WO2010059001A2 - 내성암 치료용 고분자 미셀 조성물 및 그 제조방법 - Google Patents

내성암 치료용 고분자 미셀 조성물 및 그 제조방법 Download PDF

Info

Publication number
WO2010059001A2
WO2010059001A2 PCT/KR2009/006882 KR2009006882W WO2010059001A2 WO 2010059001 A2 WO2010059001 A2 WO 2010059001A2 KR 2009006882 W KR2009006882 W KR 2009006882W WO 2010059001 A2 WO2010059001 A2 WO 2010059001A2
Authority
WO
WIPO (PCT)
Prior art keywords
composition
cyclosporin
taxane
polymer micelle
treatment
Prior art date
Application number
PCT/KR2009/006882
Other languages
English (en)
French (fr)
Other versions
WO2010059001A3 (ko
Inventor
강혜원
서민효
김봉오
Original Assignee
주식회사 삼양사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 삼양사 filed Critical 주식회사 삼양사
Priority to CN2009801550218A priority Critical patent/CN102292109A/zh
Priority to EP09827766.8A priority patent/EP2359860B1/en
Priority to US13/130,259 priority patent/US20110224151A1/en
Priority to JP2011537369A priority patent/JP5449388B2/ja
Publication of WO2010059001A2 publication Critical patent/WO2010059001A2/ko
Publication of WO2010059001A3 publication Critical patent/WO2010059001A3/ko

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/335Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/30Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
    • A61K47/36Polysaccharides; Derivatives thereof, e.g. gums, starch, alginate, dextrin, hyaluronic acid, chitosan, inulin, agar or pectin
    • A61K47/40Cyclodextrins; Derivatives thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/10Dispersions; Emulsions
    • A61K9/107Emulsions ; Emulsion preconcentrates; Micelles
    • A61K9/1075Microemulsions or submicron emulsions; Preconcentrates or solids thereof; Micelles, e.g. made of phospholipids or block copolymers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/10Dispersions; Emulsions
    • A61K9/127Liposomes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00

