WO2010061922A1 - 新規MutSタンパク質およびそれを用いた変異の判定方法 - Google Patents

新規MutSタンパク質およびそれを用いた変異の判定方法 Download PDF

Info

Publication number
WO2010061922A1
WO2010061922A1 PCT/JP2009/070051 JP2009070051W WO2010061922A1 WO 2010061922 A1 WO2010061922 A1 WO 2010061922A1 JP 2009070051 W JP2009070051 W JP 2009070051W WO 2010061922 A1 WO2010061922 A1 WO 2010061922A1
Authority
WO
WIPO (PCT)
Prior art keywords
nucleic acid
sequence
muts
primer
amplification
Prior art date
Application number
PCT/JP2009/070051
Other languages
English (en)
French (fr)
Inventor
林崎 良英
昌可 伊藤
基 金森
健悟 臼井
和仁 野村
Original Assignee
独立行政法人理化学研究所
株式会社ダナフォーム
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 独立行政法人理化学研究所, 株式会社ダナフォーム filed Critical 独立行政法人理化学研究所
Priority to US13/130,993 priority Critical patent/US20110236900A1/en
Priority to JP2010540527A priority patent/JPWO2010061922A1/ja
Priority to EP09829167A priority patent/EP2371951A4/en
Publication of WO2010061922A1 publication Critical patent/WO2010061922A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/195Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/5308Immunoassay; Biospecific binding assay; Materials therefor for analytes not provided for elsewhere, e.g. nucleic acids, uric acid, worms, mites
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature
    • G01N2333/195Assays involving biological materials from specific organisms or of a specific nature from bacteria
    • G01N2333/32Assays involving biological materials from specific organisms or of a specific nature from bacteria from Bacillus (G)

