WO2024066554A1 - 一种连续生产装置及聚合物多元醇的连续生产线 - Google Patents

一种连续生产装置及聚合物多元醇的连续生产线 Download PDF

Info

Publication number
WO2024066554A1
WO2024066554A1 PCT/CN2023/103088 CN2023103088W WO2024066554A1 WO 2024066554 A1 WO2024066554 A1 WO 2024066554A1 CN 2023103088 W CN2023103088 W CN 2023103088W WO 2024066554 A1 WO2024066554 A1 WO 2024066554A1
Authority
WO
WIPO (PCT)
Prior art keywords
tubular reactor
continuous production
tubular
heat exchange
production device
Prior art date
Application number
PCT/CN2023/103088
Other languages
English (en)
French (fr)
Inventor
李志君
袁久伟
王�锋
李玉博
Original Assignee
佳化化学科技发展(上海)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 佳化化学科技发展(上海)有限公司 filed Critical 佳化化学科技发展(上海)有限公司
Publication of WO2024066554A1 publication Critical patent/WO2024066554A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/24Stationary reactors without moving elements inside
    • B01J19/2415Tubular reactors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/0006Controlling or regulating processes
    • B01J19/0013Controlling the temperature of the process
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J4/00Feed or outlet devices; Feed or outlet control devices
    • B01J4/001Feed or outlet devices as such, e.g. feeding tubes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F283/00Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G
    • C08F283/06Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G on to polyethers, polyoxymethylenes or polyacetals

