WO2010064645A1 - 省燃費運転システム - Google Patents

省燃費運転システム Download PDF

Info

Publication number
WO2010064645A1
WO2010064645A1 PCT/JP2009/070218 JP2009070218W WO2010064645A1 WO 2010064645 A1 WO2010064645 A1 WO 2010064645A1 JP 2009070218 W JP2009070218 W JP 2009070218W WO 2010064645 A1 WO2010064645 A1 WO 2010064645A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
downhill
fuel
speed
vehicle speed
Prior art date
Application number
PCT/JP2009/070218
Other languages
English (en)
French (fr)
Inventor
西山 義孝
友紀 久保
Original Assignee
日産ディーゼル工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産ディーゼル工業株式会社 filed Critical 日産ディーゼル工業株式会社
Priority to CN2009801486279A priority Critical patent/CN102239319B/zh
Priority to US13/133,035 priority patent/US8532905B2/en
Priority to EP09830411.6A priority patent/EP2357342B1/en
Publication of WO2010064645A1 publication Critical patent/WO2010064645A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T7/00Brake-action initiating means
    • B60T7/12Brake-action initiating means for automatic initiation; for initiation not subject to will of driver or passenger
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T7/00Brake-action initiating means
    • B60T7/12Brake-action initiating means for automatic initiation; for initiation not subject to will of driver or passenger
    • B60T7/16Brake-action initiating means for automatic initiation; for initiation not subject to will of driver or passenger operated by remote control, i.e. initiating means not mounted on vehicle
    • B60T7/18Brake-action initiating means for automatic initiation; for initiation not subject to will of driver or passenger operated by remote control, i.e. initiating means not mounted on vehicle operated by wayside apparatus
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/18009Propelling the vehicle related to particular drive situations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/12Introducing corrections for particular operating conditions for deceleration
    • F02D41/123Introducing corrections for particular operating conditions for deceleration the fuel injection being cut-off
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T2201/00Particular use of vehicle brake systems; Special systems using also the brakes; Special software modules within the brake system controller
    • B60T2201/04Hill descent control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2552/00Input parameters relating to infrastructure
    • B60W2552/20Road profile, i.e. the change in elevation or curvature of a plurality of continuous road segments
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2556/00Input parameters relating to data
    • B60W2556/45External transmission of data to or from the vehicle
    • B60W2556/50External transmission of data to or from the vehicle of positioning data, e.g. GPS [Global Positioning System] data
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/10Road Vehicles
    • B60Y2200/14Trucks; Load vehicles, Busses
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/045Detection of accelerating or decelerating state
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/84Data processing systems or methods, management, administration

