無秩序化が生じにくい。このため、窒化物半導体を用いたレーザ装置においては、端面窓構造が実用化されていない。
 本開示は、前記の問題を解決し、不純物拡散又はイオン注入等によらない端面窓構造の形成を可能とし、窒化物半導体を用いた場合においても端面窓構造を有する半導体レーザ装置を実現できるようにすることを目的とする。
 前記の目的を達成するため、例示の半導体レーザ装置を、マスクを用いた選択成長により形成した半導体層積層体を備え、活性層における前方端面を含む領域に、発光に寄与する部分と比べて禁制帯幅が大きい部分を形成する構成とする。
 具体的に、例示の半導体レーザ装置は、基板の所定の領域の上を除いて基板の上に選択的に成長した半導体層積層体とを備え、半導体層積層体は、第1導電型クラッド層、活性層及び第2導電型クラッド層を含み、光を出射する前方端面と交差する方向に延びるストライプ状の光導波路を有し、活性層は、所定の領域の周縁部に形成された異常成長部と、異常成長部の周囲に形成され、異常成長部を除く活性層の他の部分と比べて禁制帯幅が大きい禁制帯幅増大部とを有し光導波路は、異常成長部と間隔をおき且つ前方端面において禁制帯幅増大部を含むように形成されていることを特徴とする。
 例示の半導体レーザ装置は、基板の上にマスクを用いた選択成長により形成した半導体層積層体を備えている。このため、不純物拡散等を行うことなく活性層の前方端面を含む領域に禁制帯幅が他の部分よりも大きい禁制帯幅増大部を形成することができる。従って、不純物拡散又はイオン注入による無秩序化が困難な場合においても、端面窓構造を形成することができ、CODを抑制することができる。
 例示の半導体レーザ装置において、基板における所定の領域の上には半導体層積層体の成長を阻害するマスクが形成されていてもよい。この場合において、マスクは誘電体又は高融点金属とすればよい。
 例示の半導体レーザ装置において、半導体層積層体は、所定の領域の上に形成された開口部を有していてもよい。
 例示の半導体レーザ装置において、所定の領域は、前方端面側の端部から前方端面までの距離が50μm以下であり、光導波路側の端部から光導波路の中心線までの距離が20μm以上且つ60μm以下であり、光導波路に沿った方向の奥行きが5μm以上且つ200μm以下である構成とすればよい。
 例示の半導体レーザ装置において、異常成長部は、光導波路の両側方に形成されていてもよい。
 例示の半導体レーザ装置において、禁制帯幅増大部は、光導波路における前方端面を含む領域と共に、光導波路における後方端面を含む領域に形成されている構成としてもよい。
 例示の半導体レーザ装置において、活性層はインジウムを含む窒化物半導体層とすればよい。
 例示の半導体レーザ装置において、半導体層積層体は、{0001}面を主面とする窒化物半導体からなり、光導波路は、<1-100>方向に沿って形成されている構成としてもよい。
 例示の半導体レーザ装置の製造方法は、基板の所定の領域の上にマスクを形成する工程(a)と、マスクが形成された基板の上に活性層を含む半導体層積層体を成長する工程(b)と、マスクが形成された領域と間隔をおいてストライプ状の光導波路を形成する工程(c)と、劈開により光導波路と交差する方向の端面を形成する工程(d)とを備え、工程(b)では、活性層におけるマスクの周縁部に異常成長により生じた異常成長部が形成され、異常成長部の周囲に異常成長部を除く活性層の他の部分と比べて禁制帯幅が大きい禁制帯幅増大部が形成され、工程(c)では、光導波路を異常成長部と間隔をおき且つ禁制帯幅増大部の上に位置するように形成し、工程(d)では、禁制帯幅増大部が端面のうちの光を出射する前方端面に露出するように劈開を行うことを特徴とする。