Definitions

  • the present invention relates to a polymer micelle composition for the treatment of resistant cancer and a method of manufacturing the same.
  • Taxane-based anticancer agents have been successfully used for the treatment of breast cancer, ovarian cancer, lung cancer or prostate cancer.
  • paclitaxel and docetaxel which are taxane-based anticancer agents, have very low solubility in water and are required to be solubilized with a nonionic surfactant or the like. Therefore, formulations solubilized with cremopoa and polysorbate as nonionic surfactants are commercially available as Taxol® or Taxotel®.
  • the Taxol® and Taxotel® show excellent anticancer efficacy, but there are side effects such as hypersensitivity by solubilizers, and research on new formulations without side effects is being conducted.
  • anticancer agents such as taxane are widely used as an excellent anticancer effect, but there is a problem that resistance to anticancer agents is expressed.
  • Mechanisms that cause cancer cell resistance vary, but one of the well-known causes is the promotion of extracellular release of anticancer agents by overexpression of P-glycoprotein.
  • P-glycoprotein overexpression there is an attempt to use an inhibitor that inhibits the function of P-glycoprotein.
  • P-glycoprotein inhibitors are known as verapamil, ketoconazole or cyclosporin. These substances have been studied as inhibitors of P-glycoprotein to reduce oral absorption of anticancer drugs due to P-glycoprotein overexpressed in the intestinal wall upon oral administration of an anticancer agent such as taxane.
  • Cyclosporin is a poorly soluble drug, and a composition using cremopoa as a solubilizer is developed and marketed as an intravenous injection or an oral drug under the brand name Sandimun®, and a composition solubilized by microemulsion technology is developed as an oral drug of Neooral®. It is.
  • compositions comprising two drugs, a taxane compound and a P-glycoprotein inhibitor.
  • compositions comprising two drugs, a taxane compound and a P-glycoprotein inhibitor.
  • the polymer micelle composition for treatment of resistant cancer is characterized in that it contains a taxane and cyclosporin which is a P-glycoprotein inhibitor as an amphiphilic diblock copolymer and an active ingredient.
  • the present invention also provides a method for preparing the polymer micelle composition for treatment of resistant cancer.
  • the polymer micelle composition for treatment of resistant cancer includes an amphiphilic block copolymer of the present invention and a polylactic acid alkali metal salt including at least one carboxyl group at an arbitrary end thereof, and thereby the EPR (Enhanced Permeability and Retention) effect.
  • EPR Enhanced Permeability and Retention
  • the cancer tissue contains taxane mixed with a P-glycoprotein inhibitor, it shows an excellent anticancer effect against cancer cells expressing resistance due to the overexpression of P-glycoprotein by an anticancer agent, and hypersensitivity reactions due to the use of a solubilizer.
  • the advantage is that it does not happen.
  • it is possible to reduce side effects due to systemic administration of cyclosporin by allowing cyclosporin to be highly distributed in cancer tissues.
  • Figure 1 was analyzed the particle size of the polymer micelle encapsulated with paclitaxel and cyclosporin in accordance with an embodiment of the present invention using dynamic light scattering method, the results of the weight conversion (Weight) average distribution);
  • FIG. 2 is a graph showing the results of measuring the concentrations of paclitaxel and cyclosporine using high-performance liquid chromatography (HPLC) for a polymer micelle encapsulated with paclitaxel and cyclosporin according to one embodiment;
  • HPLC high-performance liquid chromatography
  • 3 and 4 are graphs showing the concentration of paclitaxel in the blood and the concentration of paclitaxel in the brain tissue for the polymer micelles encapsulated with paclitaxel and cyclosporin according to one embodiment;
  • FIG. 5 is a graph showing the concentration of paclitaxel in the blood for a composition in which paclitaxel-containing polymer micelles and cyclosporin-containing polymer micelles are mixed according to one embodiment
  • Figure 6 is a graph showing the results of comparing the anticancer effect of the polymer micelle compositions according to one embodiment.
  • the polymer micelle composition for treatment of resistant cancer according to one embodiment of the present invention is characterized in that it contains taxane and cyclosporin which are P-glycoprotein inhibitors as active ingredients.
  • the polymer micelle composition for treatment of resistant cancer according to the present invention is characterized in that it comprises taxane, cyclosporin and amphiphilic diblock copolymer in order to solubilize taxane and cyclosporine together.
  • the polymer micelles may be nanoparticles, and micelles or nanoparticles may specifically be particles having a particle diameter of 10 to 200 nm.
  • Taxane and cyclosporin are poorly water soluble and require special solubilization techniques or compositions to be administered to the human body. Therefore, in the preparation of two existing drug groups, solubilization is carried out using an ethanol organic solvent and cremopoa or polysorbate as a surfactant. However, when the two types of surfactant are administered to the human body through a vein or the like, there is a side effect that causes a severe hypersensitivity reaction, so that careful administration or pretreatment is required. Therefore, the present invention provides a composition that does not cause side effects such as hypersensitivity even when taxane and cyclosporin are simultaneously administered through a vein.
  • resistant cancer refers to a cancer that has developed resistance according to the use of an anticancer agent, and more specifically to a cancer in which resistance is expressed due to overexpression of P-glycoprotein.
  • Types of cancer include, for example, breast cancer, ovarian cancer, lung cancer or prostate cancer, and the like, and are not particularly limited.
  • nanoparticle refers to a particle having a particle size of nanoscale, and may be used to include particles having a micellar structure.
  • the term “mixed micelle”, “mixed nanoparticles”, “mixed micelles or nanoparticles”, or “mixed” refers to a type of drug in one micelle or nanoparticle. It means a form in which a micelle filled with taxane and a micelle filled with cyclosporin are mixed.
  • the mixed micelles or nanoparticles can be obtained by preparing and then mixing the micelles and nanoparticles of which are taxane-containing micelles and cyclosporine, respectively.
  • compound micelles As used herein, “compound micelles”, “compound nanoparticles”, “compound micelles or nanoparticles”, or “composite” as used to refer to the type of micelles, taxane and cyclosporine are encapsulated together in one micelle or nanoparticle It means the form.
  • the micelle or nanoparticles in the complex form can be obtained by encapsulating both drugs in the micelle or nanoparticle core at the same time in preparing the composition of the present invention.
  • the polymer micelle composition according to the present invention includes those in which taxane and cyclosporin are encapsulated in a mixed or complex form in the polymer micelle.
  • the anticancer composition for treatment of resistant cancer may be a structure in which the taxane and cyclosporin as an active ingredient is enclosed in the micellar structure formed by the amphiphilic diblock copolymer.
  • the composition may be a combined form in which a taxane and a cyclosporine are encapsulated together in one micelle in a micellar structure formed by an amphiphilic diblock copolymer, or the taxane and cyclosporine are separated in each micelle. And may be enclosed in mixed form.
  • the composition is a composition comprising a taxane and cyclosporine together in one micelle; And a composition in which a polymer micelle enclosed with taxane and a polymer micelle enclosed with cyclosporin are mixed.
  • the taxane is paclitaxel, docetaxel, dopataxel, 7-epipaclitaxel, t-acetyl paclitaxel, 10-desacetyl paclitaxel, 10-desacetyl-paclitaxel ), 10-desacetyl-7-epipaclitaxel, 7-xylosylpaclitaxel, 10-desacetyl-7-glutaryl paclitaxel, 10-desacetyl-7 -glutarylpaclitaxel), 7-N, N-dimethylglycylpaclitaxel, 7-L-alanylpaclitaxel, or a mixture thereof, specifically paclitaxel or docetaxel to be.
  • the crystalline form of the taxane can be both amorphous or crystalline, and can be in the form of anhydrides or hydrates.
  • the taxane may be an anhydride of paclitaxel or docetaxel.
  • the cyclosporin serves to inhibit the overexpression of P-glycoprotein due to the resistance of the anticancer agent, and derivatives thereof such as cyclosporin A, B, C or D may be used.
  • the cyclosporin may be cyclosporin A.
  • the cyclosporine A (cyclosporine A) is a cyclic peptide consisting of 11 components, and has various physiological activities such as antibacterial, antiparasitic and immunosuppressive properties.
  • cyclosporin A is widely used for tissue or organ transplantation due to immunosuppression, and is also used for the treatment of diseases caused by autoimmune abnormalities.
  • the weight ratio of the taxane (a) to the cyclosporin (b) may be in the range of 0.1 to 2.0, more Specifically, it may range from 0.8 to 1.5. This weight ratio range is for optimizing the efficacy of taxane as an anticancer agent and the inhibitory effect of P-glycoprotein through cyclosporin.
  • the sum of the taxane and the cyclosporin may be 0.1 to 20% by weight, specifically 0.2 to 10% by weight, based on the total weight of the composition.
  • the anticancer composition according to the present invention is a form in which the taxane and the cyclosporin are encapsulated in the polymer micelle structure, and the content of the taxane and the cyclosporin in the polymer micelle is limited.
  • the taxane is 0.01 to 10% by weight, specifically 0.01 to 5% by weight
  • cyclosporin is 0.01 to 10% by weight, specifically 0.01 to 5% by weight based on the total weight of the composition.
  • the amphiphilic diblock copolymer is an AB-type diblock copolymer composed of a hydrophilic block (A) and a hydrophobic block (B), wherein the hydrophilic block (A) is polyethylene glycol, and the hydrophobic block ( B) can be polylactic acid or a derivative thereof.
  • the polyethylene glycol of the hydrophilic block (A) is at least one selected from the group consisting of polyethylene glycol, methoxy polyethylene glycol, and the like, and is not limited thereto, and specifically, is methoxy polyethylene glycol.
  • the polylactic acid or derivative thereof of the hydrophobic block (B) is, for example, polylactic acid, polylactide, polyglycolide, polymandelic acid, polycaprolactone, polydioxan-2-one, polyamino acid, poly At least one selected from the group consisting of orthoesters, polyanhydrides and copolymers thereof, and more specifically polylactic acid, polylactide, polyglycolide, polymandelic acid, polycaprolactone or polydioxane- 2 degrees.
  • polylactic acid or derivatives thereof include polylactic acid, polylactide, polycaprolactone, copolymers of lactic acid and mandelic acid, copolymers of lactic acid and glycolic acid, copolymers of lactic acid and caprolactone, and lactic acid It may be at least one selected from the group consisting of a copolymer of 1,4-dioxane-2one.
  • the number average molecular weight of the hydrophilic block (A) is 500 to 20,000 Daltons, more specifically 1,000 to 10,000 Daltons.
  • the number average molecular weight of the hydrophobic block (B) is 500 to 10,000 Daltons.
  • the content of the hydrophilic block (A) may be 40 to 70% by weight, more specifically 50 to 65% by weight based on the total weight of the diblock copolymer. This content range is intended to stably maintain micelles of the amphiphilic diblock copolymer.
  • Amphiphilic block copolymers of the present invention may be 80 to 99.9% by weight, more specifically 40 to 90% by weight based on the total composition weight.
  • the composition comprises 0.01 to 10% by weight of taxane, based on the total weight of the composition; 0.01 to 10% by weight of cyclosporin; And it may include 80 to 99.8% by weight amphiphilic diblock copolymer.
  • the composition comprises 0.01 to 10% by weight of taxane, based on the total weight of the composition; 0.01 to 10% by weight of cyclosporin; 40 to 90 weight percent of amphiphilic diblock copolymer; And it may include 10 to 50% by weight of a polylactic acid alkali metal salt containing a carboxyl group at the end.
  • the complex amphiphilic diblock copolymer micelle composition encapsulated together with the taxane and the cyclosporine has a particle size in an aqueous solution in the range of 10 to 200 nm, and is characterized in that the solid is freeze-dried.
  • the polymer micelle composition for treatment of resistant cancer of the present invention may further include a polylactic acid alkali metal salt including at least one carboxyl group at the terminal in addition to the taxane, cyclosporin and amphiphilic block copolymer.
  • the polylactic acid alkali metal salt serves to enhance the encapsulation efficiency of the drug by hardening the core inside the micelle containing the drug.
  • the present invention provides a polymer micelle composition for treatment of resistant cancer comprising taxane, cyclosporin, an amphiphilic block copolymer and a polylactic acid alkali metal salt comprising at least one carboxyl group at the terminal.
  • the polylactic acid alkali metal salt means a form in which a terminal carboxylic acid anion and an alkali metal ion are bonded by an ionic bond.
  • polylactic acid alkali metal salt including at least one carboxyl group at the terminal of the present invention may be represented by Chemical Formula 1.
  • R is hydrogen, acetyl group, benzoyl group, decanoyl group, palmitoyl group, methyl group or ethyl group,
  • M is sodium, potassium or lithium
  • n is an integer of 5-35, specifically 10-30.
  • the polylactic acid alkali metal salt of the present invention contains one carboxyl group at its terminal.
  • the terminal opposite to the terminal carboxyl group of the polylactic acid alkali metal salt may be substituted with one selected from the group consisting of hydroxy, acetoxy, benzoyloxy, decanoyloxy, palmitoyloxy and alkoxy.
  • the polylactic acid alkali metal salt is dissolved in an aqueous solution to balance the hydrophilic portion of the carboxylic acid anion present in the polylactic acid alkali metal salt molecule and the hydrophobic portion of the polylactic acid to form a micelle. Therefore, when the molecular weight of the hydrophobic portion is increased, it is difficult to associate the carboxylic acid anions at the terminal showing hydrophilicity, so that micelles may not be formed well.
  • the number average molecular weight of the alkali metal salt of polylactic acid is 500 to 2,500 Daltons, specifically 1,000 to 2,000 Daltons. If the molecular weight is less than 500 Daltons completely dissolved in water is difficult to form micelles, If the molecular weight is more than 2,500 Daltons hydrophobicity is large, it is difficult to dissolve in an aqueous solution to form micelles.
  • the alkali metal of the polylactic acid alkali metal salt is a monovalent metal of sodium, potassium or lithium.
  • the polymer micelle composition based on the total weight of the composition,
  • taxanes and cyclosporin preferably 0.2 to 10% by weight
  • divalent or trivalent metal ions may be added to the micelle composition.
  • the divalent or trivalent metal ions are combined with the terminal carboxyl groups of the polylactic acid derivative to form polymer nanoparticles having a divalent or trivalent metal ion bonded thereto.
  • the present invention provides a nanoparticle composition for treating cancer comprising taxane, cyclosporin, an amphiphilic block copolymer, and a polylactic acid having a carboxy terminus fixed with a divalent or trivalent metal ion.
  • the divalent or trivalent metal ion is substituted with the monovalent metal cation of the polylactic acid carboxy terminal group in the polymer micelle to form an ionic bond. Ion bonding by the formed metal ions, serves to further improve the stability of the polymer micelles due to the strong bonding force.
  • the metal ion is a divalent or trivalent metal ion, specifically, selected from calcium, magnesium, barium, chromium, iron, manganese, nickel, copper, zinc or aluminum, and more specifically calcium or magnesium.
  • the metal ions may be added to the polymer micelle composition in the form of sulfate, hydrochloride, carbonate, phosphate and hydrate, specifically, calcium chloride, magnesium chloride, zinc chloride, aluminum chloride, iron chloride, calcium carbonate, magnesium carbonate, calcium phosphate, Magnesium phosphate, aluminum phosphate, magnesium sulfate, calcium hydroxide, magnesium hydroxide, aluminum hydroxide or zinc hydroxide can be added.
  • the equivalent amount of divalent or trivalent metal ions may be adjusted according to the release rate of the drug encapsulated inside the polymer nanoparticles. Specifically, when the metal ion is included in the polymer nanoparticle composition in an amount of 1 equivalent or less relative to the equivalent of the carboxyl group of the alkali metal salt of polylactic acid, the number of the carboxy terminal groups of the polylactic acid salt is small, so that the release rate of the drug is increased. When included above, the number of the polylactic acid salts bonded to the carboxy terminal groups may delay the release rate of the drug.
  • the composition of the present invention is based on the total weight of the composition
  • taxanes and cyclosporin preferably 0.2-10% by weight;
  • the resistance cancer therapeutic composition of the present invention is a polymer mixture comprising the amphiphilic block copolymer alone, the amphiphilic block copolymer and the polylactic acid alkali metal salt, an amphiphilic block copolymer and a carboxy terminus divalent or trivalent metal.
  • Polymer mixtures comprising polylactic acid immobilized with ions, or polymer mixtures thereof.
  • the micelle or nanoparticle composition of the present invention may be a mixture of micelles or nanoparticle compositions of mixed or complex.
  • the composition of the present invention is a micelle composed of an amphiphilic block copolymer, a micelle composed of an amphiphilic block copolymer and a polylactic acid alkali metal salt, and an amphiphilic block copolymer and a carboxy terminus fixed with a divalent or trivalent metal ion. It may be a single or a mixture of the composition containing the drug in the nanoparticles made of polylactic acid salt.
  • the present invention also provides a method for producing an anticancer agent composition for treating resistant cancer.
  • the anticancer composition for treatment of resistant cancer as an active ingredient, a method of preparing a polymer micelle composition for treatment of resistant cancer containing taxane and cyclosporin,
  • step (c) adding an aqueous solution to the mixture prepared in step (b) to prepare a polymer micelle in which taxane and cyclosporin are enclosed.
  • the anticancer composition for treatment of resistant cancer as an active ingredient, a method of preparing a polymer micelle composition for treatment of resistant cancer containing taxane and cyclosporin,
  • step (c) adding an aqueous solution to the mixture prepared in step (b) to prepare a polymer micelle in which taxane and cyclosporin are enclosed.
  • a mixed micelle composition is prepared by mixing each of a taxane-encapsulated polymer micelle composition and a cyclosporin-encapsulated polymer micelle composition prepared by solubilizing taxane and cyclosporin separately in an organic solvent together with a polymer. It involves doing.
  • the anticancer agent composition according to the present invention may be a complex form in which taxanes and cyclospolines are encapsulated together in a micelle or nanoparticle structure of a polymer, or polymer micelles or nanoparticles and a cyclosporine-encapsulated polymer micelle that are taxane-sealed or It may be a mixed form of nanoparticles. Looking at the method of producing the two types of compositions in more detail, as follows.
  • composition is a complex form containing taxane and cyclosporine simultaneously in one micelle or nanoparticle.
  • a method for preparing a polymer micelle composition for treatment of a complex anticancer agent encapsulated with taxane and cyclospoline includes the following steps.
  • a polylactic acid alkali metal salt comprising taxane, cyclosporin and amphiphilic diblock copolymer, and optionally comprising at least one carboxyl group at the end, ethanol, methanol, propanol, acetone, acetonitrile, dichloromethane, chloroform Solubilizing in an organic solvent selected from the group consisting of ethyl methyl ketone and ethyl acetate;
  • step (c) adding an aqueous solution to the mixture prepared in step (b) to prepare a micelle composition in which taxane and cyclosporin are enclosed in an inner core.
  • the preparation method is in the case of using a polylactic acid alkali metal salt containing at least one carboxyl group at the end to obtain nanoparticles fixed with divalent or trivalent metal ions, after step (c),
  • the addition of a divalent or trivalent metal ion to the polymer micelle may be further step to fix the polylactic acid alkali metal salt terminal group containing at least one carboxyl group.
  • (c-1) is added to the aqueous solution containing a divalent or trivalent metal ion of 0.001 to 2M to the aqueous composite polymer micelle, and slowly stirred at room temperature for 0.1 to 1 hour, the metal ion is a polylactic acid salt Can be fixed by ionic bonds in the short run.
  • step (f) may be further subjected to lyophilization of the container filled in step (e).
  • the aqueous solution in step (d) may be sterilized by filtration.
  • the organic solvent in the step (b) can be removed by a conventional method, specifically, can be evaporated using a vacuum evaporator.
  • the aqueous solution used in step (c) may be distilled water, physiological saline or lyophilized auxiliary aqueous solution.
  • step (f) during lyophilization, one or more selected from the group consisting of mannitol, sorbitol, lactosan, trehalose and sucrose may be used as a lyophilization aid.
  • mannitol is used.
  • micelles made of amphiphilic block copolymers are divalent or 3 It is possible to obtain a composition in which a drug is contained inside a nanoparticle made of a polylactic acid fixed with a valent metal ion, and these three types of polymer compositions can also be mixed.
  • composition is in the form of a homogeneous mixture of the polymer micelles or nanoparticles encapsulated with taxane and the polymer micelles or nanoparticles enclosed with cyclosporin.
  • the method for preparing the two mixed micelle compositions is characterized by preparing a polymer micelle composition containing each drug.
  • the manufacturing method of the anticancer agent composition which mixed the polymer micelle composition enclosed with the taxane and the polymer micelle composition enclosed with the cyclosporine contains the following steps.
  • taxane and cyclosporine respectively, together with an amphiphilic diblock copolymer and, optionally, a polylactic acid alkali metal salt comprising at least one carboxyl group at the end, ethanol, methanol, propanol, acetone, acetonitrile, dichloromethane, Individually solubilizing in at least one organic solvent selected from the group consisting of chloroform, ethyl methyl ketone and ethyl acetate to obtain a solution;
  • step (c) adding an aqueous solution to each of the mixtures prepared in step (b) to prepare a polymer micelle composition containing taxane and a cyclosporine-containing polymer micelle composition, respectively, and mixing the micelle compositions to mix the micelle composition Manufacturing step.
  • (c-1) It may be further roughened by adding divalent or trivalent metal ions to each of the mixed polymer micelles to fix the polylactic acid end groups.
  • (C-1) adds an aqueous solution containing 0.001 to 2 M of divalent or trivalent metal ions to the mixed polymer micelle aqueous solution, and stirs slowly at room temperature for 0.1 to 1 hour. Can be fixed by ionic bonding.
  • step (f) may be further subjected to lyophilization of the container filled in step (e).
  • steps (d) to (f) correspond to additional post-treatment processes for the prepared composition.
  • the organic solvent in step (b) can be removed by a conventional method, specifically, it can be evaporated using a vacuum evaporator.
  • the aqueous solution used in step (c) may be distilled water, physiological saline or lyophilized auxiliary aqueous solution.
  • step (f) one or more selected from the group consisting of mannitol, sorbitol, lactosan, trehalose and sucrose may be used as a lyophilization aid.
  • mannitol is used.
  • micelles made of amphiphilic block copolymers are divalent or 3 It is possible to obtain a mixed composition in which a drug is enclosed in a nanoparticle made of a polylactic acid salt fixed with a pseudo metal ion, and these three types of polymer compositions can also be mixed.
  • the anticancer composition for the treatment of resistant cancer may further contain pharmaceutical supplements such as preservatives, stabilizers, hydrating or emulsifiers, salts and / or buffers for the control of osmotic pressure and other therapeutically useful substances. It can be formulated into various oral or parenteral dosage forms according to the invention.
  • Formulations for parenteral administration may be administered rectally, topically, transdermally, intravenously, intramuscularly, intraperitoneally, subcutaneously, etc.
  • Representative formulations for injection are in the form of isotonic aqueous solutions or suspensions.
  • the anticancer composition for the treatment of resistant cancer may be prepared in lyophilized form, it may be administered in the form of injection into the blood vessel reconstructed with distilled water for injection, 5% glucose and physiological saline.
  • Formulations for oral administration include, for example, tablets, pills, hard and soft capsules, solutions, suspensions, emulsifiers, syrups, granules, etc. These formulations may contain diluents (e.g., lactose, dextrose, Sucrose, mannitol, sorbitol, cellulose and glycine), lubricants such as silica, talc, stearic acid and its magnesium or calcium salts and polyethylene glycols.
  • diluents e.g., lactose, dextrose, Sucrose, mannitol, sorbitol, cellulose and glycine
  • lubricants such as silica, talc, stearic acid and its magnesium or calcium salts and polyethylene glycols.
  • Tablets may also contain binders such as magnesium aluminum silicate, starch paste, gelatin, tragacanth, methylcellulose, sodium carboxymethylcellulose and polyvinylpyrrolidine, optionally starch, agar, alginic acid or its sodium salt Pharmaceutical additives such as disintegrants, absorbents, colorants, flavors, and sweeteners. Tablets may be prepared by conventional mixing, granulating or coating methods. Also representative of formulations for parenteral administration are injectable formulations, preferably aqueous isotonic solutions or suspensions.
  • the allowable human dose of cyclosporin is 190 ⁇ 230mg / m 3 / day, it is possible to slowly instill intravenous injection.
  • the taxane For example, to the paclitaxel taxol the amount of ⁇ the case 175mg / m 3 can be slow to drip intravenous injection over a period of 3 hours, in the case of Havre Leshan ⁇ has exclusive vein to 300mg / m 3 injections It is possible.
  • the anticancer agent composition according to the present invention is a composite or mixed polymer composition of taxane and P-glycoprotein inhibitor cyclosporin which is effective against resistant cancer due to P-glycoprotein overexpression, in which the drug is transferred to cancer tissue and accumulated at high concentration. In animal experiments with sex cancers, the effectiveness of resistant cancers was significantly improved.
  • Amphiphilic double block copolymers used in the present invention and polylactic acid alkali metal salts comprising at least one carboxyl group at the terminals were prepared according to the method disclosed in Korean Patent Application No. 2005-7020313.
  • mPEG-PLA monomethoxy polyethylene glycol-polylactide
  • an anticancer complex micelle composition for the treatment of resistant cancer comprising a complex amphiphilic diblock copolymer, mPEG-PLA, and polylactic acid sodium salt (PLA-COONa) encapsulated together with paclitaxel and cyclosporine was prepared.
  • Example 5 Preparation of an anticancer drug-mixed micelle composition in which paclitaxel-encapsulated polymer micelles and cyclosporin-encapsulated polymer micelles were uniformly mixed
  • the two micelles were mixed to prepare an anticancer drug treatment for resistant cancer.
  • PLA-COONa (1,300 Daltons) 250 mg
  • the above mixture was solubilized in ethanol and the organic solvent was evaporated by vacuum evaporator.
  • An aqueous solution was added to the dried product so that the cyclosporin concentration was 3 mg / ml, thereby preparing a polymer micelle composition in which cyclosporin was enclosed.
  • the above mixture was solubilized in ethanol and the organic solvent was evaporated by vacuum evaporator.
  • An aqueous solution was added to the dried product so that the paclitaxel concentration was 3 mg / ml, thereby preparing a polymer micelle composition in which paclitaxel was encapsulated.
  • the mixed polymer micelle composition was prepared by mixing the previously prepared paclitaxel-containing polymer micelle composition and the cyclosporine-containing polymer micelle composition in an aqueous solution so that the weight ratio of paclitaxel / cyclosporin was 1.0.
  • the mixed polymer micelle composition was sterilized by a sterile filter, filled in a glass vial, and lyophilized by adding 100 mg of mannitol.
  • the particle size of the composition prepared through the above procedure was measured, and is shown in Table 5 below.
  • a nanoparticle fixed with a divalent metal ion including the following composition was prepared.
  • the above mixture was solubilized in ethanol in the same manner as in Example 2, and the organic solvent was evaporated by vacuum evaporator.
  • the aqueous solution was added so that the cyclosporin concentration was 3 mg / ml to the dried product, and 3.9 mg of CaCl 2 was added to prepare a polymer nanoparticle composition containing cyclosporin.
  • Ethanol was added to the docetaxel to completely dissolve it, and then the polymer was added and solubilized until complete dissolution. 10.89 mg of CaCl 2 was added to the mixed solution containing the drug and mixed thoroughly with an electronic magnetic mixer.
  • a polymer nanoparticle composition was prepared in which a docetaxel-containing polymer micelle composition and a cyclosporine-containing polymer micelle composition were mixed so that the weight ratio of docetaxel / cyclosporin was 1.0.
  • the prepared aqueous solution was sterilized by a sterile filter, filled in a glass vial, and lyophilized by adding 100 mg of mannitol.
  • the particle size of the composition prepared through the above procedure was measured, and is shown in Table 6 below.
  • Example 6 Compositions Comprising Cyclosporin-containing Amphiphilic Diblock Copolymers Particle Size: 20 ⁇ 30nm Composition 15
  • Example 6 Compositions Containing Docetaxel-containing Amphiphilic Diblock Copolymers Particle Size: 17 ⁇ 20nm Composition 16
  • Example 6 Compositions Containing Docetaxel-containing Amphiphilic Diblock Copolymers Particle Size: 17 ⁇ 20nm
  • Composition 16 Example 6.
  • c) A mixture of a cyclosporin-containing amphiphilic diblock copolymer and a docetaxel-containing amphiphilic diblock copolymer Particle Size: 17 ⁇ 30nm
  • Composition 5 of Example 2 was reconstructed in physiological saline so that the final concentration value was 3 mg / ml, based on paclitaxel, and diluted 20 times with the same solvent to prepare a sample for particle size measurement.
  • the result of measuring the diluted composition 5 solution using a particle size analyzer is shown in FIG. 1.
  • the particle size of the polymer micelle is 40 to 50 nm, and the average nanoparticle size shows a value less than 0.200 of the polydispersity index, indicating that the shape of the nanoparticle is very uniform.
  • the amount of release can be calculated by measuring the concentrations of paclitaxel and cyclosporin contained in the polymer micelle.
  • the concentration of paclitaxel and cyclosporin is maintained at more than 98%, through which, it can be seen that the drug is almost released within 2% of the release amount of the two drugs.
  • composition 5 enclosed with paclitaxel and cyclosporine The effect of composition 5 enclosed with paclitaxel and cyclosporine on the blood flow residence time and the degree of drug transition to the brain were evaluated.
  • composition 5 of Example 2 Composition 12 of Example 5 and a commercially available Taxol® injection were injected tail vein at a concentration of 5 mg / kg paclitaxel.
  • Whole blood and brain tissue of each mouse were removed at 10, 30 minutes and 1, 5, 10, 24, 48 hours after administration.
  • the collected whole blood is centrifuged and 0.1 ml of clear supernatant plasma is added to the capped glass tube, and the extracted brain tissue is added to the purified water of about 4 times the weight of ultrapure water and pulverized using a tissue grinder. Float into volume and apply to lid-covered glass tube.
  • the IC50 value of paclitaxel in DLD-1 rectal cancer cell line with 1.88 ug / ml concentration of cyclosporine administered with maximum P-glycoprotein inhibitory effect without affecting cytotoxicity was 15 compared with IC50 value when paclitaxel alone was administered.
  • Pear 160 ng / ml ⁇ 11 ng / ml was shown to decrease.
  • composition 13 showed a longer residence time in blood than composition 12. From these results, it can be seen that the cyclosporin increases the blood concentration of paclitaxel.
  • Cells were harvested from stored in liquid nitrogen and established in vitro cell culture. After harvesting the cells, the cells were washed with sterile discrete saturated saline (PBS) and the number of viable cells was measured. The cells were resuspended in sterile PBS at a concentration of 7 ⁇ 10 7 cells / ml.
  • PBS sterile discrete saturated saline
  • non-thymus mice (20-25 g, 8-week old) were injected subcutaneously with 0.1 ml of cell suspension containing 7 ⁇ 10 6 human colorectal cancer cells (DLD-1). After the cancer reached a certain size, xenografts were formed three times to form xenografts of 3 to 4 mm. Xenograft fragments were injected subcutaneously with a 12 gauge trocar needle in the right flank of healthy nude (nu / nu) non-thymus mice (20-25 g, 8 weeks old). After the cancer volume reached 100-300 m 3 , the drug was administered and this time point was recorded as 0 days.
  • DLD-1 human colorectal cancer cells
  • mice were divided into 5 groups and on days 0, 3 and 6, the cyclosporin-containing polymer micelle composition (composition 11), the paclitaxel-containing polymer micelle composition (composition 12) and the mixed polymer micelle composition (composition 13) were tail vein Via was administered at a dose of 35 mg / kg, cyclosporin 35 mg / kg on a paclitaxel basis.
  • the cancer volume was measured over time, and the cancer volume was calculated by the following Equation 1.
  • the tumor volume was calculated as in Equation 2 below.
  • Relative tumor volume (RTV) (Vt / Vo) x100% (Vt: TV on t day, Vo: TV on day 0)
  • mice per treatment and 4 or more tumors per group were used.
  • the minimum tumor diameter was 4 mm or 30 mm 3 volume. Animals that die within two weeks after the last drug administration were considered toxic killing and were excluded from the evaluation. Treatment groups that did not fully recover after more than 1 toxic killing per 3 animals or reduced average body weight by more than 15% were considered to be non-tumor efficacy. Experimental results are shown in FIG. 6.
  • composition 11 in the case of the cyclosporin-containing polymer micelle composition (composition 11) -treated group, administration alone does not affect anticancer activity at all, and it can be seen that cancer growth volume is larger than that of the control group.
  • the paclitaxel-containing polymer micelle composition (composition 12) or the mixed polymer micelle composition (composition 13) -treated group cancer growth inhibition was shown compared with the control group, and especially the mixed polymer micelle composition (composition 13) -treated group Compared with the paclitaxel-containing polymer micelle composition (composition 12) -treated group, it showed a high rate of cancer inhibition.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Medicinal Chemistry (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Dispersion Chemistry (AREA)
  • Molecular Biology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biophysics (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Inorganic Chemistry (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicinal Preparation (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