Definitions

  • the present invention relates to an automatic control system for fuel-saving driving of an automobile, and more particularly to an automatic control capable of reducing fuel consumption when moving downhill.
  • Patent Document 1 a fuel-saving system that effectively promotes fuel-saving driving using road gradient information and a control method thereof are disclosed (for example, see Patent Document 1).
  • Patent Document 1 the acceleration energy on the downhill is used, specifically, the fuel consumption is improved by performing the deceleration control before the downhill.
  • Patent Document 1 the fuel cut advice position before the downhill (position where advice is given to the driver) or the fuel cut control position in the automatic fuel-saving driving system (fuel cut by automatic control).
  • the position of the vehicle is determined by the vehicle speed, the slope before the downhill, and the slope of the downhill.
  • the gradient before the downhill and the gradient of the downhill are determined by a three-dimensional map. Therefore, in order to decelerate to the target vehicle speed at the start of the downhill, it is necessary to precisely map the slope before the downhill and the slope of the downhill, and the fuel cut advice position or the automatic fuel-saving driving system It was also necessary to map the fuel cut control position in the map precisely.
  • the gradient at the actual travel position is not necessarily constant.
  • the deceleration at the time of fuel cut varies greatly between empty and loaded vehicles. It was difficult to decelerate to the required vehicle speed (target vehicle speed).
  • the fuel is automatically injected so that the vehicle speed is not reduced excessively.
  • fuel is injected just before entering a downhill. In such a case, there is a problem that the vehicle behavior becomes jerky and the driver feels uncomfortable. At the same time, there is a problem that the fuel efficiency is adversely affected.
  • FIG. 5 shows the travel distance, the vehicle speed, and the fuel injection amount in the control at the time of moving downhill during the automatic fuel-saving driving according to the conventional technology.
  • reference symbol P1 indicates a control start position
  • reference symbol P2 indicates a peak point (downhill start point) that moves from an uphill to a downhill
  • reference symbol Vd indicates a required vehicle speed
  • reference symbol Va indicates an actual vehicle speed
  • Vt indicates the target vehicle speed when entering the downhill
  • symbol q indicates the fuel injection amount.
  • the distance from the control start point to the descent start point is, for example, 300 m (constant).
  • the symbol ⁇ v indicates the difference between the actual vehicle speed Va and the target vehicle speed Vd.
  • FIG. 5 shows a case where the slope on the uphill side is steeper than the data stored in the database, or the vehicle mass is small.
  • the vehicle stalls before reaching the downhill starting point P2, and the vehicle speed Va is lower than the target vehicle speed Vt when entering the downhill. Therefore, the fuel injection amount q is temporarily injected. Due to this temporary fuel injection q, the vehicle speed Va increases rapidly and becomes higher than the target vehicle speed Vt when entering the downhill, but the fuel is cut immediately after the fuel injection amount q is temporarily injected. Therefore, the vehicle speed Va decreases again. As a result, the driving feeling before and after the downhill starting point P2 becomes jerky, and the fuel consumption deteriorates due to temporary fuel injection.
  • FIG. 6 shows the travel distance, the vehicle speed, and the fuel injection amount in the control at the time when the vehicle moves from the uphill to the downhill during the automatic fuel-saving driving of the prior art, as in FIG.
  • FIG. 6 shows a case where the actual slope on the uphill side is gentler or the vehicle mass is larger than the data stored in the database.
  • the actual vehicle speed Va does not decrease
  • the actual vehicle speed Va at the descending slope start point P2 exceeds the target vehicle speed Vt when entering the descending slope
  • the frequency of the auxiliary brake being activated during the descending slope increases. .
  • FIG. 7 shows a case where the control start position P1 is brought close to the downhill start point P2 and the distance from the control start point to the down start point is set short in order to solve the problem in FIG.
  • the actual vehicle speed Va at the downhill starting point P2 exceeds the target vehicle speed Vt at the time of entering the downhill, and the frequency of operation of the auxiliary brake increases during the downhill. The problem still remains.
  • JP 2007-156704 A JP 2007-156704 A
  • the present invention has been proposed in view of the above-described problems of the prior art, and linearly gradually reduces the target vehicle speed from the start of control to the downhill start point without repeating fuel cut and injection.
  • An object of the present invention is to provide a fuel-saving driving system that can achieve a smooth driving feeling while saving fuel consumption.
  • the fuel-saving driving system (100) of the present invention includes a vehicle position specifying device (2: GPS, for example) that specifies the position of a vehicle, and a storage device (for example, a database) that stores downhill data existing in the vehicle traveling direction. 11), a vehicle speed measuring device (vehicle speed sensor 3) for measuring the speed (vehicle speed Va) of the vehicle (1), and a control device (fuel-saving driving system side control device: control unit 10). (10) is the target of the vehicle (1) from the vehicle speed (Va) and the downhill data (for example, the distance L from the current position to the downhill start point, the target vehicle speed Vt at the downhill start point, etc.). It has a function of determining (calculating) a speed (required vehicle speed Vd) (claim 1).
  • the control device fuel-saving driving system side control device: control unit 10) includes the vehicle speed (Va) at the location where the vehicle (1) is traveling and the distance (L) to the starting point of the downhill From the above, the vehicle (1) is set so that the speed (Va) of the vehicle (1) when the vehicle (1) reaches the downhill start point (P2) becomes the target speed (Vt) at the downhill start point. It is preferable to have a function of calculating a target speed (Vd) at the place where the vehicle is traveling (claim 2).
  • control device determines that the speed (Va) of the vehicle at the time when the vehicle (1) reaches the downhill start point (P2) at the downhill start point P2. It has a function of controlling the target speed (Vd) where the vehicle (1) is traveling to gradually decrease (so that the deceleration characteristic becomes linear) so that the target speed (Vt) is reached. (Claim 3).
  • the control device (fuel-saving driving system side control device: control unit 10) transmits a control signal to the vehicle side control device (engine controller 4) that controls the engine via the vehicle information network (5).
  • the control device (4) has a function of causing the fuel injection device to transmit a control signal for spraying an injection amount of fuel corresponding to the control signal (claim 4).
  • the vehicle speed (Va), downhill data for example, the distance L from the current position to the downhill start point, the target vehicle speed Vt at the downhill start point, etc.
  • the vehicle target speed (required vehicle speed Vd) is determined (calculated) from the vehicle speed, so that the target speed (Vd) at the location where the vehicle (1) is traveling is linearly decelerated (Claim 2). Since the target speed (Vd) where the vehicle (1) is traveling can be linearly (gradually) decelerated (Claim 3), the downhill starting point It is suppressed that the fuel cut and the fuel injection are repeated before P2.
  • the traveling speed (Va) of the vehicle can be reduced.
  • the starting point (P1) to be decelerated can be set at a position separated from the downhill starting point (P2) as compared with the prior art.
  • the fuel-saving driving system 100 includes a vehicle 1, a GPS 2 that is a vehicle position specifying device, a vehicle speed sensor 3, an engine controller 4, an in-vehicle communication network 5, and a control unit 10 that is a control unit of the automatic fuel-saving driving system.
  • the position of the vehicle is specified using the Global Positioning System
  • the GPS 2 that is the vehicle position specifying device receives position information from the satellite of the Global Positioning System.
  • the in-vehicle communication network 5 connects the control unit 10 to the vehicle speed sensor 3 and the engine controller 4.
  • FIG. 2 shows the configuration of the control unit 10.
  • the control unit 10 includes a database 11, a current position specifying unit 12, a distance calculating unit (distance calculating unit) 13, a target speed determining unit 14, and a command signal transmission timing determining unit. 15 and an interface 16.
  • Information on the current position of the vehicle from the GPS 2 is input to the current position specifying unit 12 via the line L1.
  • the database 11 stores the requested vehicle speed (target vehicle speed) at the starting point of the downhill and map data obtained by information from the GPS so far.
  • the new map data is sent from the GPS 2 to the database 11 via the line L2, for example.
  • the distance calculation unit 13 uses the current position information of the vehicle 1 from the current position specifying unit 12 obtained via the line L3 and the map information obtained from the database 11 via the line L4 to determine the vehicle 1 (current position). Is configured to have a function of calculating a distance “L” (see FIG. 3) from the start point to the downhill starting point.