Definitions

  • the present application relates to the technical field of chemical equipment, and in particular to a continuous production device and a continuous production line for polymer polyols.
  • Chemical production is inseparable from the mixing and synthesis of raw materials.
  • the way of feeding during the mixing and synthesis of raw materials and the uniformity of the mixing of raw materials in the reaction device are crucial to the production efficiency, production cost and product quality.
  • Reactors are a commonly used chemical equipment. Usually, a variety of chemical raw materials are added to the reactor, and the chemical reactions of the various chemical raw materials are allowed to occur in the reactor to obtain the desired reaction products.
  • the technical problem to be solved by the present application is to overcome the defects of incomplete reaction or overreaction and low conversion rate of target product in the reactor device in the prior art, thereby providing a continuous production device and a continuous production line of polymer polyols.
  • the present application provides a continuous production device, including a tubular reactor, a tubular cooker, a material pipe and a feeding device.
  • the tubular reactor is provided with a first feed port at the bottom and a first discharge port at the top; the first feed port is connected to a feed pipe; the tubular cooker is provided with a second feed port at the bottom and a second discharge port at the top; the second feed port is connected to the first discharge port; there are multiple material pipes, which are arranged in parallel and spaced in the inner cavity of the tubular reactor and the tubular cooker, the lower end of the material pipe is connected to the first feed port, and the upper end of the material pipe is connected to the first discharge port; the feeding device is arranged on the feed pipe.
  • the first feed port is arranged at the bottom of the tubular reactor, and the first discharge port is arranged at the top of the tubular reactor;
  • the inner cavity of the tubular reactor is provided with a first partition located at the bottom and a second partition located at the top, the first end of the material pipe is connected to the first partition, and the second end of the material pipe is connected to the second partition, and the first partition and the second partition are both provided with mounting holes corresponding to the material pipes one by one, and the material pipe is connected to the inner cavity of the tubular reactor through the mounting holes.
  • the tubular reactor is connected to a temperature control device.
  • the temperature control device includes a heat exchange inlet and a heat exchange outlet arranged on the side wall of the tubular reactor, and the heat exchange inlet and the heat exchange outlet are both connected to the inner cavity of the tubular reactor.
  • the inner cavity of the tubular reactor is provided with a plurality of guide plates arranged at intervals along the axial direction, and adjacent guide plates are staggered along the radial direction of the tubular reactor, so that the inner cavity of the tubular reactor forms a tortuous Return heat exchange channel.
  • the guide plate is provided with a plurality of through holes for the material pipes to pass through, and the guide plate is sleeved on the plurality of material pipes.
  • the structure of the tubular ripener is the same as that of the tubular reactor.
  • a mixer is connected to the feeding pipe.
  • the feed pipe is connected to a batching kettle, the batching kettle is located upstream of the mixer, and the second discharge port is connected to a post-processing device.
  • the present application provides a continuous production line for polymer polyols, comprising the continuous production device described in any one of the above technical solutions.
  • a tubular reactor and a tubular cooker are provided, a first feed port is provided at the lower part of the tubular reactor, a first discharge port is provided at the upper part, and a plurality of material pipes are provided in parallel and spaced apart in the inner cavity of the tubular reactor.
  • the material enters the tubular reactor from the first feed port, enters into the plurality of material pipes for reaction, and then passes through the first feed pipe to enter into the material pipe in the tubular cooker for further sufficient reaction.
  • the flow rate of the material can be controlled by controlling the feeding device, thereby controlling the material flow rate in the tubular reactor.
  • the residence time in the reactor and the residence time of the material in the tubular maturer allow the material to fully and completely react in the tubular reactor and the tubular maturer, which can avoid incomplete reaction between materials and high residual single ions due to short residence time, and avoid excessive reaction between materials and generation of by-products due to long residence time.
  • the materials in the tubular reactor and the tubular maturer are all run from bottom to top, which is different from the top-down feeding method of the traditional reactor. The material falls rapidly due to gravity, causing material accumulation and incomplete reaction.
  • the effect of the feeder is to change the feeding method of the material to from bottom to top, so that the material can slowly move upward in the material pipe, ensuring a more complete reaction, reducing the generation of by-products, improving the conversion rate of the target product, and making the normal distribution of parameters such as viscosity and particle size of the product more concentrated;
  • a stirring system and a circulation system are usually provided, which consumes a lot of electricity, has a high production cost, and has a high failure rate.
  • the failure of the mechanical equipment will seriously affect the progress of the continuous production.
  • the tubular reactor and the tubular ripener are connected in series to form a continuous production device.
  • the device does not have a stirring system and a circulation system, which can reduce the loss of electricity and reduce the production cost.
  • the failure rate in the production process can be reduced, ensuring the progress of continuous production;
  • Both the tubular reactor and the tubular ripener are connected with a temperature control device.
  • a circuitous heat exchange channel is formed in the inner cavity of the tubular reactor, which can expand the contact area between the material pipe and the heat exchange medium, so that the heat exchange medium can fully contact with the material pipe in the inner cavity of the tubular reactor.
  • the heat exchange medium can fully contact with the material pipe in the inner cavity of the tubular ripener, thereby improving the heat exchange efficiency, controlling the reaction temperature more quickly and accurately, further making the material reaction more sufficient, thorough and stable, improving the conversion rate of the target product, and making the normal distribution of parameters such as viscosity and particle size of the product more concentrated;
  • the materials can be mixed in advance before entering the tubular reactor for reaction, which can make the reaction process of the materials more complete and uniform.
  • FIG1 shows a schematic structural diagram of a continuous production device provided in an embodiment of the present application
