WO2010063144A1 - 一种微波加热装置及其在化学反应中的应用 - Google Patents

一种微波加热装置及其在化学反应中的应用 Download PDF

Info

Publication number
WO2010063144A1
WO2010063144A1 PCT/CN2008/073289 CN2008073289W WO2010063144A1 WO 2010063144 A1 WO2010063144 A1 WO 2010063144A1 CN 2008073289 W CN2008073289 W CN 2008073289W WO 2010063144 A1 WO2010063144 A1 WO 2010063144A1
Authority
WO
WIPO (PCT)
Prior art keywords
tube
microwave
heat exchange
microwave irradiation
irradiation chamber
Prior art date
Application number
PCT/CN2008/073289
Other languages
English (en)
French (fr)
Inventor
李云龙
赵岩林
童扬传
陈国兴
Original Assignee
浙江泰德新材料有限公司
北京思践通科技发展有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江泰德新材料有限公司, 北京思践通科技发展有限公司 filed Critical 浙江泰德新材料有限公司
Priority to US12/808,355 priority Critical patent/US8946605B2/en
Priority to JP2010541007A priority patent/JP2011507216A/ja
Priority to PCT/CN2008/073289 priority patent/WO2010063144A1/zh
Priority to CA2706616A priority patent/CA2706616C/en
Priority to AU2008364687A priority patent/AU2008364687B2/en
Priority to EP08878518A priority patent/EP2275200B1/en
Publication of WO2010063144A1 publication Critical patent/WO2010063144A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/12Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electromagnetic waves
    • B01J19/122Incoherent waves
    • B01J19/126Microwaves
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/64Heating using microwaves
    • H05B6/80Apparatus for specific applications
    • H05B6/806Apparatus for specific applications for laboratory use
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00002Chemical plants
    • B01J2219/00027Process aspects
    • B01J2219/0004Processes in series
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/0871Heating or cooling of the reactor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/12Processes employing electromagnetic waves
    • B01J2219/1203Incoherent waves
    • B01J2219/1206Microwaves
    • B01J2219/1209Features relating to the reactor or vessel
    • B01J2219/1221Features relating to the reactor or vessel the reactor per se
    • B01J2219/1224Form of the reactor
    • B01J2219/1227Reactors comprising tubes with open ends