  • a distance L from the current position calculated by the distance calculation unit 13 to the downhill start point is input to the target speed determination unit 14 via a line L5. Further, the current vehicle speed Va measured by the vehicle speed sensor 3 is input to the target speed determination unit 14 via the in-vehicle communication network 5. Further, the requested vehicle speed (target vehicle speed when entering a downhill) Vt stored in the database 11 at the downhill start point is input to the target speed determination unit 14 via the line L6. The target speed determination unit 14 calculates a required vehicle speed (target vehicle speed) Vd based on the distance L from the current position to the downhill start point, the current vehicle speed Va, and the downhill intrusion target vehicle speed Vt. have.
  • the command signal transmission timing determination unit 15 has a function of determining a timing for transmitting a control signal for achieving the target vehicle speed Vd.
  • the command signal transmission timing determination unit 15 sends a control signal (control signal for achieving the target vehicle speed Vd) to the command signal transmission timing.
  • the transmission is made to the engine controller 4 via the line L 8, the interface 16, and the in-vehicle communication network 5.
  • the engine controller 4 transmits a control signal to a fuel injection device (not shown), and adjusts or controls the fuel injection amount and the injection timing so that the vehicle speed becomes the target vehicle speed Vd.
  • the timer 17 measures the control interval.
  • the control unit 10 calculates the distance “L” from the current position of the vehicle to the downhill start point and the target vehicle speed (required vehicle speed: Vd) at predetermined control intervals measured by the timer 17.
  • the uphill side of the point (according to the map information stored in the database) Based on the slope and the slope on the downhill side and the vehicle speed at the start of control (300 m before the downhill start point), and the vehicle 1 speed (required vehicle speed) so that it can travel uphill to the downhill start point. ) And adjusted the fuel injection amount.
  • the fuel stalls before the downhill start point P2 due to the difference between the gradient information in the database and the actual gradient, or the vehicle mass, and the fuel
  • the injection amount is temporarily injected (FIG. 5), or when the actual vehicle speed at the downhill start point P2 exceeds the target vehicle speed when entering the downhill and the auxiliary brake is operated (FIGS. 6 and 7). Were present. Therefore, the purpose of improving fuel consumption may not be achieved.
  • the actual vehicle speed Va from the vehicle speed sensor 3, the target vehicle speed Vt when entering the downhill, and the distance L from the current position to the downhill start point are set. Based on this, the speed (required vehicle speed) of the vehicle 1 is determined and the fuel injection amount is adjusted. Further, in the fuel-saving driving system 100 according to the illustrated embodiment, the vehicle is decelerated linearly (gradually) so as to reach the target vehicle speed Vt at the downhill start point P2A, and therefore, at a stage before reaching the downhill start point P2A. It is possible to prevent a situation (see FIG. 5) that the vehicle speed Va falls below the target vehicle speed Vt when entering the downhill.
  • the distance that the vehicle 1 travels by decelerating (the distance L from the point P1 where deceleration starts to the downhill starting point P2A) is made longer than that in the related art. Therefore, the vehicle speed Va is not sufficiently decelerated before reaching the downhill starting point P2A, and the vehicle speed Va greatly exceeds the target vehicle speed Vt when entering the downhill at the downhill starting point P2A (FIG. 6, FIG. 7) can be prevented.
  • the distance L to the downhill start point P2A since the distance L to the downhill start point P2A is taken into consideration, it is determined whether or not the vehicle speed Va at the current position is appropriate for reaching the target vehicle speed Vt when entering the downhill. In consideration of the above, the required vehicle speed Vd of the vehicle 1 can be determined. Therefore, it is possible to reduce the error between the vehicle speed Va at the downhill starting point P2A and the target vehicle speed Vt when entering the downhill.
  • the speed at which the vehicle 1 moves from the current position to the downhill starting point P2A in each control cycle is determined up to the downhill starting point P2A. Therefore, the required vehicle speed or the target vehicle speed Vd of the vehicle 1 can be determined with reference to the predicted value. This means that the required vehicle speed or the target vehicle speed Vd of the vehicle 1 can be corrected for each control cycle. Therefore, in the illustrated embodiment, even if the distance from the starting point P1A to the downhill starting point P2A is long, the fuel injection amount is adjusted by correcting the required vehicle speed or the target vehicle speed Vd for each control cycle.
  • the error between the target vehicle speed Vd and the actual vehicle speed Va can be reduced, and the error between the vehicle speed Va at the downhill start point P2A and the target vehicle speed Vt when entering the downhill can be reduced.
  • the numerical value of the distance L from the starting point P1A to the downhill starting point P2A can be set to 400 m to 500 m, for example.
  • the control unit 10 reads vehicle speed data based on information from the vehicle speed sensor 3 (step S1), and reads position information of a downhill starting point P2A (see FIG. 3) of a running slope from the database 11 (step S2).
  • the current position of the vehicle 1 is read from the GPS 2 (step S3).
  • the order of reading each data that is, the order of steps S1 to S3 is not limited to the above. Also, steps S1 to S3 can be executed simultaneously.
  • step S4 based on the positional information (step S2) of the downhill start point P2A of the running slope and the current position of the vehicle 1 (step S3), the distance calculator 13 determines the distance between the downhill start point P2A and the current position. L is calculated.
  • step S5 the control unit 10 determines whether or not the distance L between the downhill starting point P2A and the current position is equal to or less than a constant (for example, 400 to 500 m). If the distance L from the current position to the downhill starting point P2A is equal to or less than a constant (YES in step S5), the process proceeds to step S6. On the other hand, if the distance L from the current position to the downhill starting point P2A is larger than the constant (step S5 is NO), step S1 and subsequent steps are repeated.
  • a constant for example, 400 to 500 m
  • step S6 the required vehicle speed (target vehicle speed) Vd is calculated from parameters such as the vehicle speed Va, the target vehicle speed Vt when entering the downhill, and the distance L from the current position P1 to the downhill start point P2. Then, the process proceeds to step S7.
  • step S ⁇ b> 7 a control signal for controlling the fuel injection amount so as to obtain the required vehicle speed Vd is output to the engine controller 4 via the in-vehicle communication network 5. Then, the engine controller 4 transmits a control signal related to the fuel injection amount to achieve a required vehicle speed Vd to a fuel injection device (not shown). Thereafter, step S1 and subsequent steps are repeated.
  • the illustrated fuel-saving driving system 100 includes the vehicle speed Va, downhill data (for example, the position of the downhill start point P2A, the target vehicle speed Vt when entering the downhill), and the downhill start point from the current position.
  • the target vehicle speed (required vehicle speed Vd) is determined from the distance L to P2A.
  • the fuel-saving driving system 100 since the target vehicle speed Vd and the vehicle speed Va at the place where the vehicle 1 is traveling can be controlled as shown in FIG. 3, the fuel cut is performed before the downhill start point P2A. And the frequency of operating the auxiliary brake on the downhill is repeated.
  • the fuel-saving driving system 100 shown in the figure Since fuel cut and fuel injection are not repeated, according to the fuel-saving driving system 100 shown in the figure, the vehicle behavior becomes unstable and jerky, and the driver does not feel unstable or uncomfortable. Further, according to the illustrated fuel-saving driving system 100, the frequency of operating the auxiliary brake during the downhill is reduced. This means that the vehicle is sufficiently decelerated up to the downhill starting point P2A, and the fuel-saving operation system 100 shown in the figure means that fuel consumption is saved. That is, according to the illustrated embodiment, fuel-saving driving is achieved.
  • the present invention may be applied to, for example, when moving from a flat road to a downhill, in addition to moving from an uphill to a downhill.
  • FIG. 6 is a diagram showing travel distance, vehicle speed, and fuel injection characteristics when shifting to a downhill in the prior art different from FIG. 5.
  • FIG. 7 is a diagram showing travel distance, vehicle speed, and fuel injection characteristics when shifting from ascending to descending slope in the prior art different from FIGS. 5 and 6.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Controls For Constant Speed Travelling (AREA)
  • Regulating Braking Force (AREA)