  • FIG2 shows a schematic diagram of a partial structure of a tubular reactor
  • FIG. 3 shows a top view of a structure of a guide plate.
  • the terms “installed”, “connected”, and “connected” should be understood in a broad sense, for example, it can be a fixed connection, a detachable connection, or an integral connection; it can be a mechanical connection or an electrical connection; it can be a direct connection, or it can be indirectly connected through an intermediate medium, or it can be the internal communication of two components.
  • installed should be understood in a broad sense, for example, it can be a fixed connection, a detachable connection, or an integral connection; it can be a mechanical connection or an electrical connection; it can be a direct connection, or it can be indirectly connected through an intermediate medium, or it can be the internal communication of two components.
  • a continuous production device referring to Fig. 1 to Fig. 3, comprises a tubular reactor 1, a tubular cooker 2, a material pipe 3 and a feeding device 4.
  • the tubular reactor 1 is provided with a first feed port 11 at the lower part and a first discharge port 12 at the upper part; the first feed port 11 is connected to a feed pipe 5;
  • the tubular cooker 2 is provided with a second feed port 21 at the lower part and a second discharge port 22 at the upper part; the second feed port 21 is connected to the first discharge port 12;
  • a plurality of material pipes 3 are provided, and are arranged in parallel and at intervals in the inner cavity of the tubular reactor 1 and the tubular cooker 2, the lower end of the material pipe 3 is connected to the first feed port 11, and the upper end of the material pipe 3 is connected to the first discharge port 12;
  • the feeding device 4 is arranged on the feed pipe 5.
  • a tubular reactor and a tubular slaking device 2 are provided.
  • a first feed port 11 is provided at the lower part of the tubular reactor 1, and a first discharge port 12 is provided at the upper part.
  • the inner cavity of the tubular reactor 1 is provided with a plurality of material pipes 3 arranged in parallel and at intervals. Under the power provided by the feeding device 4, the material enters the tubular reactor 1 from the first feed port 11, and enters the plurality of material pipes 3 for reaction. The material flows upward through the first feeding pipe 5 and enters the tubular maturator 2. The material flows upward to the material pipe 3 for further sufficient reaction.
  • the flow rate of the material can be controlled by controlling the feeding device 4, thereby controlling the retention time of the material in the tubular reactor 1 and the retention time of the material in the tubular maturator 2, so that the material can be fully and completely reacted in the tubular reactor 1 and the tubular maturator 2, which can avoid incomplete reaction between materials and high residual monomers due to short retention time, and avoid excessive reaction between materials and generation of by-products due to long retention time.
  • the materials in the tubular reactor 1 and the tubular maturator 2 all flow from bottom to top, which is different from the top-down feeding method of the traditional reactor. The material falls rapidly due to gravity, resulting in material accumulation and incomplete reaction.
  • the material feeding method is changed to from bottom to top, so that the material can slowly ascend in the material pipe 3, ensuring a more complete reaction, reducing the generation of by-products, and improving the conversion rate of the target product, so that the normal distribution of parameters such as viscosity and particle size of the product is more concentrated.
  • a stirring system and a circulation system are usually provided, which have high power consumption, high production cost, and high failure rate. Failure of mechanical equipment will seriously affect the progress of continuous production.
  • the tubular reactor 1 and the tubular ripener 2 are connected in series to form a continuous production device.
  • the device does not have a stirring system and a circulation system, which can reduce the loss of electricity and reduce production costs.
  • the failure rate in the production process can be reduced, ensuring the progress of continuous production.
  • tubular reactor 1 and the tubular cooker 2 are arranged in parallel via a mounting bracket 40.
  • the first discharge port 12 of the tubular reactor 1 and the second feed port 21 of the tubular cooker 2 are connected via an overflow pipe 20, and the material in the tubular reactor 1 can overflow into the tubular cooker 2 via the overflow pipe 20.
  • the materials in the tubular reactor 1 and the tubular cooker 2 both flow from bottom to top.
  • the feeding device 4 includes a delivery pump.
  • the first feed port 11 is arranged at the bottom of the tubular reactor 1, and the first discharge port 12 is arranged at the top of the tubular reactor 1;
  • the inner cavity of the tubular reactor 1 is provided with a first baffle located at the bottom and a second baffle 6 located at the top, the first end of the material pipe 3 is connected to the first baffle, and the second end of the material pipe 3 is connected to the second baffle 6, and the first baffle and the second baffle 6 are both provided with mounting holes corresponding to the material pipe 3, and the material pipe 3 is connected to the inner cavity of the tubular reactor 1 through the mounting holes.
  • the two ends of the tubular reactor 1 are connected with a head 15, and the first baffle and the second baffle 6 are both arranged in the tubular reactor 1 near the head 15.
  • the outer peripheries of the first baffle and the second baffle 6 are fixedly connected to the inner side wall of the tubular reactor 1.
  • the first baffle and the second baffle 6 divide the inner cavity of the tubular reactor 1 into three cavities, which are the first chamber, the middle chamber and the second chamber from bottom to top.
  • the material pipe 3 is arranged in the middle chamber along the axial direction of the tubular reactor 1.
  • the first feed port 11, the first chamber, the material pipe 3, the second chamber and the first discharge port 12 are interconnected.
  • the structure of the tubular cooker 2 is the same as that of the tubular reactor 1, so the second feed port 21, the first chamber, the material pipe 3, the second chamber and the second discharge port 22 are interconnected.
  • the tubular reactor 1 is connected to a temperature control device.
  • the temperature control device includes a heat exchange inlet 13 and a heat exchange outlet 14 provided on the side wall of the tubular reactor 1, and the heat exchange inlet 13 and the heat exchange outlet 14 are both connected to the inner cavity of the tubular reactor 1.
  • the heat exchange inlet 13 is used to connect the heat exchange medium input pipeline
  • the heat exchange outlet 14 is used to connect the heat exchange medium output pipeline
  • the heat exchange medium input pipeline and the heat exchange medium output pipeline are respectively connected to the heat exchange equipment for providing the refrigeration medium or the heating medium.
  • the refrigeration medium includes cooling water
  • the heat exchange medium includes hot steam. Whether the heat exchange medium is a refrigeration medium or a heating medium depends on whether the reaction process of the material is an exothermic reaction or an endothermic reaction.
