WO2011009252A1 - 一种化学反应设备及该设备在化学反应中的应用 - Google Patents

一种化学反应设备及该设备在化学反应中的应用 Download PDF

Info

Publication number
WO2011009252A1
WO2011009252A1 PCT/CN2009/075159 CN2009075159W WO2011009252A1 WO 2011009252 A1 WO2011009252 A1 WO 2011009252A1 CN 2009075159 W CN2009075159 W CN 2009075159W WO 2011009252 A1 WO2011009252 A1 WO 2011009252A1
Authority
WO
WIPO (PCT)
Prior art keywords
microwave irradiation
reaction
chemical reaction
tank
microwave
Prior art date
Application number
PCT/CN2009/075159
Other languages
English (en)
French (fr)
Inventor
李云龙
朱纯峰
童扬传
Original Assignee
北京思践通科技发展有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京思践通科技发展有限公司 filed Critical 北京思践通科技发展有限公司
Priority to JP2012520885A priority Critical patent/JP2012533417A/ja
Priority to EP20090847487 priority patent/EP2457651B1/en
Priority to CA2768524A priority patent/CA2768524C/en
Priority to AU2009350266A priority patent/AU2009350266B2/en
Priority to US13/386,410 priority patent/US20120186972A1/en
Publication of WO2011009252A1 publication Critical patent/WO2011009252A1/zh

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/64Heating using microwaves
    • H05B6/80Apparatus for specific applications
    • H05B6/806Apparatus for specific applications for laboratory use
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/12Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electromagnetic waves
    • B01J19/122Incoherent waves
    • B01J19/126Microwaves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00002Chemical plants
    • B01J2219/00027Process aspects
    • B01J2219/0004Processes in series
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/12Processes employing electromagnetic waves
    • B01J2219/1203Incoherent waves
    • B01J2219/1206Microwaves
    • B01J2219/1209Features relating to the reactor or vessel
    • B01J2219/1221Features relating to the reactor or vessel the reactor per se
    • B01J2219/1239Means for feeding and evacuation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/12Processes employing electromagnetic waves
    • B01J2219/1203Incoherent waves
    • B01J2219/1206Microwaves
    • B01J2219/1248Features relating to the microwave cavity
    • B01J2219/1251Support for the reaction vessel
    • B01J2219/126Support for the reaction vessel in the form of a closed housing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/19Details relating to the geometry of the reactor

Definitions

  • the invention relates to a chemical reaction device and to the use of the chemical reaction device in a chemical reaction. Background technique
  • the microwave is an electromagnetic wave having a wavelength between the wavelength of the infrared light and the radio wave, that is, a wavelength in the range of 1 mm to 100 cm.
  • Microwave has the characteristics of "body phase heating” without temperature gradient, which can quickly and uniformly heat the material, which is characterized by high thermal efficiency and no pollution.
  • microwaves also have a special "non-heating effect" caused by direct action on the reaction molecules.
  • microwaves can change the course of chemical reactions, reduce the activation energy of the reaction, speed up the synthesis, increase the equilibrium conversion rate, reduce by-products, and change the stereoselectivity of the product. It is precisely because of the special promotion effect of microwave on chemical reaction that the application of microwave to chemical reaction not only has great theoretical research significance, but also has great potential for industrial application.
  • microwave Due to the above characteristics of microwave, in recent years, microwave has been widely studied and applied as an efficient and clean heating means and chemical reaction means.
  • the material Due to the short microwave penetration distance, the material is easily formed into a hot spot under continuous microwave irradiation, and the reaction temperature is difficult to control; the reactor in the microwave cavity is difficult to transport high-viscosity materials and has poor mixing uniformity.
  • the above reasons have led to the inability of large-scale industrialization of microwave devices currently used in chemical reactions to stay in the laboratory research stage.
  • CN2821468Y discloses a microwave processor comprising at least one box-shaped cavity, wherein the opposite side end faces of the box-shaped cavity are provided with a pipe interface, and the other two opposite side faces of the box-shaped cavity are located One of the side end faces is closed, and the side end face relative to the closed end face is a flange interface, and the flange interface is connected to the microwave generating device; the pipe for the heated fluid passes through the box-shaped cavity, the two ends of the pipe Extend from the pipe joint.
  • This processor can be connected in multiple (15) to form a long reactor, and multiple tubes can be arranged side by side in the chamber.
  • this device takes into account the problem that the penetration distance of the microwave is short, it still fails to solve the problem that the temperature of the material is uncontrollable under the condition of continuous microwave irradiation, so it can only be used to heat the fluid, and cannot be applied. In a chemical reaction that requires temperature control under continuous microwave irradiation.
  • CN1091394C discloses a special industrial microwave oven for fluid processing, which comprises a microwave resonant cavity provided with a microwave input port and a fluid inlet, outlet and a working door, and a sealed shielding device respectively arranged at the fluid inlet and the outlet, and the resonant cavity is provided therein.
  • a fluid circulator specially designed for the fluid to fully generate a physical and chemical reaction in the microwave field.
  • the upper part and the lower part of the resonant cavity are respectively provided with means for ensuring that the fluid can be continuously fed and discharged according to the process requirements, which are connected with the fluid inlet and outlet.
  • CN 2813090Y discloses a microwave reactor which is capable of continuous organic chemical synthesis; it uses microwaves generated by a microwave generator to heat an organic mixture in a resonant cavity.
  • the resonant cavity passes through three connecting end flanges, one of which is sealed to the separator and the microwave generator capable of passing microwaves; the other flange is connected to the feeding tube; the third flange and coil heat exchanger Sealed connection.
  • the coil heat exchanger transfers excess heat of reaction to ensure that the reaction is carried out within a set temperature and pressure range.
  • the reactor can control the reaction temperature to a certain extent, the volume of the resonator is small, and the time of the material under microwave irradiation is relatively short, and the sufficiency of the reaction and the yield of the product cannot be guaranteed.
  • the reactor is not suitable for high viscosity materials.
  • CN 101400195 A discloses a microwave heating device comprising a microwave irradiation chamber, a material tube and a heat exchange tube.
  • the material tube is disposed in the microwave irradiation chamber, and the heat exchange tube is disposed in the material tube and enters and exits from the nozzle or the tube wall of the material tube.
  • the microwave heating device provided by the invention can control the temperature of the material in the material tube under continuous microwave irradiation, and realizes temperature control to a certain extent.
  • the reaction system is difficult to apply to high-viscosity, semi-solid and chemical reactions that easily form scaled materials, cannot effectively apply heterogeneous catalytic reactions, and faces problems in pipeline fouling and maintenance; at the same time, the reaction system is used for material generation. When a chemical reaction occurs in the gas by-product after the reaction, the generated gas cannot be discharged in time, and thus the yield of the product is affected. Summary of the invention
  • the object of the present invention is to provide a chemical reaction device which can be applied to various liquid materials in which a chemical reaction is carried out, in particular, it can be applied to a chemical reaction in which a high viscosity, a semi-solid and a scale-prone material are easily formed.
  • the chemical reaction apparatus of the present invention has a good applicability to a heterogeneous reaction or a heterogeneous catalytic reaction.
  • the present invention provides a chemical reaction apparatus comprising a microwave irradiation apparatus and a chemical reaction apparatus, the microwave irradiation apparatus comprising a microwave generating apparatus and a microwave irradiation chamber, wherein the chemical reaction apparatus includes a groove And a material flow control device, at least a portion of the tank being located in the microwave irradiation chamber.
  • the invention also provides the use of the chemical reaction apparatus of the invention in a chemical reaction.
  • the chemical reaction device provided by the invention is suitable for chemical reaction in various liquid materials, and is especially suitable for chemical reactions with high viscosity, semi-solid and easy formation of fouling materials, as well as heterogeneous reactions and heterogeneous catalytic reactions.
  • the chemical reaction device of the present invention when applied to a chemical reaction for generating gaseous by-products, the gas can be exhausted in time to reduce the concentration of reaction by-products in the tank, thereby promoting the chemical reaction equilibrium to move toward the product, thereby increasing the reactants. Conversion rate and product yield.
  • FIG. 1 is a schematic cross-sectional view showing a first embodiment of a chemical reaction apparatus of the present invention
  • FIG. 2 is a schematic cross-sectional view showing a second embodiment of the chemical reaction apparatus of the present invention.
  • FIG. 3 is a schematic cross-sectional view showing a third embodiment of the chemical reaction apparatus of the present invention.
  • Figure 4 is a schematic cross-sectional view showing a plurality of second protrusions in the tank
  • Figure 5 is a schematic view showing the first protrusions disposed within the edge of the spiral blade of the single screw drive mechanism
  • Figure 6 is a schematic view showing the use of three microwave irradiation chambers
  • FIG. 7 is a schematic illustration of a reaction system to which the chemical reaction apparatus of the present invention is applied. detailed description
  • the chemical reaction apparatus comprises a microwave irradiation apparatus and a chemical reaction apparatus
  • the microwave irradiation apparatus comprises a microwave irradiation chamber 3 and a microwave generating apparatus (not shown in the drawing)
  • the chemical reaction device comprises a tank body 2 and a material flow control device, at least a portion of which is located in the microwave irradiation chamber 3.
  • the microwave irradiation device comprises at least one waveguide 4 and a microwave generator 5, the at least one waveguide 4 being disposed on a wall of the microwave irradiation chamber 3, the microwave generator 5 being external to the microwave irradiation chamber 3
  • the waveguide 4 is connected and emits microwaves into the microwave irradiation chamber 3.
  • the plurality of waveguides 4 are preferably evenly distributed on the inner wall of the microwave irradiation chamber 3.
  • the plurality of waveguides 4 may be disposed on an inner wall of the microwave irradiation chamber or may be disposed to be distributed on the plurality of inner walls.
  • the sealing device 7 On the microwave irradiation chamber, all parts of the chemical reaction device are provided with a sealing device 7 at a portion passing through the microwave irradiation cavity, for example, the groove body 2 passing through the microwave irradiation cavity 3
  • the sealing device provided at the part.
  • the sealing means may be various means for preventing microwave leakage known to those skilled in the art, such as a wire mesh made of a material that reflects microwave waves, such as a metal material, or a microwave high temperature shielding glue or the like.
  • the above metal material such as stainless steel, aluminum, aluminum alloy, iron, copper or silver is more preferably stainless steel and aluminum alloy.
  • the microwave irradiation chamber 3 is made of a material that reflects microwaves, or the inner wall of the microwave irradiation chamber is plated with a layer of material that reflects microwaves.
  • the tank body 2 is a chemical reaction passage whose upper portion is not closed, for example, the upper portion is open.
  • the tank body 2 can have various shapes as long as the reaction material can be smoothly passed through, for example, it can be straight, spiral or serpentine.
  • the straight groove body is a groove body whose axis of the groove body is a straight line
  • the spiral groove body is a groove body whose axis of the groove body is a spiral line
  • the serpentine groove body That is, the groove body of the groove body is a serpentine groove.
  • the cross-sectional shape of the tank body is preferably for facilitating the separation of the reaction material, and may be, for example, U-shaped, curved, semi-circular, elliptical or square.
  • the tank body 2 may be horizontally fixed or It is considered to be tilted and fixed to accommodate different flow conditions of different materials.
  • the top of the tank body may be provided with a top portion at least partially covering the tank body.
  • the cover ie, the top cover may partially or completely cover the top of the trough.
  • the top cover partially covering the top of the tank may be mesh-shaped or spaced apart.
  • the material of the tank body 2 may be a material that totally reflects microwaves, or a material that transmits microwaves completely, and is preferably a material that totally reflects microwaves.
  • the material of the total reflection microwave is as described above, and the material of the total transmission microwave is well known to those skilled in the art, such as polyimide and its modification, polyetheretherketone and its modification, polytetrafluoroethylene. Ethylene and its modifications, polyethylene and its modifications, polypropylene and its modifications, polystyrene and its modifications, quartz or glass. More preferably, polytetrafluoroethylene and its modifications, and polystyrene and its modifications are used.
  • the material of the top cover can be a fully transmissive microwave material as described above.
  • the material flow control means includes means for pushing the animal material to flow.
  • Fig. 1 shows a first embodiment of the chemical reaction apparatus of the present invention
  • the means for propelling the flow of the material comprises a tank adjusting means for adjusting the height difference between the ends of the tank.
  • the tank adjusting device may be any device known to those skilled in the art that can adjust the height difference between the two ends of the tank body.
  • the tank adjusting device includes two ends of the tank body on the two side walls of the microwave irradiation chamber.
  • the two sliding grooves and the fixing knobs disposed vertically on the upper portion thereof can respectively slide the two ends of the groove body up and down along the sliding groove, so that the height difference between the two ends of the groove body can be adjusted;
  • a screw with a height adjustment is installed at the foot portion, and the inclination of the entire microwave irradiation chamber is adjusted according to the required height difference to achieve the required height difference at both ends of the tank.
  • the tank adjustment can be adjusted using a tank adjustment device that adjusts the height difference between the two ends of the tank.
  • the tank body is straight, and the means for propelling the material flows includes a plurality of scrapers 8 and a transmission device 9, and the plurality of scrapers are spaced apart Is fixed on the transmission device 9, at least a part of the transmission device 9 is disposed in the tank body 2, and the shape of the squeegee 8 is preferably matched with the cross section of the tank body 2; 9 may be a variety of devices known to those skilled in the art for driving materials, such as belt drives or sprocket drives. When the viscosity of the material is large or the material is semi-solid, the above embodiment can be used to push the reaction material to prevent the material from staying in the tank.
  • the material of the squeegee may be a variety of fully transmissive microwave materials or a variety of total reflection microwave materials, examples of fully transmissive microwave materials and total reflection microwave materials are as described above.
  • the squeegee is a material that is fully transmissive to microwaves.
  • Figure 3 shows a third embodiment of the chemical reaction apparatus of the present invention
  • the tank body is straight
  • the push The material flow means comprises a single screw drive mechanism or a multi-screw drive mechanism
  • the single screw drive mechanism or the multi-screw drive mechanism is located in the tank body
  • the single screw drive mechanism 13 is shown in FIG.
  • the screw of the single screw drive mechanism or the multi-screw drive mechanism includes a screw shaft 16 and a spiral blade 15, and the spiral blade 15 of the single screw drive mechanism or the multi-screw drive mechanism is provided with one or more surfaces.
  • First protrusions 20 By providing the first projections 20, the radial flow of the material can be increased to achieve a more uniform mixing of the materials.
  • the first protrusions 20 may be sheets of various shapes, which may be curved on the surface or flat on the surface, and the plurality of first protrusions 20 may preferably be distributed over the entire spiral blade 15 at the same interval. on.
  • the one or more first protrusions 20 are vertically disposed on the surface of the spiral blade 15.
  • the one or more first projections 20 may be provided on the single screw drive mechanism or on the multi-screw drive mechanism.
  • the minimum distance of the first protrusion along the radial direction of the screw to the screw shaft is 1/5-4/5 of the radial distance from the outer edge of the spiral blade to the screw shaft, the first protrusion along the screw
  • the axial length is 1/5-4/5 of the pitch.
  • the minimum distance of each first protrusion in the radial direction of the screw to the screw shaft is equal, and the length along the axial direction of the screw is also equal, and the spacing of each first protrusion equal.
  • the pitch is defined as the distance between two points on the adjacent two first protrusions that are closest to the screw shaft and that are equal in radial distance from the screw shaft.
  • the material of the single screw drive mechanism or the multi-screw drive mechanism may be a material of various total transmission microwaves or a material of various total reflection microwaves, and examples of the total transmission microwave material and the total reflection microwave material are as described above. It is preferred to use a material that transmits microwaves in its entirety.
  • the material flow control device further includes means for changing the flow state of the material, and the means for changing the flow state of the material may be separately provided or may be combined with the first embodiment of the present invention. Mode combination settings.
  • the means for changing the flow state of the material is means for changing the flow of the material from a flat flow state to a turbulent state or for enhancing the turbulent state of the material, and thereby promoting the mixed state of the reaction materials, for example, means for obstructing the flow of the material.
  • said means for varying the flow state of the material may comprise a second projection disposed within said tank.
  • a plurality of second protrusions 14 are provided in the tank body 2.
  • the turbulent state and mixing effect of the reaction materials can be improved, which is advantageous for increasing the reaction rate and facilitating the escape of gaseous by-products (if gas by-products are generated) during the reaction. .
  • the means for changing the flow state of the material comprises a bed of solid particulate matter disposed within the tank or a plurality of beds of solid particulate matter arranged along the length of the tank, the material being capable of passing through the solid particulate matter Bed.
  • the one or more solid particulate bed layers may be provided independently or in combination with the second protrusions.
  • the solid particle bed layer may be a bed obtained by placing solid particles in a space separated by two porous separators fixed in the tank body, and the pore size of the porous separator is smaller than the particle diameter of the solid particles; A bed obtained by fixing a bag containing solid particles in a tank. The porous separator or bag is inert to the chemical reaction.
  • the solid particulate bed layer can also be used to promote mixing of the reaction materials.
  • the solid particulate matter can be any of various natural or synthetic inorganic or organic solid particulates that do not undergo any chemical interaction with the reaction material.
  • the solid particulate matter may be solid catalyst particles. At this time, such solid catalyst particles can simultaneously serve to enhance the mixing of the materials and to catalyze the chemical reaction.
  • the material of the second protrusions may be various materials for transmitting microwaves, or materials of various total reflection microwaves, fully transparent microwave materials and total reflection. Examples of microwave materials are as described above.
  • the second protrusions are made of a material that transmits microwaves.
  • the chemical reaction apparatus further includes a heat exchange device and a temperature measurement and control device.
  • the heat exchange device comprises a material heat exchange device and/or a microwave irradiation chamber heat exchange device.
  • the material heat exchange device comprises an interlayer disposed outside the tank body and capable of passing through a heat exchange medium.
  • the microwave irradiation cavity heat exchange device includes a ventilating device disposed on the microwave irradiation cavity and/or a heat exchanger disposed in the microwave irradiation cavity, as shown in FIGS. 1, 2, and 3.
  • the ventilating device is an exhaust gas device 6 and/or a gas inlet device 11.
  • the interlayer 22 is provided with a plurality of third protrusions 23, and the shape of the third protrusions 23 may be various sheets such as fins.
  • the interlayer shares at least one surface with the groove body, and a plurality of third protrusions 23 are disposed in the interlayer, and the plurality of third protrusions 23 are disposed on the common at least one surface.
  • the plurality of third protrusions 23 are disposed at least on a surface common to the groove body, and can be used to increase the heat exchange area, thereby allowing more sufficient heat exchange of the material.
  • the plurality of third protrusions 23 may also be disposed on all surfaces in the interlayer to adjust the flow state of the heat exchange medium in the interlayer, for example, from a flat flow state to a turbulent state, or to make the turbulent state more For reinforcement, heat exchange to the material can be further improved.
  • the material of the interlayer is preferably a material that totally reflects microwaves.
  • the heat exchange medium in the interlayer and in the heat exchanger may employ various heat exchange media known to those skilled in the art, such as compressed gas, kerosene, hexane, benzene, glycerin, water, and the like.
  • the temperature monitoring device comprises a controller, and a material temperature measuring device and/or a microwave irradiation chamber temperature measuring device.
  • the controller receives the temperature of the material measured by the material temperature measuring device, and controls the flow rate of the heat exchange medium in the interlayer according to the temperature of the heat exchange medium and the measured material temperature; and/or receives the microwave irradiation chamber temperature measuring device The microwave irradiates the temperature in the cavity, and controls the gas flow rate of the aeration device according to the measured microwave irradiation cavity temperature and/or according to the temperature of the heat exchange medium in the heat exchanger and the measured microwave irradiation cavity temperature The flow rate of the heat exchange medium in the heat exchanger.
  • the temperature of the reaction material and/or the temperature of the microwave irradiation cavity It is used for the purpose of reasonable control of the temperature of the reaction material and/or the temperature of the microwave irradiation cavity.
  • the heat exchange medium and its temperature in the interlayer and the selection of the heat exchange medium in the heat exchanger and the temperature thereof in the microwave irradiation chamber, those skilled in the art can select a suitable heat according to the specific chemical reaction.
  • the heat exchange medium and select the appropriate temperature of the heat exchange medium that can regulate the temperature of the chemical reaction.
  • the material temperature measuring device and the microwave irradiation chamber temperature measuring device may employ a temperature measuring device known to those skilled in the art, for example, the temperature measuring device may be a temperature sensor such as an infrared temperature sensor or a thermocouple sensor.
  • the temperature sensor for measuring the temperature of the reaction material may be provided in plurality, and may be respectively disposed at a plurality of positions along the axial direction of the tank body, for example, a temperature sensor is set every 100-500 cm in the longitudinal direction of the tank body to accurately measure the entire tank. The temperature of the reaction material at different parts of the body.
  • the controller can be a microcontroller or a PLC.
  • the controller controls the flow of the heat exchange medium in the sandwich based on the temperature measured by the temperature sensor.
  • the exhaust gas device 6 can be used to vent the gas at a time, thereby further promoting the chemical reaction equilibrium to move toward the product, further increasing the conversion rate of the reactant and the yield of the product.
  • the ventilating device further includes a collecting device 12 and a processing device (not shown in the drawing) ). Further, in order to utilize the heat source reasonably, the ventilating device preferably further includes a heat exchanger for performing heat exchange on the discharged gaseous by-products, and reusing the heat of the exhaust gas.
  • the heat exchange gas can be introduced into the microwave irradiation chamber 3 through the device 11, thereby adjusting the temperature in the microwave irradiation chamber 3.
  • the temperature of the chemical reaction and the temperature in the microwave irradiation cavity can be more effectively controlled, so that even if the microwave irradiation cavity is continuous for a long time After work, it can also effectively control the temperature of the chemical reaction in the tank.
  • the microwave irradiation chamber and the tank body are each independently a plurality of; the tank bodies are disposed in series or in parallel in the plurality of microwave irradiation chambers.
  • the plurality of tanks When the plurality of tanks are plural, they may be arranged in parallel in the microwave irradiation chamber for dispensing the materials into the respective tanks when the amount of material to be processed is large.
  • the microwave irradiation cavity may be plural, and a plurality of feed ports are provided.
  • the plurality of tanks are respectively disposed in the plurality of microwave irradiation chambers, and the plurality of tanks are sequentially connected.
  • the number of microwave irradiation chambers and tanks can be, for example, 2-10. As shown in FIG. 6, three microwave irradiation chambers are used, and the tanks sequentially pass through the three microwave irradiation chambers.
  • the invention also provides the use of the above chemical reaction equipment in a chemical reaction.
  • the chemical reaction apparatus can be used in various chemical reactions of liquid reaction materials requiring heating, especially when the chemical reaction apparatus provided by the present invention is used for heating and generates volatile small molecules such as water, NH 3 , HC1 during the reaction.
  • the advantages of the chemical reaction apparatus of the present invention are particularly exemplified when the reaction or the reaction material is a high viscosity, semi-solid, and easily formed scale material.
  • the chemical reaction may be, for example, an addition reaction, a polymerization reaction or a substitution reaction.
  • the substitution reaction may be an esterification reaction, a transesterification reaction, an etherification reaction, a condensation reaction, a hydrolysis reaction, an alkylation reaction, or the like.
  • the frequency of the microwaves is selected from frequencies well known to those skilled in the art, such as 915 MHz and 2450 MHz.
  • Figure 7 shows a schematic diagram of a reaction system to which the chemical reaction apparatus of the present invention is applied.
  • the reaction mass is uniformly mixed in the material mixer 1, and then enters the microwave irradiation chamber 3 through the tank body 2, and the reaction material is heated by adjusting the frequency of the microwave, and the product obtained after the reaction enters the product tank 10 in.
  • Example 1 The present invention is described in detail below by way of specific examples, but the invention is not limited thereto.
  • Example 1
  • the microwave irradiation cavity 3 is made of stainless steel and has a size of 10 m X 1.5 mX 2 m; the material of the trough body 2 is stainless steel, the cross section is square, the width is 100 mm, and the height is 300 mm; the trough body 2 is in the microwave irradiation cavity 3
  • the shape is inclined in a straight shape, the total length is about 10 m; the height difference between the inlet and the outlet of the tank body 2 in the microwave irradiation chamber 3 is lm; the thickness of the interlayer 22 is 20 mm, and 200 fin-like protrusions 23 are disposed in the interlayer, Each of the protrusions has an interval of 50 mm, and the interlayer is made of stainless steel;
  • the exhaust gas device 6 is an exhaust fan having a power of 200 W, and the opening of the exhaust gas device 6 on the microwave irradiation chamber 3 is a circle having a radius of 500 mm. .
  • the plant alcohol acetate is synthesized by the esterification reaction using the above-described chemical reaction apparatus of the present invention.
  • the reaction equation is as follows: In this embodiment, a plant alcohol, acetic anhydride, and a catalyst pyridine having a molar ratio of 1:14:12 are mixed together and fed into a chemical reaction apparatus at a flow rate of the mixture of 5 L/min, using a controller and an infrared temperature. The sensor was controlled to have a reaction temperature of 85 ° C and irradiated under microwave power of 2450 MHz for 6 minutes. The product plant alcohol acetate was collected in the product tank, and the yield of the product reached 97.5%. Comparative example 1
  • the plant alcohol acetate was synthesized according to the method described in Example 1, except that the reaction was carried out by heating with a heating mantle, and the reaction time was required to be 12 hours, and the obtained product yield was about 90%.
  • Example 2 It can be seen from the above Example 1 and Comparative Example 1 that in the reaction process of Example 1, the microwave irradiation can accelerate the reaction rate, and at the same time, the upper part of the tank through which the reaction material flows is opened, and the exhaust gas device is used. The acetic acid, a by-product of the reaction, is efficiently discharged, which promotes the chemical reaction to the product and increases the product yield.
  • Example 2
  • the chemical reaction apparatus shown in FIG. 2 is used, wherein the size of each part is set according to the chemical reaction apparatus in Embodiment 1, except that the groove body 2 has a U-shaped cross section and a width of 100 mm, and the height is 300mm, the tank body is horizontally arranged, the material flow control device comprises a scraper 8 and a belt transmission device 9, the scraper 8 is made of polytetrafluoroethylene, and the shape of the scraper 8 matches the cross-sectional shape of the trough body 2, and One is placed every 30 cm in the tank.
  • a controller single chip microcomputer and a material temperature measuring device are provided, and the temperature measuring device is an infrared temperature sensor, and four are disposed at the same interval in the upper portion of the tank body.
  • the plant alcohol stearate is synthesized by the esterification reaction using the above-described chemical reaction apparatus of the present invention.
  • a plant alcohol and stearic acid having a molar ratio of 1:1.3 and a catalyst of sodium hydrogen sulfate and a water-carrying agent are used.
  • the toluene was mixed together and sent to a chemical reaction apparatus at a flow rate of 3 L/min of the mixture to carry out a reaction.
  • the belt transmission 9 was driven at a speed of 17 mm/sec, and the molar ratio of sodium hydrogen sulfate to phytosterol was 0.01: 1, toluene.
  • the molar ratio to the plant sterol is 1:2, and the reaction temperature is controlled by the controller and the infrared temperature sensor to 140 ° C, and the irradiation is performed under the condition of microwave power of 2450 MHz for 10 minutes to obtain the product phytosterol.
  • the yield of the product was 97.5 %. Comparative example 2
  • the plant alcohol stearate was synthesized according to the method described in Example 2, except that the reaction was carried out by heating with a heating mantle, and the reaction time was about 10 hours, and the yield of the obtained product was about 90%.
  • Example 2 in the reaction process of Example 2, the microwave irradiation heating can accelerate the reaction rate, and at the same time, the upper portion of the tank through which the reaction material flows is opened, and the reaction is carried out by using a gas discharge device.
  • the by-product water is effectively evaporated and discharged, which promotes the chemical reaction to the product and increases the product yield.
  • Example 3
  • the chemical reaction apparatus shown in FIG. 3 is used, wherein the size of each part is set according to the chemical reaction apparatus in Embodiment 1, except that the groove body 2 has a U-shaped cross section and a width of 120 mm, and the height is 300mm, the tank body is horizontally arranged, the material flow control device is a single screw drive mechanism, the single screw drive mechanism is PTFE material, the diameter of the screw shaft is 50mm, the length is 2000mm, and the outer diameter of the spiral blade is 120mm.
  • the pitch is 40mm. 200 protrusions 20 are disposed on the surface of the whole spiral blade, and the pitch of each protrusion is 90 mm (see FIG.
  • the minimum distance of the plurality of protrusions 20 from the screw radial direction to the screw axis is the outer edge of the spiral blade.
  • the length of the radial direction to the screw shaft is 3/5 of the pitch in the axial direction of the screw.
  • a controller single chip microcomputer and a material temperature measuring device are provided, and the temperature measuring device is an infrared temperature sensor, and four are disposed at the same interval in the upper portion of the tank body.
  • the hydrolysis reaction of soybean protein is carried out by using the above-described chemical reaction apparatus of the present invention.
  • soybean protein and water in a weight ratio of 10:1 are mixed with papain, and the weight ratio of papain to soy protein is 1/20, and the flow rate of the mixture is 4.4 L/min.
  • the reaction is carried out in the chemical reaction equipment. Due to the high concentration of the material and the high viscosity, the single-screw driving mechanism is actuated to push the material to flow through the tank, and the rotation speed of the screw is 8 rpm.
  • the controller and the infrared temperature sensor are used together to control the reaction temperature to 55 ° C, the microwave power is 2450 MHz, the irradiation is heated, and the reaction time is 1 hour, so that the soybean protein is hydrolyzed, and the amino acid content reaches 0.55 g. /L. Comparative example 3
  • the hydrolysis reaction of the soybean protein was carried out in accordance with the method described in Example 3, except that the heating was carried out by heating with a heating mantle. To achieve the same degree of hydrolysis, that is, the amino acid content was 0.55 g/L, the reaction time was required to be 9 hours.
  • Example 4 As can be seen from the above Example 3 and Comparative Example 3, in the course of the reaction of Example 3, heating by microwaves can accelerate the reaction rate, and the hydrolysis reaction can be completed in a short time. Since the reaction time of up to 9 hours in Comparative Example 3 was not easy to ensure the activity of papain, the activity of the catalytic enzyme was ensured in Example 3.
  • Example 4 Example 4
  • the same chemical reaction equipment as in Example 1 was used, except that the inlet and outlet height difference of the tank body 2 in the microwave irradiation chamber 3 was 120 mm, and eight solid catalyst beds were disposed in the tank body, and the solid catalyst bed layer was provided.
  • the height of the tank is the same as the height of the tank, and the interval between the beds is 50 mm.
  • the solid catalyst bed is a bed obtained by placing solid catalyst particles in a space separated by two porous separators, and the two porous compartments are separated.
  • the distance between the plates was 150 mm, and the shape of the porous separator matched the cross section of the tank.
  • the porous separator had a pore diameter of 2 mm and a pore distribution of 3 / cm 2 .
  • the solid catalyst particles had an average particle diameter of 1.5 mm.
  • the solid catalyst particles therein are activated carbon particles loaded with phosphotungstic acid, and the loading amount of the phosphotungstic acid is 20% by weight.
  • the heteropoly acid-catalyzed carbonylation reaction is carried out by the above-described chemical reaction apparatus of the present invention to synthesize pentaerythritol monoacetal ketone.
  • a solution of pentaerythritol at a concentration of 20% by weight was prepared using hydrazine, hydrazine-dimethylformamide as a solvent.
  • the pentaerythritol solution was introduced into the above chemical reaction equipment at a flow rate of 3 L/min through a solid catalyst bed, and under the action of a catalyst, a reaction temperature of 75 ° C and a microwave power of 2450 MHz were controlled by a controller and an infrared temperature sensor.
  • the carbonylation reaction is carried out by irradiation heating, and the reaction time is about 12 minutes.
  • the product, the pentaerythritol monoacetal ketone product has a product yield of about 73%. Comparative example 4
  • the pentaerythritol monoacetal ketone was synthesized according to the method described in Example 4, except that the heteropoly acid catalyzed carbonylation reaction was used to synthesize pentaerythritol monoacetal ketone by heating under reflux, and the reaction time took 10 hours. The yield of the product is 32%.
  • Example 5 As can be seen from the above Example 4 and Comparative Example 4, in the reaction of Example 4, heating by microwaves can accelerate the reaction rate, and in particular, exhibits a strong promoting effect on the heterogeneous catalytic reaction.
  • Example 5 As can be seen from the above Example 4 and Comparative Example 4, in the reaction of Example 4, heating by microwaves can accelerate the reaction rate, and in particular, exhibits a strong promoting effect on the heterogeneous catalytic reaction.
  • the phenyl cyanide is synthesized by a coupling reaction of 4-fluorobenzonitrile with sodium benzenesulfinate by the above-described chemical reaction apparatus of the present invention.
  • the reaction equation is as follows: In the present embodiment, 4-fluorobenzonitrile having a molar ratio of 1:2 and sodium benzenesulfinate are mixed with the catalyst potassium carbonate and water as a solvent, and the above chemical is introduced at a flow rate of the mixture of 4 L/min.
  • the molar ratio of potassium carbonate to 4-fluorobenzonitrile is 1:20, and the weight ratio of water to 4-fluorobenzonitrile is 1:0.3, and the reaction temperature is controlled by the controller and the infrared temperature sensor to be 90 ° C.
  • the microwave power was 2450 MHz, and the coupling reaction was carried out by irradiation heating, and the reaction time was 8 minutes to obtain the product phenyl cyanide.
  • the yield of the product was 91%.
  • the conventional method for preparing the product phenyl cyanide is to oxidize the phenyl sulfide by using an oxidizing agent to obtain a product.
  • the commonly used oxidizing agents are hydrogen peroxide, peroxy acid, periodic acid, chromium oxide and the like.
  • the reaction process of this synthesis method is not easy to control, and the raw material aryl sulfide itself is a non-accessible raw material, so the industrialization cost of the method is high.
  • heating by microwave can accelerate the reaction rate, and the reaction is easy to realize, and the reaction raw materials are easily available, so the cost of industrialization is low.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Toxicology (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Clinical Laboratory Science (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Constitution Of High-Frequency Heating (AREA)

Description

一种化学反应设备及该设备在化学反应中的应用
技术领域
本发明涉及一种化学反应设备, 还涉及该化学反应设备在化学反应中的应用。 背景技术
微波是一种波长介于红外光波和无线电波的波长之间, 即波长在 Imm-lOOcm范围 内的电磁波。
微波具有无温度梯度的 "体相加热"特点, 可以快速均匀加热物料, 其特点是热 效率高、无污染。此外,微波还具有直接作用于反应分子而引起的特殊的 "非制热效应"。 实验证明, 微波能够改变化学反应的历程、 降低反应活化能、 加快合成速度、 提高平衡 转化率、 减少副产物、 改变产物立体选择性等特殊效应。 正是由于微波对化学反应特殊 的促进作用, 使得微波应用于化学反应不仅具有重大的理论研究意义, 同时还具有巨大 的工业应用潜力。
由于微波的上述特点, 近年来, 微波作为一种高效、 清洁的加热手段和化学反应 手段得到了广泛研究与应用。 但是, 由于微波穿透距离短, 在连续的微波照射下物料容 易形成热点, 反应温度不易控制; 微波腔内的反应器对高粘度物料传送困难且混合均匀 性差。上述原因导致目前应用于化学反应的微波装置无法实现大规模工业化而只能停留 在实验室研究的阶段。
CN2821468Y公开了一种微波处理器,该微波处理器包括至少一个盒形腔体, 盒形 腔体的两相对的侧端面中间部位设置有管道接口, 位于盒形腔体的另两相对的侧端面中 的一个侧端面封闭, 相对于该封闭端面的侧端面为法兰接口, 该法兰接口与微波发生装 置相接; 供被加热流体通过的管道穿设于盒形腔体内, 管道的两端从管道接口伸出。 这 种处理器可以多个( 15个)相连, 形成一个长的反应器, 同时腔体中可以并列设置多 根管道。 这种装置虽然考虑到了微波的穿透距离短的问题, 但是仍然未能解决在微波连 续辐射的情况下, 物料温度不可控性的问题, 所以只能用来对流体进行加热, 而不能应 用于在连续微波照射下需要控制温度的化学反应中。
CN1091394C公开了一种流体处理专用工业微波炉,它包括设有微波输入口及流体 进、 出口和工作门的微波谐振腔, 以及分别设于流体进口处和出口处的密封屏蔽器, 谐 振腔内设有专供流体在微波场中充分产生物化反应的流体环形器, 谐振腔上部和下部分 别设有与流体进、 出口相连接的保证流体能按工艺要求连续给入和排出的装置。 虽然该 装置保证了物料的连续供给和连续排出, 但只能对流体进行加热, 同样不能应用于在连 续微波照射下需要控制温度的化学反应中。
CN 2813090Y公开了一种微波反应器, 该微波反应器能连续地进行有机化学合成; 它利用微波发生器所产生的微波对谐振腔中有机混合物加热。谐振腔通过三个连接端法 兰, 其中一个法兰与能够使微波通过的隔板及微波发生器密封连接; 另一个法兰与进料 管相连; 第三个法兰与盘管换热器密封连接。 盘管换热器将多余的反应热量转移, 保证 反应在设定的温度、 压力范围内进行。 该反应器虽然一定程度上可以控制反应温度, 但 谐振腔体积较小, 物料在微波照射下的时间比较短, 不能保证反应的充分性和产物的收 率。 另外该反应器不适用于高粘度的物料。
CN 101400195A公开了一种微波加热装置, 该装置包括微波照射腔、 物料管和换 热管。 物料管穿设于微波照射腔中, 换热管设置在物料管内, 并且从物料管的管口或管 壁进入和引出。该发明提供的微波加热装置可以在连续微波照射下控制物料管中的物料 的温度, 在一定程度上实现了温度控制。 但是该反应体系难以适用于高粘度、 半固态和 容易形成结垢物料的化学反应, 不能有效地应用多相催化反应, 面临管道清垢和检修方 面的问题; 同时该反应体系在用于物料发生反应后产生气体副产物的化学反应时, 不能 及时排出所产生的气体, 因而会影响产物的收率。 发明内容
本发明的目的在于提供一种化学反应设备, 该化学反应设备可以适用于各种液体 物料在其中进行化学反应, 尤其可以适用于高粘度、 半固态和容易形成结垢的物料在其 中进行化学反应, 特别是, 本发明的化学反应设备对于多相反应或多相催化反应也具有 很好的适用性。
本发明提供了一种化学反应设备, 该化学反应设备包括微波辐照装置和化学反应 装置, 所述的微波辐照装置包括微波发生装置和微波辐照腔, 其中, 所述化学反应装置 包括槽体以及物料流动控制装置, 所述槽体的至少一部分位于所述微波辐照腔中。
本发明还提供了本发明的化学反应设备在化学反应中的应用。
本发明提供的化学反应设备, 适用于各种液体物料在其中进行化学反应, 尤其适 用于高粘度、 半固态和容易形成结垢物料的化学反应以及多相反应和多相催化反应。 同 时,将本发明的化学反应设备应用于产生气体副产物的化学反应时,可以及时排出气体, 降低槽体中反应副产物的浓度, 因此可以推动化学反应平衡向产物方向移动, 从而提高 反应物的转化率和产品的收率。 附图说明
图 1为本发明化学反应设备第一种实施方式的剖面示意图;
图 2为本发明化学反应设备第二种实施方式的剖面示意图;
图 3为本发明化学反应设备第三种实施方式的剖面示意图;
图 4为槽体内设有多个第二突起物的剖面示意图;
图 5为单螺杆驱动机构的螺旋叶片边缘以内设置第一突起物的示意图;
图 6为采用 3个微波辐照腔的示意图;
图 7为应用本发明化学反应设备的反应系统的示意图。 具体实施方式
参照图 1、 图 2和图 3, 本发明提供的化学反应设备包括微波辐照装置和化学反应 装置, 所述的微波辐照装置包括微波辐照腔 3和微波发生装置 (图中未示出), 所述化 学反应装置包括槽体 2以及物料流动控制装置, 所述槽体 2的至少一部分位于所述微波 辐照腔 3中。
微波辐照装置包括至少一个波导管 4和微波发生器 5,所述至少一个波导管 4设置 在所述微波辐照腔 3的腔壁上, 微波发生器 5在微波辐照腔 3的外部与所述波导管 4连 接, 并向微波辐照腔 3内发射微波。 当波导管 4为多个时, 则多个波导管 4优选均匀分 布在微波辐照腔 3的内壁上。 所述多个波导管 4可以设置在微波辐照腔的一个内壁上, 也可以设置为分布在多个内壁上。
在所述微波辐照腔上, 所述化学反应设备的所有部件在微波辐照腔上所穿过的部 位均设置有密封装置 7,例如微波辐照腔 3上所述槽体 2穿过的部位所设有的密封装置。 所述密封装置可以为本领域技术人员已知的各种防止微波泄露的装置, 例如采用反射微 波的材料如金属材料制成的金属丝网, 或者微波高温屏蔽胶等。 上述金属材料例如不锈 钢、 铝、 铝合金、 铁、 铜或银, 更优选为不锈钢和铝合金。
所述微波辐照腔 3 由反射微波的材料制成, 或者微波辐照腔的内壁镀覆有反射微 波的材料层。
根据本发明提供的化学反应设备, 所述槽体 2 为上部非封闭例如上部敞开的化学 反应通道。 槽体 2可以为各种形状, 只要可以使反应物料顺利通过即可, 例如可以为直 形、 螺旋形或蛇形。 其中, 所述直形槽体即为所述槽体的轴线为直线的槽体, 所述螺旋 形槽体即为所述槽体的轴线为螺旋形线的槽体, 所述蛇形槽体即为所述槽体的轴线为蛇 形的槽体。 所述槽体的截面形状以方便疏导反应物料为宜, 例如可以为 U形、 弧形、 半 圆形、 椭圆形或者方形。 当槽体 2为直形或蛇形时, 槽体 2可以为水平固定设置, 也可 以为倾斜固定设置, 用以适应不同物料的不同流动状况。
当本发明提供的化学反应设备应用于反应较为剧烈、 物料易发生飞溅的化学反应 时, 在优选情况下, 为了防止物料发生飞溅, 所述槽体顶部还可以设置有至少部分覆盖 槽体的顶盖, 即, 该顶盖可以部分或全部覆盖槽体顶部。 部分覆盖槽体顶部的顶盖可以 为筛孔状的、 也可以为间隔条状的。
根据本发明提供的化学反应设备, 所述槽体 2 的材料可以为全反射微波的材料, 也可以为全透射微波的材料, 优选为各种全反射微波的材料。 所述全反射微波的材料如 上所述, 所述全透射微波的材料为本领域技术人员公知的, 例如聚酰亚胺及其改性物、 聚醚醚酮及其改性物、聚四氟乙烯及其改性物、聚乙烯及其改性物、聚丙烯及其改性物、 聚苯乙烯及其改性物、 石英或玻璃。 更优选采用聚四氟乙烯及其改性物和聚苯乙烯及其 改性物。 顶盖的材料可采用上面所述的全透射微波材料。
根据本发明提供的化学反应设备, 在优选情况下, 所述物料流动控制装置包括推 动物料流动的装置。
图 1 示出了本发明化学反应设备的第一种实施方式, 所述推动物料流动的装置包 括调节槽体两端高度差的槽体调节装置。所述槽体调节装置可以为本领域技术人员所公 知的各种可以调节槽体两端高度差的装置, 例如所述槽体调节装置包括在微波辐照腔两 个侧壁上槽体两端穿过其上的部位垂直设置的两个滑槽及固定旋钮, 所述槽体的两端可 各自沿滑槽上下滑动, 从而可以调节槽体两端的高度差; 还可以在微波辐照腔的地脚部 分安装调节高度的螺丝, 根据所需要的高度差调节整个微波辐照腔的倾斜度, 以达到槽 体两端的所需的高度差。 根据槽体内反应物料所需要的流动状况, 可以使用调节槽体两 端高度差的槽体调节装置来调节槽体倾斜度。
图 2 示出了本发明化学反应设备的第二种实施方式, 所述槽体为直形, 所述推动 物料流动的装置包括多块刮板 8和传动装置 9, 所述多块刮板间隔地固定在所述传动装 置 9上, 所述传动装置 9的至少一部分设置在所述槽体 2内,所述刮板 8的形状优选与 所述槽体 2的截面相匹配; 所述传动装置 9可以为各种本领域技术人员公知的用于传动 物料的装置, 例如皮带传动装置或者链轮传动装置。 当物料的粘度较大或物料为半固态 时, 可以使用上述实施方式, 对反应物料进行推动, 从而可以防止物料在槽体中滞留的 状况。
所述刮板的材料可以为各种全透射微波的材料也可以为各种全反射微波的材料, 全透射微波材料和全反射微波材料的例子如上所述。所述刮板优选采用全透射微波的材 料。
图 3 示出了本发明化学反应设备的第三种实施方式, 所述槽体为直形, 所述推动 物料流动的装置包括单螺杆驱动机构或多螺杆驱动机构, 单螺杆驱动机构或多螺杆驱动 机构位于槽体内, 图 3中示出了单螺杆驱动机构 13。当物料的粘度较大或物料为半固态 时, 优选使用上述实施方式, 对反应物料进行推动, 从而可以防止物料在槽体中滞留的 状况。
如图 5所示, 所述单螺杆驱动机构或多螺杆驱动机构的螺杆包括螺杆轴 16和螺旋 叶片 15, 所述单螺杆驱动机构或多螺杆驱动机构的螺旋叶片 15表面上设置有一个或多 个第一突起物 20。 设置第一突起物 20, 可以增加物料的径向流动, 使物料实现更均匀 地混合。
优选第一突起物 20可以为各种形状的片状物, 可以是表面弯曲的, 也可以是表面 平直的, 该多个第一突起物 20优选可以以相同的间隔分布于整个螺旋叶片 15上。 优选 该一个或多个第一突起物 20垂直设置于螺旋叶片 15表面上。上述一个或多个第一突起 物 20可以设置在单螺杆驱动机构上、 也可以设置在多螺杆驱动机构上。
在优选情况下, 所述第一突起物沿螺杆径向至螺杆轴的最小距离为螺旋叶片外缘 至螺杆轴的径向距离的 1/5-4/5,所述第一突起物沿螺杆轴向的长度为螺距的 1/5-4/5。优 选情况下, 所述第一突起物为多个时, 各第一突起物沿螺杆径向至螺杆轴的最小距离相 等, 且沿螺杆轴向的长度也相等, 而且各第一突起物的间距相等。 所述间距的定义为, 相邻两个第一突起物上距螺杆轴最近的、 与螺杆轴的径向距离相等的两个点之间的距 离。
所述单螺杆驱动机构或多螺杆驱动机构的材料可以为各种全透射微波的材料也可 以为各种全反射微波的材料, 全透射微波材料和全反射微波材料的例子如上所述。 优选 采用全透射微波的材料。
根据本发明提供的化学反应设备, 在优选情况下, 所述物料流动控制装置还包括 改变物料流动状态的装置, 该改变物料流动状态的装置可以单独设置、 也可以与本发明 的第一种实施方式组合设置。所述改变物料流动状态的装置为使物料流动由平流状态改 为湍流状态或者使物料的湍流状态增强的、 并由此可以促进反应物料的混合状态的装 置, 例如可以为阻碍物料流动的装置。
在优选情况下, 所述改变物料流动状态的装置可以包括设置在所述槽体内的第二 突起物。 如图 4所示, 所述槽体 2内设有多个第二突起物 14。通过在槽体 2内设置第二 突起物 14, 可以提高反应物料的湍流状态和混合效果, 有利于提高反应速率、并有利于 反应过程中的气体副产物 (如果产生气体副产物) 的逸出。
在优选情况下, 所述改变物料流动状态的装置包括设置在槽体内的一个固体颗粒 物床层或沿槽体长度方向排列的多个固体颗粒物床层, 所述物料能够穿过该固体颗粒物 床层。 所述一个或多个固体颗粒物床层可以独立设置、 也可以与所述第二突起物组合设 置。
所述固体颗粒物床层可以为在固定于槽体内的两个多孔隔板所隔出的空间内放置 固体颗粒物而得到的床层, 多孔隔板的孔径小于固体颗粒物的粒径; 也可以为将盛装固 体颗粒物的袋子固定于槽体内而得到的床层。该多孔隔板或者袋子都是对化学反应是惰 性的。 该固体颗粒物床层也可以用来促进反应物料的混合, 这种固体颗粒物可以是与反 应物料不发生任何化学作用的各种天然或合成的无机或有机的固体颗粒物。
当在本发明的化学反应设备内所进行的化学反应为需要使用催化剂的反应时, 所 述固体颗粒物可以为固体催化剂颗粒。 此时, 这种固体催化剂颗粒可以同时起到增强物 料的混合以及催化化学反应的作用。
根据本发明提供的化学反应设备, 在优选情况下, 所述第二突起物的材料可以为 各种全透射微波的材料, 也可以为各种全反射微波的材料, 全透射微波材料和全反射微 波材料的例子如上所述。 所述第二突起物优选采用全透射微波的材料。
根据本发明提供的化学反应设备, 在优选情况下, 所述化学反应设备还包括换热 装置和温度测控装置。
所述换热装置包括物料换热装置和 /或微波辐照腔换热装置, 如图 4所示, 所述物 料换热装置包括设置在所述槽体外侧的可通入换热介质的夹层 22;所述微波辐照腔换热 装置包括设置在所述微波辐照腔上的换气装置和 /或设置在微波辐照腔内的换热器,如图 1、 2和 3中所示, 所述换气装置为排出气体装置 6和 /或通入气体装置 11。
在优选情况下, 如图 4所示, 所述夹层内 22设置有多个第三突起物 23, 所述第三 突起物 23 的形状可以为各种片状物, 例如翅片。 所述夹层与所述槽体共用至少一个表 面, 所述夹层内设置有多个第三突起物 23, 所述多个第三突起物 23设置在所述共用的 至少一个表面上。 所述多个第三突起物 23至少设置在与所述槽体共用的表面上, 可以 用来增加换热面积, 从而可以对物料进行更充分的换热。 优选情况下, 所述多个第三突 起物 23还可以设置在夹层内的所有各表面上, 以调节夹层内换热介质的流动状态, 例 如从平流状态改为湍流状态、 或使湍流状态更为增强, 从而可以进一步改善对物料的换 热。
所述夹层的材料优选采用全反射微波的材料。 夹层内以及换热器的换热介质可以 采用本领域技术人员公知的各种换热介质, 例如压縮气体、 煤油、 己烷、 苯、 甘油、 水 等。
在优选情况下, 所述温度测控装置包括控制器、 以及物料温度测量装置和 /或微波 辐照腔温度测量装置。 所述控制器接收物料温度测量装置测量的物料温度, 并根据换热介质的温度和所 测量的物料温度控制所述夹层中换热介质的流量;和 /或接收微波辐照腔温度测量装置测 量的微波辐照腔内的温度, 并根据所测量的微波辐照腔温度控制所述通气装置的气体流 量和 /或根据换热器内换热介质的温度和所测量的微波辐照腔温度控制换热器内换热介 质的流量。用于达到合理控制反应物料温度和 /或微波辐照腔内温度的目的。对于所述夹 层中换热介质及其温度的选择、 以及微波辐照腔中换热器内换热介质及其温度的选择, 本领域的技术人员可以根据具体化学反应的热量变化情况来选择合适的换热介质, 并选 择可调控化学反应的温度的换热介质的合适温度。
所述物料温度测量装置和微波辐照腔温度测量装置可以采用本领域技术人员公知 的温度测量装置, 例如该温度测量装置可以为温度传感器, 如红外温度传感器或热偶传 感器。 用于测量反应物料温度的温度传感器可以设置多个, 可以分别沿槽体轴向的多个 位置设置, 例如在槽体的长度方向每隔 100-500厘米设置一个温度传感器, 以精确测量 整个槽体内部不同部位反应物料的温度。
所述控制器可以为单片机或 PLC。 控制器根据温度传感器所测量的温度来控制夹 层中换热介质的流量。
当反应物料所发生的化学反应产生气体副产物时, 可以使用排出气体装置 6 来及 时排出气体, 因而可以进一步推动化学反应平衡向产物方向移动, 进一步提高反应物的 转化率和产品的收率。 当化学反应所排出的气体为有毒有害气体时, 需要将其收集并处 理, 以防污染环境, 因此在优选情况下, 所述换气装置还包括收集装置 12 以及处理装 置 (图中未示出)。 另外, 为了合理利用热源, 所述换气装置还优选包括换热器, 对排 出的气体副产物进行换热, 将排出气体的热量再次利用。
当所述换气装置为通入气体装置 11时,可以通过该装置 11向微波辐照腔 3内通入 换热气体, 从而调节该微波辐照腔 3内的温度。
通过上述换气装置、 微波辐照腔内的换热器与槽体夹层的配合作用, 可以更有效 的控制化学反应的温度以及微波辐照腔内的温度, 使得即使微波辐照腔长时间连续工作 后也能有效控制槽体内化学反应的温度。
根据本发明提供的化学反应设备, 所述微波辐照腔和所述槽体各自独立地为多个; 所述槽体串联或并联地设置在所述多个微波辐照腔中。
当所述槽体为多个时, 它们可以在微波照射腔中并行设置, 用于当所处理的物料 量较大时, 将物料分装于各槽体中。
当反应物料的化学反应时间较长时, 或者化学反应为多步反应、 需要在不同反应 阶段陆续加入不同的反应物时, 所述微波辐照腔可以为多个, 并设置多个进料口, 同时 所述槽体也为多个, 所述多个槽体分别设置在所述多个微波辐照腔中, 所述多个槽体依 次连通。 微波辐照腔和槽体的数量例如可以为 2-10个。 如图 6所示, 采用了 3个微波 辐照腔, 所述槽体依次通过该 3个微波辐照腔。
本发明还提供了上述化学反应设备在化学反应中的应用。 所述化学反应设备可以 用于各种需要加热的液体反应物料的化学反应中, 特别是当本发明提供的化学反应设备 用于需要加热且反应过程中产生挥发性小分子如水、 NH3、 HC1等的反应或者反应物料 为高粘度、 半固态和容易形成结垢的物料时, 特别能体现本发明化学反应设备的优点。 所述化学反应例如可以为加成反应、 聚合反应或取代反应。 具体的, 所述取代反应可以 为酯化反应、 酯交换反应、 醚化反应、 縮合反应、 水解反应、 烷基化反应等。 另外, 还 可以应用于开环反应、 成环反应等。 在应用本发明提供的化学反应设备时, 所述微波的 频率选用本领域技术人员公知的频率, 例如 915MHz和 2450MHz。
图 7 示出了应用本发明化学反应设备的反应系统示意图。 在该图中, 反应物料在 物料混合器 1中混合均匀, 然后通过槽体 2进入微波辐照腔 3中, 通过调节微波的频率 对反应物料进行加热, 反应后所得到的产物进入产品槽 10中。
下面采用具体的实施例的方式来详细描述本发明, 但本发明不会因此而受到任何 限制。 实施例 1
本实施例采用图 1所示的化学反应设备, 其中,
微波辐照腔 3采用不锈钢制成,尺寸为 10m X 1.5mX 2m; 槽体 2的材料为不锈钢, 截面为方型, 宽度为 100 mm, 高度为 300mm; 槽体 2在微波辐照腔 3内呈直形倾斜设 置, 总长度约为 10m; 槽体 2在微波辐照腔 3内的进口与出口高度差为 lm; 夹层 22的 厚度为 20mm, 夹层内设置 200个翅片状突起物 23, 各突起物的间隔均为 50mm, 夹层 由不锈钢制成; 排出气体装置 6为功率为 200W的排气扇, 该排出气体装置 6在微波辐 照腔 3上的开口为半径为 500 mm的圆形。 并设置有控制器单片机、 以及物料温度测量 装置, 该温度测量装置为红外温度传感器, 并在槽体上部以相同的间隔设置 4个。
采用上述本发明的上述化学反应设备进行酯化反应合成植物 醇乙酸酯。
反应方程式如下:
Figure imgf000011_0001
在本实施例中, 将摩尔比为 1:14: 12的植物 醇、 乙酸酐和催化剂吡啶混合在一起 并以混合物料的流量为 5L/min送入化学反应设备中, 用控制器和红外温度传感器一起 控制反应温度为 85°C, 在微波功率为 2450MHz的条件下辐照加热, 反应的时间为 6分 钟。 在产品槽中收集产品植物 醇乙酸酯, 该产品的收率达到 97.5 %。 对比例 1
按照实施例 1 描述的方法合成植物 醇乙酸酯, 不同的是, 采用加热套加热的方 式进行反应, 反应时间需要 12小时, 所得到的产品收率为 90%左右。
从上述实施例 1与对比例 1可以看出, 在实施例 1的反应过程中, 采用微波辐照 加热, 可以加快反应速率, 同时由于流通反应物料的槽体上部敞开, 并采用排出气体装 置将反应的副产物乙酸有效排出, 促使化学反应向产品方向转移, 提高了产品收率。 实施例 2
本实施例采用图 2所示的化学反应设备, 其中, 各部分的尺寸按照实施例 1中的 化学反应设备的来设置,不同的是,槽体 2截面为 U形,宽度为 100mm,高度为 300mm, 该槽体为水平设置, 物料流动控制装置包括刮板 8和皮带传动装置 9, 刮板 8的材质为 聚四氟乙烯, 刮板 8的形状与槽体 2的截面形状相匹配, 并且在槽体内每隔 30cm设置 一个。 并设置有控制器单片机、 以及物料温度测量装置, 该温度测量装置为红外温度传 感器, 并在槽体上部以相同的间隔设置 4个。
采用上述本发明的化学反应设备进行酯化反应合成植物 醇硬脂酸酯。
反应方程式如下:
Figure imgf000011_0002
在本实施例中, 将摩尔比为 1 : 1.3的植物 醇和硬脂酸与催化剂硫酸氢钠和带水剂 甲苯混合在一起, 以混合物料的流量为 3L/min送入化学反应设备中进行反应, 皮带传 动装置 9的传动速度为 17mm/秒, 硫酸氢钠与植物甾醇的摩尔比为 0.01 : 1, 甲苯与植 物甾醇的摩尔比为 1 : 2, 用控制器和红外温度传感器一起控制反应温度为 140°C, 在微 波功率为 2450MHz的条件下辐照加热, 反应的时间为 10分钟, 得到产品植物甾醇硬脂 酸酯, 该产品的收率为 97.5 %。 对比例 2
按照实施例 2描述的方法合成植物 醇硬脂酸酯, 不同的是, 采用加热套加热的 方式进行反应, 反应时间需要 10小时左右, 所得到的产品收率为 90%左右。
由上述实施例 2和对比例 2可以看出, 在实施例 2的反应过程中, 采用微波辐照加 热可以加快反应速率, 同时由于流通反应物料的槽体上部敞开, 并采用排出气体装置将 反应的副产物水有效蒸发并排出, 促使化学反应向产品方向转移, 提高了产品收率。 实施例 3
本实施例采用图 3所示的化学反应设备, 其中, 各部分的尺寸按照实施例 1中的 化学反应设备的来设置,不同的是,槽体 2截面为 U形,宽度为 120mm,高度为 300mm, 该槽体为水平设置, 物料流动控制装置为单螺杆驱动机构, 该单螺杆驱动机构为聚四氟 乙烯材料, 螺杆轴的直径为 50mm、 长度为 2000mm, 螺旋叶片的外径为 120mm, 螺距 为 40mm。 在整个螺旋叶片表面上设置有 200个突起物 20, 各突起物的间距均为 90mm (见图 5), 该多个突起物 20沿螺杆径向至螺杆轴的最小距离均为螺旋叶片外缘至螺杆 轴的径向距离的 3/5, 沿螺杆轴向的长度均为螺距的 3/5。 并设置有控制器单片机、 以及 物料温度测量装置, 该温度测量装置为红外温度传感器, 并在槽体上部以相同的间隔设 置 4个。
采用上述本发明的化学反应设备进行大豆蛋白的水解反应。
在本实施例中, 将重量比为 10: 1的大豆蛋白和水与木瓜蛋白酶混合在一起, 木瓜 蛋白酶与大豆蛋白的重量比为 1/20,以混合物料的流量为 4.4L/min送入化学反应设备中 进行反应, 由于物料浓度很高, 粘稠度大, 开动单螺杆驱动机构来推动物料流动通过槽 体, 螺杆的转速为 8转 /分钟。 用控制器和红外温度传感器一起控制反应温度为 55°C, 微波功率为 2450MHz的条件下, 辐照加热, 反应的时间为 1小时, 使大豆蛋白进行水 解反应, 此时氨基酸的含量达到 0.55g/L。 对比例 3
按照实施例 3描述的方法进行大豆蛋白的水解反应, 不同的是, 采用加热套加热的 方式进行加热, 若要达到同样的水解程度即氨基酸含量为 0.55g/L, 则反应时间需要 9 小时。
从上述实施例 3和对比例 3可以看出, 在实施例 3的反应过程中, 采用微波进行加 热可以加快反应速率, 并且短时间内即可完成水解反应。 由于在对比例 3中长达 9小时 的反应时间不易保证木瓜蛋白酶的活性, 因此在实施例 3中可以保证催化用酶的活性。 实施例 4
采用与实施例 1相同的化学反应设备, 不同的是, 槽体 2在微波辐照腔 3内的进口 与出口高度差为 120mm, 并且在槽体内设置 8个固体催化剂床层, 固体催化剂床层的 高度与槽体的高度相同, 各床层的间隔为 50mm, 该固体催化剂床层为在两个多孔隔板 所隔出的空间内放置固体催化剂颗粒物而得到的床层, 该两个多孔隔板之间的距离为 150mm, 多孔隔板的形状与槽体的截面相匹配, 多孔隔板的孔径为 2mm, 孔分布为 3 个 /cm2。 固体催化剂颗粒的平均粒径为 1.5mm。 其中的固体催化剂颗粒为负载磷钨酸的 活性炭颗粒, 磷钨酸的负载量为 20重量%。
采用上述本发明的化学反应设备进行杂多酸催化的縮羰基化反应, 来合成季戊四醇 单縮醛酮。
在本实施例中,采用 Ν,Ν-二甲基甲酰胺为溶剂配制浓度为 20重量%的季戊四醇溶 液。 使该季戊四醇溶液以流量为 3L/min进入上述化学反应设备中通过固体催化剂床层, 在催化剂的作用下, 用控制器和红外温度传感器一起控制反应温度为 75°C,微波功率为 2450MHz的条件下, 辐照加热进行縮羰基化反应, 反应的时间约为 12分钟。 得到产品 季戊四醇单縮醛酮产品, 产品产率约为 73 %。 对比例 4
按照实施例 4中描述的方法来合成季戊四醇单縮醛酮, 不同的是, 采用加热套加热 回流的方式进行杂多酸催化的縮羰基化反应合成季戊四醇单縮醛酮, 反应时间需要 10 个小时, 产品的产率为 32%。
从上述实施例 4和对比例 4可以看出, 在实施例 4的反应过程中, 采用微波进行 加热可以加快反应速率, 尤其对于多相催化反应显示了很强的促进作用。 实施例 5
采用与实施例 1相同的化学反应设备, 不同的是, 槽体 2在微波辐照腔 3内的进口 与出口高度差为 120mm。
采用上述本发明的化学反应设备进行 4-氟苯腈与苯亚磺酸钠的偶联反应,来合成苯 氰砜。 反应方程式如下:
Figure imgf000014_0001
在本实施例中, 将摩尔比为 1:2的 4-氟苯腈与苯亚磺酸钠与催化剂碳酸钾和作为溶 剂的水混合在一起, 以混合物料的流量为 4L/min进入上述化学反应设备中, 碳酸钾与 4-氟苯腈的摩尔比为 1 : 20, 水与 4-氟苯腈的重量比为 1 : 0.3, 用控制器和红外温度传 感器一起控制反应温度为 90°C、 微波功率为 2450MHz下, 辐照加热进行偶联反应, 反 应的时间为 8分钟, 得到产品苯氰砜。 产品的收率为 91 %。
而制备产品苯氰砜的常规方法为, 利用氧化剂对苯基硫醚进行氧化得到产品, 常用 的氧化剂为双氧水、过氧酸、高碘酸、铬氧化物等。此种合成方法的反应过程不易控制, 并且原料芳基硫醚本身就是非易得原料, 所以该方法工业化成本很高。
由此可见, 而在本实施例的偶联反应过程中, 采用微波进行加热可以加快反应速 率, 而且反应易于实现, 同时反应原料易得, 因此工业化的成本很低。

Claims

权利要求书
1、 一种化学反应设备, 该化学反应设备包括微波辐照装置和化学反应装置, 所述 的微波辐照装置包括微波发生装置和微波辐照腔, 其特征在于, 所述化学反应装置包括 槽体以及物料流动控制装置, 所述槽体的至少一部分位于所述微波辐照腔中。
2、 根据权利要求 1所述的设备, 其中, 所述槽体为直形、 螺旋形或蛇形。
3、 根据权利要求 1或 2所述的设备, 其中, 所述槽体顶部设置有至少部分覆盖槽 体的顶盖。
4、 根据权利要求 1所述的设备, 其中, 所述物料流动控制装置包括推动物料流动 的装置。
5、 根据权利要求 4所述的设备, 其中, 所述推动物料流动的装置包括调节槽体两 端高度差的槽体调节装置。
6、 根据权利要求 4或 5所述的设备, 其中, 所述槽体为直形, 所述推动物料流动 的装置包括多块刮板和传动装置, 所述多块刮板间隔地固定在所述传动装置上, 所述传 动装置的至少一部分设置在所述槽体内, 所述刮板的形状与所述槽体的截面相匹配。
7、 根据权利要求 4或 5所述的设备, 其中, 所述槽体为直形, 所述推动物料流动 的装置包括单螺杆驱动机构或多螺杆驱动机构, 单螺杆驱动机构或多螺杆驱动机构位于 槽体内。
8、 根据权利要求 7所述的设备, 所述单螺杆驱动机构或多螺杆驱动机构的螺旋叶 片表面上设置有一个或多个第一突起物; 所述第一突起物沿螺杆径向至螺杆轴的最小距 离为螺旋叶片外缘至螺杆轴的径向距离的 1/5-4/5,所述第一突起物沿螺杆轴向的长度为 螺距的 1/5-4/5。
9、 根据权利要求 1所述的设备, 其中, 所述物料流动控制装置还包括改变物料流 动状态的装置。
10、 根据权利要求 9 所述的设备, 其中, 所述改变物料流动状态的装置包括设置 在所述槽体内的第二突起物。
11、 根据权利要求 9或 10所述的设备, 其中, 所述改变物料流动状态的装置包括 设置在槽体内的一个固体颗粒物床层或沿槽体长度方向排列的多个固体颗粒物床层, 所 述物料能够穿过该固体颗粒物床层。
12、 根据权利要求 11所述的设备, 其中, 所述固体颗粒物为固体催化剂颗粒。
13、 根据权利要求 1或 4所述的设备, 其中, 所述化学反应设备还包括换热装置 和温度测控装置。
14、根据权利要求 13所述的设备, 其中, 所述换热装置包括物料换热装置和 /或微 波辐照腔换热装置, 所述物料换热装置包括设置在所述槽体外侧的可通入换热介质的夹 层;所述微波辐照腔换热装置包括设置在所述微波辐照腔上的换气装置和 /或设置在微波 辐照腔内的换热器, 所述换气装置为排出气体装置和 /或通入气体装置;
所述温度测控装置包括控制器、 以及物料温度测量装置和 /或微波辐照腔温度测量 装置;
所述控制器接收物料温度测量装置测量的物料温度, 并根据换热介质的温度和所 测量的物料温度控制所述夹层中换热介质的流量;和 /或接收微波辐照腔温度测量装置测 量的微波辐照腔内的温度, 并根据所测量的微波辐照腔温度控制所述通气装置的气体流 量和 /或根据换热器内换热介质的温度和所测量的微波辐照腔温度控制换热器内换热介 质的流量。
15、根据权利要求 14所述的设备, 其中, 所述夹层与所述槽体共用至少一个表面, 所述夹层内设置有多个第三突起物, 所述多个第三突起物设置在所述共用的至少一个表 面上。
16、 根据权利要求 1或 4所述的设备, 其中, 所述微波辐照腔和所述槽体各自独 立地为多个; 所述槽体串联或并联地设置在所述多个微波辐照腔中。
17、 一种权利要求 1-16中任意一项所述设备在化学反应中的应用。
PCT/CN2009/075159 2009-07-20 2009-11-26 一种化学反应设备及该设备在化学反应中的应用 WO2011009252A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2012520885A JP2012533417A (ja) 2009-07-20 2009-11-26 化学反応器および化学反応におけるその使用方法
EP20090847487 EP2457651B1 (en) 2009-07-20 2009-11-26 Chemical reactor and its usage in chemical reaction
CA2768524A CA2768524C (en) 2009-07-20 2009-11-26 Chemical reactor and its usage in chemical reaction
AU2009350266A AU2009350266B2 (en) 2009-07-20 2009-11-26 Chemical reactor and its usage in chemical reaction
US13/386,410 US20120186972A1 (en) 2009-07-20 2009-11-26 Chemical reactor and its usage in chemical reaction

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2009100888074A CN101954266B (zh) 2009-07-20 2009-07-20 一种化学反应设备及该设备在化学反应中的应用
CN200910088807.4 2009-07-20

Publications (1)

Publication Number Publication Date
WO2011009252A1 true WO2011009252A1 (zh) 2011-01-27

Family

ID=43481999

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2009/075159 WO2011009252A1 (zh) 2009-07-20 2009-11-26 一种化学反应设备及该设备在化学反应中的应用

Country Status (7)

Country Link
US (1) US20120186972A1 (zh)
EP (1) EP2457651B1 (zh)
JP (1) JP2012533417A (zh)
CN (1) CN101954266B (zh)
AU (1) AU2009350266B2 (zh)
CA (1) CA2768524C (zh)
WO (1) WO2011009252A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014519008A (ja) * 2011-06-09 2014-08-07 四川宏普微波科技有限公司 マイクロ波の連続凍結乾燥装置

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012002483A1 (ja) 2010-06-30 2012-01-05 マイクロ波環境化学株式会社 油状物質の製造方法、及び油状物質の製造装置
EP2727647B1 (en) 2011-06-29 2020-01-15 Microwave Chemical Co., Ltd. Chemical reaction apparatus, and chemical reaction method
CN102343230A (zh) * 2011-08-08 2012-02-08 能一郎科技股份有限公司 锂离子电池电解液配制的混合器
JP5109004B1 (ja) 2011-11-11 2012-12-26 マイクロ波化学株式会社 化学反応装置
JP5114616B1 (ja) * 2011-11-11 2013-01-09 マイクロ波化学株式会社 化学反応装置
US11229895B2 (en) 2011-11-11 2022-01-25 Microwave Chemical Co., Ltd. Chemical reaction method using chemical reaction apparatus
CN103182289A (zh) * 2013-03-27 2013-07-03 施允美 一种化学反应装置
WO2015026940A1 (en) 2013-08-20 2015-02-26 H Quest Partners, LP Multi-stage system for processing hydrocarbon fuels
US9044730B2 (en) 2013-08-20 2015-06-02 H Quest Partners, LP System for processing hydrocarbon fuels using surfaguide
US9095835B2 (en) 2013-08-20 2015-08-04 H Quest Partners, LP Method for processing hydrocarbon fuels using microwave energy
US9623397B2 (en) 2013-08-20 2017-04-18 H Quest Partners, LP System for processing hydrocarbon fuels using surfaguide
US11633710B2 (en) 2018-08-23 2023-04-25 Transform Materials Llc Systems and methods for processing gases
EP3841079A4 (en) 2018-08-23 2022-05-25 Transform Materials LLC SYSTEMS AND METHODS FOR GAS TREATMENT
CN112058209B (zh) * 2020-08-03 2022-06-17 湖北航鹏化学动力科技有限责任公司 一种连续作用系统
JP7258109B1 (ja) 2021-11-08 2023-04-14 宏碩系統股▲フン▼有限公司 マイクロ波加熱装置
CN114823432B (zh) * 2022-06-28 2022-09-02 江苏邑文微电子科技有限公司 半导体真空传输平台及其控制方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5326538A (en) * 1991-03-13 1994-07-05 Serawaste Systems Corporation Closed sterilization system for treating a product such as toxic or infectious waste
CN1091394C (zh) 1999-04-02 2002-09-25 徐有生 流体处理专用工业微波炉
CN1534423A (zh) * 2003-11-14 2004-10-06 四川大学 微波化学反应器的温度测量和控制装置
US20050095181A1 (en) * 2002-06-21 2005-05-05 Milestone S.R.I. Mixing and reaction of solids, suspensions or emulsions in a microwave field
CN2813090Y (zh) 2005-01-28 2006-09-06 陕西科技大学 微波反应器
CN2821468Y (zh) 2005-10-10 2006-09-27 汤大卫 微波处理器
WO2008096461A1 (ja) * 2007-02-09 2008-08-14 Sumitomo Heavy Industries, Ltd. スクリュー及び射出装置
CN101400195A (zh) 2007-09-29 2009-04-01 浙江泰德新材料有限公司 一种微波加热装置及其在化学反应中的应用

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3777095A (en) * 1972-05-15 1973-12-04 Tokyo Shibaura Electric Co Microwave heating apparatus
JPS5211175A (en) * 1975-07-18 1977-01-27 Toshiba Corp Activated gas reacting apparatus
US4326114A (en) * 1978-12-11 1982-04-20 Gerling-Moore, Inc. Apparatus for microwave roasting of coffee beans
JPS58191998A (ja) * 1982-05-06 1983-11-09 動力炉・核燃料開発事業団 環状槽型マイクロ波加熱装置
US5330623A (en) * 1987-11-11 1994-07-19 Holland Kenneth M Process of destructive distillation of organic material
US5411712A (en) * 1993-02-24 1995-05-02 General Electric Company Batch system for microwave desorption of adsorbents
US5997825A (en) * 1996-10-17 1999-12-07 Carrier Corporation Refrigerant disposal
US6104015A (en) * 1999-01-08 2000-08-15 Jayan; Ponnarassery Sukumaran Continuous microwave rotary furnace for processing sintered ceramics
US6906164B2 (en) * 2000-12-07 2005-06-14 Eastman Chemical Company Polyester process using a pipe reactor
EP1675676A1 (en) * 2003-10-02 2006-07-05 Sbs S.R.L. Microwave heating process and apparatus
GB2420542A (en) * 2004-11-25 2006-05-31 Kjell Ivar Kasin Screw conveyor with microwave generator
CN2761261Y (zh) * 2004-12-15 2006-03-01 江南大学 一种气流增效连续微波辐射固相合成反应装置
JP2006272055A (ja) * 2005-03-28 2006-10-12 Idx Corp マイクロ波化学反応装置
CN201227587Y (zh) * 2008-07-15 2009-04-29 肖金亭 微波双螺杆挤出机反应器

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5326538A (en) * 1991-03-13 1994-07-05 Serawaste Systems Corporation Closed sterilization system for treating a product such as toxic or infectious waste
CN1091394C (zh) 1999-04-02 2002-09-25 徐有生 流体处理专用工业微波炉
US20050095181A1 (en) * 2002-06-21 2005-05-05 Milestone S.R.I. Mixing and reaction of solids, suspensions or emulsions in a microwave field
CN1534423A (zh) * 2003-11-14 2004-10-06 四川大学 微波化学反应器的温度测量和控制装置
CN2813090Y (zh) 2005-01-28 2006-09-06 陕西科技大学 微波反应器
CN2821468Y (zh) 2005-10-10 2006-09-27 汤大卫 微波处理器
WO2008096461A1 (ja) * 2007-02-09 2008-08-14 Sumitomo Heavy Industries, Ltd. スクリュー及び射出装置
CN101400195A (zh) 2007-09-29 2009-04-01 浙江泰德新材料有限公司 一种微波加热装置及其在化学反应中的应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2457651A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014519008A (ja) * 2011-06-09 2014-08-07 四川宏普微波科技有限公司 マイクロ波の連続凍結乾燥装置

Also Published As

Publication number Publication date
EP2457651A4 (en) 2013-07-24
AU2009350266B2 (en) 2014-01-09
CN101954266B (zh) 2013-03-20
CN101954266A (zh) 2011-01-26
AU2009350266A1 (en) 2012-02-09
CA2768524A1 (en) 2011-01-27
US20120186972A1 (en) 2012-07-26
JP2012533417A (ja) 2012-12-27
EP2457651B1 (en) 2015-05-20
CA2768524C (en) 2015-07-14
EP2457651A1 (en) 2012-05-30
AU2009350266A8 (en) 2012-02-23

Similar Documents

Publication Publication Date Title
WO2011009252A1 (zh) 一种化学反应设备及该设备在化学反应中的应用
JP5016984B2 (ja) マイクロ波化学反応装置および方法
KR100928277B1 (ko) 대량의 슬러지를 처리하기 위한 급속건조장치 및 이 장치에 의한 슬러지 급속건조방법
US6723999B2 (en) Electromagnetic wave assisted chemical processing
WO2009110245A1 (ja) マイクロ波化学反応装置及びその装置を用いた反応方法
JP2007307440A (ja) 化学反応装置
JP2011104526A (ja) マイクロ波反応装置
KR100732891B1 (ko) 연속식 마이크로파 촉매 건조 장치
KR101506315B1 (ko) 마그네트론을 이용한 소금 생산겸 발전 시스템
CN115532190A (zh) 一种连续酯化反应装置及方法
US8946605B2 (en) Microwave heating device and its application in chemical reactions
KR100540165B1 (ko) 폐수 증발 방법 및 장치
AU2001261444B2 (en) Electromagnetic wave assisted chemical processing
CN104607114B (zh) 一种生产氯化高聚物的装置及工艺
CS212250B2 (en) Appliance for executing the exothermic and endothermic processes
RU2621761C1 (ru) Реактор-смеситель для проведения процессов в гетерогенных средах
AU2001261444A1 (en) Electromagnetic wave assisted chemical processing
RU2113671C1 (ru) Печь для термической обработки углеродсодержащих материалов
CN219984358U (zh) 一种气液反应装置
RU2456069C1 (ru) Реактор для проведения газофазных каталитических реакций (варианты)
CN100333825C (zh) 微波化学反应装置
CN116850944A (zh) 一种非均相管道反应装置及其工作方法
CA3239714A1 (en) Two-direction material heating system
CN111359570A (zh) 一种环形反应器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09847487

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2009350266

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 2768524

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2012520885

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2009350266

Country of ref document: AU

Date of ref document: 20091126

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2009847487

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13386410

Country of ref document: US