Abstract

本発明は、制御開始から下り坂開始点を過ぎるまでの目標車速を線形で徐々に減速させ、燃料カットと噴射を繰り返すことなく、省燃費で且つ円滑な運転フィーリングが得られる省燃費運転システムの提供を目的としている。 本発明は、車両の位置を特定する車両位置特定装置(2)と、車両進行方向に存在する下り坂のデータを記憶する記憶装置(11)と、車両(1)の速度(Va)を計測する車速計測装置(3)と、制御装置(10)とを有し、該制御装置(10)は、車両の速度(Va)と、下り坂のデータとから車両(1)の目標速度(要求速度Vd)を決定(演算)する機能を有している。

Description

省燃費運転システム
 本発明は、自動車の省燃費運転の自動制御システムに関し、より詳細には、降坂に移る際に燃料消費量をより少なくすることが出来る自動制御に関する。
 従来技術として、道路勾配情報を用いて、省燃費運転を効果的に促す省燃費システムとその制御方法が開示されている(例えば、特許文献1参照)。
 係る従来技術(特許文献1)では、下り坂での加速エネルギを利用して、詳細には、下り坂手前で減速制御を行うことにより燃費向上を図っている。
 そして当該従来技術(特許文献1)においては、下り坂手前での燃料カットのアドバイス位置(ドライバに対してアドバイスを与える位置)又は自動省燃費運転システムにおける燃料カットの制御位置(自動制御により燃料カットを行う位置)は、車両速度と、下り坂手前の勾配と、下り坂の勾配によって決定されていた。そして、下り坂手前の勾配及び下り坂の勾配は、三次元マップで決定されていた。
 そのため、下り坂の開始時点で目標とする車速に減速するためには、下り坂手前の勾配および下り坂の勾配を精密にマップ化する必要があり、燃料カットのアドバイス位置又は自動省燃費運転システムでの燃料カットの制御位置も精密にマップ化する必要があった。
 しかし、マップを精密に改良しようとしても、実際の走行位置での勾配は必ずしも一定ではない。
 また、貨物自動車では空車・積車でその質量は大きく異なるため、空車時と積車時とでは燃料カット時の減速度も大きく変わり、空車時と積車時の双方において、下り坂開始時点で要求どおりの車速(目標車速)にまで減速することは困難であった。
 ここで、自動省燃費運転モードの場合には、要求車速以下になると、自動的に燃料を噴射して、車速が低下し過ぎないように制御している。係る制御によって、下り坂に入る直前で燃料を噴射してしまう場合があり、その様な場合には車両挙動がギクシャクしたものとなり、ドライバが違和感を持ってしまうという問題がある。それと共に、燃費に対しても悪影響を与えてしまうという問題が存在する。
 図5は、従来技術に係る自動省燃費運転時で、降坂に移る時点での制御において、走行距離と、車速と、燃料噴射量とを示している。
 図5において、符号P1は制御開始位置を示し、符号P2は登坂から降坂に移るピーク地点(下り坂開始点)を示し、符号Vdは要求車速を示し、符号Vaは実車速を示し、符号Vtは下り坂侵入時の目標車速を示し、符号qは燃料噴射量を示している。ここで、制御開始地点から下り開始点までの距離は、例えば300m(定数)である。
 図5において、符号δvは、実車速Vaと目標車速Vdとの差を示している。
 図5は、データベースに記憶されたデータよりも登坂側の勾配が急であるか、或いは、車両質量が小さい場合を示している。
 図5で示す場合には、下り坂開始点P2に至る手前で失速して、下り坂侵入時の目標車速Vtよりも車速Vaが低下している。そのため燃料噴射量qを一時的に噴射している。この一時的な燃料噴射qにより車速Vaは急激に増加し、下り坂侵入時の目標車速Vtよりも高速となるが、燃料噴射量qを一時的に噴射した直後に、燃料をカットしているので、再び車速Vaは減少してしまう。
 その結果、下り坂開始点P2前後における運転フィーリングがギクシャクとしたものとなってしまい、そして、一時的な燃料噴射によって燃費の悪化を招いてしまう。
 図6は、図5と同様に、従来技術の自動省燃費運転時において、登坂から降坂に移る時点での制御において、走行距離と車速と燃料噴射量とを示している。ただし、図6では、データベースに記憶されたデータよりも、実際の登坂側の勾配が緩やかであるか、或いは、車両質量が大きい場合を示している。
 図6で示す場合には、実車速Vaが下がりきらず、下り坂開始点P2における実車速Vaが下り坂侵入時目標車速Vtを上回り、下り坂の途中で補助ブレーキが作動する頻度が多くなるので、燃費は悪化する。
 図7は、図5における問題点を解決しようとして、制御開始の位置P1を、下り坂開始点P2に近づけ、制御開始地点から下り開始点までの距離を短く設定した場合を示している。
 図7では、図5で示す場合のように、下り坂開始点P2に至る手前で燃料噴射量qを一時的に噴射する必要はない。しかし、図6で示す場合と同様に、下り坂開始点P2における実車速Vaが下り坂侵入時目標車速Vtを上回ってしまい、下り坂の途中で補助ブレーキが作動する頻度が多くなるので、燃費が悪化してしまうという問題が依然として残っている。
特開2007-156704号公報
 本発明は上述した従来技術の問題点に鑑みて提案されたものであり、制御開始から下り坂開始点を過ぎるまでの目標車速を線形で徐々に減速させ、燃料カットと噴射を繰り返すことなく、燃料消費量を節約しつつ、円滑な運転フィーリングが得られる省燃費運転システムの提供を目的とする。
 本発明の省燃費運転システム(100)は、車両の位置を特定する車両位置特定装置(2:例えば、GPS)と、車両進行方向に存在する下り坂のデータを記憶する記憶装置(例えば、データベース11)と、車両(1)の速度(車速Va)を計測する車速計測装置(車速センサ3)と、制御装置(省燃費運転システム側制御装置:コントロールユニット10)とを有し、該制御装置(10)は、車両の速度(Va)と、下り坂のデータ(例えば、現在位置から下り坂開始点までの距離L、下り坂開始点における目標車速等Vt)とから車両(1)の目標速度(要求車速Vd)を決定(演算)する機能を有することを特徴としている(請求項1)。
 本発明において、制御装置(省燃費運転システム側制御装置:コントロールユニット10)は、車両(1)が走行している個所における車両の速度(Va)と、下り坂開始点までの距離(L)とから、車両(1)が下り坂開始点(P2)に到達した時点における車両(1)の速度(Va)が下り坂開始点における目標速度(Vt)となる様に、車両(1)が走行している個所における目標速度(Vd)を演算する機能を有しているのが好ましい(請求項2)。
 ここで、制御装置(省燃費運転システム側制御装置:コントロールユニット10)は、車両(1)が下り坂開始点(P2)に到達した時点における車両の速度(Va)が下り坂開始点P2における目標速度(Vt)となる様に、車両(1)が走行している個所における目標速度(Vd)を徐々に(減速特性が線形になる様に)減速させる制御を行なう機能を有しているのが好ましい(請求項3)。