Definitions

  • the present invention relates to a heating apparatus, and more particularly to a microwave heating apparatus and its use in chemical reactions. Background technique
  • the microwave is an electromagnetic wave having a wavelength between the wavelength of the infrared light and the radio wave, that is, a wavelength in the range of 1 mm to 100 cm.
  • the dielectric molecules produce dipole steering polarization and interfacial polarization. Since the alternating electric field generated by microwaves is turned at high speeds of hundreds of millions of times per second, dipole steering polarization does not have the ability to quickly follow the alternating electric field. The ability to lag behind the electric field, resulting in friction between the molecules to generate thermal energy, the energy of which is transmitted in the form of electromagnetic waves, which can achieve agitation at the molecular level to achieve rapid and uniform heating, so microwave heating is also called "temperature gradient free". Body heating".
  • microwave heating has the following advantages: 1. Body heating. Under the action of microwave, the applied medium can generate heat at different depths at the same time. The medium is heated uniformly and has no temperature gradient, which is beneficial to the smooth progress of the chemical reaction of the heated medium. 2. Selectivity for heating different media. For metal (conductor) media, the microwaves can be totally reflected back without heating; for those media with low conductivity and low polarization loss, the microwaves are almost completely transmitted without being heated; for those that are easy to be in the microwave field In the case of a polarized medium, it is easy to absorb microwaves and is rapidly heated. 3. High thermal efficiency and no pollution. Microwave energy converts electromagnetic energy into heat without pollution and energy loss.
  • microwaves also have a special "non-heating effect" caused by direct action on the reaction molecules.
  • microwaves can change the course of chemical reactions, reduce the activation energy of the reaction, speed up the synthesis, increase the equilibrium conversion rate, reduce by-products, and change the stereoselectivity of the product. It is precisely because of the special promotion of microwave reaction to the chemical reaction that the application of microwave to chemical reaction is not only significant. The significance of theoretical research, but also has great potential for industrial applications.
  • microwave Due to the above characteristics of microwave, in recent years, microwave has been widely studied and applied as an efficient and clean heating means and chemical reaction means.
  • microwave due to the shortcoming of the microwave penetration distance and the uncontrollable temperature of the heating medium under continuous microwave irradiation, the microwave device currently applied to the chemical reaction cannot achieve large-scale industrialization and can only stay at the stage of laboratory research.
  • CN2821468Y discloses a microwave processor comprising at least one box-shaped cavity, wherein the opposite side end faces of the box-shaped cavity are provided with a pipe interface, and the other two opposite side faces of the box-shaped cavity are located One of the side end faces is closed, and the side end face relative to the closed end face is a flange interface, and the flange interface is connected to the microwave generating device; the pipe for the heated fluid passes through the box-shaped cavity, the two ends of the pipe Extend from the pipe joint.
  • This processor can be connected in multiple (15) to form a long reactor, and multiple tubes can be arranged side by side in the chamber.
  • this device takes into account the problem that the penetration distance of the microwave is short, it still fails to solve the problem that the temperature of the medium is uncontrollable under the condition of continuous microwave radiation, so it can only be used to heat the fluid, and cannot be applied. In a chemical reaction that requires temperature control under continuous microwave irradiation.
  • CN1231213A discloses a special industrial microwave oven for fluid processing, which comprises a microwave resonant cavity provided with a microwave input port and a fluid inlet, outlet and a working door, and a sealed shielding device respectively arranged at the fluid inlet and the outlet, and the resonant cavity is provided therein.
  • a fluid circulator specially designed for the fluid to fully generate a physical and chemical reaction in the microwave field.
  • the upper part and the lower part of the resonant cavity are respectively provided with means for ensuring that the fluid can be continuously fed and discharged according to the process requirements, which are connected with the fluid inlet and outlet.
  • the device assures continuous and continuous discharge of material, it can only be used to heat fluids, but not in chemical reactions where temperature control is required under continuous microwave irradiation.
  • the present invention provides a microwave heating device, which comprises a microwave irradiation chamber and a material tube.
  • the material tube is disposed in the microwave irradiation chamber, and penetrates and penetrates through a cavity wall of the microwave irradiation chamber.
  • a waveguide for microwave introduction is disposed on a wall of the microwave irradiation chamber, wherein the microwave heating device further includes a heat exchange tube, the heat exchange tube is disposed in the material tube, and the material tube is The nozzle or tube wall enters and exits.
  • the microwave heating device provided by the present invention, the excess heat is taken out in time by introducing a cold medium into the heat exchange tube, and the continuous microwave irradiation can be performed.
  • the temperature of the material in the material tube is controlled. Therefore, the microwave device provided by the present invention can be applied to various chemical reactions requiring temperature control, and the material heating temperature can be accurately controlled within a range of ⁇ (1-5) °C. DRAWINGS
  • FIG. 1 is a schematic longitudinal cross-sectional view of the microwave heating apparatus described in Embodiment 1;
  • Figure 2 is a longitudinal cross-sectional view showing a section perpendicular to Figure 1;
  • FIG. 3 is a longitudinal cross-sectional view showing another embodiment of the microwave heating apparatus of the present invention.
  • FIG. 4 is a longitudinal cross-sectional view showing still another embodiment of the microwave heating apparatus of the present invention.
  • the microwave heating device comprises a microwave irradiation chamber 4 and a material tube 5, and the material tube 5 is disposed in the microwave irradiation chamber 4, and the cavity wall of the chamber 4 is irradiated by the microwave.
  • a waveguide 15 for microwave introduction is disposed on a wall of the microwave irradiation chamber, and one end of the waveguide 15 is located in the microwave irradiation chamber 4, and the other end is located outside the microwave irradiation chamber 4, and is used for Will be
  • the microwave generated by the microwave emission source 14 disposed outside the microwave irradiation chamber 4 is sent into the inside of the microwave irradiation chamber 4.
  • the microwave heating device further includes a heat exchange tube 6 disposed in the material tube 5 and entering and withdrawing from the nozzle or tube wall of the material tube 5.
  • the heat exchange tube 6 enters from one end of the tube or the wall of each material tube 5, from the nozzle at the other end of the material tube or The pipe wall is led out.
  • each of the material tubes 5 can be divided into a plurality of sections, and each of the material tubes 5 has a heat exchange tube 6 entering and withdrawing.
  • the material pipe 5 can be divided into 2-5 segments or more, and each material pipe is connected to each other through a joint, and a heat exchange pipe 6 is respectively disposed in each segment, and the heat exchange pipe 6 is separately from each segment.
  • One end of the material pipe 5 enters and is taken out from the other end.
  • the heat exchange tube 6 is arranged in this way, since the heat exchange tube 6 is short, it can have a better heat exchange effect on the material.
  • the material tubes are independent plurality, and each of the material tubes has a heat exchange tube entering and withdrawing.
  • the independent plurality of material tubes can be arranged in parallel in the microwave irradiation chamber, and when the amount of material to be processed is large, the materials can be used to dispense the materials into the material tubes.
  • the microwave heating device in the preferred case, when the material pipe used is long, and the time required for the material reaction is long, in order to sufficiently heat the material to satisfy the above conditions, the microwave irradiation
  • the chamber may be plural, for example, 2-10, and the material tube sequentially passes through the plurality of microwave irradiation chambers. As shown in Fig. 4, three microwave irradiation chambers are used, and the material tube 5 sequentially passes through the three microwave irradiation chambers.
  • the microwave irradiation chamber is made of a material that reflects microwaves, or the inner wall of the microwave irradiation chamber is plated with a layer of material that reflects microwaves.
  • the microwave reflecting material may be a metal material such as stainless steel, aluminum, aluminum alloy, iron, copper or silver.
  • the material tube 5 may have any shape, preferably a serpentine shape, a spiral shape or a straight tube, and has a circular or elliptical cross section.
  • Figure 1 shows the material tube 5 It is only one case and the shape is serpentine.
  • the heat exchange tube 6 may be of any shape, preferably a serpentine, spiral or straight tube, having a circular or elliptical cross section.
  • the heat exchange tubes 6 may be one or more.
  • Fig. 1 shows a case where the heat exchange tubes 6 are only one piece and are serpentine in shape.
  • the cross-sectional shape of the material tube 5 may be various shapes such as a circular shape or an elliptical shape, wherein the inner diameter of the circular cross section is preferably 50-200 mm, and the long-axis length of the elliptical cross-section is preferably The length of the short axis is preferably 50-200 mm ;