양친성 이중블록 공중합체 및 유효성분으로서 탁산 및 P-당단백 억제제인 싸이클로스포린을 함유하는 내성암 치료용 고분자 미셀 조성물 및 그 제조방법이 개시된다. 상기 내성암 치료용 고분자 미셀 조성물은, 암조직에 고농도로 축적되고, 상기 암조직에서 탁산계 항암제에 의한 P-당단백의 과다발현으로 내성이 발현된 암세포에 대하여 우수한 항암효과를 나타내며, 가용화제의 사용으로 인한 과민반응이 일어나지 않는다는 장점이 있다.

Description

내성암 치료용 고분자 미셀 조성물 및 그 제조방법
본 발명은 내성암 치료용 고분자 미셀 조성물 및 그 제조방법에 관한 것이다.
탁산계 항암제는 유방암, 난소암, 폐암 또는 전립선암 등의 치료에 성공적으로 사용되고 있다. 그러나, 탁산계 항암제인 파클리탁셀과 도세탁셀은, 물에 대한 용해도가 매우 낮아서 비이온성 계면활성제 등으로 가용화할 것이 요구된다. 따라서, 비이온 계면활성제로인 크레모포아와 폴리소르베이트로 가용화한 제제가 탁솔® 또는 탁소텔®이라는 상품으로 시판되고 있다. 상기 탁솔®과 탁소텔®은 우수한 항암효력을 보이나, 가용화제에 의한 과민반응 등의 부작용이 있어서, 부작용이 없는 새로운 제제에 대한 연구가 진행되고 있다.
한편, 상기 탁산 등 다수의 항암제가 우수한 항암효력으로 널리 사용되고 있으나, 항암제에 대한 내성이 발현된다는 문제점이 있다. 암 세포의 내성을 야기하는 메카니즘은 다양하나, 그 중에서 잘 알려진 원인 중의 하나가 P-당단백의 과다발현에 의한 항암제의 세포외 방출 촉진이다. 이와 같은 P-당단백 과다 발현에 의한 암의 내성을 극복하기 위한 방안으로, P-당단백의 기능을 억제하는 억제제를 사용하는 시도가 있다.
대표적인 P-당단백 기능 억제제로는 베라파밀, 케토코나졸 또는 싸이클로스포린 등이 알려져 있다. 상기 물질들은, 탁산 등 항암제의 경구 투여시 장관벽에 과다발현된 P-당단백으로 인한 항암제의 경구흡수율 저하를 해소하기 위한 P-당단백 억제제로 연구되고 있다. 싸이클로스포린은 난용성 약물로서 크레모포아를 가용화제로 사용한 조성물이 산디문®이라는 상품명으로 정맥주사제와 경구제로 개발되어 시판되고 있으며, 마이크로에멀젼 기술로 가용화한 조성물이 네오오랄®이라는 상품의 경구제로 개발되어 있다.
싸이클로스포린 정맥주사제는, 가용화제로 크레모포아가 포함되어 있으며, 상기 크레모포아는 과민반응으로 인한 부작용이 발생된다는 문제점이 있다. 그로 인해, 내성암을 치료하는 방안으로 탁산계 항암제인 탁솔® 또는 탁솔텔®과 싸이클로스포린 정맥주사제인 산디문®을 함께 인체에 투여하는 것이 매우 어렵다는 한계가 있다. 또한, 상기 제형과 같이 비특이적 제형으로 정맥주사를 하는 경우 싸이클로스포린이 전신순환계로 투여되어, 면역력이 약화되어 있는 암환자에게 추가적으로 면역력을 악화시킬 우려가 있다.
이와 같이 탁산 화합물과 P-당단백 억제제, 두 가지 약물을 함께 포함하는 조성물에 대해서는 개시된 바 없다. 특히, P-당단백 억제에 의한 내성암의 치료에 적합한 조성물을 선정하는 조성 및 기술에 관하여서는 알려져 있지 않다.
본 발명의 일실시예의 목적은 양친성 이중블록 공중합체 및 유효성분으로서 탁산 및 P-당단백 억제제인 싸이클로스포린이 함유된 내성암 치료용 고분자 미셀 조성물을 제공하는 것이다.
본 발명의 또 다른 일실시예의 목적은 양친성 이중블록 공중합체 및 유효성분으로서 탁산 및 P-당단백 억제제인 싸이클로스폴린이 함유된 내성암 치료용 고분자 미셀 조성물을 제조하는 방법을 제공하는 것이다.
본 발명에 따른 내성암 치료용 고분자 미셀 조성물은, 양친성 이중블록 공중합체 및 유효성분으로서 탁산 및 P-당단백 억제제인 싸이클로스포린을 함유하는 것을 특징으로 한다. 또한, 본 발명은 상기 내성암 치료용 고분자 미셀 조성물의 제조방법을 제공한다.
본 발명에 따른 내성암 치료용 고분자 미셀 조성물은, 본 발명의 양친성 블록 공중합체 및 임의의 말단에 적어도 하나의 카르복시기를 포함하는 폴리락트산 알칼리 금속염을 포함하여 EPR(Enhanced Permeability and Retention) 효과에 의해 암조직으로 이행되어 고농도로 축적될 수 있다. 또한 상기 암조직에서 P-당단백 억제제와 혼합된 탁산을 함유함으로 인하여, 항암제에 의한 P-당단백의 과다발현으로 내성이 발현된 암세포에 대하여 우수한 항암효과를 나타내며, 가용화제의 사용으로 인한 과민반응이 일어나지 않는다는 장점이 있다. 또한, 싸이클로스포린이 암조직에 높게 분포하게 함으로써 싸이클로스포린의 전신투여로 인한 부작용을 감소시킬 수 있다.
도 1은 본 발명의 일실시예에 따른 파클리탁셀과 싸이클로스포린이 함께 봉입된 고분자 미셀을 수용액 상에서의 입도 크기를 동적광산란법(Dynamic light scattering)을 이용하여 분석하였으며, 그 결과를 무게환산분포도(Weight average distribution)로 나타낸 그래프이다;
도 2는 일실시예에 따른 파클리탁셀과 싸이클로스포린이 함께 봉입된 고분자 미셀에 대하여 HPLC(high-performance liquid chromatography)를 이용해 파클리탁셀과 사이클로스포린의 농도를 측정한 결과를 나타낸 그래프이다;
도 3과 4는 일실시예에 따른 파클리탁셀과 싸이클로스포린이 함께 봉입된 고분자 미셀에 대하여 혈중내 파크리탁셀의 농도와 뇌 조직내 파클리탁셀의 농도를 각각 나타낸 그래프이다;
도 5는 일실시예에 따른 파클리탁셀 함유 고분자 미셀과 싸이클로스포린 함유 고분자 미셀을 혼합한 조성물에 대하여 혈중내 파크리탁셀의 농도를 나타낸 그래프이다;
도 6은 일실시예에 따른 고분자 미셀 조성물들의 항암효과를 비교 측정한 결과를 나타낸 그래프이다.
본 발명의 일실시예에 따른 내성암 치료용 고분자 미셀 조성물은, 탁산 및 P-당단백 억제제인 싸이클로스포린을 유효성분으로 포함하는 것을 특징으로 한다. 일실시예에서, 본 발명에 따른 내성암 치료용 고분자 미셀 조성물은, 탁산과 싸이클로스포린을 함께 가용화하기 위하여, 탁산, 싸이클로스포린 및 양친성 이중블록 공중합체를 포함하는 것을 특징으로 한다.
또 다른 일실시예에서, 상기 고분자 미셀은 나노입자일 수 있으며, 미셀 또는 나노입자는 구체적으로는 10 내지 200nm의 입경을 갖는 입자일 수 있다.
상기 탁산과 싸이클로스포린은 모두 수난용성으로 인체에 투여하기 위해서는 특별한 가용화 기술 내지 조성물이 요구된다. 따라서, 기존의 두 약물군의 제제에서는, 에탄올 유기용매와 계면활성제인 크레모포아 또는 폴리소르베이트를 사용하여 가용화하고 있다. 그러나, 상기 두 가지 종류의 계면활성제는 정맥 등을 통해 인체에 투여하게 되면, 심각한 과민반응이 야기되는 부작용이 있어서, 신중투여 내지 전처치가 요구되고 있다. 이에 본 발명에서는 탁산과 싸이클로스포린을 동시에 정맥 등을 통해 투여하여도 과민 반응 등의 부작용이 발생하지 않는 조성물을 제공한다.
본 발명에서 사용된 "내성암"이란, 항암제의 사용에 따른 내성이 생긴 암(cancer)을 총칭하는 의미하며, 보다 구체적으로는 P-당단백의 과다발현으로 인해 내성이 발현된 암을 의미한다. 암의 종류는, 예를 들어, 유방암, 난소암, 폐암 또는 전립선암 등을 모두 포함하며, 특별히 제한되는 것은 아니다.
본 발명에서 사용된 "나노입자"는 나노(nano) 수준의 입경을 갖는 입자를 말하며, 미셀 구조의 입자를 포함하는 의미로 사용될 수 있다.
본 발명에서 사용된 "혼합 미셀", "혼합 나노입자", "혼합 미셀 또는 나노입자", 또는 미셀의 종류를 지칭함에 있어 "혼합"이란 하나의 미셀 또는 나노입자에 한 종류 약물이 봉입된 것으로, 탁산이 봉입된 미셀과 싸이클로스포린이 봉입된 미셀이 섞여 있는 형태를 의미한다. 상기 혼합 미셀 또는 나노입자는 탁산이 봉입된 미셀과 싸이클로스포린인 봉입된 미셀 또는 나노입자를 각각 제조한 후 혼합함으로써 얻어질 수 있다.
본 발명에서 사용된 "복합 미셀", "복합 나노입자", "복합 미셀 또는 나노입자", 또는 미셀의 종류를 지칭함에 있어 "복합"이란 하나의 미셀 또는 나노입자 내에 탁산과 싸이클로스포린이 함께 봉입되어 있는 형태를 의미한다. 상기 복합 형태의 미셀 또는 나노입자는 본 발명의 조성물 제조시 두 약물을 동시에 미셀 또는 나노입자 코어 안에 봉입시킴으로써 얻을 수 있다.
본 발명에 따른 고분자 미셀 조성물은, 탁산 및 싸이클로스포린이 고분자 미셀에 혼합된 형태 또는 복합된 형태로 봉입되는 것을 포함한다.
일실시예에서, 상기 내성암 치료용 항암제 조성물은, 양친성 이중블록 공중합체에 의해 형성된 미셀 구조 내부에 유효성분인 탁산과 싸이클로스포린이 봉입된 구조일 수 있다. 구체적으로는, 상기 조성물은, 양친성 이중블록 공중합체에 의해 형성된 미셀 구조 내부에 탁산과 싸이클로스포린이 하나의 미셀에 함께 봉입된 복합(combinated) 형태이거나, 탁산 및 싸이클로스포린이 각각의 미셀에 분리되어 봉입된 혼합(mixed) 형태일 수 있다. 또 다른 일실시예에서, 상기 조성물은, 하나의 미셀 내부에 탁산과 싸이클로스포린이 함께 포함된 조성물; 및 탁산이 봉입된 고분자 미셀과 싸이클로스포린이 봉입된 고분자 미셀이 혼합된 형태의 조성물이 혼합된 형태일 수 있다.
일실시예에서, 상기 탁산은 파클리탁셀(paclitaxel), 도세탁셀(docetaxel), 7-에피파클리탁셀(7-epipaclitaxel), t-아세틸 파클리탁셀(t-acetyl paclitaxel), 10-데스아세틸 파클리탁셀(10-desacetyl-paclitaxel), 10-데스아세틸-7-에피파클리탁셀 (10-desacetyl-7-epipaclitaxel), 7-크실로실파클리탁셀(7-xylosylpaclitaxel), 10-데스아세틸-7-글루타릴파클리탁셀(10-desacetyl-7-glutarylpaclitaxel), 7-N,N-디메틸글리실파클리탁셀(7-N,N-dimethylglycylpaclitaxel), 7-L-알라닐파클리탁셀(7-L-alanylpaclitaxel) 또는 이들의 혼합물이며, 구체적으로는 파클리탁셀 또는 도세탁셀이다. 상기 탁산의 결정형태는 비결성 또는 결정성 모두 가능하며, 무수물 또는 수화물의 형태일 수 있다. 또 다른 일실시예에서, 상기 탁산은 파클리탁셀 또는 도세탁셀의 무수물일 수 있다.
상기 싸이클로스포린은, 항암제의 내성으로 인한 P-당단백의 과다발현을 억제하는 역할을 하며, 그 유도체인 싸이클로스포린 A, B, C 또는 D 등이 사용될 수 있다. 일실시예에서 상기 싸이클로스포린은 싸이클로스포린 A일 수 있다. 상기 싸이클로스포린 A(cyclosporine A)는 11개의 구성성분으로 이루어진 고리형 펩티드로서, 항박테리아성, 항기생충성 및 면역억제성 등의 다양한 생리활성을 지니고 있다. 특히, 싸이클로스포린 A는 면역억제성으로 인해 조직 또는 장기이식에 널리 사용되고 있으며, 자기면역이상으로 인한 질병의 치료에도 사용되고 있다.
본 발명의 일실시예에 따른 항암제 조성물에서, 상기 싸이클로스포린(b)에 대한 탁산(a)의 중량비[탁산 중량(a)/싸이클로스포린 중량(b)]는 0.1 내지 2.0 범위일 수 있으며, 더 구체적으로는 0.8 내지 1.5 범위일 수 있다. 이러한 중량비 범위는, 탁산의 항암제로서의 효능과 싸이클로스포린을 통해 P-당단백의 억제 효능을 최적화하기 위한 것이다.
또 다른 일실시예에서, 상기 탁산과 싸이클로스포린을 합산한 함량은, 전체 조성물 중량을 기준으로, 0.1 내지 20중량%이며, 구체적으로는 0.2 내지 10중량%일 수 있다. 이는, 본 발명에 따른 항암제 조성물은, 탁산과 싸이클로스포린이 고분자 미셀 구조 내부 구조에 봉입된 형태로서, 탁산과 싸이클로스포린이 고분자 미셀에 봉입될 수 있는 함량에는 한계가 있기 때문이다. 본 발명의 일실시예에서, 전체 조성물의 중량을 기준으로 탁산은 0.01 내지 10중량%, 구체적으로 0.01 내지 5중량%, 싸이클로스포린은 0.01 내지 10중량%, 구체적으로 0.01 내지 5중량%이다.
일실시예에서, 상기 양친성 이중블록 공중합체는, 친수성 블록(A)과 소수성 블록(B)으로 구성된 A-B형 이중블록 공중합체이며, 상기 친수성 블록(A)은 폴리에틸렌 글리콜이고, 상기 소수성 블록(B)은 폴리락트산 또는 그 유도체 일 수 있다.
상기 친수성 블록(A)의 폴리에틸렌 글리콜은, 폴리에틸렌 글리콜 및 메톡시 폴리에틸렌 글리콜 등으로 구성되는 군으로부터 선택되는 하나 이상이고, 이에 한정되지는 않으며, 구체적으로는 메톡시 폴리에틸렌 글리콜이다.