 前記制御装置(省燃費運転システム側制御装置:コントロールユニット10)は、車両の情報ネットワーク(5)を介してエンジンを制御する車両側制御装置(エンジンコントローラ4)に制御信号を送信し、車両側制御装置(4)が当該制御信号に対応する噴射量の燃料を噴霧するための制御信号を燃料噴射装置に対して送信する様にせしめる機能を有するのが好ましい(請求項4)。
 上述する構成を具備する本発明によれば、車両の速度(Va)と、下り坂のデータ(例えば、現在位置から下り坂開始点までの距離L、下り坂開始点における目標車速Vt等)とから車両の目標速度(要求車速Vd)を決定(演算)する様に構成されているので、車両(1)が走行している個所における目標速度(Vd)を線形に減速させる(請求項2)様にすることが出来て、車両(1)が走行している個所における目標速度(Vd)を線形に(徐々に)減速させる(請求項3)様にすることが出来るので、下り坂開始点P2の手前において、燃料カットと燃料噴射とを繰り返してしまうことが抑制される。
 すなわち、燃料カット或いは燃料噴射を行なうと、車両挙動が不安定となり(ギクシャクして)、車両乗員に不安定感或いは不快感を与えてしまうが、本発明では燃料カットと燃料噴射とを繰り返してしまうことが抑制されるので、車両乗員に対して係る不安定感或いは不快感を与えてしまうことが防止される。
 さらに本発明によれば、車両(1)が走行している個所における目標速度(Vd)を線形に(徐々に)減速させることが出来るので(請求項3)、車両の走行速度(Va)を減速する開始点(P1)を従来技術に比較して、下り坂開始点(P2)から離隔した位置に設定することが出来る。
 すなわち、車両(1)が減速して走行する距離(減速を開始する地点P1から下り坂の開始点P2までの距離L)を従来技術よりも長くすることが出来るので、図6の様な場合でも、下り坂開始点における車両速度(Va)と目標速度(Vt)との偏差が小さくなり、下り坂の途中で制動を行なう頻度が少なくなる。そのため、制動により無駄なエネルギを浪費することがなくなり、車両の燃費が向上する。また、エンジンブレーキを掛けて走行する距離を短く出来るので、省燃費効果をさらに発揮することが出来る。
 以下、添付図面を参照して、本発明の実施形態について説明する。
 図1において、本発明の実施形態に係る省燃費運転システムは、全体を符号100で示している。
 省燃費運転システム100は、車両1、車両位置特定装置であるGPS2、車速センサ3、エンジンコントローラ4、車両内通信ネットワーク5、自動省燃費運転システムの制御手段であるコントロールユニット10を有している。
 本実施形態では、Global Positioning Systemを用いて車両の位置を特定しており、車両位置特定装置であるGPS2は、Global Positioning Systemの衛星からの位置情報等を受信している。
 車両内通信ネットワーク5は、コントロールユニット10と車速センサ3及びエンジンコントローラ4とを接続している。
 図2は、コントロールユニット10の構成を示している。
 図2において、コントロールユニット10は、データベース11、現在位置特定部12、現在位置から下り坂開始点までの距離の演算部(距離演算部)13、目標速度決定部14、指令信号発信タイミング決定部15、インターフェース16を有している。
 GPS2からの車両の現在位置に関する情報は、ラインL1を経由して、現在位置特定部12に入力される。
 データベース11には、下り坂開始点における要求車速(目標車速)及びそれまでにGPSからの情報によって得られた地図データが記憶されている。データベース11に記憶されている地図データを更新する場合は、新規の地図データは、例えば、GPS2からラインL2を経由して、データベース11に送られる。
 距離演算部13は、ラインL3を介して得た現在位置特定部12からの車両1の現在位置情報と、ラインL4を介してデータベース11から得た地図情報とによって、車両1(の現在位置)から下り坂開始点までの距離「L」(図3参照)を演算する機能を有するように構成されている。
 目標速度決定部14には、距離演算部13で算出した現在位置から下り坂開始点までの距離Lが、ラインL5を介して入力される。また目標速度決定部14には、車速センサ3で計測された現在の車速Vaが、車両内通信ネットワーク5を介して入力される。さらに目標速度決定部14には、データベース11に記憶された下り坂開始点における要求車速(下り坂侵入時目標車速) Vtが、ラインL6経由で入力される。
 そして目標速度決定部14は、現在位置から下り坂開始点までの距離Lと、現在の車速Vaと、下り坂侵入時目標車速Vtとに基づいて、要求車速(目標車速)Vdを演算する機能を有している。
 指令信号発信タイミング決定部15は、目標車速Vdを達成するための制御信号を発信するタイミングを決定する機能を有している。
 目標速度決定部14で決定した目標車速VdがラインL7経由で入力されると、指令信号発信タイミング決定部15では、制御信号(目標車速Vdを達成するための制御信号)を、指令信号発信タイミング決定部15で決定されたタイミングに従って、ラインL8、インターフェース16、車両内通信ネットワーク5を介してエンジンコントローラ4に発信する。
 そしてエンジンコントローラ4は、図示しない燃料噴射装置に対して制御信号を発信し、車両速度が目標車速Vdになるように、燃料噴射量及び噴射タイミングを調整或いは制御する。
 なお図2において、タイマ17は制御インターバルを計測している。そしてコントロールユニット10では、タイマ17で計測される所定の制御インターバル毎に、車両の現在位置から下り坂開始点までの距離「L」と、目標車速(要求車速:Vd)を演算している。
 上述したように、従来技術においては、登坂から降坂に移行する場合に、下り坂開始点から定数距離(例えば300m)手前から、(データベースに記憶された地図情報による)当該地点の登坂側の勾配及び降坂側の勾配と、制御開始時(下り坂開始点よりも300m手前)の車速に基づいて、且つ、下り坂開始点まで上り坂を走行出来る様に、車両1の速度(要求車速)を決定し、燃料噴射量を調整していた。
 しかし、図5~図7を参照して上述したように、データベースの勾配情報と現実の勾配との差や、車両質量に起因して、下り坂開始点P2よりも手前で失速して、燃料噴射量を一時的に噴射する場合(図5)や、下り坂開始点P2の実車速が下り坂侵入時目標車速よりも上回ってしまい、補助ブレーキを作動する場合(図6、図7)が存在した。
 そのため、燃費を改善するという目的が達成できない場合がある。