  • the cross-sectional shape of the heat exchange tube 6 may be various shapes such as a circular shape or an elliptical shape, wherein the inner diameter of the circular cross section is preferably 3-25 mm, elliptical
  • the length of the major axis of the cross section is preferably from 3 to 125 mm, and the length of the minor axis is preferably from 3 to 25 mm.
  • the material of the material tube 5 is a material that transmits microwaves completely, and the material for transmitting microwaves is well known to those skilled in the art, such as polyimide and modification thereof. , polyetheretherketone and its modifications, polytetrafluoroethylene and its modifications, polyethylene and its modifications, polypropylene and its modifications, polystyrene and its modifications, quartz or glass . More preferably, polytetrafluoroethylene and its modifications and/or polystyrene and its modifications are used.
  • the material of the heat exchange tube 6 is preferably various materials having excellent thermal conductivity, and may be various materials for reflecting microwaves or materials for transmitting microwaves completely.
  • the materials for reflecting microwaves are well known to those skilled in the art, such as metallic materials such as stainless steel, aluminum, aluminum alloys, iron, copper, silver, more preferably stainless steel and aluminum alloys, and the fully transmissive microwave materials are technical in the art.
  • the medium in the heat exchange tube may be a variety of cold mediums known to those skilled in the art, such as one or more of compressed gas, kerosene, burned, benzene, glycerin, water. .
  • the choice of the cooling medium needs to be determined according to the properties of the material of the heat exchange tube. For example, when the material of the heat exchange tube is a material that transmits microwaves completely, the medium of the cold medium should select a medium that does not absorb microwaves, such as kerosene, hexanyl, benzene, etc. Non-polar hydrocarbon liquid; When the material of the heat exchange tube is a microwave-reflecting material, all cold medium that can effectively exchange heat can be used.
  • the waveguide 15 may be a plurality of It is evenly distributed on the wall of the microwave irradiation chamber 4.
  • the plurality of waveguides may be disposed on one of the chamber walls of the microwave irradiation chamber, or may be disposed to be distributed on the plurality of chamber walls.
  • the microwave heating device includes a plurality of microwave irradiation chambers 4, the number of distributions of the waveguides 15 in the respective microwave irradiation chambers 4 may be the same or different.
  • the present invention also provides the use of the above microwave heating apparatus in a chemical reaction, which can be applied to various chemical reactions such as F-T synthesis, NaY synthesis, and synthesis of hydrotalcite.
  • the reactants may be passed in a single pass in the reaction tube or may be circulated multiple times to ensure sufficient reaction of the reactants in the reaction tube.
  • the frequency of the microwaves may be selected from frequencies well known to those skilled in the art, such as 915 MHz and 2450 MHz.
  • Example 1 The present invention will be described in detail below by way of specific examples, but the invention is not limited thereto.
  • Example 1
  • FIGS. 1 and 2 provide a form of microwave heating apparatus designed in accordance with the present invention.
  • the microwave heating apparatus includes a microwave irradiation chamber 4, a material tube 5, a heat exchange tube 6, a microwave emission source 14, and a waveguide 15.
  • the microwave irradiation chamber 4 is made of stainless steel and has a size of 10mxl5mx0.3m.
  • a material pipe interface is arranged in the upper part and the lower part of the microwave irradiation chamber 4, so that the material pipe 5 penetrates and penetrates, the material pipe interface and the material pipe 5 The seal is sealed by a seal 10.
  • the material of the material pipe 5 is polytetrafluoroethylene, and the inner diameter is 80 mm, and the material pipe 5 is serpentinely arranged in the microwave irradiation chamber 4, and the total length is 80 m.
  • the heat exchange tube 6 is disposed in the material tube 5, enters the material tube 5 at the small hole outside the microwave irradiation chamber 4 and protrudes, and the small hole and the heat exchange tube 6 are sealed by the sealing ring 13 for replacement.
  • the heat pipe 6 is made of stainless steel and has an inner diameter of 8 mm.
  • the microwave emission source 14 is located outside the microwave irradiation chamber 4, and the microwave emitted from the microwave emission source 14 is sent into the microwave irradiation chamber 4 by a waveguide 15 disposed on an inner wall of the microwave irradiation chamber 4, and the waveguide 15 leads to the cavity.
  • One end is flared so that the microwave radiates in each direction in the cavity, and a part of the microwave B is directly irradiated onto the side of the material tube 5 facing the waveguide 15, a part of the microwaves A and C It is irradiated onto the wall of the chamber and reflected to the other side of the material tube 5, so that the material tube 5 is sufficiently irradiated with microwaves.
  • This example illustrates the application of the microwave heating apparatus of Example 1 in the production of NaY molecular sieves.
  • the solution was pumped into the microwave heating device described in Example 1 by the feed pump 3 at a rate of 5 m/min, and the microwave source 14 was turned on (the microwave frequency was 2450 MHz). After 5 minutes, the heat exchange system was turned on, in the heat exchange system.
  • the heat exchange medium water began to enter the nozzle 11 at a rate of lm/min, the nozzle 12 was discharged, and the flow rate was uniformly increased to 15 m/min after 12 minutes.
  • the material enters the microwave reaction device from the feed port 8 and is discharged from the discharge port 9.
  • the material discharged from the discharge port 9 is circulated and then enters the microwave reaction device through the feed port 8, and the flow rate of the heat exchange medium is finely adjusted to 17 m/min.
  • the temperature of the material in the microwave reaction tube is stably controlled between 98-10 rC. After reaching a stable reaction temperature, the reaction was stopped for 1.5 hours, and the microwave heating was stopped. The reaction product was heat-exchanged to less than 50 °C by the heat exchanger 7, and then discharged from the discharge port 9.
  • the discharged material is washed and dried to obtain NaY raw powder, which is subjected to X-ray diffractometer (Shimadzu, Japan).
  • the Shimadzu XRD7000 model has a crystallinity of 62%.
  • the configuration of the microwave heating apparatus in this embodiment is basically the same as that of the embodiment 1, except that the size of the microwave irradiation chamber is 10 mxl 5 mx 0.6 m, the inner diameter of the material tube 5 is 200 mm, and the inner diameter of the heat exchange tube 6 is 25 mm.
  • Example 4 the size of the microwave irradiation chamber is 10 mxl 5 mx 0.6 m, the inner diameter of the material tube 5 is 200 mm, and the inner diameter of the heat exchange tube 6 is 25 mm.
  • Example 3 The use of the microwave heating apparatus of Example 3 in the synthesis of NaY molecular sieves is explained in this embodiment.
  • the above solution was pumped into the microwave heating device described in Example 1 by the feed pump 3, and the microwave source 14 (microwave frequency was 2450 MHz) was turned on. After 10 minutes, the heat exchange system was turned on, and the heat exchange system was opened. The water is the heat exchange medium, and the heat exchange medium starts to enter from the nozzle 11 at a speed of lm/min, and the nozzle 12 is discharged, and the flow rate is uniformly increased to 17 m/min after 5 minutes. The material enters the microwave reaction device from the feed port 8 and is discharged from the discharge port 9. After 16 minutes, the material discharged from the discharge port 9 is recycled.
  • the feed port 8 enters the microwave reaction device, and the flow rate of the heat exchange medium is adjusted to 18.2 m/min, so that the temperature of the material in the microwave reaction tube is stably controlled between 98-10 rC. After reaching a stable reaction temperature, the microwave heating was stopped after 1.5 h of reaction, and the reaction product was heat-exchanged to less than 50 ° C by the heat exchanger 7, and then discharged from the discharge port 9.
  • Example 5 The discharged material was washed and dried to obtain a NaY raw powder, and its crystallinity was 16% as measured by an X-ray diffractometer (Shimadzu XRD7000, Japan).
  • X-ray diffractometer Shiadzu XRD7000, Japan.
  • the configuration of the microwave heating apparatus in this embodiment is basically the same as that of the embodiment 1, except that the size of the microwave irradiation chamber is 10 mxl5mx0.2m, the inner diameter of the material tube 5 is 50 mm, and the inner diameter of the heat exchange tube 6 is 3 mm.
  • Example 5 The use of the microwave heating apparatus of Example 5 in the synthesis of NaY molecular sieves is explained in this embodiment.
  • the solution was pumped into the microwave heating device described in Example 5 by the feed pump 3 at a rate of 5 m/min, and the microwave source 14 was turned on (the microwave frequency was 2450 MHz). After 3 minutes, the heat exchange system was turned on, and the heat exchange was performed. In the system, water is used as the heat exchange medium, and the heat exchange medium starts to enter from the nozzle 11 at a speed of lm/min, and the nozzle 12 is discharged, and the flow rate is uniformly increased to 15 m/min within 5 minutes. The material enters the microwave reaction device from the feed port 8 and is discharged from the discharge port 9.
  • the material discharged from the discharge port 9 is recycled and then enters the microwave reaction device through the feed port 8, and the flow rate of the heat exchange medium is finely adjusted to 15.6 m/min. , the temperature of the material in the microwave reaction tube is stably controlled between 98-10 rC. After reaching a stable reaction temperature, the reaction was stopped for 1.5 hours, and the microwave heating was stopped. The reaction product was heat-exchanged to less than 50 ° C by the heat exchanger 7, and then discharged from the discharge port 9.
  • the discharged material was washed and dried to obtain a NaY raw powder, and its crystallinity was 80% as measured by an X-ray diffractometer (Shimadzu XRD7000, Japan).