 例示の半導体レーザ装置の製造方法は、基板の所定の領域の上にマスクを形成した後、活性層を含む半導体層積層体を成長する。このため、活性層におけるマスクの近傍に成長した部分は、表面モフォロジーの異常が認められないが禁制帯幅が他の領域よりも大きい禁制帯幅増大部となる。光導波路を禁制帯幅増大部の上に形成し、禁制帯幅増大部が前方端面に露出するように劈開することにより、前方端面におけるレーザ発振光の吸収を抑制することが可能となる。従って、不純物拡散又はイオン注入等による端面窓構造の形成が困難な場合においても、CODを抑制することが可能となる。
 例示の半導体レーザ装置の製造方法において、工程(b)では、基板と活性層との間に第1導電型クラッド層を形成し、活性層の上に第2導電型クラッド層を形成し、工程(c)では、第2導電型クラッド層を選択的にエッチングすることによりストライプ状のリッジ部を形成してもよい。また、工程(b)では、基板と活性層との間に第1導電型クラッド層を形成し、活性層の上に下部第2導電型クラッド層及び電流ブロック層を下側から順次形成し、工程(c)では、電流ブロック層を選択的にエッチングすることによりストライプ状の開口部を形成した後、開口部を埋めるように上部第2導電型クラッド得層を形成してもよい。
 例示の半導体レーザ装置の製造方法は、工程(b)よりも後に、マスクを除去する工程(e)をさらに備えていてもよい。
 例示の半導体レーザ装置の製造方法において、工程(b)では、半導体層積層体は、マスクの上に開口部が形成されるように成長してもよい。
 例示の半導体レーザ装置の製造方法において、マスクは、誘電体又は高融点金属とすればよい。
 例示の半導体レーザ装置の製造方法において、工程(a)では、マスクは、前方端面側の端部から前方端面までの距離が50μm以下となり、光導波路側の端部から光導波路の中心線までの距離が20μm以上且つ60μm以下となり、光導波路に沿った方向の奥行きが5μm以上且つ200μm以下となるように形成すればよい。
 例示の半導体レーザ装置の製造方法において、活性層は、インジウムを含む窒化物半導体層とすればよい。
 例示の半導体レーザ装置の製造方法において、工程(b)では、半導体層積層体を{0001}面を主面とする窒化物半導体により形成し、工程(c)では、光導波路を<1-100>方向に沿って形成すればよい。
 本開示の半導体レーザ装置及びその製造方法によれば、不純物拡散又はイオン注入等によらない端面窓構造の形成を可能とし、窒化物半導体を用いた場合においても端面窓構造を有する半導体レーザ装置を実現できる。
(a)~(c)は一実施形態に係る半導体レーザ装置を示し、(a)は平面図であり、(b)は(a)のIb-Ib線における断面図であり、(c)は前方端面における断面図である。 マスクの周辺の領域に形成された活性層の構造を示す走査型電子顕微鏡写真である。 マスクの周辺の領域に形成された活性層の禁制帯幅を測定した結果を示すグラフである。 一実施形態に係る半導体レーザ装置の製造方法を工程順に示す平面図である。
 一実施形態について図面を参照して説明する。図1(a)~(c)は、一実施形態に係る半導体レーザ装置であり、(a)は平面構成を示し、(b)は(a)のIb-Ib線における断面構成を示し、(c)は前方端面20Aにおける断面構成を示している。図1においては、六方晶である窒化物半導体の代表的な結晶の面方位について示しており、cは{0001}面と等価な面又はその法線ベクトルを示し、aは{11-20}面と等価な面又はその法線ベクトルを示し、mは{1-100}面と等価な面又はその法線ベクトルを示している。本願明細書においては、面方位におけるミラー指数に付した負符号”-”は、負符号に続く一の指数の反転を便宜的に表している。なお、前方端面とは、共振器の2つの端面のうち光出力が大きい端面であり、後方端面とは前方端面とは反対側の前方端面よりも光出力が小さい端面である。