 それに対して、図示の実施形態に係る省燃費運転システム100では、車速センサ3からの実際の車速Vaと、下り坂侵入時目標車速Vtと、現在位置から下り坂開始点までの距離Lとに基づいて、車両1の速度(要求車速)を決定し、燃料噴射量を調整している。
 また、図示の実施形態に係る省燃費運転システム100では、下り坂開始点P2Aにおいて目標車速Vtになる様に線形に(徐々に)減速させるので、下り坂開始点P2Aに到達する以前の段階で車速Vaが下り坂侵入時目標車速Vtを下回ってしまう、という事態(図5参照)を防止することが出来る。
 同様に、図示の実施形態に係る省燃費運転システム100では、車両1が減速して走行する距離(減速を開始する地点P1から下り坂開始点P2Aまでの距離L)を従来技術よりも長くすることが出来るので、下り坂開始点P2Aに到達する以前に十分に減速されず、下り坂開始点P2Aにおいて車速Vaが下り坂侵入時目標車速Vtを大幅に上回ってしまう、という事態(図6、図7参照)を防止することができる。
 すなわち図示の実施形態によれば、下り坂開始点P2Aまでの距離Lを考慮しているので、現在位置の車速Vaが下り坂侵入時目標車速Vtを到達するのに適当であるか否かをも考慮して、車両1の要求車速Vdを決定することが出来る。
 そのため、下り坂開始点P2Aにおける車速Vaと、下り坂侵入時目標車速Vtとの誤差を小さくすることが可能なのである。
 換言すれば、図示の実施形態によれば、各々の制御サイクルにおいて、車両1が現在位置から下り坂開始点P2Aまでの移動した際にどの程度の速度になるのかを、下り坂開始点P2Aまでの距離Lを考慮することにより予測することが出来るので、係る予測値をも参照して、車両1の要求車速或いは目標車速Vdを決定することが出来る。このことは、制御サイクル毎に、車両1の要求車速或いは目標車速Vdを補正出来ることを意味している。
 従って、図示の実施形態では、制御を開始する地点P1Aから下り坂開始点P2Aまでの距離が長くても、制御サイクル毎に要求車速或いは目標車速Vdを補正して、燃料噴射量を調整するので、目標車速Vdと実車速Vaとの誤差を少なくして、下り坂開始点P2Aにおける車速Vaと下り坂侵入時目標車速Vtとの誤差を小さくすることが出来る。
 なお、図示の実施形態では、制御を開始する地点P1Aから下り坂開始点P2Aまでの距離Lの数値として、例えば400m~500mに設定することが可能である。
 以下、図4のフローチャートに基づき、図2、図3をも参照して、省燃費運転システム100の制御について説明する。
 図4において、コントロールユニット10は、車速センサ3からの情報により車速データを読み込み(ステップS1)、データベース11から走行中の坂の下り坂開始点P2A(図3参照)の位置情報を読み込み(ステップS2)、GPS2から車両1の現在位置を読み込む(ステップS3)。
 なお、各データを読み込む順序、すなわちステップS1~S3の順序は、上記に限定されるものではない。また、ステップS1~S3を同時に実行することも出来る。
 ステップS4では、走行中の坂の下り坂開始点P2Aの位置情報(ステップS2)と車両1の現在位置(ステップS3)に基づき、距離演算部13によって、下り坂開始点P2Aと現在位置との距離Lを演算する。
 ステップS5では、コントロールユニット10は、下り坂開始点P2Aと現在位置との距離Lが定数(例えば400~500m)以下か否かを判断する。
 現在位置から下り坂開始点P2Aまでの距離Lが定数以下であれば(ステップS5がYES)、ステップS6に進む。
 一方、現在位置から下り坂開始点P2Aまでの距離Lが定数よりも大きければ(ステップS5がNO)、ステップS1以降を繰り返す。
 ステップS6では、車速Va、下り坂侵入時目標車速Vt、現在位置P1から下り坂開始点P2までの距離Lというパラメータにより、要求車速(目標車速)Vdを演算する。そしてステップS7に進む。
 ステップS7では、要求車速Vdとなる様に燃料噴射量を制御するための制御信号を、車内通信ネットワーク5を介してエンジンコントローラ4に出力する。そしてエンジンコントローラ4は、図示しない燃料噴射装置に対して、要求車速Vdを達成させるべく燃料噴射量に関する制御信号を発信する。
 その後、ステップS1以降を繰り返す。
 上述した様に、図示の省燃費運転システム100は、車速Vaと、下り坂のデータ(例えば、下り坂開始点P2Aの位置、下り坂侵入時目標車速Vt)と、現在位置から下り坂開始点P2Aまでの距離Lから、目標車速(要求車速Vd)を決定する様に構成されている。
 係る省燃費運転システム100によれば、車両1が走行している個所における目標車速Vd及び車速Vaを、図3で示す様に制御することが出来るので、下り坂開始点P2Aの手前において燃料カットと燃料噴射の繰り返し、或いは、下り坂において補助ブレーキを作動させる頻度が少なくなる。
 燃料カットと燃料噴射を繰り返さないため、図示の省燃費運転システム100によれば、車両挙動が不安定となりギクシャクして、ドライバに不安定感或いは不快感を与えてしまうことがない。
 また、図示の省燃費運転システム100によれば、下り坂の途中で補助ブレーキを作動させる頻度が少なくなる。このことは、下り坂開始点P2Aまでに置いて、十分減速されていることを意味しており、図示の省燃費運転システム100では、燃料消費量が節約されていることを意味している。
 すなわち、図示の実施形態によれば、省燃費運転が達成される。
 なお、本発明は、登坂から下り坂に移る以外に、例えば平坦路から下り坂に移る際にも適用しても良い。
 図示の実施形態はあくまでも例示であり、本発明の技術的範囲を限定する趣旨の記述ではない。
本発明の実施形態を示すブロック図。 実施形態で用いられる制御装置のブロック図。 実施形態に係る省燃費運転システムにおいて、登坂から降坂に移行する場合に、走行距離と、車速と、燃料噴射の特性を示す図。 実施形態に係る運転制御を示すフローチャート。 従来技術において、登坂から降坂に移行する場合に、走行距離と、車速と、燃料噴射の特性を示す図。 図5とは異なる従来技術において、降坂に移行する場合に、走行距離と、車速と、燃料噴射の特性を示す図。 図5、図6とは異なる従来技術において、登坂から降坂に移行する場合に、走行距離と、車速と、燃料噴射の特性を示す図。
1・・・車両
2・・・車両位置特定装置/GPS
3・・・車速計測装置/車速センサ
4・・・車両側制御装置/エンジンコントローラ
5・・・車両の情報ネットワーク
10・・・制御装置/コントロールユニット
11・・・記憶装置/データベース
12・・・現在位置特定部
13・・・現在位置から下り坂開始点までの距離演算部/距離演算部
14・・・目標速度決定部
15・・・指令信号発信タイミング決定部
16・・・インターフェース
17・・・タイマ