  • the heat exchange medium is a heating medium
  • the heat exchange medium is a refrigeration medium to cool the material.
  • the structure of the tubular cooker 2 is the same as that of the tubular reactor 1, that is, the tubular cooker 2 is also connected with a temperature control device, so that the temperature in the tubular reactor 1 and the tubular cooker 2 can be controlled, so that the material in the material pipe 3 reacts more fully, the conversion rate of the target product is improved, and the normal distribution of the product parameters such as viscosity and particle size is more concentrated.
  • the heat exchange inlet 13 is provided at the lower part of the tubular reactor 1, and the heat exchange outlet 14 is provided at the upper part of the tubular reactor 1. Furthermore, the heat exchange inlet 13 and the heat exchange outlet 14 are both connected to the intermediate chamber.
  • the heat exchange medium enters the intermediate chamber of the tubular reactor 1 from the heat exchange inlet 13, and the material enters the first chamber through the first feed port 11, and then enters the material pipe 3 through the mounting hole on the first partition.
  • the heat exchange medium and the material are isolated, which can not only exchange heat with the material and control the reaction temperature of the material, but also do not contact with the material and do not affect the chemical reaction of the material.
  • the heat exchange medium enters the intermediate chamber from the heat exchange inlet 13, contacts with the material pipe 3, exchanges heat with the material in the material pipe 3, and realizes the control of the reaction temperature.
  • the material moves from bottom to top, and the heat exchange medium also moves from bottom to top.
  • the heat exchange inlet 13 is arranged at the upper part of the middle chamber, and the heat exchange outlet 14 is arranged at the lower part of the middle chamber.
  • the flow direction of the heat exchange medium is from top to bottom, which can also achieve the temperature control effect.
  • the inner cavity of the tubular reactor 1 is provided with a plurality of guide plates 7 arranged at intervals along the axial direction, and adjacent guide plates 7 are staggered along the radial direction of the tubular reactor 1, so that the inner cavity of the tubular reactor 1 forms a circuitous heat exchange channel.
  • the tubular reactor 1 is connected to a temperature control device.
  • a circuitous heat exchange channel is formed in the inner cavity of the tubular reactor 1, which can expand the contact area between the material pipe 3 and the heat exchange medium, so that the heat exchange medium can be in the inner cavity of the tubular reactor 1.
  • Full contact Similarly, the heat exchange medium can fully contact with the material pipe in the inner cavity of the tubular cooker 2, thereby improving the heat exchange efficiency, controlling the reaction temperature more quickly and accurately, further making the material reaction more complete, thorough and stable, improving the conversion rate of the target product, and making the normal distribution of parameters such as the viscosity and particle size of the product more concentrated.
  • the guide plate 7 is provided with a plurality of through holes 71 for the material pipes 3 to pass through, and the guide plate 7 is mounted on a plurality of material pipes 3.
  • one side of the guide plate 7 is arc-shaped, adapted to and fixedly connected with the inner wall of the tubular reactor 1, and the other side of the guide plate 7 extends toward the middle of the tubular reactor 1, and a spacing is left between the inner wall on the opposite side of the inner wall of the tubular reactor 1, forming a flow channel for the heat exchange medium.
  • the flow channels between the staggered guide plates 7 are interconnected to form a circuitous heat exchange channel, and the guide plate 7 is used to guide the flow direction of the heat exchange medium.
  • the heat exchange medium flows in the circuitous heat exchange channel, which can expand the contact area between the heat exchange medium and the material pipe 3, thereby improving the heat exchange efficiency and achieving fast and accurate temperature control.
  • the shape, size and offset spacing of the guide plate 7 can be determined according to the actual size and structure of the tubular reactor 1, and are not limited here.
  • the guide plate 7 is staggered in a spiral shape along a spiral line from bottom to top.
  • a mixer 8 is connected to the feed pipe 5.
  • the materials can be mixed in advance before entering the tubular reactor 1 for reaction, which can make the reaction process of the materials more sufficient and uniform.
  • a spiral blade is provided in the mixer 8. After the materials enter the mixer 8, the materials flow along the spiral blades, and the materials will be fully mixed, so that the materials are mixed evenly before entering the tubular reactor 1, so that the materials can be fully reacted.
  • the feed pipe 5 is connected to a batching kettle 9 , and the batching kettle 9 is located upstream of the mixer 8 .
  • the second discharge port 22 is connected to the post-processing device 10 via a discharge pipe 30 .
  • the initial material is put into the batching kettle 9, conveyed by the feeding device 4, first mixed by the mixer 8, and then enters the tubular reactor 1 for reaction.
  • the flow rate of the material is controlled by the feeding device 4, thereby controlling the retention time of the material in the tubular reactor 1, and the reaction temperature of the material is controlled by the temperature control device, so that the reaction process is more stable and sufficient.
  • the material reacts to about 70% in the tubular reactor 1, it can enter the tubular maturator 2 for further reaction, so that the material can achieve a sufficient and thorough reaction, improve the conversion rate of the target product, and make the normal distribution of parameters such as viscosity and particle size of the product more concentrated.
  • a continuous production line for polymer polyols includes the continuous production device described in Example 1.
  • the continuous production line for polymer polyols has all the advantages of the continuous production device described in Example 1, which will not be described in detail herein.
  • the material flows from bottom to top, and the flow rate of the material is controlled by the feeding device 4, and the retention time of the material in the tubular reactor 1 and the tubular ripener 2 is accurately controlled to ensure that the material reacts fully and not excessively.
  • the material in the tubular reactor 1 then enters the tubular ripener 2 for further reaction, so that the material reacts completely, the conversion rate of the target product is improved, and the normal distribution of parameters such as viscosity and particle size of the product is more concentrated;
  • the tubular reactor 1 is connected to a temperature control device, and a guide plate 7 is arranged in the inner cavity of the tubular reactor 1 to control the reaction temperature more quickly and accurately, and further make the material reaction more sufficient, thorough and stable;
  • the materials can be mixed in advance before entering the tubular reactor 1 for reaction, which can make the reaction process of the materials more complete and uniform.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