 図1に示すように、本実施形態の半導体レーザ装置は、ストライプ状のリッジ部20aを有する窒化物半導体レーザ装置である。{0001}面を主面とするn型のGaN(n-GaN)からなる基板11の所定の領域の上に厚さが400nmのSiO2からなるマスク22が選択的に形成されている。マスク22が形成された領域を除いて基板11の上には、半導体層積層体20が形成されている。半導体層積層体は、基板11側から順次成長したn型半導体層12と活性層14とp型半導体層16とを有している。
 n型半導体層12は、下側から順次成長した厚さが2μmのn-Al0.03Ga0.97Nからなるn型クラッド層12Aと、厚さが0.1μmのn-Al0.003Ga0.997Nからなるn型光ガイド層12Bとを含む。多重量子井戸活性層14は、厚さが8nmのIn0.02Ga0.98Nからなる障壁層と厚さが3nmのIn0.12Ga0.88Nからなる井戸層とが交互に積層されている。p型半導体層16は、厚さが0.1μmのp-GaNからなるp型光ガイド層16Aと、厚さが0.5μmのp-Al0.03Ga0.97Nからなるp型クラッド層16Bと、厚さが60nmのp-GaNからなるコンタクト層16Cとを含む。
 p型クラッド層16Bは、一部を除いてエッチングされており、m軸方向に延びるストライプ状のリッジ部20aが形成されている。コンタクト層16Cはリッジ部20aの上に形成されている。コンタクト層16Cの上にはp側電極24が形成され、基板11の半導体層積層体20と反対側にはn側電極26が形成されている。リッジ部20aの上を除いて基板11上の全面に誘電体層18が形成されており、p側電極24の上と誘電体層18の上に跨ってパッド電極28が形成されている。パッド電極28は、共振器端面及び共振器側面と間隔をおいて形成されている。
 基板11のマスク22が形成された部分の上には単結晶の半導体層が成長しない。このため、半導体層積層体20はマスク22の上側に形成された開口部22aを有している。マスク22の周囲においては、他の部分よりも成長が早くなる異常成長が生じる。これにより、半導体層積層体20におけるマスク22の周囲に成長した部分は、他の部分とは表面モフォロジーが異なり且つ盛り上がった状態となる。
 図2はマスク22の周辺の領域について走査型電子顕微鏡(SEM)により観察した結果を示している。但し、半導体層積層体20については活性層14まで成長した段階であり、p型半導体層16は形成していない状態で観察を行った。図2に示すように基板のマスク22が形成された領域の上には単結晶の半導体層が成長しておらずマスク22が露出した開口部が形成されている(厳密に言えば、マスク22の上には多結晶の半導体層が薄く形成されているため、マスク22の表面の多結晶の半導体層が露出した開口部が形成されている。)。活性層14におけるマスク22の周縁部に成長した部分、つまり開口部の側面となる部分は活性層14の他の部分と表面モフォロジーが異なる異常成長部14aとなっている。図2に示す例では、異常成長部14aはSiO2マスクの端部からa軸方向に30μm程度の幅で形成されている。
 図3は、図2のIII-III線に沿って活性層14の禁制帯幅(Eg)をカソードルミネセンス(CL)の発光ピーク波長に基づいて評価した結果を示している。活性層14におけるEgの値は、マスク22の周縁に成長した部分において、活性層14の他の部分よりも大きくなっている。Egの値が大きな部分は、表面モフォロジーが他の部分とは異なる異常成長部14aと、表面モフォロジーの差異が認められない禁制帯幅増大部14bとを含む。異常成長部14aは禁制帯幅増大部14bよりもマスク22側に形成されている。活性層14におけるマスク22の周縁部に成長した部分においてEgの値が大きくなる理由は、マスクの周縁部においては成長の際にインジウム(In)の含有量が低下するためであると考えられる。このため、発光波長が約405nmの青紫色レーザ装置においては、Egの増大は最大で330meV程度となると考えられる。また、発光波長が約540nmの緑色レーザ装置においては、最大で1100meV程度となると考えられる。