Claims (4)

  1.  車両の位置を特定する車両位置特定装置と、車両進行方向に存在する下り坂のデータを記憶する記憶装置と、車両の速度を計測する車速計測装置と、制御装置とを有し、該制御装置は、車両の速度と、下り坂のデータとから車両の目標速度を決定する機能を有することを特徴とする省燃費運転システム。
  2.  制御装置は、車両が走行している個所における車両の速度と、下り坂開始点までの距離とから、車両が下り坂開始点に到達した時点における車両の速度が下り坂開始点における目標速度となる様に、車両が走行している個所における目標速度を演算する機能を有している請求項1の省燃費運転システム。
  3.  制御装置は、車両が下り坂開始点に到達した時点における車両の速度が下り坂開始点における目標速度となる様に、車両が走行している個所における目標速度を徐々に減速させる制御を行なう機能を有している請求項2の省燃費運転システム。
  4.  前記制御装置は、車両の情報ネットワークを介してエンジンを制御する車両側制御装置に制御信号を送信し、車両側制御装置が当該制御信号に対応する噴射量の燃料を噴霧するための制御信号を燃料噴射装置に対して送信する様にせしめる機能を有する請求項1~3の何れか1項の省燃費運転システム。
PCT/JP2009/070218 2008-12-04 2009-12-02 省燃費運転システム WO2010064645A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN2009801486279A CN102239319B (zh) 2008-12-04 2009-12-02 省燃料驾驶系统
US13/133,035 US8532905B2 (en) 2008-12-04 2009-12-02 Fuel-efficient driving system
EP09830411.6A EP2357342B1 (en) 2008-12-04 2009-12-02 Fuel-efficient driving system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-309240 2008-12-04
JP2008309240A JP5116647B2 (ja) 2008-12-04 2008-12-04 省燃費運転システム

Publications (1)

Publication Number Publication Date
WO2010064645A1 true WO2010064645A1 (ja) 2010-06-10

Family

ID=42233292

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/070218 WO2010064645A1 (ja) 2008-12-04 2009-12-02 省燃費運転システム

Country Status (5)