本申请提供了一种连续生产装置及聚合物多元醇的连续生产线,涉及化工设备技术领域。连续生产装置包括管式反应器、管式熟化器、物料管和送料装置。其中,管式反应器的下部设有第一进料口,上部设有第一出料口;第一进料口连接有进料管;管式熟化器的下部设有第二进料口,上部设有第二出料口;第二进料口与第一出料口连接;物料管设有多个,且并列间隔地设于管式反应器和管式熟化器的内腔,物料管的下端和第一进料口连通,物料管的上端和第一出料口连通;送料装置设于进料管上。本申请能够解决现有技术中的反应釜装置反应不完全或反应过度的问题,具有反应充分、彻底的效果。

Description

一种连续生产装置及聚合物多元醇的连续生产线
相关申请的交叉引用
本申请要求在2022年9月27日提交中国专利局、申请号为202211180842.0、发明名称为“一种连续生产装置及聚合物多元醇的连续生产线”的中国专利申请的优先权,其全部内容通过引用的方式并入本文中。
技术领域
本申请涉及化工设备技术领域,具体涉及一种连续生产装置及聚合物多元醇的连续生产线。
背景技术
化工生产中,离不开原料的混合及合成,原料的混合及合成过程中投料的方式以及反应装置内原料的混合均匀程度对生产效率、生产成本、产品品质的影响至关重要。反应釜是一种常用的化工设备,通常在反应釜内添加入多种化工原料,并允许该多种化工原料在反应釜内发生化学反应,进而获得所需的反应产物。
传统的反应釜装置在连续线中由于反应釜的持续进料,在搅拌及循环的作用下,一部分的物料会提前进入下一个反应装置,使得反应不完全,从而残单较高,气味较大,增大后期处理难度;一部分物料会推迟进入下一个反应器的时间,从而反应过度,产生副产物,这两种状况都会使目标 产物的转化率降低,使产品的正太分布较分散。
发明内容
本申请要解决的技术问题在于克服现有技术中的反应釜装置反应不完全或反应过度、目标产物的转化率低的缺陷,从而提供一种连续生产装置及聚合物多元醇的连续生产线。
为了解决上述问题,本申请一方面提供了一种连续生产装置,包括管式反应器、管式熟化器、物料管和送料装置。其中,管式反应器的下部设有第一进料口,上部设有第一出料口;第一进料口连接有进料管;管式熟化器的下部设有第二进料口,上部设有第二出料口;第二进料口与第一出料口连接;物料管设有多个,且并列间隔地设于管式反应器和管式熟化器的内腔,物料管的下端和第一进料口连通,物料管的上端和第一出料口连通;送料装置设于进料管上。
可选的,第一进料口设于管式反应器的底部,第一出料口设于管式反应器的顶部;管式反应器的内腔设有位于下部的第一隔板和位于上部的第二隔板,物料管的第一端与第一隔板连接,物料管的第二端与第二隔板连接,第一隔板和第二隔板上均开设有与物料管一一对应的安装孔,物料管通过安装孔与管式反应器的内腔连通。
可选的,管式反应器连接有控温装置。
可选的,控温装置包括设于管式反应器侧壁上的换热进口和换热出口,换热进口、换热出口均和管式反应器的内腔连通。
可选的,管式反应器的内腔沿轴向设有若干间隔设置的导流板,相邻的导流板之间沿管式反应器的径向错位分布,使管式反应器的内腔形成迂 回的换热通道。
可选的,导流板上设有若干供物料管穿过的通孔,导流板套装在若干物料管上。
可选的,管式熟化器的结构与管式反应器的结构相同。
可选的,进料管上连接有混合器。
可选的,进料管连接有配料釜,配料釜位于混合器的上游,第二出料口连接后处理装置。
本申请另一方面提供了一种聚合物多元醇的连续生产线,包括以上技术方案中任一项所述的连续生产装置。
本申请具有以下优点:
1.利用本申请的技术方案,通过设置管式反应器和管式熟化器,管式反应器的下部设置第一进料口,上部设置第一出料口,管式反应器的内腔设有若干并列、间隔设置的物料管,物料在送料装置的提供的动力下,由第一进料口进入管式反应器中,并进入多个物料管中反应,上行经第一进料管进入管式熟化器中的物料管中进行进一步充分的反应,可通过控制送料装置来控制物料的流速,进而控制物料在管式反应器中的滞留时长和物料在管式熟化器中的滞留时长,从而使得物料在管式反应器和管式熟化器之中进行充分的、完全的反应,既能避免滞留时间短导致的物料之间反应不完全,残单高,又能避免因滞留时间长导致的物料之间反应过度,产生副产物;另外,管式反应器和管式熟化器内的物料均由下而上运行,与传统的反应釜为自上而下的进料方式,物料因重力作用快速下落,造成物料堆积,反应不彻底。相比于此,本申请中,借助送料装置的驱动以及溢流 的作用,将物料的进料方式改为自下而上,使物料能够在物料管内缓慢的上行,保证反应更充分,减少副产物的产生,提高目标产物的转化率,使产品的粘性、粒径等参数的正太分布更加集中;
2.现有的包含反应釜的连续生产装置中,通常设置搅拌系统和循环系统,耗电量高,生产成本高,且故障率高,机械设备发生故障将严重影响连续生产的进度。而本申请中,管式反应器与管式熟化器串联构成连续生产装置,该装置中无搅拌系统和循环系统,可以减少电力的损失,降低生产成本,并且由于机械设备的减少,能够降低生产过程中的故障发生率,保证了连续生产进度;
3.管式反应器和管式熟化器均连接有控温装置,通过在管式反应器的内腔设置导流板,使管式反应器的内腔形成迂回的换热通道,能够扩大物料管和换热介质的接触面积,使得换热介质能够在管式反应器的内腔中与物料管充分接触,同样,换热介质能够在管式熟化器的内腔中与物料管充分接触,提高换热效率,更加快速和准确地控制反应温度,进一步使物料反应更加充分、彻底和平稳,提高目标产物的转化率,使产品的粘性、粒径等参数的正太分布更加集中;
4.通过在进料管上设置混合器,能够使物料提前混合后再进入管式反应器中反应,能够使物料的反应的过程更加充分、均匀。
附图说明
为了更清楚地说明本申请具体实施方式或现有技术中的技术方案,下面将对具体实施方式或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本申请的一些实施方式,对于本领域普 通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1示出了本申请实施例提供的连续生产装置的一种结构示意图;
图2示出了管式反应器的局部结构示意图;
图3示出了导流板的一种结构的俯视图。
附图标记说明:
1、管式反应器;11、第一进料口;12、第一出料口;13、换热进口;
14、换热出口;15、封头;2、管式熟化器;21、第二进料口;22、第二出料口;3、物料管;4、送料装置;5、进料管;6、第二隔板;7、导流板;71、通孔;8、混合器;9、配料釜;10、后处理装置;20、溢流管;30、出料管;40、安装支架。
具体实施方式
下面将结合附图对本申请的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
在本申请的描述中,需要说明的是,术语“中心”、“上”、“下”、“左”、“右”、“竖直”、“水平”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。此外,术语“第一”、“第二”、“第三”仅用于描述目的,而不能理解为指示或暗示相对重要性。
在本申请的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
此外,下面所描述的本申请不同实施方式中所涉及的技术特征只要彼此之间未构成冲突就可以相互结合。
为了便于介绍本申请的技术方案,以下结合附图以及具体的实施例来详细说明,但实施例不应看作是对本申请的限制。
实施例1
一种连续生产装置,参照图1-图3,包括管式反应器1、管式熟化器2、物料管3和送料装置4。其中,管式反应器1的下部设有第一进料口11,上部设有第一出料口12;第一进料口11连接有进料管5;管式熟化器2的下部设有第二进料口21,上部设有第二出料口22;第二进料口21与第一出料口12连接;物料管3设有多个,且并列间隔地设于管式反应器1和管式熟化器2的内腔,物料管3的下端和第一进料口11连通,物料管3的上端和第一出料口12连通;送料装置4设于进料管5上。