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Toxicology (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Clinical Laboratory Science (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Constitution Of High-Frequency Heating (AREA)

Description

一种微波加热装置及其在化学反应中的应用 技术领域
本发明涉及一种加热装置, 更具体地说是一种微波加热装置及其在化学 反应中的应用。 背景技术
微波是一种波长介于红外光波和无线电波的波长之间, 即波长在 Imm-lOOcm范围内的电磁波。
在微波场中, 介质分子产生偶极子转向极化和界面极化, 由于微波产生 的交变电场以每秒高达数亿次的高速转向, 偶极转向极化不具备迅速跟上交 变电场的能力而滞后于电场, 从而导致分子之间的摩擦而产生热能, 其能量 以电磁波的形式传递, 可实现分子水平上的搅拌, 达到快速均匀加热, 因此微 波加热又称为无温度梯度的 "体加热"。
与传统加热相比, 微波加热具有如下优点: 1、体加热性。在微波作用下, 被作用介质可以在不同深度同时产生热量, 介质加热均匀且无温度梯度, 有 利于被加热介质化学反应的平稳进行。 2、 对不同介质加热的选择性。 对金属 (导体) 介质来说, 微波可被全部反射回去而不易加热; 对于那些电导率低、 极化损耗小的介质来说, 微波几乎全部透射而不被加热; 对于那些容易在微 波场中产生极化的介质来说, 容易吸收微波而被快速加热。 3、 热效率高、 无 污染。 微波能将电磁能转化为热能, 不会产生污染以及能量的损耗。
此外, 微波还具有直接作用于反应分子而引起的特殊的 "非制热效应"。 实验证明, 微波能够改变化学反应的历程、 降低反应活化能、 加快合成速度、 提高平衡转化率、 减少副产物、 改变产物立体选择性等特殊效应。 正是由于 微波对化学反应特殊的促进作用, 使得微波应用于化学反应不仅具有重大的 理论研究意义, 同时还具有巨大的工业应用潜力。
由于微波的上述特点, 近年来, 微波作为一种高效、 清洁的加热手段和 化学反应手段得到了广泛研究与应用。 但是, 由于微波穿透距离短、 在连续 的微波照射下被加热介质温度不可控的缺点, 导致目前应用于化学反应的微 波装置无法实现大规模工业化而只能停留在实验室研究的阶段。
CN2821468Y公开了一种微波处理器,该微波处理器包括至少一个盒形腔 体, 盒形腔体的两相对的侧端面中间部位设置有管道接口, 位于盒形腔体的 另两相对的侧端面中的一个侧端面封闭, 相对于该封闭端面的侧端面为法兰 接口, 该法兰接口与微波发生装置相接; 供被加热流体通过的管道穿设于盒 形腔体内, 管道的两端从管道接口伸出。 这种处理器可以多个 ( 15个) 相 连, 形成一个长的反应器, 同时腔体中可以并列设置多根管道。 这种装置虽 然考虑到了微波的穿透距离短的问题, 但是仍然未能解决在微波连续辐射的 情况下, 介质温度不可控性的问题, 所以只能用来对流体进行加热, 而不能 应用于在连续微波照射下需要控制温度的化学反应中。
CN1231213A公开了一种流体处理专用工业微波炉,它包括设有微波输入 口及流体进、 出口和工作门的微波谐振腔, 以及分别设于流体进口处和出口 处的密封屏蔽器, 谐振腔内设有专供流体在微波场中充分产生物化反应的流 体环形器, 谐振腔上部和下部分别设有与流体进、 出口相连接的保证流体能 按工艺要求连续给入和排出的装置。 虽然该装置保证了物料的连续供给和连 续排出, 但只能对流体进行加热, 而不能应用于在连续微波照射下需要控制 温度的化学反应中。
上述专利文献所进行的设计实现了微波作为一种加热手段的工业化应 用, 解决了微波穿透能力低的问题, 在设计上各有特点。 但是这些装置仍然 未能解决微波连续辐射时介质温度持续快速升高而无法控制的问题, 因而无 法应用于需要在连续微波照射下控制温度的化学反应过程中。 发明内容
本发明的目的在于克服上述现有技术中的微波加热装置不能在连续微波 照射下控制物料的温度的缺陷, 提供一种可以在连续微波照射下控制物料温 度的微波加热装置。
本发明提供了一种微波加热装置, 该装置包括微波照射腔和物料管, 所 述物料管穿设于所述微波照射腔中, 由所述微波照射腔的腔壁穿入和穿出, 在所述微波照射腔的腔壁上设有供微波导入的波导管, 其中, 所述微波加热 装置还包括换热管, 所述换热管设置在所述物料管内, 并且从所述物料管的 管口或管壁进入和引出。
由于在物料管中设置了换热管, 在用本发明提供的微波加热装置加热物 料管中的物料时, 通过在换热管中通入冷介质, 及时取出过剩的热量, 可以 在连续微波照射下控制物料管中的物料的温度。 因此, 本发明提供的微波装 置可应用于各种需要进行温度控制的化学反应中, 并且可将物料加热温度精 确控制在 ± (1-5)°C范围内。 附图说明
图 1为实施例 1中所述的微波加热装置的纵剖面示意图;
图 2为与图 1相垂直方向剖面的纵剖面示意图;
图 3为本发明微波加热装置的另一种实施方式的纵剖面示意图; 图 4为本发明微波加热装置的再一种实施方式的纵剖面示意图。 具体实施方式
参照图 1和图 2,本发明提供的微波加热装置包括微波照射腔 4和物料管 5, 所述物料管 5穿设于所述微波照射腔 4中, 由所述微波照射腔 4的腔壁穿 入和穿出, 在所述微波照射腔的腔壁上设有供微波导入的波导管 15, 波导管 15的一端位于微波照射腔 4内, 另一端位于微波照射腔 4的外部, 用于将由 设置在微波照射腔 4的外部的微波发射源 14产生的微波送入微波照射腔 4的 内部。 其中, 所述微波加热装置还包括换热管 6, 所述换热管 6设置在所述物 料管 5内, 并且从所述物料管 5的管口或管壁进入和引出。
根据本发明提供的微波加热装置一个优选的实施方式, 如图 1 所示, 所 述换热管 6从每个物料管 5的一端管口或管壁进入, 从物料管另一端的管口 或管壁引出。