Country Link
US (1) US8532905B2 (ja)
EP (1) EP2357342B1 (ja)
JP (1) JP5116647B2 (ja)
CN (1) CN102239319B (ja)
WO (1) WO2010064645A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE536464C2 (sv) * 2012-04-02 2013-11-26 Scania Cv Ab Förfarande och system för justering av börvärden för hastighetsreglering av ett fordon
SE538376C2 (sv) 2013-05-23 2016-06-07 Scania Cv Ab Förfarande och system för styrning av en lågtryckskrets i ett bränslesystem i ett fordon
CN104340066B (zh) * 2013-08-02 2017-04-19 上海汽车集团股份有限公司 车辆定速巡航和节油方法
DE102014214140A1 (de) * 2014-07-21 2016-01-21 Zf Friedrichshafen Ag Verfahren zur vorausschauenden Steuerung einer Geschwindigkeitsregelanlage eines Kraftfahrzeuges
JP6417995B2 (ja) 2015-02-09 2018-11-07 株式会社デンソー 車速マネジメント装置及び車速マネジメント方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000306200A (ja) * 1993-03-17 2000-11-02 Denso Corp 車両制御装置
JP2005132356A (ja) * 2003-10-30 2005-05-26 Robert Bosch Gmbh 駆動ユニットの運転方法
JP2007156704A (ja) 2005-12-02 2007-06-21 Nissan Diesel Motor Co Ltd 省燃費運転システム

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3321666B2 (ja) * 1998-10-16 2002-09-03 本田技研工業株式会社 オートクルーズ制御装置
JP2000308200A (ja) * 1999-04-20 2000-11-02 Nippon Columbia Co Ltd 音響信号処理回路及び増幅装置
FR2813397B1 (fr) * 2000-08-31 2003-03-14 Renault Procede de regulation de distance entre deux vehicules
SE0400605L (sv) * 2004-03-09 2005-01-25 Volvo Lastvagnar Ab Metod, system och datorprogram för automatisk frihjulning av fordon
SE529578C2 (sv) * 2005-04-04 2007-09-25 Scania Cv Abp Ett förfarande och ett system för att styra driften av ett fordon
JP4640044B2 (ja) * 2005-06-01 2011-03-02 トヨタ自動車株式会社 自動車およびその制御方法
JP2007159704A (ja) * 2005-12-12 2007-06-28 Motokoma Kk 商品陳列用吊り装置
JP2007170274A (ja) * 2005-12-22 2007-07-05 Denso Corp 車両制御装置
JP4446978B2 (ja) * 2006-04-28 2010-04-07 トヨタ自動車株式会社 車両用駆動力制御装置
JP4713408B2 (ja) * 2006-06-07 2011-06-29 トヨタ自動車株式会社 車両の制御装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000306200A (ja) * 1993-03-17 2000-11-02 Denso Corp 車両制御装置
JP2005132356A (ja) * 2003-10-30 2005-05-26 Robert Bosch Gmbh 駆動ユニットの運転方法
JP2007156704A (ja) 2005-12-02 2007-06-21 Nissan Diesel Motor Co Ltd 省燃費運転システム

Also Published As

Publication number Publication date
JP5116647B2 (ja) 2013-01-09
CN102239319A (zh) 2011-11-09
EP2357342A4 (en) 2016-06-29
EP2357342B1 (en) 2017-11-15
US8532905B2 (en) 2013-09-10
JP2010133314A (ja) 2010-06-17
US20110238278A1 (en) 2011-09-29
EP2357342A1 (en) 2011-08-17
CN102239319B (zh) 2013-08-07

Similar Documents

Publication Publication Date Title
KR101578502B1 (ko) 적어도 하나의 기준 값의 결정을 위한 방법 및 모듈
KR101601891B1 (ko) 차량 제어 시스템을 위한 기준 값의 결정을 위한 방법 및 모듈
US8731788B2 (en) System and method of speed-based downspeed coasting management
CN109415061B (zh) 用于在引导机动车时辅助驾驶员的方法
KR101607248B1 (ko) 규칙 및/또는 비용에 기초하여 차량의 속도를 제어하기 위한 방법 및 모듈
JP5686382B2 (ja) 車両クルーズコントロールを制御する方法及び車両クルーズコントロールシステム,並びに該方法の全ステップを実施するプログラムコード手段を含む、コンピュータプログラム,該方法の全ステップを実施するコンピュータ可読媒体に保存されるプログラムコード手段を含む、プログラム製品及び該方法を実施するコンピュータ可読プログラムコードを含む、記憶媒体
US9108639B2 (en) Method and module for controlling a vehicle's speed based on rules and/or costs
EP2794378B1 (en) Method and module for determining of at least one reference value for a vehicle control system
KR101601890B1 (ko) 차량 제어 시스템을 위한 적어도 하나의 기준 값의 결정을 위한 방법 및 모듈
CN109305195B (zh) 列车控制方法及装置
CN110450786B (zh) 用于确定电动车辆中的预测的加速信息的方法和电动车辆
CN107010074B (zh) 为驾驶员辅助装置提供理论值信号的方法、机动交通工具及其控制装置
US9352740B2 (en) Vehicle energy-management device for controlling energy consumption along a travel route
US10486710B2 (en) Cruise control device and cruise control method
WO2010064645A1 (ja) 省燃費運転システム
US20110307152A1 (en) Vehicle travel control device
JP2012144160A (ja) 運転支援装置
ITTO20090070A1 (it) Metodo di controllo della velocita' di un veicolo
JP2013151993A (ja) 車両制御装置
CN109804152B (zh) 省燃费控制装置以及省燃费控制方法
JP4905191B2 (ja) 車両走行制御装置
CN109843686B (zh) 省燃费控制装置以及省燃费控制方法
JP2023006318A (ja) 走行制御システム、走行制御装置、走行制御方法、走行制御プログラム
ITTO20090071A1 (it) Metodo di controllo della velocita' di un veicolo con alternanza di moto attivo e moto passivo

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980148627.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09830411

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2009830411

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2009830411

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13133035

Country of ref document: US