利用本申请的技术方案,通过设置管式式反应器和管式熟化器2,管式反应器1的下部设置第一进料口11,上部设置第一出料口12,管式反应器1的内腔设有若干并列、间隔设置的物料管3,物料在送料装置4的提供的动力下,由第一进料口11进入管式反应器1中,并进入多个物料管3中反 应,上行经第一进料管5进入管式熟化器2中,物料上行至物料管3中进行进一步充分的反应,可通过控制送料装置4来控制物料的流速,进而控制物料在管式反应器1中的滞留时长和物料在管式熟化器2中的滞留时长,从而使得物料在管式反应器1和管式熟化器2之中进行充分的、完全的反应,既能避免滞留时间短导致的物料之间反应不完全,残单高,又能避免因滞留时间长导致的物料之间反应过度,产生副产物;另外,管式反应器1和管式熟化器2内的物料均由下而上运行,与传统的反应釜为自上而下的进料方式,物料因重力作用快速下落,造成物料堆积,反应不彻底。相比于此,本申请中,借助送料装置4的驱动以及溢流的作用,将物料的进料方式改为自下而上,使物料能够在物料管3内缓慢的上行,保证反应更充分,减少副产物的产生,提高目标产物的转化率,使产品的粘性、粒径等参数的正太分布更加集中。
现有的包含反应釜的连续生产装置中,通常设置搅拌系统和循环系统,耗电量高,生产成本高,且故障率高,机械设备发生故障将严重影响连续生产的进度。而本申请中,管式反应器1与管式熟化器2串联构成连续生产装置,该装置中无搅拌系统和循环系统,可以减少电力的损失,降低生产成本,并且由于机械设备的减少,能够降低生产过程中的故障发生率,保证了连续生产进度。
具体的,管式反应器1和管式熟化器2通过安装支架40并列设置。管式反应器1的第一出料口12和管式熟化器2的第二进料口21通过溢流管20连通,管式反应器1内的物料可以通过溢流管20溢流进入管式熟化器2中。管式反应器1和管式熟化器2中的物料均自下而上运行。
具体的,送料装置4包括输送泵。
可选的,第一进料口11设于管式反应器1的底部,第一出料口12设于管式反应器1的顶部;管式反应器1的内腔设有位于下部的第一隔板和位于上部的第二隔板6,物料管3的第一端与第一隔板连接,物料管3的第二端与第二隔板6连接,第一隔板和第二隔板6上均开设有与物料管3一一对应的安装孔,物料管3通过安装孔与管式反应器1的内腔连通。具体的,参照图2,管式反应器1的两端连接有封头15,第一隔板和第二隔板6均设于靠近封头15的管式反应器1内。第一隔板以及第二隔板6的外周均与管式反应器1的内侧壁固定连接。第一隔板和第二隔板6将管式反应器1的内腔分为三个腔,自下而上依次为第一腔室、中间腔室以及第二腔室。物料管3沿管式反应器1的轴向设于中间腔室内。第一进料口11、第一腔室、物料管3、第二腔室和第一出料口12之间相互连通。管式熟化器2的结构与管式反应器1的结构相同,因此,第二进料口21、第一腔室、物料管3、第二腔室和第二出料口22之间相互连通。
可选的,管式反应器1连接有控温装置。
可选的,控温装置包括设于管式反应器1侧壁上的换热进口13和换热出口14,换热进口13、换热出口14均和管式反应器1的内腔连通。换热进口13用于连接换热介质输入管路,换热出口14用于连接换热介质输出管路,换热介质输入管路以及换热介质输出管路分别和用于提供制冷介质或制热介质的换热设备连接。制冷介质包括冷却水,换热介质包括热蒸汽。换热介质采用制冷介质还是制热介质,取决于物料的反应过程为放热反应还是吸热反应。当物料的反应过程为吸热反应时,换热介质为制热介质, 为物料升温;当物料的反应过程为放热反应时,换热介质为制冷介质,为物料降温。管式熟化器2的结构与管式反应器1的结构相同,也就是,管式熟化器2也同样连接有控温装置,从而能够控制管式反应器1和管式熟化器2中的温度,使物料管3中的物料反应更充分,提高目标产物的转化率,使产品的粘性、粒径等参数的正太分布更加集中。
具体的,本实施例中,参照图1,换热进口13设于管式反应器1的下部,换热出口14设于管式反应器1的上部。进一步的,换热进口13和换热出口14均与中间腔室连通。换热介质从换热进口13进入管式反应器1的中间腔室中,物料经第一进料口11进入第一腔室中,再经第一隔板上的安装孔进入物料管3中,换热介质和物料隔离,既能对物料进行换热,控制物料的反应温度,又不与物料接触,不影响物料的化学反应。换热介质从换热进口13进入中间腔室中,与物料管3接触,与物料管3内的物料进行换热,实现反应温度的控制。本实施例中,物料自下而上运动,换热介质也是自下而上运动。当然,作为一种可替换的实施方式,换热进口13设于中间腔室的上部,换热出口14设于中间腔室的下部,换热介质的流动方向为自上而下,同样也能起到控温效果。
可选的,管式反应器1的内腔沿轴向设有若干间隔设置的导流板7,相邻的导流板7之间沿管式反应器1的径向错位分布,使管式反应器1的内腔形成迂回的换热通道。
管式反应器1连接有控温装置,通过在管式反应器1的内腔设置导流板7,使管式反应器1的内腔形成迂回的换热通道,能够扩大物料管3和换热介质的接触面积,使得换热介质能够在管式反应器1的内腔中与物料管3 充分接触,同样,换热介质能够在管式熟化器2的内腔中与物料管充分接触,提高换热效率,更加快速和准确地控制反应温度,进一步使物料反应更加充分、彻底和平稳,提高目标产物的转化率,使产品的粘性、粒径等参数的正太分布更加集中。
可选的,导流板7上设有若干供物料管3穿过的通孔71,导流板7套装在若干物料管3上。具体的,参照图3,本实施例中,导流板7的一侧为弧形,与管式反应器1的内壁适配并固定连接,导流板7的另一侧朝向管式反应器1的中部延伸,与管式反应器1的内壁相对侧的内壁之间留有间距,构成换热介质的流动通道。间错设置的导流板7之间的流动通道相互连通,构成迂回的换热通道,导流板7用于引导换热介质的流向,换热介质在迂回的换热通道内流动,能够扩大换热介质和物料管3之间的接触面积,从而提高换热效率,实现快速又准确的控温。
当然,导流板7的形状、尺寸及错位间距可以根据实际的管式反应器1的尺寸和结构而定,此处不做限制,比如,导流板7由下而上沿某一螺旋线呈螺旋状错位设置。
可选的,进料管5上连接有混合器8。通过在进料管5上设置混合器8,能够使物料提前混合后再进入管式反应器1中反应,能够使物料的反应的过程更加充分、均匀。具体的,混合器8内设有螺旋叶片,在物料进入混合器8后,物料随螺旋叶片流动,物料将得到充分的混合,使物料在进入管式反应器1之前就已经混合均匀,能够使物料得到充分的反应。
可选的,进料管5连接有配料釜9,配料釜9位于混合器8的上游,第二出料口22通过出料管30连接后处理装置10。
具体的,初始的物料投入配料釜9中,经过送料装置4的输送,先经过混合器8进行混合,再进入管式反应器1中进行反应,通过送料装置4,控制物料的流速,从而控制物料在管式反应器1中的滞留时间,以及通过控温装置,控制物料的反应温度,使反应过程更加平稳、充分。物料在管式反应器1中反应至70%左右时,可以进入管式熟化器2中,进行进一步的反应,使物料达到充分的、彻底的反应,提高目标产物的转化率,使产品的粘性、粒径等参数的正太分布更加集中。
实施例2
一种聚合物多元醇的连续生产线,包括实施例1中所述的连续生产装置。聚合物多元醇的连续生产线具有实施例1中所述的连续生产装置的所有优点,此处不再赘述。
根据上述描述,本专利申请具有以下优点:
1、物料由下而上流动,通过送料装置4控制物料的流动速度,准确地控制物料在管式反应器1及管式熟化器2中的滞留时长,保证物料反应充分且不过度,管式反应器1中的物料再进入管式熟化器2中进一步反应,使物料反应完全,提高目标产物的转化率,使产品的粘性、粒径等参数的正太分布更加集中;
2、管式反应器1连接有控温装置,在管式反应器1的内腔设置导流板7,更加快速和准确地控制反应温度,进一步使物料反应更加充分、彻底和平稳;
3、通过在进料管5上设置混合器8,能够使物料提前混合后再进入管式反应器1中反应,能够使物料的反应的过程更加充分、均匀。
显然,上述实施例仅仅是为清楚地说明所作的举例,而并非对实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。而由此所引伸出的显而易见的变化或变动仍处于本发明创造的保护范围之中。