Definitions

  • the present invention relates to a novel MutS protein and a mutation determination method using the same.
  • gene mutations have been detected as methods for diagnosing, treating and preventing various diseases. Since gene mutation is deeply related to disease susceptibility, drug metabolism ability, etc., detection of gene mutation has great significance in medicine.
  • a method for detecting a gene mutation for example, a method has been developed in which a target sequence including a target site where a target mutation occurs in a target gene is amplified by various nucleic acid amplification methods, and the presence or absence of the mutation is judged based on the presence or absence of amplification. ing.
  • a primer capable of hybridizing to a region including the target site is used.
  • the primer is a sequence that is completely complementary to a sequence in which the target site is mutated, if amplification is confirmed, the primer is annealed to the target gene in which the target site is mutated.
  • the target gene can be determined to be a mutant type.
  • the primer is, for example, a sequence that is completely complementary to a sequence in which the target site is wild-type, and if amplification is confirmed, the primer is annealed to the target gene in which the target site is wild-type. Therefore, it can be determined that the target gene is wild type as amplified.
  • the primer may be annealed to the template to amplify the target sequence. That is, for example, when using a primer that is completely complementary to a sequence in which the target site is a mutant type as described above, the primer is annealed to a template in which the target site is a wild type, and the wild type target sequence As a result, the accuracy of mutation detection is reduced.
  • the mismatch binding protein is generally a protein that recognizes a mismatch base pair in a double-stranded nucleic acid and binds to the mismatch base pair. If the above-mentioned gene mutation is detected in the presence of this mismatch binding protein, even if a primer forms a mismatch base pair, the mismatch binding protein binds to the mismatch base pair, so that extension from the primer is prevented. It is suppressed. For this reason, it is possible to avoid a decrease in accuracy of mutation detection (see Patent Document 1). As such a mismatch binding protein, for example, Taq MutS protein derived from Thermus aquaticus is used.
  • an object of the present invention is to provide a new mismatch-binding protein that can specifically recognize and bind to a mismatched base pair, and a method for determining a mutation with excellent reliability using the protein.
  • the novel MutS protein of the present invention is characterized by comprising the following amino acid sequence (A) or (B).
  • A Amino acid sequence shown in SEQ ID NO: 2
  • B Amino acid sequence in which one or several amino acids are deleted, substituted, inserted or added in the amino acid sequence of (A), and a double-stranded nucleic acid Amino acid sequence of a protein having binding activity to mismatched base pairs in
  • the determination method of the present invention is a method for determining the presence or absence of a mutation at a target site of a test nucleic acid, comprising the following step (I) or (I ′) and the following step (II): To do.
  • (I) A step of amplifying a target sequence containing the target site in the test nucleic acid using a primer capable of hybridizing to a region containing the target site in the test nucleic acid in the presence of the novel MutS protein of the present invention (I ′) Using the primer for amplifying the test nucleic acid in the presence of the novel MutS protein of the present invention and a probe capable of hybridizing to the region containing the target site in the test nucleic acid, A step of amplifying the target sequence including the target site in a test nucleic acid (II) A step of confirming the presence or absence of amplification
  • the present inventors have intensively studied for the, cloning the novel gene of the MutS protein from the genus Alicyclobacillus, to give the novel MutS protein from the genus Alicyclobacillus.
  • the novel MutS protein is referred to as “Aac MutS”.
  • the Aac MutS of the present invention can specifically recognize and bind to a double-stranded nucleic acid having, for example, a so-called mismatch base pair (inappropriate base pair). For this reason, when Aac MutS of the present invention is used in amplification of a target sequence including a target site, the Aac MutS specifically binds to a mismatched base pair, so that extension from a primer can be effectively suppressed.
  • the presence or absence of mutation can be determined with excellent accuracy from the presence or absence of amplification.
  • the Aac MutS and determination method of the present invention can be said to be extremely useful tools in the field of genetic analysis, for example.
  • FIG. 1 is a graph showing the results of a nucleic acid binding assay in the presence of Aac MutS in Example 2 of the present invention.
  • FIG. 2 is a graph showing the results of a nucleic acid binding assay in the presence of Aac MutS and ADP in Example 3-1 of the present invention.
  • FIG. 3 is a graph showing the results of a nucleic acid binding assay in the presence of Aac MutS and ATP in Example 3-2 of the present invention.
  • FIG. 4 is an electrophoretogram showing the results of gel shift assay in the presence of Aac MutS in Example 4 of the present invention.
  • FIG. 5 is a graph showing an amplification profile when performing an isothermal amplification reaction in the presence of Aac MutS in Example 5 of the present invention.
  • FIG. 6 is a graph showing an amplification profile in Comparative Example 4 when an isothermal amplification reaction is performed in the presence of Taq MutS.
  • FIG. 7 is a graph showing an amplification profile when performing an isothermal amplification reaction in the presence of Aac MutS and Taq MutS in Example 6-1 of the present invention.
  • FIG. 8 is a graph showing an amplification profile when performing an isothermal amplification reaction in the presence of Aac MutS and Taq MutS in Example 6-2 of the present invention.
  • FIG. 9 is a schematic diagram showing the action mechanism of nucleic acid synthesis by the first primer in the Smart Amplification Process method.
  • FIG. 10 is a schematic diagram showing an example of the second primer in the Smart Amplification Process method.
  • FIG. 11 is a schematic diagram showing the mechanism of operation of the Smart Amplification Process method.
  • FIG. 12 is a schematic diagram showing an action mechanism of the Smart Amplification Process method.
  • Aac MutS of the present invention is characterized by comprising the following amino acid sequence (A) or (B).
  • MutS The MutS protein (hereinafter referred to as “MutS”) is also referred to as, for example, a mismatch binding protein or a mismatch recognition protein.
  • MutS is generally a protein that recognizes a mismatched base pair in a double-stranded nucleic acid and can bind to the mismatched base pair.
  • mismatched base pair means a non-complementary base pair, not a complementary normal base pair, such as a combination of adenine and thymine or uracil and a combination of guanine and cytosine.
  • a double-stranded nucleic acid having a mismatched base pair is referred to as “mismatched duplex or heteroduplex”, and a bond that forms a mismatched base pair is referred to as a “mismatched bond”.
  • the mismatched duplex is, for example, a substantially complementary double-stranded nucleic acid having two or more mismatched base pairs and including a non-complementary region. Means a chain.
  • a completely complementary base pair is hereinafter referred to as a “full match base pair”, and a completely complementary double-stranded nucleic acid is referred to as a “full match double strand”. Is called “full match binding”.
  • Aac MutS of the present invention has binding activity to mismatched base pairs in double-stranded nucleic acids.
  • the Aac MutS of the present invention further has, for example, a binding activity to the full-match double-stranded nucleic acid that does not have a binding activity to a double-stranded nucleic acid (full-match double-stranded nucleic acid) consisting of completely complementary base pairs.
  • the binding activity to the full-match double-stranded nucleic acid is preferably, for example, 1 / 1.25 or less (4/5 or less) of the binding activity to the mismatched double-stranded nucleic acid. More preferably, they are 1/4 or less, 1/120 or less, 1/200 or less, 1/205 or less.
  • the Aac MutS of the present invention can be isolated from, for example, a bacterium belonging to the genus Alicyclobacillus , preferably from Alicyclobacillus acidocaldarius , more preferably, Alicyclobacillus acidocaldarius subsp. It can be isolated from Acidocaldarius JCM5260. This strain can be sold, for example, from the Institute for Microbial Materials Development, RIKEN BioResource Center (http://www.jcm.riken.jp/JCM/Ordering_J.shtml).
  • the Aac MutS of the present invention can also be produced, for example, by a genetic engineering technique using the Aac MutS gene described later.
  • the Aac MutS of the present invention comprises, for example, an amino acid sequence in which one or several amino acids are deleted, substituted, inserted or added in the amino acid sequence shown in SEQ ID NO: 2, and And proteins having binding activity to mismatched base pairs in double-stranded nucleic acids.
  • “Several amino acids” means, for example, the number of amino acid residues of about 5 to 10% of the total number of amino acid residues, for example, about 1 to 86, preferably about 1 to 43, more preferably About 1 to 21, most preferably about 1 to 10.
  • the Aac MutS of the present invention is, for example, from an amino acid sequence having 50%, preferably 70%, 80%, 85%, 90%, 97%, 98% or more homology with the protein (A). And a protein having a binding activity to a mismatched base pair in a double-stranded nucleic acid. Protein homology can usually be expressed as a percentage of identity when the amino acid sequences of two proteins are properly aligned, and generally the exact match between the two amino acid sequences. Means the appearance rate of Appropriate alignment between sequences for identity comparison can be determined using various algorithms, such as the BLAST algorithm (Altschul SF J Mol Biol 1990 Oct 5; 215 (3): 403-10).
  • the method for measuring the activity of MutS is not limited and can be measured by various methods well known to those skilled in the art. As a specific example, the method described in documents such as The Journal of Biological Chemistry 276, 34339-34347, 2001; doi: 10.1074 / jbc.M104256200 can be used.
  • the molecular weight of Aac MutS of the present invention is, for example, 86,000 to 105,500 Da, preferably 91,000 to 100,800 Da, and the molecular weight of Aac MutS comprising the amino acid sequence shown in SEQ ID NO: 2 is 95. 984 Da.
  • the chemical properties of the Aac MutS of the present invention are, for example, excellent in stability up to 65 ° C., optimal temperature is, for example, about 50-60 ° C., and optimal pH is, for example, in the range of pH 7-9. .
  • the reagents and kits referred to in the present specification include, for example, Sigma, Aldrich, Invitrogen / GIBCO, Clontech, Stratagene, Qiagen, Promega, Roche Diagnostics, Becton-Dickinson, It is available from commercial vendors such as TaKaRa (Takara Bio Inc.).
  • the novel nucleic acid of the present invention is a nucleic acid encoding the novel Aac MutS of the present invention, and is characterized by comprising any of the following nucleic acids (a) to (f).
  • A a nucleic acid comprising the base sequence shown in SEQ ID NO: 1
  • B a protein that hybridizes with the nucleic acid of (a) above under stringent conditions and has a binding activity to a mismatched base pair in a double-stranded nucleic acid
  • C a nucleic acid encoding a protein comprising a base sequence having 80% or more homology with the base sequence of (a) and having a binding activity to a mismatched base pair in a double-stranded nucleic acid
  • d a protein comprising a base sequence in which one or several bases are deleted, substituted, inserted or added in the base sequence of (a), and having a binding activity to a mismatched base pair in a double-stranded nu
  • the novel nucleic acid of the present invention is referred to as “Aac MutS gene”.
  • the Aac MutS gene of the present invention includes the meanings of the nucleic acids (b) to (f) in addition to (a) the nucleic acid consisting of the base sequence shown in SEQ ID NO: 1.
  • the Aac MutS gene of the present invention comprises, for example, a degenerate variant of the base sequences (a) to (f), a base sequence complementary to the base sequences (a) to (f), and Also included are nucleic acids that encode proteins having binding activity to mismatched base pairs in double-stranded nucleic acids.
  • the Aac MutS gene of the present invention includes, for example, RNA (mRNA) corresponding to the DNA in addition to DNA.
  • “hybridizes under stringent conditions” is, for example, well-known hybridization experimental conditions for those skilled in the art.
  • “stringent conditions” refers to, for example, hybridization at 60 to 68 ° C. in the presence of 0.7 to 1 mol / L NaCl, and then 0.1 to 2 times the SSC solution. Used refers to conditions that can be identified by washing at 65-68 ° C. 1 ⁇ SSC consists of 150 mmol / L NaCl and 15 mmol / L sodium citrate.
  • the salt concentration and temperature in the washing step can be optimized as appropriate.
  • the homology is, for example, 80% or more, preferably 90% or more, and more preferably 95% or more.
  • the homology can be obtained, for example, by calculating under default conditions using BLAST or the like.
  • “several bases” means, for example, the number of bases of about 10 to 20% of the total number of bases in the base sequence represented by SEQ ID NO: 1, for example, about 1 to 520 The number is preferably about 1 to 260, more preferably about 1 to 130, and most preferably about 1 to 65.
  • amino acid sequence in which one or several amino acids are deleted, substituted, inserted or added is the same as that described in the Aac MutS of the present invention, for example.
  • Aac MutS gene of the present invention may be extracted from Alicyclobacillus genus, such as described above, may be synthesized by genetic engineering techniques, it may be synthesized by chemical techniques.
  • the recombinant vector of the present invention includes the Aac MutS gene of the present invention as described above.
  • the recombinant vector of the present invention is not limited as long as it contains the Aac MutS gene of the present invention.
  • the recombinant vector of the present invention can be obtained, for example, by ligating (inserting) the Aac MutS gene of the present invention into an appropriate vector.
  • the vector for inserting the Aac MutS gene of the present invention is not particularly limited as long as it can be replicated in the host, and examples thereof include plasmid DNA and phage DNA.
  • the plasmid DNA include plasmids derived from E. coli such as pBR322, pBR325, pUC118, and pUC119; plasmids derived from Bacillus subtilis such as pUB110 and pTP5; and plasmids derived from yeast such as YEp13, YEp24, and YCp50.
  • phage DNA examples include ⁇ phage such as Charon4A, Charon21A, EMBL3, EMBL4, ⁇ gt10, ⁇ gt11, ⁇ ZAP, and the like.
  • animal viruses such as retrovirus or vaccinia virus, insect virus vectors such as baculovirus, and the like can also be used.
  • the method for inserting the Aac MutS gene of the present invention into the vector is not particularly limited, and a conventionally known method can be adopted. Specific examples include, for example, a method in which a purified Aac MutS gene (DNA) is cleaved with an appropriate restriction enzyme, inserted into a restriction enzyme site or a multicloning site of an appropriate vector DNA, and the two are linked. .
  • the Aac MutS gene of the present invention is preferably incorporated into the vector under conditions such that, for example, the protein encoded by it is expressed.
  • cis elements such as enhancers, splicing signals, poly A addition signals, selectable markers, ribosome binding sequences are optionally used. (SD sequence, KOZAK sequence, etc.) can also be linked.
  • the selection marker include drug resistance genes such as dihydrofolate reductase gene, ampicillin resistance gene, neomycin resistance gene and the like.
  • the transformant of the present invention is characterized by including the recombinant vector of the present invention.
  • the transformant of this invention should just contain the recombinant vector of this invention, and is not restrict
  • the transformant of the present invention can be obtained, for example, by introducing the recombinant vector of the present invention into a host.
  • the host is not particularly limited as long as it can express the Aac MutS of the present invention by the recombinant vector of the present invention.
  • a host-vector system is considered. You can choose. Specific examples of the host, eg, E.
  • Escherichia coli Escherichia genus such as Bacillus subtilis (Bacillus subtilis) Bacillus such as, Pseudomonas putida (Pseudomonas putida) Pseudomonas such as, Rhizobium meliloti (Rhizobium meliloti ) And other bacteria belonging to the genus Rhizobium.
  • yeasts such as Saccharomyces cerevisiae and Schizosaccharomyces pombe , animal cells such as COS cells and CHO cells, and insect cells such as Sf9 and Sf21 can also be used.
  • the transformation method is not particularly limited, and a conventionally known method can be employed.
  • the Aac MutS of the present invention can be prepared, for example, by culturing the transformant of the present invention.
  • the method for producing Aac MutS of the present invention is characterized by, for example, culturing the transformant of the present invention as described above.
  • Aac MutS protein may be further isolated from the obtained culture solution.
  • the “culture” includes, for example, a culture supernatant containing cultured transformants, a culture supernatant, cultured cells or cultured cells, or disrupted cultured cells or cultured cells. It may be meaning.
  • the “method for culturing the transformant of the present invention” is performed according to, for example, a normal method applied to host culture, and the conditions can be appropriately determined according to, for example, the type of the host.
  • the Aac MutS of the present invention when the Aac MutS of the present invention is produced in cells or cells, it can be isolated by disrupting the cells or cells after culturing. Further, when the Aac MutS of the present invention is produced, for example, outside the cells or cells, it is isolated by using the culture solution as it is or by removing the cells or cells from the culture solution by centrifugation or the like. it can. Thereafter, the Aac MutS of the present invention can also be purified from the culture by combining general biochemical methods used for protein isolation and purification alone or in combination as appropriate. The purification method is not particularly limited, and examples thereof include ammonium sulfate precipitation, gel chromatography, ion exchange chromatography, affinity chromatography and the like. In addition, for example, when a protein to which a tag sequence is added is expressed for purification, the tag sequence can be removed by protease treatment or the like during or after the purification step.
  • Examples of the mutation determination method of the present invention include the following first determination method and second determination method.
  • the first method for determining a mutation of the present invention is a method for determining the presence or absence of a mutation at a target site of a test nucleic acid, and includes the following steps (I) and (II): It is characterized by.
  • II Step of confirming the presence or absence of amplification
  • a nucleic acid sequence whose target site is a standard base for example, a nucleic acid sequence whose target site is a standard genotype (normal type or wild type) is referred to as “normal type sequence or wild type sequence”.
  • normal type sequence or wild type sequence a nucleic acid sequence in which the target site is a different base compared to the normal type sequence.
  • mutant type sequence a nucleic acid sequence in which the target site is a different base compared to the normal type sequence.
  • the “target site” means, for example, a specific site showing a different base between the wild-type sequence and the mutant sequence, and may be a single base or a sequence of two or more bases.
  • test nucleic acid is a nucleic acid to be subjected to determination of the presence or absence of a mutation at the target site, that is, whether the target site is a wild type or a mutant type, or other than the target site. It means a nucleic acid to be determined whether or not it is the same sequence as the wild type sequence.
  • the test nucleic acid may include, for example, not only the nucleic acid contained in the sample to be subjected to the determination method of the present invention and the nucleic acid at the start of the amplification reaction, but also the nucleic acid synthesized by the amplification reaction. Say.
  • the “target sequence” includes, for example, not only the nucleic acid sequence for amplification in the test nucleic acid, but also the meaning of a sequence containing the nucleic acid sequence for amplification and a nucleic acid sequence complementary thereto.
  • the primer can hybridize (anneal) to a region including a target site, it is also referred to as a “target primer”, and the “region including the target site” can hybridize to the target primer. Therefore, it is also referred to as a hybrid region hereinafter.
  • the “mutation” may be any of substitution, deletion, addition and insertion, for example.
  • Aac MutS used in the determination method of the present invention can specifically recognize and bind mismatched base pairs, for example, specificity for mismatched base pairs rather than complementary base pairs, so-called full-matched base pairs. Is expensive. Therefore, according to the first determination method of the present invention, when a target primer capable of hybridizing to a region including the target site in the test nucleic acid is mismatch-bound to the test nucleic acid, the target primer is specific to the mismatch site. Since Aac MutS binds specifically, the extension reaction from the target primer is specifically suppressed. As a result, erroneous amplification from the mismatched target primer can be avoided, so that the presence / absence of mutation depending on the presence / absence of amplification can be determined with excellent reliability.
  • the determination method of the present invention is useful for determining, for example, the susceptibility of various diseases, whether or not the disease is present, and the sensitivity and resistance to the medicine for the disease. For example, when determining the susceptibility of a disease based on the presence or absence of a mutation at the target site of the target gene, the sequence of a healthy person is a normal sequence, and the sequence of the disease patient is a mutant sequence. Then, the gene of the subject is used as the test nucleic acid, and it is determined whether the target site is normal type or mutant type. As a result, if the target site is a normal type, the test nucleic acid is a normal type sequence, and the test subject is less likely to have a disease or can be determined to be a healthy person. On the other hand, if the target site is mutated, the test nucleic acid is a mutated sequence, and the test subject is highly likely to have a disease or can be determined to be a patient with the disease.
  • the target site in the test nucleic acid may be, for example, 1 base (mononucleotide), 2 bases (dinucleotide) or more, and in the latter case, it may be continuous or discontinuous. .
  • the target primer and the hybrid region in the test nucleic acid differ by only one base, the other sequences are completely homologous, so the test nucleic acid has a base that is mismatched with the target primer.
  • the target primer is easy to hybridize to the test nucleic acid.
  • the Aac MutS of the present invention for example, even when the two are different by only one base and the primer hybridizes to the test nucleic acid, the Aac MutS specifically binds to cause an erroneous extension reaction. Can be suppressed. For this reason, the determination method of the present invention is suitable for determination of single nucleotide polymorphism, for example.
  • the mismatch that occurs when the primer is hybridized to the test nucleic acid may be, for example, one base, a plurality of consecutive bases, or a plurality of discontinuous bases.
  • the upper limit of the plurality of bases is not particularly limited. For example, the number that can maintain the double-stranded state of the test nucleic acid and the primer is preferable. As a specific example, for example, depending on the length (number of bases) of both hybridizing, the upper limit is, for example, 5 bases or less, more preferably 3 bases or less, particularly preferably 2 bases or less. It is.
  • a primer for amplification for example, a target primer capable of hybridizing to the region where the base of the target site is mutated can be used.
  • a target primer capable of hybridizing to the region where the base of the target site is mutated can be used.
  • a primer for amplification for example, a target primer capable of hybridizing to the region where the base of the target site is a normal type can be used.
  • MutS such as Taq MutS has been used to suppress extension reaction from mismatched primers.
  • conventional MutS also has low substrate specificity, for example, even if the MutS binds not only to a mismatched duplex but also to a fully matched duplex, or even if the MutS binds to a mismatched duplex.
  • the Aac MutS of the present invention has excellent substrate specificity for mismatched duplexes, so that binding to full-matched duplexes can be suppressed more than conventional MutS, and mismatched duplexes. Since it is difficult to dissociate, it is possible to make a determination with excellent reliability.
  • the amount of Aac MutS added to the reaction solution for the amplification reaction is not particularly limited, and can be appropriately determined according to, for example, the amount of the test nucleic acid at the start of the reaction and the amounts of various primers.
  • the amount of test nucleic acid at the start of the reaction per 25 ⁇ L of the reaction solution is, for example, 0.1 to 1000 ng, preferably 0.5 to 500 ng, more preferably 1 to 100 ng.
  • the total amount of the primer is, for example, 0.01 to 1000 ⁇ mol, preferably 0.05 to 500 ⁇ mol, more preferably 0.1 to 100 ⁇ mol
  • the amount of Aac MutS is, for example, 0.01 to 1000 ⁇ g. Yes, preferably 0.05 to 500 ⁇ g, more preferably 0.1 to 100 ⁇ g (hereinafter the same).
  • the first determination method of the present invention for example, at least selected from the group consisting of the Aac MutS, ADP (adenosine 5′-diphosphate), ATP (adenosine 5′-triphosphate), and derivatives thereof. It is preferable to amplify the target sequence in the presence of one additive. If nucleic acid amplification is performed in the presence of the additive, for example, the binding rate of the Aac MutS of the present invention to mismatched base pairs can be improved. In particular, if the target sequence is amplified in the presence of ADP or a derivative thereof, dissociation of the bond between the mismatched base pair and Aac MutS of the present invention can be further suppressed.
  • the extension reaction from the target primer in which the mismatched base pair is formed can be suppressed more efficiently, thereby obtaining a mutation determination result with further excellent reliability.
  • the derivative include ATP- ⁇ -S (adenosine 5′-O- (3-thiotriphosphate)), AMP-PNP (adenosine 5 ′-[ ⁇ , ⁇ -imido] triphosphate) and the like.
  • ATP- ⁇ -S adenosine 5′-O- (3-thiotriphosphate)
  • AMP-PNP adenosine 5 ′-[ ⁇ , ⁇ -imido] triphosphate
  • the additive preferably contains ADP or a derivative thereof, more preferably ADP.
  • the addition amount of the additive in the reaction solution of the amplification reaction is not particularly limited and can be appropriately determined according to, for example, the amount of Aac MutS, the amount of test nucleic acid at the start of the reaction, the amount of various primers, and the like.
  • the concentration of the additive in the reaction solution is preferably, for example, 0.01 to 100 mmol / L, more preferably 0.05 to 50 mmol / L, and particularly preferably 0.1 to 100 mmol / L. 10 mmol / L.
  • the concentration of Aac MutS or the like in the reaction solution is preferably in the above-mentioned range.
  • the target sequence is preferably amplified in the presence of the Aac MutS of the present invention and MutS other than the genus Alicyclobacillus .
  • MutS other than those derived from the genus Alicyclobacillus include MutS derived from Thermus genus, and specifically, MutS derived from Thermus aquaticus (hereinafter referred to as “Taq MutS”).
  • MutS etc. derived from Bacillus genus can also be used.
  • the Aac MutS of the present invention can be used in combination with other MutS, for example.
  • the combined use of Aac MutS and other MutS of the present invention for example, can reduce the total amount of MutS compared to using Aac MutS alone, and more effective than using conventional Taq MutS alone.
  • the concentration range can be widened.
  • the Aac MutS amount is 0.01 to 1000 ⁇ g
  • the other MutS amount is 0.01 to 1000 ⁇ g
  • the total amount of the MutS and the other MutS is The amount is preferably 0.02 to 2000 ⁇ g, more preferably the amount of Aac MutS is 0.05 to 500 ⁇ g, the other amount of MutS is 0.05 to 500 ⁇ g, and the total amount is 0.1 to 1000 ⁇ g.
  • the Aac MutS amount is 0.1 to 100 ⁇ g
  • the other MutS amount is 0.1 to 100 ⁇ g / L
  • the total amount is 0.2 to 200 ⁇ g.
  • the amount of the test nucleic acid or the like at the start of the reaction in the reaction solution is preferably within the above-mentioned range.
  • the addition ratio (weight ratio A: T) of other MutS (T) to Aac MutS (A) is, for example, preferably 1: 0.05 to 1:50, more preferably 1: 0.25 to 1. : 25, particularly preferably 1: 0.5 to 1: 5.
  • the Aac MutS and other MutS may be activated with, for example, an activator, for example, in order to further avoid binding to a full-match double-stranded nucleic acid.
  • the activator is not particularly limited.
  • ATP, ADP, ATP- ⁇ -S (adenosine 5′-O- (3-thiotriphosphate)), AMP-PNP (adenosine 5 ′-[ ⁇ , ( ⁇ -imido] triphosphate) and the like, and other examples include nucleotides that can bind to MutS.
  • the activation can be performed, for example, by incubating the MutS and the activator at room temperature for a few seconds to a few minutes.
  • the target sequence may be further amplified in the presence of a single-strand binding protein (SSB).
  • SSB single-strand binding protein
  • the SSB is not particularly limited, and conventionally known proteins can be used. Specific examples of SSB include, for example, a single-chain binding protein derived from Escherichia coli, Drosophila, and Xenopus, a gene 32 protein derived from T4 bacteriophage, and these proteins derived from other species. .
  • the type of the test nucleic acid at the start of the reaction is not limited at all, and may be, for example, a nucleic acid derived from a natural product or a non-natural product nucleic acid by synthesis or the like.
  • the test nucleic acid include polynucleotides such as DNA and RNA.
  • Polynucleotide includes the meaning of oligonucleotide.
  • the polynucleotide may include, for example, an unmodified nucleotide, a modified nucleotide, a natural nucleotide, or an unnatural nucleotide.
  • the non-natural nucleotide includes, for example, a base other than the base of the natural nucleotide.
  • the base examples include xanthosines, diaminopyrimidines, isoG, isoC (Proc. Natl. Acad. Sci. USA 92, 6329- 6333, 1995).
  • the polynucleotide may include artificial synthetic nucleic acids such as LNA, PNA (peptide nucleic acid), morpholino nucleic acid, methyl phosphonate nucleic acid, S-oligonucleic acid, and may be a chimeric molecule thereof.
  • Examples of the DNA include genomic DNA, cDNA, and synthetic DNA.
  • RNA examples include total RNA, mRNA, rRNA, siRNA, hnRNA, synthetic RNA, spliced RNA, and unspliced RNA. .
  • test nucleic acid is RNA
  • DNA cDNA
  • RNA DNA
  • amplification reaction may be further performed using the obtained DNA as a template.
  • the test nucleic acid at the start of the reaction can be prepared from a sample derived from a living body such as blood, organ, tissue, or cell, or a microorganism-containing sample such as food, soil, or waste water. Examples of the living body include animals including humans and non-humans, plants, and the like. Examples of RNA contained in the sample include RNA present in the nucleus and cytoplasm, RNA derived from infected viruses and bacteria, and the like.
  • the recovery of the test nucleic acid from the sample is not particularly limited, and a conventionally known method can be adopted, and the recovered nucleic acid can be purified or fragmented as necessary.
  • the test nucleic acid may be, for example, a double-stranded nucleic acid or a single-stranded nucleic acid.
  • the double-stranded nucleic acid may be any of double-stranded DNA, double-stranded RNA, double-stranded DNA and RNA, and the like.
  • the double-stranded nucleic acid may be used as a template nucleic acid as it is, or, for example, one amplified with a vector such as a phage or a plasmid can be used as a template nucleic acid.
  • the amplification reaction may be started as it is, or a step of denaturing the double-stranded nucleic acid into a single-stranded nucleic acid may be included as necessary.
  • the denaturing method is not particularly limited, and examples thereof include a method of changing the temperature of the reaction solution and a method of changing the pH of the reaction solution.
  • a double-stranded nucleic acid is denatured into a single-stranded nucleic acid by raising the temperature to 40 to 120 ° C., preferably about 95 ° C., and then the temperature is lowered to 0 to 65 ° C.
  • the primer it is preferable to anneal the primer to the single-stranded nucleic acid.
  • the double-stranded nucleic acid is denatured into a single-stranded nucleic acid by raising the pH of the reaction solution to about 7 to 14, and then the pH of the reaction solution is lowered to about 6 to 9, It is preferable to anneal the primer to the single-stranded nucleic acid.
  • the type of primer to be used is not particularly limited, and can be appropriately determined according to, for example, the type of test nucleic acid, the type of target sequence, the type of nucleic acid amplification method, and the like.
  • the first determination method of the present invention for example, when two or more types of primers are used, for example, at least one type hybridizes to the region containing the target site in the test nucleic acid as described above.
  • a possible target primer is preferred.
  • a primer for amplifying a predetermined target sequence for example, a primer that hybridizes to the sense strand and a primer that hybridizes to the antisense strand are preferably used as a pair of primer sets.
  • the primer set may be, for example, one type or a combination of two or more types. Moreover, you may use combining the primer set used as a pair, and another primer.
  • two or more types of target sequences may be amplified in the same reaction solution.
  • a primer for amplifying each target sequence it is preferable to use at least one kind of target primer that can hybridize to the region containing the target site.
  • the primer in the present invention is not particularly limited, and can be appropriately determined depending on, for example, the test nucleic acid, the target sequence, the type of nucleic acid amplification method described later, and the like.
  • the primer may be, for example, a natural product-derived polynucleotide or a non-natural product polynucleotide by synthesis or the like.
  • examples of the polynucleotide include deoxyribonucleotides, modified deoxyribonucleotides, ribonucleotides, modified ribonucleotides, polynucleotides containing these derivatives, and chimeric polynucleotides.
  • ribonucleotide derivative examples include ribonucleotides in which the oxygen atom at the ⁇ -position is replaced with a sulfur atom.
  • the primer may include, for example, artificially synthesized nucleic acid such as LNA, PNA (peptide nucleic acid), morpholino nucleic acid, methyl phosphonate nucleic acid, S-oligonucleic acid, or a chimeric polynucleotide thereof.
  • the polynucleotide includes the meaning of oligonucleotide.
  • the primer preferably hybridizes (anneals) to a predetermined region (hybrid region) in the test nucleic acid, for example, under stringent conditions, and more preferably, only the predetermined region under stringent conditions. It is preferable to hybridize.
  • Stringent conditions can be determined depending on, for example, the melting temperature Tm (° C.) of the duplex between the primer and its complementary strand, the salt concentration of the hybridization solution, and the like.
  • Tm melting temperature
  • the salt concentration of the hybridization solution and the like.
  • J. Sambrook, EF Frisch, T . Maniatis; Molecular Cloning 2 nd edition can refer to the Cold Spring Harbor Laboratory (1989) and the like.
  • the primer when the test nucleic acid and the primer are hybridized under a temperature slightly lower than the melting temperature of the primer, the primer can be specifically hybridized to the predetermined region.
  • a primer can be designed by commercially available primer construction software etc., such as Primer3 (made by Whitehead Institute for Biomedical Research).
  • a polymerase can generally be used for amplification of the target sequence.
  • the polymerase is not particularly limited, and a conventionally known polymerase can be used.