根据本发明提供的微波加热装置另外一个优选的实施方式, 如图 3所示, 每个物料管 5可以分为多段, 每段物料管 5内均有换热管 6进入和引出。 例 如,可以将物料管 5分为 2-5段或者更多段,通过接头将每段物料管相互连接 起来, 在每一段中分别设置一个换热管 6, 该换热管 6分别从每一段物料管 5 的一端进入并从另一端引出。 这样设置换热管 6, 由于换热管 6较短, 可以对 物料具有更好的换热效果。
根据本发明提供的微波加热装置, 所述物料管为独立的多根, 每根物料 管内均有换热管进入和引出。 该独立的多根物料管可以在微波照射腔中并行 设置, 当所处理的物料量较大时, 可以用于将物料分装于各物料管中。
根据本发明提供的微波加热装置, 在优选情况下, 当所采用的物料管较 长时, 物料反应所需要的时间较长时, 为了对物料进行充分使加热的温度满 足上述条件, 所述微波照射腔可以为多个, 例如 2-10个, 物料管依次通过该 多个微波照射腔。 如图 4所示, 采用了 3个微波照射腔, 物料管 5依次通过 该 3个微波照射腔。
根据本发明提供的微波加热装置, 如本领域技术人员所公知的, 所述微 波照射腔是由反射微波的材料制成的, 或者微波照射腔的内壁镀覆有反射微 波的材料层。 所述反射微波的材料可以为金属材料, 例如不锈钢、 铝、 铝合 金、 铁、 铜或银。
根据本发明提供的微波加热装置, 所述物料管 5可以为任意形状, 优选 为蛇形、 螺旋形或直管, 截面为圆形或椭圆形。 例如, 图 1 示出了物料管 5 仅为一条、 形状为蛇形的情况。 所述换热管 6可以是任意形状, 优选为蛇形、 螺旋形或直管, 截面为圆形或椭圆形。所述换热管 6可以是一条或多条。 图 1 示出了换热管 6仅为一条, 形状为蛇形的情况。
根据本发明提供的微波加热装置, 所述物料管 5 的截面形状可以为各种 形状, 例如圆形或椭圆形, 其中圆形截面的内径优选为 50-200mm, 椭圆形截 面的长轴长度优选为 50-1000mm, 短轴长度优选为 50-200mm; 所述换热管 6 的截面形状可以是各种形状, 例如圆形或椭圆形, 其中圆形截面的内径优选 为 3-25mm, 椭圆形截面的长轴长度优选为 3-125mm, 短轴长度优选为 3-25mm。
根据本发明提供的微波加热装置的实施方式, 所述物料管 5 的材料为全 透射微波的材料, 所述全透射微波的材料为本领域技术人员公知的, 例如聚 酰亚胺及其改性物、 聚醚醚酮及其改性物、 聚四氟乙烯及其改性物、 聚乙烯 及其改性物、 聚丙烯及其改性物、 聚苯乙烯及其改性物、 石英或玻璃。 更优 选采用聚四氟乙烯及其改性物和 /或聚苯乙烯及其改性物。
根据本发明提供的微波加热装置的实施方式, 在优选情况下, 所述换热 管 6 的材料为各种导热性优良的材料, 可以为各种反射微波的材料或全透射 微波的材料, 所述反射微波的材料为本领域技术人员公知的, 例如金属材料, 如不锈钢、 铝、 铝合金、 铁、 铜、 银, 更优选为不锈钢和铝合金, 所述全透 射微波的材料为本领域技术人员公知的, 例如玻璃或者陶瓷。
根据本发明提供的微波加热装置的实施方式, 换热管内的介质可以采用 各种本领域技术人员公知的冷介质, 例如压缩气体、 煤油、 己烧、 苯、 甘油、 水中的一种或几种。 冷介质的选择需要根据换热管材料的性质来进行确定, 如, 换热管的材料为全透射微波的材料时, 冷介质则应选择不吸收微波的介 质, 如煤油、 己垸、 苯等非极性的烃类液体; 换热管的材料为反射微波的材 料时, 可使用所有可以有效换热的冷介质。
根据本发明提供的微波加热装置的实施方式,所述波导管 15可以为多个, 均匀分布在微波照射腔 4 的腔壁上。 所述多个波导管可以设置在微波照射腔 的一个腔壁上, 也可以设置为分布在多个腔壁上。 当所述微波加热装置包括 多个微波照射腔 4时, 所述波导管 15在各个微波照射腔 4的分布个数可以相 同, 也可以不同。
本发明还提供了上述微波加热装置在化学反应中的应用, 该微波加热装 置可以应用于各类化学反应中, 例如 F-T合成、 NaY合成以及水滑石的合成 反应。 根据不同化学反应所需时间的不同, 反应物在反应管内可以单程通过, 也可以多次循环通过, 以确保反应物在反应管内充分反应。
在应用本发明提供的微波加热装置时, 所述微波的频率可以选用本领域 技术人员公知的频率, 例如 915MHz和 2450MHz。
下面采用具体的实施例的方式来详细描述本发明, 但本发明并不限于此。 实施例 1
图 1和图 2提供了本发明设计的微波加热装置的一种形式。
该微波加热装置包括微波照射腔 4、 物料管 5、 换热管 6、 微波发射源 14 以及波导管 15。 微波照射腔 4采用不锈钢制成, 尺寸为 10mxl5mx0.3m, 在 微波照射腔 4的上部和下部各设有一个物料管接口, 以便物料管 5穿入和穿 出, 物料管接口与物料管 5之间由密封圈 10密封。 物料管 5的材料为聚四氟 乙烯,内径为 80mm,物料管 5在微波照射腔 4内呈蛇形设置,总长度为 80m。 换热管 6设置在物料管 5内, 在物料管 5位于微波照射腔 4外部的小孔处进 入物料管 5内并伸出, 小孔与换热管 6之间用密封圈 13密封, 换热管 6的材 料为不锈钢, 内径为 8mm。
微波发射源 14位于微波照射腔 4的外部, 微波发射源 14发射的微波由 设置在微波照射腔 4的一个内壁上的波导管 15送入微波照射腔 4内部, 波导 管 15通往腔体的一头向外展开, 以便微波向腔体内的每一个方向辐射, 一部 分微波 B直接照射到物料管 5面对波导管 15的一面上, 一部分微波 A和 C 照射到腔壁上并反射至物料管 5的另一面上, 使物料管 5充分得到微波的照 射。 实施例 2
本实施例说明了将实施例 1中的微波加热装置在生产 NaY分子筛中的应 用。
1、 导向剂的制备