Claims (10)

  1. 一种连续生产装置,其特征在于,包括:
    管式反应器(1),所述管式反应器(1)的下部设有第一进料口(11),上部设有第一出料口(12);所述第一进料口(11)连接有进料管(5);
    管式熟化器(2),所述管式熟化器(2)的下部设有第二进料口(21),上部设有第二出料口(22);所述第二进料口(21)与所述第一出料口(12)连接;
    物料管(3),所述物料管(3)设有多个,且并列间隔地设于所述管式反应器(1)和所述管式熟化器(2)的内腔,所述物料管(3)的下端和所述第一进料口(11)连通,所述物料管(3)的上端和所述第一出料口(12)连通;
    送料装置(4),设于所述进料管(5)上。
  2. 根据权利要求1所述的连续生产装置,其特征在于,所述第一进料口(11)设于所述管式反应器(1)的底部,所述第一出料口(12)设于所述管式反应器(1)的顶部;所述管式反应器(1)的内腔设有位于下部的第一隔板和位于上部的第二隔板(6),所述物料管(3)的第一端与所述第一隔板连接,所述物料管(3)的第二端与所述第二隔板(6)连接,所述第一隔板和所述第二隔板(6)上均开设有与所述物料管(3)一一对应的安装孔,所述物料管(3)通过所述安装孔与所述管式反应器(1)的内腔连通。
  3. 根据权利要求1所述的连续生产装置,其特征在于,所述管式反应器(1)连接有控温装置。
  4. 根据权利要求3所述的连续生产装置,其特征在于,所述控温装置包括设于所述管式反应器(1)侧壁上的换热进口(13)和换热出口(14),所述换热进口(13)、换热出口(14)均和所述管式反应器(1)的内腔连通。
  5. 根据权利要求4所述的连续生产装置,其特征在于,所述管式反应器(1)的内腔沿轴向设有若干间隔设置的导流板(7),相邻的所述导流板(7)之间沿所述管式反应器(1)的径向错位分布,使所述管式反应器(1)的内腔形成迂回的换热通道。
  6. 根据权利要求5所述的连续生产装置,其特征在于,所述导流板(7)上设有若干供所述物料管(3)穿过的通孔(71),所述导流板(7)套装在若干所述物料管(3)上。
  7. 根据权利要求1-6中任一项所述的连续生产装置,其特征在于,所述管式熟化器(2)的结构与所述管式反应器(1)的结构相同。
  8. 根据权利要求1-6中任一项所述的连续生产装置,其特征在于,所述进料管(5)上连接有混合器(8)。
  9. 根据权利要求8所述的连续生产装置,其特征在于,所述进料管(5)连接有配料釜(9),所述配料釜(9)位于所述混合器(8)的上游,第二出料口(22)连接后处理装置(10)。
  10. 一种聚合物多元醇的连续生产线,其特征在于,包括权利要求1-9中任一项所述的连续生产装置。
PCT/CN2023/103088 2022-09-27 2023-06-28 一种连续生产装置及聚合物多元醇的连续生产线 WO2024066554A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211180842.0 2022-09-27
CN202211180842.0A CN115624950A (zh) 2022-09-27 2022-09-27 一种连续生产装置及聚合物多元醇的连续生产线