  • the polymerase may be naturally derived, may be an enzyme obtained by genetic engineering techniques, or may be a mutant with artificial mutation.
  • Specific examples of the polymerase include a polymerase derived from the genus Alicyclobacillus, a polymerase derived from the Thermus genus, a polymerase derived from the genus Bacillus, a polymerase derived from the genus Geobacillus, a polymerase derived from Escherichia coli, and the like.
  • a polymerase derived from Alicyclobacillus acidocaldarius is preferable, and specifically, Alicyclobacillus acidocaldarius subsp.
  • a polymerase derived from Acidocaldarius JCM5260 can be mentioned.
  • Examples of the polymerase derived from the Thermus genus include a DNA polymerase derived from Thermus aquaticus (Taq DNA polymerase), a DNA polymerase derived from Thermus thermophilus (Tth DNA polymerase) and the like.
  • polymerase derived from the genus Bacillus examples include A polymerase derived from a genus of thermophilic Bacillus is preferable, and specific examples thereof include DNA polymerase derived from Bacillus stearothermophilus (Bst DNA polymerase) and DNA polymerase derived from Bacillus caldotenax (Bca DNA polymerase: registered trademark).
  • Bst DNA polymerase DNA polymerase derived from Bacillus stearothermophilus
  • Bca DNA polymerase examples include BcaBEST DNA polymerase and Bca (exo-) DNA polymerase.
  • a polymerase derived from Geobacillus caldoxylosyticus is preferable, and a specific example includes a polymerase derived from Geobacillus caldoxylosyticus DSM12041.
  • Vent (registered trademark) DNA polymerase for example, Vent (registered trademark) DNA polymerase, Vent (registered trademark) (Exo-) DNA polymerase, Deep Vent (registered trademark) DNA polymerase, Deep Vent (registered trademark) (Exo-) DNA polymerase, ⁇ 29 phage DNA
  • examples include polymerase, MS-2 phage DNA polymerase, Z-Taq DNA polymerase, Pfu DNA polymerase, Pfu turbo DNA polymerase, KOD DNA polymerase, 9 ° Nm DNA polymerase, and Terminator DNA polymerase.
  • the template nucleic acid contains an unnatural nucleotide as described above, for example, from the viewpoint of incorporation efficiency, Y188L / E478Q mutant HIV I reverse transcriptase, AMV reverse transcriptase, Klenow fragment of DNA polymerase, 9 ° Nm It is preferable to use DNA polymerase, HotTub DNA polymerase, etc. (Michael Sismour. 1 et al., Biochemistry, 42, No. 28, 8598, 2003, US Pat. No. 6,617,106, Michael J. Lutz et al., Bioorganic & Medical Chemistry letters 8, 1149-1152, 1998 etc.).
  • a substance that improves the heat resistance of the enzyme such as trehalose may be added to the reaction solution.
  • the target nucleic acid containing the non-natural nucleotide can be amplified more efficiently.
  • these DNA polymerases for example, Alicyclobacillus genus polymerase, the polymerase from Thermus genus, more preferably, an Alicyclobacillus acidocaldarius-derived polymerase, Taq DNA polymerase, particularly, the same origin as Aac MutS Alicyclobacillus derived from the genus of the polymerase, specifically, Alicyclobacillus acidocaldarius origin of the polymerase, Alicyclobacillus acidocaldarius subsp.
  • a polymerase from Acidocaldarius JCM5260 is preferred.
  • the polymerase when nucleic acid amplification is performed by an isothermal amplification method as described later, the polymerase preferably has, for example, a strand displacement activity (strand displacement ability). In addition, heat resistant ones can be preferably used. Further, the polymerase is preferably substantially free from 5 ′ ⁇ 3 ′ exonuclease activity. Examples of such polymerase include Klenow fragment of Escherichia coli- derived DNA polymerase I, mutants lacking the 5 ′ ⁇ 3 ′ exonuclease activity of the aforementioned thermophilic Bacillus genus polymerase, and the like. It is done. Specific examples of the latter include 5 ′ ⁇ 3 ′ exonuclease activity deletion mutants of Bst DNA polymerase and Bca DNA polymerase.
  • the enzyme used for the reaction is not particularly limited as long as it has cDNA synthesis activity using RNA as a template.
  • Specific examples include avian myeloblastosis virus-derived reverse transcriptase (AMV RTase), Rous-related virus 2 reverse transcriptase (RAV-2 RTase), Moloney murine leukemia virus-derived reverse transcriptase (MMLV RTase), and the like.
  • AMV RTase avian myeloblastosis virus-derived reverse transcriptase
  • RAV-2 RTase Rous-related virus 2 reverse transcriptase
  • MMLV RTase Moloney murine leukemia virus-derived reverse transcriptase
  • DNA polymerase having reverse transcription activity can also be used.
  • Specific examples include polymerases derived from Thermus genus such as Tth DNA polymerase, and thermophilic Bacillus genus.
  • thermophilic Bacillus- derived polymerase examples include Bst DNA polymerase, Bca DNA polymerase, BcaBEST DNA polymerase, Bca (exo-) DNA polymerase, and the like.
  • the Bca DNA polymerase for example, does not require manganese ions in the reaction, and can synthesize cDNA under high temperature conditions while suppressing secondary structure formation of the template RNA.
  • a reverse transcription reaction using total RNA or mRNA as a template and a cDNA obtained by the reverse transcription reaction can be performed with one kind of polymerase.
  • the present invention is not limited thereto, and for example, various DNA polymerases as described above may be used in combination with the above-described reverse transcriptase such as MMLV RTase.
  • MutS and polymerase of the same origin irrespective of said Aac MutS.
  • MutS and polymerase derived from the same genus preferably from the same species, and more preferably from the same strain.
  • the amount of the enzyme (eg, polymerase) in the reaction solution is not particularly limited, but is, for example, 0.01 to 1000 U, preferably 0.05, per 25 ⁇ L of the reaction solution. Is 500 U, more preferably 0.1 to 100 U.
  • the intron sequence contained in the eukaryotic genome is used as a target site for deletion, insertion or addition, and the intron sequence is present in the test nucleic acid. It can also be determined whether or not. When the presence or absence of the intron sequence is determined and it is determined that it does not exist, it can be determined that the target gene mRNA is present, that is, the target gene is expressed.
  • the target sequence is preferably mRNA.
  • the nucleic acid amplification method is not particularly limited, and a conventionally known method can be employed.
  • the nucleic acid amplification reaction may be performed, for example, by changing the temperature or at a constant temperature.
  • Examples of the former include a polymerase chain reaction (PCR) method (for example, see Patent Nos. 2502041, 2546576 and 2703194), an RT-PCR method (for example, Trends in Biothechnology, Vol. 10, pp. 146-153, 1992 etc.).
  • PCR polymerase chain reaction
  • RT-PCR method for example, Trends in Biothechnology, Vol. 10, pp. 146-153, 1992 etc.
  • the PCR usually includes a denaturing step for denaturing a double-stranded nucleic acid into a single-stranded nucleic acid, an annealing step for hybridizing a primer to the single-stranded nucleic acid, and an extending step for extending from the hybridized primer.
  • the latter is a so-called isothermal amplification method
  • the constant temperature includes, for example, not only maintaining a set temperature accurately but also a condition of a substantially constant temperature.
  • the “substantially constant temperature” includes, for example, the meaning of temperature change that does not impair the functions of various components used in the amplification reaction.
  • Examples of the isothermal amplification method include the Smart Amplification Process Method (International Publication WO01 / 030993, International Publication WO2004 / 040019, International Publication WO2005 / 063977, Mitani, Y. et al., Nature Methods, 2007. , Vol. 4, No. 3, 257-262), SDA method (strand displacement amplification) method (see JP-A-10-313900), improved SDA method, NASBA (nucleic acid sequence based amplification) method (patent no. 2650159), LAMP (Loop-Mediated Isothermal Amplification) method (Notomi, T. et al., Nucleic Acids Research, 2000, Vol. 28, No.
  • the isothermal amplification method is generally a method of performing a nucleic acid amplification reaction isothermally (constant temperature).
  • the conditions for the amplification reaction are not particularly limited, and can be appropriately determined by those skilled in the art.
  • the reaction temperature is preferably set, for example, at or near the melting temperature (Tm) of the primer, and further, the stringency level should be set in consideration of the melting temperature (Tm) of the primer. Is preferred.
  • Specific examples of the reaction temperature include, for example, about 20 ° C. to about 75 ° C., preferably about 35 ° C. to about 65 ° C.
  • the isothermal amplification method will be described by taking a method using an asymmetric primer set and a method using a symmetric primer set as examples.
  • the former is, for example, a primer set in which a pair of primers have different forms of one primer and the other, and is hereinafter referred to as “asymmetric primer set”.
  • the latter is, for example, a primer set in which a pair of primers has the same form as one primer and the other, and is hereinafter referred to as a “symmetric primer set”.
  • the asymmetric primer set is suitable for the Smart Amplification Process method, for example, and the symmetric primer set is suitable for the LAMP method, for example. Note that the present invention is not limited to this.
  • the Smart Amplification Process method can amplify a target sequence with excellent specificity. For this reason, nucleic acid amplification can determine, for example, the presence or absence of mutations in genes, ie, base deletions, substitutions, insertions or additions. ing.
  • the asymmetric primer set is an asymmetric primer set in which the form of one primer and the form of the other primer are different from each other, and can be applied to the Smart Amplification Process method. preferable.
  • this primer set is also referred to as “Smart Amplification Process primer set”.
  • a pair of asymmetric primers includes a first primer and a second primer,
  • the first primer comprises a sequence (Ac ′) that hybridizes to the sequence (A) of the 3 ′ end portion of the target sequence at the 3 ′ end portion, and the target sequence is more than the sequence (A).
  • a sequence (B ′) that hybridizes to the complementary sequence (Bc) of the sequence (B) present on the 5 ′ side is included on the 5 ′ side of the sequence (Ac ′),
  • FIG. 9 schematically shows the mechanism of nucleic acid synthesis using the first primer.
  • the target sequence in the nucleic acid used as a template is determined, and the sequence (A) at the 3 'end portion of the target sequence and the sequence (B) existing 5' from the sequence (A) are determined.
  • the first primer includes a sequence (Ac ′) and further includes a sequence (B ′) on the 5 ′ side thereof.
  • the sequence (Ac ′) hybridizes to the sequence (A), and the sequence (B ′) hybridizes to the complementary sequence (Bc) of the sequence (B).
  • the first primer may include an intervening sequence that does not affect the reaction between the sequence (Ac ′) and the sequence (B ′).
  • the sequence (Ac ′) in the primer is hybridized to the sequence (A) of the target sequence (FIG. 9 (a)).
  • a nucleic acid containing a complementary sequence of the target sequence is synthesized.
  • the sequence (B ′) present on the 5 ′ side of the synthesized nucleic acid hybridizes to the sequence (Bc) present in the nucleic acid, and thereby the stem-loop on the 5 ′ side of the synthesized nucleic acid.
  • a structure is formed.
  • the sequence (A) on the template nucleic acid becomes a single strand, and another primer having the same sequence as the first primer hybridizes to this portion (FIG. 9 (b)). Thereafter, an extension reaction from the newly hybridized first primer occurs by the strand displacement reaction, and at the same time, the previously synthesized nucleic acid is separated from the template nucleic acid (FIG. 9 (c)).
  • the phenomenon that the sequence (B ′) hybridizes to the sequence (Bc) typically occurs due to the presence of complementary regions on the same strand.
  • a double-stranded nucleic acid is dissociated into a single strand, partial dissociation starts from its terminal or other relatively unstable portion.
  • the base pair of the terminal portion is in an equilibrium state of dissociation and binding at a relatively high temperature, and the double-stranded nucleic acid is maintained as a whole.
  • a stem-loop structure can be formed as a metastable state.
  • the design criteria for the first primer in a preferred embodiment of the present invention are as follows. First, in order for a new primer to efficiently anneal to the template nucleic acid after the complementary strand of the template nucleic acid is synthesized by extension of the primer, a template is formed by forming a stem-loop structure on the 5 ′ side of the synthesized complementary strand. The part of the sequence (A) on the nucleic acid needs to be a single strand. For that purpose, the difference (XY) between the base number X of the sequence (Ac ′) and the base number Y of the region sandwiched between the sequence (A) and the sequence (B) in the target sequence is expressed as X The ratio to (XY) / X becomes important.
  • the optimum temperature for the primer extension reaction is, for example, at most around 72 ° C., and at such a low temperature, it is difficult for the extension strand to dissociate over a long region. Therefore, in order for the sequence (B ′) to efficiently hybridize to the sequence (Bc), it is considered preferable that the number of bases between both sequences is small. On the other hand, in order for the sequence (B ′) to hybridize to the sequence (Bc) and to make the portion of the sequence nucleic acid (A) of the template nucleic acid single-stranded, the sequence (B ′) having the larger number of bases Is considered preferable.
  • the first primer according to a preferred embodiment of the present invention is the (XY) when no intervening sequence exists between the sequence (Ac) and the sequence (B ′) constituting the primer.
  • ) / X is, for example, -1.00 or more, preferably 0.00 or more, more preferably 0.05 or more, more preferably 0.10 or more, and for example, 1.00 or less, preferably 0.00. It is designed to be 75 or less, more preferably 0.50 or less, and even more preferably 0.25 or less.
  • (X + Y) is preferably 15 or more, more preferably 20 or more, further preferably 30 or more, and is preferably 50 or less, more preferably 48 or less, and even more preferably 42 or less.
  • the first primer according to a preferred embodiment of the present invention is ⁇ X- (YY ') ⁇ / X is, for example, -1.00 or more, preferably 0.00 or more, more preferably 0.05 or more, more preferably 0.10 or more. It is designed to be 0.000 or less, preferably 0.75 or less, more preferably 0.50 or less, and even more preferably 0.25 or less.
  • (X + Y + Y ′) is preferably 15 or more, more preferably 20 or more, more preferably 30 or more, and is preferably 100 or less, more preferably 75 or less, and even more preferably 50 or less.
  • the first primer has, for example, a chain length that allows base pairing with the target nucleic acid while maintaining the required specificity under given conditions.
  • the chain length of this primer is preferably 15 to 100 nucleotides, more preferably 20 to 60 nucleotides.
  • the lengths of the sequence (Ac) and the sequence (B ′) constituting the first primer are each preferably 5 to 50 nucleotides, more preferably 7 to 30 nucleotides. If necessary, an intervening sequence that does not affect the reaction may be inserted between the sequence (Ac) and the sequence (B ′).
  • the second primer included in the primer set according to the present invention is the sequence of the 3 ′ end portion of the complementary sequence of the target sequence (the strand opposite to the strand to which the first primer hybridizes).
  • a folded sequence (D-Dc ′) containing a sequence (Cc ′) that hybridizes to (C) at the 3 ′ end portion and two nucleic acid sequences that hybridize to each other on the same strand ) On the 5 ′ side.
  • the structure of such a second primer is, for example, as shown in FIG. 10, but is not limited to the sequence or the number of nucleotides shown in FIG.
  • the length of the sequence (Cc ′) constituting the second primer is preferably 5 to 50 nucleotides, more preferably 10 to 30 nucleotides.
  • the length of the folded sequence (D-Dc ′) is preferably 2 to 1000 nucleotides, more preferably 2 to 100 nucleotides, further preferably 4 to 60 nucleotides, and further preferably 6 to 40 nucleotides.
  • the number of nucleotides of base pairs formed by hybridization within the folded sequence (D-Dc ′) is preferably 2 to 500 bp, more preferably 2 to 50 bp, still more preferably 2 to 30 bp, and further preferably 3 to 20 bp.
  • the nucleotide sequence of the folded sequence (D-Dc ′) may be any sequence and is not particularly limited, but is preferably a sequence that does not hybridize to the target sequence. If necessary, an intervening sequence that does not affect the reaction may be inserted between the sequence (Cc ′) and the folded sequence (D-Dc ′).
  • the two sequences to be hybridized are mutually complementary sequences, but the present invention is not limited thereby.
  • the first primer hybridizes to the sense strand of the target nucleic acid, and the primer extension reaction occurs (FIG. 11 (a)).
  • the primer extension reaction occurs (FIG. 11 (a)).
  • a stem-loop structure is formed on the extended strand ( ⁇ )
  • a new first primer hybridizes to the sequence (A) of the sense strand that has become a single strand (FIG. 11 (b) )
  • An extension reaction of the primer occurs, and the previously synthesized extension strand ( ⁇ ) is eliminated.
  • the second primer hybridizes to the sequence (C) of the released extended strand ( ⁇ ) (FIG. 11 (c)), the primer extension reaction occurs, and the extended strand (+) is synthesized. (FIG. 11 (d)).
  • a stem-loop structure is formed at the 3 ′ end of the generated extended strand (+) and the 5 ′ end of the extended strand ( ⁇ ) (FIG. 11 (e)), and the extended strand (+) which is the free 3 ′ end.
  • the extended chain ( ⁇ ) is detached (FIG. 11 (f)).
  • a hairpin-type double-stranded nucleic acid in which the extension strand ( ⁇ ) is bonded to the 3 ′ side of the extension strand (+) via the sequence (A) and the sequence (Bc) is generated,
  • the first primer hybridizes to the sequence (A) and sequence (Bc) (FIG. 11 (g)), and an extended chain ( ⁇ ) is generated by the extension reaction (FIG. 11 (h) and FIG. 12 (i). )).
  • a free 3 ′ end is provided by the folded sequence present at the 3 ′ end of the hairpin type double-stranded nucleic acid (FIG. 11 (h)), and by an extension reaction therefrom (FIG.
  • a single-stranded nucleic acid having a folded sequence at both ends and alternately containing an extended strand (+) and an extended strand ( ⁇ ) through the sequences derived from the first and second primers is generated (FIG. 12 (j )).
  • the free 3 ′ end starting point of complementary strand synthesis
  • the same extension reaction is repeated, The chain length is doubled per extension reaction (FIGS. 12 (l) and (m)).
  • the free 3 ′ end (the complementary strand synthesis origin) is provided by the folded sequence present at the 3 ′ end. For this reason (FIG. 12 (n)), a stem-loop structure is formed at both ends by the extension reaction therefrom, and the extended strand (+) and the extended strand (-) are alternately included via the sequence derived from the primer.
  • Single-stranded nucleic acid is produced (FIG. 12 (o)). In this single-stranded nucleic acid as well, the complementary strand synthesis starting point is sequentially provided by the loop formation at the 3 'end, so that elongation reactions occur one after another.
  • the single-stranded nucleic acid thus automatically extended contains sequences derived from the first primer and the second primer between the extended strand (+) and the extended strand ( ⁇ ). Therefore, it is possible for each primer to hybridize to cause an extension reaction, and thereby the sense strand and the antisense strand of the target nucleic acid are significantly amplified.
  • the primer set for Smart Amplification Process may include a third primer in addition to the first primer and the second primer.
  • the third primer is, for example, a primer that hybridizes to the target sequence or its complementary sequence and does not compete with other primers for hybridization to the target sequence or its complementary sequence.
  • “non-competing” means, for example, that the primer does not interfere with the provision of a complementary strand synthesis starting point by hybridization with the target sequence.
  • the amplification product When the target sequence is amplified by the first primer and the second primer, as described above, the amplification product has the target sequence and its complementary sequence alternately. On the 3 'side of the amplification product, there is a folded sequence or loop structure, and extension reactions occur one after another from the complementary strand synthesis origin provided thereby.
  • the third primer is preferably a primer that can be annealed to the target sequence present in the single-stranded portion when such an amplification product is partially in a single-stranded state.
  • the third primer is not limited, and may be one type.
  • two or more types of the third primer may be used at the same time in order to improve the speed and specificity of the amplification reaction.
  • These third primers are typically composed of different sequences from the first primer and the second primer, but hybridize to partially overlapping regions as long as they do not compete with these primers. Also good.
  • the chain length of the third primer is preferably 2 to 100 nucleotides, more preferably 5 to 50 nucleotides, and even more preferably 7 to 30 nucleotides.
  • the primary purpose of the third primer is, for example, an auxiliary function for advancing the amplification reaction with the first primer and the second primer more rapidly.
  • the third primer preferably has a Tm lower than the Tm of each 3 'end of the first primer and the second primer.
  • the amount of the third primer added to the amplification reaction solution is preferably smaller than, for example, the amount of each of the first primer and the second primer.
  • a primer having a structure capable of forming a loop as described in International Publication No. 02/24902 pamphlet, which gives a starting point for complementary strand synthesis to the loop portion is used.
  • a complementary strand synthesis origin may be added to any site within the target sequence.
  • one of the first primer and the second primer, or both of the primers are labeled with a labeling substance such as a fluorescent dye, for example.
  • a primer may be sufficient and the said 3rd primer may be the said labeled primer, for example.
  • any one or both of the first primer and the second primer and the third primer may all be the labeled primers.
  • the Smart Amplification Process primer is preferably designed as follows. That is, the primer set for the Smart Amplification Process uses, as a target sequence, a nucleic acid sequence having a mutation at the target site (detection site) (mutant sequence) or a nucleic acid sequence having no mutation at the target site (wild type sequence).
  • the target site causing the target mutation is included in the sequence (A), the sequence (B) or the sequence (C), or between the sequence (A) and the sequence (B) or the sequence (A) It is preferable to design the primer set so as to be arranged between the sequence (C).
  • the presence of the amplification product after the amplification reaction indicates the presence of the mutant sequence, and the absence of the amplification product. Or a decrease indicates the absence of the mutated sequence.
  • the presence of the amplified product after the amplification reaction indicates the absence of the mutant sequence, and amplification The absence or reduction of the product indicates the presence of the mutated sequence.
  • “decrease in amplification product” means, for example, that the amount of amplification product obtained is reduced compared to the amount of amplification product obtained when the target sequence is present in the test nucleic acid. Means.
  • the primer set for example, a primer set designed so that the target site is included in the sequence (A) is preferable.
  • a primer set for example, when a target sequence (for example, a wild type sequence) is included in the test nucleic acid, the first primer anneals to the sequence (A) in the amplification reaction. can get.
  • the test nucleic acid contains a nucleic acid sequence (for example, a mutant sequence) different from the target sequence, it is difficult for the first primer to anneal to the sequence (A) in the amplification reaction. For this reason, no amplification product is obtained or the amount of amplification product obtained is significantly reduced.
  • the sequence (Ac) contained in the first primer is preferably a sequence complementary to the sequence (A).
  • the primer set for example, a primer set designed so that the target site is included in the sequence (C) is preferable.
  • a primer set for example, when a target sequence (for example, a wild type sequence) is included in the test nucleic acid, the second primer anneals to the sequence (C) in the amplification reaction. can get.
  • the test nucleic acid contains a nucleic acid sequence different from the target sequence (for example, a mutant sequence
  • the sequence (Cc ′) contained in the second primer is preferably a sequence complementary to the sequence (C).
  • the primer is preferably a primer set designed so that the target site is included in the sequence (B), for example.
  • a primer set for example, when the target nucleic acid includes a target sequence (for example, a wild type sequence), in the amplification reaction, the first primer anneals to the sequence (A) and the extension reaction is performed. Then, the sequence (B ′) contained in the primer hybridizes to the extended strand sequence (Bc). For this reason, a stem-loop structure is efficiently formed. By forming this efficient stem-loop structure, it becomes possible for the other first primer to anneal to the template, and the action mechanism shown in FIG. It is done.
  • test nucleic acid contains a nucleic acid sequence (for example, a mutant sequence) different from the target sequence
  • a nucleic acid sequence for example, a mutant sequence
  • the order is disturbed and no amplification product is obtained, or the amount of amplification product obtained is significantly reduced.
  • the sequence (B ′) contained in the first primer is preferably the same sequence as the sequence (B).
  • the primer set for example, a primer set designed so that the target site is disposed between the sequence (A) and the sequence (B) is preferable.
  • the extension reaction was performed by annealing the first primer to the sequence (A) in the amplification reaction. Thereafter, the sequence (B ′) contained in the primer hybridizes to the extended strand sequence (Bc). For this reason, a stem-loop structure is efficiently formed. The formation of this efficient stem-loop structure enables the other first primer to anneal to the template, and the action mechanism shown in FIG. 9 proceeds efficiently, resulting in an amplification product. .
  • the test nucleic acid contains a nucleic acid sequence different from the target sequence (for example, a mutant sequence)
  • the sequence (B ′) contained in the first primer and the sequence (Bc) on the extended strand are appropriate. Therefore, it is difficult to form the stem-loop structure in the amplification reaction. This is the case when there is a long sequence insertion or deletion between the sequence (A) and the sequence (B). Therefore, in this case, the mechanism of action shown in FIG. 9 is hindered, and no amplification product is obtained, or the amount of amplification product obtained is significantly reduced.
  • the primer set for example, a primer set designed so that the target site is disposed between the sequence (A) and the sequence (C) is preferable.
  • the target sequence is contained in the test nucleic acid (for example, a wild type sequence)
  • the first primer is annealed to the sequence (A) and the extension reaction is performed.
  • the sequence (B ′) contained in the primer hybridizes to the sequence (Bc) on the extended strand, so that a stem-loop structure is efficiently formed.
  • the formation of this efficient stem-loop structure allows the other first primer to anneal to the template, and the mechanism of action shown in FIGS. 9, 11 and 12 proceeds efficiently. An amplification product is obtained.
  • test nucleic acid contains a nucleic acid sequence different from the target sequence (for example, a mutant sequence)
  • an amplification product is not obtained or the amount of amplification product obtained is significantly reduced.
  • the test nucleic acid contains a nucleic acid sequence different from the target sequence due to insertion of a long sequence between the sequence (A) and the sequence (C)
  • the amplification rate (efficiency) is significantly reduced.
  • No amplification product is obtained or the amount of amplification product obtained is significantly reduced.
  • the test nucleic acid contains a nucleic acid sequence different from the target sequence.
  • the sequence (B ′) contained in the first primer cannot hybridize on the extended strand, so that formation of a stem-loop structure becomes impossible or difficult. For this reason, the mechanism of action shown in FIG. 9, FIG. 11 and FIG. 12 is hindered, and no amplification product is obtained, or the amount of amplification product obtained is significantly reduced. Furthermore, due to the deletion of the sequence between the sequence (A) and the sequence (C), the test nucleic acid contains a nucleic acid sequence different from the target sequence, and the portion of the sequence (B) resulting from this deletion Even if there is no spontaneous deletion, the amplification rate (efficiency) is reduced, so that no amplification product is obtained or the amount of amplification product obtained is significantly reduced.
  • the target site for deletion, insertion or addition may be an intron sequence contained in the genome of a eukaryote.
  • mRNA that lacks the intron of the target gene is used as a test nucleic acid, and the target site related to the deletion of the intron sequence is arranged between the sequence (A) and the sequence (B).
  • Primer sets designed in this way are preferred. According to such a primer set, first, the sequence (Ac ′) present on the 3 ′ side of the first primer is annealed to the template nucleic acid (test nucleic acid) to cause an extension reaction.
  • the sequence (B ′) present on the 5 ′ side of the first primer is adjacent to the self-extending production strand. It can hybridize to the sequence (Bc) corresponding to the exon. That is, when the extension strand synthesizes a target region of mRNA having a sequence in which two exons are connected in order, the stem-loop structure shown in FIG. 9 is formed for the first time. A new first primer can be annealed to the template nucleic acid sequence (A). Formation of the stem-loop structure on the 5 ′ side of the first primer is efficiently repeated when the template nucleic acid sequences (A) and (B) are present at appropriate intervals, as described above. .
  • amplification occurs only when mRNA containing no intron sequence is used as a template, and amplification does not occur with genomic DNA containing an intron sequence.
  • the target sequence can be amplified accurately, and the formation of this stem-loop structure is repeated accurately every cycle, so that only the target sequence can be amplified accurately.
  • the Smart Amplification Process method since the specificity is high, non-specific amplification can be suppressed and only the target mRNA can be specifically amplified, and the quantitativeness thereof is also improved. According to the present invention, since the Aac MutS of the present invention coexists, its quantitativeness can be further improved.
  • this principle makes it possible, for example, to perform complicated and time-consuming DNase treatment and the like, thereby eliminating the step of acquiring RNA by breaking DNA in the sample, reducing the natural decay of mRNA, and enabling quicker qualitative or quantitative analysis. Can be diagnosed.
  • the symmetric primer set is a symmetric primer set in which the form of one of the paired primers and the form of the other primer are the same. It is preferable.
  • this primer set is also referred to as “LAMP primer set”.
  • the target gene can be amplified by recognizing six regions. That is, in this method, first, the first primer anneals to the template strand to cause an extension reaction. Next, the extended strand by the first primer is separated from the template strand by the strand displacement reaction by the second primer designed upstream from the first primer. At this time, a stem-loop structure is formed on the 5 'side of the extended strand due to the structure of the first primer extended strand that has been peeled off. A similar reaction is performed on the other strand of the double-stranded nucleic acid or on the 3 'side of the stripped first primer extension strand. Then, the target sequence is amplified by repeating these reactions.
  • the template in the LAMP method has, for example, a region consisting of a base sequence complementary to the terminal region on the 3 ′ side and 5 ′ side, respectively, on the same strand.
  • a template in which a loop capable of base pairing is formed between them also referred to as “dumbbell template nucleic acid”.
  • the LAMP method can be performed according to, for example, International Publication No. 00/28082 pamphlet, International Publication No. 01/034838 pamphlet or the like.
  • the PCR method is used to amplify the target sequence by changing the reaction temperature, for example, by dissociating the double-stranded nucleic acid, annealing the primer to the released single strand, and synthesizing the nucleic acid from the primer It can be performed.
  • the conditions for the PCR method are not particularly limited, and can be appropriately set by those skilled in the art.
  • the first determination method of the present invention will be described below with an example in which double-stranded DNA is used as a test nucleic acid (template nucleic acid).
  • a reaction solution containing double-stranded DNA, primers, Aac MutS, DNA polymerase and dNTP, which are test nucleic acids is prepared.
  • the type of the primer to be used is not particularly limited, and can be set according to, for example, the type of nucleic acid amplification reaction or the type of target sequence for amplification, and one or more types may be used. Moreover, you may use 1 type, or 2 or more types for the primer set used as a pair.
  • the concentration of each component in the reaction solution is not particularly limited, but is as described above, for example.
  • the concentration of dNTP in the reaction solution is, for example, 0.01 to 100 mmol / L, preferably 0.1 to 10 mmol / L.
  • the dNTP includes, for example, ATP, TTP, GTP, and CTP, and may further include UTP instead of or in addition to TTP.
  • the reaction solution may further contain, for example, a buffer solution, a surfactant, a catalyst, DMSO (dimethyl sulfoxide), betaine, a chelating agent such as DTT (dithiothreitol), EDTA, glycerol, and the like.
  • a buffer solution examples include Tris-HCl buffer, Tricine buffer, sodium phosphate buffer, potassium phosphate buffer, etc.
  • the concentration in the reaction solution is, for example, 0.001 to 1000 mmol / L. Yes, the pH is, for example, 5-10.
  • the surfactant include Tween series such as Tween-20, Triton series such as Triton X-100, and the like.
  • the catalyst examples include potassium salts such as potassium acetate, ammonium salts such as ammonium sulfate, magnesium salts such as magnesium sulfate, and the like.
  • potassium salts such as potassium acetate
  • ammonium salts such as ammonium sulfate
  • magnesium salts such as magnesium sulfate
  • DMSO betaine
  • formamide such as ammonium sulfate
  • glycerol such as melting temperature adjusting agents for improving the efficiency of nucleic acid amplification
  • glycerol bovine serum albumin
  • saccharides etc.
  • enzyme stabilizers for stabilizing enzymes May be included.
  • saccharide include monosaccharides and oligosaccharides. Specifically, trehalose, sorbitol, mannitol and the like can be used.
  • reaction liquid may also contain the acidic substance described in the international publication 99/54455 pamphlet, a cation complex, etc., for example. Any of these various components may be used, for example, or two or more of them may be used in combination.
  • a nucleic acid amplification reaction is performed in the state where Aac MutS coexists in the reaction solution.
  • the conditions for the amplification reaction are not particularly limited, and can be appropriately set according to the type.
  • the amplification product obtained by the amplification reaction is detected and the presence or absence of amplification is confirmed.
  • the detection of the amplification product may be performed with time during the reaction, or may be performed after a certain time has elapsed since the start of the reaction.
  • the former is so-called real-time detection, and may be, for example, continuous detection or intermittent detection. In the latter case, for example, it is preferable to detect an amplification product at the start of the reaction and after a lapse of a certain time, and confirm the presence or absence of amplification from the fluctuation.
  • the detection method of the amplification product is not particularly limited, and conventionally known methods as shown below can be used.