 CODを抑制する十分な効果を得るためには、端面窓部の禁制帯幅を発光に寄与する部分の禁制帯幅よりも少なくとも50meV程度大きくすればよく、100meV以上大きくすることが好ましい。マスク22の周縁に形成された異常成長部14a及び禁制帯幅増大部14bは、CODを抑制する効果を得ることができる条件を十分満たしている。しかし、表面モフォロジーが異なる異常成長部14aに光が導波する光導波路を形成すると散乱が増大するおそれがあり好ましくない。一方、表面モフォロジーに変化が認められない禁制帯幅増大部14bであれば、光導波路の前方端面となる位置に形成することにより、端面窓構造を形成することが可能となる。なお、光導波路とは、レーザ光が分布する領域全体を指すものとする。具体的には、リッジ型の半導体レーザ装置の場合にはリッジ部だけでなく、リッジ部側方のレーザ光が分布する領域も含む。また、埋め込み型の半導体レーザ装置の場合には電流ブロック層の開口部だけでなく、その周囲のレーザ光が分布する領域を含む。
 本実施形態の半導体レーザ装置は、光導波路が、異常成長部14aと間隔をおき且つ前方端面20Aにおいて禁制帯幅増大部14bを含むように形成している。具体的には、リッジ部20aが活性層14の異常成長部14aと間隔をおき且つ禁制帯幅増大部14bがリッジ部20aの下側における前方端面20Aを含む領域に形成されるように、リッジ部20aの形成位置とマスク22の形成位置とを調整している。これにより、禁制帯幅増大部14bは、リッジ部20aの下方及びその近傍に形成される光導波路における前方端面20Aを含む領域に形成され、レーザ発振光の吸収が抑制された端面窓部となる。
 本実施形態は、共振器長が600μmの場合において、マスク22の平面寸法を20μm角とし、マスク22のリッジ部20a側の端面からリッジ部20aのリッジ部20aの沿った方向の中心線までの距離を40μmとした。また、マスク22は、端面が前方端面20Aに露出するように形成した。これにより、活性層14における少なくともリッジ部20aの下側の領域は、前方端面20Aから50μm程度までの範囲が異常成長部14aを除く他の部分、つまり発光に寄与する部分と比べてEgの値が大きい禁制帯幅増大部14bとなる。また、禁制帯幅増大部14bにおけるリッジ部20aの下方の部分においてEgの値は、図3に示すように活性層14における発光に寄与する部分と比べて150meV程度大きくなるため、発振光の吸収が十分抑えられ、CODを抑制できる。
 異常成長部14aの幅は、温度及びガス流量等の半導体層の成長条件並びに半導体層の結晶の向き等によって変動する。マスク22の位置及び大きさ等は製造条件に応じて決定する必要がある。しかし、リッジ部20aの下側及びその近傍に拡がる光導波路が異常成長部14aに形成されないようにするため、マスク22のリッジ部20a側の端部からリッジ部20aのリッジ方向の中心線までの間隔s、つまり光導波路の中心線とマスク22との間隔は少なくとも20μm以上とすることが好ましく、さらに好ましくは30μm以上とすればよい。また、マスク22からの距離が大きくなりすぎると、活性層14のリッジ部20aの下側の部分が禁制帯幅増大部14bとならないため、マスク22のリッジ部20a側の端部からリッジ部20aの中心線までの間隔sは60μm以下とすることが好ましく、さらに好ましくは50μm以下とすればよい。