Publications (1)

Publication Number Publication Date
WO2024066554A1 true WO2024066554A1 (zh) 2024-04-04

Family

ID=84904920

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/103088 WO2024066554A1 (zh) 2022-09-27 2023-06-28 一种连续生产装置及聚合物多元醇的连续生产线

Country Status (2)

Country Link
CN (1) CN115624950A (zh)
WO (1) WO2024066554A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115624950A (zh) * 2022-09-27 2023-01-20 佳化化学科技发展(上海)有限公司 一种连续生产装置及聚合物多元醇的连续生产线

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060099131A1 (en) * 2004-11-03 2006-05-11 Kellogg Brown And Root, Inc. Maximum reaction rate converter system for exothermic reactions
CN204779426U (zh) * 2015-06-05 2015-11-18 福建青松股份有限公司 合成樟脑脂化工段的连续化生产装置
CN108929787A (zh) * 2017-05-27 2018-12-04 中国石油化工股份有限公司 管式-变温连续法制备生物柴油的方法和系统
CN209815996U (zh) * 2019-01-23 2019-12-20 福建南平龙晟香精香料有限公司 一种龙涎酮中间品新型生产装置
CN216799854U (zh) * 2022-02-19 2022-06-24 青岛奥迪斯生物科技有限公司 一种联苯类化合物的合成装置
CN115624950A (zh) * 2022-09-27 2023-01-20 佳化化学科技发展(上海)有限公司 一种连续生产装置及聚合物多元醇的连续生产线

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060099131A1 (en) * 2004-11-03 2006-05-11 Kellogg Brown And Root, Inc. Maximum reaction rate converter system for exothermic reactions
CN204779426U (zh) * 2015-06-05 2015-11-18 福建青松股份有限公司 合成樟脑脂化工段的连续化生产装置
CN108929787A (zh) * 2017-05-27 2018-12-04 中国石油化工股份有限公司 管式-变温连续法制备生物柴油的方法和系统
CN209815996U (zh) * 2019-01-23 2019-12-20 福建南平龙晟香精香料有限公司 一种龙涎酮中间品新型生产装置
CN216799854U (zh) * 2022-02-19 2022-06-24 青岛奥迪斯生物科技有限公司 一种联苯类化合物的合成装置
CN115624950A (zh) * 2022-09-27 2023-01-20 佳化化学科技发展(上海)有限公司 一种连续生产装置及聚合物多元醇的连续生产线

Also Published As

Publication number Publication date
CN115624950A (zh) 2023-01-20

Similar Documents

Publication Publication Date Title
WO2024066554A1 (zh) 一种连续生产装置及聚合物多元醇的连续生产线
US11628415B2 (en) Built-in micro interfacial enhanced reaction system and process for PTA production with PX
CN202322675U (zh) 2-丙烯酰胺-2-甲基丙磺酸连续合成反应装置
CN220111076U (zh) 一种连续生产装置及聚合物多元醇的连续生产线
CN103471432A (zh) 一种具有控温功能双螺旋板式固定管板换热器
CN106732290A (zh) 一种连续生产硝基甲烷的反应器
CN215611599U (zh) 一种用于连续化生产氨丁三醇的反应系统
CN202279795U (zh) 聚对苯二甲酸1,3-丙二醇酯连续生产装置中的第二酯化反应器
CN206566900U (zh) 一种连续生产硝基甲烷的反应器
CN213376649U (zh) 一种制备乙酸苄酯的连续反应装置
CN111389338B (zh) 一种用于甲苯与异丁烯烷基化反应的新型多通道反应器
CN212680968U (zh) 一种液体致香物制备设备
CN202238058U (zh) 硝基氯化苯连续硝化器
CN208990814U (zh) 一种冷却搅拌反应釜
CN214636282U (zh) 一种夹套式冷却加热装置
CN215611598U (zh) 一种连续化生产氨丁三醇的塔式缩合反应器
CN218981590U (zh) 一种管式反应器及反应设备
CN220990771U (zh) 一种连续循环法生产的氯化反应装置
CN101054473B (zh) 一种耦合生产设备及生产工艺
CN220496375U (zh) 一种保温夹套反应釜
CN217910358U (zh) 一种微通道反应器
CN217341359U (zh) 一种evoh聚合反应釜
JP7262723B2 (ja) p-キシレンからのp-トルイル酸生成用のマイクロ界面ユニット外付け型強化酸化システム
CN218107649U (zh) 一种换热式磷酸锂反应釜
CN219314957U (zh) 快速换热型酶解罐

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23869802

Country of ref document: EP

Kind code of ref document: A1