按 Na20 : A1203 : Si02: H20摩尔比为 16: 1: 15: 320的比例称取 19.91Kg 水玻璃(Si02 : 26重量%, Na20 : 8.2重量% )和 5.12Kg水,在搅拌下将 19.61Kg 高碱偏铝酸钠 (A1203 : 3重量%, Na20 : 21重量%) 加入其中, 并不断搅拌 lh, 然后于 30 °C下静置老化 24h。
2、 NaY分子筛制备
如图 1禾卩 2所示,将 20.58Kg的 NaOH、 89.01 Kg的水、上述导向剂 44.65Kg、 水玻璃 (Si02 : 26重量%, Na20 : 8.2重量%) 112.39Kg加入到进料罐 2中, 开启搅拌桨 1, 在剧烈搅拌下, 将 234.37Kg 硫酸铝溶液 ( 34.37Kg 的 A12(S04)3-18H20溶解于 200Kg水中形成的水溶液) 加入到上述混合溶液中, 混合搅拌一小时。
由进料泵 3将上述溶液以 5m/min的速度泵入实施例 1所述的微波加热装 置中, 开启微波源 14 (微波频率为 2450MHz ) , 5min后开启换热系统, 换热 系统中的换热介质水开始以 lm/min的速度由管口 11进入, 管口 12放出, 并 在 12min后流速均匀增加至 15m/min。 物料由进料口 8进入微波反应装置中, 然后由出料口 9排出, 出料口 9所出物料经循环再由进料口 8进入微波反应 装置,微调换热介质流速至 17m/min,使微波反应管中的物料温度稳定控制在 98-10rC之间。 到达稳定的反应温度后反应 1.5h后停止微波加热, 反应产物 经换热器 7换热至小于 50°C后由出料口 9排出。
排出物料经洗涤干燥后得到 NaY 原粉, 经 X 射线衍射仪 (日本岛津 Shimadzu XRD7000型) 测得其结晶度为 62%。 实施例 3
本实施例中的微波加热装置的构成与实施例 1 的基本相同, 不同的是微 波照射腔的尺寸为 10mxl5mx0.6m, 物料管 5的内径为 200mm, 换热管 6的 内径为 25mm。 实施例 4
在本实施例中说明了将实施例 3的微波加热装置在 NaY分子筛合成中的 应用。
1、 导向剂的制备
按 16Na20: A1203: 15Si02: 320H2O的摩尔比称取 124.47Kg水玻璃(Si02: 26重量%, Na20: 8.2重量%) 和 32Kg水, 在搅拌下将 122.63Kg高碱偏铝 酸钠 (A1203 : 3重量%, Na20: 21重量%)加入其中, 并不断搅拌 lh, 然后 于 30°C下静置老化 24h。
2、 NaY分子筛制备
将 128.68Kg的 NaOH、 506.92Kg的水、 上述导向剂 279.12Kg、 水玻璃 (Si02: 26重量%, Na20: 8.2重量%) 702.69Kg加入到进料罐 2中, 开启 搅拌浆 1, 在剧烈搅拌下, 将 1514.86Kg 硫酸铝溶液 (214.86Kg 的 A12(S04)3-18H20溶解于 1300Kg水中形成的水溶液) 加入到上述混合溶液中, 混合搅拌一小时。
由进料泵 3将上述溶液以 5m/min的速度泵入实施例 1所述的微波加热装 置中, 开启微波源 14 (微波频率为 2450MHz) , lOmin后开启换热系统, 换热 系统中以水为换热介质, 换热介质开始以 lm/min的速度由管口 11进入, 管 口 12放出, 并在 5min后流速均匀增加至 17m/min。 物料由进料口 8进入微 波反应装置中, 然后由出料口 9排出, 16min后, 出料口 9所出物料经循环再 由进料口 8进入微波反应装置, 微调换热介质流速至 18.2m/min, 使微波反应 管中的物料温度稳定控制在 98-10rC之间。 到达稳定的反应温度后反应 1.5h 后停止微波加热, 反应产物经换热器 7换热至小于 50°C后由出料口 9排出。
排出物料经洗涤干燥后得到 NaY 原粉, 经 X 射线衍射仪 (日本岛津 Shimadzu XRD7000型) 测得其结晶度为 16%。 实施例 5
本实施例中的微波加热装置的构成与实施例 1 的基本相同, 不同的是微 波照射腔的尺寸为 10mxl5mx0.2m, 物料管 5的内径为 50mm, 换热管 6的内 径为 3mm。 实施例 6
在本实施例中说明了将实施例 5的微波加热装置在 NaY分子筛合成中的 应用。
1、 导向剂的制备
按 16Na20: A1203: 15Si02: 320H2O的摩尔比称取 7.78Kg水玻璃(Si02: 26重量%, Na20: 8.2重量%)和 2Kg水, 在搅拌下将 7.67Kg高碱偏铝酸钠 (A1203: 3重量%, Na20: 21 重量%) 加入其中, 并不断搅拌 lh, 然后于 30°C下静置老化 24h。
2、 NaY分子筛制备
将 8Kg的 NaOH、 32.7Kg水、 上述导向剂 17.4Kg、 水玻璃 (Si02: 26重 量%, Na20: 8.2重量%) 43.8Kg加入到进料罐 2中, 开启搅拌浆 1, 在剧烈 搅拌下, 将 93.4Kg硫酸铝溶液 (13.4Kg的 A12(S04)348H20溶解于 80Kg水 中形成的水溶液) 加入到上述混合溶液中, 混合搅拌一小时。
由进料泵 3将上述溶液以 5m/min的速度泵入实施例 5所述的微波加热装 置中, 开启微波源 14 (微波频率为 2450MHz), 3min后开启换热系统, 换热 系统中以水为换热介质, 换热介质开始以 lm/min的速度由管口 11进入, 管 口 12放出, 并在 5min之内流速均匀增加至 15m/min。 物料由进料口 8进入 微波反应装置中, 然后由出料口 9排出, 出料口 9所出物料经循环再由进料 口 8进入微波反应装置, 微调换热介质流速至 15.6m/min, 使微波反应管中的 物料温度稳定控制在 98-10rC之间。 到达稳定的反应温度后反应 1.5h后停止 微波加热, 反应产物经换热器 7换热至小于 50°C后由出料口 9排出。
排出物料经洗涤干燥后得到 NaY 原粉, 经 X 射线衍射仪 (日本岛津 Shimadzu XRD7000型) 测得其结晶度为 80%。