 禁制帯幅増大部14bを前方端面20Aを含む領域に形成するためには、マスク22を前方端面20Aから形成すればよい。但し、マスク22を前方端面20Aと間隔をおいて形成してもよい。禁制帯幅増大部14bの拡がりを考えると、マスク22の前方端面側の端部と前方端面20Aとの間隔が50μm程度よりも小さければ、禁制帯幅増大部14bが前方端面20Aに十分達する。
 マスク22のリッジ部20aに沿った方向の奥行きdにより端面窓部の奥行きが決まる。このため、マスク22の奥行きdは5μm以上とすることが好ましい。但し、マスク22の奥行きdが大きくなると共振器の実効長が短くなってしまう。このため、共振器長が600μm程度の場合には、マスク22の奥行きdは200μm以下とすることが好ましい。但し、共振器長は200μm程度から2000μm程度まで種々の長さに設定することが一般に行われており、必要とする共振器の実効長に応じてマスク22の奥行きdを調整すればよい。マスク22の前方端面20Aに沿った方向の幅wは、特に限定されない。10μm程度あれば十分である。形成のしやすさを考えると100μm以下とすればよい。但し、さらに長くしてもよく共振器側面に達していても問題ない。
 図1においては、前方端面20Aと反対側の端面である後方端面20B側にもマスク22が形成されている。しかし、後方端面20B側には必ずしも端面窓構造を形成する必要はない。従って、前方端面20A側だけにマスク22を形成する構成としてもよい。また、リッジ部20aの両側方にそれぞれマスク22を形成する構成としてもよい。さらに、半導体層積層体20を成長した後はマスク22は不要である。このため、半導体層積層体20を形成した後でマスク22を除去してもよい。
 本実施形態の半導体レーザ装置は、以下のようにして形成すればよい。まず、図4(a)に示すように基板11における所定の領域の上にマスク22を形成した後、n型クラッド層12A、n型光ガイド層12B、活性層14、p型光ガイド層16A、p型クラッド層16B及びコンタクト層16Cを順次成長させ半導体層積層体20を形成する。マスク22をSiO2とする場合には、熱化学気相堆積(熱CVD)法等を用いて形成すればよい。また、半導体層積層体20は有機金属気相成長(MOCVD)法又は分子線エピタキシー(MBE)法等により形成すればよい。MOCVD法を用いる場合には、Ga原料としてトリメチルガリウム(TMG)、In原料としてトリメチルインジウム(TMI)及びAl原料としてトリメチルアルミニウム(TMA)を用い、N原料としてアンモニア(NH3)を用いればよい。さらに、n型不純物であるSi原料にはシラン(SiH4)ガスを用い、p型不純物であるMg原料にはビスシクロペンタジエニルマグネシウム(Cp2Mg)を用いればよい。
 活性層14を含む半導体層積層体20におけるマスク22の周縁部に成長した部分は、異常成長により他の部分よりも突出した異常成長部14aとなる。また、異常成長部14aの周囲の部分は、表面が平坦で且つEgの値が異常成長部14aを除く他の部分よりも大きい禁制帯幅増大部14bとなる。
 次に、熱CVD法により、コンタクト層16Cの上に、膜厚が0.2μmのSiO2からなるマスク膜を成膜する。リソグラフィ法及びエッチング法により、マスク膜をm軸方向と平行な幅が1.5μmのストライプ状にパターニングする。次に、エッチングガスにCl2を用いた誘導結合プラズマ(ICP)ドライエッチング装置によりコンタクト層16Cとp型クラッド層16Bの一部をエッチングする。これにより、図4(b)に示すようにストライプ状のリッジ部20aが形成される。リッジ部20aは活性層14の異常成長部14aと間隔をおき且つ禁制帯幅増大部14bの上に位置するように形成する。