상기 소수성 블록(B)의 폴리락트산 또는 그 유도체는, 예를 들어, 폴리락트산, 폴리락타이드, 폴리글리콜라이드, 폴리만델릭산, 폴리카프로락톤, 폴리디옥산-2-온, 폴리아미노산, 폴리오르소에스터, 폴리언하이드라이드 및 그들의 공중합체로 이루어진 군에서 선택되는 하나 이상이며, 보다 구체적으로는 폴리락트산, 폴리락타이드, 폴리글리콜라이드, 폴리만델릭산, 폴리카프로락톤 또는 폴리디옥산-2온이다. 보다 구체적으로는, 상기 폴리락트산 또는 그 유도체는 폴리락트산, 폴리락타이드, 폴리카프로락톤, 락트산과 만델릭산의 공중합체, 락트산과 글리콜산의 공중합체, 락트산과 카프로락톤의 공중합체 및 락트산과 1,4-디옥산-2온의 공중합체로 이루어진 군에서 선택되는 하나 이상일 수 있다.
일실시예에서, 상기 친수성 블록(A)의 수평균분자량은 500 내지 20,000달톤이고, 보다 구체적으로는 1,000 내지 10,000달톤이다. 상기 소수성 블록(B)의 수평균분자량은 500 내지 10,000달톤이다. 또 다른 일실시예에서, 상기 친수성 블록(A)의 함량은, 이중블록 공중합체 전체 중량을 기준으로, 40 내지 70중량%일 수 있으며, 보다 구체적으로는 50 내지 65중량%일 수 있다. 이러한 함량 범위는, 안정적으로 양친성 이중블록 공중합체의 미셀을 유지하기 위한 것이다.
본 발명의 양친성 블록 공중합체는 전체 조성물 중량을 기준으로, 80 내지 99.9중량%, 보다 구체적으로는 40 내지 90중량%일 수 있다. 일실시예에서, 상기 조성물은, 조성물 전체 중량을 기준으로, 탁산 0.01 내지 10중량%; 싸이클로스포린 0.01 내지 10중량%; 및 양친성 이중블록 공중합체 80 내지 99.8중량%를 포함할 수 있다. 또 다른 일실시예에서, 상기 조성물은, 조성물 전체 중량을 기준으로, 탁산 0.01 내지 10중량%; 싸이클로스포린 0.01 내지 10중량%; 양친성 이중블록 공중합체 40 내지 90중량%; 및 말단에 카르복시기를 포함하는 폴리락트산 알칼리 금속염 10 내지 50중량%를 포함할 수 있다.
상기 탁산과 싸이클로스폴린이 함께 봉입된 복합 양친성 이중블록 공중합체 미셀 조성물은, 수용액에서의 입자크기는 10 내지 200nm 범위이며, 동결 건조시 고체인 것을 특징으로 한다.
또 다른 일실시예에서, 본 발명의 내성암 치료용 고분자 미셀 조성물은, 상기 탁산, 싸이클로스포린 및 양친성 블록 공중합체 외에 말단에 적어도 하나의 카르복시기를 포함하는 폴리락트산 알칼리 금속염을 더 포함할 수 있다. 상기 폴리락트산 알칼리 금속염은, 약물이 함유된 미셀의 코아 내부를 단단하게 하여 약물의 봉입 효율을 향상시키는 역할을 하게 된다. 따라서, 본 발명은 탁산, 싸이클로스포린, 양친성 블록 공중합체 및 말단에 적어도 하나의 카르복시기를 포함하는 폴리락트산 알칼리 금속염을 포함하는 내성암 치료용 고분자 미셀 조성물을 제공한다. 상기 폴리락트산 알칼리 금속염은 말단 카르복시산 음이온과 알칼리 금속이온이 이온결합으로 결합된 형태를 의미한다.
구체적으로 본 발명의 말단에 적어도 하나의 카르복시기를 포함하는 폴리락트산 알칼리 금속염은 화학식 1로 나타낼 수 있다.
화학식 1
Figure PCTKR2009006882-appb-C000001
상기 식에서,
R은 수소, 아세틸기, 벤조일기, 데카노일기, 팔미토일기, 메틸기 또는 에틸기이며,
M은 나트륨, 칼륨 또는 리튬이며,
n는 5-35, 구체적으로 10-30의 정수이다.
구체적으로는, 본 발명의 폴리락트산 알칼리 금속염은 말단에 하나의 카르복시기를 포함한다.
상기 폴리락트산 알칼리 금속염의 말단 카르복시기 반대편의 말단은, 히드록시, 아세톡시, 벤조일옥시, 데카노일옥시, 팔미토일옥시 및 알콕시로 이루어진 그룹 중에서 선택된 하나로 치환될 수 있다. 상기 폴리락트산 알칼리 금속염은 수용액에 용해되어 폴리락트산 알칼리 금속염 분자 내에 존재하는 카르복시산 음이온의 친수성 부분 및 폴리락트산의 소수성 부분이 균형을 이루어 미셀을 형성하게 된다. 따라서, 소수성 부분의 분자량이 커지면 친수성을 나타내는 말단의 카르복시산 음이온끼리의 회합이 어려워 미셀이 잘 형성되지 않을 수 있고, 분자량이 너무 적으면 물에 완전히 용해되어 미셀 형성 자체가 어렵다. 일실시예에서, 상기 폴리락트산 알칼리 금속염의 수평균 분자량은 500 내지 2,500달톤, 구체적으로 1,000 내지 2,000달톤이다. 분자량이 500달톤 미만이면 물에 완전히 용해되어 미셀 형성 자체가 어렵고, 분자량이 2,500달톤을 초과하면 소수성이 커져서 수용액에서 용해가 어려워 미셀을 형성할 수 없게 된다.
본 발명의 일실시예에서, 상기 폴리락트산 알칼리 금속염의 알칼리 금속은 나트륨, 칼륨 또는 리튬의 1가 금속이다.
상기 고분자 미셀 조성물은, 조성물 전체 중량을 기준으로,
탁산 및 싸이클로스포린 0.1 내지 20중량%, 바람직하게는 0.2 내지 10중량%,
양친성 블록 공중합체 40 내지 90중량%, 바람직하게는 45 내지 74중량%, 및
말단에 적어도 하나의 카르복시기를 포함하는 폴리락트산 알칼리 금속염 10 내지 50중량%, 바람직하게는 25 내지 45중량%를 포함한다.
일실시예에서, 본 발명은 상기 양친성 블록 공중합체 및 폴리락트산 유도체를 혼합하여 형성된 고분자 미셀의 안정성을 더 향상시키기 위하여, 상기 미셀 조성물에 2가 또는 3가의 금속이온이 첨가될 수 있다. 상기 2가 또는 3가 금속이온은 폴리락트산 유도체의 말단 카르복시기와 결합하여 2가 또는 3가 금속이온이 결합된 고분자 나노입자를 형성한다. 따라서, 본 발명은 탁산, 싸이클로스포린, 양친성 블록 공중합체 및 카르복시 말단이 2가 또는 3가의 금속이온으로 고정된 폴리락트산을 포함하는 내성암 치료용 나노입자 조성물을 제공한다. 상기 2가 또는 3가 금속이온은 상기 고분자 미셀 내의 폴리락트산 카르복시 말단기의 1가 금속 양이온과 치환반응하여 이온 결합을 형성한다. 상기 형성된 금속이온에 의한 이온 결합은, 강한 결합력으로 인해 고분자 미셀의 안정성을 더욱 향상시키는 역할을 한다.
상기 금속이온은 2가 또는 3가의 금속이온이며, 구체적으로는 칼슘, 마그네슘, 바륨, 크롬, 철, 망간, 니켈, 구리, 아연 또는 알루미늄 등에서 선택되며, 보다 구체적으로는 칼슘 또는 마그네슘이다.
상기 금속이온은 황산염, 염산염, 탄산염, 인산염 및 수화물의 형태로 고분자 미셀 조성물에 첨가할 수 있으며, 구체적으로는 염화칼슘, 염화마그네슘, 염화아연, 염화알루미늄, 염화철, 탄산칼슘, 탄산마그네슘, 인산칼슘, 인산마그네슘, 인산알루미늄, 황산마그네슘, 수산화칼슘, 수산화마그네슘, 수산화알루미늄 또는 수산화아연을 첨가시킬 수 있다.
상기 2가 또는 3가 금속이온의 당량은 고분자 나노입자 내부에 봉입된 약물의 방출 속도에 따라 조절될 수 있다. 구체적으로는, 고분자 나노입자 조성물에 상기 금속이온이 폴리락트산 알칼리 금속염의 카르복시기의 당량에 대하여 1당량 이하로 포함되면 폴리락트산염의 카르복시 말단기와 결합되는 수가 적어 약물의 방출 속도는 빠르게 되며, 1당량 이상으로 포함되면 폴리락트산염의 카르복시 말단기와 결합되는 수가 많아 약물의 방출 속도가 지연된다.
본 발명의 폴리락트산염이 카르복시기 말단이 2가 또는 3가 금속이온으로 고정된 경우에 있어 본 발명의 조성물은, 조성물의 전체 중량을 기준으로,
탁산 및 싸이클로스포린 0.1 내지 20중량%, 바람직하게는 0.2 내지 10중량%;
양친성 블록 공중합체 40 내지 90중량%, 바람직하게는 45 내지 74중량%; 및
말단에 적어도 하나의 카르복시기를 포함하는 폴리락트산 염 10 내지 50중량%로서, 바람직하게는 25 내지 45중량%로서, 2가 또는 3가 금속이온을 상기 폴리락트산염의 카르복시 말단의 당량에 대하여 0.01 내지 10당량, 바람직하게는 1 내지 2당량으로 포함한다.
본 발명의 내성암 치료제 조성물은, 상기 양친성 블록 공중합체 단독, 상기 양친성 블록 공중합체와 상기 폴리락트산 알칼리 금속염을 포함하는 고분자 혼합물, 양친성 블록 공중합체와 카르복시 말단이 2가 또는 3가 금속이온으로 고정된 폴리락트산염을 포함하는 고분자 혼합물, 또는 이들의 고분자 혼합물을 포함할 수 있다.
본 발명의 미셀 또는 나노입자 조성물은 혼합 또는 복합의 미셀 또는 나노입자 조성물의 혼합일 수 있다. 또한, 본 발명의 조성물은 양친성 블록 공중합체으로 이루어진 미셀, 양친성 블록 공중합체 및 폴리락트산 알칼리 금속염로 이루어진 미셀, 및 양친성 블록 공중합체 및 카르복시 말단이 2가 또는 3가의 금속이온으로 고정된 폴리락트산염으로 이루어진 나노입자 내부에 약물이 포함된 조성물의 단독 또는 혼합일 수 있다.
또한, 본 발명은 내성암 치료용 항암제 조성물의 제조방법을 제공한다. 본 발명의 일실시예에 따른, 내성암 치료용 항암제 조성물은, 유효성분으로서, 탁산 및 싸이클로스포린을 함유하는 내성암 치료용 고분자 미셀 조성물을 제조하는 방법으로,
(a) 탁산, 싸이클로스포린 및 양친성 이중블록 공중합체를 유기용매에 가용화시키는 단계;
(b) 유기용매를 증발시켜 탁산, 싸이클로스포린 및 고분자가 균일하게 혼합된 혼합물을 제조하는 단계; 및
(c) 상기 (b) 단계에서 제조된 혼합물에 수용액을 가하여, 내부에 탁산과 싸이클로스포린이 봉입된 고분자 미셀을 제조하는 단계를 포함할 수 있다.
본 발명의 일실시예에 따른, 내성암 치료용 항암제 조성물은, 유효성분으로서, 탁산 및 싸이클로스포린을 함유하는 내성암 치료용 고분자 미셀 조성물을 제조하는 방법으로,
(a) 탁산, 싸이클로스포린 및 양친성 이중블록 공중합체, 및 적어도 하나의 말단에 카르복시기를 포함하는 폴리락트산 알칼리 금속염을 유기용매에 가용화시키는 단계;
(b) 유기용매를 증발시켜 탁산, 싸이클로스포린 및 고분자가 균일하게 혼합된 혼합물을 제조하는 단계; 및
(c) 상기 (b) 단계에서 제조된 혼합물에 수용액을 가하여, 내부에 탁산과 싸이클로스포린이 봉입된 고분자 미셀을 제조하는 단계를 포함할 수 있다.
상기 양 방법에서 탁산과 싸이클로스포린을, 개별적으로, 고분자와 함께 유기용매에 가용화시켜 제조한, 탁산이 봉입된 고분자 미셀 조성물과 싸이클로스포린이 봉입된 고분자 미셀 조성물의 각각을 혼합하여 혼합 미셀 조성물을 제조하는 것을 포함한다.
따라서, 본 발명에 따른 항암제 조성물은, 고분자의 미셀 또는 나노입자 구조 내부에 탁산과 싸이클로스폴린이 함께 봉입된 복합 형태이거나, 탁산이 봉입된 고분자 미셀 또는 나노입자와 싸이클로스포린이 봉입된 고분자 미셀 또는 나노입자의 혼합된 형태일 수 있다. 상기 두 가지 형태의 조성물을 제조하는 방법을 보다 구체적으로 살펴보면, 다음과 같다.
<탁산과 싸이클로스폴린이 함께 봉입된 복합 나노입자 조성물의 제조>
상기 조성물은, 하나의 미셀 또는 나노입자 내에 탁산과 싸이클로스포린이 동시에 포함된 복합 형태이다.
유효성분으로서, 탁산과 싸이클로스폴린이 함께 봉입된 복합 항암제 치료용 고분자 미셀 조성물의 제조방법은, 다음의 단계들을 포함한다.
(a) 탁산, 싸이클로스포린 및 양친성 이중블록 공중합체, 및 임의의 성분으로 말단에 적어도 하나의 카르복시기를 포함하는 폴리락트산 알칼리 금속염을, 에탄올, 메탄올, 프로판올, 아세톤, 아세토니트릴, 디클로로메탄, 클로로포름, 에틸메틸케톤 및 아세트산 에틸로 구성된 군으로부터 선택되는 유기용매에 가용화시키는 단계;
(b) 유기용매를 제거하여, 탁산, 싸이클로스포린 및 양친성 이중블록 공중합체의 혼합물, 및 임의의 말단에 적어도 하나의 카르복시기를 포함하는 폴리락트산 알칼리 금속염가 균일하게 혼합된 혼합물을 제조하는 단계;
(c) 상기 (b) 단계에서 제조된 혼합물에 수용액을 가하여, 내부 코어에 탁산 및 싸이클로스포린이 봉입된 미셀 조성물을 제조하는 단계.
일실시예에서, 상기 제조방법은 2가 또는 3가 금속이온으로 고정된 나노입자를 얻기 위하여 말단에 적어도 하나의 카르복시기를 포함하는 폴리락트산 알칼리 금속염을 사용한 경우에 있어 (c) 단계 이후에,
(c-1) 상기 고분자 미셀에 2가 또는 3가 금속이온을 첨가하여 말단에 적어도 하나의 카르복시기를 포함하는 폴리락트산 알칼리 금속염 말단기를 고정시키는 단계를 더 거칠 수 있다.
상기 (c-1)은, 상기 복합 고분자 미셀 수용액에 0.001 내지 2M의 2가 또는 3가 금속이온을 포함한 수용액을 가하고, 실온에서 0.1 내지 1시간 동안 천천히 저어주면, 상기 금속이온을 폴리락트산 염 말단기에 이온결합으로 고정시킬 수 있다.
또 다른 일실시예에서, 상기 (c) 단계 또는 (c-1) 이후에
(d) 상기 전단계에서 제조된 수용액을 멸균하는 단계;
(e) 멸균된 수용액을 용기에 충진하는 단계; 및
(f) 상기 (e) 단계에서 충진된 용기를 동결건조하는 단계를 더 거칠 수 있다.
상기 (d) 단계에서 수용액은 멸균필터로 걸러 멸균할 수 있다.
일실시예에서, 상기 (b) 단계에서의 유기용매는, 통상의 방법에 의해 제거할 수 있으며, 구체적으로는 진공 증발기를 사용하여 증발시킬 수 있다.
일실시예에서, 상기 (c) 단계에서 사용된 수용액은, 증류수, 생리식염수 또는 동결건조 보조제 수용액 등일 수 있다.
상기 (f) 단계에서, 동결건조시, 동결건조 보조제로 만니톨, 솔비톨, 락토산, 트레할로스 및 슈크로스로 구성된 군으로부터 선택되는 하나 이상을 사용할 수 있다. 바람직하게는 만니톨을 사용한다.
본 발명의 일실시예에 따른 제조방법에 의하면, 양친성 블록 공중합체으로 이루어진 미셀, 양친성 블록 공중합체 및 폴리락트산 알칼리 금속염로 이루어진 미셀, 및 양친성 블록 공중합체 및 카르복시 말단이 2가 또는 3가의 금속이온으로 고정된 폴리락트산염으로 이루어진 나노입자 내부에 약물이 복합되어 포함된 조성물을 얻을 수 있으며, 또한 이들 3종류의 고분자 조성물을 혼합하는 것도 가능하다.
<내부에 탁산이 봉입된 고분자 미셀 또는 나노입자와 싸이클로스포린이 봉입된 고분자 미셀 또는 나노입자가 혼합된 항암제 조성물의 제조>
상기 조성물은, 탁산이 봉입된 고분자 미셀 또는 나노입자와 싸이클로스포린이 봉입된 고분자 미셀 또는 나노입자가 균일하게 혼합된 형태이다.
상기 두 가지 혼합 미셀 조성물을 제조하는 방법은, 각 약물이 포함된 고분자 미셀 조성물을 혼합하여 제조하는 것을 특징으로 한다.
탁산이 봉입된 고분자 미셀 조성물과 싸이클로스폴린이 봉입된 고분자 미셀 조성물이 혼합된 항암제 조성물의 제조방법은, 다음의 단계들을 포함한다.
(a) 탁산과 싸이클로스포린을 각각 양친성 이중블록 공중합체 및 임의의 성분으로 말단에 적어도 하나의 카르복시기를 포함하는 폴리락트산 알칼리 금속염과 함께 각각 에탄올, 메탄올, 프로판올, 아세톤, 아세토니트릴, 디클로로메탄, 클로로포름, 에틸메틸케톤 및 아세트산 에틸로 구성된 군으로부터 선택되는 하나 이상의 유기용매에 개별적으로 가용화시켜 용액을 얻는 단계;
(b) 각 용액으로부터 유기용매를 제거하여, 탁산과 고분자가 균일하게 혼합된 혼합물, 및 싸이클로스포린과 고분자가 균일하게 혼합된 혼합물을 각각 제조하는 단계; 및
(c) 상기 (b) 단계에서 제조된 각각의 혼합물에 수용액을 가하여, 탁산이 봉입된 고분자 미셀 조성물과 싸이클로스포린이 봉입된 고분자 미셀 조성물을 각각 제조하고, 상기 각 미셀 조성물을 혼합하여 혼합 미셀 조성물을 제조하는 단계.
일실시예에서, 상기 제조방법은 2가 또는 3가 금속이온으로 고정된 나노입자를 얻기 위하여 말단에 적어도 하나의 카르복시기를 포함하는 폴리락트산 알칼리 금속염를 사용한 경우에 있어 (c) 단계 이후에,
(c-1) 상기 각 혼합 고분자 미셀에 2가 또는 3가 금속이온을 첨가하여 폴리락트산 염 말단기를 고정시키는 단계를 더 거칠 수 있다.
상기 (c-1)은 상기 혼합 고분자 미셀 수용액에 0.001 내지 2M의 2가 또는 3가 금속이온을 포함한 수용액을 가하고, 실온에서 0.1 내지 1시간 동안 천천히 저어주면, 금속이온을 폴리락트산 염 말단기에 이온결합으로 고정시킬 수 있다.
또 다른 일실시예에서, 상기 (c) 단계 이후에
(d) 상기 전 단계에서 제조된 혼합 미셀 조성물을 멸균하는 단계;
(e) 멸균된 혼합 수용액을 용기에 충진하는 단계; 및
(f) 상기 (e) 단계에서 충진된 용기를 동결건조하는 단계를 더 거칠 수 있다.
상기 두 가지 형태의 단계별 제조방법에서, (d)~(f)의 단계는 제조된 조성물에 대한 부가적인 후처리 공정에 해당된다.
상기 단계 (b)에서의 유기용매는 통상의 방법에 의해 제거할 수 있으며, 구체적으로는 진공 증발기를 사용하여 증발시킬 수 있다.
일실시예에서, 상기 (c) 단계에서 사용된 수용액은, 증류수, 생리식염수 또는 동결건조 보조제 수용액일 수 있다.
상기 (f) 단계에서 동결건조시, 동결건조 보조제로 만니톨, 솔비톨, 락토산, 트레할로스 및 슈크로스로 구성된 군으로부터 선택되는 하나 이상을 사용할 수 있다. 바람직하게는 만니톨을 사용한다.
본 발명의 일실시예에 따른 제조방법에 의하면, 양친성 블록 공중합체으로 이루어진 미셀, 양친성 블록 공중합체 및 폴리락트산 알칼리 금속염로 이루어진 미셀, 및 양친성 블록 공중합체 및 카르복시 말단이 2가 또는 3가의 금속이온으로 고정된 폴리락트산염으로 이루어진 나노입자 내부에 약물이 봉입된 혼합 조성물을 얻을 수 있으며, 또한 이들 3종류의 고분자 조성물을 혼합하는 것도 가능하다.
상기 내성암 치료용 항암제 조성물은 방부제, 안정화제, 수화제 또는 유화 촉진제, 삼투압 조절을 위한 염 및/또는 완충제 등의 약제학적 보조제 및 기타 치료적으로 유용한 물질을 추가로 함유할 수 있으며, 통상적인 방법에 따라 다양한 경구 또는 비경구 투여 형태로 제형화할 수 있다.
비경구 투여용 제형으로는, 직장, 국소, 경피, 정맥 내, 근육 내, 복강 내, 피하 등으로 투여될 수 있으며, 대표적인 것은 주사용 제형으로 등장성 수용액 또는 현탁액의 형태이다. 본 발명의 일실시예에서, 상기 내성암 치료용 항암제 조성물은 동결건조 형태로 제조될 수 있으며, 주사용 증류수, 5% 포도당 및 생리 식염수 등으로 재건하여 혈관으로 주사하는 형태로 투여될 수 있다.
경구 투여용 제형으로는 예를 들면, 정제, 환제, 경질 및 연질 캅셀제, 액제, 현탁제, 유화제, 시럽제, 과립제 등이 있는데, 이들 제형은 유효성분 이외에 희석제(예: 락토즈, 덱스트로즈, 수크로즈, 만니톨, 솔비톨, 셀룰로즈 및 글리신), 활택제(예: 실리카, 탈크, 스테아르산 및 그의 마그네슘 또는 칼슘염 및 폴리에틸렌 글리콜)를 함유하고 있다. 정제는 또한 마그네슘 알루미늄 실리케이트, 전분 페이스트, 젤라틴, 트라가칸스, 메틸셀룰로즈, 나트륨 카복시메틸셀룰로즈 및 폴리비닐피롤리딘과 같은 결합제를 함유할 수 있으며, 경우에 따라 전분, 한천, 알긴산 또는 그의 나트륨 염과 같은 붕해제, 흡수제, 착색제, 향미제, 및 감미제 등의 약제학적 첨가제를 함유할 수 있다. 정제는 통상적인 혼합, 과립화 또는 코팅 방법에 의해 제조될 수 있다. 또한, 비경구 투여용 제형의 대표적인 것은 주사용 제형으로 등장성 수용액 또는 현탁액이 바람직하다.
한편, 싸이클로스포린의 인체 투여 허용량은 190~230mg/m3/day 이며, 천천히 점적 정맥주사 하는 것이 가능하다. 상기 탁산 중에서, 예를 들어, 상기 파클리탁셀이 탁솔ㄾ인 경우 175mg/m3 의 양을 천천히 3시간에 걸쳐 점적 정맥주사할 수 있고, 아브락산ㄾ의 경우에는 300mg/m3까지 점적 정맥주사하는 것이 가능하다.
본 발명에 따른 항암제 조성물은, 약물이 암조직으로 이행하여 고농도로 축적되는, P-당단백 과다발현에 의한 내성암에 유효성을 나타내는 탁산과 P-당단백 억제제 싸이클로스포린의 복합 또는 혼합 고분자 조성물로서, 내성암을 이식시킨 동물실험에서 내성암에 대한 유효성이 현저히 향상됨을 확인하였다.
이하, 본 발명의 바람직한 실시예들을 통해 본 발명을 더욱 상술하지만, 하기 실시예들은 본 발명의 효과를 예시적으로 확인하기 위한 것이며, 본 발명의 범주가 이들만으로 한정되는 것은 아니다.
본 발명에서 사용한 양친성 이중 블록 공중합체 및 말단에 적어도 하나의 카르복시기를 포함하는 폴리락트산 알칼리 금속염은 대한민국 특허출원 제2005-7020313호에 개시된 방법에 따라 제조되었다.
[실시예 1] 파클리탁셀 및 싸이클로스포린이 함께 봉입된 양친성 이중블록 공중합체를 포함하는 항암제 복합 미셀 조성물의 제조
본 실시예에서는, 파클리탁셀과 싸이클로스포린이 함께 봉입된 복합 양친성 이중블록 공중합체, 모노메톡시폴리에틸렌글리콜-폴리락타이드(mPEG-PLA) 블록 공중합체를 포함하는 내성암 치료용 항암제 복합 조성물을 제조하였다.
표 1의 함량 각 물질을 취하여 디클로로메탄과 메탄올을 1:1 비율로 혼합한 10ml의 유기용매에 가용화 시킨 후, 진공증발기로 유기용매를 증발시켜 파클리탁셀, 싸이클로스포린 및 고분자가 균일하게 혼합된 조성물을 제조하였다. 제조된 조성물에, 파클리탁셀의 농도기준으로 최종농도가 3mg/ml이 되도록 수용액을 가하여 파클리탁셀과 싸이클로스포린이 함께 봉입된 고분자 미셀 조성물을 제조하였다. 제조된 조성물을 멸균필터로 걸러서, 유리 바이알에 분주하고 만니톨 100mg을 첨가하여 동결건조하였다.
표 1
mPEG-PLA(mg) 파클리탁셀(PTX)(mg) 싸이클로스포린 (CyA)(mg) PTX/CyA
조성물 1 577.8 10 20 0.5
조성물 2 400 10 10 1.0
mPEG-PLA 수평균 분자량: 2,000 - 1,500달톤
[실시예 2] 파클리탁셀 및 싸이클로스포린이 함께 봉입된 양친성 이중블록 공중합체 및 폴리락트산 알칼리 금속염을 포함하는 항암제 복합 미셀 조성물의 제조
본 실시예에서는, 파클리탁셀과 싸이클로스포린이 함께 봉입된 복합 양친성 이중블록 공중합체, mPEG-PLA 및 폴리락트산 나트륨염(PLA-COONa)을 포함하는 내성암 치료용 항암제 복합 미셀 조성물을 제조하였다.
표 2의 함량대로 각 성분을 취한 후 디클로로메탄과 메탄올을 1:1 비율로 혼합한 유기용매에 가용화 시킨 후, 진공증발기로 유기용매를 증발시켜 파클리탁셀, 싸이클로스포린 및 고분자가 균일하게 혼합된 조성물을 제조하였다. 제조된 조성물에, 파클리탁셀의 최종농도가 3mg/ml 이 되도록 수용액을 가하여 파클리탁셀과 싸이클로스포린이 함께 봉입된 고분자 복합 미셀 조성물을 제조하였다. 제조된 조성물을 멸균필터로 걸러서, 유리 바이알에 분주하여 만니톨 100 mg을 첨가하여 동결건조하였다.
표 2
mPEG-PLA(mg) PLA-COONa(mg) 파클리탁셀(PTX)(mg) 싸이클로스포린(CyA)(mg) PTX/CyA
조성물 3 400 177.78 10 20 0.5
조성물 4 276.9 123.11 10 10 1.0
조성물 5 400 177.78 20 10 2.0
mPEG-PLA 수평균 분자량: 2,000 - 1,500달톤PLA-COONa 수평균 분자량: 1,300달톤
[실시예 3] 도세탁셀과 싸이클로스포린이 함께 봉입된 고분자 복합 미셀 조성물의 제조
파클리탁셀 외 도세탁셀을 사용하는 것을 제외하고는 실시예 1 및 2와 동일한 방법으로 하여 도세탁셀 및 싸이클로스포린이 일정 비율로 동시에 양친성 블록 공중합체 및 폴리락트산 알칼리 금속염에 의해 봉입되된 미셀 조성물을 제조하였다. 구체적인 조성은 표 3과 같다.
표 3
조성물 mPEG-PLA(mg) 도세탁셀(DTX)(mg) 싸이클로스포린(CyA)(mg) DTX/CyA
조성물 6 577.8 10 20 0.5
조성물 7 400 10 10 1.0
[실시예 4] 도세탁셀과 싸이클로스포린이 함께 봉입된 고분자 복합 나노입자 조성물의 제조
표 4의 함량대로 각 성분을 취한 후, 디클로로메탄과 메탄올을 1:1 비율로 혼합한 유기용매에 가용화 시킨 후, 진공증발기로 유기용매를 증발시켜 도세탁셀, 싸이클로스포린 및 고분자가 균일하게 혼합된 조성물을 제조하였다. 제조된 조성물에, 도세탁셀의 최종농도가 3mg/ml 이 되도록 수용액을 가하여 도세탁셀과 싸이클로스포린이 함께 봉입된 고분자 복합 미셀 조성물을 제조하였다. 여기에 0.2M 무수 염화칼슘 수용액을 첨가하여 실온에서 20분간 교반하였다. 제조된 나노입자 조성물을 멸균필터로 걸러서, 유리 바이알에 분주하여 만니톨 100mg을 첨가하여 동결건조하였다.
표 4
mPEG-PLA(mg) PLA-COONa(mg) 도세탁셀(DTX)(mg) 싸이클로스포린(CyA)(mg) CaCl2(mg) DTX/CyA
조성물 8 400 177.78 10 20 11.54 0.5
조성물 9 276.9 123.11 10 10 8.03 1.0
조성물 10 400 177.78 20 10 11.54 2.0
mPEG-PLA 수평균 분자량: 2,000 - 1,500달톤PLA-COONa 수평균 분자량: 1,300달톤
[실시예 5] 파클리탁셀 봉입된 고분자 미셀과 싸이클로스포린이 봉입된 고분자 미셀이 균일하게 혼합된 항암제 혼합 미셀 조성물의 제조
본 실시예에서는, 파클리탁셀과 싸이클로스포린이 각각 봉입된 고분자 미셀 조성물을 제조한 후, 상기 두 가지 미셀 조성물을 혼합하여 내성암 치료용 항암제 조성물을 제조하였다.
가) 싸이클로스포린, 양친성 이중블록 공중합체 및 폴리락트산 알칼리 금속염 함유 고분자 미셀 조성물
아래의 조성을 포함하는 혼합물을 제조하였다.
싸이클로스포린 50mg
mPEG-PLA(2,000-1,500달톤) 750mg
PLA-COONa(1,300달톤) 250mg
위의 혼합물을, 에탄올에 가용화시킨 후 진공증발기로 유기용매를 증발시켰다. 상기 건조물에 싸이클로스포린 농도가 3mg/ml이 되도록 수용액을 가하여, 싸이클로스포린이 봉입된 고분자 미셀 조성물을 제조하였다.
나) 파클리탁셀 함유 양친성 이중블록 공중합체
파클리탁셀 50mg
mPEG-PLA(2,000-1,500달톤) 2,500mg
위의 혼합물을, 에탄올에 가용화시킨 후 진공증발기로 유기용매를 증발시켰다. 상기 건조물에 파클리탁셀 농도가 3mg/ml가 되도록 수용액을 가하여, 파클리탁셀이 봉입된 고분자 미셀 조성물을 제조하였다.
다) 혼합 고분자 미셀 조성물의 제조
파클리탁셀/싸이클로스포린의 중량비가 1.0이 되도록, 앞서 제조한 파클리탁셀 함유 고분자 미셀 조성물과 싸이클로스포린 함유 고분자 미셀 조성물을 수용액에서 혼합하여 혼합 고분자 미셀 조성물을 제조하였다.
혼합 고분자 미셀 조성물을 멸균필터로 걸러 멸균하고, 유리 바이알에 충진한 후 만니톨 100mg을 가하여 동결건조 하였다.
상기 과정을 통해 제조된 조성물에 대하여 입자크기를 측정하여, 하기 표 5에 나타내었다.
표 5
조성물 11 실시예 5. 가) 싸이클로스포린 함유 고분자 미셀 조성물 입자크기: 20 ~ 30nm
조성물 12 실시예 5. 나) 파클리탁셀 함유 고분자 미셀 조성물 입자크기: 17 ~ 24nm
조성물 13 실시예 5. 다) 파클리탁셀 함유 고분자 미셀 조성물과 싸이클로스포린 함유 고분자 미셀 조성물의 혼합 미셀 조성물 입자크기: 17 ~ 30nm
[실시예 6] 도세탁셀이 봉입된 고분자 나노입자 조성물과 싸이클로스포린이 봉입된 고분자 나노입자 조성물의 혼합 나노입자 조성물 제조
본 실시예에서는, 도세탁셀과 싸이클로스포린을 각각 함유하는 고분자 나노입자 조성물을 제조한 후, 상기 두 가지 고분자 나노입자를 혼합한 조성물을 제조하였다.
가) 싸이클로스포린 함유 고분자 나노입자 조성물
아래의 조성을 포함하는 2가의 금속이온으로 고정된 나노입자를 제조하였다.
싸이클로스포린 20mg
mPEG-PLA(2,000-1,500달톤) 300mg
D,L-PLACOONa(1,300달톤) 60mg
위의 혼합물을, 실시예 2와 동일한 방법으로 에탄올에 가용화시킨 후 진공증발기로 유기용매를 증발시켰다. 상기 건조물에 싸이클로스포린 농도가 3mg/ml이 되도록 수용액을 가한 후 CaCl2 3.9mg을 첨가하여, 싸이클로스포린이 함유된 고분자 나노입자 조성물을 제조하였다.
나) 도세탁셀 함유 나노입자 조성물
도세탁셀 20mg
mPEG-PLA(2,000-1,500달톤) 500mg
D,L-PLACOONa(1,300달톤) 167mg
상기 도세탁셀에 에탄올을 가하여 완전히 용해시킨 후, 상기 고분자를 넣고 완전히 용해될 때까지 가용화였다. 약물이 함유된 혼합액에 수용액에 CaCl2 10.89mg을 첨가하여 전자 마그네틱 믹서기로 완전히 혼합시켰다.
다) 도세탁셀이 봉입된 고분자 미셀 조성물과 싸이클로스포린이 봉입된 고분자 미셀 조성물의 혼합 미셀 조성물의 제조
도세탁셀/싸이클로스포린의 중량비가 1.0이 되도록 앞서 제조한 도세탁셀 함유 고분자 미셀 조성물과 싸이클로스포린 함유 고분자 미셀 조성물이 혼합된 고분자 나노입자 조성물을 제조하였다.
제조된 수용액을 멸균필터로 걸러 멸균하고, 유리 바이알에 충진한 후 만니톨 100mg을 가하여 동결건조 하였다. 상기 과정을 통해 제조된 조성물에 대하여 입자크기를 측정하여, 하기 표 6에 나타내었다.
표 6
조성물 14 실시예 6. 가) 싸이클로스포린 함유 양친성 이중블록 공중합체를 포함하는 조성물 입자크기: 20 ~ 30nm
조성물 15 실시예 6. 나) 도세탁셀 함유 양친성 이중블록 공중합체를 포함하는 조성물 입자크기: 17 ~ 20nm
조성물 16 실시예 6. 다) 싸이클로스포린 함유 양친성 이중블록 공중합체와 도세탁셀 함유 양친성 이중블록 공중합체가 혼합된 조성물 입자크기: 17 ~ 30nm
[실험예 1] 파클리탁셀 및 싸이클로스포린이 함께 봉입된 복합 미셀의 입도 측정 실험
실시예 2의 조성물 5를, 파클리탁셀 기준, 최종 농도값이 3mg/ml이 되도록 생리식염수로 재건하였으며, 같은 용매로 20배 희석하여 입도 측정을 위한 시료를 제조하였다. 희석된 조성물 5 용액을 입도 분석기를 이용하여 측정한 결과는, 하기 도 1과 같다.
도 1을 참조하면, 고분자 미셀의 입자 크기는 40~50nm이고, 평균 나노입자 크기가 다분산지수(polydispersity index) 0.200 미만의 값을 보여, 매우 균일한 나노 입자의 형태임을 알 수 있다.
[실험예 2] 파클리탁셀 및 싸이클로스포린이 함께 봉입된 미셀에 대한 안정성 평가
실험예 1에서 희석된 조성물 5 용액의 안전성을 평가하기 위하여, 24시간 동안 상온에 방치하였다. 방치된 시간에 따라, 일부 용액을 취하여 HPLC(high-performance liquid chromatography)를 이용해 파클리탁셀과 사이클로스포린의 농도를 각각 측정하였다. 측정된 결과는 하기 도 2에 나타내었으며, HPLC의 구체적인 조건은 아래와 같다 (표 7 참조).
표 7
파클리탁셀 농도 분석 조건 싸이클로스포린 농도 분석 조건
주입부피: 0.010ml유속: 1.5ml/분파장: 227nm이동상: 아세토니트릴 55%와 초순수 정제수 45%칼럼: 4.6 x 250mm (C18, Vydac, USA)약물 피크: 4.52min 주입부피: 0.020ml유속: 2ml/분파장: 215nm이동상: 아세토니트릴 70%와 초순수 정제수 30%칼럼: 4.6 x 150mm (C18, ZORBAX SB-CN, USA)칼럼 온도: 60도약물 피크: 1.376min
도 2를 참조하면, 고분자 미셀에 함유되어 있는 파클리탁셀과 싸이클로스포린의 농도를 측정함으로써, 그 방출량을 산출해낼 수 있다. 도 2에는, 파클리탁셀과 싸이클로스포린의 농도가 98% 이상을 유지하고 있으며, 이를 통해, 상기 두 가지 약물들의 방출양은 2% 이내로 거의 약물이 방출되지 않음을 확인할 수 있다.
[실험예 3] 파클리탁셀과 싸이클로스포린이 함께 봉입된 미셀의 혈류 체류시간 및 약물의 이행 정도 평가
파클리탁셀과 싸이클로스포린이 함께 봉입된 조성물 5의 혈류 체류시간에 대한 영향 및 뇌로의 약물의 이행 정도를 평가하였다.
동물실험을 위해, 군당 5 마리씩 20-25g, 8주된 ICR 마우스를 사용하였다. 실시예 2의 조성물 5, 실시예 5의 조성물 12 및 시판 제품인 탁솔® 주사제를 파클리탁셀 기준 5mg/kg의 농도로 꼬리 정맥 주사하였다. 투여 후 10, 30분 및 1, 5, 10, 24, 48시간에 각각의 마우스의 전혈과 뇌 조직을 적출하였다.
채혈한 전혈은 원심분리 하여 0.1ml의 맑은 상등 혈장을 뚜껑 덮인 유리관에 가하고, 적출한 뇌 조직은 무게의 4배 정도의 초순수 정제수를 넣고 조직 분쇄기를 이용하여 조직을 분쇄한 후, 역시 혈장과 동일한 부피로 떠서 뚜껑 덮인 유리관에 가하였다. 각각의 혈장과 조직이 들어있는 시료에 내부 표준물질을 함유하는 0.1ml의 아세토니트릴 용액을 첨가한다. 10ml의 에틸아세테이트를 상기 용액에 가하고 혼합물을 30초간 격렬히 혼합한 후, 2,500 pm에서 10분간 원심분리하였다. 전체 에틸아세테이트층을 취하여 시험관으로 옮긴 후, 유기용매를 40℃에서 질소 기류하에서 완전히 증발시켰다. 0.1ml의 40%(v/v) 아세토니트릴 용액을 가하고, 혼합물을 30초간 격렬히 교반한 후, HPLC를 수행하였다. HPLC 조건은 아래와 같고, 양친성 이중블록 공중합체의 크기와 약물 혈장농도 분석결과는 도 3에 나타내었고, 뇌 조직에서의 약물 이행 정도는 도 4에 나타내었다.
주입부피: 0.075ml
유속: 1.0ml/분
파장: 227nm
이동상: 5분간 24% 아세토니트릴 수용액, 16분간 58%로 증가, 2분간 70%로 증가, 4분간 34%로 감소하고 5분간 유지
칼럼: 4.6 x 250mm (C18, Vydac, USA).
[실험예 4] P-당단백에 대한 억제효과 평가
세포독성에 영향을 주지 않으면서 P-당단백 억제 효과를 최대로 보이는 1.88ug/ml 농도의 싸이클로스포린이 분주된 DLD-1 직장암 세포주에서 파클리탁셀의 IC50 값은 파클리탁셀 단독 투여시의 IC50 값과 비교하여 15 배(160ng/ml → 11ng/ml) 감소하는 결과를 보여주었다.
[실험예 5] 혼합 양친성 이중블록 공중합체의 혈류 체류시간에 따른 영향 평가
본 실험에서는 실시예 5의 조성물 12과 조성물 13의 혈류 체류시간에 대한 영향을 평가하고자 하였다.
동물실험을 위해, 체중 210-250g의 웅성 스프래그-도울리 랫트를 사용하였고, 파클리탁셀 기준으로 5mg/kg 용량을 정맥주사 후 5, 15, 30분 및 1, 3, 6, 8, 20시간 마다 0.3ml의 전혈을 꼬리 동맥으로 채혈하였다. 채혈한 전혈은 원심분리 하여 0.1ml의 맑은 상등 혈장을 뚜껑 덮인 유리관에 가하고, 내부 표준물질을 함유하는 0.1 ml의 아세토니트릴 용액을 가하였다. 10ml의 에틸아세테이트를 상기 용액에 가하고 헌합물을 30초간 격렬히 혼합한 후, 2,500rpm에서 10분간 원심분리 하였다. 전체 에틸아세테이트층을 취하여 시험관으로 옮긴 후, 유기용매를 40℃에서 질소 기류하에서 완전히 증발시켰다. 0.1ml의 40%(v/v) 아세토니트릴 용액을 가하고, 혼합물을 30초간 격렬히 교반한 후, HPLC를 수행하였다. HPLC조건은 아래와 같고, 양친성 이중블록 공중합체의 크기와 약물 혈장농도 분석결과는 도 5에 나타내었다.
주입부피: 0.075ml
유속: 1.0ml/분
파장: 227nm
이동상: 5분간 24% 아세토니트릴 수용액, 16분간 58%로 증가, 2분간 70%로 증가, 4분간 34%로 감소하고 5분간 유지
칼럼: 4.6 x 250mm (C18, Vydac, USA).
도 5를 참조하면, 조성물 13은 조성물 12에 비해 혈중 내 체류시간이 더 긴 것으로 나타났다. 이러한 결과로부터, 싸이클로스포린으로 인해 파클리탁셀의 혈중 농도가 증가하는 것을 알 수 있다.
[실험예 6] 혼합 고분자 미셀 조성물의 항암 활성 평가
실시예 5의 조성물 11 내지 13의 항암 활성을 살펴보았다.
세포를 액체 질소에서 저장된 것으로부터 채취하고 시험관 내 세포배양으로 확립하였다. 세포를 수획한 후, 멸균 이산 완층 식염수(PBS)로 세척하고, 생존 세포 수를 측정하였다. 세포를 7x107세포/ml의 농도로 멸균 PBS에 재현탁하였다.
건강한 누드(nu/nu) 비흉선 마우스(20-25g, 8-주령)의 오른쪽 옆구리에 7x106 인간 대장내성암세포(DLD-1)를 함유하는 0.1ml의 세포현탁액을 피하 주사하였다. 암이 일정한 크기에 도달한 후, 3회 이종이식하여 3~4mm의 이종이식편을 형성하였다. 이종이식 단편을 건강한 누드(nu/nu) 비흉선 마우스(20-25g, 8주령)의 오른쪽 옆구리에 12 게이지 트로카 니들로 피하 주사하였다. 암 부피가 100~300 m3에 도달한 후, 약물을 투여하고 이 시점을 0일로 기록하였다. 0일에, 마우스를 5그룹으로 나누고 0, 3 및 6일에, 싸이클로스포린 함유 고분자 미셀 조성물(조성물 11), 파클리탁셀 함유 고분자 미셀 조성물 (조성물 12) 및 혼합 고분자 미셀 조성물 (조성물 13)을 꼬리 정맥을 통해 파클리탁셀 기준으로 35mg/kg, 사이클로스포린 35mg/kg의 용량으로 투여하였다.
시간 경과에 따라 암 부피를 측정하였으며, 암 부피는 하기 수학식 1에 의해 계산하였다.
수학식 1
Figure PCTKR2009006882-appb-M000001
또한, 치료효과를 평가하기 위해, 종양 부피를 아래의 수학식 2와 같이 계산하였다.
수학식 2
Figure PCTKR2009006882-appb-M000002
상대적 종양부피(RTV) = (Vt/Vo)x100% (Vt: t일의 TV, Vo: 0일의 TV)
실험을 유의한 것으로 인정하기 위하여, 처리당 4 마리 이상의 마우스와 그룹당 4 개 이상의 종양을 사용하였다. 처리개시 시점에서, 최소 종양 직경은 4mm 또는 30mm3 부피이었다. 최종 약물투여 후, 2 주 내에 죽는 동물을 독성사멸로 간주하고 평가에서 제외하였다. 3마리당 1마리 보다 많은 독성 사멸이나 평균체중이 15% 초과하여 감소한 후 완전히 회복되지 않는 처리군은 항종양 효능이 없는 것으로 간주하였다. 실험결과는 도 6에 나타내었다.
도 6을 참조하면, 싸이클로스포린 함유 고분자 미셀 조성물(조성물 11) -처리군의 경우에는, 단독 투여로는 항암 활성에 영향을 전혀 주지 않으며, 대조군보다 오히려 암 성장부피가 크다는 것을 알 수 있다. 그러나, 파클리탁셀 함유 고분자 미셀 조성물 (조성물 12)이나 혼합 고분자 미셀 조성물(조성물 13)-처리군의 경우에는, 대조군에 비해 암 성장억제를 나타냈으며, 특히 혼합 고분자 미셀 조성물(조성물 13)-처리군은 파클리탁셀 함유 고분자 미셀 조성물(조성물 12)-처리군에 비해 높은 암 억제율을 나타내었다.

Claims (18)

  1. 양친성 이중블록 공중합체 및 유효성분으로서 탁산 및 P-당단백 억제제인 싸이클로스포린을 포함하는 내성암 치료용 고분자 미셀 조성물.
  2. 제 1 항에 있어서,
    상기 조성물은 말단에 카르복시기를 포함하는 폴리락트산 알칼리 금속염을 더 포함하는 것을 특징으로 하는 내성암 치료용 고분자 미셀 조성물.
  3. 제 1 항에 있어서,
    상기 조성물은 카르복시 말단이 2가 또는 3가 금속이온으로 고정된 폴리락트산을 더 포함하는 것을 특징으로 하는 내성암 치료용 고분자 미셀 조성물.
  4. 제 1 항에 있어서,
    상기 조성물은 하나의 미셀 내부에 탁산과 싸이클로스포린이 함께 포함된 것을 특징으로 하는 내성암 치료용 고분자 미셀 조성물.
  5. 제 1 항에 있어서,
    상기 조성물은, 탁산이 봉입된 고분자 미셀과 싸이클로스포린이 봉입된 고분자 미셀이 혼합된 형태인 것을 특징으로 하는 내성암 치료용 고분자 미셀 조성물.
  6. 제 1 항에 있어서, 상기 조성물은,
    하나의 미셀 내부에 탁산과 싸이클로스포린이 함께 포함된 조성물; 및
    탁산이 봉입된 고분자 미셀과 싸이클로스포린이 봉입된 고분자 미셀이 혼합된 형태의 조성물이 혼합된 형태인 것을 특징으로 하는 내성암 치료용 고분자 미셀 조성물.
  7. 제 1 항 내지 제 6 항 중 어느 한 항에 있어서,
    상기 탁산은, 파클리탁셀(paclitaxel), 도세탁셀(docetaxel), 7-에피파클리탁셀(7-epipaclitaxel), t-아세틸 파클리탁셀(t-acetyl paclitaxel), 10-데스아세틸 파클리탁셀(10-desacetyl-paclitaxel), 10-데스아세틸-7-에피파클리탁셀 (10-desacetyl-7-epipaclitaxel), 7-크실로실파클리탁셀(7-xylosylpaclitaxel), 10-데스아세틸-7-글루타릴파클리탁셀(10-desacetyl-7-glutarylpaclitaxel), 7-N,N-디메틸글리실파클리탁셀(7-N,N-dimethylglycylpaclitaxel), 7-L-알라닐파클리탁셀(7-L-alanylpaclitaxel) 또는 이들의 혼합물인 것을 특징으로 하는 내성암 치료용 고분자 미셀 조성물.
  8. 제 1 항에 있어서,
    상기 양친성 이중블록 공중합체는 친수성 블록(A)과 소수성 블록(B)으로 구성된 A-B형 이중블록 공중합체로서,
    상기 친수성 블록(A)은, 폴리에틸렌 글리콜 및 메톡시 폴리에틸렌 글리콜로 구성되는 군으로부터 선택되는 하나 이상이며,
    상기 소수성 블록(B)은 폴리락트산, 폴리락타이드, 폴리글리콜라이드, 폴리만델릭산, 폴리카프로락톤, 폴리디옥산-2-온, 폴리아미노산, 폴리오르소에스터, 폴리언하이드라이드 및 그들의 공중합체로 이루어진 군에서 선택되는 하나 이상인 것을 특징으로 하는 내성암 치료용 고분자 미셀 조성물.
  9. 제 8 항에 있어서,
    상기 친수성 블록(A)의 수평균분자량은 500 내지 20,000달톤이며, 상기 소수성 블록(B)의 수평균분자량은 500 내지 10,000달톤이고, 친수성 블록(A)의 함량은 이중블록 공중합체 전체 중량을 기준으로 40 내지 70 중량%인 것을 특징으로 하는 내성암 치료용 고분자 미셀 조성물.
  10. 제 1 항에 있어서,
    상기 싸이클로스포린(b)에 대한 탁산(a)의 중량비(a/b)는, 0.1 내지 2.0 범위인 것을 특징으로 하는 내성암 치료용 고분자 미셀 조성물.
  11. 제 1 항에 있어서,
    상기 탁산과 싸이클로스포린을 합산한 함량은, 조성물 전체 중량을 기준으로, 0.1 내지 20중량%인 것을 특징으로 하는 내성암 치료용 고분자 미셀 조성물.
  12. 제 1 항에 있어서,
    상기 조성물은, 조성물 전체 중량을 기준으로,
    탁산 0.01 내지 10중량%;
    싸이클로스포린 0.01 내지 10중량%; 및
    양친성 이중블록 공중합체 80 내지 99.8중량%를 포함하는 것을 특징으로 하는 내성암 치료용 고분자 미셀 조성물의 제조방법.
  13. 제 1 항에 있어서,
    상기 조성물은, 조성물 전체 중량을 기준으로,
    탁산 0.01 내지 10중량%;
    싸이클로스포린 0.01 내지 10중량%;
    양친성 이중블록 공중합체 40 내지 90중량%; 및
    말단에 카르복시기를 포함하는 폴리락트산 알칼리 금속염 10 내지 50중량%를 포함하는 것을 특징으로 하는 내성암 치료용 고분자 미셀 조성물의 제조방법.
  14. 유효성분으로서, 탁산 및 싸이클로스포린을 함유하는 내성암 치료용 고분자 미셀 조성물을 제조하는 방법으로,
    (a) 탁산, 싸이클로스포린 및 양친성 이중블록 공중합체를 유기용매에 가용화시키는 단계;
    (b) 유기용매를 증발시켜 탁산, 싸이클로스포린 및 고분자가 균일하게 혼합된 혼합물을 제조하는 단계; 및
    (c) 상기 (b) 단계에서 제조된 혼합물에 수용액을 가하여, 내부에 탁산과 싸이클로스포린이 봉입된 고분자 미셀을 제조하는 단계를 포함하는 내성암 치료용 고분자 미셀 조성물의 제조방법.
  15. 유효성분으로서, 탁산 및 싸이클로스포린을 함유하는 내성암 치료용 고분자 미셀 조성물을 제조하는 방법으로,
    (a) 탁산, 싸이클로스포린 및 양친성 이중블록 공중합체, 및 적어도 하나의 말단에 카르복시기를 포함하는 폴리락트산 알칼리 금속염을 유기용매에 가용화시키는 단계;
    (b) 유기용매를 증발시켜 탁산, 싸이클로스포린 및 고분자가 균일하게 혼합된 혼합물을 제조하는 단계; 및
    (c) 상기 (b) 단계에서 제조된 혼합물에 수용액을 가하여, 내부에 탁산과 싸이클로스포린이 봉입된 고분자 미셀을 제조하는 단계를 포함하는 내성암 치료용 고분자 미셀 조성물의 제조방법.
  16. 제 14 항 또는 제 15 항에 있어서,
    (c) 단계 이후에,
    (c-1) 고분자 미셀에 2가 또는 3가 금속이온을 첨가하여 상기 폴리락트산 염 말단기를 고정시키는 단계를 더 포함하는 것을 특징으로 하는 고분자 미셀 조성물의 제조방법.
  17. 제 14 항 또는 제 15 항에 있어서,
    싸이클로스포린(b)에 대한 탁산(a)의 중량비(a/b)는, 0.1 내지 2.0 범위인 것을 특징으로 하는 내성암 치료용 고분자 미셀 조성물의 제조방법.
  18. 제 14 항 또는 제 15 항에 있어서,
    (c) 단계 이후에, 제조된 미셀 조성물을 동결건조하는 단계를 더 수행하는 것을 특징으로 하는 내성암 치료용 고분자 미셀 조성물의 제조방법.
PCT/KR2009/006882 2008-11-21 2009-11-23 내성암 치료용 고분자 미셀 조성물 및 그 제조방법 WO2010059001A2 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN2009801550218A CN102292109A (zh) 2008-11-21 2009-11-23 用于治疗耐受性癌症的聚合物胶束组合物及其制备方法
EP09827766.8A EP2359860B1 (en) 2008-11-21 2009-11-23 Polymer micelle composition for treatment of resistant cancer cells
US13/130,259 US20110224151A1 (en) 2008-11-21 2009-11-23 Polymeric Micelle Composition for Treatment of Resistant Cancer and Preparation Method of the Same
JP2011537369A JP5449388B2 (ja) 2008-11-21 2009-11-23 耐性がん治療用高分子ミセル組成物及びその製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2008-0116141 2008-11-21
KR20080116141 2008-11-21

Publications (2)

Publication Number Publication Date
WO2010059001A2 true WO2010059001A2 (ko) 2010-05-27
WO2010059001A3 WO2010059001A3 (ko) 2010-09-10

Family

ID=42198692

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2009/006882 WO2010059001A2 (ko) 2008-11-21 2009-11-23 내성암 치료용 고분자 미셀 조성물 및 그 제조방법

Country Status (6)

Country Link
US (1) US20110224151A1 (ko)
EP (1) EP2359860B1 (ko)
JP (1) JP5449388B2 (ko)
KR (1) KR20110091515A (ko)
CN (1) CN102292109A (ko)
WO (1) WO2010059001A2 (ko)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MX353280B (es) * 2012-06-27 2018-01-05 Medincell Suministro de farmaco biodegradable para las composiciones hidrofobicas.
CN102920649B (zh) * 2012-08-24 2014-07-02 中国科学院深圳先进技术研究院 载药纳米胶束及其制备方法和应用
PL405241A1 (pl) 2013-09-04 2015-03-16 Wrocławskie Centrum Badań Eit + Spółka Z Ograniczoną Odpowiedzialnością Micela polimerowa, sposób jej wytwarzania i zastosowanie
CN104758256B (zh) * 2014-02-14 2016-05-04 苏州海特比奥生物技术有限公司 一种多西他赛纳米聚合物胶束冻干制剂及其制备方法
KR101801566B1 (ko) * 2014-12-30 2017-11-28 주식회사 삼양바이오팜 고분자 나노입자 동결건조물 및 그 제조방법
CA3004849C (en) 2015-11-16 2024-06-11 Georges Gaudriault A method for morselizing and/or targeting pharmaceutically active principles to synovial tissue
CN110538328A (zh) * 2018-05-28 2019-12-06 中国科学院宁波材料技术与工程研究所 多肽复合物和载药纳米粒子及其制法和药物组合物及应用
CN112999151B (zh) * 2019-12-19 2024-03-19 鲁南制药集团股份有限公司 一种口服用紫杉醇复合胶束
CN114246840B (zh) * 2020-09-22 2024-10-11 鲁南制药集团股份有限公司 一种口服用紫杉醇胶囊

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR0180334B1 (ko) * 1995-09-21 1999-03-20 김윤 블럭 공중합체 미셀을 이용한 약물전달체 및 이에 약물을 봉입하는 방법
US7217770B2 (en) * 2000-05-17 2007-05-15 Samyang Corporation Stable polymeric micelle-type drug composition and method for the preparation thereof
EP1448707B1 (en) * 2001-10-18 2007-08-22 Samyang Corporation Polymeric micelle composition with improved stability

Also Published As

Publication number Publication date
KR20110091515A (ko) 2011-08-11
JP2012509318A (ja) 2012-04-19
EP2359860B1 (en) 2014-08-06
CN102292109A (zh) 2011-12-21
JP5449388B2 (ja) 2014-03-19
US20110224151A1 (en) 2011-09-15
EP2359860A2 (en) 2011-08-24
EP2359860A4 (en) 2012-04-25
WO2010059001A3 (ko) 2010-09-10

Similar Documents

Publication Publication Date Title
WO2010059001A2 (ko) 내성암 치료용 고분자 미셀 조성물 및 그 제조방법
WO2011081430A2 (ko) 향상된 수용해도를 갖는 라파마이신 함유 고분자나노입자 주사제형 조성물 및 그 제조방법, 및 방사선 요법과 병용하기 위한 항암 조성물
WO2016108534A1 (ko) 고분자 나노입자 동결건조물 및 그 제조방법
WO2018092955A1 (ko) 전복에서 유래한 항균 펩타이드 유사체 및 이를 포함하는 항균용 약학 조성물
CN112351976A (zh) 紫杉烷-脂类-多聚糖双型偶联体、其制备方法及用途
AU2018289188B2 (en) Particle and pharmaceutical composition comprising an insoluble camptothecin compound with double core-shell structure and method for manufacturing the same
WO2017048028A1 (ko) 마이시니딘 펩타이드로부터 유래한 신규 항균 펩타이드 및 이의 용도
WO2011081406A2 (ko) 단백질, 폴리펩타이드 또는 펩타이드 약물 전달용 고분자 및 그 제조방법, 및 단백질, 폴리펩타이드 또는 펩타이드 약물의 서방형 조성물 및 그 제조 방법
WO2020197185A1 (en) Compositions of dispersed phase for preparation of apixaban-loaded microspheres and biocompatible polymer-based apixaban-loaded microspheres prepared therefrom
WO2019103541A1 (ko) 그래핀 나노구조체를 포함하는 항염증용 조성물
KR20130086551A (ko) 두타스테라이드 함유 자가 유화 약물전달 시스템용 조성물 및 이의 제조 방법
EA006388B1 (ru) Сложные эфиры апорфина и их применение в терапии
WO2021029541A1 (ko) 수크로오스계 계면활성제를 포함하는 탄성 리포좀 조성물 및 이를 함유하는 화장료 조성물
WO2024049167A1 (ko) 니클로사미드의 신규 염, 이의 분자회합체 및 이를 포함하는 약학 조성물
WO2020032365A1 (ko) 진세노사이드 화합물을 함유하는 인플라마좀 매개 염증성 질환의 예방 또는 치료용 조성물
WO2023172065A1 (ko) 니클로사마이드 또는 이의 약학적으로 허용 가능한 염을 포함하는 항 바이러스용 또는 항암용 조성물 및 이의 제조방법
WO2023048453A1 (ko) 약물 이합체를 포함하는 나노입자 및 이의 용도
WO2023136688A1 (ko) 생분해성 이황화 결합을 포함하는 이온화 가능한 지질 및 이를 포함하는 지질나노입자
WO2021101340A1 (ko) 리포좀 조성물을 포함하는 항암 치료 보조용 조성물 및 이를 이용한 약물 전달 방법
WO2023038202A1 (ko) 생분해성 고분자를 이용한 서방형 미립구 및 이의 제조방법
WO2021242021A1 (ko) 글루카곤 유사 펩타이드 1 작용제 함유 제어방출 미립구 및 이의 제조방법
WO2022196865A1 (en) Lipophilic statin composition with improved solubility and permeability and uses thereof
WO2021261926A1 (ko) 치매치료를 위한 장기지속형 주사제
WO2019203400A1 (ko) 항암제 봉입 마이셀 제제 조성물
WO2017142164A1 (ko) 항암제 약물전달체 및 이의 제조방법

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980155021.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09827766

Country of ref document: EP

Kind code of ref document: A2

ENP Entry into the national phase

Ref document number: 20117011336

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13130259

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2011537369

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2009827766

Country of ref document: EP