Claims

权利要求书
1、 一种微波加热装置, 该装置包括微波照射腔和物料管, 所述物料管穿 设于所述微波照射腔中, 由所述微波照射腔的腔壁穿入和穿出, 在所述微波 照射腔的腔壁上设有供微波导入的波导管, 其特征在于, 所述微波加热装置 还包括换热管, 所述换热管设置在所述物料管内, 并且从所述物料管的管口 或管壁进入和引出。
2、 根据权利要求 1所述的装置, 其中, 所述换热管从所述物料管的一端 管口或管壁进入, 从物料管的另一端的管口或管壁引出。
3、 根据权利要求 1或 2所述的装置, 其中, 所述物料管分为多段或为独 立的多根, 每段或每根物料管内均有换热管进入和引出。
4、 根据权利要求 1或 2所述的装置, 其中, 所述物料管和换热管各自为 蛇形、 螺旋形或直管。
5、 根据权利要求 1或 2所述的装置, 其中, 所述物料管的截面形状为圆 形或椭圆形, 其中圆形截面的内径为 50-200mm, 椭圆形截面的长轴长度为 50-1000mm,短轴长度为 50-200mm;所述换热管的截面形状为圆形或椭圆形, 其中圆形截面的内径为 3-25mm,椭圆形截面的长轴长度为 3-125mm, 短轴长 度为 3-25mm。
6、 根据权利要求 5所述的装置, 其中, 所述物料管的材质为全透射微波 的材料, 所述换热管的材质为反射微波的材料或全透射微波的材料。
7、 根据权利要求 6所述的装置, 其中, 所述物料管的材质为聚酰亚胺及 其改性物、 聚醚醚酮及其改性物、 聚四氟乙烯及其改性物、 聚乙烯及其改性 物、 聚丙烯及其改性物、 聚苯乙烯及其改性物、 石英或玻璃; 所述换热管的 材质为不锈钢、 铝、 铝合金、 铁、 铜、 银、 玻璃或陶瓷。
8、 根据权利要求 1所述的装置, 其中, 所述微波照射腔为多个, 物料管 依次通过该多个微波照射腔。
9、 根据权利要求 8所述的装置, 其中, 所述微波照射腔的材质为反射微 波的材料, 或者微波照射腔的内壁镀覆有反射微波的材料层。
10、 根据权利要求 1 所述的装置, 其中, 所述波导管为多个, 均匀分布 在微波照射腔的腔壁上。
11、 一种权利要求 1-10中任意一项所述装置在化学反应中的应用。
PCT/CN2008/073289 2008-12-02 2008-12-02 一种微波加热装置及其在化学反应中的应用 WO2010063144A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US12/808,355 US8946605B2 (en) 2008-12-02 2008-12-02 Microwave heating device and its application in chemical reactions
JP2010541007A JP2011507216A (ja) 2008-12-02 2008-12-02 マイクロ波加熱装置および化学反応におけるその応用
PCT/CN2008/073289 WO2010063144A1 (zh) 2008-12-02 2008-12-02 一种微波加热装置及其在化学反应中的应用
CA2706616A CA2706616C (en) 2008-12-02 2008-12-02 A microwave heating device and its application in chemical reactions
AU2008364687A AU2008364687B2 (en) 2008-12-02 2008-12-02 Microwave heater and its application in chemical reaction
EP08878518A EP2275200B1 (en) 2008-12-02 2008-12-02 Microwave heater and its application in chemical reaction

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2008/073289 WO2010063144A1 (zh) 2008-12-02 2008-12-02 一种微波加热装置及其在化学反应中的应用

Publications (1)

Publication Number Publication Date
WO2010063144A1 true WO2010063144A1 (zh) 2010-06-10

Family

ID=42232858

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2008/073289 WO2010063144A1 (zh) 2008-12-02 2008-12-02 一种微波加热装置及其在化学反应中的应用

Country Status (6)

Country Link
US (1) US8946605B2 (zh)
EP (1) EP2275200B1 (zh)
JP (1) JP2011507216A (zh)
AU (1) AU2008364687B2 (zh)
CA (1) CA2706616C (zh)
WO (1) WO2010063144A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL2012689B1 (en) * 2014-04-24 2016-07-08 Eggciting Products B V An apparatus for cooking at least one egg with an eggshell as well as such a method.
JP2023025310A (ja) * 2020-02-05 2023-02-22 義章 宮里 処理液生成装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4125389A (en) * 1977-02-10 1978-11-14 Northern Telecom Limited Method for manufacturing an optical fibre with plasma activated deposition in a tube
DE3428514A1 (de) * 1984-08-02 1986-03-06 Lübke, Manfred, 4722 Ennigerloh Erwaermung von fluessigkeiten mittels hoechstfrequenzstrahlen zwecks nutzung als heizungsanlage
CN1231213A (zh) 1999-04-02 1999-10-13 徐有生 流体处理专用工业微波炉
US20060039838A1 (en) * 2004-08-20 2006-02-23 Barnhardt E K Method and instrument for low temperature microwave assisted organic chemical synthesis
CN2821468Y (zh) 2005-10-10 2006-09-27 汤大卫 微波处理器
CN1973992A (zh) * 2006-11-16 2007-06-06 中国科学院长春应用化学研究所 一种微波连续反应设备的应用
CN101294942A (zh) * 2008-06-10 2008-10-29 长安大学 微波加热测定水泥或粉煤灰中游离氧化钙的方法及装置
CN101400195A (zh) * 2007-09-29 2009-04-01 浙江泰德新材料有限公司 一种微波加热装置及其在化学反应中的应用