 続いて、熱CVD法により厚さが400nmのSiO2からなる光閉じ込め用の誘電体層18を堆積する。フォトリソグラフィとウェットエッチング法により、誘電体層18におけるリッジ部20aの頂上部を含む領域に開口部を形成した後、リフトオフ法を用いてリッジストライプ頂上部に接するように40nmのパラジウム(Pd)と厚さが35nmの白金Ptとからなるp側電極24を形成する。その後、厚さが50nmのチタン(Ti)と厚さが35nmの白金(Pt)と厚さが500nmの金(Au)からなるパッド電極28をリフトオフ法によって形成する。
 次に、基板11の裏面側を研削・研磨して、厚さを100μm程度にした後、厚さが5nmのTiと厚さが100nmのPtと厚さが1μmのAuとからなるn側電極26を形成する。その後、一次劈開線に沿って一次劈開を行い短冊形のレーザバーを形成する。一次劈開面(共振器端面)に反射率制御と端面保護の目的で行う端面コーティングを行った後、二次劈開線に沿って二次劈開を行う。図4(b)に示すように、一次劈開を行う劈開線がマスク22を横切るようにすれば、前方端面20A及び後方端面20Bの両方に禁制帯幅増大部14bが形成された半導体レーザ装置となる。
 マスク22は、SiO2膜に代えてシリコン窒化膜(SiN膜)を用いてもよい。また、チタン(Ti)又はモリブデン(Mo)等の高融点金属膜を用いてもよい。一次劈開線がマスク22を横切らない方が劈開精度が向上する。このため、前方端面に禁制帯幅増大部14bが露出するようにすれば、マスク22が形成されていない位置で一次劈開を行ってもよい。この場合、一次劈開線を挟んで両側にマスク22を形成してもよい。
 半導体層積層体20を形成する基板は、GaN基板に代えてサファイヤ基板又は炭化珪素(SiC)基板等であってもよい。また、m軸方向にリッジ部20aを形成する例を示したが、他の結晶方位にリッジ部20aを形成してもよい。
 本実施形態においては、リッジストライプ型の半導体レーザ装置について説明した。しかし、埋め込み型の半導体レーザ装置においても同様の効果が得られる。埋め込み型の半導体レーザ装置の場合には、例えば電流ブロック層の開口部を活性層14の異常成長部14aと間隔をおき且つ前方端面20Aにおいて禁制帯幅増大部14bの上側となるように形成すればよい。
 本実施形態の半導体レーザ装置は、マスクを用いた選択成長により形成した禁制帯幅増大部により端面窓構造を形成している。このため、不純物拡散及びイオン注入等により形成した端面窓部と異なり禁制帯幅増大部は、Zn等の無秩序化のための金属不純物が拡散していない。従って、活性層における禁制帯幅増大部と活性層の発光に寄与する部分とは、共に不純物をほとんど含まず、含まれていた場合には含有量がほぼ一定である。
 本開示の半導体レーザ素子及びその製造方法は、不純物拡散又はイオン注入等によらない端面窓構造の形成を可能とし、窒化物半導体を用いた場合においても端面窓構造を有する半導体レーザ装置を実現でき、特に光ディスクの光源及びレーザディスプレイの光源等とすることができる窒化物半導体を用いた半導体レーザ装置及びその製造方法等として有用である。
11   基板
12   n型半導体層
12A  n型クラッド層
12B  n型光ガイド層
14   活性層
14a  異常成長部
14b  禁制帯幅増大部
16   p型半導体層
16A  p型光ガイド層
16B  p型クラッド層
16C  コンタクト層
18   誘電体層
20   半導体層積層体
20A  前方端面
20B  後方端面
20a  リッジ部
22   マスク
22a  開口部
24   p側電極
26   n側電極
28   パッド電極

Claims (18)

  1.  半導体レーザ装置は、
     基板の所定の領域の上を除いて前記基板の上に選択的に成長した半導体層積層体を備え、
     前記半導体層積層体は、第1導電型クラッド層、活性層及び第2導電型クラッド層を含み、光を出射する前方端面と交差する方向に延びるストライプ状の光導波路を有し、
     前記活性層は、前記所定の領域の周縁部に形成された異常成長部と、前記異常成長部の周囲に形成され、前記異常成長部を除く前記活性層の他の部分と比べて禁制帯幅が大きい禁制帯幅増大部とを有し、
     前記光導波路は、前記異常成長部と間隔をおき且つ前記前方端面において前記禁制帯幅増大部を含むように形成されている。
  2.  請求項1に記載の半導体レーザ装置において、
     前記基板における前記所定の領域の上には前記半導体層積層体の成長を阻害するマスクが形成されている。
  3.  請求項2に記載の半導体レーザ装置において、
     前記マスクは、誘電体又は高融点金属からなる。
  4.  請求項1に記載の半導体レーザ装置において、
     前記半導体層積層体は、前記所定の領域の上に形成された開口部を有する。
  5.  請求項1に記載の半導体レーザ装置は、
     前記前方端面側における前記所定の領域の端部から前記前方端面までの距離が50μm以下であり、
     前記光導波路側における前記所定の領域の端部から前記光導波路の中心線までの距離が20μm以上且つ60μm以下であり、
     前記光導波路に沿った方向の奥行きが5μm以上且つ200μm以下である。
  6.  請求項1に記載の半導体レーザ装置において、
     前記異常成長部は、前記光導波路の両側方に形成されている。
  7.  請求項1に記載の半導体レーザ装置において、
     前記禁制帯幅増大部は、前記光導波路における前記前方端面を含む領域と共に、前記光導波路における前記前方端面と反対側の端面である後方端面を含む領域に形成されている。
  8.  請求項1に記載の半導体レーザ装置において、
     前記活性層はインジウムを含む窒化物半導体層である。
  9.  請求項1に記載の半導体レーザ装置において、
     前記半導体層積層体は、{0001}面を主面とする窒化物半導体からなり、
     前記光導波路は、<1-100>方向に沿って形成されている。
  10.  半導体レーザ装置の製造方法は、
     基板の所定の領域の上にマスクを形成する工程(a)と、
     前記マスクが形成された基板の上に活性層を含む半導体層積層体を成長する工程(b)と、
     前記マスクが形成された領域と間隔をおいてストライプ状の光導波路を形成する工程(c)と、
     劈開により前記光導波路と交差する方向の端面を形成する工程(d)とを備え、
     前記工程(b)では、前記活性層における前記マスクの周縁部に異常成長により生じた異常成長部が形成され、前記異常成長部の周囲に前記異常成長部を除く前記活性層の他の部分と比べて禁制帯幅が大きい禁制帯幅増大部が形成され、
     前記工程(c)では、前記光導波路を前記異常成長部と間隔をおき且つ前記禁制帯幅増大部を含むように形成し、
     前記工程(d)では、前記禁制帯幅増大部が前記端面のうちの光を出射する前方端面に露出するように劈開を行う。
  11.  請求項10に記載の半導体レーザ装置の製造方法において、
     前記工程(b)では、前記基板と前記活性層との間に第1導電型クラッド層を形成し、前記活性層の上に第2導電型クラッド層を形成し、
     前記工程(c)では、前記第2導電型クラッド層を選択的にエッチングすることによりストライプ状のリッジ部を形成する。
  12.  請求項10に記載の半導体レーザ装置の製造方法において、
     前記工程(b)では、前記基板と前記活性層との間に第1導電型クラッド層を形成し、前記活性層の上に下部第2導電型クラッド層及び電流ブロック層を下側から順次形成し、
     前記工程(c)では、前記電流ブロック層を選択的にエッチングすることによりストライプ状の開口部を形成した後、前記開口部を埋めるように上部第2導電型クラッド層を形成する。
  13.  請求項10に記載の半導体レーザ装置の製造方法は、
     前記工程(b)よりも後に、前記マスクを除去する工程(e)をさらに備えている。
  14.  請求項10に記載の半導体レーザ装置の製造方法において、
     前記工程(b)では、前記半導体層積層体は、前記マスクの上に開口部が形成されるように成長する。
  15.  請求項10に記載の半導体レーザ装置の製造方法において、
     前記マスクは、誘電体又は高融点金属からなる。
  16.  請求項10に記載の半導体レーザ装置の製造方法において、
     前記工程(a)では、マスク前記前方端面側における前記マスクの端部から前記前方端面までの距離が50μm以下となり、前記光導波路側における前記マスクの端部から前記光導波路の中心線までの距離が20μm以上且つ60μm以下となり、前記光導波路に沿った方向の奥行きが5μm以上且つ200μm以下となるように形成する。
  17.  請求項10に記載の半導体レーザ装置の製造方法において、
     前記活性層は、インジウムを含む窒化物半導体層である。
  18.  請求項10に記載の半導体レーザ装置の製造方法において、
     前記工程(b)では、前記半導体層積層体を{0001}面を主面とする窒化物半導体により形成し、
     前記工程(c)では、前記光導波路を<1-100>方向に沿って形成する。
PCT/JP2009/005359 2008-12-10 2009-10-14 半導体レーザ装置及びその製造方法 WO2010067500A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN2009801044447A CN101939881A (zh) 2008-12-10 2009-10-14 半导体激光装置及其制造方法
US12/745,385 US8422526B2 (en) 2008-12-10 2009-10-14 Semiconductor laser device and method for manufacturing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-314375 2008-12-10
JP2008314375A JP5906445B2 (ja) 2008-12-10 2008-12-10 半導体レーザ装置及びその製造方法

Publications (1)

Publication Number Publication Date
WO2010067500A1 true WO2010067500A1 (ja) 2010-06-17

Family

ID=42242498

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/005359 WO2010067500A1 (ja) 2008-12-10 2009-10-14 半導体レーザ装置及びその製造方法

Country Status (4)

Country Link
US (1) US8422526B2 (ja)
JP (1) JP5906445B2 (ja)
CN (1) CN101939881A (ja)
WO (1) WO2010067500A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007281527A (ja) * 2007-07-24 2007-10-25 Toshiba Corp 半導体レーザ及びその製造方法
JP2008244423A (ja) * 2007-02-28 2008-10-09 Sony Corp 半導体レーザの製造方法、半導体レーザ、光ピックアップ、光ディスク装置、半導体装置の製造方法、半導体装置および窒化物系iii−v族化合物半導体層の成長方法
WO2009057254A1 (ja) * 2007-11-02 2009-05-07 Panasonic Corporation 半導体レーザ装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0648742B2 (ja) 1987-02-09 1994-06-22 日本電気株式会社 半導体レ−ザの製造方法
JP3285426B2 (ja) * 1993-08-04 2002-05-27 株式会社日立製作所 半導体光集積素子及びその製造方法
JPH0851252A (ja) * 1994-08-05 1996-02-20 Fujitsu Ltd 成膜方法及び半導体レーザの製造方法
CN1159750C (zh) * 1997-04-11 2004-07-28 日亚化学工业株式会社 氮化物半导体的生长方法
WO2003038957A1 (en) * 2001-10-29 2003-05-08 Sharp Kabushiki Kaisha Nitride semiconductor device, its manufacturing method, and semiconductor optical apparatus
JP2003198057A (ja) * 2001-12-27 2003-07-11 Sony Corp 半導体レーザ素子及びその製造方法
JP4854275B2 (ja) * 2004-12-08 2012-01-18 シャープ株式会社 窒化物半導体発光素子およびその製造方法
JP5580965B2 (ja) 2007-04-06 2014-08-27 日本オクラロ株式会社 窒化物半導体レーザ装置
JP4964027B2 (ja) * 2007-05-28 2012-06-27 三洋電機株式会社 窒化物系半導体レーザ素子の作製方法
JP5093033B2 (ja) 2008-09-30 2012-12-05 ソニー株式会社 半導体レーザの製造方法、半導体レーザ、光ピックアップおよび光ディスク装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008244423A (ja) * 2007-02-28 2008-10-09 Sony Corp 半導体レーザの製造方法、半導体レーザ、光ピックアップ、光ディスク装置、半導体装置の製造方法、半導体装置および窒化物系iii−v族化合物半導体層の成長方法
JP2007281527A (ja) * 2007-07-24 2007-10-25 Toshiba Corp 半導体レーザ及びその製造方法
WO2009057254A1 (ja) * 2007-11-02 2009-05-07 Panasonic Corporation 半導体レーザ装置

Also Published As

Publication number Publication date
CN101939881A (zh) 2011-01-05
JP5906445B2 (ja) 2016-04-20
JP2010141012A (ja) 2010-06-24
US20110051765A1 (en) 2011-03-03
US8422526B2 (en) 2013-04-16

Similar Documents

Publication Publication Date Title
US7083996B2 (en) Nitride semiconductor device and manufacturing method thereof
US7813397B2 (en) Nitride semiconductor laser device
JP3898537B2 (ja) 窒化物半導体の薄膜形成方法および窒化物半導体発光素子
US20090161711A1 (en) Nitride semiconductor laser diode
JP2009141340A (ja) 窒化物半導体レーザ素子
JPH11220223A (ja) 半導体発光素子
US20100074290A1 (en) Semiconductor laser device
JP4665394B2 (ja) 窒化物半導体レーザ素子
US6709881B2 (en) Method for manufacturing semiconductor and method for manufacturing semiconductor device
US8569088B2 (en) Semiconductor light-emitting element and manufacturing method thereof
WO2017017928A1 (ja) 窒化物半導体レーザ素子
JP3735638B2 (ja) 半導体レーザおよびその製造方法
JP3888080B2 (ja) 半導体レーザ素子
JP2009239084A (ja) 半導体レーザ素子
JP5906445B2 (ja) 半導体レーザ装置及びその製造方法
JP3717255B2 (ja) 3族窒化物半導体レーザ素子
JP2010003882A (ja) 端面発光型半導体レーザ素子
JP3963632B2 (ja) 半導体光デバイス装置
JP2002237661A (ja) 窒化物半導体レーザ素子
JP2001057458A (ja) 半導体発光装置
JP3889911B2 (ja) 半導体発光装置およびその製造方法
JP2003179314A (ja) 窒化物系半導体発光素子及びその作製方法
JP2001044573A (ja) 窒化物系半導体素子及び窒化物系発光素子
JP5604292B2 (ja) 半導体レーザ装置
WO2024203480A1 (ja) 面発光半導体レーザ素子の製造方法及び面発光半導体レーザ素子

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980104444.7

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 12745385

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09831609

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09831609

Country of ref document: EP

Kind code of ref document: A1