  • Examples of the detection method of the amplification product include a method of detecting an amplification product of a specific size by general gel electrophoresis, for example, detection by a fluorescent substance such as ethidium bromide or SYBR (registered trademark) Green. it can.
  • a probe labeled with a labeling substance can be used and hybridized with the amplification product for detection.
  • An example of the labeling substance is biotin. The biotin can be detected, for example, by binding with fluorescently labeled avidin or avidin to which an enzyme such as peroxidase is bound.
  • a method using immunochromatography for example, a method using a chromatographic medium using a label detectable with the naked eye (immunochromatography method).
  • the amplification product and a labeled probe are hybridized, and this is brought into contact with a chromatographic medium on which a capture probe capable of hybridizing to the amplification product is immobilized at a site different from the probe. Then, the hybrid of the amplification product and the labeled probe can be trapped by the capture probe fixed to the chromatographic medium.
  • the amplification product can be easily detected by the naked eye.
  • the present invention for example, by detecting pyrophosphate which is a by-product of amplification, it is also possible to detect the amplification product indirectly.
  • indirect detection with pyrophosphate is also preferable.
  • the white turbidity of the reaction solution is visually or optically observed by utilizing the fact that magnesium in the reaction solution is combined with the produced pyrophosphate to form a white precipitate of magnesium pyrophosphate. By doing so, the presence or absence of amplification can be detected.
  • the presence or absence of the amplification product can be detected by observing the aggregation of the solid phase carrier resulting from the generation of the amplification product.
  • at least one primer used in the present invention is bound to, for example, a solid phase carrier or includes a site or group capable of binding to the solid phase carrier.
  • the solid phase carrier or the site or group capable of binding to the solid phase carrier may be introduced into any region such as the 3 ′ end region, the 5 ′ end region and the central region of the primer.
  • a substrate such as deoxynucleotide (dNTP) used in the amplification reaction may be bound to, for example, a solid phase carrier, or may contain a site or group that can bind to the solid phase carrier.
  • dNTP deoxynucleotide
  • the solid phase carrier is not particularly limited, and is, for example, a carrier that is insoluble in the reaction solution used for the amplification reaction, a phase transition carrier whose properties change from a liquid phase to a solid phase (gel phase) before and after amplification, or In addition, a phase transition carrier or the like whose properties change from a solid phase (gel phase) to a liquid phase before and after amplification can be used.
  • Preferred solid phase carriers include, for example, water-insoluble organic polymer carriers, water-insoluble inorganic polymer carriers, synthetic polymer carriers, phase transition carriers, metal colloids, magnetic particles, solvent-insoluble organic polymer carriers, solvent-insoluble inorganic polymers.
  • Examples thereof include molecular carriers, solvent-soluble polymer carriers, gel polymer carriers, and the like.
  • Examples of the water-insoluble organic polymer include silicon-containing substances such as porous silica, porous glass, diatomaceous earth, and celite; cross-linked polysaccharides such as nitrocellulose, hydroxyapatite, agarose, dextran, cellulose, and carboxymethylcellulose; Examples include crosslinked products of proteins such as methylated albumin, gelatin, collagen, and casein; gel particles, dye sols, and the like.
  • Examples of the water-insoluble inorganic polymer include aluminum oxide, titanium oxide, and ceramic particles.
  • Examples of the synthetic polymer include polystyrene, poly (meth) acrylate, polyvinyl alcohol, polyacrylonitrile or copolymers thereof, styrene-styrene sulfonic acid copolymer, vinyl acetate-acrylic acid ester copolymer, and the like. It is done.
  • Examples of the metal colloid include gold colloid.
  • Examples of the magnetic particles include magnetic iron oxide beads, particles alone coated with finely pulverized particles of magnetic iron oxide, superparamagnetic particles (Japanese Patent Publication No. 4-501959), and a polymerizable silane coating. Examples thereof include magnetically responsive particles having superparamagnetic iron oxide (Japanese Patent Publication No.
  • a magnetized solid phase carrier can easily separate a solid and a liquid using a magnetic force, for example.
  • the shape of the solid phase carrier is not particularly limited, and examples thereof include particles, membranes, fibers, filters, etc. Among them, particles are preferable, and the surface thereof is, for example, either porous or non-porous. May be.
  • Particularly preferable solid phase carriers include, for example, latex in which a synthetic polymer carrier is uniformly dispersed in water, metal colloid particles such as gold colloid, magnetic particles such as magnet beads, and the like.
  • the method for immobilizing the primer or the substrate on the solid phase carrier is not particularly limited.
  • the immobilization can be performed, for example, by a method known to those skilled in the art, and may be a method using either physical bonding or chemical bonding.
  • the immobilization can be generally performed by using a combination of a substance capable of labeling an oligonucleotide such as a primer or a probe and a solid phase carrier to which a substance capable of binding thereto is bound.
  • the combination of the substances is not particularly limited, and those known in the art can be used.
  • a combination of biotin and avidin or streptavidin a combination of an antigen and an antibody that can bind to the antigen, a ligand and this And a combination of two nucleic acids that hybridize with each other.
  • a primer or a substrate labeled with biotin is bound to a solid phase carrier whose surface is coated with avidin or streptavidin, whereby the primer or the substrate can be immobilized on the solid phase carrier.
  • the antigen include haptens such as FITC, DIG, and DNP.
  • antibodies that can bind to these include antibodies such as anti-FITC antibody, anti-DIG antibody, and anti-DNP antibody.
  • these antibodies may be, for example, either monoclonal antibodies or polyclonal antibodies.
  • the binding between biotin and streptavidin is particularly preferable because it has high specificity and good binding efficiency, for example.
  • Labeling substances such as biotin, hapten, and ligand can be used in a known manner (for example, Japanese Patent Application Laid-Open Nos. 59-93099 and 59-148798, either alone or in combination as necessary). Gazette and JP-A-59-204200) can be introduced into the 5 ′ terminal region of the primer.
  • the site or group capable of binding to the solid phase carrier can be appropriately selected depending on, for example, the method for immobilizing the primer or substrate to the solid phase carrier described above.
  • the site or group may be, for example, one that allows physical binding to the solid phase carrier or one that allows chemical binding, but allows specific binding.
  • the site capable of binding to the solid phase carrier include, as described above, biotin, avidin, streptavidin, antigen, antibody, ligand, receptor, nucleic acid, protein and the like, preferably biotin or streptavidin. Yes, more preferably biotin.
  • the solid phase carrier includes, for example, a binding partner of the site included in the primer or the substrate, if necessary.
  • the binding partner in the solid phase carrier only needs to be present in a state capable of binding to the site in the primer or the substrate, for example, preferably present on the surface of the solid phase carrier, more preferably Is coated on the surface of the solid phase carrier.
  • a primer set as described above is prepared for each of a plurality of target sequences, and the plurality of primer sets are immobilized on the solid phase carrier in a form that can be distinguished from each other.
  • the amplification reaction may be performed using the plurality of immobilized primer sets.
  • a plurality of target sequences can be amplified at the same time, and the amplification products of the respective target sequences can be identified and detected.
  • the amplification product can be detected using, for example, an intercalator. Specifically, for example, if the plurality of primers are respectively immobilized at specific positions on a planar solid support, the position where the amplification product is detected after the amplification reaction and detection of the amplification product.
  • the solid phase carrier not only the planar solid phase carrier but also, for example, mutually distinguishable bead surfaces (US Pat. No. 6,046,807 and US Pat. No. 6,057,107)
  • a quasi-flat plate carrier Japanese Patent Laid-Open No. 2000-245460 produced by bundling a fibrous carrier in which each primer set is solid-phased and cutting it into thin pieces is used. it can.
  • examples of the detection method of the amplification product include an intercalator method.
  • an intercalator that intercalates with a double-stranded nucleic acid is used, and the presence or absence of amplification is determined by fluorescence generated by excitation light irradiation.
  • a method using a fluorescent substance and a quencher can be employed, and examples thereof include TaqMan (trademark) probe method and cycling probe method. It is also preferable to determine the presence or absence of amplification using a probe or primer having a compound disclosed in International Publication No. WO2008 / 111485.
  • the probe or primer and the amplification product form a double-stranded nucleic acid
  • fluorescence is emitted by irradiation with excitation light. Therefore, the presence or absence of amplification can be determined by detecting the fluorescence.
  • an unpurified nucleic acid sample or a nucleic acid sample with a low degree of purification is particularly preferable because the increase in background can be reduced.
  • the 5 'end of the primer may be immobilized on a solid phase such as a chip, and an amplification reaction may be performed on the solid phase.
  • a fluorescent substance that emits light by double strand formation may be added to the primer, or an amplification reaction may be performed in the presence of a probe to which the fluorescent substance is added.
  • the target site in the test nucleic acid sequence is a wild type or a mutant type. For example, if a primer that is completely complementary to the region containing the target site in the wild type sequence is used as the primer, the amplification is confirmed, the target site is wild type, and there is no mutation. It can be judged. When amplification is not confirmed, it can be determined that the target site is mutated and a mutation is present. On the other hand, if, for example, a primer that is completely complementary to the region containing the target site in the mutant sequence is used as the primer, the amplification is confirmed, the target site is mutant, Can be determined to exist. Moreover, when amplification is not confirmed, it can be judged that the said target site
  • the second determination method of the present invention is a method for determining the presence or absence of a mutation at the target site of the test nucleic acid, and includes the following step (I ′) and the following step (II): Features.
  • (I ′) Using the primer for amplifying the test nucleic acid in the presence of Aac MutS of the present invention and a probe capable of hybridizing to the region containing the target site in the test nucleic acid, A step of amplifying a target sequence including the target site in a nucleic acid (II) a step of confirming the presence or absence of amplification;
  • Aac MutS used in the determination method of the present invention can specifically recognize and bind mismatched base pairs, for example, specificity for mismatched base pairs rather than complementary base pairs, so-called full-matched base pairs. Is expensive. Therefore, according to the second determination method of the present invention, when a probe capable of hybridizing to a region including the target site in the test nucleic acid is mismatch-bound to the test nucleic acid, the probe is specific to the mismatch site. To Aac MutS. In this case, even if the extended strand from the primer hybridized to a region different from the probe in the test nucleic acid reaches the vicinity of the mismatch site, the extension reaction is suppressed by the presence of the bound Aac MutS. . As a result, it is possible to avoid erroneous amplification of the target sequence that mismatch-bonds with the probe, so that it is possible to determine the presence or absence of mutation depending on the presence or absence of amplification with excellent reliability.
  • the probe can be hybridized to a region including a target site, it is also referred to as a “target probe”, and the “region including the target site” is capable of hybridizing the target probe. Similar to the first determination method, it is also referred to as a hybrid region.
  • the second determination method of the present invention can be performed in the same manner as the first determination method of the present invention unless otherwise specified. Specifically, in place of the “target primer” in the first determination method of the present invention, the first determination is performed except that the target probe is used and a primer for amplifying the target sequence is used. It can be performed in the same way as the method.
  • the target probe can be the same as the target primer in the first determination method, for example, the type of nucleic acid or base constituting the probe.
  • the length of the probe is not particularly limited, but is, for example, 5 to 40 bases, and more preferably 15 to 25 bases.
  • the annealing conditions of the probe with respect to the test nucleic acid are not particularly limited, but for example, it is preferable to hybridize in the range of 20 to 80 ° C.
  • the probe may have, for example, a label or an active group such as an amino group at one or both ends.
  • the target site is determined to be a mutant type, and when amplification is not confirmed, the target site can be determined to be a normal type.
  • the step (II ′) if a target probe capable of hybridizing to the region where the target site is a wild type is used, when amplification is confirmed in the step (II), When it is determined that the target site is normal and amplification is not confirmed, it can be determined that the target site is mutant.
  • the suppression method of the present invention is a method of suppressing an extension reaction from a primer mismatch-bonded to a test nucleic acid, and a primer for amplifying a target sequence in the test nucleic acid in the presence of Aac MutS of the present invention. And amplifying the target sequence in the test nucleic acid.
  • the nucleic acid amplification method of the present invention is a method for amplifying a target sequence in a test nucleic acid, wherein the target sequence in the test nucleic acid is amplified using a primer for amplifying the target sequence. And a step of suppressing an extension reaction from a primer mismatch-bonded to the test nucleic acid by the suppression method of the present invention.
  • the Aac MutS of the present invention specifically binds to mismatched base pairs in double-stranded nucleic acids. Therefore, when the target sequence is amplified in the presence of Aac MutS of the present invention, for example, when a primer is mismatch-bonded to the test nucleic acid, the Aac MutS recognizes and binds to the mismatched base pair. The extension reaction from the primer can be suppressed. On the other hand, as will be described later, there is a method of determining the presence or absence of a mutation in a target site based on the presence or absence of amplification using a primer.
  • the Aac MutS recognizes and binds to it, Extension from the primer is suppressed.
  • the Aac MutS of the present invention since the Aac MutS of the present invention has a particularly high specificity for mismatched base pairs, it is possible to determine the presence or absence of mutation with higher reliability than before.
  • the target sequence of the test nucleic acid there may be a case where a site where a mutation may have occurred is known.
  • the nucleic acid amplification of the present invention preferably include, for example, the following step (I) or the following step (I ′). In addition, about these processes, it is the same as that of the determination method of this invention mentioned above.
  • the suppression method and the nucleic acid amplification method of the present invention are characterized in that an amplification reaction is performed in the presence of the Aac MutS of the present invention, and other conditions are not particularly limited. About these specific methods, it is the same as that of the determination method of the variation
  • the determination reagent of the present invention is a reagent used in the determination method of the present invention, and includes the Aac MutS of the present invention.
  • the determination reagent of the present invention is characterized by containing the Aac MutS of the present invention, and other configurations are not limited at all.
  • the determination reagent of the present invention may further contain reagents such as the above-mentioned additives such as ADP, other MutS, primers, enzymes such as polymerase, dNTPs, buffers, melting temperature adjusting agents, enzyme stabilizers and the like.
  • the addition ratio of each component in the determination reagent of the present invention is not particularly limited. For example, a ratio such that the concentration is as described above when added to the reaction solution of the amplification reaction is preferable.
  • the determination reagent of the present invention may be a determination kit for use in the determination method of the present invention, for example. In this case, for example, it is preferable to further include instructions for use.
  • each component may be stored in each container, for example, or may be stored in each container in an appropriate combination.
  • the form and material of the container are not particularly limited.
  • the amplification reagent of the present invention is a reagent used for the amplification reaction of the present invention
  • the suppression reagent of the present invention is a reagent used for the suppression method of the present invention, each containing the Aac MutS of the present invention. It is characterized by.
  • the amplification reagent and the suppression reagent of the present invention are characterized by containing the Aac MutS of the present invention, and other configurations are not limited at all. Further, the configuration thereof is not particularly limited, and is the same as the above-described determination reagent.
  • Example 1 Alicyclobacillus acidocaldarius subsp. DNA was cloned from Acidocaldarius JCM5260 and Aac MutS was expressed and purified.
  • Aac MutS DNA consisting of the nucleotide sequence of SEQ ID NO: 1 encoding Aac MutS was inserted into the NdeI-EcoRI site of the pET17b vector (Novagen) using an In-Fusion PCR cloning kit (Takara Bio).
  • Aac MutS expression vector pETAacmutS was constructed. The pETAacmutS was introduced into Escherichia coli BL21-CodonPlus (DE3) RIL (Stratagene) and cultured overnight at 37 ° C. with 100 mL of LB medium containing 50 ⁇ g / mL carbenicillin and 34 ⁇ g / mL chloramphenicol. A culture solution was obtained.
  • 5 mL of the preculture solution was inoculated into 500 mL of LB medium containing 100 ⁇ g / mL ampicillin and 34 ⁇ g / mL chloramphenicol, and cultured with shaking at 33 ° C. and 200 rpm.
  • IPTG was added to the culture solution so as to have a final concentration of 0.1 mmol / L, and further cultured with shaking at 33 ° C. and 200 rpm for 3 hours.
  • This culture solution was transferred to a centrifuge tube and centrifuged at 39,200 m / s 2 for 4 minutes to recover the cells.
  • the recovered cells were suspended in 50 mL of PBS and centrifuged again at 39,200 m / s 2 for 4 minutes to wash the cells.
  • the cells were suspended using 5 mL of a lysis buffer per gram of the cells, and the cells were crushed by a French press under a condition of 6.2 MPa.
  • the composition of the lysis buffer was 50 mmol / L Tris-HCl buffer (pH 7.5), 5 mmol / L EDTA, 5 mmol / L 2-mercaptoethanol, 25% (w / v) sucrose, protease inhibitor tablet (1 tablet) / L, trade name Complete EDTA-free Protease inhibitor cocktail tablets, manufactured by Roche).
  • Aac MutS was purified using various chromatographies.
  • the first running buffer was flowed under the same conditions to wash the column and remove the non-adsorbed fraction.
  • 120 mL of the first running buffer was flowed under the same conditions to wash the column and remove the non-adsorbed fraction.
  • 540 mL of the first running buffer with a concentration gradient of sodium chloride of 0 to 300 mmol / L is applied to the column, followed by the first running buffer with a concentration gradient of sodium chloride of 300 to 1000 mmol / L.
  • the adsorbed fraction was eluted by flowing 540 mL, and 10 mL each was fractionated.
  • the resulting concentrated solution contains the second running buffer.
  • the composition of the second running buffer was 50 mmol / L Tris-HCl buffer (pH 7.5), 100 mmol / L potassium chloride, 5 mmol / L EDTA, 5 mmol / L 2-mercaptoethanol, 10% (w / v) glycerol. It was.
  • Example 2 The interaction between Aac MutS and various double-stranded DNAs was analyzed.
  • the analysis of the interaction was performed using BIACORE 3000 (manufactured by GE Healthcare) and BIACORE SA sensor chip (manufactured by GE Healthcare) according to the instructions for use.
  • the running buffer was composed of 50 mmol / L Tris-HCl buffer (pH 7.6), 50 mmol / L potassium chloride, 0.1 mmol / L EDTA, 20 mmol / L magnesium chloride, 0.005% Tween (registered trademark) 20.
  • the composition of the regeneration buffer for washing the chip was 1 mol / L sodium chloride and 50 mmol / L sodium hydroxide.
  • C-strand DNA and G-strand DNA are completely complementary sequences.
  • the T-strand DNA has the same sequence as the C-strand DNA except that the 21st base C of the C-strand DNA is T.
  • the Del-strand DNA has the same sequence as the C-strand DNA except that the 21st base C of the C-strand DNA is deleted.
  • the C-strand DNA is completely complementary (full match) to the G-strand DNA, whereas the T-strand DNA and the Del-strand DNA are 21 in the C-strand DNA. Since the second base is substituted or deleted, only a single base mismatch occurs with the G-strand DNA.
  • a double-stranded DNA consisting of the C-strand DNA and the G-strand DNA that are completely complementary is referred to as “full match”, and the T that mismatches only one base with the G-strand DNA.
  • a double-stranded DNA composed of -strand DNA is referred to as "mismatch”
  • a double-stranded DNA composed of the G-strand DNA and the Del-strand DNA deleted by one base is referred to as "deletion”.
  • the running buffer was flowed through the flow path of the chip at a flow rate of 10 ⁇ L / min, and the experiment was started as follows. First, 5 ⁇ mol / L C-strand DNA, T-strand DNA, and Del-strand DNA are flowed at a flow rate of 10 ⁇ L / min to the three flow cells in the chip, respectively, and bound to about 150 RU (Resonance Unit). I let you. Subsequently, 5 ⁇ mol / L G-chain DNA was injected into each of the flow cells at a flow rate of 20 ⁇ L / min for 2 minutes, and then washed with the running buffer for 10 minutes.
  • Aac MutS solution having a predetermined concentration (0.1, 0.2, 0.5, 1, 2, or 4 ⁇ mol / L) was injected into each of the flow cells at a flow rate of 20 ⁇ L / min for 10 minutes, and then the running buffer. The flow cell was washed for 20 minutes. In parallel with the injection and washing, the signal intensity was measured from the start of the Aac MutS injection. Further, as Comparative Example 1, instead of Aac MutS, Taq MutS derived from Thermus aquaticus was used in the same manner, and signal intensity was measured.
  • the vertical axis indicates the signal intensity (RU) measured by BIACORE
  • the horizontal axis indicates the analysis time (second). 0 to 600 seconds are the results of the Aac MutS injection period, and 600 seconds and later are the results of the cleaning period.
  • the graph in the left column is the result of Example 2 using Aac MutS
  • the graph in the right column is the result of Comparative Example 1 using Taq MutS.
  • the upper graph shows the full match
  • the middle graph shows the mismatch
  • the lower graph shows the deletion data.
  • Each graph also shows the results of using six types of concentrations of MutS.
  • Comparative Example 1 it was confirmed that the signal decreased rapidly during the washing period (after 600 seconds), and the dissociation rate between various double-stranded DNAs and Taq MutS was fast.
  • Example 2 during the washing period (after 600 seconds), a rapid signal decrease was not confirmed, and various duplexes and Aac MutS were less likely to dissociate than Comparative Example 1. all right.
  • Aac MutS is less likely to bind to full-match double-stranded DNA than Taq MutS, and can specifically bind to mismatched or deleted double-stranded DNA, and the bond is also dissociated. It can be said that the bond is difficult and stable.
  • Example 3 The interaction between Aac MutS and various double-stranded DNAs was analyzed in the presence of ADP or ATP.
  • the signal intensity was measured in the same manner as in Example 2 except that 1 mmol / L ADP or ATP was added to the running buffer of Example 2.
  • An example in the presence of ADP is Example 3-1 and an example in the presence of ATP is Example 3-2.
  • Comparative Example 2 signal intensity was similarly measured using Taq MutS.
  • a comparative example in the presence of ADP was designated as Comparative Example 2-1, and a comparative example in the presence of ATP was designated as Comparative Example 2-2.
  • FIG. 2 is a graph showing the results in the presence of ADP, the graph on the left column is the result of Example 3-1 using Aac MutS, and the graph on the right column is Comparative Example 2 using Taq MutS. The result is -1.
  • FIG. 2 is a graph showing the results in the presence of ADP, the graph on the left column is the result of Example 3-1 using Aac MutS, and the graph on the right column is Comparative Example 2 using Taq MutS. The result is -1.
  • Example 3 shows the results of Example 3-2 and Comparative Example 2-2 in the presence of ATP
  • the graph on the left column shows the results of Example 3-2 using Aac MutS.
  • the graph is the result of Comparative Example 2-2 using Taq MutS.
  • the upper graph shows full match
  • the middle graph shows mismatch
  • the lower graph shows deletion data.
  • Each graph also shows the results of using six types of concentrations of MutS.
  • Comparative Example 2-1 using Taq MutS in the presence of ADP used Taq MutS in the absence of ADP, as shown in the graph in the right column of FIG.
  • the result was almost the same as in Comparative Example 1.
  • Example 3-1 using Aac MutS in the presence of ADP has two mismatches and deletions during the injection period (0 to 600 seconds). An increase in the signal of the strand DNA was confirmed. This was a significant increase compared to the result of Example 2 using Aac MutS in the absence of ADP, as shown in the graph of the left column of FIG.
  • the signal decrease of the mismatched and deleted double-stranded DNA in Example 3-1 is the same as the signal decrease of the mismatched and deleted double-stranded DNA in Example 2 above. In comparison, it was very slow. From these results, it can be seen that in the presence of ADP, binding of Aac MutS to mismatched and deleted double-stranded DNA is promoted, and dissociation of Aac MutS from the double-stranded DNA is suppressed. It was. Even in the presence of ADP, the binding of Aac MutS to the full-matched double-stranded DNA was sufficiently suppressed as in Example 2.
  • Comparative Example 2-2 using Taq MutS in the presence of ATP used Taq MutS in the absence of ATP, as shown in the graph in the right column of FIG.
  • the result was almost the same as in Comparative Example 1.
  • Example 3-2 using Aac MutS in the presence of ATP has two mismatches and deletions during the injection period (0 to 600 seconds). An increase in the signal of the strand DNA was confirmed. This was a significant increase compared to the result of Example 2 using Aac MutS in the absence of ATP, as shown in the graph in the left column of FIG.
  • KD (full) is the dissociation constant between each MutS and the fully matched double-stranded DNA
  • KD (mis) is the dissociation constant between each MutS and the mismatched double-stranded DNA.
  • KD (full) / KD (mis) indicates their ratio.
  • Example 4 Gel shift assay by electrophoresis was performed, and the interaction between Aac MutS and various double-stranded DNAs was analyzed.
  • a full-match double-stranded DNA of C-stranded DNA and G-stranded DNA, and T-stranded DNA and G-stranded DNA A mismatched double-stranded DNA was prepared.
  • 2 ⁇ mol / L of each single-stranded DNA was mixed, and the DNA solution was heated at 95 ° C. for 10 minutes to completely denature.
  • the heated DNA solution was cooled to 30 ° C. at a rate of 0.1 ° C./second to produce each double-stranded DNA.
  • 2.5 ⁇ L of the DNA solution was mixed with 2.5 ⁇ L of 4 ⁇ binding buffer, and Aac MutS was further added.
  • ADP or ATP and sterilized water were added to this mixed solution to make a total volume of 10 ⁇ L, and the mixture was incubated at 60 ° C. for 30 minutes.
  • the final concentration of Aac MutS was 0, 1, 2 or 4 ⁇ mol / L, and the final concentration of ADP or ATP was 0 or 1 mmol / L.
  • the composition of the 4 ⁇ binding buffer was 200 mmol / L Tris-HCl buffer (pH 7.6 at 60 ° C.), 200 mmol / L potassium acetate, 80 mmol / L magnesium chloride, 0.4 mmol / L EDTA, 5 mmol / L 2- Mercaptoethanol and 40% glycerol were used.
  • FIG. 1 is an electrophoretic photograph showing the results of gel shift assay in the absence of ATP and ADP, (b) in the presence of 1 mmol / L ADP, and (c) in the presence of 1 mmol / L ATP. It is.
  • lane 0 is an electrophoresis marker (product name: 100 bp DNA Ladder, manufactured by TAKARA).
  • lanes 1 to 5 show the results of full-match double-stranded DNA
  • lanes 6 to 10 show the results of mismatched double-stranded DNA.
  • Lanes 1 to 4 and 6 to 9 show the results of Example 4 using 0, 1, 2, and 4 ⁇ mol / L Aac MutS, respectively, and lanes 5 and 10 are comparisons using 1 ⁇ mol / L Taq MutS.
  • the result of Example 3 is shown.
  • the arrow indicates a gel shift band generated in Example 4 due to the binding between Aac MutS and double-stranded DNA.
  • the asterisk indicates a band of gel shift generated by binding of Taq MutS and double-stranded DNA in Comparative Example 3.
  • Example 5 In the presence of Aac MutS, a DNA amplification reaction was performed by the Smart Amplification Process method, and a single base mutation (position ⁇ 3826) of the UCP1 gene was analyzed based on the presence or absence of amplification.
  • the MutS solution in the reaction solution composition was prepared using the following MutS preparation buffer so as to have a predetermined concentration (0, 10, 11, 12 ⁇ g / ⁇ L).
  • the content of MutS in 25 ⁇ L of the reaction solution is 0, 10, 11, 12 ⁇ g.
  • the primer mixed solution in the reaction solution composition was prepared by mixing the following primers of 100 ⁇ mol / L so that the volume ratio TP: FP: BP: OPF: OPR was 8: 8: 4: 1: 1. did.
  • TP used was either TP WT or TP MT.
  • TPWT and TPMT are target primers that can hybridize to a region containing the detection site of the UCP1 gene, TPWT is underlined in A, and TPMT is underlined in G. It is.
  • the following primer set including TPWT is referred to as a wild type primer set
  • the following primer set including TP MT is referred to as a mutant primer set.
  • UCP1 TP WT (SEQ ID NO: 7) 5'-C A AGTGCATTTATGTAACAAATTCTCCTTTCCTTT-3 ' UCP1 TP MT (SEQ ID NO: 8) 5'-C G AGTGCATTTATGTAACAAATTCTCCTTTCCTTT-3 ' UCP1 FP (SEQ ID NO: 9) 5'-TTTATATATATATAAAGCAGCGATTTCTGATTGACCA-3 ' UCP1 BP (SEQ ID NO: 10) 5'-TAATGTGTTCTACATTTT-3 ' UCP1 OPF (SEQ ID NO: 11) 5'-GATTTTTATTTAATAGGAAGACATT-3 ' UCP1 OPR (SEQ ID NO: 12) 5'-GACGTAGCAAAGGAGTGGCAGCAAG-3 '
  • a human genomic DNA having a UCP1 gene sequence of wild type (A at position ⁇ 3826) or mutant type (G at position ⁇ 3826) was used as a template DNA.
  • the genomic DNA was diluted with TE buffer so as to be 13.3 ng / ⁇ L, this genomic DNA solution was heat-treated at 98 ° C. for 3 minutes, and then rapidly cooled on ice.
  • An amplification reaction solution having the above composition was prepared on ice, and this reaction solution was incubated at 60 ° C. for 120 minutes. The generation of the amplification product was monitored using a real-time fluorescence detection apparatus (trade name Mx3000P, manufactured by Stratagene).
  • Aac MutS was used as MutS.
  • FIG. 5 shows the results of Example 5 using Aac MutS
  • FIG. 6 shows the results of Comparative Example 4 using Taq MutS.
  • the vertical axis indicates fluorescence intensity (FU: Fluorescence Unit)
  • the horizontal axis indicates reaction time (minutes).
  • Each graph in both figures shows wild-type genomic DNA and wild-type primer set ( ⁇ ), wild-type genome and mutant primer set ( ⁇ ), mutant-type genomic DNA and mutant primer set ( ⁇ ), mutant-type The results of using a combination of genomic DNA and wild type primer set ( ⁇ ) are also shown.
  • the wild-type genomic DNA and wild-type primer set, and the mutant-type genomic DNA and mutant-type primer set are combinations that form a full-match double-stranded DNA.
  • the wild-type genomic DNA, the mutant-type primer set, and the mutant-type genome DNA and a wild-type primer set are combinations that form mismatched double-stranded DNA.
  • Taq MutS has a very narrow effective concentration.
  • FIG. 5 according to Example 5 using Aac MutS, a combination that forms mismatched double-stranded DNA even under the condition of 10-12 ⁇ g of Aac MutS in 25 ⁇ L of the reaction solution. Amplification was suppressed for ( ⁇ , ⁇ ), and amplification was not inhibited for the combination ( ⁇ , ⁇ ) forming a full-match double-stranded DNA. From this result, it was confirmed that Aac MutS has a wider effective concentration than Taq MutS.
  • Example 6 In the presence of Aac MutS and Taq MutS, a DNA amplification reaction was performed by the Smart Amplification Process method, and a single base mutation (position ⁇ 3826) of the UCP1 gene was analyzed based on the presence or absence of amplification.
  • Amplification was monitored in the same manner as in Example 5 except that a MutS solution containing Aac MutS and Taq MutS was used instead of the MutS solution containing only Aac MutS.
  • the contents of Aac MutS and Taq Mut protein contained in 25 ⁇ L of the reaction solution are shown below.
  • Example 6-1 the total of Aac MutS and Taq MutS in 25 ⁇ L of the reaction solution was 7 ⁇ g, and in Example 6-2 below, Aac MutS and Taq MutS were equivalent in 25 ⁇ L of the reaction solution.
  • FIG. 7 shows the results of Example 6-1 containing a total of 7 ⁇ g of Aac MutS and Taq MutS
  • FIG. 8 shows the results of Example 6-2 containing equal amounts of Aac MutS and Taq MutS. is there.
  • the description of the graphs in both figures is the same as in FIGS.
  • Example 6-1 even if the total MutS content in 25 ⁇ L of the reaction solution is 7 ⁇ g and the ratio of Aac MutS and Taq MutS is varied from 2: 5 to 5: 2. Amplification was suppressed for the combination forming the mismatched double-stranded DNA, and amplification was not inhibited for the combination forming the full-matched double-stranded DNA. From this result, it was found that Aac MutS and Taq MutS can be used in combination. Further, it was found that by using Aac MutS together with Taq MutS, the amount of Aac MutS used can be reduced and both MutS can be used in a wide effective range.
  • Example 6-2 when the content of Taq MutS and Aac MutS in 25 ⁇ L of the reaction solution is equal, even if the total content is 8 ⁇ g to 10 ⁇ g, Amplification was suppressed for the combination forming the mismatched double-stranded DNA, and amplification was not inhibited for the combination forming the full-matched double-stranded DNA. From this result, it was found that Aac MutS and Taq MutS can be used in combination. Further, it was found that by using Aac MutS together with Taq MutS, the amount of Aac MutS used can be reduced and both MutS can be used in a wide effective range.
  • the Aac MutS protein of the present invention can specifically recognize and bind to a double-stranded nucleic acid having a so-called mismatch base pair, for example. For this reason, when the Aac MutS of the present invention is used in the amplification of the target sequence including the target site, the Aac MutS specifically binds to the mismatched base pair, so that extension from the primer can be effectively suppressed. Therefore, according to the determination method of the present invention using Aac MutS of the present invention, the presence or absence of mutation can be determined with excellent accuracy from the presence or absence of amplification. Therefore, the Aac MutS and determination method of the present invention can be said to be extremely useful tools in the field of genetic analysis, for example.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Molecular Biology (AREA)
  • Immunology (AREA)
  • Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Hematology (AREA)
  • General Health & Medical Sciences (AREA)
  • Urology & Nephrology (AREA)
  • Medicinal Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Organic Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Biotechnology (AREA)
  • Cell Biology (AREA)
  • Biophysics (AREA)
  • Microbiology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Food Science & Technology (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

 増幅の有無により、優れた信頼性で変異の有無を判定する方法を提供する。配列番号2のアミノ酸配列からなる新規MutSの存在下、被検核酸における標的部位を含む領域にハイブリダイズ可能なプライマーを用いて、前記被検核酸における前記標的部位を含む標的配列を増幅し、増幅の有無によって前記標的部位における変異の有無を判定する。新規MutSは、フルマッチ塩基対と比較してミスマッチ塩基対により特異的に結合するため、ミスマッチ結合した前記プライマーからの伸長反応が抑制されるため、本発明によれば、優れた信頼性で変異の有無を判断できる。

Description

新規MutSタンパク質およびそれを用いた変異の判定方法
 本発明は、新規MutSタンパク質およびそれを用いた変異の判定方法に関する。
 種々の疾患を診断、治療および予防する方法として、近年、遺伝子変異の検出が行われている。遺伝子変異は、疾患罹患性や薬剤代謝能力等に深く関与しているため、遺伝子変異の検出は医療において大きな意義を有する。
 遺伝子変異の検出方法としては、例えば、種々の核酸増幅法により、目的遺伝子における検出目的の変異が生じる標的部位を含む標的配列を増幅し、増幅の有無によって変異の有無を判断する方法が開発されている。この方法においては、例えば、前記標的部位を含む領域にハイブリダイズ可能なプライマーが使用されている。前記プライマーを、例えば、前記標的部位が変異型である配列に完全に相補的な配列とした場合、増幅が確認されれば、前記標的部位が変異型である目的遺伝子に前記プライマーがアニーリングしたため増幅されたとして、前記目的遺伝子は変異型と判断できる。一方、前記プライマーを、例えば、前記標的部位が野生型である配列に完全に相補的な配列とした場合、増幅が確認されれば、前記標的部位が野生型である目的遺伝子に前記プライマーがアニーリングしたため増幅されたとして、目的遺伝子は野生型と判断できる。
 しかしながら、このような方法において、前記プライマーが鋳型と相補的でない場合にも、前記プライマーが前記鋳型にアニーリングして、前記標的配列が増幅される場合がある。すなわち、例えば、前述のように前記標的部位が変異型である配列に完全に相補的なプライマーを使用した際、前記標的部位が野生型である鋳型に前記プライマーがアニーリングし、野生型の標的配列が増幅され、これによって、変異検出の精度が低下するという問題がある。
 そこで、このような問題を回避すべく、いわゆるMutSタンパク質等のミスマッチ結合タンパク質を併用する方法が提案されている。前記ミスマッチ結合タンパク質は、一般に、二本鎖核酸におけるミスマッチ塩基対を認識して、前記ミスマッチ塩基対に結合するタンパク質である。このミスマッチ結合タンパク質の存在下、前述の遺伝子変異の検出を行えば、プライマーがミスマッチ塩基対を形成しても、前記ミスマッチ塩基対に前記ミスマッチ結合タンパク質が結合することにより、前記プライマーからの伸長が抑制される。このため、変異検出の精度の低下を回避可能となる(特許文献1参照)。このようなミスマッチ結合タンパク質としては、例えば、Thermus aquaticus由来のTaq MutSタンパク質が使用されている。
特許第3942627号
 しかしながら、さらなる検出精度の向上を実現するため、より特異的にミスマッチ塩基対を認識し、それに結合可能なミスマッチ結合タンパク質が望まれている。そこで、本発明は、特異的にミスマッチ塩基対を認識し、それに結合可能な新たなミスマッチ結合タンパク質、および、それを用いた信頼性に優れる変異の判定方法の提供を目的とする。
 前記目的を達成するために、本発明の新規MutSタンパク質は、下記(A)または(B)のアミノ酸配列からなることを特徴とする。
(A)配列番号2に示すアミノ酸配列
(B)前記(A)のアミノ酸配列において、1または数個のアミノ酸が欠失、置換、挿入または付加されたアミノ酸配列であり、且つ、二本鎖核酸におけるミスマッチ塩基対への結合活性を有するタンパク質のアミノ酸配列
 本発明の判定方法は、被検核酸の標的部位における変異の有無を判定する方法であって、下記(I)工程または(I’)工程と、下記(II)工程とを含むことを特徴とする。
(I)本発明の新規MutSタンパク質の存在下、前記被検核酸における前記標的部位を含む領域にハイブリダイズ可能なプライマーを用いて、前記被検核酸における前記標的部位を含む標的配列を増幅する工程
(I’)本発明の新規MutSタンパク質と、前記被検核酸における前記標的部位を含む領域にハイブリダイズ可能なプローブとの存在下、前記被検核酸を増幅するためのプライマーを用いて、前記被検核酸における前記標的部位を含む前記標的配列を増幅する工程
(II)増幅の有無を確認する工程
 本発明者らは、鋭意研究の結果、Alicyclobacillus属由来のMutSタンパク質の新規遺伝子をクローニングし、Alicyclobacillus属由来の新規MutSタンパク質を得た。以下、新規MutSタンパク質を「Aac MutS」という。本発明のAac MutSは、例えば、いわゆるミスマッチ塩基対(不適正塩基対)を有する二本鎖核酸を特異的に認識して結合できる。このため、標的部位を含む標的配列の増幅において、本発明のAac MutSを使用すれば、前記Aac MutSがミスマッチ塩基対に特異的に結合するため、プライマーからの伸長を効果的に抑制できる。したがって、本発明のAac MutSを使用する本発明の判定方法によれば、増幅の有無から、優れた精度で変異の有無を判定できる。このため、本発明のAac MutSおよび判定方法は、例えば、遺伝子解析の分野において、極めて有用なツールと言える。
図1は、本発明の実施例2における、Aac MutS存在下での核酸結合アッセイの結果を示すグラフである。 図2は、本発明の実施例3-1における、Aac MutSおよびADPの存在下での核酸結合アッセイの結果を示すグラフである。 図3は、本発明の実施例3-2における、Aac MutSおよびATPの存在下での核酸結合アッセイの結果を示すグラフである。 図4は、本発明の実施例4における、Aac MutS存在下でのゲルシフトアッセイの結果を示す電気泳動写真である。 図5は、本発明の実施例5における、Aac MutS存在下で等温増幅反応を行った際の増幅プロフィールを示すグラフである。 図6は、比較例4における、Taq MutS存在下で等温増幅反応を行った際の増幅プロフィールを示すグラフである。 図7は、本発明の実施例6-1における、Aac MutSおよびTaq MutS存在下で等温増幅反応を行った際の増幅プロフィールを示すグラフである。 図8は、本発明の実施例6-2における、Aac MutSおよびTaq MutS存在下で等温増幅反応を行った際の増幅プロフィールを示すグラフである。 図9は、Smart Amplification Process法における第一のプライマーによる核酸合成の作用機序を示す模式図である。 図10は、Smart Amplification Process法における第二のプライマーの一例を示す模式図である。 図11は、Smart Amplification Process法の作用機序を示す模式図である。 図12は、Smart Amplification Process法の作用機序を示す模式図である。
<Aac MutS>
 本発明のAac MutSは、前述のように、下記(A)または(B)のアミノ酸配列からなることを特徴とする。
(A)配列番号2に示すアミノ酸配列
(B)前記(A)のアミノ酸配列において、1または数個のアミノ酸が欠失、置換、挿入または付加されたアミノ酸配列であり、且つ、二本鎖核酸におけるミスマッチ塩基対への結合活性を有するタンパク質のアミノ酸配列
 MutSタンパク質(以下、「MutS」という)とは、例えば、ミスマッチ結合タンパク質またはミスマッチ認識タンパク質ともいう。MutSは、一般に、二本鎖核酸におけるミスマッチ塩基対を認識し、前記ミスマッチ塩基対に結合可能なタンパク質である。本発明において「ミスマッチ塩基対」とは、例えば、アデニンとチミンまたはウラシルとの組合せおよびグアニンとシトシンとの組合せのような、相補的な正常塩基対ではなく、非相補的な塩基対を意味し、さらに、二本鎖核酸において、一方の鎖が、他方の鎖の所定塩基に対応する部位において塩基を欠失し、その部分で塩基対が欠失している意味も含む。以下、ミスマッチ塩基対を有する二本鎖核酸を「ミスマッチ二本鎖またはヘテロ二本鎖」といい、ミスマッチ塩基対を形成する結合を「ミスマッチ結合」という。本発明において、前記ミスマッチ二本鎖は、例えば、実質的には相補的な二本鎖核酸であって、1または2以上のミスマッチ塩基対を有することにより、非相補的な領域を含む二本鎖を意味する。他方、以下、ミスマッチ塩基対に対して、完全に相補的な塩基対を「フルマッチ塩基対」、完全に相補的な二本鎖核酸を「フルマッチ二本鎖」といい、完全に相補的な結合を「フルマッチ結合」という。
 また、本発明のAac MutSは、前述のように、二本鎖核酸におけるミスマッチ塩基対への結合活性を有する。本発明のAac MutSは、例えば、さらに、完全に相補的な塩基対からなる二本鎖核酸(フルマッチ二本鎖核酸)への結合活性を有さない、前記フルマッチ二本鎖核酸への結合活性が検出限界以下である、または、前記フルマッチ二本鎖核酸への結合活性が、例えば、ミスマッチ二本鎖核酸への結合活性の1/1.25以下(4/5以下)であることが好ましく、より好ましくは1/4以下、1/120以下、1/200以下、1/205以下である。
 本発明のAac MutSは、例えば、Alicyclobacillus属の細菌から単離でき、好ましくは、Alicyclobacillus acidocaldariusから、さらに好ましくは、Alicyclobacillus acidocaldarius subsp. Acidocaldarius JCM5260から単離できる。本菌株は、例えば、独立行政法人理化学研究所バイオリソースセンター微生物材料開発室より分譲可能である(http://www.jcm.riken.jp/JCM/Ordering_J.shtml)。また、本発明のAac MutSは、例えば、後述するAac MutS遺伝子を用いた遺伝子工学的手法により製造することもできる。
 本発明のAac MutSは、前記(B)に示すように、配列番号2に示すアミノ酸配列において、例えば、1または数個のアミノ酸が欠失、置換、挿入または付加されたアミノ酸配列からなり、且つ、二本鎖核酸におけるミスマッチ塩基対への結合活性を有するタンパク質を含む。「数個のアミノ酸」とは、例えば、全長アミノ酸残基数の約5~10%程度のアミノ酸残基数をいい、例えば、1~86個程度、好ましくは1~43個程度、より好ましくは1~21個程度、最も好ましくは1~10個程度である。
 また、本発明のAac MutSとしては、例えば、前記(A)のタンパク質と50%、好ましくは70%、80%、85%、90%、97%、98%以上の相同性を有するアミノ酸配列からなり、且つ、二本鎖核酸におけるミスマッチ塩基対への結合活性を有するタンパク質を含む。タンパク質の相同性(ホモロジー)は、通常、2つのタンパク質のアミノ酸配列同士を適切に整列(アライメント)したときの同一性のパーセント値で表わすことができ、一般に、前記両アミノ酸配列間の正確な一致の出現率を意味する。同一性比較のための配列間での適切な整列は、種々のアルゴリズム、例えば、BLASTアルゴリズムを用いて決定できる(Altschul SF J Mol Biol 1990 Oct 5; 215(3):403-10)。
 MutSの活性測定方法は、制限されず、当業者に周知の種々の方法により測定することができる。具体例としては、The Journal of Biological Chemistry 276, 34339-34347, 2001; doi: 10.1074/jbc.M104256200等の文献に記載されている方法が使用できる。
 本発明のAac MutSの分子量は、例えば、86,000~105,500Daであり、好ましくは91,000~100,800Daであり、前記配列番号2に示すアミノ酸配列からなるAac MutSの分子量は、95,984Daである。
 本発明のAac MutSの化学的性質は、例えば、特に65℃までの安定性に優れ、至適温度が、例えば、約50~60℃、至適pHが、例えば、pH7~9の範囲である。
 なお、本発明において、例えば、分子生物学、微生物学および組換え技術等の一般的方法は、当該技術分野の標準的な参考書籍を参照して実施できる。これらには、例えば、以下の文献等が含まれる。
・Molecular Cloning:A Laboratory Manual 第3版(Sambrook & Russell、Cold Spring Harbor Laboratory Press、2001)
・Current Protocols in Molecular biology(Ausubelら編、John Wiley & Sons、1987)
・Methods in Enzymologyシリーズ(Academic Press);PCR Protocols: Methods in Molecular Biology(Bartlett & Stirling編、Humana Press、2003)
・Antibodies:A Laboratory Manual(Harlow & Lane編、Cold Spring Harbor Laboratory Press、1987
 また、本明細書において参照される試薬およびキット類等は、例えば、Sigma社、Aldrich社、Invitrogen/GIBCO社、Clontech社、Stratagene社、Qiagen社、Promega社、Roche Diagnostics社、Becton-Dickinson社、TaKaRa社(タカラバイオ株式会社)等の市販業者から入手可能である。
<Aac MutS遺伝子>
 本発明の新規核酸は、前記本発明の新規Aac MutSをコードする核酸であり、以下の(a)~(f)のいずれかの核酸からなることを特徴とする。
(a)配列番号1に示す塩基配列からなる核酸
(b)前記(a)の核酸とストリンジェントな条件下でハイブリダイズし、且つ、二本鎖核酸におけるミスマッチ塩基対への結合活性を有するタンパク質をコードする核酸
(c)前記(a)の塩基配列との相同性が80%以上の塩基配列からなり、且つ、二本鎖核酸におけるミスマッチ塩基対への結合活性を有するタンパク質をコードする核酸
(d)前記(a)の塩基配列において、1または数個の塩基が欠失、置換、挿入または付加された塩基配列からなり、且つ、二本鎖核酸におけるミスマッチ塩基対への結合活性を有するタンパク質をコードする核酸
(e)配列番号2に示すアミノ酸配列からなるタンパク質をコードする核酸
(f)配列番号2に示すアミノ酸配列において、1または数個のアミノ酸が欠失、置換、挿入または付加されたアミノ酸配列からなり、且つ、二本鎖核酸におけるミスマッチ塩基対への結合活性を有するタンパク質をコードする核酸
 以下、本発明の新規核酸を「Aac MutS遺伝子」という。本発明のAac MutS遺伝子は、前述のように、(a)配列番号1に示す塩基配列からなる核酸の他に、前記(b)~(f)の核酸の意味を含む。また、本発明のAac MutS遺伝子は、例えば、前記(a)~(f)の塩基配列の縮重変異体、前記(a)~(f)の塩基配列に相補的な塩基配列からなり、且つ、二本鎖核酸におけるミスマッチ塩基対への結合活性を有するタンパク質をコードする核酸も含む。さらに、本発明のAac MutS遺伝子は、例えば、DNAの他に、前記DNAに対応するRNA(mRNA)等も含む。
 前記(b)において、「ストリンジェントな条件下でハイブリダイズする」とは、例えば、当該技術分野の当業者において、周知のハイブリダイゼーションの実験条件である。具体的には、「ストリンジェントな条件」とは、例えば、0.7~1mol/LのNaCl存在下、60~68℃でハイブリダイゼーションを行った後、0.1~2倍のSSC溶液を用い、65~68℃で洗浄することにより同定することができる条件をいう。なお、1×SSCとは、150mmol/LのNaCl、15mmol/Lクエン酸ナトリウムからなる。ストリンジェンシーの選択のため、例えば、洗浄工程における塩濃度や温度を適宜最適化することができる。また、当業者であれば、ストリンジェンシーを上げるために、例えば、ホルムアミドやSDS等を添加することも技術常識である。
 前記(c)において、前記相同性は、例えば、80%以上であり、好ましくは90%以上、さらに好ましくは95%以上である。前記相同性は、例えば、BLAST等を用いてデフォルトの条件で計算することにより求めることができる。
 前記(d)において、「数個の塩基」とは、例えば、配列番号1に表される塩基配列における全塩基数の約10~20%程度の塩基数をいい、例えば、1~520個程度、好ましくは1~260個程度、より好ましくは1~130個程度、最も好ましくは1~65個程度である。
 前記(f)において、「1または数個のアミノ酸が欠失、置換、挿入または付加されたアミノ酸配列」とは、例えば、前記本発明のAac MutSにおける説明と同様である。
 本発明のAac MutS遺伝子は、例えば、前述のようなAlicyclobacillus属菌体から抽出してもよいし、遺伝子工学の手法により合成してもよいし、化学的手法により合成してもよい。
<組換えベクター>
 本発明の組換えベクターは、前述のように、本発明のAac MutS遺伝子を含むことを特徴とする。本発明の組換えベクターは、本発明のAac MutS遺伝子を含んでいればよく、その他の構成等は何ら制限されない。
 本発明の組換えベクターは、例えば、適当なベクターに本発明のAac MutS遺伝子を連結(挿入)することにより得られる。本発明のAac MutS遺伝子を挿入するためのベクターは、例えば、宿主中で複製可能なものであれば特に限定されず、例えば、プラスミドDNA、ファージDNA等があげられる。前記プラスミドDNAとしては、例えば、pBR322、pBR325、pUC118、pUC119等の大腸菌由来プラスミド;pUB110、pTP5等の枯草菌由来プラスミド;YEp13、YEp24、YCp50等の酵母由来プラスミド等があげられる。前記ファージDNAとしては、例えば、Charon4A、Charon21A、EMBL3、EMBL4、λgt10、λgt11、λZAP等のλファージ等があげられる。さらに、レトロウイルスまたはワクシニアウイルス等の動物ウイルス、バキュロウイルス等の昆虫ウイルスベクター等を用いることもできる。
 前記ベクターに本発明のAac MutS遺伝子を挿入する方法としては、特に制限されず、従来公知の方法が採用できる。具体例としては、例えば、精製したAac MutS遺伝子(DNA)を適当な制限酵素で切断し、適当なベクターDNAの制限酵素部位またはマルチクローニングサイトに挿入して、両者を連結する方法等があげられる。本発明のAac MutS遺伝子は、例えば、それがコードするタンパク質を発現するような条件で前記ベクターに組み込まれることが好ましい。このため、前記ベクターは、例えば、trpプロモーター、lacプロモーター、PLプロモーター、tacプロモーター等のプロモーターの他に、所望により、エンハンサー等のシスエレメント、スプライシングシグナル、ポリA付加シグナル、選択マーカー、リボソーム結合配列(SD配列、KOZAK配列等)等を連結することもできる。前記選択マーカーとしては、例えば、ジヒドロ葉酸還元酵素遺伝子、アンピシリン耐性遺伝子、ネオマイシン耐性遺伝子等の薬剤耐性遺伝子等があげられる。
<形質転換体>
 本発明の形質転換体は、前述のように、本発明の組換えベクターを含むことを特徴とする。本発明の形質転換体は、本発明の組換えベクターを含んでいればよく、その他の構成については何ら制限されない。
 本発明の形質転換体は、例えば、本発明の組換えベクターを宿主に導入することにより得られる。前記宿主としては、本発明の組換えベクターにより本発明のAac MutSを発現できるものであれば、特に制限されず、例えば、前記組換えベクターの種類に応じて、宿主-ベクター系を考慮して選択できる。前記宿主の具体例としては、例えば、大腸菌(Escherichia coli)等のエッシェリシア属、バシラス・ズブチリス(Bacillus subtilis)等のバシラス属、シュードモナス・プチダ(Pseudomonas putida)等のシュードモナス属、リゾビウム・メリロティ(Rhizobium meliloti)等のリゾビウム属に属する細菌等があげられる。この他に、サッカロミセス・セレビシエ(Saccharomyces cerevisiae)、シゾサッカロミセス・ポンベ(Schizosaccharomyces pombe)等の酵母、COS細胞、CHO細胞等の動物細胞、Sf9、Sf21等の昆虫細胞を用いることもできる。形質転換の方法としては、特に制限されず、従来公知の方法が採用できる。具体例としては、例えば、カルシウムイオンを用いる方法(Cohen, S.N. et al. (1972) Proc. Natl. Acad. Sci., USA 69, 2110-2114)、DEAEデキストラン法、エレクトロポレーション法等があげられる。
<Aac MutSの製造方法>
 本発明のAac MutSは、例えば、前記本発明の形質転換体を培養することによって調製できる。本発明のAac MutSの製造方法は、例えば、前述のように、前記本発明の形質転換体を培養することを特徴とする。また、本発明のAac MutSの製造方法は、例えば、さらに、得られた培養液からAac MutSタンパク質を単離してもよい。前記「培養物」とは、例えば、培養した形質転換体を含む培養液の他に、培養液の上清、培養細胞もしくは培養菌体、または、培養細胞もしくは培養菌体の破砕物等を含む意味でもよい。また、「本発明の形質転換体を培養する方法」は、例えば、宿主の培養に適用される通常の方法に従って行われ、その条件等は、例えば、宿主の種類等に応じて適宜決定できる。
 本発明のAac MutSが、例えば、菌体内または細胞内に生産される場合、培養後、菌体または細胞を破砕することにより単離できる。また、本発明のAac MutSが、例えば、菌体外または細胞外に生産される場合、培養液をそのまま使用するか、遠心分離等により前記培養液から菌体または細胞を除去することで単離できる。その後、タンパク質の単離精製に用いられる一般的な生化学的方法を、単独で、または、適宜組み合わせることによって、前記培養物から本発明のAac MutSを精製することもできる。前記精製の方法としては、特に制限されず、例えば、硫酸アンモニウム沈殿、ゲルクロマトグラフィー、イオン交換クロマトグラフィー、アフィニティークロマトグラフィー等があげられる。また、例えば、精製のために、タグ配列を付加したタンパク質を発現させる場合には、精製工程の間または後に、プロテアーゼ処理等により、前記タグ配列を除去することもできる。
<変異の判定方法>
 本発明の変異の判定方法は、以下に示す第一の判定方法および第二の判定方法があげられる。
 本発明の変異の第一の判定方法は、前述のように、被検核酸の標的部位における変異の有無を判定する方法であって、下記(I)工程と下記(II)工程とを含むことを特徴とする。
(I)本発明のAac MutSの存在下、前記被検核酸における前記標的部位を含む領域にハイブリダイズ可能なプライマーを用いて、前記被検核酸における前記標的部位を含む標的配列を増幅する工程
(II)増幅の有無を確認する工程
 本発明において、以下、標的部位が標準的な塩基である核酸配列、例えば、前記標的部位が標準的な遺伝子型(正常型または野生型)である核酸配列を、「正常型配列または野生型配列」という。これに対して、前記核酸配列において、前記標的部位が前記正常型配列と比較して異なる塩基である核酸配列を、「変異型配列」という。前記「標的部位」とは、例えば、前記野生型配列と前記変異型配列との間で異なる塩基を示す特定部位を意味し、1塩基でもよいし、2塩基以上の配列でもよい。前記「被検核酸」とは、前記標的部位における変異の有無を判定する対象となる核酸、すなわち、前記標的部位が野生型であるか変異型であるか否か、または、前記標的部位以外が野生型配列と同一の配列であるか否かを判定する対象となる核酸を意味する。前記被検核酸としては、例えば、本発明の判定方法に供する試料に含まれる核酸および増幅反応開始時の核酸だけでなく、前記増幅反応により合成された核酸を含んでもよく、「鋳型核酸」ともいう。前記「標的配列」とは、例えば、前記被検核酸における増幅目的の核酸配列だけでなく、前記増幅目的の核酸配列を含む配列や、これらに相補的な核酸配列の意味も含む。また、前記プライマーは、標的部位を含む領域にハイブリダイズ(アニーリング)可能であることから、「標的プライマー」ともいい、前記「前記標的部位を含む領域」は、前記標的プライマーがハイブリダイズ可能であることから、以下、ハイブリッド領域ともいう。また、本発明において、「変異」とは、例えば、置換、欠失、付加および挿入のいずれであってもよい。
 本発明の判定方法で使用するAac MutSは、前述のように、ミスマッチ塩基対を特異的に認識して結合でき、例えば、相補的な塩基対、いわゆるフルマッチ塩基対よりもミスマッチ塩基対に対する特異性が高い。このため、本発明の第一の判定方法によれば、前記被検核酸における前記標的部位を含む領域にハイブリダイズ可能な標的プライマーが、前記被検核酸にミスマッチ結合した場合、そのミスマッチ部位に特異的にAac MutSが結合するため、前記標的プライマーからの伸長反応が特異的に抑制される。この結果、ミスマッチした標的プライマーからの誤った増幅を回避できるため、増幅の有無による変異の有無の判断を、優れた信頼性で行うことができる。
 本発明の判定方法は、例えば、各種疾患のかかり易さ、前記疾患か否か、前記疾患用の医薬への感受性および耐性を判断する際に有用である。例えば、疾患のかかり易さを、目的遺伝子の標的部位における変異の有無によって判定する場合、健常者の配列が正常型配列となり、前記疾患患者の配列が変異型配列となる。そして、被検核酸として被検者の遺伝子を使用し、その標的部位が正常型か変異型かを判定する。その結果、前記標的部位が正常型であれば、前記被検核酸は正常型配列であり、被検者は、疾患にかかる可能性が低い、または、健常者と判断できる。一方、前記標的部位が変異型であれば、前記被検核酸は変異型配列であり、被検者は、疾患にかかる可能性が高い、または、前記疾患患者と判断できる。
 前記被検核酸における前記標的部位は、例えば、1塩基(モノヌクレオチド)でもよいし、2塩基(ジヌクレオチド)以上でもよく、後者の場合、連続してもよいし、非連続であってもよい。中でも、判定目的の標的部位が、1塩基またはモノヌクレオチドである場合に、本発明の判定方法を適用することが好ましい。前記標的プライマーと前記被検核酸におけるハイブリッド領域とが一塩基のみ異なる場合、他の配列は完全に相同であるため、前記被検核酸が前記標的プライマーに対してミスマッチとなる塩基を有していても、前記標的プライマーは前記被検核酸にハイブリダイズし易い。しかしながら、本発明のAac MutSによれば、例えば、前記両者が一塩基のみ異なり、前記プライマーが前記被検核酸にハイブリダイズする場合でも、Aac MutSが特異的に結合して、誤った伸長反応を抑制できる。このため、本発明の判定方法は、例えば、一塩基多型の判定に適している。
 前記被検核酸に前記プライマーがハイブリダイズした際に生じるミスマッチは、例えば、1塩基でもよいし、連続した複数塩基でもよいし、非連続の複数塩基であってもよい。複数塩基の上限は、特に制限されないが、例えば、前記被検核酸と前記プライマーとの二本鎖の状態を維持し得る数が好ましい。具体例としては、例えば、ハイブリダイズする両者の長さ(塩基数)に依存するが、前記上限は、例えば、5塩基以下であり、より好ましくは3塩基以下であり、特に好ましくは2塩基以下である。
 本発明の第一の判定方法では、前記(I)工程において、増幅のためのプライマーとして、例えば、前記標的部位の塩基が変異型である前記領域にハイブリダイズ可能な標的プライマーを使用できる。これにより、前記(II)工程において、増幅が確認された場合は、前記標的部位の塩基が変異型であると判定し、増幅が確認されなかった場合は、前記標的部位の塩基が正常型であると判定できる。他方、前記(I)工程において、増幅のためのプライマーとして、例えば、前記標的部位の塩基が正常型である前記領域にハイブリダイズ可能な標的プライマーを使用することもできる。これにより、前記(II)工程において、増幅が確認された場合は、前記標的部位の塩基が正常型であると判定し、増幅が確認されなかった場合は、前記標的部位の塩基が変異型であると判定できる。
 従来、ミスマッチ結合したプライマーからの伸長反応を抑制するために、例えば、Taq MutS等のMutSが使用されていた。しかしながら、従来のMutSは、基質特異性も低いため、例えば、ミスマッチ二本鎖だけでなくフルマッチ二本鎖にも、前記MutSが結合したり、ミスマッチ二本鎖に前記MutSが結合しても、結合した前記MutSがミスマッチ二本鎖から解離し易いという問題があり、所望の増幅が確認できないおそれがあった。これに対して、本発明のAac MutSは、例えば、ミスマッチ二本鎖に対する基質特異性に優れることから、フルマッチ二本鎖への結合を、従来のMutSよりも抑制でき、また、ミスマッチ二本鎖から解離し難いことから、信頼性に優れる判定が可能となる。
 前記増幅反応の反応液におけるAac MutSの添加量は、特に制限されず、例えば、反応開始時の被検核酸の量および各種プライマーの量等に応じて適宜決定できる。具体例として、前記反応液25μLあたり、反応開始時の被検核酸量は、例えば、0.1~1000ngであり、好ましくは0.5~500ngであり、より好ましくは1~100ngであり、全プライマーのトータル量は、例えば、0.01~1000μmolであり、好ましくは0.05~500μmolであり、より好ましくは0.1~100μmolであり、Aac MutS量は、例えば、0.01~1000μgであり、好ましくは0.05~500μgであり、より好ましくは0.1~100μgである(以下、同様)。
 本発明の第一の判定方法において、例えば、前記Aac MutSと、ADP(アデノシン5’-二リン酸)、ATP(アデノシン5’-三リン酸)およびこれらの誘導体からなる群から選択された少なくとも一つの添加剤との共存下、前記標的配列の増幅を行うことが好ましい。前記添加剤の存在下で核酸増幅を行えば、例えば、本発明のAac MutSのミスマッチ塩基対に対する結合率を向上できる。中でも、ADPまたはその誘導体の共存下で前記標的配列の増幅を行えば、さらに、ミスマッチ塩基対と本発明のAac MutSとの結合の解離を抑制することもできる。このため、ミスマッチ塩基対を形成した標的プライマーからの伸長反応をさらに効率よく抑制でき、これによって、さらに信頼性に優れる変異の判定結果を得ることができる。前記誘導体としては、例えば、ATP-γ-S(アデノシン5’-O-(3-チオ三リン酸))、AMP-PNP(アデノシン5’-[β,γ-イミド]三リン酸)等が使用できる。前記添加剤は、例えば、いずれか1種類を用いてもよいし、2種類以上を併用してもよい。前記添加剤は、中でも、ADPまたはその誘導体を含むことが好ましく、より好ましくはADPである。
 前記増幅反応の反応液における前記添加剤の添加量は、特に制限されず、例えば、Aac MutSの量、反応開始時の被検核酸の量および各種プライマーの量等に応じて適宜決定できる。具体例として、前記反応液における前記添加剤の濃度は、例えば、0.01~100mmol/Lであることが好ましく、より好ましくは0.05~50mmol/Lであり、特に好ましくは0.1~10mmol/Lである。この際、前記反応液におけるAac MutS等の濃度は、前述の範囲であることが好ましい。
 本発明の第一の判定方法において、前記本発明のAac MutSとAlicyclobacillus属由来以外の他のMutSとの共存下、前記標的配列の増幅を行うことが好ましい。前記Alicyclobacillus属由来以外のMutSとしては、例えば、Thermus属由来のMutSがあげられ、具体的には、Thermus aquaticus由来のMutS(以下、「Taq MutS」という)があげられる。また、Bacillus属由来のMutS等も使用できる。
 本発明のAac MutSは、例えば、他のMutSとの併用が可能である。本発明のAac MutSと他のMutSとの併用により、例えば、Aac MutSを単独で使用するよりも、MutSのトータル量を低減でき、且つ、従来のTaq MutS等を単独で使用するよりも、有効濃度の幅を広くできる。具体例として、前記反応液25μLあたり、例えば、Aac MutS量が0.01~1000μgであり、前記他のMutS量が0.01~1000μgであり、前記MutSと前記他のMutSとの合計量が0.02~2000μgであることが好ましく、より好ましくは、Aac MutS量が0.05~500μgであり、前記他のMutS量が0.05~500μgであり、合計量0.1~1000μgであり、特に好ましくは、Aac MutS量が0.1~100μgであり、前記他のMutS量が0.1~100μg/Lであり、合計量が0.2~200μgである。この際、前記反応液における反応開始時の被検核酸等の量は、前述の範囲であることが好ましい。また、Aac MutS(A)に対する他のMutS(T)の添加割合(重量比A:T)は、例えば、1:0.05~1:50が好ましく、より好ましくは1:0.25~1:25であり、特に好ましくは1:0.5~1:5である。
 前記Aac MutSおよび他のMutSは、例えば、フルマッチ二本鎖核酸への結合をさらに回避するため、例えば、活性化剤により活性化されてもよい。前記活性化剤は、特に限定されないが、例えば、ATP、ADP、ATP-γ-S(アデノシン5’-O-(3-チオ三リン酸))、AMP-PNP(アデノシン5’-[β,γ-イミド]三リン酸)等があげられ、この他に、MutSに結合できるヌクレオチドがあげられる。活性化は、例えば、前記MutSと前記活性化剤とを、室温で、数秒間から数分間インキュベートすることで行える。
 本発明の第一の判定方法において、さらに、一本鎖結合タンパク質(single-strand binding protein:SSB)の共存下、前記標的配列の増幅を行ってもよい。SSBを併用することで、例えば、本発明のAac MutSが一本鎖核酸に結合することを、より一層回避できる。前記SSBとしては、特に制限されず、従来公知のタンパク質が使用できる。SSBの具体例としては、例えば、大腸菌、ショウジョウバエ、およびアフリカツメガエルに由来する一本鎖結合タンパク質、T4バクテリオファージ由来の遺伝子32タンパク質、この他に、他の種に由来するこれらのタンパク質があげられる。
 本発明において、反応開始時における被検核酸の種類は、何ら制限されず、例えば、天然物由来の核酸でもよいし、合成等による非天然物の核酸であってもよい。前記被検核酸としては、例えば、DNAやRNA等のポリヌクレオチドがあげられる。なお、ポリヌクレオチドは、オリゴヌクレオチドの意味も含む。前記ポリヌクレオチドは、例えば、非修飾ヌクレオチドを含んでもよいし、修飾ヌクレオチドを含んでもよく、天然ヌクレオチドを含んでもよいし、非天然ヌクレオチドを含んでもよい。前記非天然ヌクレオチドとは、例えば、天然ヌクレオチドの塩基以外の塩基を含み、前記塩基としては、例えば、キサントシン類、ジアミノピリミジン類、isoG、isoC(Proc. Natl. Acad. Sci. USA 92, 6329-6333, 1995)等があげられる。また、前記ポリヌクレオチドは、例えば、LNA、PNA(ペプチド核酸)、モルホリノ核酸、メチルフォスフォネート核酸、S-オリゴ核酸等の人工合成核酸を含んでもよく、これらのキメラ分子であってもよい。前記DNAとしては、例えば、ゲノムDNA、cDNA、合成DNA等があげられ、RNAは、例えば、全RNA、mRNA、rRNA、siRNA、hnRNA、合成RNA、スプライスドRNA、アンスプライスドRNA等があげられる。前記被検核酸がRNAの場合、例えば、逆転写反応によりRNAからDNA(cDNA)を生成し、得られたDNAを鋳型として、さらに増幅反応を行ってもよい。前記反応開始時の被検核酸は、例えば、血液、臓器、組織、細胞等の生体由来試料や、食品、土壌、排水等の微生物含有試料等から調製できる。前記生体としては、例えば、ヒトおよび非ヒトを含む動物、ならびに植物等があげられる。試料に含まれるRNAとしては、例えば、核および細胞質等に存在するRNA、感染したウイルスおよび細菌由来のRNA等があげられる。なお、試料からの被検核酸の回収は、特に制限されず、従来公知の方法が採用でき、また、必要に応じて回収した核酸の精製や断片化を行うことができる。
 本発明の第一の判定方法において、前記被検核酸は、例えば、二本鎖核酸でも一本鎖核酸でもよい。前記二本鎖核酸としては、例えば、二本鎖DNA、二本鎖RNA、DNAとRNAとの二本鎖等のいずれであってもよい。前記二本鎖核酸は、そのまま鋳型核酸として使用してもよいし、例えば、ファージやプラスミド等のベクターで増幅されたものを、鋳型核酸として使用することもできる。前記被検核酸が二本鎖核酸の場合、そのまま増幅反応を開始してもよいし、必要に応じて、二本鎖核酸を一本鎖核酸に変性する工程を含んでもよい。変性方法は、特に制限されないが、例えば、反応液の温度を変化させる方法、および、反応液のpHを変動させる方法がある。前者の場合、例えば、温度を40~120℃、好ましくは約95℃に上昇させることで、二本鎖核酸を一本鎖核酸に変性し、続いて、温度を0~65℃に降下させることで、前記一本鎖核酸へのプライマーのアニーリングを行うことが好ましい。後者の場合、例えば、反応液のpHを約7~14に上げることで、二本鎖核酸を一本鎖核酸に変性し、続いて、反応液のpHを約6~9に下げることで、前記一本鎖核酸へのプライマーのアニーリングを行うことが好ましい。
 本発明の第一の判定方法において、使用するプライマーの種類は、特に制限されず、例えば、被検核酸の種類、標的配列の種類、核酸増幅法の種類等に応じて適宜決定できる。本発明の第一の判定方法において、例えば、2種類以上のプライマーを使用する場合には、例えば、少なくとも1種類が、前述のような、前記被検核酸における前記標的部位を含む領域にハイブリダイズ可能な標的プライマーであることが好ましい。所定の標的配列を増幅するためのプライマーとしては、例えば、センス鎖にハイブリダイズするプライマーとアンチセンス鎖にハイブリダイズするプライマーとを、一対のプライマーセットとして使用することが好ましい。前記プライマーセットは、例えば、1種類でもよいし、2種類以上を併用してもよい。また、対となるプライマーセットと、その他のプライマーとを組み合わせて使用してもよい。また、本発明の第一の判定方法においては、例えば、同一の反応液において、2種類以上の標的配列を増幅してもよい。この場合、各標的配列を増幅するためのプライマーとして、少なくとも1種類ずつ、前記標的部位を含む領域にハイブリダイズ可能な標的プライマーを使用することが好ましい。
 本発明におけるプライマーは、特に制限されず、例えば、被検核酸、標的配列、後述する核酸増幅方法の種類等に応じて、適宜決定できる。前記プライマーは、例えば、天然物由来のポリヌクレオチドでもよいし、合成等による非天然物のポリヌクレオチドであってもよい。前記ポリヌクレオチドとしては、例えば、デオキシリボヌクレオチド、修飾デオキシリボヌクレオチド、リボヌクレオチド、修飾リボヌクレオチド、これらの誘導体を含むポリヌクレオチドまたはキメラポリヌクレオチド等のいずれであってもよい。前記リボヌクレオチド誘導体としては、例えば、α位の酸素原子を硫黄原子に置き換えたリボヌクレオチド等があげられる。前記プライマーは、例えば、LNA、PNA(ペプチド核酸)、モルホリノ核酸、メチルフォスフォネート核酸、S-オリゴ核酸等の人工合成核酸を含んでもよく、これらのキメラポリヌクレオチドであってもよい。なお、前記ポリヌクレオチドは、オリゴヌクレオチドの意味も含む。
 本発明において、プライマーは、例えば、ストリンジェントな条件下、被検核酸における所定領域(ハイブリッド領域)にハイブリダイズ(アニーリング)することが好ましく、より好ましくは、ストリンジェントな条件下、前記所定領域のみにハイブリダイズすることが好ましい。ストリンジェントな条件は、例えば、プライマーとその相補鎖との二本鎖の融解温度Tm(℃)およびハイブリダイゼーション溶液の塩濃度等に依存して決定でき、例えば、J. Sambrook, E. F. Frisch, T. Maniatis; Molecular Cloning 2nd edition, Cold Spring Harbor Laboratory (1989)等を参照できる。具体例として、前記プライマーの融解温度よりわずかに低い温度条件下、被検核酸とプライマーとのハイブリダイゼーションを行うと、前記プライマーを前記所定領域に特異的にハイブリダイズさせることができる。このようなプライマーは、例えば、Primer3(Whitehead Institute for Biomedical Research社製)等の市販のプライマー構築ソフト等により設計できる。
 本発明の第一の判定方法において、前記標的配列の増幅には、一般にポリメラーゼが使用できる。前記ポリメラーゼとしては、特に制限されず、従来公知のポリメラーゼが使用できる。前記ポリメラーゼは、例えば、天然由来でもよいし、遺伝子工学的手法により得られた酵素でもよいし、また、人工的に変異を加えた変異体であってもよい。前記ポリメラーゼの具体例としては、Alicyclobacillus属由来のポリメラーゼ、Thermus属由来のポリメラーゼ、Bacillus属由来のポリメラーゼ、Geobacillus属由来のポリメラーゼ、大腸菌(Escherichia coli)由来のポリメラーゼ等があげられる。前記Alicyclobacillus属由来のポリメラーゼとしては、例えば、Alicyclobacillus acidocaldarius由来のポリメラーゼが好ましく、具体的には、Alicyclobacillus acidocaldarius subsp. Acidocaldarius JCM5260由来のポリメラーゼがあげられる。前記Thermus属由来のポリメラーゼとしては、例えば、Thermus aquaticus由来のDNAポリメラーゼ(Taq DNAポリメラーゼ)、Thermus thermophilus由来のDNAポリメラーゼ(Tth DNAポリメラーゼ)等があげられ、Bacillus属由来のポリメラーゼとしては、例えば、好熱性Bacillus属由来のポリメラーゼが好ましく、具体例としては、Bacillus stearothermophilus由来のDNAポリメラーゼ(Bst DNAポリメラーゼ)、Bacillus caldotenax由来のDNAポリメラーゼ(Bca DNAポリメラーゼ:登録商標)があげられる。また、Bca DNAポリメラーゼとしては、例えば、BcaBEST DNAポリメラーゼ、Bca(exo-)DNAポリメラーゼ等もあげられる。Geobacillus属由来のポリメラーゼとしては、例えば、Geobacillus caldoxylosilyticus由来のポリメラーゼが好ましく、具体例として、Geobacillus caldoxylosilyticus DSM12041由来のポリメラーゼがあげられる。この他にも、例えば、Vent(登録商標)DNAポリメラーゼ、Vent(登録商標)(Exo-)DNAポリメラーゼ、DeepVent(登録商標)DNAポリメラーゼ、DeepVent(登録商標)(Exo-)DNAポリメラーゼ、Ф29ファージDNAポリメラーゼ、MS-2ファージDNAポリメラーゼ、Z-Taq DNAポリメラーゼ、Pfu DNAポリメラーゼ、Pfu turbo DNAポリメラーゼ、KOD DNAポリメラーゼ、9゜Nm DNAポリメラーゼ、Therminator DNAポリメラーゼ等があげられる。また、鋳型核酸が前述のように非天然ヌクレオチドを含む場合、例えば、取り込み効率の観点から、Y188L/E478Q変異型HIV I逆転写酵素、AMV逆転写酵素、DNAポリメラーゼのクレノウフラグメント、9゜Nm DNAポリメラーゼ、HotTub DNAポリメラーゼ等を使用することが好ましい(Michael Sismour. 1 et al., Biochemistry, 42, No.28, 8598, 2003、米国特許第6617106号明細書、Michael J. Lutz et al., Bioorganic & Medical Chemistry letters 8, 1149-1152, 1998等)。この場合、前記反応液に、さらに、トレハロース等の酵素の耐熱性を向上させる物質を添加してもよい。これによって、さらに効率的に非天然ヌクレオチドを含む標的核酸の増幅を行うことができる。これらのDNAポリメラーゼの中でも、例えば、Alicyclobacillus属由来のポリメラーゼ、Thermus属由来のポリメラーゼが好ましく、より好ましくは、Alicyclobacillus acidocaldarius由来のポリメラーゼ、Taq DNAポリメラーゼであり、特に、Aac MutSと同じ由来である前記Alicyclobacillus属由来のポリメラーゼ、具体的には、Alicyclobacillus acidocaldarius由来のポリメラーゼ、Alicyclobacillus acidocaldarius subsp. Acidocaldarius JCM5260由来のポリメラーゼが好ましい。
 本発明の第一の判定方法において、後述するような等温増幅法により核酸増幅を行う場合、前記ポリメラーゼとしては、例えば、鎖置換活性(鎖置換能)を有するものが好ましく、常温性、中温性および耐熱性のものが好適に使用できる。前記ポリメラーゼとしては、さらに、実質的に、5’→3’エキソヌクレアーゼ活性を有しないものが好ましい。このようなポリメラーゼとしては、例えば、大腸菌(Escherichia coli)由来DNAポリメラーゼIのクレノウフラグメント、前述した好熱性Bacillus属由来のポリメラーゼの5’→3’エキソヌクレアーゼ活性を欠失した変異体等があげられる。後者の具体例としては、Bst DNAポリメラーゼおよびBca DNAポリメラーゼの5’→3’エキソヌクレアーゼ活性欠失変異体等があげられる。
 本発明の第一の判定方法において、前述のように逆転写反応を行う場合、前記反応に使用する酵素としては、例えば、RNAを鋳型とするcDNA合成活性を有するものであれば、特に限定されない。具体例としては、トリ骨髄芽球症ウイルス由来逆転写酵素(AMV RTase)、ラウス関連ウイルス2逆転写酵素(RAV-2 RTase)、モロニーマウス白血病ウイルス由来逆転写酵素(MMLV RTase)等があげられる。前記逆転写反応においては、この他に、例えば、逆転写活性を併せ持つDNAポリメラーゼを使用することもでき、具体例としては、Tth DNAポリメラーゼ等のThermus属由来のポリメラーゼや、好熱性Bacillus属由来のポリメラーゼ等も使用できる。前記好熱性Bacillus属由来のポリメラーゼとしては、例えば、Bst DNAポリメラーゼ、Bca DNAポリメラーゼ、BcaBEST DNAポリメラーゼ、Bca(exo-)DNAポリメラーゼ等もあげられる。前記Bca DNAポリメラーゼは、例えば、反応にマンガンイオンが不要であり、高温条件下、鋳型RNAの二次構造形成を抑制しながらcDNAを合成できる。
 また、逆転写活性を併せ持つポリメラーゼとして、例えば、BcaBEST DNAポリメラーゼ、Bca(exo-)DNAポリメラーゼ等を使うことにより、全RNAもしくはmRNAを鋳型とする逆転写反応と、逆転写反応により得られるcDNAを鋳型とするDNAポリメラーゼ反応とを、1種類のポリメラーゼで行うことができる。なお、これには制限されず、例えば、前述のような各種DNAポリメラーゼと、MMLV RTase等の前述の逆転写酵素とを組み合わせて用いてもよい。
 なお、前記増幅反応において、MutSを使用する場合、前記Aac MutSに関わらず、同じ由来のMutSとポリメラーゼとを使用することが好ましい。具体的には、例えば、同じ属由来のMutSとポリメラーゼであり、好ましくは同じ種由来であり、より好ましくは同じ株由来である。
 本発明の第一の判定方法において、前記反応液における酵素(例えば、ポリメラーゼ)の量は、特に制限されないが、前記反応液25μLあたり、例えば、0.01~1000Uであり、好ましくは0.05~500Uであり、より好ましくは0.1~100Uである。
 なお、本発明の第一の判定方法によれば、さらに、真核生物のゲノムに含まれるイントロン配列を、欠失、挿入または付加に係る標的部位をとして、被検核酸に前記イントロン配列が存在するか否かを判定することもできる。前記イントロン配列の有無を判定し、存在しないと判定した場合には、標的遺伝子のmRNAが存在する、すなわち、標的遺伝子が発現していると判定することができる。この場合、標的配列は、mRNAであることが好ましい。
 本発明の第一の判定方法において、核酸の増幅方法としては、特に制限されず、従来公知の方法が採用できる。核酸の増幅反応は、例えば、温度を変動させて行ってもよいし、一定温度で行ってもよい。前者としては、例えば、ポリメラーゼチェーンリアクション(PCR)法(例えば、特許第2502041号、第2546576号および第2703194号公報等参照)、RT-PCR法(例えば、Trends in Biothechnology, Vol.10, pp.146-153, 1992等参照)等があげられる。前記PCRは、通常、二本鎖核酸を一本鎖核酸に変性する変性工程、前記一本鎖核酸にプライマーをハイブリダイズさせるアニーリング工程、ハイブリダイズした前記プライマーからの伸長を行う伸長工程を含む。後者は、いわゆる等温増幅法であり、前記一定温度とは、例えば、設定した温度を正確に維持するだけでなく、ほぼ一定温度の条件も含む。「ほぼ一定温度」とは、例えば、増幅反応に使用される各種成分の機能を損なわない程度の温度変化の意味を含む。前記等温増幅法としては、例えば、Smart Amplification Process法(国際公開WO01/030993号パンフレット、国際公開WO2004/040019号パンフレット、国際公開WO2005/063977号パンフレット、Mitani, Y. et al., Nature Methods, 2007, Vol. 4, No. 3, 257-262参照)、SDA法(strand displacement amplification)法(特開平10-313900号公報参照)、改良SDA法、NASBA(nucleic acid sequence based amplification)法(特許第2650159号公報参照)、LAMP(Loop-Mediated Isothermal Amplification)法(Notomi, T. et al., Nucleic Acids Research, 2000, Vol. 28, No. 12, e63参照)、ICAN(登録商標、Isothermal and Chimeric primer-initiated Amplification of Nucleic acids)法(国際公開WO00/56877号パンフレット参照)、自立複製(3SR;self-sustained sequence replication)法、TMA(transcription-mediated amplification)法、Qベータレプリカーゼ法、Invader法およびRCA(rolling circle amplification)法等があげられる。
 以下に、具体例として、等温増幅法であるSmart Amplification Process法およびLAMP法、ならびに、PCR法について説明するが、本発明は、これらに何ら制限されない。
(等温増幅法)
 等温増幅法は、一般に、等温(一定温度)で核酸の増幅反応を行う方法である。本発明において、増幅反応の条件は、特に制限されず、当業者であれば適宜決定できる。反応温度は、例えば、プライマーの融解温度(Tm)付近の温度、または、それ以下に設定することが好ましく、さらには、プライマーの融解温度(Tm)を考慮し、ストリンジェンシーのレベルを設定することが好ましい。反応温度の具体例としては、例えば、約20℃~約75℃であり、好ましくは、約35℃~約65℃である。
 等温増幅方法について、非対称型プライマーセットを用いる方法と、対称型プライマーセットを用いる方法とを例にあげて説明する。前者は、例えば、一対のプライマーが、一方のプライマーの形態と他方のプライマーの形態とが異なるプライマーセットであり、以下、「非対称型プライマーセット」という。また、後者は、例えば、一対のプライマーが、一方の形態と他方のプライマーの形態とが同じであるプライマーセットであり、以下、「対称型プライマーセット」という。前記非対称型プライマーセットは、例えば、前記Smart Amplification Process法に適しており、前記対称型プライマーセットは、例えば、前記LAMP法に適している。なお、本発明は、これには制限されない。
 Smart Amplification Process法
 増幅方法の中でもSmart Amplification Process法は、例えば、優れた特異性で標的配列を増幅できる。このため、核酸増幅によって、例えば、遺伝子における変異、すなわち、塩基の欠失、置換、挿入または付加の有無を判断でき、特に、一塩基の変異の有無(一塩基多型)等の判断に適している。
 前記非対称型のプライマーセットは、前述のように、対になる一方のプライマーの形態と他方のプライマーの形態とが異なる非対称型のプライマーセットであり、中でも、前記Smart Amplification Process法に適用することが好ましい。このプライマーセットを、以下、「Smart Amplification Process用プライマーセット」ともいう。
 前記Smart Amplification Process用プライマーセットの具体例としては、例えば、非対称型である一対のプライマーが、第一のプライマーと第二のプライマーとを含み、
前記第一のプライマーが、標的配列の3’末端部分の配列(A)にハイブリダイズする配列(Ac')を3’末端部分に含んでなり、かつ前記標的配列において前記配列(A)よりも5’側に存在する配列(B)の相補配列(Bc)にハイブリダイズする配列(B')を前記配列(Ac')の5’側に含むものであり、
前記第二のプライマーが、前記標的配列の相補配列の3’末端部分の配列(C)にハイブリダイズする配列(Cc')を3’末端部分に含み、かつ相互にハイブリダイズする2つの核酸配列を同一鎖上に含む折返し配列(D-Dc')を前記配列(Cc')の5’側に含むものである。
 第一のプライマーによる核酸合成の作用機序を図9に模式的に示す。まず、鋳型となる核酸中の標的配列を決定し、その標的配列の3’末端部分の配列(A)、および配列(A)よりも5’側に存在する配列(B)を決定する。第一のプライマーは、配列(Ac')を含み、さらにその5’側に配列(B')を含む。配列(Ac')は、配列(A)にハイブリダイズするものであり、配列(B')は、配列(B)の相補配列(Bc)にハイブリダイズするものである。ここで、第一のプライマーは、前記配列(Ac')と前記配列(B')の間に、反応に影響を与えない介在配列を含んでいてもよい。このようなプライマーを鋳型核酸にアニーリングさせると、プライマー中の配列(Ac')が標的配列の配列(A)にハイブリダイズした状態となる(図9(a))。この状態でプライマー伸長反応が起こると、標的配列の相補配列を含む核酸が合成される。そして、合成された核酸の5’側に存在する配列(B')が、同核酸中に存在する配列(Bc)にハイブリダイズし、これにより、合成された核酸の5’側においてステム-ループ構造が形成される。その結果、鋳型核酸上の配列(A)が一本鎖となり、この部分に先の第一のプライマーと同一の配列を有する他のプライマーがハイブリダイズする(図9(b))。その後、鎖置換反応により、新たにハイブリダイズした第一のプライマーからの伸長反応が起こると同時に、先に合成された核酸が鋳型核酸から分離される(図9(c))。
 上記の作用機序において、配列(B')が配列(Bc)にハイブリダイズする現象は、典型的には、同一鎖上に相補領域が存在することにより起こる。一般に、二本鎖核酸が一本鎖に解離するときは、その末端あるいはそれ以外の比較的不安定な部分から部分的な解離が始まる。上記第一のプライマーによる伸長反応で生成した二本鎖核酸は、比較的高温では末端部分の塩基対は解離と結合の平衡状態にあり、全体としては二本鎖を保っている。そのような状態で末端の解離した部分に相補的な配列が同一鎖上に存在すると、準安定な状態としてステム-ループ構造を形成することができる。このステム-ループ構造は安定的には存在しないが、その構造の形成により剥き出しとなった相補鎖部分(鋳型核酸上の配列(A))に同一の他のプライマーが結合し、すぐさまポリメラーゼが伸長反応を行うことにより、先に合成された鎖が置換されて遊離すると同時に、新たな二本鎖核酸を生成することができる。
 本発明の好ましい態様における第一のプライマーの設計基準は次のとおりである。まず、プライマーの伸長により鋳型核酸の相補鎖が合成された後に新たなプライマーが効率よく同鋳型核酸にアニーリングするためには、合成された相補鎖の5’側におけるステム-ループ構造形成により、鋳型核酸上の前記配列(A)の部分を一本鎖とする必要がある。そのためには、配列(Ac’)の塩基数Xと、標的配列中における前記配列(A)と前記配列(B)に挟まれた領域の塩基数Yとの差(X-Y)の、Xに対する割合(X-Y)/Xが重要となる。ただし、鋳型核酸上において配列(A)よりも5’側に存在する、プライマーのハイブリダイズとは関係無い部分まで一本鎖とする必要はない。また、新たなプライマーが効率よく鋳型核酸にアニーリングするためには、上述のステム-ループ構造形成を効率よく行うことも必要となる。そして、効率の良いステム-ループ構造形成、すなわち、配列(B')と配列(Bc)との効率のよいハイブリダイゼーションには、前記配列(B')と前記配列(Bc)との間の距離(X+Y)が重要となる。一般に、プライマー伸長反応のための最適温度は、例えば、最高でも72℃付近であり、そのような低い温度では、伸長鎖が長い領域にわたって解離することは困難である。従って、配列(B')が配列(Bc)に効率よくハイブリダイズするためには、両配列の間の塩基数は少ないほうが好ましいと考えられる。一方で、配列(B')が配列(Bc)にハイブリダイズして、鋳型核酸の前記配列(A)の部分を一本鎖とするためには、配列(B')の塩基数は多い方が好ましいと考えられる。
 以上のような観点から、本発明の好ましい実施態様による前記第一のプライマーは、プライマーを構成する配列(Ac)と配列(B')の間に介在配列が存在しない場合において、(X-Y)/Xが、例えば、-1.00以上、好ましくは0.00以上、さらに好ましくは0.05以上、さらに好ましくは0.10以上となり、また、例えば、1.00以下、好ましくは0.75以下、さらに好ましくは0.50以下、さらに好ましくは0.25以下となるように設計される。さらに、(X+Y)は、好ましくは15以上、さらに好ましくは20以上、さらに好ましくは30以上とされ、また、好ましくは50以下、さらに好ましくは48以下、さらに好ましくは42以下とされる。
 また、プライマーを構成する配列(Ac)と配列(B')の間に介在配列(塩基数はY’)が存在する場合には、本発明の好ましい実施態様による前記第一のプライマーは、{X-(Y-Y’)}/Xが、例えば、-1.00以上、好ましくは0.00以上、さらに好ましくは0.05以上、さらに好ましくは0.10以上となり、また、例えば、1.00以下、好ましくは0.75以下、さらに好ましくは0.50以下、さらに好ましくは0.25以下となるように設計される。さらに、(X+Y+Y’)は、好ましくは15以上、さらに好ましくは20以上、さらに好ましくは30以上とされ、また、好ましくは100以下、さらに好ましくは75以下、さらに好ましくは50以下とされる。
 前記第一のプライマーは、例えば、与えられた条件下で、必要な特異性を維持しながら、標的核酸との塩基対結合を行うことができる程度の鎖長を有するものである。このプライマーの鎖長は、好ましくは15~100ヌクレオチド、より好ましくは20~60ヌクレオチドとする。また、前記第一のプライマーを構成する配列(Ac)と配列(B')の長さは、それぞれ、好ましくは5~50ヌクレオチド、より好ましくは7~30ヌクレオチドである。また、必要に応じて、配列(Ac)と配列(B')の間に、反応に影響を与えない介在配列を挿入してもよい。
 本発明によるプライマーセットに含まれる第二のプライマーは、上述のように、前記標的配列の相補配列(第一のプライマーがハイブリダイズする鎖に対して反対側の鎖)の3’末端部分の配列(C)にハイブリダイズする配列(Cc')を3’末端部分に含み、かつ相互にハイブリダイズする2つの核酸配列を同一鎖上に含む折返し配列(D-Dc')を前記配列(Cc')の5’側に含むものである。このような第二のプライマーの構造は、例えば、図10に示すようなものであるが、図10に示される配列やヌクレオチド数に限定されるものではない。第二のプライマーを構成する配列(Cc')の長さは、好ましくは5~50ヌクレオチド、より好ましくは10~30ヌクレオチドである。また、前記折返し配列(D-Dc')の長さは、好ましくは2~1000ヌクレオチド、より好ましくは2~100ヌクレオチド、さらに好ましくは4~60ヌクレオチド、さらに好ましくは6~40ヌクレオチドである。前記折返し配列(D-Dc')の内部におけるハイブリダイゼーションによって形成される塩基対のヌクレオチド数は、好ましくは2~500bp、より好ましくは2~50bp、さらに好ましくは2~30bp、さらに好ましくは3~20bpである。前記折返し配列(D-Dc')のヌクレオチド配列は、いかなる配列であってもよく、特に限定されるものではないが、好ましくは標的配列にハイブリダイズしない配列とされる。また、必要に応じて、配列(Cc')と折返し配列(D-Dc')の間に、反応に影響を与えない介在配列を挿入してもよい。
 これら第一のプライマーおよび第二のプライマーによる核酸増幅反応について考えられる作用機序を、図11および図12を用いて説明する。なお、図11および図12では、説明を簡略化するため、ハイブリダイズする2つの配列を相互に相補的な配列としているが、これにより本発明が限定されるものではない。まず、第一のプライマーが標的核酸のセンス鎖にハイブリダイズし、前記プライマーの伸長反応が起きる(図11(a))。次いで、伸長鎖(-)上においてステム-ループ構造が形成され、これにより一本鎖となった前記センス鎖の配列(A)に、新たな第一のプライマーがハイブリダイズし(図11(b))、該プライマーの伸長反応が起きて、先に合成された伸長鎖(-)が脱離する。次に、脱離した伸長鎖(-)の配列(C)に第二のプライマーがハイブリダイズし(図11(c))、前記プライマーの伸長反応が起き、伸長鎖(+)が合成される(図11(d))。生成した伸長鎖(+)の3’末端と伸長鎖(-)の5’末端ではステム-ループ構造が形成され(図11(e))、遊離型の3’末端である伸長鎖(+)のループ先端から伸長反応が起こると同時に、前記伸長鎖(-)が脱離する(図11(f))。ループ先端からの前記伸長反応により、伸長鎖(+)の3’側に配列(A)および配列(Bc)を介して伸長鎖(-)が結合したヘアピン型の二本鎖核酸が生成し、その配列(A)および配列(Bc)に第一のプライマーがハイブリダイズし(図11(g))、その伸長反応により伸長鎖(-)が生成する(図11(h)および図12(i))。また、前記ヘアピン型二本鎖核酸の3’末端に存在する折返し配列によって遊離型の3’末端が提供され(図11(h))、そこからの伸長反応により(図12(i))、両端に折返し配列を有し、第一および第二のプライマーに由来する配列を介して伸長鎖(+)と伸長鎖(-)とを交互に含む一本鎖核酸が生成する(図12(j))。この一本鎖核酸では、その3’末端に存在する折返し配列により遊離型の3’末端(相補鎖合成起点)が提供されるため(図12(k))、同様の伸長反応が繰り返され、1回の伸長反応あたり2倍の鎖長となる(図12(l)および(m))。また、図12(i)において脱離した第一のプライマーからの伸長鎖(-)では、その3’末端に存在する折返し配列により遊離型の3’末端(相補鎖合成起点)が提供されるため(図12(n))、そこからの伸長反応により、両端にステム-ループ構造が形成され、プライマーに由来する配列を介して伸長鎖(+)と伸長鎖(-)とを交互に含む一本鎖核酸が生成する(図12(o))。この一本鎖核酸においても、3’末端におけるループ形成によって相補鎖合成起点が順次提供されるため、そこからの伸長反応が次々に起こる。このようにして自動的に延長される一本鎖核酸には、第一のプライマーおよび第二のプライマーに由来する配列が伸長鎖(+)と伸長鎖(-)との間に含まれているため、各プライマーがハイブリダイズして伸長反応を起こすことが可能であり、これにより標的核酸のセンス鎖およびアンチセンス鎖が顕著に増幅される。
 また、Smart Amplification Process用プライマーセットは、第一のプライマーおよび第二のプライマー以外に、第三のプライマーを含んでもよい。前記第三のプライマーは、例えば、前記標的配列またはその相補配列にハイブリダイズするものであって、標的配列またはその相補配列へのハイブリダイゼーションについて他のプライマーと競合しないプライマーである。本発明において「競合しない」とは、例えば、そのプライマーが標的配列にハイブリダイズすることによって、他のプライマーによる相補鎖合成起点の付与が妨げられないことを意味する。
 第一のプライマーおよび第二のプライマーにより標的配列が増幅された場合には、前述のように、増幅産物は、標的配列とその相補配列とを交互に有するものとなる。前記増幅産物の3’側には、折返し配列またはループ構造が存在し、これにより提供される相補鎖合成起点から、次々に伸長反応が起こっている。第三のプライマーは、このような増幅産物が部分的に一本鎖の状態になった時に、その一本鎖部分に存在する標的配列にアニ-リングできるプライマーであることが好ましい。これにより、増幅産物の標的配列内に新たな相補鎖合成起点が提供され、そこからの伸長反応が起こるため、核酸増幅反応がより迅速に行われるようになる。
 前記第三のプライマーは、制限されず、1種類でもよいし、例えば、増幅反応の迅速性および特異性を向上させるため、2種類以上の第三のプライマーを同時に用いてもよい。これらの第三のプライマーは、例えば、典型的には第一のプライマーおよび第二のプライマーとは異なる配列からなるが、これらのプライマーと競合しない限りにおいて、部分的に重なる領域にハイブリダイズしてもよい。第三のプライマーの鎖長は、好ましくは2~100ヌクレオチド、より好ましくは5~50ヌクレオチド、さらに好ましくは7~30ヌクレオチドである。
 前記第三のプライマーは、例えば、第一のプライマーおよび第二のプライマーによる増幅反応をより迅速に進めるための補助的な働きを、その主目的とする。従って、前記第三のプライマーは、第一のプライマーおよび第二のプライマーの各3’末端のTmよりも低いTmを有することが好ましい。また、第三のプライマーの増幅反応液への添加量は、例えば、第一のプライマーおよび第二のプライマーのそれぞれの添加量よりも少ない方が好ましい。
 前記第三のプライマーとしては、例えば、国際公開第02/24902号パンフレットに記載のような、ループを形成できる構造をもつものを鋳型として、そのループ部分に相補鎖合成の起点を付与するものをあげることができるが、これに限定されない。すなわち、例えば、標的配列内であれば、いかなる部位に相補鎖合成起点を付与するものであってもよい。
 前記Smart Amplification Process用プライマーセットにおいては、例えば、前記第一のプライマーおよび前記第二のプライマーのいずれか一方、または、前記両方のプライマーが、例えば、蛍光色素等の標識物質で標識化された標識プライマーであってもよいし、前記第三のプライマーが、例えば、前記標識プライマーであってもよい。また、第一のプライマーおよび第二のプライマーのいずれか一方もしくは両方と、第三のプライマーとが、全て前記標識プライマーであってもよい。
 また、前記Smart Amplification Process法を、例えば、変異の判定方法に適用する場合、前記Smart Amplification Process用プライマーを、以下のように設計することが好ましい。すなわち、前記Smart Amplification Process用プライマーセットは、標的部位(検出部位)に変異を有する核酸配列(変異型配列)または前記標的部位に変異を有さない核酸配列(野生型配列)を、標的配列とし、目的の変異を生じる前記標的部位が、配列(A)、配列(B)もしくは配列(C)に含まれるか、または、配列(A)と配列(B)との間もしくは配列(A)と配列(C)との間に配置されるように、プライマーセットを設計することが好ましい。
 前記プライマーセットとして、標的部位に変異を有する変異型配列を標的配列として設計したプライマーセットを用いる場合、例えば、増幅反応後における増幅産物の存在が、変異型配列の存在を示し、増幅産物の不在または減少が、変異型配列の不在を示す。一方、標的部位に変異を有さない核酸配列(野生型配列)を標的配列として設計したプライマーセットを用いる場合、例えば、増幅反応後における増幅産物の存在が、変異型配列の不在を示し、増幅産物の不在または減少が、変異型配列の存在を示す。ここで、「増幅産物の減少」とは、例えば、得られた増幅産物の量が、被検核酸に標的配列が存在する場合に得られる増幅産物の量と比較して、減少していることを意味する。
 前記プライマーセットとしては、例えば、標的部位が、前記配列(A)に含まれるように設計されたプライマーセットが好ましい。このようなプライマーセットであれば、例えば、被検核酸に標的配列(例えば、野生型配列)が含まれる場合、増幅反応において、第一のプライマーが配列(A)にアニーリングするため、増幅産物が得られる。一方、被検核酸に前記標的配列とは異なる核酸配列(例えば、変異型配列)が含まれる場合、増幅反応において、第一のプライマーが配列(A)にアニーリングし難い。このため、増幅産物が得られないか、または、得られる増幅産物の量が著しく減少する。第一のプライマーに含まれる配列(Ac)は、前記配列(A)に相補的な配列とすることが好ましい。
 また、前記プライマーセットとしては、例えば、標的部位が、前記配列(C)に含まれるように設計されたプライマーセットが好ましい。このようなプライマーセットによれば、例えば、被検核酸に標的配列(例えば、野生型配列)が含まれる場合、増幅反応において、第二のプライマーが配列(C)にアニーリングするため、増幅産物が得られる。一方、被検核酸に前記標的配列とは異なる核酸配列(例えば、変異型配列)が含まれる場合、増幅反応において、第二のプライマーが配列(C)にアニーリングし難い。このため、増幅産物が得られないか、または得られる増幅産物の量が著しく減少する。第二のプライマーに含まれる配列(Cc')は、前記配列(C)に相補的な配列とすることが好ましい。
 また、前記プライマーとしては、例えば、標的部位が、前記配列(B)に含まれるように設計されたプライマーセットであることが好ましい。このようなプライマーセットによれば、例えば、被検核酸に標的配列(例えば、野生型配列)が含まれる場合、増幅反応において、第一のプライマーが配列(A)にアニーリングして伸長反応が行われた後、前記プライマーに含まれる配列(B')が、伸長鎖の配列(Bc)にハイブリダイズする。このため、ステム-ループ構造が効率的に形成される。この効率的なステム-ループ構造の形成により、他の第一のプライマーが鋳型にアニーリングすることが可能となり、前述の図9に示した作用機序が効率的に進行するため、増幅産物が得られる。一方、被検核酸に前記標的配列とは異なる核酸配列(例えば、変異型配列)が含まれる場合、増幅反応における前記ステム-ループ構造の形成が困難となるため、前記図9に示される作用機序が妨げられ、増幅産物が得られないか、または得られる増幅産物の量が著しく減少する。また、第一のプライマーに含まれる配列(B')は、前記配列(B)と同一の配列とすることが好ましい。
 また、前記プライマーセットしては、例えば、標的部位が、前記配列(A)と前記配列(B)との間に配置されるように設計されたプライマーセットが好ましい。このようなプライマーセットによれば、被検核酸に標的配列(例えば、野生型配列)が含まれる場合、増幅反応において、第一のプライマーが配列(A)にアニーリングして伸長反応が行われた後、前記プライマーに含まれる配列(B')が、伸長鎖の配列(Bc)にハイブリダイズする。このため、ステム-ループ構造が効率的に形成される。この効率的なステム-ループ構造の形成により、他の第一のプライマーが鋳型にアニーリングすることが可能となり、前記図9に示される作用機序が効率的に進行するため、増幅産物が得られる。一方、被検核酸に前記標的配列とは異なる核酸配列(例えば、変異型配列)が含まれる場合、第一のプライマーに含まれる配列(B')と伸長鎖上の配列(Bc)とが適切な距離を維持していないため、増幅反応における前記ステム-ループ構造の形成が困難となる。配列(A)と配列(B)との間に、長い配列の挿入や欠失がある場合等である。従って、この場合、前記図9に示される作用機序が妨げられ、増幅産物が得られないか、または得られる増幅産物の量が著しく減少する。
 また、前記プライマーセットとしては、例えば、標的部位が、前記配列(A)と前記配列(C)との間に配置されるように設計されたプライマーセットが好ましい。このようなプライマーセットによれば、被検核酸に標的配列が含まれている場合(例えば、野生型配列)、増幅反応において、第一のプライマーが配列(A)にアニーリングして伸長反応が行なわれた後、前記プライマーに含まれる配列(B')が伸長鎖上の配列(Bc)にハイブリダイズするため、ステム-ループ構造が効率的に形成される。この効率的なステム-ループ構造の形成により、他の第一のプライマーが鋳型にアニーリングすることが可能となり、前記図9、図11および図12に示される作用機序が効率的に進行するため、増幅産物が得られる。一方、被検核酸に前記標的配列とは異なる核酸配列(例えば、変異型配列)が含まれる場合、増幅産物が得られないか、または得られる増幅産物の量が著しく減少する。例えば、配列(A)と配列(C)との間における長い配列の挿入により、被検核酸に標的配列とは異なる核酸配列が含まれる場合、増幅の速度(効率)が著しく低減されるため、増幅産物が得られないか、または得られる増幅産物の量が著しく減少する。また、配列(A)と配列(C)との間における配列の欠失により、被検核酸に標的配列とは異なる核酸配列が含まれており、かつ、この欠失により配列(B)の一部または全部が失われている場合、第一のプライマーに含まれる配列(B')が伸長鎖上にハイブリダイズできないため、ステム-ループ構造の形成が不可能となるか、または困難となる。このため、前記図9、図11および図12に示される作用機序が妨げられ、増幅産物が得られないか、または得られる増幅産物の量が著しく減少する。さらに、配列(A)と配列(C)との間における配列の欠失により、被検核酸に標的配列とは異なる核酸配列が含まれており、かつこの前記欠失による配列(B)の部分的欠失が生じない場合にも、増幅の速度(効率)が低減されるため、増幅産物が得られないか、または得られる増幅産物の量が著しく減少する。
 また、本発明においては、前述のように、欠失、挿入または付加に係る標的部位が、真核生物のゲノムに含まれるイントロン配列であってもよい。この場合、例えば、標的遺伝子のイントロンを欠失するmRNAを被検核酸とし、前記イントロン配列の欠失に係る標的部位が、前記配列(A)と前記配列(B)との間に配置されるように設計されたプライマーセットが好ましい。このようなプライマーセットによれば、まず、第一のプライマーの3’側に存在する配列(Ac')が、鋳型核酸(被検核酸)にアニーリングして伸長反応が起こる。そして、さらに、前記第一のプライマーからの伸長鎖が目的領域を合成していた場合にのみ、前記第一プライマーの5’側に存在する配列(B')が、自己伸長産鎖上の隣のエクソンに対応する配列(Bc)にハイブリダイズできる。すなわち、前記伸長鎖が、二つのエクソンを順番通りに連結させた配列を有するmRNAの目的領域を合成しているときに、はじめて前記図9に示すステム-ループ構造が形成され、一本鎖となった鋳型核酸の配列(A)に、新たな第一のプライマーがアニーリング可能となる。この第一のプライマーの5’側におけるステム-ループ構造の形成は、前述のように、鋳型核酸の配列(A)と配列(B)とが適切な間隔で存在するときに、効率よく繰り返される。このため、イントロン配列を含まないmRNAを鋳型にする時のみ、増幅が起き、イントロン配列を含むようなゲノムDNAでは、増幅は起きないこととなる。この反応を等温で繰り返すことによって、正確に標的配列の増幅を行うことができ、また、このステム-ループ構造の形成がサイクルごとに正確に繰り返されるため、目的の配列のみを正確に増幅することが可能となる。特に、このようなSmart Amplification Process法によると、特異性が高いために、非特異増幅を抑制して、標的とするmRNAのみを特異的に増幅できるため、その定量性も向上する。本発明によれば、本発明のAac MutSを共存させることから、その定量性はさらに向上できる。また、この原理により、例えば、煩雑で時間のかかるDNase処理等を行い、試料中のDNAを壊してRNAを獲得する工程を省略可能となり、mRNAの自然崩壊を低減でき、より迅速な定性または定量の診断が行えるようになる。
 LAMP法
 前記対称型のプライマーセットは、前述のように、対になる一方のプライマーの形態と他方のプライマーの形態とが同じである対称型のプライマーセットであり、中でも、前記LAMP法に適用することが好ましい。このプライマーセットを、以下、「LAMP用プライマーセット」ともいう。
 LAMP法は、例えば、4種類のプライマーが必要とされ、それらが6個所の領域を認識することにより、目的遺伝子の増幅が可能となる。すなわち、この方法では、まず、第一のプライマーが鋳型鎖にアニーリングして伸長反応が起こる。次に、第一のプライマーよりも上流側に設計された第二のプライマーによる鎖置換反応によって、第一のプライマーによる伸長鎖が鋳型鎖から分離する。この時、剥ぎ取られた第一のプライマー伸長鎖の構成に起因して、伸長鎖の5’側でステム-ループ構造が形成される。これと同様の反応が二本鎖核酸のもう一方の鎖、もしくは、剥ぎ取られた第一のプライマー伸長鎖の3’側についても行なわれる。そして、これらの反応が繰り返されることにより、標的配列が増幅される。LAMP法における鋳型は、例えば、3’側と5’側において、それぞれ末端領域に相補的な塩基配列からなる領域を同一鎖上に備え、この互いに相補的な塩基配列がアニーリングしたときに両者の間に塩基対結合が可能となるループが形成される鋳型である(「ダンベル型鋳型核酸」ともいう)。LAMP法は、例えば、国際公開第00/28082号パンフレット、国際公開第01/034838号パンフレット等に従って行うことができる。
(非等温増幅法)
 PCR法
 PCR法は、前述のように、反応温度を変化させることにより、例えば、二本鎖核酸の解離、解離した一本鎖へのプライマーのアニーリング、プライマーからの核酸合成により、標的配列の増幅を行うことができる。PCR法の条件は、特に制限されず、当業者であれば適宜設定できる。
 本発明の第一の判定方法について、以下に、二本鎖DNAを被検核酸(鋳型核酸)とする例をあげて説明する。
 まず、被検核酸である二本鎖DNA、プライマー、Aac MutS、DNAポリメラーゼおよびdNTPを含む反応液を準備する。なお、使用する前記プライマーの種類は、特に制限されず、例えば、核酸増幅反応の種類や、増幅目的の標的配列の種類に応じて設定でき、1種類または2種類以上を使用してもよく、また、対となるプライマーセットを、1種類または2種類以上を使用してもよい。
 前記反応液における各成分の濃度は、特に制限されないが、例えば、前述の通りである。また、前記反応液におけるdNTPの濃度は、例えば、0.01~100mmol/Lであり、好ましくは0.1~10mmol/Lである。dNTPは、例えば、ATP、TTP、GTPおよびCTPを含み、さらに、TTPに代えて、または加えてUTPを含んでもよい。
 前記反応液は、さらに、例えば、緩衝液、界面活性剤、触媒、DMSO(ジメチルスルホキシド)、ベタイン、DTT(ジチオスレイトール)、EDTA等のキレート剤、グリセロール等を含んでもよい。前記緩衝液としては、例えば、トリス塩酸緩衝液、トライシン緩衝液、リン酸ナトリウム緩衝液、リン酸カリウム緩衝液等があげられ、前記反応液における濃度は、例えば、0.001~1000mmol/Lであり、pHは、例えば、5~10である。前記界面活性剤としては、例えば、Tween-20等のTween系、Triton X-100等のTriton系等があげられる。前記触媒としては、例えば、酢酸カリウム等のカリウム塩、硫酸アンモニウム等のアンモニウム塩、硫酸マグネシウム等のマグネシウム塩等があげられる。また、例えば、核酸増幅の効率を向上するための融解温度調整剤として、DMSO、ベタイン、ホルムアミド、グリセロール等、酵素の安定化を図るための酵素安定化剤として、グリセロール、ウシ血清アルブミン、糖類等を含んでもよい。前記糖類としては、例えば、単糖、オリゴ糖があげられ、具体的には、トレハロース、ソルビトール、マンニトール等が使用できる。また、前記反応液は、例えば、国際公開第99/54455号パンフレットに記載されている酸性物質や、陽イオン錯体等を含んでもよい。これらの各種成分は、例えば、いずれか1種類でもよいし、2種類以上を併用してもよい。
 そして、前述のように、前記反応液にAac MutSを共存させた状態で、核酸の増幅反応を行う。前記増幅反応の条件は、特に制限されず、その種類に応じて適宜設定できる。
 さらに、前記増幅反応により得られる増幅産物を検出し、増幅の有無を確認する。増幅産物の検出は、例えば、反応中において経時的に行ってもよいし、反応開始から一定時間経過後に行ってもよい。前者は、いわゆるリアルタイムでの検出であり、例えば、連続的な検出であってもよいし、断続的な検出であってもよい。後者の場合、例えば、反応開始時と一定時間経過時に増幅産物の検出を行い、その変動から増幅の有無を確認することが好ましい。
 増幅産物の検出方法は、特に制限されず、以下に示すような従来公知の方法が使用できる。
 前記増幅産物の検出方法としては、例えば、一般的なゲル電気泳動により、特定のサイズの増幅産物を検出する方法があげられ、例えば、エチジウムブロマイドやSYBR(登録商標)Green等の蛍光物質により検出できる。また、標識化物質で標識化されたプローブを用い、これを前記増幅産物にハイブリダイズさせて、検出することもできる。前記標識物質としては、例えば、ビオチンがあげられる。前記ビオチンは、例えば、蛍光標識されたアビジン、ペルオキシダーゼ等の酵素が結合されたアビジン等との結合によって検出可能である。さらに、免疫クロマトグラフを用いる方法があり、例えば、肉眼で検出可能な標識を利用したクロマトグラフ媒体を使用する方法(イムノクロマトグラフィー法)があげられる。具体的には、例えば、前記増幅産物と標識プローブとをハイブリダイズさせ、これを、前記プローブとは異なる部位で前記増幅産物にハイブリダイズ可能な捕捉プローブを固定化したクロマト媒体に接触させる。すると、前記クロマト媒体に固定した前記捕捉プローブにより、前記増幅産物と前記標識プローブとのハイブリッド体をトラップできる。その結果、例えば、肉眼により、前記増幅産物を容易に検出することが可能となる。さらに、本発明においては、例えば、増幅の副産物であるピロリン酸を検出することで、間接的に増幅産物を検出することも可能である。特に、前述のSmart Amplification Process法は、増幅効率が非常に高いため、ピロリン酸による間接的な検出も好ましい。このような方法では、例えば、反応液中のマグネシウムと生成したピロリン酸とが結合して、ピロリン酸マグネシウムの白色沈澱が生じることを利用し、前記反応液の白濁を目視または光学的手法で観察することにより、増幅の有無を検出できる。また、ピロリン酸がマグネシウム等の金属イオンと強く結合して不溶性塩を形成し、前記反応液中のマグネシウムイオン濃度が著しく減少することを利用する方法もある。このような方法では、例えば、マグネシウムイオン濃度に応じて色調が変化する金属指示薬(例えば、Eriochrome Black T、Hydroxy Naphthol Blue等)を、前記反応液に添加しておき、前記反応液の色の変化を目視または光学的手法で観察することにより、増幅の有無を検出できる。さらに、例えば、Calcein等の蛍光色素を用いることによっても、増幅反応に伴う蛍光の増大を目視や光学的手法で観察できるため、リアルタイムでの増幅産物の検出が可能となる。
 本発明においては、例えば、増幅産物の生成に起因する固相担体の凝集を観察することで、増幅産物の有無を検出することもできる。このような方法においては、例えば、本発明で使用する少なくとも1種類のプライマーが、例えば、固相担体と結合していること、または、固相担体と結合可能な部位または基を含むことが好ましい。前記プライマーにおいて、前記固相担体、または、固相担体と結合可能な部位もしくは基は、例えば、前記プライマーの3’末端領域、5’末端領域および中央領域等、いずれの領域に導入されてもよく、好ましくは、5’末端領域である。また、増幅反応において使用されるデオキシヌクレオチド(dNTP)等の基質が、例えば、固相担体と結合していてもよいし、または固相担体と結合可能な部位もしくは基を含んでもよい。
 前記固相担体としては、特に制限されず、例えば、増幅反応に使用する反応液に不溶性の担体、増幅の前後において液相から固相(ゲル相)に性状が変化する相転移性担体、または、増幅の前後において固相(ゲル相)から液相に性状が変化する相転移性担体等が使用できる。好ましい固相担体としては、例えば、水不溶性有機高分子担体、水不溶性無機高分子担体、合成高分子担体、相転移性担体、金属コロイド、磁性粒子、溶媒不溶性有機高分子担体、溶媒不溶性無機高分子担体、溶媒可溶性高分子担体、ゲル高分子担体等があげられる。前記水不溶性有機高分子としては、例えば、多孔質シリカ、多孔質ガラス、珪藻土、セライト等の珪素含有物質;ニトロセルロース、ヒドロキシアパタイト、アガロース、デキストラン、セルロース、カルボキシメチルセルロース等の多糖類の架橋体;メチル化アルブミン、ゼラチン、コラーゲン、カゼイン等のタンパク質の架橋体;ゲル状粒子、染料ゾル等があげられる。前記水不溶性無機高分子としては、例えば、酸化アルミニウム、酸化チタン、セラミック粒子等があげられる。前記合成高分子としては、例えば、ポリスチレン、ポリ(メタ)アクリレート、ポリビニルアルコール、ポリアクリロニトリルまたはこれらの共重合体、スチレン-スチレンスルホン酸共重合体、酢酸ビニル-アクリル酸エステル共重合体等があげられる。前記金属コロイドとしては、例えば、金コロイド等があげられる。前記磁性粒子としては、例えば、磁性酸化鉄のビーズ、磁性酸化鉄の微粉砕粒子を表面にコーティングした粒子単体、超常磁性粒子(特表平4-501959号公報)、重合性シラン被膜で覆われた超常磁性酸化鉄を有する磁気応答粒子(特公平7-6986号公報)、有機ポリマー中に封入された微粉末状の磁化可能な粒子等があげられる。磁性化された固相担体は、例えば、固体と液体との分離を、磁力を利用して簡単に行うことができる。前記固相担体の形状としては、特に制限されないが、例えば、粒子、膜、繊維状、フィルター等があげられ、中でも粒子が好ましく、その表面は、例えば、多孔質または非多孔質のいずれであってもよい。特に好ましい固相担体としては、例えば、合成高分子担体が水等に均一に分散されたラテックス、金コロイド等の金属コロイド粒子、マグネットビーズ等の磁性粒子等があげられる。
 前記固相担体への前記プライマーまたは前記基質の固定化方法は、特に制限されない。前記固定化は、例えば、当業者に公知の方法により行うことができ、物理的な結合または化学的な結合のいずれによる方法であってもよい。前記固定化は、例えば、一般的に、プライマーやプローブ等のオリゴヌクレオチドを標識化しうる物質と、これに結合可能な物質を結合させた固相担体とを、組み合わせて使用することにより行える。前記物質の組み合わせとしては、特に制限されず、当該技術分野において公知のものを使用でき、例えば、ビオチンとアビジンまたはストレプトアビジンとの組み合わせ、抗原とこれに結合しうる抗体との組み合わせ、リガンドとこれに結合しうるレセプターとの組み合わせ、相互にハイブリダイズする2つの核酸の組み合わせ等があげられる。具体的には、例えば、ビオチンで標識したプライマーまたは基質を、アビジンもしくはストレプトアビジンで表面をコートした固相担体に結合させることにより、プライマーまたは基質を固相担体に固定化できる。前記抗原としては、例えば、FITC、DIG、DNP等のハプテンがあげられ、これらと結合しうる抗体としては、例えば、抗FITC抗体、抗DIG抗体、抗DNP抗体等の抗体があげられる。また、これらの抗体は、例えば、モノクローナル抗体またはポリクローナル抗体のいずれであってもよい。特に、ビオチンとストレプトアビジンとの結合は、例えば、特異性が高く結合効率も良好であるため、特に好ましい。ビオチン、ハプテン、リガンド等の標識物質は、例えば、いずれも単独で、あるいは必要に応じて複数の組み合わせで、公知の手段(例えば、特開昭59-93099号公報、特開昭59-148798号公報、および特開昭59-204200号公報を参照)により、プライマーの5’末端領域等に導入できる。
 前記固相担体と結合可能な部位または基は、例えば、前述した前記固相担体へのプライマーまたは基質の固定化方法に応じて、適宜選択可能である。このため、前記部位または基は、例えば、前記固相担体との物理的な結合を可能とするもの、および化学的な結合を可能とするもののいずれであってもよいが、特異的結合を可能とするものが好ましい。前記固相担体と結合可能な部位としては、例えば、前述のように、ビオチン、アビジン、ストレプトアビジン、抗原、抗体、リガンド、レセプター、核酸、タンパク質などがあげられ、好ましくは、ビオチンまたはストレプトアビジンであり、より好ましくは、ビオチンである。このような部位を有するプライマーまたは基質を用いることにより、例えば、増幅反応後、生成した増幅産物に前記固相担体を結合させることが可能となる。この場合、前記固相担体は、例えば、必要に応じて、前記プライマーまたは基質に含まれる前記部位の結合相手を含むことが好ましい。前記固相担体における前記結合相手は、例えば、プライマーまたは基質における前記部位に対して結合可能な状態で存在すればよく、好ましくは、前記固相担体の表面上に存在するものであり、より好ましくは、前記固相担体の表面上に塗布されたものである。
 本発明においては、例えば、複数の標的配列のそれぞれに対して、前述のようなプライマーセットを用意し、これらの複数のプライマーセットを、相互に識別可能な形で前記固相担体にそれぞれ固定化し、前記複数の固定化プライマーセットを用いて増幅反応を行ってもよい。このような方法によれば、複数の標的配列を同時に増幅し、各標的配列の増幅産物を、識別して検出可能である。前記増幅産物の検出は、例えば、インターカレーター等を用いて行うことができる。具体的には、例えば、前記複数のプライマーを、平面状の固相担体上の特定の位置にそれぞれ固定化しておけば、増幅反応および増幅産物の検出の後、前記増幅産物が検出された位置によって、増幅された標的配列を特定できる。このような方法において、前記固相担体としては、前記平面状の固相担体だけでなく、例えば、相互に識別可能なビーズ表面(米国特許第6046807号明細書および米国特許第6057107号明細書)、繊維状担体に各プライマーセットを固相化したものを束ね、それを薄片に切断して作製された準平板担体(特開2000-245460号公報)等、当該技術分野において公知のものを使用できる。
 これらの他に、増幅産物の検出方法としては、例えば、インターカレーター法があげられる。この方法は、例えば、二本鎖核酸にインターカレートするインターカレーターを使用し、励起光照射により発生する蛍光により、増幅の有無を判断する方法である。また、蛍光物質とクエンチャーとを利用する方法も採用でき、例えば、TaqMan(商標)プローブ法、サイクリングプローブ法等があげられる。また、国際公開第WO2008/111485号パンフレットに開示されている化合物を有するプローブやプライマーを用いて、増幅の有無を判断することも好ましい。この方法によれば、前記プローブまたはプライマーと増幅産物とが二本鎖核酸を形成すると、励起光の照射により蛍光を発するため、前記蛍光の検出により増幅の有無を判断することができる。この方法によれば、例えば、未精製の核酸試料や精製度の低い核酸試料であっても、バックグラウンドの上昇を軽減できることから、特に好ましい。これらの方法は、例えば、いわゆるリアルタイムでの検出に適用することが好ましい。
 また、プライマーの5’末端をチップ等の固相に固定化しておき、前記固相上で増幅反応を行ってもよい。この場合、例えば、前記プライマーに、二本鎖形成により発光する蛍光物質を付加しておいてもよいし、前記蛍光物質を付加したプローブの存在下で、増幅反応を行ってもよい。これにより、例えば、前記チップ等の固相上で増幅反応を行いながら、リアルタイムで増幅産物の検出を行うことが可能である。
 そして、増幅の有無から、被検核酸配列における標的部位が野生型であるか変異型であるかを判断する。プライマーとして、例えば、野生型配列における前記標的部位を含む領域に対して完全に相補的なプライマーを使用すれば、増幅が確認された場合は、前記標的部位は野生型であり、変異は存在しないと判断できる。また、増幅が確認されなかった場合は、前記標的部位は変異型であり、変異が存在すると判断できる。他方、プライマーとして、例えば、変異型配列における前記標的部位を含む領域に対して完全に相補的なプライマーを使用すれば、増幅が確認された場合には、前記標的部位は変異型であり、変異が存在すると判断できる。また、増幅が確認されなかった場合は、前記標的部位は野生型であり、変異は存在しないと判断できる。
 つぎに、本発明の第二の判定方法について説明する。
 本発明の第二の判定方法は、前述のように、被検核酸の標的部位における変異の有無を判定する方法であって、下記(I’)工程と下記(II)工程とを含むことを特徴とする。
(I’)本発明のAac MutSと、前記被検核酸における前記標的部位を含む領域にハイブリダイズ可能なプローブとの存在下、前記被検核酸を増幅するためのプライマーを用いて、前記被検核酸における前記標的部位を含む標的配列を増幅する工程
(II)増幅の有無を確認する工程
 本発明の判定方法で使用するAac MutSは、前述のように、ミスマッチ塩基対を特異的に認識して結合でき、例えば、相補的な塩基対、いわゆるフルマッチ塩基対よりもミスマッチ塩基対に対する特異性が高い。このため、本発明の第二の判定方法によれば、前記被検核酸における前記標的部位を含む領域にハイブリダイズ可能なプローブが、前記被検核酸にミスマッチ結合した場合、そのミスマッチ部位に特異的にAac MutSが結合する。この場合、前記被検核酸において前記プローブとは別の領域にハイブリダイズしたプライマーからの伸長鎖が、前記ミスマッチ部位付近に到達しても、結合したAac MutSの存在により、伸長反応が抑制される。この結果、前記プローブとミスマッチ結合する標的配列の誤った増幅を回避できるため、増幅の有無による変異の有無の判断を、優れた信頼性で行うことができる。
 なお、前記プローブは、標的部位を含む領域にハイブリダイズ可能であることから、「標的プローブ」ともいい、前記「前記標的部位を含む領域」は、前記標的プローブがハイブリダイズ可能であることから、前記第一の判定方法と同様に、ハイブリッド領域ともいう。
 本発明の第二の判定方法は、特に示さない限り、本発明の第一の判定方法と同様に行うことができる。具体的には、本発明の第一の判定方法における「標的プライマー」に代えて、前記標的プローブを使用し、さらに、前記標的配列を増幅するためのプライマーを使用する以外は、第一の判定方法と同様に行うことができる。
 前記標的プローブは、例えば、前記プローブを構成する核酸や塩基の種類等、前記第一の判定方法における前記標的プライマーと同様にすることができる。前記プローブの長さは、特に制限されないが、例えば、5~40塩基であり、より好ましくは15~25塩基である。また、前記プローブの被検核酸に対するアニーリング条件は、特に制限されないが、例えば、20~80℃の範囲でハイブリダイズすることが好ましい。また、前記プローブは、例えば、一方もしくは両方の末端に、標識やアミノ基等の活性基等を有してもよい。
 本発明の第二の判定方法では、例えば、前記(I’)工程において、前記標的部位が変異型である前記領域にハイブリダイズ可能な標的プローブを使用すれば、前記(II)工程において、増幅が確認された場合は、前記標的部位が変異型であると判定し、増幅が確認されなかった場合は、前記標的部位が正常型であると判定できる。他方、例えば、前記(I’)工程において、前記標的部位が野生型である前記領域にハイブリダイズ可能な標的プローブを使用すれば、前記(II)工程において、増幅が確認された場合は、前記標的部位が正常型であると判定し、増幅が確認されなかった場合は、前記標的部位が変異型であると判定できる。
<伸長反応の抑制方法および核酸増幅方法>
 本発明の抑制方法は、被検核酸にミスマッチ結合したプライマーからの伸長反応を抑制する方法であって、本発明のAac MutSの存在下、前記被検核酸における標的配列を増幅するためのプライマーを用いて、前記被検核酸における前記標的配列の増幅を行うことを特徴とする。
 また、本発明の核酸の増幅方法は、被検核酸における標的配列を増幅する方法であって、前記標的配列を増幅するためのプライマーを用いて、前記被検核酸における前記標的配列の増幅を行う工程を有し、前記工程において、前記本発明の抑制方法により、前記被検核酸にミスマッチ結合したプライマーからの伸長反応を抑制することを特徴とする。
 前述のように、本発明のAac MutSは、二本鎖核酸におけるミスマッチ塩基対に特異的に結合する。このため、本発明のAac MutSの存在下で標的配列の増幅を行えば、例えば、前記被検核酸にプライマーがミスマッチ結合した場合、前記Aac MutSがミスマッチ塩基対を認識して結合するため、前記プライマーからの伸長反応を抑制できる。他方、後述するように、プライマーを用いた増幅の有無によって、標的部位の変異の有無を判断する方法がある。このような場合に、本発明のAac MutSを共存させることによって、前記被検核酸と前記プライマーとの間にミスマッチ塩基対が形成されれば、前記Aac MutSがこれを認識して結合するため、前記プライマーからの伸長は抑制される。そして、本発明のAac MutSは、前述のように、特にミスマッチ塩基対に対する特異性が高いことから、従来よりも優れた信頼性で変異の有無を判定することが可能となる。
 前記被検核酸の標的配列において、変異が生じている可能性がある部位が既知の場合がある。例えば、前記部位を標的部位とし、前記標的部位が野生型であるか変異型であるかによって、標的配列の増幅をコントロールする場合、または、プライマーからの伸長を抑制する場合、本発明の核酸増幅方法および抑制方法は、例えば、下記(I)工程または下記(I’)工程を含むことが好ましい。なお、これらの工程については、前述した本発明の判定方法と同様である。
(I)本発明のAac MutSの存在下、前記被検核酸における前記標的部位を含む領域にハイブリダイズ可能なプライマーを用いて、前記被検核酸における前記標的部位を含む標的配列を増幅する工程
(I’)本発明のAac MutSと、前記被検核酸における前記標的部位を含む領域にハイブリダイズ可能なプローブとの存在下、前記被検核酸を増幅するためのプライマーを用いて、前記被検核酸における前記標的部位を含む標的配列を増幅する工程
 なお、本発明の抑制方法および核酸増幅方法は、本発明のAac MutSの存在下で増幅反応を行うことが特徴であり、その他の条件は、特に制限されない。これらの具体的な手法については、前述した本発明の変異の判定方法と同様である。
<各種試薬>
 本発明の判定試薬は、本発明の判定方法に使用する試薬であって、本発明のAac MutSを含むことを特徴とする。本発明の判定試薬は、本発明のAac MutSを含むことが特徴であり、その他の構成は、何ら制限されない。
 本発明の判定試薬は、さらに、前述したADP等の添加剤、他のMutS、プライマー、ポリメラーゼ等の酵素、dNTP、緩衝液、融解温度調整剤、酵素安定剤等の試薬類を含んでもよい。本発明の判定試薬における各成分の添加割合は、特に制限されないが、例えば、増幅反応の反応液に添加した際、前述のような濃度となるような割合が好ましい。また、本発明の判定試薬は、例えば、本発明の判定方法に使用するための判定キットであってもよい。この場合、例えば、さらに使用説明書を含むことが好ましい。また、本発明の判定試薬および判定キットにおいて、各成分は、例えば、それぞれ単独で容器に収容されてもよいし、適宜組み合わせて、各容器に収容されてもよい。前記容器の形態や材質等も、特に制限されない。
 また、本発明の増幅試薬は、本発明の増幅反応に使用する試薬であり、本発明の抑制試薬は、本発明の抑制方法に使用する試薬であり、それぞれ、本発明のAac MutSを含むことを特徴とする。本発明の増幅試薬および抑制試薬は、本発明のAac MutSを含むことが特徴であり、その他の構成は何ら制限されない。また、その構成は、特に制限されず、前述の判定試薬と同様である。
 つぎに、本発明の実施例について説明する。ただし、本発明は、以下の実施例により制限されない。
[実施例1]
 Alicyclobacillus acidocaldarius subsp. Acidocaldarius JCM5260からDNAをクローニングし、Aac MutSの発現および精製を行った。
Aac MutSの発現
 Aac MutSをコードする配列番号1の塩基配列からなるDNAを、In-Fusion PCRクローニングキット(タカラバイオ社製)により、pET17bベクター(Novagen社製)のNdeI-EcoRIサイトに挿入し、Aac MutS発現ベクターpETAacmutSを構築した。前記pETAacmutSを大腸菌BL21-CodonPlus(DE3)RIL(Stratagene社製)に導入し、50μg/mLカルベニシリンおよび34μg/mLクロラムフェニコールを含有するLB培地100mLを用いて終夜37℃で振盪培養し、前培養液とした。前記前培養液5mLを、100μg/mLアンピシリンおよび34μg/mLクロラムフェニコールを含有するLB培地500mLに植菌し、33℃、200rpmで振盪培養した。この培養液のOD600が1付近に達した際、前記培養液にIPTGを終濃度0.1mmol/Lとなるように添加し、さらに33℃、200rpmで3時間振盪培養した。この培養液を遠沈管に移し、39,200m/s、4分間の遠心分離を行い、菌体を回収した。前記回収菌体をPBS50mLで懸濁し、再度、39,200m/s、4分間の遠心分離を行い、菌体を洗浄した。前記菌体1g当たり5mLのリシスバッファーを用いて前記菌体を懸濁し、フレンチプレスにより6.2MPaの条件下、前記菌体を破砕した。前記リシスバッファーの組成は、50mmol/Lトリス塩酸緩衝液(pH7.5)、5mmol/L EDTA、5mmol/L 2-メルカプトエタノール、25%(w/v)ショ糖、プロテアーゼ阻害剤タブレット(1タブレット/L、商品名Complete EDTA-free Protease inhibitor cocktail tablets、Roche社製)とした。この菌体破砕液に10%Brij-58を終濃度0.5%(w/v)となるように添加し、前記菌体破砕液を4℃で30分間穏やかに混和した。この混合液を、4℃、15,000rpmで40分間遠心分離を行い、上清を得た。前記上清を30mLずつ50mL容量のチューブ(ファルコン社製)に移し、60℃、10分間の熱処理を行った。熱処理後の前記上清を、4℃、18,000rpmで40分間遠心分離し、上清を得た。この上清を、4Lのランニングバッファーを用いて2回透析を行い、粗抽出液を得た。前記ランニングバッファーの組成は、50mmol/Lトリス塩酸緩衝液(pH7.5)、5mmol/L EDTA、5mmol/L 2-メルカプトエタノールとした。
Aac MutSの精製
 各種クロマトグラフィーを用いて、Aac MutSの精製を行った。
(1)強陰イオン交換カラムクロマトグラフィー
 強陰イオン交換カラム(Resource Q(50mL)、GEヘルスケア社製)および高速液体クロマトグラフィーシステム(AKTA explorer 100、GEヘルスケア社製)を使用した。第1のランニングバッファーを用いて、流速2mL/分の条件で前記強陰イオン交換カラムを平衡化した。前記第1のランニングバッファーの組成は、50mmol/Lトリス塩酸緩衝液(pH7.5)、5mmol/L EDTA、5mmol/L 2-メルカプトエタノール、10%(w/v)グリセロールとした。そして、前記粗抽出液を前記強陰イオン交換カラムに流速3mL/分でアプライした後、同条件で前記第1のランニングバッファー120mLを流して、前記カラムを洗浄し、非吸着画分を除去した。つぎに、前記カラムに、塩化ナトリウム0~300mmol/Lの濃度勾配をかけた前記第1のランニングバッファー540mL、続いて、塩化ナトリウム300~1000mmol/Lの濃度勾配をかけた前記第1のランニングバッファー540mLを流して、吸着画分を溶出し、10mLずつ分画した。各画分をSDS-ポリアクリルアミドゲル電気泳動(SDS-PAGE)に供し、目的の分子量(MW約96,000Da)のタンパク質バンドを確認した後、同バンドを有する画分を回収した。これらの回収画分をまとめ、Amicon Ultra-15(Millipore社製)を用いて、4℃、49,000m/sで15分間遠心分離を行い、約20mLまで濃縮した。この濃縮液に、等量の前記第1のランニングバッファー(塩化ナトリウム無添加)を添加し、再度、Amicon Ultra-15を用いて同様に遠心分離を行い、得られた濃縮液に、前記第1のランニングバッファーを添加して全体を50mLとした。
(2)ヘパリンアフィニティーカラムクロマトグラフィー
 つぎに、ヘパリンアフィニティーカラム(ヘパリンセファロースHP(50mL)、GEヘルスケア社製)および前記高速液体クロマトグラフィーシステムを使用した。前記第1のランニングバッファーを用いて、流速2mL/分の条件で前記ヘパリンアフィニティーカラムを平衡化した。そして、前述のイオン交換カラムクロマトグラフィーにより得た溶液を、前記ヘパリンアフィニティーカラムに流速1mL/分でアプライした後、同条件で前記第1のランニングバッファー25mLを流して前記カラムを洗浄し、非吸着画分を除去した。つぎに、前記カラムに塩化ナトリウム0~450mmol/Lの濃度勾配をかけた前記第1のランニングバッファー400mLを流して吸着画分を溶出し、10mLずつ分画した。各画分をSDS-PAGEに供して目的の分子量のタンパク質バンドを確認した後、同バンドを有する画分を回収した。これらの回収画分をまとめ、Amicon(登録商標)Ultra-15(Millipore社製)を用いて、4℃、49,000m/sで15分間遠心分離を行い、約20mLまで濃縮した。この濃縮液に、等量の第2のランニングバッファーを添加し、再度、Amicon(登録商標)Ultra-15を用いて同様に遠心分離を行い、得られた濃縮液に、前記第2のランニングバッファーを添加して全体を20mLとした。前記第2のランニングバッファーの組成は、50mmol/Lトリス塩酸緩衝液(pH7.5)、100mmol/L塩化カリウム、5mmol/L EDTA、5mmol/L 2-メルカプトエタノール、10%(w/v)グリセロールとした。
(3)ゲルろ過カラムクロマトグラフィー
 つぎに、ゲルろ過カラム(Superdex200 prep grade XK50-65、GEヘルスケア社製)および前記高速液体クロマトグラフィーシステムを使用した。前記第2のランニングバッファーを用いて、流速5mL/分の条件で前記ゲルろ過カラムを平衡化した。そして、前述のアフィニティーカラムクロマトグラフィーにより得た溶液を、前記ゲルろ過カラムに流速1mL/分でアプライした後、同条件で前記第2のランニングバッファーを流して、ろ過画分を15mLずつ分画した。各画分をSDS-PAGEに供して、目的の分子量のタンパク質バンドを確認した後、同バンドを有する画分を回収した。これらの回収画分をまとめ、前記第2のランニングバッファーを添加して全体を250mLとした。
(4)強陰イオン交換カラムクロマトグラフィー
 最後に、強陰イオン交換カラム(Resource Q(20mL)、GEヘルスケア社製)および前記高速液体クロマトグラフィーシステムを使用した。前記第2のランニングバッファーを用いて、流速4mL/分の条件で前記強陰イオン交換カラムを平衡化した。そして、前述のゲルろ過カラムクロマトグラフィーにより得た溶液を、前記強陰イオン交換カラムに流速1mL/分でアプライした後、同条件で前記第2のランニングバッファー120mLを流して、前記カラムを洗浄し、非吸着画分を除去した。つぎに、前記カラムに塩化ナトリウム0~300mmol/Lの濃度勾配をかけた前記第2のランニングバッファー420mLを流して、吸着画分を溶出し、10mLずつ分画した。各画分をSDS-PAGEに供して目的の分子量のタンパク質バンドを確認した後、同バンドを有する画分を回収した。これらの回収画分をまとめ、Amicon(登録商標)Ultra-15(Millipore社製)を用いて、4℃、49,000m/sで15分間遠心分離を行い、約20mLまで濃縮した。この濃縮液に、12mLの20mmol/Lトリス塩酸緩衝液(pH7.5)を添加し、Amicon(登録商標)Ultra-15を用いた同様の遠心分離を3回くり返し行った。得られた濃縮液に、20mmol/Lトリス塩酸緩衝液(pH7.5)を添加して全体を5mLとした。このようにして、精製Aac MutSが得られた。なお、得られたタンパク質が分子量約96,000Daの二量体Aac MutSであることは、確認済みである。
[実施例2]
 Aac MutSと各種二本鎖DNAとの相互作用の解析を行った。
 相互作用の解析は、BIACORE 3000(GEヘルスケア社製)およびBIACORE SAセンサーチップ(GEヘルスケア社製)を使用し、その使用説明書に従って行った。なお、ランニングバッファーの組成は、50mmol/Lトリス塩酸緩衝液(pH7.6)、50mmol/L塩化カリウム、0.1mmol/L EDTA、20mmol/L塩化マグネシウム、0.005% Tween(登録商標)20とし、前記チップを洗浄するための再生緩衝液の組成は、1mol/L塩化ナトリウム、50mmol/L水酸化ナトリウムとした。
 まず、下記表1に示す4種類の一本鎖DNAを準備した。下記表1において、C-鎖DNAとG-鎖DNAとは、完全に相補的な配列である。T-鎖DNAは、前記C-鎖DNAの21番目の塩基CがTである以外は、前記C-鎖DNAと同じ配列である。Del-鎖DNAは、前記C-鎖DNAの21番目の塩基Cが欠失している以外は、前記C-鎖DNAと同じ配列である。前記C-鎖DNAは、前述のように前記G-鎖DNAと完全に相補(フルマッチ)であるのに対して、前記T-鎖DNAと前記Del-鎖DNAは、前記C-鎖DNAにおける21番目の塩基が置換または欠失していることから、前記G-鎖DNAと一塩基のみミスマッチとなる。本実施例において、以下、完全に相補的な前記C-鎖DNAと前記G-鎖DNAとからなる二本鎖DNAを「フルマッチ」といい、前記G-鎖DNAと1塩基のみミスマッチする前記T-鎖DNAとからなる二本鎖DNAを「ミスマッチ」といい、前記G-鎖DNAと1塩基欠失した前記Del-鎖DNAとからなる二本鎖DNAを「欠失」という。
Figure JPOXMLDOC01-appb-T000001
 つぎに、BIACORE3000に前記チップをセットしてから、前記チップの流路に前記ランニングバッファーを流速10μL/minで流し、以下のように実験を開始した。まず、前記チップにおける3つのフローセルに、それぞれ、リガンドとして5μmol/LのC-鎖DNA、T-鎖DNAおよびDel-鎖DNAを流速10μL/minで流し、約150RU(Resonance Unit)になるまで結合させた。続いて、5μmol/LのG-鎖DNAを、前記各フローセルに流速20μL/minで2分間インジェクションした後、前記ランニングバッファーで10分間洗浄した。これにより、前記C-鎖DNA、T-鎖DNAおよびDel-鎖DNAとG-鎖DNAとの二本鎖DNAが形成された。つぎに、所定濃度(0.1、0.2、0.5、1、2または4μmol/L)のAac MutS溶液を、前記各フローセルに流速20μL/minで10分間インジェクションした後、前記ランニングバッファーで20分間フローセルを洗浄した。そして、インジェクションと洗浄とに並行して、前記Aac MutSのインジェクション開始から、シグナル強度の測定を行った。また、比較例1として、Aac MutSに代えて、Thermus aquaticus由来のTaq MutSを用いて、同様に処理し、シグナル強度の測定を行った。
 これらの核酸結合アッセイの結果を図1に示す。同図の各グラフにおいて、縦軸は、BIACOREで測定したシグナル強度(RU)を示し、横軸は、解析時間(秒)を示す。0~600秒が、Aac MutSのインジェクション期間の結果であり、600秒以降が、洗浄期間の結果である。同図において、左列のグラフは、Aac MutSを用いた実施例2の結果であり、右列のグラフは、Taq MutSを用いた比較例1の結果である。また、左列および右列において、上のグラフはフルマッチ、中央のグラフはミスマッチ、下のグラフは欠失のデータを示す。また各グラフには、6種類の濃度のMutSを使用した結果をあわせて示す。
 同図の右列のグラフに示すように、Taq MutSを用いた比較例1では、ミスマッチの二本鎖DNAと欠失の二本鎖DNAについて、Taq MutSとの結合が確認されたが、フルマッチの二本鎖DNAについても、Taq MutSとの結合が確認された。これに対して、同図の左列のグラフに示すように、Aac MutSを用いた実施例2では、ミスマッチの二本鎖DNAと欠失の二本鎖DNAについて、Aac MutSとの結合が確認され、且つ、フルマッチの二本鎖DNAについては、Aac MutSとの結合は確認されなかった。また、比較例1では、洗浄期間中(600秒以後)、シグナルが急速に減少し、各種二本鎖DNAとTaq MutSとの解離速度が速いことが確認された。これに対して、実施例2では、洗浄期間中(600秒以後)、急激なシグナルの減少は確認されず、各種二本鎖とAac MutSとが、比較例1に比べて解離し難いことがわかった。以上の結果より、Aac MutSは、Taq MutSと比較して、フルマッチの二本鎖DNAに結合し難く、ミスマッチまたは欠失の二本鎖DNAに特異的に結合でき、また、その結合も解離し難く安定に結合を保持できるといえる。
[実施例3]
 ADPまたはATPの存在下、Aac MutSと各種二本鎖DNAとの相互作用の解析を行った。
 実施例2の前記ランニングバッファーに、1mmol/LのADPまたはATPを添加した以外は、前記実施例2と同様にしてシグナル強度の測定を行った。ADP存在下での実施例を実施例3-1、ATP存在下での実施例を実施例3-2とする。また、比較例2として、Taq MutSを用いて、同様にシグナル強度の測定を行った。ADP存在下での比較例を比較例2-1、ATP存在下の比較例を比較例2-2とした。
 これらの核酸結合アッセイの結果を図2および図3に示す。両図の各グラフにおいて、縦軸は、BIACOREで測定したシグナル強度(RU)を示し、横軸は、解析時間(秒)を示す。0~600秒が、Aac MutSのインジェクション期間の結果であり、600秒以降が、洗浄期間の結果である。図2は、ADP存在下の結果を示すグラフであり、左列のグラフは、Aac MutSを用いた実施例3-1の結果であり、右列のグラフは、Taq MutSを用いた比較例2-1の結果である。また、図3は、ATP存在下の実施例3-2および比較例2-2の結果であり、左列のグラフは、Aac MutSを用いた実施例3-2の結果であり、右列のグラフは、Taq MutSを用いた比較例2-2の結果である。また、両図の左列および右列において、上のグラフはフルマッチ、中央のグラフはミスマッチ、下のグラフは欠失のデータを示す。また各グラフには、6種類の濃度のMutSを使用した結果をあわせて示す。
 図2の右列のグラフに示すように、ADP存在下でTaq MutSを用いた比較例2-1は、前述した図1の右列のグラフに示す、ADP非存在下でTaq MutSを用いた比較例1とほぼ同様の結果であった。これに対して、図2の左列のグラフに示すように、ADP存在下でAac MutSを用いた実施例3-1は、インジェクション期間中(0~600秒)、ミスマッチおよび欠失の二本鎖DNAのシグナル増加が確認された。これは、前述した図1左列のグラフに示す、ADP非存在下でAac MutSを用いた実施例2の結果と比較して著しい増加であった。また、洗浄期間中(600秒以降)、前記実施例3-1におけるミスマッチおよび欠失の二本鎖DNAのシグナル減少は、前記実施例2におけるミスマッチおよび欠失の二本鎖DNAのシグナル減少と比較して、非常に遅くなった。これらの結果から、ADP存在下であれば、ミスマッチおよび欠失の二本鎖DNAに対するAac MutSの結合が促進され、且つ、前記二本鎖DNAからのAac MutSの解離が抑制されることがわかった。なお、ADP存在下においても、フルマッチの二本鎖DNAに対するAac MutSの結合は、実施例2と同様に十分に抑制された。
 図3の右列のグラフに示すように、ATP存在下でTaq MutSを用いた比較例2-2は、前述した図1の右列のグラフに示す、ATP非存在下でTaq MutSを用いた比較例1とほぼ同様の結果であった。これに対して、図3の左列のグラフに示すように、ATP存在下でAac MutSを用いた実施例3-2は、インジェクション期間中(0~600秒)、ミスマッチおよび欠失の二本鎖DNAのシグナル増加が確認された。これは、前述した図1の左列のグラフに示す、ATP非存在下でAac MutSを用いた実施例2の結果と比較して著しい増加であった。これらの結果から、ATP存在下であれば、ミスマッチおよび欠失の二本鎖DNAに対するAac MutSの結合が促進されることがわかった。なお、ATP存在下においても、フルマッチの二本鎖DNAに対するAac MutSの結合は、実施例2と同様に十分に抑制された。
 これらの核酸結合アッセイの結果より、各MutSと各二本鎖DNAとの解離定数を求めた。これらの結果を下記表2に示す。下記表2において、KD(full)は、各MutSとフルマッチの二本鎖DNAとの間の解離定数、KD(mis)は、各MutSとミスマッチの二本鎖DNAとの間の解離定数、KD(full)/KD(mis)はそれらの比を示す。
Figure JPOXMLDOC01-appb-T000002
 前記表2に示すように、Taq MutSを用いた比較例1および比較例2-1では、ADP添加によって、KD(full)/KD(mis)は、ほとんど変化しなかった。これに対して、Aac MutSを用いた実施例2および実施例3-1では、ADPの添加によって、KD(full)/KD(mis)は、約45倍から約60倍に増加した。したがって、ADPが、Aac MutSとミスマッチの二本鎖DNAとの解離を抑制することが、反応速度論的にも確認された。
[実施例4]
 電気泳動によるゲルシフトアッセイを行い、Aac MutSと各種二本鎖DNAとの相互作用を解析した。
 まず、実施例2と同じ一本鎖DNAを使用し、以下の方法により、C-鎖DNAとG-鎖DNAとのフルマッチ二本鎖DNA、および、T-鎖DNAとG-鎖DNAとのミスマッチ二本鎖DNAを作製した。まず、前述の組合せに応じて、2μmol/Lの各一本鎖DNAを混合し、前記DNA溶液を95℃で10分間加熱して完全に変性させた。加熱後のDNA溶液を0.1℃/秒の速度で30℃まで冷却し、前記各二本鎖DNAを生成した。冷却後のDNA溶液2.5μLを、4×結合緩衝液2.5μLと混合し、さらに、Aac MutSを添加した。そして、この混合液に、インキュベート直前に、ADPまたはATPと滅菌水とを添加して、全量10μLとし、60℃で30分間インキュベートを行った。Aac MutSの終濃度は、0、1、2または4μmol/Lとし、ADPまたはATPの終濃度は、0または1mmol/Lとした。前記4×結合緩衝液の組成は、200mmol/Lトリス塩酸緩衝液(60℃でpH7.6)、200mmol/L酢酸カリウム、80mmol/L塩化マグネシウム、0.4mmol/L EDTA、5mmol/L 2-メルカプトエタノール、40%グリセロールとした。この溶液を60℃で30分間インキュベートした後、6×ローディング色素を2μL添加し、6%ポリアクリルアミドゲルによる電気泳動に供した。前記電気泳動は、20mmol/L酢酸マグネシウムを含む1×TAE緩衝液中、4℃、45mA、100Vで100分間行った。前記電気泳動後のゲルを染色液(SYBR(登録商標)Green I、Lonza社製)に30分間浸漬して前記ゲルを染色した後、透過紫外光でDNAを検出した。また、比較例3として、Aac MutSに代えてTaq MutSを使用した以外は同様にしてゲルシフトアッセイを行った。なおTaq MutSの終濃度は、1μmol/Lとした。
 これらの結果を図4に示す。同図において、(a)は、ATP、ADP非存在下、(b)は、1mmol/L ADP存在下、(c)は、1mmol/L ATP存在下でのゲルシフトアッセイの結果を示す電気泳動写真である。同図(a)および(c)において、レーン0は電気泳動のマーカー(製品名100bp DNA Ladder、TAKARA社製)である。同図(a)、(b)および(c)において、レーン1~5はフルマッチ二本鎖DNA、レーン6~10はミスマッチ二本鎖DNAの結果を示す。レーン1~4および6~9は、それぞれ0、1、2および4μmol/LのAac MutSを用いた実施例4の結果を示し、レーン5および10は、1μmol/LのTaq MutSを用いた比較例3の結果を示す。矢印は、実施例4において、Aac MutSと二本鎖DNAとの結合によって生じたゲルシフトのバンドを示す。*印は、比較例3において、Taq MutSと二本鎖DNAとの結合によって生じたゲルシフトのバンドを示す。
 同図(a)~(c)のLane5および10に示すように、Taq MutSを使用した比較例3では、ATPもしくはADPの非存在下または存在下のいずれにおいても、*の位置にバンドが見られることから、Taq MutSは、フルマッチ、ミスマッチの全てに同程度に結合した。そして、ATPもしくはADPの添加によってもその結合程度に大きな変化は見られなかった。これに対して、同図(a)のレーン1~4および6~9に示すように、Aac MutSを使用した実施例4では、ATP、ADP非存在下、矢印の位置にバンドが見られることから、ミスマッチ二本鎖DNAに結合するが、矢印にバンドが見られないことから、フルマッチ二本鎖DNAにはほとんど結合しなかった。さらに、同図(b)および(c)のレーン6~9に示すように、ADPまたはATPの存在下で、矢印のバンドが濃くなっていることから、Aac MutSとミスマッチ二本鎖DNAとの結合が顕著に促進されることが分かった。
[実施例5]
 Aac MutS存在下で、Smart Amplification Process法によるDNAの増幅反応を行い、増幅の有無により、UCP1遺伝子の一塩基変異(-3826位)を解析した。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
 前記反応液組成におけるMutS溶液は、所定濃度(0、10、11、12μg/μL)となるように、下記MutS調製用緩衝液を用いて調製した。なお、前記反応液25μL中におけるMutSの含有量は、0、10、11、12μgとなる。
Figure JPOXMLDOC01-appb-T000006
 前記反応液組成におけるプライマー混合液は、以下に示す100μmol/Lの各プライマーを、体積比TP:FP:BP:OPF:OPRが8:8:4:1:1となるように混合して調製した。なお、TPは、TP WTおよびTP MTのいずれかを使用した。なお、TP WTおよびTP MTが、UCP1遺伝子の検出部位を含む領域にハイブリダイズ可能な標的プライマーであり、TP WTは、下線部Aが野生型であり、TP MTは、下線部Gが変異型である。以下、TP WTを含む下記プライマーセットを野生型プライマーセット、TP MTを含む下記プライマーセットを変異型プライマーセットという。
UCP1 TP WT(配列番号7)
  5'-CAAGTGCATTTATGTAACAAATTCTCCTTTCCTTT-3'
UCP1 TP MT(配列番号8)
  5'-CGAGTGCATTTATGTAACAAATTCTCCTTTCCTTT-3'
UCP1 FP(配列番号9)
  5'-TTTATATATATATAAAGCAGCGATTTCTGATTGACCA-3'
UCP1 BP(配列番号10)
  5'-TAATGTGTTCTACATTTT-3'
UCP1 OPF(配列番号11)
  5'-GATTTTTATTTAATAGGAAGACATT-3'
UCP1 OPR(配列番号12)
  5'-GACGTAGCAAAGGAGTGGCAGCAAG-3'
 鋳型DNAとして、UCP1遺伝子の配列が野生型(-3826位がA)または変異型(-3826位がG)であるヒトゲノムDNAを使用した。前記ゲノムDNAを13.3ng/μLとなるようにTE緩衝液で希釈し、このゲノムDNA溶液を98℃で3分間熱処理した後、氷上で急速冷却した。氷上で前記組成の増幅反応液を調製し、この反応液を60℃で120分間インキュベートした。増幅産物の生成はリアルタイム蛍光検出装置(商品名Mx3000P、Stratagene社製)を用いてモニタリングした。実施例5は、MutSとして、Aac MutSを使用した。
 一方、比較例4としては、MutSとしてTaq MutSを使用し、前記反応液組成において、ADP溶液無添加とし、滅菌水を8.25μLとした以外は、前記実施例5と同様にモニタリングを行った。なお、MutS溶液におけるMutSは、所定濃度(4、5、6または7μg/μL)とした。このため、前記反応液25μL中のTaq MutSの含有量は、4、5、6または7μgとなる。
 これらの結果を図5および図6に示す。各図は、増幅をリアルタイムでモニタリングした、反応時間(分)と蛍光強度との関係を示すグラフであり、各グラフには、反応液25μL中のMutS含有量を付している。図5は、Aac MutSを使用した実施例5の結果であり、図6は、Taq MutSを使用した比較例4の結果である。両図において、縦軸は、蛍光強度(FU:Fluorescence Unit)を示し、横軸は、反応時間(分)を示す。また、両図の各グラフには、野生型ゲノムDNAと野生型プライマーセット(●)、野生型ゲノムと変異型プライマーセット(■)、変異型ゲノムDNAと変異型プライマーセット(□)、変異型ゲノムDNAと野生型プライマーセット(○)を組み合わせて使用した結果を、併せて示す。なお、野生型ゲノムDNAと野生型プライマーセット、および変異型ゲノムDNAと変異型プライマーセットは、フルマッチ二本鎖DNAを形成する組合せであり、野生型ゲノムDNAと変異型プライマーセット、および変異型ゲノムDNAと野生型プライマーセットとが、ミスマッチ二本鎖DNAを形成する組み合わせである。
 図6に示すように、Taq MutSを使用した比較例4によると、反応液25μL中のTaq MutS量が6~7μgの条件においてのみ、ミスマッチ二本鎖DNAを形成する組み合わせ(○、■)については増幅が抑制され、且つ、フルマッチ二本鎖DNAを形成する組み合わせ(●、□)については増幅が阻害されなかった。しかし、この条件の範囲外である4μgでは、ミスマッチ二本鎖を形成する組み合わせ(○、■)において、増幅が確認され、5μgでは、野生型プライマーセットと変異型ゲノムDNAとのミスマッチ二本鎖を形成する組み合わせ(○)において、増幅が確認された。この結果から、Taq MutSは、有効濃度が非常に狭いことがわかった。これに対して、図5に示すように、Aac MutSを使用した実施例5によると、反応液25μL中のAac MutSが10~12μgの条件であっても、ミスマッチ二本鎖DNAを形成する組み合わせ(○、■)については増幅が抑制され、且つ、フルマッチ二本鎖DNAを形成する組み合わせ(●、□)については増幅が阻害されなかった。この結果から、Aac MutSは、Taq MutSと比較して、有効濃度が広いことが確認された。
[実施例6]
 Aac MutSとTaq MutSの共存下で、Smart Amplification Process法によるDNAの増幅反応を行い、増幅の有無により、UCP1遺伝子の一塩基変異(-3826位)を解析した。
 Aac MutSのみを含むMutS溶液に代えて、Aac MutSとTaq MutSとを含むMutS溶液を使用した以外は、前記実施例5と同様にして、増幅をモニタリングした。以下に、反応液25μL中に含まれるAac MutSおよびTaq Mutタンパク質の含有量を示す。下記実施例6-1は、反応液25μL中のAac MutSとTaq MutSとの合計を7μgとし、下記実施例6-2は、反応液25μL中、Aac MutSとTaq MutSとを等量とした。
 これらの結果を図7および図8に示す。各図は、増幅をリアルタイムでモニタリングした、反応時間(分)と蛍光強度との関係を示すグラフであり、各グラフには、反応液25μL中の各MutS含有量を付している。図7は、Aac MutSとTaq MutSとを合計7μg含有する前記実施例6-1の結果であり、図8は、Aac MutSとTaq MutSとを等量含有する前記実施例6-2の結果である。なお、両図のグラフの説明は、前記図5および図6と同様である。
 図7に示すように、実施例6-1によると、前記反応液25μL中の合計MutS含有量を7μgとして、Aac MutSとTaq MutSとの比率を2:5~5:2に変動させても、ミスマッチ二本鎖DNAを形成する組み合わせについては増幅が抑制され、且つ、フルマッチ二本鎖DNAを形成する組み合わせについては増幅が阻害されなかった。この結果から、Aac MutSとTaq MutSとを併用可能であることがわかった。また、Aac MutSをTaq MutSと併用することによって、Aac MutSの使用量を低減し、且つ、両MutSを広い有効範囲で使用できることがわかった。
 また、図8に示すように、実施例6-2によると、前記反応液25μL中のTaq MutSとAac MutSの含有量を等量とした場合、合計含有量が8μg~10μgであっても、ミスマッチ二本鎖DNAを形成する組み合わせについては増幅が抑制され、且つ、フルマッチ二本鎖DNAを形成する組み合わせについては増幅が阻害されなかった。この結果から、Aac MutSとTaq MutSとを併用可能であることがわかった。また、Aac MutSをTaq MutSと併用することによって、Aac MutSの使用量を低減し、且つ、両MutSを広い有効範囲で使用できることがわかった。
 以上の結果から、反応液におけるAac MutSとTaq MutSとの比率ならびに総量を変化させることによって、広い濃度範囲で、MutSの機能を発揮できることがわかった。
 以上のように、本発明のAac MutSタンパク質は、例えば、いわゆるミスマッチ塩基対を有する二本鎖核酸を特異的に認識して結合できる。このため、標的部位を含む標的配列の増幅において、本発明のAac MutSを使用すれば、前記Aac MutSがミスマッチ塩基対へ特異的に結合するため、プライマーからの伸長を効果的に抑制できる。したがって、本発明のAac MutSを使用する本発明の判定方法によれば、増幅の有無から、優れた精度で変異の有無を判定できる。このため、本発明のAac MutSおよび判定方法は、例えば、遺伝子解析の分野において、極めて有用なツールと言える。

Claims (24)

  1. 下記(A)または(B)のアミノ酸配列からなる新規MutSタンパク質。
    (A)配列番号2に示すアミノ酸配列
    (B)前記(A)のアミノ酸配列において、1または数個のアミノ酸が欠失、置換、挿入または付加されたアミノ酸配列であり、且つ、二本鎖核酸におけるミスマッチ塩基対への結合活性を有するタンパク質のアミノ酸配列
  2. 前記タンパク質が、Alicyclobacillus属由来である、請求の範囲1記載の新規MutSタンパク質。
  3. 前記タンパク質が、Alicyclobacillus acidocaldarius由来である、請求の範囲2記載の新規MutSタンパク質。
  4. 下記(a)~(f)のいずれかの核酸からなる、新規MutSタンパク質をコードする核酸。
    (a)配列番号1に示す塩基配列からなる核酸
    (b)前記(a)の核酸とストリンジェントな条件下でハイブリダイズし、且つ、二本鎖核酸におけるミスマッチ塩基対への結合活性を有するタンパク質をコードする核酸
    (c)前記(a)の塩基配列との相同性が80%以上の塩基配列からなる核酸であり、且つ、二本鎖核酸におけるミスマッチ塩基対への結合活性を有するタンパク質をコードする核酸
    (d)前記(a)の塩基配列において、1または数個の塩基が欠失、置換、挿入または付加された塩基配列からなり、且つ、二本鎖核酸におけるミスマッチ塩基対への結合活性を有するタンパク質をコードする核酸
    (e)配列番号2に示すアミノ酸配列からなるタンパク質をコードする核酸
    (f)配列番号2に示すアミノ酸配列において、1または数個のアミノ酸が欠失、置換、挿入または付加されたアミノ酸配列からなり、且つ、二本鎖核酸におけるミスマッチ塩基対への結合活性を有するタンパク質をコードする核酸
  5. 請求の範囲4記載の核酸を含む組換えベクター。
  6. 請求の範囲5記載の組換えベクターを含む形質転換体。
  7. 請求の範囲1記載の新規MutSタンパク質の製造方法であって、
    請求の範囲6記載の形質転換体を培養することを特徴とする製造方法。
  8. 被検核酸の標的部位における変異の有無を判定する方法であって、
    下記(I)工程または(I’)工程と、下記(II)工程とを含むことを特徴とする判定方法。
    (I)請求の範囲1記載の新規MutSタンパク質の存在下、前記被検核酸における前記標的部位を含む領域にハイブリダイズ可能なプライマーを用いて、前記被検核酸における前記標的部位を含む標的配列を増幅する工程
    (I’)請求の範囲1記載の新規MutSタンパク質と、前記被検核酸における前記標的部位を含む領域にハイブリダイズ可能なプローブとの存在下、前記被検核酸を増幅するためのプライマーを用いて、前記被検核酸における前記標的部位を含む標的配列を増幅する工程
    (II)増幅の有無を確認する工程
  9. 前記(I)工程または(I’)工程において、
    前記新規MutSタンパク質と、ADP、ATPおよびこれらの誘導体からなる群から選択された少なくとも一つの添加剤との共存下、前記標的配列の増幅を行う、請求の範囲8記載の判定方法。
  10. 前記増幅反応の反応液における前記添加剤の濃度が、0.01~100mmol/Lの範囲である、請求の範囲9記載の判定方法。
  11. 前記増幅反応の反応液25μLあたりの前記新規MutSタンパク質量が、0.01~1000μgの範囲である、請求の範囲8記載の判定方法。
  12. 前記新規MutSタンパク質とThermus属由来のMutSタンパク質との共存下、前記標的配列の増幅を行う、請求の範囲8記載の判定方法。
  13. 前記Thermus属由来のMutSタンパク質が、Thermus aquaticus由来のMutSタンパク質である、請求の範囲12記載の判定方法。
  14. 前記新規MutSタンパク質(A)に対する前記Thermus属由来のMutSタンパク質(T)の添加割合(重量比A:T)が、1:0.05~1:50の範囲である、請求の範囲12記載の判定方法。
  15. 前記増幅反応の反応液25μLあたりの前記新規MutSタンパク質量が、0.01~1000μgの範囲であり、前記Thermus属由来のMutSタンパク質量が、0.01~1000μgの範囲であり、前記新規MutSタンパク質と前記Thermus属由来のMutSタンパク質とをあわせた量が、0.02~2000μgの範囲である、請求の範囲12記載の判定方法。
  16. 前記(I)工程において、前記標的部位の塩基が変異型である前記領域にハイブリダイズ可能なプライマーを使用し、または、
    前記(I’)工程において、前記標的部位の塩基が変異型である前記領域にハイブリダイズ可能なプローブを使用し、
    前記(II)工程において、増幅が確認された場合は、前記標的部位の塩基が変異型であると判定し、増幅が確認されなかった場合は、前記標的部位の塩基が野生型であると判定する、請求の範囲8記載の判定方法。
  17. 前記(I)工程において、前記標的部位の塩基が野生型である前記領域にハイブリダイズ可能なプライマーを使用し、または、
    前記(I’)工程において、前記標的部位の塩基が野生型である前記領域にハイブリダイズ可能なプローブを使用し、
    前記(II)工程において、増幅が確認された場合は、前記標的部位の塩基が野生型であると判定し、増幅が確認されなかった場合は、前記標的部位の塩基が変異型であると判定する、請求の範囲8記載の判定方法。
  18. 前記標的配列の増幅にポリメラーゼを使用し、前記ポリメラーゼが、Alicyclobacillus属由来のポリメラーゼである、請求の範囲8記載の判定方法。
  19. 前記ポリメラーゼが、Alicyclobacillus acidocaldarius由来のポリメラーゼである、請求の範囲18記載の判定方法。
  20. 前記ポリメラーゼが、鎖置換能を有するポリメラーゼである、請求の範囲18記載の判定方法。
  21. 前記増幅反応を、温度を変動させて行う、請求の範囲8記載の判定方法。
  22. 前記増幅反応が、ポリメラーゼチェーンリアクションである、請求の範囲21記載の判定方法。
  23. 前記増幅反応を、一定温度で行う、請求の範囲8記載の判定方法。
  24. 前記増幅反応が、SDA法、改良SDA法、NASBA法、LAMP法、ICAN法、自立複製法、TMA法、Qベータレプリカーゼ法、Smart Amplification Process法、Invader法およびRCA法からなる群から選択された少なくとも一つである、請求の範囲23記載の判定方法。
PCT/JP2009/070051 2008-11-27 2009-11-27 新規MutSタンパク質およびそれを用いた変異の判定方法 WO2010061922A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US13/130,993 US20110236900A1 (en) 2008-11-27 2009-11-27 Novel muts protein and method for determing mutation using the same
JP2010540527A JPWO2010061922A1 (ja) 2008-11-27 2009-11-27 新規MutSタンパク質およびそれを用いた変異の判定方法
EP09829167A EP2371951A4 (en) 2008-11-27 2009-11-27 NOVEL MUTS PROTEIN AND METHOD OF USING SAME FOR DETERMINING MUTATIONS

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-302573 2008-11-27
JP2008302573 2008-11-27

Publications (1)

Publication Number Publication Date
WO2010061922A1 true WO2010061922A1 (ja) 2010-06-03

Family

ID=42225792

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/070051 WO2010061922A1 (ja) 2008-11-27 2009-11-27 新規MutSタンパク質およびそれを用いた変異の判定方法

Country Status (4)

Country Link
US (1) US20110236900A1 (ja)
EP (1) EP2371951A4 (ja)
JP (1) JPWO2010061922A1 (ja)
WO (1) WO2010061922A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10196684B2 (en) 2013-10-18 2019-02-05 California Institute Of Technology Enhanced nucleic acid identification and detection
CA3055809A1 (en) * 2017-03-28 2018-10-04 Bernhard Kreymann Compositions and methods for regenerating carrier protein-containing multiple pass albumin dialysis fluid

Citations (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5993099A (ja) 1983-10-31 1984-05-29 Wakunaga Seiyaku Kk オリゴヌクレオチド誘導体およびその製造法
JPS59148798A (ja) 1983-02-14 1984-08-25 Wakunaga Seiyaku Kk ビオチンヌクレオチド誘導体
JPS59204200A (ja) 1983-04-28 1984-11-19 Wakunaga Seiyaku Kk 2,4―ジニトロフェニルヌクレオチド誘導体
JPH04501959A (ja) 1988-11-21 1992-04-09 ダイナル・エイ・エス 核酸プローブ
JPH076986B2 (ja) 1983-05-12 1995-01-30 チバ コーニング ダイアグノスティクス コーポレーション リゲートの濃度測定方法
JP2502041B2 (ja) 1986-08-22 1996-05-29 エフ.ホフマン−ラ ロシュ アクチェンゲゼルシャフト 熱安定性dnaポリメラ―ゼを用いる核酸の増幅方法
JP2546576B2 (ja) 1985-03-28 1996-10-23 エフ.ホフマン−ラ ロシュ アクチェンゲゼルシャフト 核酸配列のクローニング方法
JPH09504699A (ja) * 1993-11-04 1997-05-13 ジーン チェック、インク. 変異及び多型性の検出、増幅されたdnaサンプルの精製、及び対立遺伝子の同定のための、固定化ミスマッチ結合蛋白質の使用
JP2650159B2 (ja) 1988-02-24 1997-09-03 アクゾ・ノベル・エヌ・ベー 核酸増幅方法
JP2703194B2 (ja) 1986-03-13 1998-01-26 エフ・ホフマン−ラ ロシユ アーゲー 核酸中に存在する特定のヌクレオチド配列の検出方法
JPH10313900A (ja) 1997-05-08 1998-12-02 Becton Dickinson & Co Rna標的配列の増幅方法
WO1999054455A1 (en) 1998-04-23 1999-10-28 Takara Shuzo Co., Ltd. Method for synthesizing dna
US6046807A (en) 1998-05-14 2000-04-04 Luminex Corporation Diode laser based measurement apparatus
US6057107A (en) 1995-10-11 2000-05-02 Luminex Corporation Methods and compositions for flow cytometric determination of DNA sequences
WO2000028082A1 (fr) 1998-11-09 2000-05-18 Eiken Kagaku Kabushiki Kaisha Procede de synthese d'acide nucleique
JP2000245460A (ja) 1999-03-05 2000-09-12 Mitsubishi Rayon Co Ltd 核酸固定化中空繊維並びに核酸固定化中空繊維配列体及びその薄片
WO2000056877A1 (fr) 1999-03-19 2000-09-28 Takara Shuzo Co., Ltd. Procede d'amplification d'une sequence d'acide nucleique
WO2001030993A1 (fr) 1999-10-25 2001-05-03 Wakunaga Pharmaceutical Co., Ltd. Procede de detection d'un acide nucleique cible
WO2001034838A1 (fr) 1999-11-08 2001-05-17 Eiken Kagaku Kabushiki Kaisha Methode de detection d'une variation ou d'un polymorphisme
WO2002024902A1 (fr) 2000-09-19 2002-03-28 Eiken Kagaku Kabushiki Kaisha Procede permettant de synthetiser un polynucleotide
US6617106B1 (en) 1990-10-09 2003-09-09 Steven Albert Benner Methods for preparing oligonucleotides containing non-standard nucleotides
WO2004040019A1 (ja) 2002-10-29 2004-05-13 Riken 核酸の増幅法
WO2005063977A1 (ja) 2003-12-25 2005-07-14 Riken 核酸の増幅法およびこれを利用した変異核酸の検出法
JP3942627B2 (ja) 2003-12-25 2007-07-11 独立行政法人理化学研究所 変異核酸の検出法
WO2008111485A1 (ja) 2007-03-09 2008-09-18 Riken モノヌクレオシドまたはモノヌクレオチドから誘導される構造を有する化合物、核酸、標識物質、核酸検出方法およびキット

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6120992A (en) * 1993-11-04 2000-09-19 Valigene Corporation Use of immobilized mismatch binding protein for detection of mutations and polymorphisms, and allele identification in a diseased human
DE60039371D1 (de) * 2000-02-18 2008-08-14 Morphotek Inc Methode zur herstellung hypermutabler pflanzen

Patent Citations (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59148798A (ja) 1983-02-14 1984-08-25 Wakunaga Seiyaku Kk ビオチンヌクレオチド誘導体
JPS59204200A (ja) 1983-04-28 1984-11-19 Wakunaga Seiyaku Kk 2,4―ジニトロフェニルヌクレオチド誘導体
JPH076986B2 (ja) 1983-05-12 1995-01-30 チバ コーニング ダイアグノスティクス コーポレーション リゲートの濃度測定方法
JPS5993099A (ja) 1983-10-31 1984-05-29 Wakunaga Seiyaku Kk オリゴヌクレオチド誘導体およびその製造法
JP2546576B2 (ja) 1985-03-28 1996-10-23 エフ.ホフマン−ラ ロシュ アクチェンゲゼルシャフト 核酸配列のクローニング方法
JP2703194B2 (ja) 1986-03-13 1998-01-26 エフ・ホフマン−ラ ロシユ アーゲー 核酸中に存在する特定のヌクレオチド配列の検出方法
JP2502041B2 (ja) 1986-08-22 1996-05-29 エフ.ホフマン−ラ ロシュ アクチェンゲゼルシャフト 熱安定性dnaポリメラ―ゼを用いる核酸の増幅方法
JP2650159B2 (ja) 1988-02-24 1997-09-03 アクゾ・ノベル・エヌ・ベー 核酸増幅方法
JPH04501959A (ja) 1988-11-21 1992-04-09 ダイナル・エイ・エス 核酸プローブ
US6617106B1 (en) 1990-10-09 2003-09-09 Steven Albert Benner Methods for preparing oligonucleotides containing non-standard nucleotides
JPH09504699A (ja) * 1993-11-04 1997-05-13 ジーン チェック、インク. 変異及び多型性の検出、増幅されたdnaサンプルの精製、及び対立遺伝子の同定のための、固定化ミスマッチ結合蛋白質の使用
US6057107A (en) 1995-10-11 2000-05-02 Luminex Corporation Methods and compositions for flow cytometric determination of DNA sequences
JPH10313900A (ja) 1997-05-08 1998-12-02 Becton Dickinson & Co Rna標的配列の増幅方法
WO1999054455A1 (en) 1998-04-23 1999-10-28 Takara Shuzo Co., Ltd. Method for synthesizing dna
US6046807A (en) 1998-05-14 2000-04-04 Luminex Corporation Diode laser based measurement apparatus
WO2000028082A1 (fr) 1998-11-09 2000-05-18 Eiken Kagaku Kabushiki Kaisha Procede de synthese d'acide nucleique
JP2000245460A (ja) 1999-03-05 2000-09-12 Mitsubishi Rayon Co Ltd 核酸固定化中空繊維並びに核酸固定化中空繊維配列体及びその薄片
WO2000056877A1 (fr) 1999-03-19 2000-09-28 Takara Shuzo Co., Ltd. Procede d'amplification d'une sequence d'acide nucleique
WO2001030993A1 (fr) 1999-10-25 2001-05-03 Wakunaga Pharmaceutical Co., Ltd. Procede de detection d'un acide nucleique cible
WO2001034838A1 (fr) 1999-11-08 2001-05-17 Eiken Kagaku Kabushiki Kaisha Methode de detection d'une variation ou d'un polymorphisme
WO2002024902A1 (fr) 2000-09-19 2002-03-28 Eiken Kagaku Kabushiki Kaisha Procede permettant de synthetiser un polynucleotide
WO2004040019A1 (ja) 2002-10-29 2004-05-13 Riken 核酸の増幅法
WO2005063977A1 (ja) 2003-12-25 2005-07-14 Riken 核酸の増幅法およびこれを利用した変異核酸の検出法
JP3942627B2 (ja) 2003-12-25 2007-07-11 独立行政法人理化学研究所 変異核酸の検出法
WO2008111485A1 (ja) 2007-03-09 2008-09-18 Riken モノヌクレオシドまたはモノヌクレオチドから誘導される構造を有する化合物、核酸、標識物質、核酸検出方法およびキット

Non-Patent Citations (17)

* Cited by examiner, † Cited by third party
Title
"A series of Methods in Enzymology", ACADEMIC PRESS
"Antibodies: A Laboratory Manual", 1987, COLD SPRING HARBOR LABORATORY PRESS
"Current Protocols in Molecular biology", 1987, JOHN WILEY & SONS
"PCR Protocols: Methods in Molecular Biology", 2003, HUMANA PRESS
ALTSCHUL SF, J MOL BIOL, vol. 215, no. 3, 5 October 1990 (1990-10-05), pages 403 - 10
COHEN, S. N. ET AL., PROC. NATL. ACAD. SCI., USA, vol. 69, 1972, pages 2110 - 2114
J. SAMBROOK, E. F. FRISCH, T. MANIATIS: "Molecular Cloning", 1989, COLD SPRING HARBOR LABORATORY
JOURNAL OF BIOLOGICAL CHEMISTRY, vol. 276, 2001, pages 34339 - 34347
LE 0. ET AL.: "Azotobacter vinelandii mutS: nucleotide sequence and mutant analysis", J. BACTERIOL., vol. 175, no. 23, 1993, pages 7707 - 7710 *
MICHAEL J. LUTZ ET AL., BIOORGANIC & MEDICAL CHEMISTRY LETTERS, vol. 8, 1998, pages 1149 - 1152
MICHAEL SISMOUR. 1 ET AL., BIOCHEMISTRY, vol. 42, no. 28, 2003, pages 8598
MITANI Y. ET AL.: "Rapid SNP diagnostics using asymmetric isothermal amplification and a new mismatch-suppression technology", NATURE METHODS, vol. 4, no. 3, 2007, pages 257 - 262 *
MITANI, Y. ET AL., NATURE METHODS, vol. 4, no. 3, 2007, pages 257 - 262
NOTOMI, T. ET AL., NUCLEIC ACIDS RESEARCH, vol. 28, no. 12, 2000, pages E63
PROC. NATL. ACAD. SCI. USA, vol. 92, 1995, pages 6329 - 6333
SAMBROOK, RUSSELL: "Molecular Cloning: A Laboratory Manual", 2001, COLD SPRING HARBOR LABORATORY PRESS
TRENDS IN BIOTECHNOLOGY, vol. 10, 1992, pages 146 - 153

Also Published As

Publication number Publication date
JPWO2010061922A1 (ja) 2012-04-26
EP2371951A1 (en) 2011-10-05
US20110236900A1 (en) 2011-09-29
EP2371951A4 (en) 2012-07-18

Similar Documents

Publication Publication Date Title
JP5299981B1 (ja) プライマーセット及びそれを用いた標的核酸配列の増幅方法並びに変異核酸の検出方法
JP3897805B2 (ja) 核酸の増幅法およびこれを利用した変異核酸の検出法
JP6690005B2 (ja) ナノポアシーケンシングのためのポリメラーゼ−鋳型複合体
KR101958659B1 (ko) 유전자 변이 특이적 증폭 효율이 증가된 dna 중합효소
KR101958660B1 (ko) 유전자 변이 특이성이 증가된 dna 중합효소의 활성 증가용 pcr 버퍼 조성물
NO331732B1 (no) Fremgangsmate for syntese av nukleinsyre
JP6986299B2 (ja) 遺伝子変異特異性が増加したdna重合酵素およびその活性増加用pcrバッファー組成物
US20080044921A1 (en) Primers used in novel gene amplification method
JP3942627B2 (ja) 変異核酸の検出法
JP4450867B2 (ja) 等温増幅方法およびそれに用いる等温増幅用キット
WO2013175815A1 (ja) 核酸増幅反応におけるエラーを抑制する方法
JP2005052143A (ja) ホットスタートリアルタイムポリメラーゼ連鎖反応のための新しい検出形式
WO2010061922A1 (ja) 新規MutSタンパク質およびそれを用いた変異の判定方法
JP7180944B1 (ja) 改変型dnaポリメラーゼ
WO2002090538A1 (fr) Procede de synthese d'acide nucleique
JP2008029335A (ja) 新規遺伝子増幅法に用いられるプライマーセットおよびキット
JP2005160387A (ja) 核酸の増幅法および核酸増幅用プライマーセット
JP5618227B2 (ja) 核酸の増幅方法および遺伝子変異の検出方法
WO2006051991A1 (ja) 核酸の増幅および検出方法
JP2007325534A (ja) RecAタンパク質を利用した核酸の等温増幅法
JP2008048603A (ja) 核酸の増幅および検出方法
JP2007521828A (ja) 血栓症の診断/予測方法
JP2013094117A (ja) 核酸の検出方法および核酸検出用キット
JP2010183842A (ja) 新規耐熱性dnaポリメラーゼ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09829167

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2010540527

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13130993

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2009829167

Country of ref document: EP