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2625692B1 (fr) 1988-01-13 1990-06-22 Inst Francais Du Petrole Reacteur a controle thermique interne par plaques creuses echangeuses de chaleur
JPH0619196Y2 (ja) * 1990-09-26 1994-05-18 三菱化工機株式会社 マイクロ波加熱装置
US5235251A (en) * 1991-08-09 1993-08-10 The United States Of America As Represented By The Secretary Of The Air Force Hydraulic fluid cooling of high power microwave plasma tubes
PT725678E (pt) * 1993-10-28 2002-02-28 Commw Scient Ind Res Org Reactor de microondas descontinuo
CN1109576A (zh) 1994-03-31 1995-10-04 刘功弼 多源定向耦合微波加热器
JP4636664B2 (ja) * 2000-10-11 2011-02-23 四国計測工業株式会社 化学反応促進用マイクロ波供給装置を設けた高温高圧容器
DE10260745A1 (de) * 2002-12-23 2004-07-01 Outokumpu Oyj Verfahren und Anlage zur thermischen Behandlung von körnigen Feststoffen
EP1749569A4 (en) * 2004-04-20 2007-12-19 Sanko Chemical Industry Co Ltd CHEMICAL REACTION APPARATUS USING MICROWAVE
JP4759668B2 (ja) 2004-05-11 2011-08-31 株式会社Idx マイクロ波加熱装置
JP2006130385A (ja) 2004-11-04 2006-05-25 Tokyo Denshi Kk マイクロ波化学反応装置
JP5016984B2 (ja) * 2007-06-06 2012-09-05 四国計測工業株式会社 マイクロ波化学反応装置および方法
JP5107278B2 (ja) * 2009-02-16 2012-12-26 株式会社日立製作所 マイクロ波加熱装置および加熱方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4125389A (en) * 1977-02-10 1978-11-14 Northern Telecom Limited Method for manufacturing an optical fibre with plasma activated deposition in a tube
DE3428514A1 (de) * 1984-08-02 1986-03-06 Lübke, Manfred, 4722 Ennigerloh Erwaermung von fluessigkeiten mittels hoechstfrequenzstrahlen zwecks nutzung als heizungsanlage
CN1231213A (zh) 1999-04-02 1999-10-13 徐有生 流体处理专用工业微波炉
US20060039838A1 (en) * 2004-08-20 2006-02-23 Barnhardt E K Method and instrument for low temperature microwave assisted organic chemical synthesis
CN2821468Y (zh) 2005-10-10 2006-09-27 汤大卫 微波处理器
CN1973992A (zh) * 2006-11-16 2007-06-06 中国科学院长春应用化学研究所 一种微波连续反应设备的应用
CN101400195A (zh) * 2007-09-29 2009-04-01 浙江泰德新材料有限公司 一种微波加热装置及其在化学反应中的应用
CN101294942A (zh) * 2008-06-10 2008-10-29 长安大学 微波加热测定水泥或粉煤灰中游离氧化钙的方法及装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2275200A4 *

Also Published As

Publication number Publication date
EP2275200A4 (en) 2011-03-30
EP2275200A1 (en) 2011-01-19
AU2008364687B2 (en) 2011-12-08
US20110253707A1 (en) 2011-10-20
CA2706616C (en) 2013-05-07
EP2275200B1 (en) 2012-10-17
CA2706616A1 (en) 2010-06-10
JP2011507216A (ja) 2011-03-03
AU2008364687A1 (en) 2010-06-10
US8946605B2 (en) 2015-02-03

Similar Documents

Publication Publication Date Title
JP5016984B2 (ja) マイクロ波化学反応装置および方法
WO2011009252A1 (zh) 一种化学反应设备及该设备在化学反应中的应用
WO2016091157A1 (zh) 一种使用同轴裂缝天线的微波反应装置及其应用
JP2012531304A (ja) 高温で化学反応を連続的に行うための装置
CN101400195B (zh) 一种微波加热装置及其在化学反应中的应用
CN106925195A (zh) 一种水热法制备粉体材料的装置
EA018179B1 (ru) Непрерывный способ получения амидов низших алифатических карбоновых кислот
JP2010184230A (ja) 連続式マイクロ波反応装置および連続式マイクロ波反応システム
JP5762167B2 (ja) マイクロ波反応装置およびこの装置を用いた高分子化合物の製造方法
JP5461758B2 (ja) マイクロ波化学反応容器および装置
WO2010063144A1 (zh) 一种微波加热装置及其在化学反应中的应用
KR100801539B1 (ko) 제올라이트 합성방법 및 장치
WO2024066554A1 (zh) 一种连续生产装置及聚合物多元醇的连续生产线
KR100732891B1 (ko) 연속식 마이크로파 촉매 건조 장치
CN109608332A (zh) 利用微波-微反应器催化连续合成丙烯酸十四酯的方法
CN212092162U (zh) 一种压力反应器
CN106925196A (zh) 一种高黏度流体的微波加热装置
CN205687564U (zh) 一种石墨烯材料合成装置
CN111440063B (zh) 一种液晶聚合物前驱体乙酰化单体的生产装置和生产方法以及生产装置的用途
CN114432990A (zh) 微波反应装置及其应用
CN216987602U (zh) 微通道反应器
WO2022021467A1 (zh) 微波增强型挤出机装置及有机反应模组
CN114432989A (zh) 连续内馈式微波反应装置及其应用
CN217910358U (zh) 一种微通道反应器
KR20130003152A (ko) 화학 반응기용 마이크로파 모드변환 투입기를 갖는 마이크로파 반응기 및 그 방법

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2706616

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2010541007

Country of ref document: JP

Ref document number: 2008364687

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 2008878518

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2008364687

Country of ref document: AU

Date of ref document: 20081202

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08878518

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 12808355

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE