WO2010058836A1 - 表示装置、およびテレビジョンシステム - Google Patents

表示装置、およびテレビジョンシステム Download PDF

Info

Publication number
WO2010058836A1
WO2010058836A1 PCT/JP2009/069697 JP2009069697W WO2010058836A1 WO 2010058836 A1 WO2010058836 A1 WO 2010058836A1 JP 2009069697 W JP2009069697 W JP 2009069697W WO 2010058836 A1 WO2010058836 A1 WO 2010058836A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
self
output
signal
display panel
Prior art date
Application number
PCT/JP2009/069697
Other languages
English (en)
French (fr)
Inventor
伸介 安西
好博 中谷
宏晃 藤野
裕文 松井
雅美 森
浩一 細川
利男 渡部
昌史 勝谷
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2010058836A1 publication Critical patent/WO2010058836A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N17/00Diagnosis, testing or measuring for television systems or their details
    • H04N17/04Diagnosis, testing or measuring for television systems or their details for receivers
    • H04N17/045Self-contained testing apparatus
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3685Details of drivers for data electrodes
    • G09G3/3688Details of drivers for data electrodes suitable for active matrices only
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2330/00Aspects of power supply; Aspects of display protection and defect management
    • G09G2330/08Fault-tolerant or redundant circuits, or circuits in which repair of defects is prepared

Definitions

  • the present invention relates to a display device using a drive circuit that performs self-detection and self-repair of a defect in a DA converter output circuit.
  • FIG. 32 is a block diagram showing a configuration of a conventional semiconductor integrated circuit for driving a liquid crystal.
  • the liquid crystal driving semiconductor integrated circuit 101 shown in the figure can output m gray scale output voltages from n liquid crystal driving signal output terminals.
  • a liquid crystal driving semiconductor integrated circuit 101 includes an external clock input terminal 102, a gradation data input terminal 103 having a plurality of signal input terminals, a LOAD signal input terminal 104, and V0 terminals 105 and V1 terminals which are reference power supply terminals. 106, a V2 terminal 107, a V3 terminal 108, and a V4 terminal 109.
  • the liquid crystal driving semiconductor integrated circuit 101 includes n liquid crystal driving signal output terminals 111-1 to 111-n (hereinafter, the liquid crystal driving signal output terminals are referred to as signal output terminals. Terminals 111-1 to 111-n are collectively referred to as signal output terminal 111).
  • the liquid crystal driving semiconductor integrated circuit 101 includes a reference power correction circuit 121, a pointer shift register circuit 123, a latch circuit unit 124, a hold circuit 125, and a D / A converter (Digital Analog Converter: hereinafter referred to as DAC) circuit. 126 and an output buffer 127.
  • the pointer shift register circuit 123 includes n stages of shift register circuits 123-1 to 123-n.
  • the latch circuit unit 124 includes n latch circuits 124-1 to 124-n, and the hold circuit 125 includes n hold circuits 125-1 to 125-n.
  • the DAC circuit 126 is composed of n DAC circuits 126-1 to 126-n.
  • the output buffer 127 includes n output buffers 127-1 to 127-n, and each output buffer includes an operational amplifier.
  • the pointer shift register circuit 123 sequentially selects from the first latch circuit 124-1 to the nth latch circuit 124-n based on the clock input signal input from the clock input terminal 102.
  • the latch circuit 124 selected by the pointer shift register circuit 123 stores the gradation output data from the gradation data input terminal 103.
  • the gradation output data corresponds to each latch circuit 124, in other words, corresponds to each signal output terminal 111 and is data synchronized with the clock input signal. Accordingly, each of the latch circuits 124-1 to 124-n can store gradation output data having different values corresponding to each signal output terminal 111.
  • the gradation output data stored in the latch circuits 124-1 to 124-n is transferred to the corresponding n number of hold circuits 125-1 to 125-n by the data LOAD signal. Further, the hold circuits 125-1 to 125-n output the gradation output data input from the latch circuits 124-1 to 124-n to the DAC circuits 126-1 to 126-n as digital data.
  • the DAC circuits 126-1 to 126-n select one voltage value among m kinds of gradation voltages based on the gradation output data from the hold circuit 125, and output buffers 127-1 to 127- output to n.
  • the DAC circuit 126 can output m types of gradation voltages depending on voltages input from the reference power supply terminal V0 terminal 105 to the V4 terminal 109.
  • the output buffer 127 buffers the gradation voltage from the DAC circuit 126 and outputs it as a liquid crystal panel drive signal to the signal output terminals 111-1 to 111-n.
  • the same number of shift register circuits 123, latch circuits 124, hold circuits 125, DAC circuits 126, and output buffers 127 as the liquid crystal drive signal output terminals 111 are required, and the liquid crystal drive signal output terminals 111 are 1000 in number. If it is a terminal, 1000 of each of the circuits 124 to 127 is required.
  • the display driving semiconductor integrated circuit needs to give a signal of gradation voltage of R, G, B for each data line.
  • the number of outputs of one display driving semiconductor integrated circuit is 720, eight display driving semiconductor integrated circuits are required.
  • a semiconductor integrated circuit for display driving is tested at a wafer stage, is subjected to a shipping test after being packaged, and a display test is performed after being mounted on a liquid crystal panel. Furthermore, semiconductor integrated circuits that may cause initial failures are removed by screening tests such as burn-in and stress tests. Therefore, a display device on which a display driving semiconductor integrated circuit in which display failure occurs is not shipped to the market. However, a display defect rarely occurs while using the display device due to a very small defect or a foreign matter adhering and mixing that has not been determined to be defective during a pre-shipment test or a screening test.
  • the display defect occurrence rate is 57.6 ppm (57.6 / 1,000,000). That is, about one in about 17361 units will cause display defects, and the larger the size and the higher definition, the higher the rate of occurrence of display defects.
  • the display driving semiconductor integrated circuit is provided with a spare circuit provided for the defective circuit, and the defective circuit is switched to the spare circuit, so that the defect of the display driving semiconductor integrated circuit is eliminated. Avoidance is disclosed.
  • the display driving semiconductor integrated circuit includes a spare parallel circuit at each stage of the shift register, and performs a self-inspection of the shift register.
  • a technique for avoiding display defects caused by a defective shift register by selecting one having no defect is disclosed.
  • a selector is provided at the input and output of the DAC circuit, and the selector is switched based on the RAM information in which the position of the defective DAC circuit is stored, and a DAC circuit without a defect is selected. A method of using the same is disclosed.
  • Patent Document 1 and Patent Document 2 do not disclose any self-detection method for detecting a defect in an output circuit such as a DAC circuit.
  • Patent Document 3 discloses a technique for providing redundancy to a drive circuit of a product in which a drive circuit is integrated with a display panel and restoring the drive circuit even after the product is completed.
  • a spare output is provided for the drive output in the drive circuit, and one output of the drive output is compared with the spare output, and the output circuit determines whether the output values are equal.
  • the display panel is driven by a spare output circuit instead of the output circuit to be diagnosed during self-detection.
  • Japanese Patent Publication Japanese Patent Laid-Open No. 6-208346 (published July 26, 1994)” Japanese Patent Publication “Japanese Patent Laid-Open No. 8-278771 (published on October 22, 1996)” Japanese Patent Gazette “Special Table 2004-511022 (April 8, 2004)”
  • the drive circuit to be diagnosed is separated from the display panel, the display panel is driven by the spare drive circuit, and the output of the spare drive circuit and the drive circuit to be diagnosed are The output is compared to determine whether the drive circuit to be diagnosed is good or bad.
  • image data representing an image to be displayed to the drive circuit to be diagnosed and the spare drive circuit an image is displayed on the display panel by the spare drive circuit, and the drive circuit to be diagnosed is also displayed.
  • Self-detection can be performed. That is, when the analog clamp voltage is selected and output as in the configuration of Patent Document 3, a part of the data is compared with the display data, so that the difference between the output circuits can be detected.
  • the data for comparing the output of the spare drive circuit and the output of the drive circuit to be diagnosed is limited to the image data to be displayed.
  • a DA converter circuit that outputs a voltage corresponding to the digital data is required.
  • a driver circuit for 256 gradation display requires a DA converter circuit that selects 256 voltages. Therefore, in order to detect a malfunction of the DA conversion circuit, it is necessary to compare all input data corresponding to 256 voltage outputs.
  • the present invention has been made in view of the above problems, and its object is to provide a display device provided with a drive circuit capable of self-detecting and self-repairing defects in an output circuit and an output block around the output circuit. It is an object of the present invention to provide a display device that performs self-detection and self-repair at an appropriate timing without disturbing viewing.
  • a display device is a drive circuit for driving a display panel and the display panel, and the drive circuit is in a state where electrical connection with the display panel is disconnected.
  • Drive circuit having self-detection / self-repair means for detecting and repairing a defect of the display device, and the self-detection / self-repair means is configured to switch the drive circuit when an image to be displayed on the display panel is switched discontinuously. It is characterized in that a process for detecting a defect is executed.
  • the drive circuit drives the display panel.
  • the drive circuit can detect a failure of the drive circuit itself, and has self-detection / self-repair means for repairing the detected failure.
  • the drive circuit executes processing for detecting and repairing its own defect in a state where the electrical connection with the display panel is disconnected. In other words, the drive circuit disconnects the electrical connection with the display panel and detects its own defect (that is, self-detection), so that not only the gradation data representing the image being displayed on the display panel but also all levels.
  • Self-detection processing can be executed using the key data.
  • the image may be a still image or a moving image, that is, a video.
  • a self-detection / self-repair means performs the process which detects the defect of a drive circuit, when the image which should be displayed on the said display panel switches discontinuously. For example, when the display based on the image signal of one channel is interrupted by switching from the first channel to the second channel, the self-detecting / self-recovery means is driven when the image to be displayed on the display panel is switched discontinuously. A process for detecting a circuit defect is executed. Further, for example, the self-detecting / self-recovery means is driven when the image to be displayed on the display panel is switched discontinuously when the display based on the image signal representing the program is interrupted due to the transition from the program to the CM. A process for detecting a circuit defect is executed.
  • the self-detection process can be executed in a period that does not affect the display.
  • the display device according to the present invention executes a process of detecting a defect in the drive circuit in a state where the electrical connection with the display panel is disconnected, but the current display content is temporarily interrupted on the screen of the display device. Since the self-detection process is executed at the timing, the user does not feel uncomfortable. Therefore, according to the display device of the present invention, it is possible to execute self-detection and self-repair processing at an appropriate timing without disturbing the user's viewing, and the convenience for the user can be improved. .
  • the display device includes a display panel, a supply period in which an image signal is supplied, and a supply stop period in which the supply of the image signal is stopped, among periods in which an image is displayed on the display panel.
  • Drive circuit for driving the display panel while switching between them, and having self-detection / self-repair means for detecting and repairing a defect in the drive circuit in a state where the electrical connection with the display panel is disconnected
  • the self-detecting / self-repairing means executes a process of detecting a defect of the driving circuit during the supply stop period.
  • the drive circuit switches between the supply period in which the image signal is supplied and the supply stop period in which the supply of the image signal is stopped, during the period in which the image is displayed on the display panel. While driving the display panel.
  • the drive circuit can detect a failure of the drive circuit itself, and has self-detection / self-repair means for repairing the detected failure.
  • the drive circuit executes processing for detecting and repairing its own defect in a state where the electrical connection with the display panel is disconnected. In other words, the drive circuit disconnects the electrical connection with the display panel and detects its own defect (that is, self-detection), so that not only the gradation data representing the image being displayed on the display panel but also all levels. Self-detection processing can be executed using the key data.
  • the image may be a still image or a moving image, that is, a video.
  • the self-detecting / self-repairing means executes a process of detecting a defect in the drive circuit during the supply stop period.
  • the self-detecting / self-repairing unit executes processing for detecting a defect in the driving circuit in the horizontal scanning period and the vertical scanning period.
  • the display device According to the display device according to the present invention, it is possible to execute the self-detection process in a period in which the display device is driven and does not affect the display. That is, the display device according to the present invention performs a process of detecting a defect in the drive circuit in a state where the electrical connection with the display panel is disconnected, but the image signal is supplied to the display panel that is displaying an image. Since the self-detection process is executed at a timing that is not performed, driving of the display panel is not hindered. Therefore, according to the display device of the present invention, it is possible to execute self-detection and self-repair processing at an appropriate timing without disturbing the user's viewing, and the convenience for the user can be improved. .
  • a display device is a drive circuit for driving a display panel and the display panel, and the drive circuit is in a state where electrical connection with the display panel is disconnected.
  • Drive circuit having self-detection / self-repair means for detecting and repairing a defect of the display device, and the self-detection / self-repair means is configured to switch the drive circuit when an image to be displayed on the display panel is switched discontinuously. It is characterized in that a process for detecting a defect is executed.
  • the display device includes a display panel, a supply period in which an image signal is supplied, and a supply stop in which the supply of the image signal is stopped, during a period in which an image is displayed on the display panel.
  • the self-detecting / self-repairing means is characterized by executing a process of detecting a defect of the driving circuit during the supply stop period.
  • the display device According to the display device according to the present invention, at the timing when the content currently displayed on the screen of the display device is temporarily interrupted, or at the timing when the image signal is not supplied to the display panel displaying the image, Since the self-detection process is executed, it is possible to execute the self-detection and self-repair processes at an appropriate timing without disturbing the user's viewing, and the convenience for the user can be improved.
  • FIG. 1 is a block diagram illustrating a configuration of a liquid crystal television according to an embodiment of the present invention. It is a block diagram which shows the structure of the display apparatus based on one Embodiment of this invention. It is a figure which shows an example of a display when abnormality generate
  • a liquid crystal television it is a figure which shows a mode that self-detection and a self-repair operation
  • (c) is a figure which shows the mode after a channel change.
  • a liquid crystal television it is a figure which performs a mode that self-detection and a self-repair operation are performed at the time of CM shift
  • (a) is a diagram showing a state before CM shift
  • (b) is a state during a self-detection operation.
  • (c) is a figure which shows the mode in CM
  • (d) is a figure which shows the mode at the time of program resumption. It is a timing chart showing the signal for driving the display panel of a liquid crystal television.
  • FIG. 3 is a time chart according to an embodiment of the present invention, in which (a) to (f) are a scanning signal, a video signal, and a voltage value of a pixel electrode input to a display device according to an embodiment of the present invention.
  • FIG. It is a block diagram which shows the structure of the operation
  • Embodiment 1 A first embodiment of the present invention will be described below with reference to FIGS.
  • liquid crystal television 400 As a typical display device using a display driving circuit, a thin-screen television typified by a liquid crystal television can be given.
  • a liquid crystal television (liquid crystal display device) performs display by mounting a plurality of drive circuits created with a semiconductor integrated circuit (LSI) on a display panel.
  • LSI semiconductor integrated circuit
  • the user recognizes it as a direct display defect.
  • it is necessary to repair the defective part promptly, and it is desirable that the repair be completed in a short time at the place where the user is using if possible.
  • the present applicant has proposed a display driving circuit having a self-diagnosis self-repair function (self-detection and self-repair function) for a failure of the display drive circuit itself (for example, Japanese Patent Application No. 2008-130848, Application Nos. 2008-048640, Japanese Patent Application No. 2008-048639, and Japanese Patent Application No. 2008-054130: all unpublished at the time of confirmation prior to the filing of this application.
  • FIG. 1 shows a block diagram showing a configuration of a liquid crystal television 400 according to the present invention.
  • the liquid crystal television 400 includes a TFT-LCD module (display unit) 90 and a remote control I / F 401.
  • the display unit 90 includes source drivers (driving circuits, integrated circuits) 10a and 10b, a TFT-LCD panel (display panel) 80, a gate driver 99, and a controller 100.
  • the source driver 10a that is, the integrated circuits 10a and 10b is a display driving circuit having the above-described self-detection and self-repair functions.
  • the integrated circuits 10a and 10b that is, the generic names of the source drivers 10a and 10b are represented.
  • FIG. 2 is a block diagram illustrating a schematic configuration of the display unit 90.
  • the display unit 90 includes a display panel 80 and a display driving semiconductor integrated circuit (hereinafter referred to as an integrated circuit or a source driver) that drives the display panel 80 based on gradation data input from the outside. ) 10.
  • the source driver that is, the integrated circuit 10 (driving circuit) includes a switching circuit 60 (self-detection / self-repairing means, switching means), a switching circuit 61 (self-detection / self-repairing means, switching means), and an output circuit block 30 (output).
  • the display panel 80 includes a pixel 70 to which the gradation voltage from the integrated circuit 10 is applied.
  • the display unit 90 has two basic operations as basic operations. Specifically, in the display unit 90, the integrated circuit 10 converts gradation data input from the outside into a gradation voltage (output signal), and displays an image on the display panel 80 based on the gradation voltage. A normal operation and a self-detection / repair operation in which the integrated circuit 10 detects whether or not the output circuit block 30 included in the integrated circuit 10 is defective and the output circuit block 30 is defective. It has two basic operations.
  • gradation data for operation confirmation is input to the output circuit block 30 and the spare output circuit block 40 from the outside via the switching circuit 61.
  • Each of the output circuit block 30 and the spare output circuit block 40 converts the input gradation data into a gradation voltage and outputs the gradation voltage to the comparison determination circuit.
  • the comparison determination circuit 50 compares the gradation voltage from the output circuit block with the gradation voltage from the standby output circuit block, and determines whether or not the output circuit block is defective based on the comparison result.
  • the comparison / determination circuit 50 outputs a determination result (failure detection information) indicating whether or not the output circuit block is defective to the switching circuit 61 and the switching circuit 60.
  • the switching circuit 61 switches the output destination of the gradation data from the outside based on the determination result from the comparison determination circuit 50.
  • the switching circuit 60 receives the gradation voltage from each of the output circuit block 30 and the spare output circuit block 40, and displays the display panel from the inputted gradation voltages based on the determination result from the comparison determination circuit.
  • the gradation voltage to be output to 80 is selected.
  • the switching circuit 61 when the determination result indicating that the output circuit block 30 is defective is input, the switching circuit 61 has the same level as the gradation data output to the output circuit block 30 determined to be defective. The tone data is also input to the spare output circuit block 40.
  • the switching circuit 60 when a determination result indicating that the output circuit block 30 is defective is input to the switching circuit 60, instead of the gradation voltage from the output circuit block 30 determined to be defective, the switching circuit 60 outputs from the standby output circuit 40. The gradation voltage is output to the display panel 80. As a result, even if the output circuit block 30 becomes defective, the integrated circuit 10 can output a normal gradation voltage to the display panel 80 using the spare output circuit block instead.
  • the integrated circuit 10 includes the comparison determination circuit 50, the switching circuit 60, and the switching circuit 61, so that it can detect its own defect and can self-repair itself. It becomes.
  • the integrated circuit 10 includes a self-healing circuit (self-repairing means) that detects its own fault and further self-heals the fault.
  • the configuration of the source driver 10, that is, the integrated circuit 10, and details of self-detection and self-repair operations will be described later.
  • FIG. 3 is a diagram illustrating an example of a display when an abnormality occurs in the output circuit block 30 included in the integrated circuit 10 included in the liquid crystal television 400. As shown in FIG. 3, when there is an abnormality in the output circuit block 30, a vertical line appears on the display.
  • the self-recovering operation is instantaneously executed by the self-recovery function of the display driving device so that the vertical stripe in FIG. 3 disappears.
  • FIG. 4 is a diagram showing how the liquid crystal television 400 performs self-detection and self-repair operations when a channel is changed.
  • FIG. 4A is a diagram showing a state before the channel is changed.
  • FIG. 4B is a diagram showing a state during the self-detection operation, and
  • FIG. 4C is a diagram showing a state after the channel change.
  • the liquid crystal television 400 when the user performs a channel change operation using the remote controller 402, a channel selection input signal is received via the remote control I / F 401, the channel selection input signal is converted into a channel selection voltage, and a tuner ( Broadcast receiving means).
  • the tuner receives a broadcast signal of a channel corresponding to the channel selection voltage. Then, the liquid crystal television 400 displays the program of the channel received by the tuner.
  • the liquid crystal television 400 first receives and displays a 1ch (one channel) program as shown in FIG.
  • the liquid crystal television 400 starts a self-detecting operation.
  • the display on the screen disappears as shown in FIG.
  • the self-detection of the source driver 10 is performed when the channel is switched from 1ch to 2ch, that is, when the display based on the image signal representing the 1ch program is interrupted.
  • the controller 100 shown in FIG. 1 senses the user's channel selection operation, that is, switching from 1ch to 2ch.
  • the controller 100 image switching means
  • the controller 100 When the controller 100 senses channel switching, it instructs the source driver 10 to execute self-detection processing, and the source driver 10 executes self-detection processing. That is, in the liquid crystal television 400, in order to switch from display based on an image signal representing a 1ch program on the display panel 80 to display based on an image signal representing a 2ch program, an image signal representing a 1ch program is displayed. When the display based on is interrupted, the self-detection process of the source driver 10 is executed. At this time, for example, the controller 100 instructs the source driver 10 to perform self-detection processing based on a channel selection input signal input via the remote control I / F.
  • FIG. 4 shows an example of channel switching from 1ch to 2ch.
  • the display based on the image signal representing the 1ch program is temporarily interrupted.
  • the source driver 10 executes self-detection processing in accordance with an instruction from the controller 100 based on the channel selection input signal, for example.
  • the liquid crystal television 400 is a digital television
  • the video signal and audio signal are encoded and transmitted as a digital broadcast wave, so that the compressed video signal and audio signal included in the received digital broadcast wave are decoded.
  • the program of the designated channel is not displayed immediately, but is displayed for a short period of time. Is displayed. Therefore, if self-detection is performed at this timing, the user does not feel uncomfortable. That is, the liquid crystal television 400 completes self-detection in a period that does not affect the display.
  • the liquid crystal television 400 displays the switched program, that is, the 2ch program, as shown in FIG.
  • FIG. 5 is a diagram illustrating a state in which the liquid crystal television 400 performs self-detection and self-repair operations during the transition to CM.
  • FIG. 5A illustrates a state before the transition to CM.
  • FIG. 5B is a diagram showing a state during the self-detection operation
  • FIG. 5C is a diagram showing a state during the CM
  • FIG. 5D is a diagram showing a state when the program is resumed.
  • the liquid crystal television 400 first receives a 1ch broadcast and displays a program included in the 1ch broadcast, as shown in FIG.
  • the liquid crystal television 400 starts a self-detection operation.
  • the display on the screen disappears as shown in FIG.
  • the self-detection of the source driver 10 is performed at the time of transition from the program to the CM, that is, when the display based on the image signal representing the program is interrupted.
  • the controller 100 shown in FIG. 1 senses a transition from a program to a CM.
  • the controller 100 image switching means
  • the source driver 10 is instructed to execute the self-detection process, and the source driver 10 executes the self-detection process. That is, in the liquid crystal television 400, when the display based on the image signal representing the program is interrupted on the display panel 80 in order to shift from the display based on the image signal representing the program to the display based on the image signal representing the CM.
  • the self-detection process of the source driver 10 is executed. At this time, for example, the controller 100 performs scene detection, detects a CM based on the result, and instructs the source driver 10 to perform self-detection processing.
  • Scene detection is a function that detects not only silence and stereo / monaural audio, but also “sound switching” such as the boundary between music and conversation and “video switching” with large scene changes.
  • Scene detection is a technique used when, for example, a CM part is chapter-divided by a hard disk decoder or the like.
  • the liquid crystal television 400 displays a CM as shown in FIG. Thereafter, in the liquid crystal television 400, as shown in FIG. 4D, the program is resumed, and the display shifts from the CM to the program.
  • the self-detection process may include a plurality of steps.
  • the liquid crystal television 400 may be configured to execute all the steps included in the self-repair process in one channel switching.
  • the liquid crystal television 400 may be configured to execute all the steps included in the self-repair process in one transition from a program to a CM.
  • the process may be divided and all the processes included in the self-detection process may be completed by changing the channel several times.
  • the self-repair processing may be divided into a plurality of process groups including one or more processes, and the process groups may be executed one by one in one channel switching.
  • the time of the self-detection process executed at the time of one channel change can be shortened, and a situation in which the period during which screen display is not performed after the channel switching operation becomes too long can be avoided.
  • the self-repair processing may be divided into a plurality of process groups including one or more processes, and the process groups may be executed one by one in one transition from the program to the CM. .
  • the process included in the self-repair process is divided into n process groups
  • the process of one process group that is, 1 / n of the self-detection process is performed in one channel switching.
  • processing of n process groups that is, all processes of self-detection are completed.
  • the process included in the self-repair process is divided into n process groups
  • the process of one process group that is, 1/1 of the self-detection process is performed in switching from one program to CM. n.
  • the process of n process groups that is, all processes of self-detection are completed by shifting to CM for n times.
  • the self-detection process includes a plurality of steps, details will be described later.
  • one gradation data is obtained.
  • steps for example, a plurality of comparison steps for comparing the output from the output circuit and the output from the auxiliary output circuit
  • several types of processes are performed for all the gradation data.
  • such a drive circuit may have a configuration in which processes included in the self-detection process for one gradation are divided and processed.
  • the process included in the self-detection process for one gradation is divided into two process groups, and one process group process is performed for each channel switching. And the self-detection process for one gradation is completed by switching the channel twice.
  • the process included in the self-detection process for one gradation is divided into two process groups, and one process group process is executed for each CM transition, and one gradation is obtained by two CM transitions.
  • the self-detection process may be completed.
  • the process which comprises each process group may be preset, and the structure by which the setting information is memorize
  • the source driver 10 when executing the self-detection process, the source driver 10 reads the setting information from the memory, and executes the process group process one by one for each channel switching.
  • the number of processes constituting each process group may be set in advance, and the source driver 10 may be configured to execute the set number of processes for each channel switching.
  • the display panel 80 shown in FIG. 1 constitutes the display unit 90 together with the controller 100, the gate driver 99, and the source dry 10.
  • the display panel 80 has a plurality of gate lines (scanning signal lines) and a plurality of source lines (data signal lines) orthogonal to the gate lines, and at the intersections of these gate lines and source lines, respectively.
  • a pixel portion including a switching element and a liquid crystal capacitor is provided. That is, in the display panel 80, the pixel portions are arranged in a matrix.
  • a gate line is connected to the gate terminal, a source line is connected to the source terminal, and a pixel electrical connection is connected to the drain terminal.
  • a common counter electrode is provided in all the pixel formation portions so as to face the pixel electrode, and the pixel electrode and the counter electrode form a liquid crystal capacitor with a liquid crystal layer interposed therebetween.
  • the pixel electrode is given a potential according to the image to be displayed by the source line and the gate line, and a predetermined potential is given to the common electrode. By applying this voltage, the amount of light transmitted to the liquid crystal layer is controlled, whereby image display is performed. Note that a deflection plate may be used to control the amount of light transmitted by applying a voltage to the liquid crystal layer.
  • FIG. 6 is a timing chart showing signals for driving the display panel 80 of the liquid crystal television 400.
  • Various control signals shown in FIG. 6 are supplied to the controller 100.
  • the controller 100 controls the gate driver 99 and the source driver 10 based on the control signal shown in FIG.
  • the gate driver 99 and the source driver 10 supply a gate signal and a data signal to the display panel 80. Thereby, the display panel 80 is driven.
  • a period 501 is a vertical period
  • a period 502 is a vertical data valid period
  • a period 503 is a vertical blanking period
  • a period 504 is a horizontal period
  • a period 505 is a horizontal data valid period
  • a period 506 is a horizontal blanking period.
  • a period 507 is a vertical effective data start period indicating a period from the input of the vertical synchronization signal to the start of effective data
  • a period 508 is a horizontal effective data indicating a period from the input of the horizontal synchronization signal to the start of effective data. Indicates the data start period.
  • the gate lines are sequentially selected by the gate driver 99 based on the horizontal synchronization signal and supplied with the scanning signal. Then, the gate of the switching element connected to the gate line to which the scanning signal is supplied is turned ON, and an active state in which a data signal can be supplied to the pixel electrode connected to the switching element is obtained. As a result, a data signal is supplied to the pixel electrode from the source driver 10 via the source line, and a voltage representing an image is supplied.
  • a data signal is sequentially supplied from the left pixel to the right pixel for each line of the screen to form a scanning line.
  • the blanking period that is, the blanking period is the time for the scanning line that has scanned the screen to return to the original state.
  • the horizontal blanking period 506 is a time for scanning from left to right in one line of the screen and then returning to the left again.
  • the vertical blanking period 503 is performed while scanning from left to right sequentially from the upper left in all lines of the screen. This is the time from scanning to the lower right until returning to the upper left again.
  • the control signal period shown in FIG. 6 varies depending on the standard of the panel to be driven, the driving method, and the like, as an example, the vertical blanking period is 1.14 ms and the horizontal blanking period is 9 ⁇ s.
  • the data line is not driven, and no data signal is supplied to each pixel constituting the display panel 80.
  • image data is not written to each pixel during these periods, even if the output of the source driver 10 that is a display driving element is high impedance, it does not affect image display. Therefore, in the liquid crystal television 400, the source driver 10 is self-detected and self-repaired using these periods.
  • the controller 100 shown in FIG. 1 senses the horizontal blanking period 506 or the vertical blanking period 503 in response to the supply of the control signal shown in FIG.
  • controller 100 (period switching detection means) senses the horizontal blanking period 506 or the vertical blanking period 503
  • the controller 100 instructs the source driver 10 to execute self-detection processing, and the source driver 10 performs self-detection processing. Execute.
  • self-detection and self-repair are performed in real time because repair is performed for each line.
  • self-detection / self-repair is performed during the vertical blanking period 503 since the repair is performed for each screen, it can be said that self-detection / self-repair is performed in real time. That is, according to the liquid crystal television 400, the self-detection process can be executed in real time without disturbing the viewing of the user.
  • the controller 100 In the vertical blanking period 503, other information such as teletext may be supplied to the controller 100 or the like, but self-detection and self-restoration can be performed by the display driver, that is, the source driver 10 alone. Regardless of other devices such as the controller 100, self-detection and self-repair operations are possible.
  • the vertical blanking period is also called the vertical blanking period.
  • An example of self-detection in the vertical blanking period will be described later again.
  • the self-repairing process may include a plurality of steps.
  • the liquid crystal television 400 may be configured to execute all the steps included in the self-repair process in one horizontal blanking period 506.
  • the liquid crystal television 400 may be configured to execute all the steps included in the self-repair process in one vertical blanking period 503.
  • the self-repair process is divided into a plurality of process groups including one or more processes, and the process groups are executed one by one in one horizontal blanking period 506 or vertical blanking period 503. May be.
  • the time of the self-detection process executed in one horizontal blanking period 506 or the vertical blanking period 503 is shortened, and the period during which the screen display is not performed after the channel switching operation becomes too long. Can avoid the situation.
  • n horizontal blanking period 506 or vertical blanking period 503 the process of one process group, that is, the self-detection process. Of 1 / n. Then, in n horizontal blanking periods 506 or vertical blanking periods 503, processing of n process groups, that is, all processes of self-detection are completed.
  • the self-detection process includes a plurality of steps, details will be described later.
  • one gradation data is obtained.
  • steps for example, a plurality of comparison steps for comparing the output from the output circuit and the output from the auxiliary output circuit
  • several types of processes are performed for all the gradation data.
  • such a drive circuit may have a configuration in which processes included in the self-detection process for one gradation are divided and processed.
  • the process included in the self-detection process for one gradation is divided into two process groups, and one process is performed for each horizontal blanking period 506.
  • the group processing is executed, and the self-detection processing for one gradation can be completed by two horizontal blanking periods 506.
  • the process included in the self-detection process for one gradation is divided into two process groups, and one process group process is executed for each vertical blanking 503, and the vertical blanking 503 is performed twice.
  • the self-detection process for one gradation may be completed.
  • the configuration of the source driver 10a according to the present invention will be described with reference to FIG.
  • the spare source driver 10b can have a simpler configuration than the source driver 10a, but can also have the same configuration as the source driver 10a.
  • a circuit capable of performing self-detection and self-recovery operations similar to those of the source driver 10a will be referred to as an integrated circuit 10 and will be described.
  • FIG. 7 is an explanatory diagram showing the configuration of the integrated circuit 10 (drive circuit).
  • the integrated circuit 10 includes n liquid crystal driving signal output terminals OUT1 to OUTn (hereinafter referred to as output terminals OUT1 to OUTn) via a data bus from a grayscale data input terminal (not shown).
  • N sampling circuits 6-1 to 6-n hereinafter collectively referred to as sampling circuit 6
  • n hold circuits 7-1 to 7-n hereinafter collectively referred to as a hold circuit 7
  • n DAC circuits 8-1 to 8-n hereinafter collectively referred to as “hold circuit 7” that convert gradation data into gradation voltage signals.
  • DAC circuit 8 n operational amplifiers 1-1 to 1-n (hereinafter collectively referred to as operational amplifier 1) having a role of a buffer circuit for the gradation voltage signal from the DAC circuit 8, n judgment circuits 3-1 3-n (hereinafter collectively referred to as determination circuit 3), n determination flags 4-1 to 4-n (hereinafter collectively referred to as determination flag 4), n number of determination flags Pull-up / pull-down circuits 5-1 to 5-n (hereinafter collectively referred to as pull-up / pull-down circuits 5) are provided.
  • the integrated circuit 10 includes a plurality of switches 2 a that are turned on and off by a test signal, a plurality of switches 2 b that are turned on and off by a test B signal, and an output signal from the determination flag 4.
  • switches 2c connection switching means
  • 2d connection switching means
  • the switches 2a, 2b, and 2d are turned on when an “H” signal is input, and are turned off when an “L” signal is input.
  • the switch 2c is turned off when an “H” signal is inputted, and is turned on when an “H” signal is inputted.
  • the integrated circuit 10 includes a spare sampling circuit 26, a spare hold circuit 27, a spare DAC circuit 28 (spare output circuit), and a spare operational amplifier 21, one for each circuit.
  • the sampling circuit 6, the hold circuit 7, and the DAC circuit 8 correspond to the output circuit block 30 shown in FIG. 2, and the sampling circuit 26, the hold circuit 27, and the DAC circuit 28 are shown in FIG.
  • the operational amplifier 1, the determination circuit 3, and the determination flag 4 correspond to the preliminary circuit block 40 shown, the comparison determination circuit 50 shown in FIG. 2, and the switches 2d and 2c connected to the output terminals OUT1 to OUTn. 2 corresponds to the switching circuit 60 shown in FIG. 2, and the switch 2d connected to the sampling circuit 6 corresponds to the switching circuit 61 shown in FIG.
  • the integrated circuit 10 shown in FIG. 7 is connected to the display panel 80 shown in FIG. 2 via output terminals OUT1 to OUTn, and the display panel 80 is not shown in FIG.
  • the test signal is “L” and the test B signal is “H”.
  • the switch 2a is turned off and the switch 2b is turned on.
  • the corresponding sampling circuits 6 input STR1 to STRn signals (hereinafter collectively referred to as STR signals), which are signals from a pointer shift register (not shown).
  • STR signals are signals from a pointer shift register (not shown).
  • the sampling circuit 6 acquires gradation data corresponding to itself from the gradation data input terminal via the data bus.
  • the hold circuit 7 inputs the gradation data acquired by the sampling circuit 6 from the sampling circuit 6 based on the data LOAD signal.
  • the DAC circuit 8 (output circuit) inputs gradation data from the hold circuit 7.
  • the DAC circuit 8 converts the input gradation data into a gradation voltage signal, and outputs the gradation voltage signal to the positive input terminal of the operational amplifier 1 (comparing means).
  • the output of the operational amplifier 1 is negative feedback to its own negative input terminal because the switch 2b is ON.
  • the operational amplifier 1 operates as a voltage follower. Therefore, the operational amplifier 1 serves as a buffer circuit for the grayscale voltage from the DAC circuit 8, and the grayscale voltage signal input to its positive input terminal is used as the corresponding output terminals OUT1 to OUTn. Output to.
  • the switch 2c is ON and the switch 2d is OFF. The operation of the switches 2c and 2d will be described later.
  • the output circuit block has gradation
  • An object of the present invention is to convert gradation data input from a data input terminal into a gradation voltage for driving the display panel 80, and to output the converted gradation voltage to the display panel 80 via an output terminal.
  • test signal and the test B signal are output from a control circuit (not shown) that controls switching of the operation check test and operation of the operation check test.
  • the control circuit is also a circuit for controlling gradation data and a data LOAD signal input via the data bus in the operation check test. Further, the control circuit may be the same as or different from the control circuit that controls the gradation data, the data LOAD signal, and the shift clock input signal during normal operation.
  • FIG. 8 is a flowchart showing a first procedure of the operation check test according to the first embodiment.
  • step S21 (hereinafter abbreviated as S21) shown in the figure, the test signal is set to “H” and the test B signal is set to “L”.
  • the operational amplifier 1 serves as a comparator by S21.
  • a counter m provided in a control circuit (not shown) is initialized to zero. Further, the control circuit activates the gradation data corresponding to the value of the counter m, the gradation data of gradation m, here the gradation data of gradation 0, and the TSTR1 signal, and the spare sampling circuit 26 via the data bus. To store. Further, the control circuit samples the gradation data of gradation m + 1 obtained by adding 1 to the value of the counter m, the gradation data of gradation 1 here, the TSTR2 signal active, and the data via the data bus. Store in circuit 6. Next, the spare hold circuit 27 acquires gradation data of gradation 0 from the sampling circuit 26 based on the data LOAD signal.
  • the DAC circuit 28 receives the gradation data from the hold circuit 27 and outputs a gradation voltage of gradation 0 to the negative input terminal of the operational amplifier 1 (S23).
  • the hold circuit 7 acquires gradation data of gradation 1 from the sampling circuit 6 based on the data LOAD signal.
  • the DAC circuit 8 inputs gradation data from the hold circuit 7.
  • Each DAC circuit 8 outputs a gradation voltage of gradation 1 to the positive input terminal of each operational amplifier 1 connected in series with itself (S23).
  • the integrated circuit 10 of the present invention outputs an n gradation voltage, the gradation voltage of gradation 0 is the lowest voltage value, and the gradation voltage of gradation n is the lowest. It is assumed that the voltage value is high.
  • the operational amplifier 1 compares the gradation voltage from the DAC circuit 8 input to the positive input terminal and the gradation voltage from the DAC circuit 28 input to the negative input terminal (S24). Specifically, the operational amplifier 1 inputs a gradation voltage of gradation 1 to its own positive input terminal, and inputs a gradation voltage of gradation 0 to its own negative input terminal. If the DAC circuit 8 is normal, the gradation voltage of gradation 1 is higher than the gradation voltage of gradation 0, so that the operational amplifier 1 outputs an “H” level signal. Here, if the output of the operational amplifier is an “L” level signal, the DAC circuit 8 is defective.
  • the determination circuit 3 (determination means) receives the output signal from the operational amplifier 1 and compares the level of the input signal with the expected value stored by itself. Note that the expected value stored by the determination circuit 3 is given by the control circuit. In this operation check test 1, the determination circuit 3 stores the expected value as the “H” level.
  • the determination circuit 3 determines that the DAC circuit 8 is normal if the signal input from the operational amplifier 1 is at the “H” level, which is the same as the expected value stored by itself. On the other hand, if the signal input from the operational amplifier 1 is “L” level, the determination circuit 3 determines that the DAC circuit 8 is defective and outputs an “H” flag to the determination flag 4. When the “H” flag is input from the determination circuit 3, the determination flag 4 stores the input “H” flag in its own internal memory. (S25) The determination circuit 3 receives the output signal from the operational amplifier 1 and outputs an “L” flag to the determination flag 4 if the input signal is “H” level, and the input signal is “L” level.
  • the configuration may be such that the “H” flag is output to the determination flag 4.
  • the determination flag 4 holds the “H” flag even if the “L” flag is input from the determination circuit 3 thereafter. Continue.
  • the subsequent determination operation may not be performed.
  • n is the number of gradations that the integrated circuit 10 can output.
  • FIG. 9 is a flowchart showing a second procedure of the operation check test according to the first embodiment.
  • the determination circuit 3 outputs an “L” flag indicating normality.
  • the operation check test 2 is performed by inputting a gradation voltage lower than that of the negative input terminal to the positive input terminal of the operational amplifier 1.
  • the control circuit activates the TSTR1 signal for the gradation data of gradation m + 1, in this case, the gradation data of gradation m + 1 by adding 1 to the value of the counter m, and reserves the data via the data bus. Is stored in the sampling circuit 26.
  • the control circuit activates the gradation data corresponding to the counter m, the gradation data of gradation m, here the gradation data of gradation 0, and the TSTR2 signal to the sampling circuit 6 via the data bus. Store.
  • the DAC circuit 28 inputs the gradation data stored in the sampling circuit 26 via the hold circuit 27. Further, the DAC circuit 28 outputs the gradation voltage of gradation m + 1 corresponding to the inputted gradation data, here, the gradation voltage of gradation 1 to the negative input terminal of the operational amplifier 1.
  • the DAC circuit 8 inputs the gradation data stored by the sampling circuit 6 via the hold circuit 7. Further, each DAC circuit 8 has a gradation voltage of gradation m corresponding to the inputted gradation data, here a gradation voltage of gradation 0, of each operational amplifier 1 connected in series to itself. Output to the positive input terminal (S32).
  • the operational amplifier 1 compares the gradation voltage of gradation 0 from the DAC circuit 8 input to the positive input terminal with the gradation voltage of gradation 1 from the DAC circuit 28 input to the negative input terminal. (S33). If the DAC circuit 8 is normal, the gradation voltage of gradation 1 is higher than the gradation voltage of gradation 0, so that the operational amplifier 1 outputs a signal of the “L” flag. Here, if the output of the operational amplifier is an “H” level signal, the DAC circuit 8 is defective.
  • the determination circuit 3 receives the output signal from the operational amplifier 1 and compares the level of the input signal with the expected value stored by itself. In this operation check test 1, the determination circuit 3 stores the expected value as the “L” level. Here, the determination circuit 3 determines that the DAC circuit 8 is normal if the signal input from the operational amplifier 1 is the “L” level that is the same as the expected value stored by itself. On the other hand, if the signal input from the operational amplifier 1 is “H”, the determination circuit 3 determines that the DAC circuit 8 is defective and outputs an “H” flag to the determination flag 4. When the “H” flag is input from the determination circuit 3, the determination flag 4 stores the input “H” flag in its own internal memory (S34). The above steps S33 to S34 are repeated until the value of m becomes n ⁇ 1 (S35, S36).
  • FIG. 10 is a flowchart showing a third procedure of the operation check test according to the first embodiment.
  • the operational amplifier 1 when there is a problem that the output is open, the operational amplifier 1 continues to hold the gradation voltage input to the operational amplifier 1 by the executed confirmation test, and the malfunction is confirmed in the operation confirmation tests 1 and 2. It may not be detected.
  • the operation check test 3 a pull-down circuit is connected to the positive input terminal of the operational amplifier 1.
  • a low voltage is input to the positive input terminal of the operational amplifier 1.
  • the operational amplifier 1 continues to hold the gradation voltage input to the operational amplifier 1 according to the executed confirmation test. Can be prevented.
  • the specific procedure of the operation check test 3 is as follows. First, the counter m is initialized to 0 (S41). Next, the pull-up / pull-down circuit 5 pulls down the positive input terminal of the operational amplifier 1 (S42). Steps S43 to S47 from here are the same as the steps S23 to S27 of the operation check test 1 already described above, and the description thereof is omitted here.
  • the operational amplifier 1 when the output of the DAC circuit 8 is opened by pulling down the positive input terminal of the operational amplifier 1 and performing the procedure of the operation check test 1, the operational amplifier 1 outputs the “L” level signal. Will be output. As a result, the determination circuit 3 determines from the inputted “L” level signal that the DAC circuit 8 is defective, and the determination flag 4 stores the “H” flag.
  • FIG. 11 is a flowchart showing a fourth procedure of the operation check test according to the first embodiment.
  • the operation check test 4 is for dealing with a problem that the output of the DAC circuit 8 is open.
  • the counter m is initialized to 0 (S51).
  • the pull-up / pull-down circuit 5 pulls up the positive input terminal of the operational amplifier 1 (S52).
  • the subsequent steps S53 to S57 are the same as the steps S32 to S36 of the operation check test 2 already described above, and therefore the description thereof is omitted here.
  • the operational amplifier 1 when the output of the DAC circuit 8 is opened by pulling up the positive input terminal of the operational amplifier 1 and performing the procedure of the operation check test 2, the operational amplifier 1 outputs the “H” level signal. Will be output. As a result, the determination circuit 3 determines that the DAC circuit 8 has a problem from the input “H” level signal, and the determination flag 4 stores “H”.
  • FIG. 12 is a flowchart showing the fifth procedure of the operation check test according to the first embodiment.
  • the DAC circuit 8 there may be a problem that two adjacent gradations in itself are short-circuited. As described above, when two adjacent gradations are short-circuited, the DAC circuit 8 outputs an intermediate voltage between the two short-circuited gradations. In the case of this defect, the gradation voltage output from the DAC circuit 8 does not cause a voltage shift of one gradation or more compared to a normal case. Therefore, this malfunction cannot be detected in the operation confirmation tests 1 to 4.
  • the purpose of the operation check test 5 is to detect a problem in which the two adjacent gradations in the DAC circuit 8 are short-circuited.
  • the counter m is initialized to 0 (S61).
  • TSTR1 and TSTR2 are activated, and further, gradation data of gradation m and here gradation data of gradation 0 are input to sampling circuit 26 and sampling circuit 6 via a data bus.
  • the DAC circuits 28 and 8 acquire gradation data of gradation 0 from the sampling circuits 26 and 6 via the hold circuits 27 and 7. Further, the DAC circuits 28 and 8 output a gradation voltage of gradation 0 to the positive input terminal and the negative input terminal of the operational amplifier 1 (S62).
  • the positive input terminal and the negative input terminal of the operational amplifier 1 are short-circuited by a switch (not shown). If it is determined in the operation check tests 1 and 2 that the DAC circuit 8 is not defective, the difference between the gradation voltages input to the positive input terminal and the negative input terminal is equal to or greater than one gradation. There is no voltage difference. Therefore, there is no problem that a large current flows by short-circuiting the positive input terminal and the negative input terminal.
  • the two input terminals of the operational amplifier 1 input the same gradation voltage.
  • the operational amplifier 1 since the operational amplifier 1 originally has an input / output offset voltage, the output of the operational amplifier 1 is “H” or “L” even if the same gradation voltage is input to its two input terminals. Either of these will be output.
  • the determination circuit 3 stores the output level of the operational amplifier 1 when the positive input terminal and the negative input terminal of the operational amplifier 1 are short-circuited as an expected value (S63).
  • the switch (not shown) is turned OFF to cancel the short circuit between the positive input terminal and the negative input terminal of the operational amplifier 1.
  • the gradation voltage of gradation 0 from the DAC circuit 8 is input to the positive input terminal of the operational amplifier 1
  • the gradation voltage of gradation 0 from the DAC circuit 28 is input to the negative input terminal. Is done.
  • the determination circuit 3 compares the output from the operational amplifier 1 with the expected value stored by itself (S64). If the output value from the operational amplifier 1 is different from the expected value, the determination circuit 3 outputs the “H” flag to the determination flag 4 (S65).
  • the gradation voltage from the DAC circuit 28 is input to the positive input terminal of the operational amplifier 1 and the gradation voltage from the DAC circuit 8 is input to the negative input terminal by a switch (not shown).
  • the input is switched (S66).
  • the same processing as S64 is performed (S67).
  • the determination circuit 3 if the output from the operational amplifier 1 is different from the expected value stored in the determination circuit 3, the determination circuit 3 outputs an “H” flag to the determination flag 4 (S68). In this way, by switching between the positive polarity input terminal and the negative polarity input terminal, even if the expected value stored in the determination circuit 3 is either the “H” level or the “L” level, the problem of the DAC circuit 8 is prevented. It can be detected.
  • FIG. 13 is a flowchart showing a procedure for switching between the DAC circuit 8 determined to be defective and the spare DAC circuit 28 and performing self-repair.
  • the determination circuit 3 determines that the DAC circuit 8 is defective, the determination circuit 3 outputs an “H” flag to the determination flag 4. Further, the determination flag 4 receives the “H” flag from the determination circuit 3 and stores it in the inside thereof.
  • the control circuit detects whether or not the determination flag 4 records “H” (S71). When the control circuit detects that the determination flag 4 does not store “H”, the control circuit proceeds to S75. On the other hand, when the control circuit detects that the determination flag 4 stores “H”, the control circuit checks the number of “H” flags stored in each of the determination flags 4-1 to 4-n. Here, when the number of “H” flags stored in the determination flag 4 is plural, the process proceeds to S73. On the other hand, when the number of “H” flags stored in the determination flag 4 is one, the process proceeds to S74 (S72).
  • Judgment flag 4-1 outputs an output signal of Flag1 which becomes “H” level to the switches 2c and 2d.
  • the switch 2c to which the “H” level signal is input is turned OFF and the switch 2d is turned ON by the output signal of Flag1.
  • the switch 2c cuts off the connection between the output from the operational amplifier 1-1 and the liquid crystal driving signal output terminal OUT1.
  • the switch 2d outputs the STR1 signal input to the sampling circuit 6-1 to the sampling circuit 26.
  • the gradation data corresponding to the liquid crystal driving signal output terminal OUT1 also stores the sampling circuit 26.
  • the switch 2d connects the output of the operational amplifier 21 and the liquid crystal driving signal output terminal OUT1.
  • the switches 2c and 2d are switched by the output signal of Flag1 from the determination flag 4-1, so that the defective DAC circuit 8-1 is switched to the spare DAC circuit 28.
  • the integrated circuit 10 can switch the defective DAC circuit to the spare DAC circuit 28 by performing the operation check tests 1 to 5 and the self-repair process. Further, in the first embodiment, a spare sampling circuit 26 and a hold circuit 27 corresponding to the spare DAC circuit 28 are provided. Therefore, not only the DAC circuit 8 but also the sampling circuit 6 or the hold circuit 7 has a problem, the spare sampling circuit 26 and the hold circuit 28 can be switched.
  • FIG. 14 is a flowchart showing a processing procedure from when the display device is turned on until the operation check test is performed and the normal operation is started.
  • FIG. 15 is an explanatory diagram showing a configuration of the operational amplifier 1 and peripheral circuits for confirming the operation of the operational amplifier 1.
  • the positive input terminal of the operational amplifier 1 is connected to a switch S5 for switching input between an output from the DAC circuit 8 and a predetermined voltage. Further, a switch S3 for switching between two predetermined voltages Vref1 and Vref2 is connected to the B side (a predetermined voltage input side) of the switch S5. On the other hand, the negative input terminal of the operational amplifier 1 is connected to a switch S6 for switching input between an output of the operational amplifier 1 for performing negative feedback from the operational amplifier 1 and a predetermined voltage. Further, a switch S4 for switching between two predetermined voltages Vref1 and Vref2 is connected to the B side (a predetermined voltage input side) of the switch S4.
  • the operational amplifier 1 operates as a voltage follower circuit by setting the switch S5 to the A side (output side of the DAC circuit 8) and the switch S6 to the A side.
  • the switches S1 and S2 are switched to the B side. Thereby, there is no negative feedback of the operational amplifier 1, and the operational amplifier 1 operates as a comparator.
  • the switches S3 and S4 are switched to the A side.
  • Vref1 is input to the positive input terminal of the operational amplifier 1
  • Vref2 is input to the negative input terminal.
  • Vref1 and Vref2 are voltages generated in advance, and the voltage value of Vref1 is larger than the voltage value of Vref2.
  • the difference in voltage value between Vref1 and Vref2 is set to a value larger than the input / output offset value of the operational amplifier 1.
  • the operational amplifier 1 outputs a signal of “H” level because the voltage of Vref1 input to the positive input terminal is higher than Vref2 input to the negative input terminal.
  • the determination circuit 3 detects the output from the operational amplifier 1 and compares it with the expected value “H” stored by itself. Here, when the output of the operational amplifier 1 is at the “L” level, the determination circuit 3 can determine that the operational amplifier 1 has a problem. Note that the expected value stored by the determination circuit 3 is given by the control circuit.
  • the switches S3 and S4 are switched to the B side, Vref2 is input to the positive input terminal of the operational amplifier 1, and Vref1 is input to the negative input terminal.
  • the operational amplifier 1 outputs the “L” level because the voltage value of Vref1 input to the negative input terminal is higher than Vref2 input to the positive input terminal.
  • the determination circuit 3 detects the output from the operational amplifier 1 and compares it with the expected value “L” stored by itself. Here, when the output of the operational amplifier 1 is at the “H” level, the determination circuit 3 can determine that the operational amplifier 1 has a problem. Note that the switches S3 to S6 are switched by the control circuit.
  • the operational amplifier 1 compares the output of the DAC circuit 8 with the output of the spare DAC circuit 28.
  • two adjacent DAC circuits 8 are set as one set, and the outputs from the DAC circuits 8 are compared in the operational amplifier 1.
  • FIG. 16 is an explanatory diagram showing the configuration of the integrated circuit 20 (integrated circuit for driving the display device).
  • the operational amplifier 1 inputs the output from the DAC circuit 8 connected in series to the operational amplifier 1 to its positive input terminal. Furthermore, the operational amplifier 1 inputs the output from the DAC circuit 8 connected in series to the operational amplifier adjacent to the operational amplifier 1 to its negative input terminal. Specifically, as shown in the figure, the operational amplifier 1-1 inputs the output from the DAC circuit 8-1 to its positive input terminal, and outputs the output from the DAC circuit 8-2. It inputs to its own negative input terminal via the switch 2a. Similarly, the operational amplifier 1-2 inputs the output from the DAC circuit 8-2 to its own positive input terminal, and outputs the output from the DAC circuit 8-1 through its switch 2a to its own negative input terminal. To enter.
  • the integrated circuit 20 also includes spare sampling circuits 26A and 26B, spare hold circuits 27A and 27B, spare DAC circuits 28A and 28B, operational amplifiers 21A and 21B, and pull-up / pull-down circuits 25A and 25B.
  • the output from the DAC circuit 28A is input to its own positive input terminal, and the output from the DAC circuit 28B is input to its own negative input terminal via the switch 2a.
  • the output from the DAC circuit 28B is input to its own positive input terminal, and the output from the DAC circuit 28A is input to its own negative input terminal via the switch 2a.
  • the control circuit sets the test signal to the “L” level and the test B signal to the “H” level.
  • the DAC circuit 8 converts the grayscale data input from the hold circuit 7 into a grayscale voltage signal and outputs the grayscale voltage to the positive input terminal of the operational amplifier 1.
  • the output of the operational amplifier 1 is negative feedback to its own negative input terminal because the switch 2b is ON.
  • the operational amplifier 1 operates as a voltage follower. Therefore, the operational amplifier 1 buffers the gradation voltage from the DAC circuit 8 and outputs it to the corresponding output terminals OUT1 to OUTn.
  • the control circuit sets the test signal to the “H” level and sets the test B signal to the “L” level.
  • the switch 2a is turned ON, the TSTR1 signal is sent to the sampling circuit 26A and the odd-numbered sampling circuits 6 (sampling circuits 6-1, 6-3,..., 6- (n ⁇ 1)). Entered. Further, the TSTR2 signal is input to the sampling circuit 26B and the even-numbered sampling circuits 6 (sampling circuits 6-2, 6-3,..., 6-n).
  • the switch 2a when the switch 2a is turned ON, the output from the adjacent even-numbered DAC circuit 8 is input to the negative-polarity input terminal of the odd-numbered operational amplifier 1, and the negative-polarity input terminal of the even-numbered operational amplifier 1 is input. Are supplied with outputs from adjacent odd-numbered DAC circuits 8. Further, when the test B signal becomes “L” level, the switch 2b is turned OFF. As a result, negative feedback of the output of the operational amplifier 1 to the negative input terminal is cut off. As a result, the operational amplifier 1 becomes a comparator that compares the output from the DAC circuit 8 connected in series with the operational amplifier 1 with the output from the adjacent DAC circuit 8.
  • FIG. 17 is a flowchart showing a first procedure of the operation check test according to the second embodiment.
  • the control circuit sets the test signal to the “H” level and the test B signal to the “L” level (S101). As a result, the operational amplifier 1 operates as a comparator (S102). Next, the control circuit sets the expected value of the odd-numbered determination circuit 3 (determination circuits 3-1, 3-3,..., 3- (n ⁇ 1)) to the “L” level. On the other hand, the control circuit sets the expected value of the even-numbered determination circuit 3 (determination circuits 3-2, 3-4,..., 3-n) to the “H” level.
  • control circuit initializes a counter m included in the control circuit to 0 (S103). Further, the control circuit activates TSTR1, and the sampling circuit 26A and the odd-numbered sampling circuit 6 input gradation data of gradation m through the data bus. In addition, the control circuit activates TSTR2, and the sampling circuit 26B and the even-numbered sampling circuit 6 input gradation data of gradation m + 1 through the data bus (S104).
  • the odd-numbered operational amplifier 1 has an odd-numbered DAC in which a gradation voltage of gradation 0 is connected in series to its positive polarity input terminal. Input from circuit 8.
  • the odd-numbered operational amplifier 1 inputs the gradation voltage of gradation 1 from its adjacent even-numbered DAC circuit 8 to its negative input terminal.
  • the DAC circuit 8 connected to the two input terminals of the operational amplifier 1 is normal, the output of the odd-numbered operational amplifier 1 becomes “L”.
  • the even-numbered operational amplifier 1 inputs the gradation voltage of gradation 1 to its positive input terminal from the even-numbered DAC circuit 8 connected in series to itself.
  • the even-numbered operational amplifier 1 inputs the gradation voltage of gradation 0 from the adjacent odd-numbered DAC circuit 8 to its negative input terminal.
  • the DAC circuit 8 connected to the two input terminals of the operational amplifier 1 is normal, the output of the even-numbered operational amplifier 1 becomes “H”.
  • the determination circuit 3 determines whether the level of the output signal from the operational amplifier 1 matches the expected value stored by itself (S105).
  • the determination circuit 3 outputs an “H” flag to the determination flag 4 (S106).
  • the above processing from S104 to S106 is repeated until the value of the counter m is incremented by one until the value of the counter m reaches n ⁇ 1 (S107, S108).
  • FIG. 18 is a flowchart showing a second procedure of the operation check test according to the second embodiment.
  • the operation check test 2 in the second embodiment is an operation check in which the voltage relationship of the odd-numbered and even-numbered gradations is reversed in the operation check test 1 in the second embodiment. This is the same as the operation check test in the embodiment.
  • control circuit sets the expected value of the odd-numbered determination circuit 3 to “H”, while setting the expected value of the even-numbered determination circuit 3 to “L”. Further, the control circuit initializes a counter m included in the control circuit to 0 (S111).
  • control circuit activates TSTR1, and the sampling circuit 26A and the odd-numbered sampling circuit 6 input gradation data of gradation m + 1 via the data bus.
  • control circuit activates TSTR2, and the sampling circuit 26B and the even-numbered sampling circuit 6 input gradation data of gradation m via the data bus (S112).
  • the odd-numbered operational amplifier 1 is connected to the positive-polarity input terminal of the grayscale voltage of grayscale 1 in series with the odd-numbered DAC. Input from circuit 8.
  • the odd-numbered operational amplifier 1 inputs the gradation voltage of gradation 0 from the adjacent even-numbered DAC circuit 8 to its negative input terminal.
  • the output of the odd-numbered operational amplifier 1 becomes “H” level.
  • the even-numbered operational amplifier 1 inputs the gradation voltage of gradation 0 to its positive input terminal from the even-numbered DAC circuit 8 connected in series to itself.
  • the even-numbered operational amplifier 1 inputs the gradation voltage of gradation 1 from the adjacent odd-numbered DAC circuit 8 to its negative polarity input terminal.
  • the DAC circuit 8 connected to the two input terminals of the operational amplifier 1 is normal, the output of the even-numbered operational amplifier 1 becomes “L” level.
  • the determination circuit 3 compares the level of the output from the operational amplifier 1 with the expected value stored in itself (S113).
  • the determination circuit 3 outputs an “H” flag to the determination flag 4 when the output from the operational amplifier 1 is different from the expected value.
  • the above processes of S112 to S114 are repeated until the value of the counter m is incremented by one until the value of the counter m reaches n ⁇ 1 (S115, S116).
  • FIG. 19 is a flowchart showing a third procedure of the operation check test according to the second embodiment.
  • the gradation voltage input to the operational amplifier 1 by the executed check test is used as the operational amplifier. 1 may continue to be held, and in the operation check tests 1 and 2 of the second embodiment, there may be a case where a failure cannot be detected.
  • the control circuit initializes the value of the counter m included therein to 0 (S121).
  • the pull-up / pull-down circuit 5 is connected to the positive input terminal of the DAC circuit 8.
  • the control circuit controls the pull-up / pull-down circuit 5 so as to pull up the positive input terminal of the odd-numbered operational amplifier 1 (S122).
  • the control circuit controls the pull-up / pull-down circuit 5 so that the positive input terminals of the even-numbered operational amplifiers 1 are pulled down (S122).
  • the output of the even-numbered DAC circuit 8 is open, a low voltage is input to the positive input terminal of the even-numbered operational amplifier 1.
  • FIG. 20 is a flowchart showing a fourth procedure of the operation check test according to the second embodiment.
  • the control circuit initializes the value of the counter m included in the control circuit to 0 (S131).
  • the control circuit controls the pull-up / pull-down circuit 5 so as to pull down the positive input terminal of the odd-numbered operational amplifier 1 (S122).
  • the control circuit controls the pull-up / pull-down circuit 5 so that the positive input terminals of the even-numbered operational amplifiers 1 are pulled up (S122).
  • the output of the even-numbered DAC circuit 8 is open, a high voltage is input to the positive input terminal of the even-numbered operational amplifier 1.
  • FIG. 21 is a flowchart showing a fifth procedure of the operation check test according to the second embodiment.
  • the DAC circuit 8 may have a problem that two adjacent gray scales in itself are short-circuited.
  • the purpose of the operation check test 5 of the second embodiment is to detect such a problem.
  • the control circuit initializes the value of the counter m included in itself to 0 (S141).
  • TSTR1 and TSTR2 are activated, and further, gradation data of gradation m is input to the sampling circuit 26A, the sampling circuit 26B, and the sampling circuit 6 through the data bus.
  • the odd-numbered DAC circuit 8 and the even-numbered DAC circuit 8 output the gradation voltage of the same gradation m (S142).
  • the control circuit short-circuits the positive input terminal and the negative input terminal of the operational amplifier 1 through a switch (not shown).
  • the determination circuit 3 stores the output level of the operational amplifier when the positive input terminal and the negative input terminal of the operational amplifier 1 are short-circuited as an expected value (S143).
  • the switch (not shown) is turned OFF to cancel the short circuit between the positive input terminal and the negative input terminal of the operational amplifier 1.
  • the positive polarity input terminal of the odd-numbered operational amplifier 1 is input with the grayscale voltage of grayscale m from the odd-numbered DAC circuit 8 connected in series to itself, Are supplied with the gradation voltage of gradation m from the even-numbered DAC circuit 8 adjacent thereto.
  • the gradation input of the gradation m from the even-numbered DAC circuit 8 connected in series to the positive-polarity input terminal of the even-numbered operational amplifier 1 is input to the negative-polarity input terminal.
  • the gradation voltage of gradation m from the adjacent odd-numbered DAC circuit 8 is input.
  • the determination circuit 3 compares the expected value stored by itself with the output from the operational amplifier 1 (S144). Further, the determination circuit 3 outputs an “H” flag to the determination flag 4 when the output from the operational amplifier 1 is different from the expected value stored by itself. Further, the determination flag 4 stores therein the “H” flag input from the determination circuit 3.
  • control circuit switches the signal input to the positive input terminal of the operational amplifier 1 and the signal input to the negative input terminal from the DAC circuit 8 using a switch (not shown) (S146). Thereafter, the same processing as S147 is performed (S147). Similarly to S145, when the output from the operational amplifier 1 is different from the expected value stored in the operational amplifier 1, the determination circuit 3 outputs “H” to the determination flag 4 (S148).
  • FIG. 22 is a flowchart showing a procedure for switching between the DAC circuit 8 determined to be defective and the spare DAC circuits 28A and 28B and performing self-repair.
  • the control circuit detects whether or not the determination flag 4 stores “H” (S151). When the control circuit detects that the determination flag 4 does not store “H”, the control circuit proceeds to S153. On the other hand, when the control circuit detects the determination flag 4 storing “H”, the DAC circuit 8 corresponding to the determination flag 4 storing “H” is switched to the spare DAC circuit 28A or 28B.
  • the operation confirmation is performed with the two DAC circuits 8 as one set, even if the determination flag 4 stores the “H” flag, It cannot be determined whether the DAC circuit is defective.
  • the following description assumes that the DAC circuit 8-1 has a problem.
  • the determination circuits 3-1 and 3-2 output “H” to the determination flags 4-1 and 4-2 by the operation check tests 1 to 5. Will do. Further, the determination flags 4-1 and 4-2 output the “H” flag input from the determination circuits 3-1 and 3-2 to the switches 2c and 2d, thereby turning the switch 2c OFF and turning the switch 2d ON. As a result, the sampling circuit 26A inputs the STR1 signal, and the sampling circuit 26B inputs the STR2 signal.
  • the sampling circuit 26A acquires gradation data corresponding to the liquid crystal driving signal output terminal OUT1 from the data bus
  • the sampling circuit 26B acquires the gradation data corresponding to the liquid crystal driving signal output terminal OUT2.
  • Data is acquired from the data bus.
  • the switch 2c is turned OFF, the connection between the output of the operational amplifier 1-1 and the liquid crystal driving signal output terminal OUT1 is cut off, and the output of the operational amplifier 1-2 and the liquid crystal driving signal output terminal OUT2 are disconnected. The connection is also cut off.
  • the switch 2d is turned on, the output of the operational amplifier 21A is connected to the liquid crystal driving signal output terminal OUT1, and the output of the operational amplifier 21B is connected to the liquid crystal driving signal output terminal OUT2.
  • the defective DAC circuit 8 is switched to the spare DAC circuit 28A and 28B by taking the defective DAC circuit 8 and the DAC circuit 8 paired therewith as a set, thereby switching the defective DAC circuit 8 to the spare DAC circuit. It can be switched to 26A or 26B.
  • control circuit sets the test signal to “L” and the test B signal to “H”, and shifts to normal operation (S153).
  • the gradation voltage from the output circuit block 30 (see FIG. 2) and the gradation voltage from the standby output circuit block 40 (see FIG. 2) are switched.
  • the switching circuit 60 (see FIG. 2) is configured to be provided in the integrated circuits 10 and 20, the present invention is not limited to this, and the switching circuit 60 is configured to be provided on the display panel side. Also good.
  • the configuration and operation of the display unit 90 ′ including the switching circuit 60 on the display panel side will be described as a third embodiment according to the present invention.
  • a different part from Embodiment 1 is demonstrated and the description is abbreviate
  • FIG. 23 is a block diagram showing a schematic configuration of the display unit 90 ′.
  • the display unit 90 ' includes a display panel 80' and an integrated circuit 10 '(drive circuit) that drives the display panel 80' based on gradation data input from the outside.
  • the integrated circuit 10 ′ is different from the integrated circuit 10 of the first embodiment in that the switching circuit 60 is not provided, and the other configuration is the same as that of the integrated circuit 10.
  • the display panel 80 ′ is different from the display panel 80 of the first embodiment in that it includes a switching circuit 60, and other configurations are the same as the display panel 80.
  • FIG. 24 is a block diagram showing a configuration of the integrated circuit 10 ′.
  • the integrated circuit 10 ′ receives n grayscale data corresponding to each of the n output terminals OUT1 to OUTn via a data bus from a grayscale data input terminal (not shown).
  • the integrated circuit 10 ′ includes a plurality of switches 2a that are switched ON / OFF by a test signal, a plurality of switches 2b that is switched ON / OFF by a test B signal, and an ON, OFF by an LF signal. And a plurality of switches 2f for switching OFF.
  • the switches 2a, 2b, and 2f are turned on when an “H” signal is input, and are turned off when an “L” signal is input.
  • each of the integrated circuit 10 'spare sampling circuit 26, spare hold circuit 27, spare DAC circuit 28, spare operational amplifier 21, and spare output terminal OUT0 is provided.
  • the display panel 80 ′ includes a connection terminal (not shown) connected to each of the output terminals OUT1 to OUTn included in the integrated circuit 10 ′ and determination flags 9-1 to 9-n ( Hereinafter, when collectively referred to as a determination flag 9), a switch 2 f that is switched ON / OFF by an LF signal from a control circuit (not shown), and an ON / OFF by an LFB signal that is an inverted signal of the LF signal. Switch 2e, and switches 2c and 2d that are turned on and off by Flag1 to Flagn that are output signals from the determination flag 9.
  • the switches 2d, 2e, and 2f are turned on when an “H” signal is input, and are turned off when an “L” signal is input.
  • the switch 2c is turned on when an “L” signal is input, and is turned off when an “H” signal is input.
  • the display panel 80 ′ in the present embodiment is a liquid crystal display panel, and as shown in FIG. 24, the data signal line SL ⁇ is connected to each of the output terminals OUT of the integrated circuit 10 ′ via the switches 2e and 2c. 1 to SL-n (hereinafter collectively referred to as data signal lines SL) are connected. Further, the same number of pixels P as the number of scanning signal lines GL are connected to each of the data signal lines SL. In FIG. 24, the pixel P connected to the data signal line SL-1 is a pixel P-1, and the pixel P connected to the data signal line SL-n is a pixel Pn.
  • the test signal is “H” and the test B signal is “L”. Therefore, the connection between the operational amplifier 1 and the output terminal OUT is disconnected by the switch 2b.
  • the control circuit outputs an “H” LF signal and also outputs an “L” LFB signal.
  • the switch 2 f is turned on, and each determination flag 4 is connected to each determination flag 9 via each output terminal OUT. Further, each of the determination flags 4 outputs the “H” flag or “L” flag stored therein as Flag1 to Flagn to each determination flag 9 via each output terminal OUT.
  • Each determination flag 9 stores Flag1 to Flagn output from the determination flag 4 in its own internal memory and outputs it to the switches 2c and 2d connected to itself.
  • Each switch 2e is turned OFF when the LFB signal becomes “L” during the period when the LF signal is “H”. This prevents Flag1 to Flagn output from the determination flag 4 from being output to the data signal lines SL-1 to SL-n. As a result, Flag1 to Flagn output from the determination flag 4 affects the pixel P. Will not affect.
  • the determination flag 4-1 corresponding to the output terminal OUT1 stores the “H” flag, in other words, when the DAC circuit 8-1 is defective, the determination flag 9-1 is determined by the determination flag 4 The “H” flag is then output, and the output “H” flag is recorded in the internal memory of the device. In this example, it is assumed that the determination flags 4-2 to 4-n record the “L” flag.
  • the determination flag 9-1 outputs Flag1 of the “H” flag to the switches 2c and 2d connected to the determination flag 9-1.
  • the switch 2c connected to the determination flag 9-1 disconnects the output terminal OUT1 from the data signal line SL-1, and the switch 2d connected to the determination flag 9-1
  • the terminal OUT0 and the data signal line SL-1 are connected.
  • each of the determination flags 9-2 to 9-n is connected to the determination flags 9-2 to 9-n in order to output the Flag 2 to Flagn of the “L” flag to the switches 2c and 2d connected thereto.
  • the switch 2c is turned on, and the switch 2d connected to the determination flags 9-2 to 9-n is turned off.
  • each of the data signal lines SL-2 to SL-n is connected to each of the output terminals OUT2 to OUTn via the switch 2e.
  • each determination flag 9 switches the switches 2c and 2d connected to itself based on Flag1 to Flagn from the determination flag 4, the control circuit outputs an “L” LF signal and outputs “H”. LFB signal is output. As a result, each of the output terminals OUT2 to OUTn is connected to each of the data signal lines SL-2 to SL-n.
  • the data signal line SL-1 is connected to the output terminal OUT0.
  • the data signal lines SL-2 to SL-n are connected to the operational amplifiers 1-2 to 1-n via the output terminals OUT2 to OUTn. Since the switch 2d connected to the sampling circuit 6-1 is turned on by Flag1 from the determination flag 4-1, the grayscale data (corresponding to the data signal line SL-1) input to the sampling circuit 6-1. Gradation data to be input) is also input to the sampling circuit 26.
  • gradation data corresponding to the data signal line SL-1 is input to the data signal line SL-1 from the output terminal OUT0 instead of the output terminal OUT1.
  • switching of the gradation data input to each of the sampling circuit 6 and the spare sampling circuit 26 is the same as the operation in the first embodiment, and thus detailed description thereof is omitted here.
  • the display unit 90 ′ performs a self-repair operation, so that the normal grayscale voltage is applied to the data signal line SL using the spare DAC circuit 28 instead of the DAC circuit 8 detected as defective. Can be output. Similar to the first embodiment, this embodiment also includes a spare sampling circuit 26 and a hold circuit 27 corresponding to the spare DAC circuit 28. Therefore, not only the DAC circuit 8 but also the sampling circuit 6 or the hold circuit 7 has a problem, the spare sampling circuit 26 and the hold circuit 28 can be switched.
  • FIG. 25 is a flowchart showing a processing procedure from when the display unit 90 ′ is turned on to when an operation check test is performed and the normal operation is started.
  • the display unit 90 ′ when the display unit 90 ′ detects that the power is turned on by the user, the display unit 90 ′ initializes the integrated circuit 10, thereby setting all the flags stored in the determination flag 4 to the “L” flag. (S161).
  • the control circuit sets the test signal to “H”, the test B signal to “L”, and switches the integrated circuit 10 ′ to the operation check test state (S 162).
  • the control circuit and the integrated circuit 10 perform the above-described operation check test (S163). Further, the control circuit confirms whether or not all the operation confirmation tests 1 to 5 have been completed (S164).
  • the display unit 90 ′ in the present embodiment is configured to include the determination flag 4 and the determination flag 9 as a circuit for storing a flag that is a determination result in the determination circuit 3-1, but the display unit 90 ′ is a modified example.
  • the determination flag 9, the switch 2f, and the switch 2e may not be provided, and the determination flag 4 may control the switches 2c and 2d.
  • the LF signal and the LFB signal for controlling the switches 2f and 2e are also unnecessary, while the determination flag 4 and wiring and connection terminals for connecting the switches 2c and 2d are required.
  • the integrated circuit and the display panel are connected via the output terminal OUT.
  • the integrated circuit and the display panel are not connected via the output terminal OUT.
  • An integrated display device is also included in the scope of the present invention.
  • a display unit 90 ′′ in which an integrated circuit and a display panel are integrated will be described as a fourth embodiment with reference to FIG. 26.
  • the display unit 90 ′′ according to the present embodiment is an embodiment. 1 is a modification of the display unit 90 according to the first embodiment. In the present embodiment, portions different from those of the first embodiment will be described, and descriptions of overlapping portions will be omitted.
  • FIG. 26 is a block diagram illustrating the configuration of the display unit 90 ′′.
  • the display unit 90 ′′ has no distinction between the integrated circuit 10 and the display panel 80 shown in the first embodiment, and the outputs of the operational amplifiers 1 and 21 are connected via the switches 2b, 2c, and 2d.
  • the display unit 90 ′′ of the present embodiment is different from the display unit 90 of the first embodiment in whether or not the output terminal OUT is provided.
  • Other configurations are the same as those of the display unit 90 of the first embodiment.
  • FIG. 27 is a block diagram illustrating a configuration of the television system 300.
  • the television system 300 is described as including the display unit 90 according to the first embodiment.
  • the television system according to the present invention is not limited to this, and instead of the display unit 90, The display device according to Embodiments 2 to 4 may be provided.
  • a television system 300 includes an antenna 301 that receives a broadcast wave, a tuner unit 302 that demodulates the received broadcast wave into a video / audio signal, and the demodulated video / audio signal as a video signal and an audio.
  • a signal separation unit 303 that separates the signal into a signal
  • a video signal processing unit 304 that decodes the separated video signal into a digital video signal, and obtains the decoded digital video signal as gradation data.
  • a display unit 90 that displays video on the display panel 80 (see FIG. 2), an audio signal processing unit 305 that decodes the separated audio signal into a digital audio signal, and the decoded digital audio signal as an analog signal.
  • An audio signal output unit 306 is provided that outputs the converted analog audio signal as audio from a speaker after conversion into the audio signal.
  • the antenna 301 receives a broadcast wave from a broadcast station, and outputs the received broadcast wave to the tuner unit 302.
  • the tuner unit 302 demodulates the output broadcast wave into a video / audio signal, and outputs it to the signal separation unit 303.
  • the signal separation unit 303 separates the output video / audio signal into a video signal and an audio signal, and outputs them to the video signal processing unit 304 and the audio signal processing unit 305, respectively.
  • the video signal processing unit 304 decodes the output video signal into a digital video signal, and outputs the decoded digital video signal to the display unit 90 as gradation data.
  • the display unit 90 displays the output gradation data using the display panel 80 provided therein.
  • the audio signal processing unit 305 decodes the audio signal separated by the signal separation unit 303 into a digital audio signal and outputs it to the audio output unit 306.
  • the audio signal output unit 306 converts the output digital audio signal into an analog audio signal, and then outputs the analog audio signal as audio using a speaker provided therein.
  • the television system 300 is configured to acquire from a broadcasting station using the antenna 301 and the tuner unit 302 as means for acquiring a video / audio signal, but the present invention is not limited to this.
  • the content data recorded on the recording medium may be read from the recording medium, and may be acquired via a PC (personal computer) from a content reading device such as a DVD player or the Internet.
  • the operation check test and the self-repair processing operation described in the first and fourth embodiments are performed immediately after power is supplied to the liquid crystal driving semiconductor integrated circuit 10, but the present invention is not limited to this. Instead, it may be configured by inputting a control signal to the liquid crystal driving semiconductor integrated circuit 10 and may be performed at an arbitrary timing. For example, a signal indicating a display blanking period may be input to the liquid crystal driving semiconductor integrated circuit 10 from the controller of the display device, and an operation check test and self-repair may be performed at this timing.
  • the liquid crystal driving semiconductor integrated circuit 10 is configured to detect a malfunction of the liquid crystal driving semiconductor integrated circuit 10, and the liquid crystal driving semiconductor integrated circuit 10 has an abnormality. Sometimes you can go. For example, the current of the signal output from the liquid crystal driving semiconductor integrated circuit 10 may be detected, and when the detected current exceeds the set current, an operation check test and a self-repair processing operation may be performed.
  • the operation check test and the self-repair processing operation may be performed periodically. For example, it may be performed every vertical blanking period in which no display is performed, or may be performed every preset total display time.
  • the operation check test and the self-repair processing operation may be performed during a part of the display period. For example, since a pixel stores a display voltage in a liquid crystal display device, there is no problem in display even if the output of the semiconductor integrated circuit 10 for driving the liquid crystal is set to high impedance after charging of the display voltage is completed. During a part of the display period, the output of the semiconductor integrated circuit 10 for driving the liquid crystal is set to high impedance, and an operation check test and a self-repair processing operation are performed.
  • one pattern is determined in a part of the display period of one line, and it is performed in a display period of one screen or a period of displaying several screens. You can also.
  • the integrated circuit 10 according to the present invention needs to stop the output signal for driving the display panel 80 (see FIG. 2) in order to self-detect its own defect (operation check test). There is. That is, the integrated circuit 10 cannot drive the display panel 80 during the self-detection period. Therefore, the timing at which the integrated circuit 10 performs self-detection needs to be performed in a period that does not affect the display of video on the display device.
  • the case where the integrated circuit 10 performs self-detection and self-repair is described as the period during which the integrated circuit 10 performs self-detection during the startup process when the display device is turned on. This is because the integrated circuit 10 can perform self-detection and self-repair without affecting the display of video on the display device because the display device does not display video during the startup process of the display device. Because.
  • the integrated circuit 10 in the present embodiment performs self-detection to detect its own defect during the startup process when the display device is turned on.
  • the present invention is not limited to this.
  • Self-detection and self-repair can be performed in a period other than during the startup process of the display device.
  • Example 1 (Self-detection and self-repair in the vertical blanking period)
  • the integrated circuit 10 can perform self-detection and self-repair without affecting the display of video on the display device. Become. The reason will be described below.
  • FIG. (A) to (f) of FIG. 28 are time charts showing timings of signals inputted to the liquid crystal display device.
  • FIG. 28A shows the scanning signal line SCN1 that is output from the scanning side driving circuit that drives the scanning lines of the display device and is given to the first scanning signal line of the display device
  • FIG. Indicates a scanning signal line SCN2 output from the scanning side drive circuit and applied to the second scanning signal line of the display device
  • (c) in FIG. 8 is a video signal inversion from the integrated circuit 10 (see FIG. 7).
  • a video signal DSj corresponding to the j-th data signal line of the display device, which is given to the circuit, is shown, and (d) in the same figure shows the j-th data signal line from the video signal inversion circuit to the data side drive circuit.
  • the video signal DRVj corresponding to the data signal line is shown, (e) in the figure shows the video signal DATAj given to the jth data signal line of the display device, and (f) in the figure shows 1 in the display device.
  • the first scanning signal line and the jth It shows a driving voltage VD1j applied to pixels connected to the data signal line.
  • a period TV from time t1 to t5 is a vertical scanning period of the display device
  • a period TV1 is a vertical blanking period
  • a period TH from time t1 to t3 is a horizontal scanning period
  • a period TH1 from t2 to t3 is a horizontal blanking period.
  • the video signal inversion circuit inverts the polarity of the video signal DSj from the integrated circuit 10 in order to invert the polarity of the display electrode in each pixel of the display device every horizontal scanning period TH and vertical scanning period TV. Circuit.
  • the scanning side drive circuit sequentially delays the timing by the horizontal scanning TH from the first scanning signal line for each scanning signal line of the display device. , Scan signal SCN1, scan signal SCN2,..., Scan signal SCNm. Further, the scanning side driving circuit repeatedly outputs each scanning signal SCN1 to scanning signal SCNm to each scanning signal line of the display device every vertical scanning period TV. Note that here, the display device has m scanning signal lines.
  • the video signal DSj from the integrated circuit 10 is input to the video signal inversion circuit.
  • the video signal inversion circuit inverts the polarity of the video signal DSj every horizontal scanning period TH and also inverts the polarity every vertical scanning period TV, so that the video signal DRVj shown in FIG. Generate. Further, the video signal inversion circuit inputs the generated video signal DRVj to the data side driving circuit.
  • the data side driving circuit samples the video signal DRVj from the video signal inverting circuit every horizontal scanning period TH, delays the sampled signal value by one horizontal scanning period TH, and (e) of FIG. Is output to the jth data signal line of the display device.
  • the scanning signal SCN1 in the horizontal scanning period TH from time t1 to t2 is used.
  • the TFT in the pixel 1j becomes conductive, and as a result, the video signal voltage of the video signal DATAj at time t1 to t2 is applied to the display electrode in the pixel 1j via the jth data signal line as the drive voltage VD1j. Is done.
  • the drive voltage VD1j applied to the display electrode of the pixel 1j continues to hold the voltage level during the time t1 to t2 even when the TFT in the pixel 1j is cut off during the time t2 to t5.
  • the scanning signal SCN2 in the horizontal scanning period TH from time t3 to t4.
  • the TFT in the pixel 2j becomes conductive, and as a result, the video signal voltage of the video signal DATAj at time t3 to t4 is applied to the display electrode in the pixel 2j via the jth data signal line as a drive voltage.
  • the drive voltage applied to the display electrode of the pixel 2j continues to hold the voltage level between times t3 and t4 even when the TFT in the pixel 2j is turned off.
  • the scanning-side driving circuit does not output the scanning signals SCN1 to SCNm for conducting the TFTs of the respective pixels to the scanning signal line, in other words, the period in which the conduction of the TFTs of the respective pixels is cut off.
  • the display device does not need to apply a voltage to the display electrode of each pixel. That is, it is not necessary for the integrated circuit 10 to output the video signal DSj that is the basis of the drive voltage, and even if the integrated circuit 10 and the display device are electrically disconnected, the display of the video on the display device is affected. There is no.
  • the integrated circuit 10 can perform self-detection and self-repair without affecting the display of video on the display device.
  • the integrated circuit 10 performs a self-detection process for detecting a defect in an output circuit block included in the integrated circuit 10 for each output circuit block corresponding to each data signal line and for all the output circuit blocks. It is targeted. Therefore, this self-detection process takes time.
  • the integrated circuit 10 does not need to perform self-detection processing when there is no possibility of malfunction in each output circuit block included in the integrated circuit 10. In other words, the integrated circuit 10 only needs to perform self-detection processing only when there is a possibility of malfunction in each output circuit block.
  • the integrated circuit 10 includes an operation determination circuit that determines whether or not there is a possibility of an operation failure with respect to the entire integrated circuit 10, and there is an operation failure somewhere in the integrated circuit 10 by the operation determination circuit. If the self-detection process is performed only when it is determined, it is possible to prevent performing a useless self-detection process.
  • FIG. 29 the operation determination circuit 200 for determining whether or not there is a possibility of an operation failure with respect to the entire integrated circuit 10 included in the integrated circuit 10 will be described with reference to FIGS. 29 to 31.
  • FIG. 29 the operation determination circuit 200 for determining whether or not there is a possibility of an operation failure with respect to the entire integrated circuit 10 included in the integrated circuit 10 will be described with reference to FIGS. 29 to 31.
  • the power supply current supplied to the integrated circuit 10 is compared with that during normal operation, in other words, compared with the initial stage that is determined to be good when shipped as a product. Become more. Therefore, when the value of the power supply current supplied to the integrated circuit 10 becomes larger than a certain value compared with the normal operation, an operation failure has occurred in the integrated circuit 10. Therefore, the operation determination circuit 200 detects the value of the power supply current supplied to the integrated circuit 10 and determines whether an operation failure has occurred in the integrated circuit 10 from the detected value of the power supply current.
  • FIG. 29 is a block diagram showing a configuration of the operation determination circuit 200.
  • the operation determination circuit 200 includes a resistor 202 (detection means) and a switch 203 between the integrated circuit 10 and the VA 201 that supplies power to the integrated circuit 10.
  • the resistor 202 and the switch 203 are connected so as to be parallel to each other.
  • the operation determination circuit 200 includes an A / D converter 204 (detection means) connected to one end of the resistor 202 and the switch 203 on the integrated circuit 10 side, and a switch for inputting an output signal from the A / D converter 204.
  • a comparison circuit 208 (current value comparison means, drive circuit determination means) that compares the output value with the output value from the data latch circuit 207 is provided. Note that the output terminal of the comparison circuit 208 connects the comparison result in the comparison circuit 208 to a control circuit included in the integrated circuit 10. Note that switching of the switches 203 and 205 is controlled by a control circuit included in the integrated circuit 10.
  • the operation determination circuit 200 previously stores a value corresponding to the power supply current value during normal operation of the integrated circuit 10 in the EEPROM 206 as reference data.
  • the operation determination circuit 200 detects a value corresponding to the power supply current value supplied to the integrated circuit 10.
  • the value of the reference data stored in the EEPROM 206 is compared, and if the detected value is equal to or greater than a certain value, it is determined that an operation failure has occurred in the integrated circuit 10.
  • the operation determination circuit 200 outputs a signal indicating that an operation failure has occurred in the integrated circuit 10 to the control circuit included in the integrated circuit 10, so that the control circuit detects the self-detection of the integrated circuit 10. Start processing and self-healing process.
  • FIG. 30 is a flowchart showing an operation process in which the operation determination circuit 200 stores reference data in the EEPROM 206.
  • the control circuit in generating the reference data, opens the switch 203 so that the power source current from the VA 201 flows through the resistor 202 (S301).
  • the resistance value of the resistor 202 is a resistance value such that the voltage drop of the resistor 202 during the normal operation of the integrated circuit 10 is about 0.1V. Note that the resistance value of the resistor 202 is preferably determined in consideration of current consumption of the integrated circuit.
  • the A / D converter 204 converts the voltage value at one end of the resistor 202 on the integrated circuit 10 side into a digital value (S302).
  • the A / D converter 204 inputs the converted digital value to the EEPROM 206 via the switch 205.
  • the EEPROM 206 stores the input digital value from the A / D converter as basic data (S303). Note that the switch 205 in S303 is switched by the control circuit so as to connect the A / D converter 204 and the EEPROM 206.
  • the control circuit short-circuits the switch 203 and returns the integrated circuit 10 to the normal operation state (S304).
  • the generation and storage processing of the reference data from S301 to S304 is performed at the product shipment stage of the display device including the integrated circuit 10, in other words, at the stage where the integrated circuit 10 is determined to be normal by various shipment inspections. Is called.
  • FIG. 31 is a flowchart showing processing for detecting an operation failure of the integrated circuit 10 in the operation determination circuit 200.
  • the control circuit opens the switch 203 so that the power source current from the VA 201 flows through the resistor 202 (S305).
  • the A / D converter 204 converts the voltage value at one end of the resistor 202 on the integrated circuit 10 side into a digital value (S306).
  • the A / D converter 204 inputs the converted digital value to the data latch circuit 207 via the switch 205.
  • the data latch circuit 207 stores the input digital value from the A / D converter as detection data (S307). Note that the switch 205 in S306 is switched by the control circuit so as to connect the A / D converter 204 and the data latch circuit 207.
  • the comparison circuit 208 reads the reference data stored in the EEPROM 206 and the detection data stored in the data latch circuit 207, and compares the value of the read reference data with the value of the detection data (S308). Further, the comparison circuit 208 detects whether or not the difference between the value of the reference data and the value of the detection data is equal to or greater than a predetermined value (for example, 3 or more as a digital value) (S309).
  • a predetermined value for example, 3 or more as a digital value
  • the control circuit 208 when the control circuit 208 receives a signal indicating that a malfunction has occurred in the integrated circuit 10 from the comparison circuit 208, the control circuit starts self-detection of the integrated circuit 10 (S311). Further, in the self-detection of the integrated circuit 10, when the integrated circuit 10 detects a failure in its own output circuit block, the integrated circuit 10 switches between the output of the defective output circuit block and the output of the spare output circuit block, Perform self-healing. Note that if the failure of the output circuit block cannot be detected in the self-detection of the integrated circuit 10 in S311, it is considered that the power supply current value varies due to other factors.
  • the operation determination circuit 200 since the power supply current value fluctuates, the operation determination circuit 200 generates and stores the reference data shown in S301 to S304, and the power supply current value that has fluctuated is newly set.
  • the reference data is stored in the EEPROM 206 (S312). Further, after S312, the control circuit short-circuits the switch 203 to place the operation determination circuit 200 and the integrated circuit 10 in a normal operation state (S310).
  • the comparison circuit 208 detects in S309 that the difference between the reference data value and the detected data value is less than a predetermined value (for example, less than 3 as a digital value), the process proceeds to S310. Transition.
  • a predetermined value for example, less than 3 as a digital value
  • Example 2 (Periodic self-detection of the integrated circuit 10) Further, self-detection (operation check test) and self-repair of the integrated circuit 10 may be performed periodically. Specifically, the self-detection (operation check test) and self-repair of the integrated circuit 10 may be performed for each vertical blanking period of the display device described in the first embodiment. In this case, the vertical synchronization signal is counted and is displayed every certain number of times.
  • the counter can be configured by a non-volatile memory and the counter can count the number of vertical synchronization signals.
  • the integrated circuit 10 may be provided with a timer for measuring time, the operation time is counted by this timer, and the integrated circuit 10 is self-detected and self-repaired every preset accumulated operation time.
  • the self-detection (operation check test) and self-repair processing operation of the integrated circuit 10 may be performed during a part of a period during which the display device displays an image. For example, since each pixel of the display device stores the voltage of the display electrode, after charging of the voltage of the display electrode is finished, the output terminals OUT1 to OUTn of the integrated circuit 10 are set to high impedance, There is no problem with the video display.
  • the output terminals OUT1 to OUTn of the integrated circuit 10 are set to high impedance, and self-detection (operation check test) and self-repair processing operations are performed.
  • a method for setting the output terminals OUT1 to OUTn to high impedance by providing a switch in series for each signal transmission path connecting the output terminals OUT1 to OUTn and the display device, and opening the switch, The output terminals OUT1 to OUTn and the display device have high impedance, in other words, can be electrically disconnected.
  • the integrated circuit 10 in the first embodiment has been described.
  • the present invention is not limited to this, and the integrated circuits 10 ′, 20 and in the second and third embodiments, and The present invention can also be applied to the display unit 90 ′′ in the fourth embodiment.
  • the liquid crystal display device that displays an image by the liquid crystal display panel has been described.
  • the present invention is not limited to this, and the present invention is not limited to the liquid crystal display device, such as a plasma television. Is also applicable.
  • the display device driving integrated circuit and the display device of the present invention may be configured as follows.
  • the self-healing means is Comparison means for comparing the output signal from the output circuit with the output signal from the preliminary output circuit; Determination means for determining whether or not the output circuit is defective based on a comparison result of the comparison means; If the determination result of the determination means is bad, the output terminal comprises a connection switching means for connecting the spare output circuit instead of the output circuit,
  • the output circuit block and the spare output circuit block further include an output buffer using an operational amplifier, and the operational amplifier is used as the comparing means.
  • Control means for controlling input signals to be input to the output circuit and the standby output circuit includes While inputting input signals of different magnitudes to the output circuit and the standby output circuit, Output the expected value of the comparison result from the comparison means corresponding to the input signals of different sizes,
  • the drive circuit according to the first configuration or the second configuration, wherein the determination unit determines that the output circuit is defective when the comparison result and the expected value are different.
  • Flag storage means for storing a flag indicating the determination result of the determination means;
  • the connection switching means connects the spare output circuit to the output terminal instead of the output circuit when the value of the flag indicates that the output circuit is defective.
  • the drive circuit according to any one of the configuration from the third configuration to the third configuration.
  • the comparing means compares the output signal from the output circuit with the output signal from the preliminary output circuit, The determination means determines whether or not the output circuit is defective based on a comparison result by the comparison means, The connection switching means switches the connection to the output terminal from the output of the output circuit determined to be defective by the determination means to the output of the spare output circuit, After the connection switching means connects the output terminal and the output of the auxiliary output circuit, the auxiliary output circuit outputs an output signal to the output terminal.
  • the drive circuit according to any one of the configurations.
  • Detection means for detecting the value of the power supply current supplied to the drive circuit; Normal current value storage means for storing in advance the value of the power supply current during normal operation of the drive circuit; Current value comparison means for comparing the value of the power supply current from the detection means with the value of the power supply current from the normal current value storage means; Drive circuit determination means for determining whether or not the drive circuit is defective based on a comparison result of the current value comparison means; When the determination result of the drive circuit determination means is bad, The comparing means compares the output signal from the output circuit with the output signal from the preliminary output circuit, The determination means determines whether or not the output circuit is defective based on a comparison result by the comparison means, The connection switching means switches the connection to the output terminal from the output of the output circuit determined to be defective by the determination means to the output of the spare output circuit.
  • the drive circuit according to any one of the configurations up to the configuration.
  • the comparing means compares the output signal from the output circuit with the output signal from the preliminary output circuit,
  • the determination means determines whether or not the output circuit is defective based on a comparison result by the comparison means,
  • the connection switching means switches the connection to the output terminal from the output of the output circuit determined to be defective by the determination means to the output of the spare output circuit.
  • the drive circuit according to any one of the configurations up to.
  • the comparing means compares the output signal from the output circuit with the output signal from the preliminary output circuit,
  • the determination means determines whether or not the output circuit is defective based on a comparison result by the comparison means,
  • the connection switching means switches the connection to the output terminal from the output of the output circuit determined to be defective by the determination means to the output of the spare output circuit.
  • the drive circuit according to any one of the configurations up to.
  • a blocking means for blocking a signal transmission path from the output terminal to the display panel After the blocking means blocks the signal transmission path from the output terminal to the display panel,
  • the comparing means compares the output signal from the output circuit with the output signal from the preliminary output circuit,
  • the determination means determines whether or not the output circuit is defective based on a comparison result by the comparison means,
  • the connection switching means switches the connection to the output terminal from the output of the output circuit determined to be defective by the determination means to the output of the spare output circuit.
  • N positive even number
  • N output circuit blocks including an output circuit that is connectable to each of the output terminals and outputs an output signal for driving the display panel
  • a first auxiliary output circuit block including a first auxiliary output circuit connectable to the odd numbered output terminal and capable of outputting the output signal to the display panel
  • a drive circuit for driving the display panel comprising: a second spare output circuit block including a second spare output circuit that can be connected to the even-numbered output terminals and can output the output signal to the display panel.
  • the self-healing means is Comparison means for comparing the output signal from the output circuit and the output signal from the output circuit adjacent to the output circuit; Determination means for determining whether or not the output circuit and the output circuit adjacent to the output circuit are defective based on the comparison result of the comparison means; Connection switching for connecting the first spare output circuit and the second spare output circuit to the output terminal instead of the output circuit and the output circuit adjacent to the output circuit, respectively, when the judgment result of the judging means is bad Means, and
  • the output circuit block, the first spare output circuit block, and the second spare output circuit block further include an output buffer using an operational amplifier, and the operational amplifier is used as the comparing means. .
  • Control means for controlling an input signal input to the output circuit, the first auxiliary output circuit, and the second auxiliary output circuit;
  • the control means includes The odd-numbered output circuit and the first spare output circuit, and the even-numbered output circuit and the second spare output circuit are inputted with different magnitude input signals, Output the expected value of the comparison result from the comparison means corresponding to the input signals of different sizes,
  • the drive circuit according to the tenth configuration, wherein the determination unit determines that the output circuit and an output circuit adjacent to the output circuit are defective when the comparison result and the expected value are different.
  • a display device comprising: the drive circuit according to any one of the first configuration to the eleventh configuration; and the display panel.
  • a display panel A drive circuit including an output circuit for outputting an output signal for driving the display panel from an output terminal connected to the display panel, and a display device comprising:
  • the drive circuit is A preliminary output circuit capable of outputting the output signal to the display panel; Comparison means for comparing the output signal from the output circuit with the output signal from the preliminary output circuit; Determination means for determining whether or not the output circuit is defective based on the comparison result of the comparison means;
  • the display panel Switching means for switching the output signal from the defective output circuit to the output signal from the spare output circuit as an output signal for driving the display panel when the determination result from the determination means is defective. , Prepared, In the drive circuit, an operational amplifier used as an output buffer of the output circuit and the spare output circuit is used as the comparison means.
  • a display panel An output circuit for outputting an output signal for driving the display panel; A preliminary output circuit capable of outputting the output signal to the display panel; Comparison means for comparing the output signal from the output circuit with the output signal from the preliminary output circuit; Determination means for determining whether or not the output circuit is defective based on a comparison result of the comparison means; When the determination result of the determination means is defective, a switching means for switching the output signal from the defective output circuit to the output signal from the spare output circuit as an output signal for driving the display panel, Prepared, An operational amplifier used in the output buffer of the output circuit and the spare output circuit is used as the comparison means.
  • a television system comprising the display device according to any one of the twelfth configuration to the fourteenth configuration.
  • the display unit 90 is a display panel 80 and a drive circuit that drives the display panel 80, and detects a failure of the drive circuit in a state where the electrical connection with the display panel 80 is disconnected.
  • a liquid crystal driving semiconductor integrated circuit 10 having a self-detection / self-repair means for repairing, and the self-detection / self-recovery means is configured to switch the drive circuit when the image to be displayed on the display panel is switched discontinuously. A process for detecting a defect is executed.
  • the liquid crystal driving semiconductor integrated circuit 10 drives the display panel 80.
  • the liquid crystal driving semiconductor integrated circuit 10 can detect a defect of the liquid crystal driving semiconductor integrated circuit 10 itself, and has self-detection / self-repair means for repairing the detected defect.
  • the liquid crystal driving semiconductor integrated circuit 10 executes the process of detecting and repairing its own defect in a state where the electrical connection with the display panel 80 is disconnected.
  • the liquid crystal driving semiconductor integrated circuit 10 detects gradation of itself by disconnecting the electrical connection with the display panel 80 (that is, self-detection), thereby representing gradation data representing an image being displayed on the display panel 80.
  • the self-detection process can be executed using all the gradation data.
  • the image may be a still image or a moving image, that is, a video.
  • the self-detecting / self-repairing means executes a process of detecting a defect in the drive circuit when the image to be displayed on the display panel 80 is switched discontinuously. For example, when the display based on the image signal of one channel is interrupted by switching from the first channel to the second channel, the self-detecting / self-recovery means switches when the image to be displayed on the display panel 80 switches discontinuously. A process of detecting a defect in the liquid crystal driving semiconductor integrated circuit 10 is executed. Further, for example, when the display based on the image signal representing the program is interrupted due to the transition from the program to the CM, the self-detecting / self-repairing means switches when the image to be displayed on the display panel 80 switches discontinuously. A process of detecting a defect in the liquid crystal driving semiconductor integrated circuit 10 is executed.
  • the self-detection process can be executed in a period that does not affect the display. That is, the display unit 90 according to the present embodiment executes a process of detecting a defect in the liquid crystal driving semiconductor integrated circuit 10 in a state where the electrical connection with the display panel 80 is disconnected. Since the self-detection process is executed at the timing when the currently displayed content is temporarily interrupted, the user does not feel uncomfortable. Therefore, according to the display unit 90 according to the present embodiment, it is possible to perform self-detection and self-repair processing at an appropriate timing without disturbing the user's viewing, thereby improving convenience for the user. Can do.
  • the process is divided into a plurality of process groups including one or more processes, and the self-detection / self-repair unit performs the display on the display panel 80 once.
  • the self-detection / self-repair unit performs the display on the display panel 80 once.
  • the process of detecting a defect in the liquid crystal driving semiconductor integrated circuit 10 that is, the self-detection process includes a plurality of processes, and these processes are divided into a plurality of process groups.
  • the self-detecting / self-repairing unit executes the above process group one by one every time the display based on the image signal being supplied to the display panel 80 is interrupted once. For example, when the number of process groups is n, all the processes included in the self-detection process can be completed when the display is interrupted n times.
  • the process is executed each time the display on the display panel 80 is interrupted. Since the processing time of the process group does not become so long, it is possible to execute self-detection and self-repair processing without making the user feel uncomfortable.
  • the process includes a plurality of steps, and the self-detection / self-repair means is included in the process when the display on the display panel is interrupted once. It is preferable to carry out all the steps.
  • the process for detecting a defect of the semiconductor integrated circuit 10 for driving the liquid crystal that is, the self-detection process includes a plurality of steps, and the self-detection / self-repair means is supplied to the display panel 80.
  • the display based on the middle image signal is interrupted once, all the steps included in the self-detection process are executed.
  • the display unit 90 receives a remote control I / F 401 that receives a channel selection operation by a user and a broadcast corresponding to the channel selection operation received by the remote control I / F 401, and displays the image signal of the broadcast on the display panel.
  • a controller 100 that detects that an image to be displayed on the display panel 80 switches discontinuously when switching between broadcasts received by the tuner, and the self-detection / self-repair means includes a controller When switching of an image to be displayed on the display panel 80 is detected by 100, it is preferable to start processing for detecting a defect in the liquid crystal driving semiconductor integrated circuit 10.
  • the remote control I / F 401 receives a broadcast program tuning by the user. Further, the tuner receives a broadcast corresponding to the channel selection accepted by the remote control I / F 401 and supplies an image signal of the broadcast to the display panel. For example, the tuner receives a broadcast of a channel designated by the user and supplies a video signal to the display panel 80.
  • the controller 100 should display the display panel 80 when the display is interrupted by the tuner receiving a new broadcast in response to the user's channel selection. Detect that the images switch discontinuously. For example, when the user selects channel 2 while displaying a one-channel broadcast on display panel 80, when display of one channel is interrupted because the tuner receives the two-channel broadcast, display panel 80 It detects that the image to be displayed switches discontinuously.
  • the self-detecting / self-repairing means starts a process of detecting a defect of the liquid crystal driving semiconductor integrated circuit 10, that is, a self-detecting process when switching the broadcast received by the tuner.
  • a tuner that receives a broadcast and supplies an image signal of the broadcast to the display panel 80, and when the content of the broadcast received by the tuner is switched from a program to a CM (Commercial Message), And a controller 100 for detecting that the image to be displayed on the display panel 80 switches discontinuously, and the self-detection / self-repair means detects the switching of the image to be displayed on the display panel 80 by the controller 100.
  • CM Common Message
  • the tuner receives a broadcast and supplies an image signal of the broadcast to the display panel 80.
  • the tuner receives a broadcast of a channel designated by the user and supplies a video signal to the display panel 80.
  • the controller 100 switches the image signal supplied to the display panel 80 from the image signal representing the program included in the broadcast to the image signal representing the CM included in the broadcast.
  • the controller 100 detects that the image to be displayed on the display panel 80 is switched discontinuously when the display based on the image signal representing the program is interrupted by the program being broadcast being shifted to the CM.
  • the self-detection / self-repair means starts a process of detecting a defect of the liquid crystal driving semiconductor integrated circuit 10, that is, a self-detection process when the controller 100 detects the interruption of the display on the display panel 80.
  • the display unit 90 includes the display panel 80, a supply period in which an image signal is supplied, and a supply in which the supply of the image signal is stopped, during a period in which an image is displayed on the display panel 80.
  • Self-detection / self-repair means for detecting and repairing a defect in the drive circuit that drives the display panel 80 while switching the stop period and is disconnected from the display panel 80.
  • the self-detecting / self-repairing means executes processing for detecting a defect in the liquid crystal driving semiconductor integrated circuit 10 during the supply stop period.
  • the liquid crystal driving semiconductor integrated circuit 10 stops the supply period in which the image signal is supplied and the supply of the image signal in the period in which the image is displayed on the display panel 80.
  • the display panel 80 is driven while switching the supply stop period.
  • the liquid crystal driving semiconductor integrated circuit 10 can detect a defect of the liquid crystal driving semiconductor integrated circuit 10 itself, and has self-detection / self-repair means for repairing the detected defect.
  • the liquid crystal driving semiconductor integrated circuit 10 executes the process of detecting and repairing its own defect in a state where the electrical connection with the display panel 80 is disconnected.
  • the liquid crystal driving semiconductor integrated circuit 10 detects gradation of itself by disconnecting the electrical connection with the display panel 80 (that is, self-detection), thereby representing gradation data representing an image being displayed on the display panel 80.
  • the self-detection process can be executed using all the gradation data.
  • the image may be a still image or a moving image, that is, a video.
  • the self-detecting / self-repairing means executes a process of detecting a defect in the liquid crystal driving semiconductor integrated circuit 10 during the supply stop period.
  • the self-detecting / self-repairing unit executes a process of detecting a defect in the liquid crystal driving semiconductor integrated circuit 10 in the horizontal scanning period and the vertical scanning period.
  • the self-detection process can be executed in a period that does not affect the display. That is, the display unit 90 according to the present embodiment executes a process of detecting a defect in the liquid crystal driving semiconductor integrated circuit 10 in a state where the electrical connection with the display panel 80 is disconnected, but the display while displaying an image. Since the self-detection process is executed at the timing when the image signal is not supplied to the panel 80, the display panel 80 is not hindered. Therefore, according to the display unit 90 according to the present embodiment, it is possible to perform self-detection and self-repair processing at an appropriate timing without disturbing the user's viewing, thereby improving convenience for the user. Can do.
  • the process is divided into a plurality of process groups including one or more processes, and the self-detection / self-repair means performs the process group for each supply stop period. Are preferably performed one by one.
  • the process of detecting a defect in the liquid crystal driving semiconductor integrated circuit 10 that is, the self-detection process includes a plurality of processes, and these processes are divided into a plurality of process groups.
  • the self-detecting / self-repairing means executes the above process group one by one for each supply stop period. For example, when the number of process groups is n, all processes included in the self-detection process can be completed in n supply stop periods.
  • the process includes a plurality of processes, and the self-detecting / self-repairing unit executes all processes included in the process in one supply stop period. It is preferable.
  • the process for detecting a defect in the semiconductor integrated circuit 10 for driving the liquid crystal that is, the self-detection process includes a plurality of steps. In the period, all the steps included in the self-detection process are executed.
  • the display unit 90 further includes a controller 100 that detects switching from the supply period to the horizontal blanking period as the supply stop period in a period during which an image is displayed on the display panel 80,
  • the self-detecting / self-repairing unit preferably starts the processing when the controller 100 detects the switching.
  • the controller 100 detects the horizontal blanking period during the period in which the image is displayed on the display panel 80. Then, the self-detection / self-repair means executes self-detection processing during the horizontal blanking period. In the horizontal blanking period, an image is displayed, but an image signal is not supplied to the display panel 80, and the display panel 80 is not driven.
  • the display unit 90 further includes a controller 100 that detects switching from the supply period to the vertical blanking period as the supply stop period in a period during which an image is displayed on the display panel 80,
  • the self-detecting / self-repairing unit preferably starts the processing when the controller 100 detects the switching.
  • the controller 100 detects the vertical blanking period during the period in which the image is displayed on the display panel 80. Then, the self-detection / self-repair means executes self-detection processing during the vertical blanking period. In the vertical blanking period, an image is displayed, but an image signal is not supplied to the display panel 80, and the display panel 80 is not driven.
  • the self-detection process in the vertical blanking period in which the image signal is not supplied to the display panel 80. Therefore, the self-detection process does not affect the screen display. The user does not feel uncomfortable.
  • the liquid crystal driving semiconductor integrated circuit 10 includes an output circuit block 30 that outputs an output signal for driving the display panel 80, and the self-detection / self-repair means includes an output circuit.
  • a comparison / determination circuit 50 for determining whether or not the block 30 is defective is provided. When the determination result of the comparison / determination circuit 50 is defective, a liquid crystal driving semiconductor is output so as to output a normal output signal to the display panel 80.
  • the integrated circuit 10 is preferably self-healing.
  • the liquid crystal driving semiconductor integrated circuit 10 includes the output circuit block 30 that outputs an output signal for driving the display panel 80.
  • the output circuit block 30 converts, for example, video data into a gradation voltage and outputs it as an output signal for driving the display panel 80.
  • the self-detection / self-repair means includes the comparison determination circuit 50 that determines whether or not the output circuit block 30 is defective, and the determination result in the comparison determination circuit 50 is defective. If so, the liquid crystal driving semiconductor integrated circuit 10 is self-repaired so as to output a normal output signal to the display panel 80.
  • the display unit 90 in the display unit 90 according to the present embodiment, a defect in the output circuit block 30 of the liquid crystal driving semiconductor integrated circuit 10 can be detected, and self-repair can be performed when the output circuit block 30 is defective.
  • the liquid crystal driving semiconductor integrated circuit 10 includes a spare output circuit block 40 that can output the output signal to the display panel 80, and the self-detection / self-repair means is a comparison / determination circuit.
  • the determination result of 50 is defective, a switching circuit 60 that switches the output signal from the defective output circuit block 30 to the output signal from the standby output circuit block 40 as an output signal to the display panel 80, It is preferable to provide.
  • the drive circuit includes the spare output circuit block 40 that can output an output signal to the display panel 80.
  • the preliminary output circuit block 40 can convert, for example, video data into a gradation voltage and output it as an output signal for driving the display panel 80.
  • the self-detection / self-repair means includes the switching circuit 60 that switches the output circuit block 30 determined to be defective in the comparison determination circuit 50 to the spare output circuit block 40.
  • the display unit 90 when the output circuit block 30 is defective, the defective output circuit block 30 is switched to the spare output circuit block 40, whereby the liquid crystal driving semiconductor integrated circuit 10 is replaced. Self-healing can be easily performed.
  • the comparison determination circuit 50 compares the output signal from the output circuit block 30 with the output signal from the auxiliary output circuit block 40, as operational amplifiers 1-1, 1-2, 1-. It is preferable to determine whether or not the output circuit block 30 is defective based on the comparison result of the operational amplifiers 1-1, 1-2, and 1-n.
  • the comparison / determination circuit 50 includes the operational amplifiers 1-1, 1-2, and 1-n.
  • the operational amplifiers 1-1, 1-2, and 1-n compare the output signal from the output circuit block 30 with the output signal from the spare output circuit block 40. Then, the comparison determination circuit 50 determines whether or not the output circuit block 30 is defective based on the comparison result of the operational amplifiers 1-1, 1-2, and 1-n.
  • a defect in the output circuit block 30 can be determined by comparing the output of the output circuit block 30 and the output of the standby output circuit block 40.
  • a defect in the output circuit block 30 can be easily detected.
  • the display unit 90 further includes control means for controlling input signals input to the output circuit block 30 and the spare output circuit block 40, and the control means includes the output circuit block 30, the spare output circuit block 40, and the like.
  • control means for controlling input signals input to the output circuit block 30 and the spare output circuit block 40
  • the control means includes the output circuit block 30, the spare output circuit block 40, and the like.
  • an input signal of a different magnitude is input, and an expected value of a comparison result from the operational amplifiers 1-1, 1-2, 1-n corresponding to the input signal of the different magnitude is output, and a comparison determination circuit 50, it is preferable to determine that the output circuit block 30 is defective when the comparison result is different from the expected value.
  • the control means controls the input signals input to the output circuit block 30 and the spare output circuit block 40 and inputs the input signals having different sizes. Further, the control means outputs the expected value of the comparison result from the operational amplifiers 1-1, 1-2, and 1-n corresponding to the input signals having different sizes.
  • the comparison determination circuit 50 determines that the output circuit block 30 is defective when the actual comparison result from the operational amplifiers 1-1, 1-2, and 1-n is different from the expected value from the control means.
  • an input signal of gradation m is input to the output circuit block 30, and an input signal of gradation m + 1 is input to the standby output circuit block 40.
  • the gradation voltage of gradation m is lower than the gradation voltage of gradation m + 1.
  • the operational amplifiers 1-1, 1-2, and 1-n output a signal indicating that the gradation voltage input from the spare output circuit block 40 is higher.
  • the output circuit block 30 when the output circuit block 30 is defective and the output circuit block 30 can output only a high gradation voltage even if a signal of gradation m is input, the operational amplifiers 1-1, 1-2, and 1-n A signal indicating that the input gradation voltage is higher than that of the output circuit block 30 is output.
  • the operational amplifiers 1-1, 1-2, and 1-n compare the grayscale voltages output from the output circuit block 30 and the spare output circuit block 40. Then, different values of signals are output depending on whether the output circuit block 30 is defective or not.
  • the comparison / determination circuit 50 determines whether or not the output circuit block 30 is defective based on the signals output from the operational amplifiers 1-1, 1-2, and 1-n. Specifically, when the input signal of gradation m is input to the output circuit block 30 and the input signal of gradation m + 1 is input to the standby output circuit block 40 as described above, the level from the output circuit block 30 is increased. When a signal indicating that the regulated voltage is high is input from the operational amplifiers 1-1, 1-2, and 1-n, the output circuit block 30 is determined to be defective.
  • the comparison / determination circuit 50 determines that the output circuit block 30 is defective. It is determined that it is not.
  • the display unit 90 includes specific means for easily detecting a defect in the output circuit block 30 and can self-repair when the output circuit block 30 is defective.
  • the comparison determination circuit 50 includes operational amplifiers 1-1, 1-2, and 1-n that compare output signals from at least two output circuits in the output circuit block 30; It is preferable to determine whether or not the output circuit block 30 is defective based on the comparison results of the operational amplifiers 1-1, 1-2, and 1-n.
  • the comparison / determination circuit 50 includes the operational amplifiers 1-1, 1-2, and 1-n.
  • the operational amplifiers 1-1, 1-2, and 1-n compare output signals from at least two output circuits in the output circuit block 30. Then, the comparison determination circuit 50 determines whether or not the output circuit block 30 is defective based on the comparison result of the operational amplifiers 1-1, 1-2, and 1-n.
  • the display unit 90 can determine the failure of the output circuit block 30 by comparing the output of the output circuit block 30. Therefore, the failure of the output circuit block 30 can be easily detected with a simple configuration. Can be detected.
  • the display unit 90 further includes control means for controlling input signals to be input to at least two output circuits in the output circuit block 30, and the control means is different from the at least two output circuits.
  • the input signal of the magnitude is input, and the expected value of the comparison result from the operational amplifiers 1-1, 1-2, 1-n corresponding to the input signals of the different magnitudes is output.
  • the comparison result and the expected value are different, it is preferable to determine that one of the at least two output circuits is defective.
  • the control means controls the input signals input to at least two output circuits in the output circuit block 30, and inputs the input signals having different sizes. Further, the control means outputs the expected value of the comparison result from the operational amplifiers 1-1, 1-2, and 1-n corresponding to the input signals having different sizes.
  • the comparison determination circuit 50 determines that the output circuit block 30 is defective when the actual comparison result from the operational amplifiers 1-1, 1-2, and 1-n is different from the expected value from the control means.
  • the input signal of gradation m is input to the first output circuit
  • the input signal of gradation m + 1 is input to the output circuit 2.
  • the gradation voltage of gradation m is lower than the gradation voltage of gradation m + 1.
  • the operational amplifiers 1-1, 1-2, and 1-n output a signal indicating that the gradation voltage input from the second output circuit is higher. .
  • the operational amplifiers 1-1, 1-2, 1-n Outputs a signal indicating that the gradation voltage input from the first output circuit is higher.
  • the operational amplifiers 1-1, 1-2, and 1-n have the grayscale voltages output from at least two output circuits in the output circuit block 30. And output signals having different values depending on whether the output circuit block 30 is defective or not.
  • the comparison / determination circuit 50 determines whether or not the output circuit block 30 is defective based on the signals output from the operational amplifiers 1-1, 1-2, and 1-n. Specifically, when different input signals are input to the two output circuits of the first output circuit and the second output circuit as described above, the input signal of the gradation m is input to the first output circuit. When an input signal of gradation m + 1 is input to the second output circuit, a signal indicating that the gradation voltage from the first output circuit is high is supplied to the operational amplifiers 1-1, 1-2, 1-n. When more inputs are made, the comparison / determination circuit 50 determines that at least one of the first output circuit and the second output circuit is defective.
  • the first output circuit and the second output circuit are switched to a spare output circuit.
  • the comparison determination circuit 50 causes the output circuit block 30 to be defective. It is determined that it is not.
  • the display unit 90 includes specific means for easily detecting a defect in the output circuit block 30 and can self-repair when the output circuit block 30 is defective.
  • the output circuit block 30 includes an operational amplifier 21 as an output buffer, and the operational amplifiers 1-1, 1-2, and 1-n are comparators including the operational amplifier 21. It is preferable.
  • the output circuit block 30 includes the operational amplifier 21 as an output buffer.
  • the operational amplifiers 1-1, 1-2, and 1-n are comparators configured by the operational amplifier 21.
  • an output signal from the output circuit block 30 that drives the display panel 80 is buffered and output to an output terminal.
  • the operational amplifier 21 provides a voltage follower circuit by negatively feeding back its output to its negative input terminal, and has a function as a buffer circuit.
  • the operational amplifier 21 buffers the output signal from the output circuit block 30.
  • both the buffer circuit and the operational amplifiers 1-1, 1-2, and 1-n are combined. Therefore, the liquid crystal driving semiconductor integrated circuit 10 according to the present embodiment does not require a separate buffer circuit for buffering the output signal from the output circuit block 30, and has the effect of reducing costs.
  • the operational amplifier 21 preferably operates as a voltage follower when the display panel 80 is driven.
  • the television system 300 may be configured to include the display unit 90.
  • the present invention provides a display device including a display drive integrated circuit that includes specific means for detecting a defect in the output circuit and self-repairing, and that can more easily cope with the malfunction of the output circuit. It is suitable for a liquid crystal display device that can perform self-detection and self-repair at an appropriate timing.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Signal Processing (AREA)
  • Computer Hardware Design (AREA)
  • Multimedia (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Theoretical Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Liquid Crystal Display Device Control (AREA)
  • Liquid Crystal (AREA)
  • Transforming Electric Information Into Light Information (AREA)
  • Controls And Circuits For Display Device (AREA)
  • Testing, Inspecting, Measuring Of Stereoscopic Televisions And Televisions (AREA)

Abstract

 本発明に係る液晶テレビジョン(400)の表示部(90)は、表示パネル(80)と、表示パネル(80)を駆動するソースドライバ(10)であって、表示パネル(80)との電気的な接続を切り離した状態で当該ソースドライバ(10)の不良を検出し、修復する比較判定回路(50)および切替回路(60)を有するソースドライバ(10)とを備えている。比較判定回路(50)および切替回路(60)は、チャンネルの切り替えや番組からCMへ移行するタイミングで、ソースドライバの不良を検出する処理を実行することを特徴とする。これにより、適切なタイミングで自己検出及び自己修復を行う表示装置を提供する。

Description

表示装置、およびテレビジョンシステム
 本発明は、DAコンバータ出力回路における不具合の自己検出および自己修復を行う駆動回路を使用した表示装置に関するものである。
 近年、液晶パネル等の大型化および高精細化に伴い、液晶駆動用半導体集積回路においては、液晶駆動用出力端子の端子数増加や、出力端子からの出力する多値電圧の多階調化が進んでいる。例えば、現在主流の液晶駆動用半導体集積回路は、256階調の電圧を出力可能な約500個の出力端子数を備えるものがある。さらに、出力端子数を1000個以上備えた、液晶駆動用半導体集積回路の開発も、現在行われている。また、階調出力電圧は、液晶パネルの多色化に伴い、1024階調を出力可能な液晶駆動用半導体集積回路の開発も行われている。
 ここで、従来の液晶駆動用半導体集積回路の構成を、図32を参照して以下に説明する。図32は、従来の液晶駆動用半導体集積回路の構成を示すブロック図である。
 同図に示す液晶駆動用半導体集積回路101は、n本の液晶駆動用信号出力端子から、それぞれm階調の出力電圧を出力できる。まず、液晶駆動用半導体集積回路101の構成について説明する。液晶駆動用半導体集積回路101は、外部にクロック入力端子102、複数の信号入力端子を備えた階調データ入力端子103、LOAD信号入力端子104、および、基準電源端子であるV0端子105、V1端子106、V2端子107、V3端子108、V4端子109を備えている。さらに、液晶駆動用半導体集積回路101は、n個の液晶駆動用信号出力端子111-1~111-n(以下、液晶駆動用信号出力端子を信号出力端子と称する。さらに、液晶駆動用信号出力端子111-1~111-nを総称する場合は、信号出力端子111と称する)を備えている。また、液晶駆動用半導体集積回路101は、基準電源補正回路121、ポインタ用シフトレジスタ回路123、ラッチ回路部124、ホールド回路125、D/Aコンバータ(Digital Analog Converter:以下、DACと称する。)回路126、および出力バッファ127を備えている。また、ポインタ用シフトレジスタ回路123は、n段のシフトレジスタ回路123-1~123-nにより構成される。さらに、ラッチ回路部124は、n個のラッチ回路124-1~124-nにより構成され、およびホールド回路125は、n個のホールド回路125-1~125-nにより構成される。また、DAC回路126は、n個のDAC回路126-1~126-nにより構成される。加えて、出力バッファ127はn個の出力バッファ127-1から127-nにより構成され、各出力バッファは、オペアンプにより構成される。
 次に、液晶駆動用半導体集積回路101の動作について説明する。ポインタ用シフトレジスタ回路123は、クロック入力端子102より入力したクロック入力信号に基づき、1個目のラッチ回路124-1からn個目のラッチ回路124-nまで順次選択する。ポインタ用シフトレジスタ回路123により選択されたラッチ回路124は、階調データ入力端子103からの階調出力データを格納する。なお、階調出力データは、ラッチ回路124ごとに対応する、言い換えれば、信号出力端子111ごとに対応する、上記クロック入力信号に同期したデータである。したがって、各ラッチ回路124-1~124-nは、信号出力端子111ごとに対応する、それぞれ異なる値の階調出力データを格納できる。ラッチ回路124-1~124-nに格納された階調出力データは、データLOAD信号により、それぞれ対応するn個のホールド回路125-1~125-nへ転送する。さらに、ホールド回路125-1~125-nは、ラッチ回路124-1~124-nより入力した階調出力データを、デジタルデータとしてDAC回路126-1~126-nに出力する。
 ここで、DAC回路126-1~126-nは、ホールド回路125からの階調出力データに基づき、m種類の階調電圧における、1つの電圧値を選択し、出力バッファ127-1~127-nに出力する。なおDAC回路126は、基準電源端子V0端子105~V4端子109より入力する電圧によって、m種類の階調電圧を出力することが可能である。次に、出力バッファ127は、DAC回路126からの階調電圧をバッファし、信号出力端子111-1~111-nに、液晶パネル駆動用信号として出力する。
 以上のように、シフトレジスタ回路123、ラッチ回路124、ホールド回路125、DAC回路126、および出力バッファ127は、液晶駆動用信号出力端子111と同じ個数必要なり、液晶駆動用信号出力端子111が1000端子であれば、上記の各回路124~127も、それぞれ1000個必要となる。
 上述したように、近年、液晶パネル等の表示装置が大型化・高精細化が進んでおり、フルスペックの高精細テレビ(HDTV:High Definition Television)においては、データライン数は1920本となる。よって、表示駆動用半導体集積回路は、データラインごとに、R・G・Bの階調電圧の信号を与える必要があり、結果、表示駆動用半導体集積回路は、1920本×3(R・G・B)=5760本の出力数、言い換えれば、5760個の液晶駆動用信号出力端子を備える必要がある。ここで、1つの表示駆動用半導体集積回路の出力数を720本とした場合、表示駆動用半導体集積回路は8個必要となる。
 一般的に、表示駆動用半導体集積回路はウエハ段階においてテストされ、パッケージ後出荷テストされ、液晶パネルへ搭載後に表示テストが行われる。さらに、バーンインやストレステストのスクリーニングテストにより、初期不良が起こる可能性のある半導体集積回路は取り除かれる。したがって、表示不良が起こる、表示駆動用半導体集積回路を搭載した表示装置が、市場へ出荷されることはない。しかしながら、出荷前のテストやスクリーニングテストの際には、不良と判断されなかった、極微小の欠陥や異物の付着混入により、表示装置を使用している間に表示不良が稀に発生する。例えば、表示駆動用半導体集積回路の1つのデータラインにおける、出荷後の表示不良が発生する割合が0.01ppm(1億分の1)であったとしても、データライン数が5760本となるフルスペックのHDTVにおいては、表示不良の発生割合は、57.6ppm(100万分の57.6)となる。つまり、約17361台に1台が、表示不良を発生することになり、より大型化・高精細化になるほど、表示不良の発生割合は高くなる。
 このような、表示不良が発生した場合、迅速に表示装置を回収し、表示駆動用半導体集積回路のリペアを行う必要があるが、回収修理に大きなコストを要するのはもちろんのこと、商品イメージが低下することになる。
 ここで、従来技術においては、表示駆動用半導体集積回路に、欠陥となる回路に備える予備の回路を設け、欠陥のある回路を予備の回路に切り替えることにより、表示駆動用半導体集積回路の不具合を回避することが開示されている。
 具体的には、特許文献1において、表示駆動用半導体集積回路が、シフトレジスタの各段に予備の並列回路を備え、シフトレジスタの自己検査を行い、この検査結果をもとに、並列回路の欠陥のない一方を選択することによって、欠陥のシフトレジスタが引き起こす表示不良を回避する手法が開示されている。さらに、特許文献2においては、DAC回路の入力と出力にセレクターを設け、欠陥のあるDAC回路の位置が記憶されたRAMの情報をもとに、セレクターを切り替え、欠陥のないDAC回路を選択して使用する方法が開示されている。
 なお、特許文献1および特許文献2には、DAC回路等の出力回路における欠陥を検出する自己検出の方法については、全く開示されていない。
 また、特許文献3には、表示パネルに駆動回路を一体化した製品の駆動回路に冗長性を持たせ、製品完成後においても駆動回路を修復する技術が開示されている。特許文献3に記載の構成では、駆動回路内の駆動出力に予備の出力を設け、駆動出力の1出力と、予備の出力を比較し、出力値が等しいかを判断することにより、出力回路が正常であることを確認する自己検出を行うと共に、自己検出中、診断対象の出力回路の代わりに、予備の出力回路で、表示パネルの駆動を行うものである。
日本国公開特許公報「特開平6-208346号公報(1994年7月26日公開)」 日本国公開特許公報「特開平8-278771号公報(1996年10月22日公開)」 日本国公開特許公報「特表2004-511022号公報(2004年4月8日公開)」
 特許文献1や特許文献2に開示されている自己検出および自己修復の構成において、例えばユーザが表示装置を視聴している最中に自己検出および自己修復動作が実行された場合、映像信号を表示装置に供給する出力回路を、表示装置から切り離す必要があるため、この間、画像を表示させることができないという特性がある。したがって、突然画像が表示されなくなってしまう。そのため、ユーザの視聴を妨害したり、表示装置が故障したのではないかとユーザに誤解を与えてしまう問題がある。
 また、特許文献3に記載の構成では、診断対象の駆動回路を表示パネルから切り離し、表示パネルの駆動を予備の駆動回路にて行うと共に、予備の駆動回路の出力と、診断対象の駆動回路の出力とを比較して、診断対象の駆動回路の良否を判定する。これにより、診断対象の駆動回路と予備の駆動回路とに、表示する画像を表す画像データを同時に入力することで、予備の駆動回路により表示パネルに画像を表示すると共に、診断対象の駆動回路の自己検出を行うことが可能となる。つまり、特許文献3の構成のようにアナログクランプ電圧を選択して出力する場合は、表示データにより一部のデータを比較しているため、出力回路の差を検出することは可能である。しかしながら、特許文献3の構成では、予備の駆動回路の出力と診断対象の駆動回路の出力とを比較するためのデータは表示する画像のデータに限られてしまうことになる。
 これに対して、デジタルデータによる多階調化を行った表示装置の駆動回路では、デジタルデータに対応する電圧を出力するDA変換回路が必要となる。例えば、256階調表示のための駆動回路では256の電圧を選択するDA変換回路が必要となる。したがって、DA変換回路の不具合を検出するためには、256の電圧の出力に対応する全ての入力データについて比較する必要がある。
 このため、デジタルデータによる多階調化を行った表示装置の駆動回路に対して、特許文献3の構成を適用した場合、一部の階調に対応する入力データしか比較できず、正確に自己検出を行うことができない。つまり、デジタルデータによる多階調化を行った表示装置の駆動回路では、診断対象の出力回路と予備の出力回路との両方を表示パネルの駆動を行わない状態にして、全ての階調に対応する入力データを、診断対象の出力回路と予備の出力回路との両方に与えて診断を行う必要がある。
 したがって、デジタルデータによる多階調化を行った表示装置の駆動回路では、やはり駆動回路の自己検出動作中に画像を表示させることができないため、ユーザの視聴を妨害したり、表示装置が故障したのではないかとユーザに誤解を与えてしまう問題がある。
 本発明は、上記の問題点に鑑みてなされたものであり、その目的は、出力回路や出力回路周辺の出力ブロックの欠陥を自己検出および自己修復可能な駆動回路を供えた表示装置において、ユーザの視聴を妨げずに適切なタイミングで自己検出及び自己修復を行う表示装置を提供することにある。
 本発明に係る表示装置は、上記の課題を解決するために、表示パネルと、上記表示パネルを駆動する駆動回路であって、上記表示パネルとの電気的な接続を切り離した状態で当該駆動回路の不良を検出し、修復する自己検出・自己修復手段を有する駆動回路とを備え、上記自己検出・自己修復手段は、上記表示パネルに表示すべき画像が不連続に切り替わるときに、上記駆動回路の不良を検出する処理を実行することを特徴としている。
 上記の構成によれば、駆動回路は、表示パネルを駆動する。そして、駆動回路は、駆動回路自身の不良を検出可能であり、検出した不良を修復する自己検出・自己修復手段とを有している。駆動回路は、自身の不良を検出し修復する処理を、表示パネルとの電気的な接続を切り離した状態で実行する。つまり、駆動回路は、表示パネルとの電気的接続を切り離して自身の不良を検出する(すなわち自己検出する)ことで、表示パネルに表示中の画像を表す階調データだけでなく、全ての階調データを用いて自己検出の処理を実行することができる。なお、画像は、静止画像であってもよいし、動画像すなわち映像であってもよい。
 そして、上記の構成によれば、自己検出・自己修復手段は、上記表示パネルに表示すべき画像が不連続に切り替わるときに、駆動回路の不良を検出する処理を実行する。例えば、自己検出・自己修復手段は、1チャンネルから2チャンネルへの切替によって、1チャンネルの画像信号に基づく表示が中断する場合に、表示パネルに表示すべき画像が不連続に切り替わるときに、駆動回路の不良を検出する処理を実行する。また、例えば、自己検出・自己修復手段は、番組からCMへの移行によって、番組を表す画像信号に基づく表示が中断する場合に、表示パネルに表示すべき画像が不連続に切り替わるときに、駆動回路の不良を検出する処理を実行する。
 これにより、本発明に係る表示装置によれば、表示装置の動作において、表示に影響のない期間に、自己検出の処理を実行することができる。つまり、本発明に係る表示装置は、表示パネルとの電気的な接続を切り離した状態で当該駆動回路の不良を検出する処理を実行するが、表示装置の画面において現在表示中の内容が一旦途切れるタイミングで、自己検出の処理を実行するため、ユーザに違和感を感じさせることがない。したがって、本発明に係る表示装置によれば、ユーザの視聴を妨げずに適切なタイミングにおいて、自己検出および自己修復の処理を実行することが可能となり、ユーザにとっての利便性を向上させることができる。
 本発明に係る表示装置は、表示パネルと、上記表示パネルに画像を表示している期間のうち、画像信号を供給している供給期間と、画像信号の供給を停止している供給停止期間とを切り替えながら上記表示パネルを駆動する駆動回路であって、上記表示パネルとの電気的な接続を切り離した状態で当該駆動回路の不良を検出し、修復する自己検出・自己修復手段を有する駆動回路とを備え、上記自己検出・自己修復手段は、上記供給停止期間に、上記駆動回路の不良を検出する処理を実行することを特徴としている。
 上記の構成によれば、駆動回路は、表示パネルに画像を表示している期間のうち、画像信号を供給している供給期間と、画像信号の供給を停止している供給停止期間とを切替ながら、表示パネルを駆動する。そして、駆動回路は、駆動回路自身の不良を検出可能であり、検出した不良を修復する自己検出・自己修復手段とを有している。駆動回路は、自身の不良を検出し修復する処理を、表示パネルとの電気的な接続を切り離した状態で実行する。つまり、駆動回路は、表示パネルとの電気的接続を切り離して自身の不良を検出する(すなわち自己検出する)ことで、表示パネルに表示中の画像を表す階調データだけでなく、全ての階調データを用いて自己検出の処理を実行することができる。なお、画像は、静止画像であってもよいし、動画像すなわち映像であってもよい。
 そして、上記の構成によれば、自己検出・自己修復手段は、供給停止期間に、駆動回路の不良を検出する処理を実行する。例えば、自己検出・自己修復手段は、水平走査期間や垂直走査期間において、駆動回路の不良を検出する処理を実行する。
 これにより、本発明に係る表示装置によれば、表示装置に駆動において、表示に影響のない期間に、自己検出の処理を実行することができる。つまり、本発明に係る表示装置は、表示パネルとの電気的な接続を切り離した状態で当該駆動回路の不良を検出する処理を実行するが、画像を表示中の表示パネルに画像信号の供給が行われないタイミングで、自己検出の処理を実行するため、表示パネルの駆動を妨げない。したがって、本発明に係る表示装置によれば、ユーザの視聴を妨げずに適切なタイミングにおいて、自己検出および自己修復の処理を実行することが可能となり、ユーザにとっての利便性を向上させることができる。
 本発明に係る表示装置は、上記の課題を解決するために、表示パネルと、上記表示パネルを駆動する駆動回路であって、上記表示パネルとの電気的な接続を切り離した状態で当該駆動回路の不良を検出し、修復する自己検出・自己修復手段を有する駆動回路とを備え、上記自己検出・自己修復手段は、上記表示パネルに表示すべき画像が不連続に切り替わるときに、上記駆動回路の不良を検出する処理を実行することを特徴としている。
 また、本発明に係る表示装置は、表示パネルと、上記表示パネルに画像を表示している期間のうち、画像信号を供給している供給期間と、画像信号の供給を停止している供給停止期間とを切り替えながら上記表示パネルを駆動する駆動回路であって、上記表示パネルとの電気的な接続を切り離した状態で当該駆動回路の不良を検出し、修復する自己検出・自己修復手段を有する駆動回路とを備え、上記自己検出・自己修復手段は、上記供給停止期間に、上記駆動回路の不良を検出する処理を実行することを特徴としている。
 それゆえ、本発明に係る表示装置によれば、表示装置の画面において現在表示中の内容が一旦途切れるタイミングで、あるいは、画像を表示中の表示パネルに画像信号の供給が行われないタイミングで、自己検出の処理を実行するため、ユーザの視聴を妨げずに適切なタイミングにおいて、自己検出および自己修復の処理を実行することが可能となり、ユーザにとっての利便性を向上させることができる。
本発明の実施の一形態に係る、液晶テレビジョンの構成を示すブロックを示す。 本発明の実施の一形態に係る、表示装置の構成を示すブロック図である。 液晶テレビジョンに含まれる集積回路を構成する出力回路ブロックに異常が発生した場合の表示の一例を示す図である。 液晶テレビジョンにおいて、チャンネル変更時に自己検出および自己修復動作を行う様子を示す図であり、(a)はチャンネル変更前の様子を示す図であり、(b)は自己検出動作中の様子を示す図であり、(c)はチャンネル変更後の様子を示す図である。 液晶テレビジョンにおいて、CM移行時に自己検出および自己修復動作を行う様子を行う図であり、(a)はCM移行前の様子を示す図であり、(b)は自己検出動作中の様子を示す図であり、(c)はCM中の様子を示す図であり、(d)は番組再開時の様子を示す図である。 液晶テレビジョンの表示パネルを駆動するための信号を表すタイミングチャートである。 本発明の実施の一形態に係る、表示駆動用半導体集積回路の構成を示す説明図である。 本発明の実施の一形態に係る、動作確認テストの1つ目の手順を示すフローチャート図である。 本発明の実施の一形態に係る、動作確認テストの2つ目の手順を示すフローチャート図である。 本発明の実施の一形態に係る、動作確認テストの3つ目の手順を示すフローチャート図である。 本発明の実施の一形態に係る、動作確認テストの4つ目の手順を示すフローチャート図である。 本発明の実施の一形態に係る、動作確認テストの5つ目の手順を示すフローチャート図である。 本発明の実施の一形態に係る、不良の出力回路を、予備の出力回路に切り替える手順を示すフローチャート図である。 本発明の実施の一形態に係る、表示装置の電源投入から、動作確認テストを行い通常動作に移行するまでの手順を示すフローチャート図である。 本発明の実施の一形態に係る、オペアンプの動作確認を行うための回路構成を示す説明図である。 本発明の他の実施形態に係る、表示駆動用半導体集積回路の構成を示す説明図である。 本発明の他の実施形態に係る、動作確認テストの1つ目の手順を示すフローチャート図である。 本発明の他の実施形態に係る、動作確認テストの2つ目の手順を示すフローチャート図である。 本発明の他の実施形態に係る、動作確認テストの3つ目の手順を示すフローチャート図である。 本発明の他の実施形態に係る、動作確認テストの4つ目の手順を示すフローチャート図である。 本発明の他の実施形態に係る、動作確認テストの5つ目の手順を示すフローチャート図である。 本発明の他の実施形態に係る、不良の出力回路を、予備の出力回路に切り替える手順を示すフローチャート図である。 本発明のさらに他の実施形態に係る、表示装置の概略構成を示すブロック図である。 本発明のさらに他の実施形態に係る、表示装置の構成を示すブロック図である。 本発明のさらに他の実施形態に係る、表示装置の電源投入から、動作確認テストを行い通常動作に移行するまでの手順を示すフローチャート図である。 本発明のさらに他の実施形態に係る、表示装置の構成を示すブロック図である。 本発明の実施の一形態に係る、テレビジョンシステムの構成を示すブロック図である。 本発明の実施の一形態に係るタイムチャート図であり、(a)~(f)は、本発明の実施の一形態に係る、表示装置に入力する走査信号、映像信号、画素電極の電圧値を示す、タイムチャート図である。 本発明の実施の一形態に係る、動作判定回路の構成を示すブロック図である。 本発明の実施の一形態に係る、正常動作時における、集積回路の電源電流値を検出および記憶する処理を示す、フローチャート図である。 本発明の実施の一形態に係る、集積回路に供給される電源電流値より、集積回路の動作不良を検出する処理を示す、フローチャート図である。 従来例における、表示駆動用半導体集積回路の構成を示す説明図である。
 以下、本発明に係る実施の形態を図面に基づいて説明する。
 〔実施形態1〕
 本発明の第1の実施形態について、図1~図15を参照して以下に説明する。
 (液晶テレビジョン400)
 表示用駆動回路を使用した表示装置の代表的なものとしては液晶テレビに代表される薄型テレビを挙げることが出来る。液晶テレビ(液晶表示装置)は、表示パネルに半導体集積回路(LSI)で作成した駆動回路を複数実装し、表示を行っている。このような表示装置において、表示用駆動回路に不具合が生じた場合、直接表示不良として、ユーザに認識される。このような不具合が生じた場合、迅速に不具合箇所の修理を行う必要があり、できればユーザが使用している場所にて短時間で修理を終えることが望ましい。表示信号を処理するようなコントロール基板であれば、表示パネルとコネクタで接続されているため交換は容易であるが、表示駆動用回路はコネクタ等で接続されておらず、表示パネルに直接接続されているため、ユーザが製品を使用している場所での交換は困難である。
 このため、本出願人は、表示用駆動回路自身の不具合に対する自己診断自己修復機能(自己検出および自己修復機能)を有する表示駆動用回路を提案している(例えば、特願2008-130848、特願2008-048640、特願2008-048639、および特願2008-054130:いずれも本願出願前の確認時点で未公開)。
 図1は、本発明に係る液晶テレビジョン400の構成を示すブロックを示す。図1に示すとおり、液晶テレビジョン400は、TFT-LCDモジュール(表示部)90、およびリモコンI/F401を含んで構成される。さらに、表示部90は、ソースドライバ(駆動回路、集積回路)10a、10b、TFT-LCDパネル(表示パネル)80、ゲートドライバ99、およびコントローラ100とを備えている。そして、ソースドライバ10a、すなわち、集積回路10a、10bが、上述の自己検出および自己修復機能を有する表示用駆動用回路である。なお、以下では、単に集積回路10またはソースドライバ10と記載した場合、集積回路10aおよび10b、すなわち、ソースドライバ10aおよび10bの総称を表しているものとする。
 以下では、表示部90における自己検出および自己修復の基本動作を説明した後、液晶テレビジョン400における自己検出および自己修復の特徴的構成、すなわち、ユーザに故障ではないかと誤解を与えることなく自己検出および自己修復を実行可能な構成について、具体的に説明する。
 (表示部90)
 まず、図2を参照して、本発明の表示部90の概略構成を説明する。図2は、表示部90の概略構成を示すブロック図である。図2に示すように、表示部90は、表示パネル80と、外部より入力される階調データに基づき表示パネル80を駆動する表示駆動用半導体集積回路(以下、集積回路またはソースドライバと呼称する)10とを備えている。また、ソースドライバすなわち集積回路10(駆動回路)は、切替回路60(自己検出・自己修復手段、切替手段)、切替回路61(自己検出・自己修復手段、切替手段)、出力回路ブロック30(出力回路)、予備出力回路ブロック40(予備出力回路)、および比較判定回路50(比較手段、判定手段、自己検出・自己修復手段)を備えている。また、表示パネル80は、集積回路10からの階調電圧が印加される画素70を備えている。
 次に、表示部90における基本動作を説明する。まず、表示部90は、基本動作として、2つの基本動作を有している。具体的には、表示部90は、外部より入力された階調データを、集積回路10が階調電圧(出力信号)に変換し、この階調電圧に基づいて映像を表示パネル80に表示する通常動作と、集積回路10に含まれる出力回路ブロック30が不良か否かを検出し、出力回路ブロック30に不良があった場合に、集積回路10が自身を自己修復する自己検出修復動作との、2つの基本動作を有している。
 以下に、集積回路10が行う、自己検出修復動作の概略について説明する。まず、自己検出修復動作を行う場合、出力回路ブロック30と予備出力回路ブロック40とに、外部より切替回路61を介して動作確認用の階調データが入力される。
 出力回路ブロック30および予備出力回路ブロック40の各々は、入力された階調データを階調電圧に変換し、比較判定回路に出力する。比較判定回路50は、出力回路ブロックからの階調電圧と、予備出力回路ブロックからの階調電圧とを比較し、この比較結果に基づき、出力回路ブロックが不良か否かを判定する。
 さらに、比較判定回路50は、出力回路ブロックが不良か否かを示す判定結果(不良検出情報)を、切替回路61および切替回路60に出力する。切替回路61は、比較判定回路50からの判定結果に基づいて、外部からの階調データの出力先を切り替える。一方、切替回路60は、出力回路ブロック30および予備出力回路ブロック40の各々より階調電圧が入力され、比較判定回路からの判定結果に基づいて、入力された階調電圧の中から、表示パネル80に出力する階調電圧を選択する。
 より具体的に説明すると、切替回路61は、出力回路ブロック30が不良であることを示す判定結果が入力されると、不良と判定された出力回路ブロック30に出力される階調データと同じ階調データを、予備出力回路ブロック40にも入力する。一方、切替回路60は、出力回路ブロック30が不良であることを示す判定結果が入力されると、不良と判定された出力回路ブロック30からの階調電圧の代わりに、予備出力回路40からの階調電圧を、表示パネル80に出力する。これにより、集積回路10は、出力回路ブロック30が不良になったとしても、代わりに予備出力回路ブロックを用いて、正常な階調電圧を表示パネル80に出力することが可能となる。
 以上のように、本実施形態の集積回路10は、比較判定回路50、切替回路60および切替回路61を備えることによって、自身の不具合を検出し、さらに、自身の不具合を自己修復することが可能となる。言い換えれば、集積回路10は、自身の不具合を検出し、さらに、自身の不具合を自己修復する自己修復回路(自己修復手段)を備えることになる。なお、ソースドライバ10すなわち集積回路10の構成や自己検出および自己修復動作の詳細については後述する。
 (表示の不具合)
 図3は、液晶テレビジョン400に含まれる集積回路10を構成する出力回路ブロック30に異常が発生した場合の表示の一例を示す図である。図3に示すとおり、出力回路ブロック30に異常がある場合、表示に縦線が入る。
 通常、ソースドライバは、LSIとして出荷されるときに、十分機能テストが行われ、表示装置においても表示の確認が十分に行われるため、表示の異常が発生する可能性は非常に低い。つまり、表示装置の通常使用の範囲では、表示不具合が起こる可能性は非常に低い。
 しかしながら、突発的な要因、例えばドライバ製造時の異物混入や傷に起因して出力信号の経路に発生したダメージが、表示装置の使用期間において拡大し、ソースドライバの出力回路に異常が発生し、表示不良を起こす場合がある。このようなことがあった場合、表示用駆動装置の自己修復機能により、図3の縦スジが消えるように、瞬時に自己修復動作を実行する。
 (チャンネル切替時の自己検出)
 液晶テレビジョン400は、チャンネル切替時に自己検出および自己修復を実行する。以下に、チャンネル変更時の自己検出について、より詳細に説明する。図4は、液晶テレビジョン400において、チャンネル変更時に自己検出および自己修復動作を行う様子を示す図であり、図4の(a)はチャンネル変更前の様子を示す図であり、図4の(b)は自己検出動作中の様子を示す図であり、図4の(c)はチャンネル変更後の様子を示す図である。
 液晶テレビジョン400では、ユーザがリモコン402を用いてチャンネル変更の操作を行なうと、リモコンI/F401を介して選局入力信号を受信し、選局入力信号が選局電圧に変換され、チューナー(放送受信手段)に供給される。チューナーは、選局電圧に対応するチャンネルの放送信号を受信する。そして、液晶テレビジョン400は、チューナーが受信しているチャンネルの番組を表示する。
 図4に示す例では、液晶テレビジョン400は、はじめに、図4の(a)に示すとおり、1ch(1チャンネル)の番組を受信して表示している。そして、ユーザがリモコン402を用いて2ch(2チャンネル)へのチャンネル切替操作を行うと、液晶テレビジョン400では、自己検出動作が開始される。このとき、図4の(b)に示すように画面の表示が消える。
 つまり、液晶テレビジョン400では、1chから2chへのチャンネルの切替時、すなわち、1chの番組を表す画像信号に基づく表示が中断するときに、ソースドライバ10の自己検出が行われる。より具体的には、液晶テレビジョン400では、図1に示すコントローラ100が、ユーザの選局操作、すなわち、1chから2chへの切替を感知する。換言すれば、コントローラ100(画像切替手段)は、チューナーから表示パネル80に供給される画像信号が、1chの番組を表す画像信号から、2chの番組を表す画像信号に切り替わることによって、表示パネル80における1chの番組の表示が中断することを感知する。
 そして、コントローラ100がチャンネルの切替を感知すると、ソースドライバ10に自己検出の処理の実行を指示し、ソースドライバ10は、自己検出の処理を実行する。すなわち、液晶テレビジョン400では、表示パネル80において、1chの番組を表す画像信号に基づく表示から、2chの番組を表す画像信号に基づく表示への切替を行うために、1chの番組を表す画像信号に基づく表示が中断するときに、ソースドライバ10の自己検出の処理を実行する。このとき、例えば、コントローラ100は、リモコンI/Fを介して入力される選局入力信号に基づいて、ソースドライバ10に自己検出の処理を指示する。
 なお、図4に示す例では、1chから2chへのチャンネル切替の例を示しているが、例えば、1chの表示中に、ユーザが再度1chを選局する操作を行った場合にも、同様に、1chの番組を表す画像信号に基づく表示が一旦中断する。そして、この場合にも、ソースドライバ10は、例えば、選局入力信号に基づくコントローラ100からの指示に従って、自己検出の処理を実行する。
 この自己検出の処理が行われている間は、図4の(b)に示すように画面表示が行われない。しかしながら、チャンネル切替時であるため、短い期間であれば、画面表示が行われなくても、ユーザに対して、違和感を感じさせることがない。特に、液晶テレビジョン400がデジタルテレビの場合、映像信号や音声信号は符号化されてデジタル放送波として伝送されるため、受信したデジタル放送波に含まれる圧縮された映像信号や音声信号を復号化する必要がある。このため、信号を復号化する処理に数秒の時間を要することになり、ユーザがチャンネルの切り替え操作を行った場合、指定されたチャンネルの番組は即時には表示されずに、少しの期間、黒画面が表示される。したがって、このタイミングで自己検出を行えば、ユーザは違和感を感じない。つまり、液晶テレビジョン400は、表示に影響のない期間に、自己検出を完了する。
 その後、ソースドライバ10において自己修復の処理を実行した後、液晶テレビジョン400は、図4の(c)に示すように、切替後の番組、すなわち、2chの番組を表示する。
 (CM移行時の自己検出)
 液晶テレビジョン400は、CM移行時に自己検出および自己修復を実行する。以下に、CM移行時の自己検出について、より詳細に説明する。図5は、液晶テレビジョン400において、CM移行時に自己検出および自己修復動作を行う様子を行う図であり、図5の(a)はCM移行前の様子を示す図であり、図5の(b)は自己検出動作中の様子を示す図であり、図5の(c)はCM中の様子を示す図であり、図5の(d)は番組再開時の様子を示す図である。
 図5に示す例では、液晶テレビジョン400は、はじめに、図5の(a)に示すとおり、1chの放送を受信し、1chの放送に含まれる番組を表示している。そして、1chの放送において、番組からCMへ移行するとき、液晶テレビジョン400では、自己検出動作が開始される。このとき、図5の(b)に示すように画面の表示が消える。
 つまり、液晶テレビジョン400では、番組からCMへの移行時、すなわち、番組を表す画像信号に基づく表示が中断するときに、ソースドライバ10の自己検出が行われる。より具体的には、液晶テレビジョン400では、図1に示すコントローラ100が、番組からCMへの移行を感知する。換言すれば、コントローラ100(画像切替手段)は、チューナーから表示パネル80に供給される画像信号が、番組を表す画像信号から、CMを表す画像信号に切り替わることによって、表示パネル80における番組の表示が中断することを感知する。
 そして、コントローラ100が番組からCMへの移行を感知すると、ソースドライバ10に自己検出の処理の実行を指示し、ソースドライバ10は、自己検出の処理を実行する。すなわち、液晶テレビジョン400では、表示パネル80において、番組を表す画像信号に基づく表示から、CMを表す画像信号に基づく表示へ移行するために、番組を表す画像信号に基づく表示が中断するときに、ソースドライバ10の自己検出の処理を実行する。このとき、例えば、コントローラ100は、シーン検出を行い、その結果に基づいてCMを検知し、ソースドライバ10に自己検出の処理を指示する。シーン検出とは、無音状態やステレオ/モノラル音声の検出だけでなく、音楽と会話の境などの「音の切り替わり」や場面変化が大きい「映像の切り替わり」を検出する機能である。シーン検出は、例えば、ハードディスクデコーダー等でCM部分をチャプター分割するときなどに用いられる手法である。
 この自己検出の処理が行われている間は、図5の(b)に示すように画面表示が行われない。しかしながら、CM移行時であるため、これまで表示されていた番組とは内容が完全に変わるため、短い期間であれば、画面表示が行われなくても、ユーザに対して、違和感を感じさせることがない。
 そして、ソースドライバ10において自己修復の処理を実行した後、液晶テレビジョン400は、図4の(c)に示すように、CMを表示する。その後、液晶テレビジョン400では、図4の(d)に示すように、番組が再開され、表示がCMから番組に移行する。
 (複数工程の自己検出処理)
 ところで、詳細については後述するが、自己検出の処理は、複数の工程を含んでいる場合がある。この場合、液晶テレビジョン400は、1回のチャンネルの切替において、自己修復の処理に含まれる全ての工程を実行する構成であってもよい。あるいは、液晶テレビジョン400は、番組からCMへの1回の移行において、自己修復の処理に含まれる全ての工程を実行する構成であってもよい。
 また、自己検出の処理に含まれる全工程が完了するまでに長時間を要し、画面表示が行われない期間(すなわち黒画面の期間)が長くなってしまう場合には、自己検出に含まれる工程を分割し、数回のチャネル変更で自己検出処理に含まれる全ての工程を完了するようにしても良い。
 つまり、自己修復の処理を、1つ以上の工程を含む複数の工程群に分割し、1回のチャンネル切替において、工程群を1つずつ実行する構成であってもよい。これにより、1回のチャンネル変更時に実行する自己検出処理の時間を短縮し、チャンネル切替の操作後、画面表示が行われない期間があまりにも長くなってしまうような事態を避けることができる。
 また、あるいは、自己修復の処理を、1つ以上の工程を含む複数の工程群に分割し、番組からCMへの1回の移行において、工程群を1つずつ実行する構成であってもよい。これにより、番組からCMへの1回の移行時に実行する自己検出処理の時間を短縮し、CMへの移行時に、画面表示が行われない期間があまりにも長くなってしまうような事態を避けることができる。
 例えば、自己修復の処理に含まれる工程をn個の工程群に分割した場合、1回のチャンネル切替において、1つの工程群の処理、すなわち、自己検出の工程の1/nを行う。そして、n回のチャンネル切替によって、n個の工程群の処理、すなわち、自己検出の全工程を完了する。
 また、例えば、自己修復の処理に含まれる工程をn個の工程群に分割した場合、1回の番組からCMへの切替において、1つの工程群の処理、すなわち、自己検出の工程の1/nを行う。そして、n回のCMへの移行によって、n個の工程群の処理、すなわち、自己検出の全工程を完了する。
 自己検出の処理が複数の工程を含んでいる場合の例としては、詳細については後述するが、デジタルデータによる多階調の表示装置の駆動回路における自己検出の処理において、1つの階調データに対して、数種類の工程(例えば、出力回路からの出力と予備出力回路からの出力とを比較する複数の比較工程など)が含まれる場合がある。この場合、数種類の工程が全ての階調データについて行われることになる。
 そこで、このような駆動回路においては、1階調分の自己検出の処理に含まれる工程を分割して処理する構成であってもよい。例えば、液晶テレビジョン400が、256階調の表示装置の場合、1階調分の自己検出の処理に含まれる工程を2つの工程郡に分割し、チャンネル切替ごとに、1つの工程群の処理を実行し、2回のチャンネル切替によって、1階調分の自己検出の処理を完了する構成とすることができる。あるいは、1階調分の自己検出の処理に含まれる工程を2つの工程郡に分割し、CM移行ごとに、1つの工程群の処理を実行し、2回のCM移行によって、1階調分の自己検出の処理を完了する構成としてもよい。
 なお、自己検出処理に含まれる工程をどのように分割するかについては、特に限定されない。例えば、各工程群を構成する工程が予め設定され、その設定情報がメモリに記憶される構成であってもよい。この場合、ソースドライバ10は、自己検出の処理を実行するときに、メモリから設定情報を読み出して、チャンネル切替ごとに、1つずつ工程群の処理を実行する。あるいは、各工程群を構成する工程の数が予め設定されていて、ソースドライバ10は、チャンネル切替ごとに、設定された数の工程を実行する構成であってもよい。
 (水平・垂直ブランキング期間における自己検出)
 以下では、水平・垂直ブランキング期間における自己検出について説明する。上述のとおり、図1示す表示パネル80は、コントローラ100、ゲートドライバ99、ソースドライ10と共に、表示部90を構成している。表示パネル80は、複数本のゲートライン(走査信号線)と、これらに直交する複数本のソースライン(データ信号線)とを有し、これらのゲートラインとソースラインとの交差点に、それぞれ、スイッチング素子と液晶容量とによって構成される画素部を備えている。すなわち、表示パネル80において、画素部は、マトリクス状に配置されている。
 各画素部の画素スイッチング素子には、ゲート端子にゲートラインが接続され、ソース端子にソースラインが接続され、ドレイン端子に画素電気良くが接続されている。また、画素電極に対向して、全ての画素形成部に共通の対向電極が設けられており、画素電極と対向電極とは、液晶層を間に挟持して、液晶容量を形成している。
 画素電極には、ソースラインおよびゲートラインとによって、表示する画像に応じた電位が与えられると共に、共通電極には、所定の電位が与えられる。この電圧印加によって、液晶層に対する光の透過量が制御されることによって、画像表示が行われる。なお、液晶層への電圧印加による光の透過量を制御するため、偏向板が用いられてもよい。
 図6は、液晶テレビジョン400の表示パネル80を駆動するための信号を表すタイミングチャートである。図6に示す各種の制御信号がコントローラ100に供給される。コントローラ100は、図6に示す制御信号に基づいてゲートドライバ99およびソースドライバ10を制御する。そして、ゲートドライバ99およびソースドライバ10は、表示パネル80に対してゲート信号およびデータ信号を供給する。これにより、表示パネル80が駆動される。
 図6において、期間501は垂直周期、期間502は垂直データ有効期間、期間503は垂直ブランキング期間、期間504は水平周期、期間505は水平データ有効期間、期間506は水平ブランキング期間であり、期間507は垂直同期信号が入力されてから、有効データの開始までの期間を示す垂直有効データ開始期間、期間508は水平同期信号が入力されてから、有効データの開始までの期間を示す水平有効データ開始期間を示す。
 ゲートラインは、水平同期信号に基づいてゲートドライバ99によって順次選択され、走査信号が供給される。そして、走査信号が供給されるゲートラインに接続されたスイッチング素子のゲートがONとなり、該スイッチング素子に接続された画素電極にデータ信号を供給できるアクティブな状態となる。これにより、画素電極には、ソースラインを介してソースドライバ10からデータ信号が供給され、画像を表す電圧が供給されることになる。
 表示パネル80においては、データ信号が画面の1ラインごとに左側の画素から右側の画素へ順次供給されて、走査線を形成することになる。そして、ブランキング期間、すなわち、帰線期間とは、画面を走査した走査線が元へ戻るための時間である。水平ブランキング期間506とは、画面の1ラインにおいて左から右へ走査後、再び、左へ戻る時間であり、垂直ブランキング期間503とは、画面の全ラインにおいて左上から順次左右に走査しながら右下へ走査した後、再度、左上に戻るまでの時間である。駆動するパネルの規格や駆動方法等により、図6に示す制御信号の期間は異なるが、一例としては、垂直ブランキング期間が1.14ms、水平ブランキング期間は9μsである。
 そして、これらの水平ブランキング期間506および垂直ブランキング期間503においては、データラインの駆動は行われず、表示パネル80を構成する各画素には、データ信号が供給されない。つまり、これらの期間においては、各画素への画像データの書き込みは行われないため、表示用駆動素子であるソースドライバ10の出力がハイインピーダンスであっても、画像の表示には影響しない。そこで、液晶テレビジョン400では、これらの期間を利用して、ソースドライバ10の自己検出・自己修復を行うようにする。
 つまり、液晶テレビジョン400では、データ信号(画像信号)の供給を停止している水平ブランキング期間506や垂直ブランキング期間503(供給停止期間)に、自己検出が行われる。より具体的には、液晶テレビジョン400では、図1に示すコントローラ100が、図6に示す制御信号の供給を受けて、水平ブランキング期間506または垂直ブランキング期間503を感知する。
 そして、コントローラ100(期間切替検知手段)が水平ブランキング期間506または垂直ブランキング期間503を感知すると、ソースドライバ10に自己検出の処理の実行を指示し、ソースドライバ10は、自己検出の処理を実行する。
 水平ブランキング期間506に自己修復・自己検出を行った場合、1ライン毎に修復が行われるため、リアルタイムで自己検出・自己修復を行っているといえる。また、垂直ブランキング期間503に自己検出・自己修復を行った場合、1画面毎に修復が行われるため、やはり、リアルタイムで自己検出・自己修復を行っているといえる。つまり、液晶テレビジョン400によれば、ユーザの視聴を妨げることなく、リアルタイムに自己検出の処理を実行できる。
 なお、垂直ブランキング期間503においては、文字放送等他の情報がコントローラ100等に供給される場合があるが、自己検出・自己修復は表示用駆動装置すなわちソースドライバ10単独で行うことができるので、コントローラ100等の他の装置には関係なく、自己検出・自己修復動作が可能である。
 なお、垂直ブランキング期間は、垂直帰線期間とも呼ばれる。垂直帰線期間における自己検出の例については再度後述する。
 ところで、上述したとおり、自己修復の処理は、複数の工程を含んでいる場合がある。この場合、液晶テレビジョン400は、1回の水平ブランキング期間506において、自己修復の処理に含まれる全ての工程を実行する構成であってもよい。あるいは、液晶テレビジョン400は、1回の垂直ブランキング期間503において、自己修復の処理に含まれる全ての工程を実行する構成であってもよい。
 また、水平ブランキング期間に自己検出・自己修復を行う場合、表示用駆動装置すなわちソースドライバ10の規模にもよるが、水平ブランキング期間506において、自己検出の処理に含まれる全ての工程が終了しないことも考えられる。この場合には、自己検出に含まれる工程を分割し、数回の水平ブランキング期間506で自己検出処理に含まれる全ての工程を完了するようにしても良い。
 また、垂直ブランキング期間に自己検出・自己修復を行う場合においても、同様に、垂直ブランキング期間503において、自己検出の処理に含まれる全ての工程が終了しないことも考えられる。この場合には、自己検出に含まれる工程を分割し、数回の水平ブランキング期間506で自己検出処理に含まれる全ての工程を完了するようにしても良い。
 つまり、自己修復の処理を、1つ以上の工程を含む複数の工程群に分割し、1回の水平ブランキング期間506または垂直ブランキング期間503において、工程群を1つずつ実行する構成であってもよい。これにより、1回の水平ブランキング期間506または垂直ブランキング期間503に実行する自己検出処理の時間を短縮し、チャンネル切替の操作後、画面表示が行われない期間があまりにも長くなってしまうような事態を避けることができる。
 例えば、自己修復の処理に含まれる工程をn個の工程群に分割した場合、1回の水平ブランキング期間506または垂直ブランキング期間503において、1つの工程群の処理、すなわち、自己検出の工程の1/nを行う。そして、n回の水平ブランキング期間506または垂直ブランキング期間503によって、n個の工程群の処理、すなわち、自己検出の全工程を完了する。
 自己検出の処理が複数の工程を含んでいる場合の例としては、詳細については後述するが、デジタルデータによる多階調の表示装置の駆動回路における自己検出の処理において、1つの階調データに対して、数種類の工程(例えば、出力回路からの出力と予備出力回路からの出力とを比較する複数の比較工程など)が含まれる場合がある。この場合、数種類の工程が全ての階調データについて行われることになる。
 そこで、このような駆動回路においては、1階調分の自己検出の処理に含まれる工程を分割して処理する構成であってもよい。例えば、液晶テレビジョン400が、256階調の表示装置の場合、1階調分の自己検出の処理に含まれる工程を2つの工程郡に分割し、水平ブランキング期間506ごとに、1つの工程群の処理を実行し、2回の水平ブランキング期間506によって、1階調分の自己検出の処理を完了する構成とすることができる。あるいは、1階調分の自己検出の処理に含まれる工程を2つの工程郡に分割し、垂直ブランキング503ごとに、1つの工程群の処理を実行し、2回の垂直ブランキング503によって、1階調分の自己検出の処理を完了する構成としてもよい。
 (集積回路10の構成)
 次に、図7を参照して、本発明に係るソースドライバ10aの構成について説明する。なお、上述したとおり、予備ソースドライバ10bは、ソースドライバ10aよりも簡単な構成とすることもできるが、ソースドライバ10aと同様の構成とすることもできる。以下では、ソースドライバ10aと同様の自己検出および自己修復動作を実行可能な回路を、集積回路10と呼称して説明する。
 図7は、集積回路10(駆動回路)の構成を示す説明図である。同図に示すように、集積回路10は、階調データ入力端子(図示しない)より、データバスを介して、n個の液晶駆動用信号出力端子OUT1~OUTn(以下、出力端子OUT1~OUTnとする)のそれぞれに対応する階調データを入力するn個のサンプリング回路6-1~6-n(以下、総称する場合は、サンプリング回路6とする)と、n個のホールド回路7-1~7-n(以下、総称する場合は、ホールド回路7とする)と、階調データを階調電圧信号に変換するn個のDAC回路8-1~8-n(以下、総称する場合は、DAC回路8とする)と、DAC回路8からの階調電圧信号に対するバッファ回路の役割を有するn個のオペアンプ1-1~1-n(以下、総称する場合は、オペアンプ1とする)と、n個の判定回路3-1~3-n(以下、総称する場合は、判定回路3とする)と、n個の判定フラグ4-1~4-n(以下、総称する場合は、判定フラグ4とする)と、n個のプルアップ・プルダウン回路5-1~5-n(以下、総称する場合は、プルアップ・プルダウン回路5とする)を備えている。
 さらに、同図に示すように、集積回路10は、test信号によってON,OFFが切り替わる複数のスイッチ2aと、testB信号によってON,OFFが切り替わる複数のスイッチ2bと、判定フラグ4からの出力信号である、Flag1~FlagnによってON,OFFが切り替わる複数のスイッチ2c(接続切替手段)および2d(接続切替手段)と、を備えている。なお、スイッチ2a、2b、2dは、「H」の信号を入力した場合にONとなり、「L」の信号を入力した場合にOFFとなる。一方、スイッチ2cは、「H」の信号を入力した場合にOFFとなり、「H」の信号を入力した場合にONとなる。
 また、集積回路10は、予備のサンプリング回路26と、予備のホールド回路27と、予備のDAC回路28(予備出力回路)と、予備のオペアンプ21を、各1回路づつ備えている。
 なお、図7において、サンプリング回路6、ホールド回路7、およびDAC回路8が、図2に示した出力回路ブロック30に相当し、サンプリング回路26、ホールド回路27、およびDAC回路28が、図2に示した予備回路ブロック40に相当し、オペアンプ1、判定回路3、および判定フラグ4が、図2に示した比較判定回路50に相当し、出力端子OUT1~OUTnに接続するスイッチ2dおよびスイッチ2cが、図2に示した切替回路60に相当し、サンプリング回路6に接続するスイッチ2dが、図2に示した切替回路61に相当する。なお、図7に示す集積回路10は、出力端子OUT1~OUTnを介して、図2に示す表示パネル80と接続しており、図7においては、表示パネル80の図示を省略している。
 (集積回路10の通常動作)
 次に、集積回路10における、表示パネル80(図2を参照)に階調電圧を出力する、通常の動作を、図7を参照して以下に説明する。
 まず、通常動作の場合は、test信号は「L」であり、testB信号は「H」となる。test信号が「L」のときスイッチ2aはOFFとなり、スイッチ2bはONとなる。これにより、図示しないポインター用シフトレジスタからの信号である、STR1~STRn信号(以下、総称する場合は、STR信号とする)を、対応する各サンプリング回路6が入力する。サンプリング回路6は、入力したSTR信号に基づき、階調データ入力端子より、データバスを介して自身に対応する階調データを取得する。ホールド回路7は、サンプリング回路6が取得した階調データを、データLOAD信号に基づき、サンプリング回路6より入力する。次に、DAC回路8(出力回路)は、ホールド回路7より階調データを入力する。DAC回路8は、入力した階調データを階調電圧信号に変換し、オペアンプ1(比較手段)の正極性入力端子に出力する。ここでオペアンプ1の出力は、スイッチ2bがONしているため、自身の負極性入力端子への負帰還となる。これにより、オペアンプ1は、ボルテージフォロワとして動作する。よって、オペアンプ1は、DAC回路8からの階調電圧に対して、バッファ回路の役割を有することになり、自身の正極性入力端子に入力した階調電圧信号を、対応する出力端子OUT1~OUTnに出力する。なお、ここでは、スイッチ2cがON、スイッチ2dがOFFとなっているものとする。スイッチ2cおよび2dの動作については、後述とする。上述した、出力端子ごとに直列に接続された、サンプリング回路6と、ホールド回路7と、DAC回路8と、オペアンプ1とを含むブロックを、出力回路ブロックとすると、この出力回路ブロックは、階調データ入力端子より入力した階調データを、表示パネル80を駆動するための階調電圧に変換し、変換した階調電圧を出力端子を介して表示パネル80に出力することを目的としている。
 (動作確認テストへの切り替え)
 次に、DAC回路8の動作確認を行う動作確認テストへの切り替えは、test信号を「H」とし、testB信号を「L」とする。まず、スイッチ2aがONとなることにより、予備のサンプリング回路26には、動作確認テスト用のSTR信号である、TSTR1信号が入力され、サンプリング回路6には、動作確認テスト用のSTR信号である、TSTR2信号が入力される。さらに、オペアンプ1の負極性入力端子には、予備のDAC回路28からの階調電圧が入力される。また、スイッチ2bがOFFになったことにより、オペアンプ1の出力は、自身の負極性入力端子への負帰還が遮断される。その結果、オペアンプ1は、自身の正極性入力端子に直列に接続されたDAC回路8からの出力電圧と、予備のDAC回路28からの出力電圧とを比較するコンパレータとなる。
 なお、test信号およびtestB信号は、動作確認テストの切り替え、および動作確認テストの動作をコントロールする、制御回路(図示しない)より出力される。また、この制御回路(制御手段)は、動作確認テストにおける、データバスを介して入力される階調データ、および、データLOAD信号を制御する回路でもある。さらに、この制御回路は、通常動作中の階調データ、データLOAD信号、シフトクロック用入力信号を制御する制御回路と同一であってもよいし、異なる制御回路であってもよい。
 (実施形態1の動作確認テスト1)
 次に、動作確認テストの1つ目の手順を、図8を参照して以下に説明する。図8は、第1の実施形態に係る、動作確認テストの1つ目の手順を示すフローチャート図である。
 同図に示すステップS21(以下、S21と略称する)において、test信号を「H」とし、testB信号を「L」とする。すでに上述したように、S21により、オペアンプ1はコンパレータの役割を有することとなる。
 次に、S22において、図示しない制御回路が備えるカウンタmを0に初期化する。さらに、制御回路は、カウンタmの値に対応する階調mの階調データを、ここでは、階調0の階調データを、TSTR1信号をアクティブにし、データバスを介して予備のサンプリング回路26に格納する。さらに、制御回路は、カウンタmの値に1を加算した、階調m+1の階調データを、ここでは、階調1の階調データを、TSTR2信号をアクティブにし、データバスを介して、サンプリング回路6に格納する。次に、予備のホールド回路27は、データLOAD信号に基づいて、サンプリング回路26より、階調0の階調データを取得する。さらに、DAC回路28は、ホールド回路27より階調データを入力し、階調0の階調電圧を、オペアンプ1の負極性入力端子に出力する(S23)。一方、ホールド回路7は、データLOAD信号に基づいて、サンプリング回路6より、階調1の階調データを取得する。さらに、DAC回路8は、ホールド回路7より階調データを入力する。各DAC回路8は、自身に直列に接続された、各オペアンプ1の正極性入力端子に、階調1の階調電圧を出力する(S23)。なお、本発明の集積回路10は、n階調の階調電圧を出力するものであり、階調0の階調電圧が一番低い電圧値であり、階調nの階調電圧が一番高い電圧値であるものとする。
 次に、オペアンプ1は、正極性入力端子に入力したDAC回路8からの階調電圧と、負極性入力端子に入力したDAC回路28からの階調電圧とを比較する(S24)。具体的には、オペアンプ1は、自身の正極性入力端子に階調1の階調電圧を入力し、自身の負極性入力端子に階調0の階調電圧を入力する。ここで、DAC回路8が正常であれば、階調1の階調電圧が階調0の階調電圧よりも高いため、オペアンプ1は、「H」レベルの信号を出力する。ここで、オペアンプの出力が「L」レベルの信号であった場合、DAC回路8は不良であることになる。
 次に、判定回路3(判定手段)は、オペアンプ1からの出力信号を入力し、入力した信号のレベルと、自身が記憶する期待値とを比較する。なお、判定回路3が記憶する期待値は、制御回路より与えられたものである。この動作確認テスト1においては、判定回路3は期待値を「H」レベルとして記憶している。
 ここで、判定回路3は、オペアンプ1より入力した信号が、自身が記憶する期待値と同じ、「H」レベルであれば、DAC回路8が正常であると判定する。一方、判定回路3は、オペアンプ1より入力した信号が「L」レベルであれば、DAC回路8が不良であると判定し、判定フラグ4に「H」フラグを出力する。判定フラグ4は、判定回路3より「H」フラグを入力した場合、入力した「H」フラグを自身の内部メモリに記憶する。(S25)
 なお、判定回路3は、オペアンプ1からの出力信号を入力し、入力した信号が「H」レベルであれば、判定フラグ4に「L」フラグを出力し、入力した信号が「L」レベルであれば、判定フラグ4に「H」フラグを出力する構成としてもよい。この場合、判定フラグ4は、判定回路3より一度でも「H」フラグを入力した場合、その後、判定回路3より「L」フラグを入力しても、判定フラグ4は「H」フラグを保持しつづける。
 また、不良であると判断され、判定フラグ4が「H」になった場合以後の判定動作を行わない構成にしても良い。
 次に、カウンタmの値が、n-1であるかを判定する(S26)。カウンタmの値がn-1以下の場合は、カウンタmの値を1つ増やし、S23~S25のステップを、mの値がn-1となるまで、繰り返し行う。なお、このnとは、集積回路10が出力できる階調数である。
 (実施形態1の動作確認テスト2)
 次に、動作確認テストの2つ目の手順を、図9を参照して以下に説明する。図9は、第1の実施形態に係る、動作確認テストの2つ目の手順を示すフローチャート図である。
 まず、動作確認テスト1においては、常にオペアンプ1の正極性入力端子に入力される階調電圧が、負極性入力端子に入力される階調電圧より高いため、DAC回路28に、低い電圧しか出力しないような不具合がある場合や、DAC回路8に高い電圧しか出力しないような不具合がある場合には、判定回路3は、正常を示す「L」フラグを出力してしまう。
 したがって、動作確認テスト2においては、オペアンプ1の正極性入力端子に、負極性入力端子より低い階調電圧を入力して動作確認を行う。
 まず、動作確認テスト1が終了した後、カウンタmの値を0に初期化する(S31)。次に、制御回路は、カウンタmの値に1を加算した、階調m+1の階調データを、ここでは、階調1の階調データを、TSTR1信号をアクティブにし、データバスを介して予備のサンプリング回路26に格納する。次に、制御回路は、カウンタmに対応する、階調mの階調データを、ここでは、階調0の階調データを、TSTR2信号をアクティブにし、データバスを介して、サンプリング回路6に格納する。
 ここで、動作確認テスト1のS23と同様に、DAC回路28は、サンプリング回路26が格納した階調データを、ホールド回路27を介して入力する。さらに、DAC回路28は、入力した階調データに対応する、階調m+1の階調電圧を、ここでは、階調1の階調電圧を、オペアンプ1の負極性入力端子に出力する。一方、DAC回路8は、サンプリング回路6が格納した階調データを、ホールド回路7を介して入力する。さらに、各DAC回路8は、入力した階調データに対応する、階調mの階調電圧を、ここでは、階調0の階調電圧を、自身に直列に接続された、各オペアンプ1の正極性入力端子に出力する(S32)。
 次に、オペアンプ1は、正極性入力端子に入力したDAC回路8からの階調0の階調電圧と、負極性入力端子に入力したDAC回路28からの階調1の階調電圧とを比較する(S33)。ここで、DAC回路8が正常であれば、階調1の階調電圧が階調0の階調電圧よりも高いため、オペアンプ1は、「L」フラグの信号を出力する。ここで、オペアンプの出力が「H」レベルの信号であった場合、DAC回路8は不良であることになる。
 次に、判定回路3は、オペアンプ1からの出力信号を入力し、入力した信号のレベルと、自身が記憶する期待値とを比較する。この動作確認テスト1においては、判定回路3は期待値を「L」レベルとして記憶している。ここで、判定回路3は、オペアンプ1より入力した信号が、自身が記憶する期待値と同じ、「L」レベルであれば、DAC回路8が正常であると判定する。一方、判定回路3は、オペアンプ1より入力した信号が「H」であれば、DAC回路8が不良であると判定し、判定フラグ4に「H」フラグを出力する。判定フラグ4は、判定回路3より「H」フラグを入力した場合、入力した「H」フラグを自身の内部メモリに記憶する(S34)。以上の、S33~S34のステップを、mの値がn-1となるまで繰り返し行う(S35、S36)。
 (実施形態1の動作確認テスト3)
 次に、動作確認テストの3つ目の手順を、図10を参照して以下に説明する。図10は、第1の実施形態に係る、動作確認テストの3つ目の手順を示すフローチャート図である。
 DAC回路8において、出力がオープンとなる不具合がある場合、実行済の確認テストによる、オペアンプ1に入力された階調電圧を、オペアンプ1が保持し続け、動作確認テスト1および2において、不具合を検出できない場合がある。ここで、動作確認テスト3においては、オペアンプ1の正極性入力端子にプルダウン回路を接続する。これにより、DAC回路8の出力がオープンとなる場合、オペアンプ1の正極性入力端子に、低い電圧を入力することになる。結果、DAC回路8の出力がオープンとなる場合、言い換えれば、DAC回路8より出力がない場合において、実行済の確認テストによる、オペアンプ1の入力された階調電圧を、オペアンプ1が保持し続けることを防ぐことができる。
 動作確認テスト3の具体的な手順は、図10に示すように、まず、カウンタmを0に初期化する(S41)。次に、プルアップ・プルダウン回路5は、オペアンプ1の正極性入力端子をプルダウンする(S42)。ここからのS43~S47のステップは、既に上述した動作確認テスト1の、S23~S27のステップと同様であるため、ここではその説明を省略する。
 以上のように、オペアンプ1の正極性入力端子をプルダウンし、動作確認テスト1の手順を行うことにより、DAC回路8の出力がオープンとなった場合、オペアンプ1は、「L」レベルの信号を出力することになる。結果、判定回路3は、入力した「L」レベルの信号より、DAC回路8に不具合があると判定し、判定フラグ4が「H」フラグを記憶することになる。
 (実施形態1の動作確認テスト4)
 次に、動作確認テストの4つ目の手順を、図11を参照して以下に説明する。図11は、第1の実施形態に係る、動作確認テストの4つ目の手順を示すフローチャート図である。
 ここで、動作確認テスト4は、動作確認テスト3と同様に、DAC回路8の出力がオープンとなる不具合に対応するためのものである。同図に示すように、まず、カウンタmを0に初期化する(S51)。次に、プルアップ・プルダウン回路5は、オペアンプ1の正極性入力端子をプルアップする(S52)。ここからのS53~S57のステップは、既に上述した動作確認テスト2の、S32~S36のステップと同様であるため、ここではその説明を省略する。
 以上のように、オペアンプ1の正極性入力端子をプルアップし、動作確認テスト2の手順を行うことにより、DAC回路8の出力がオープンとなった場合、オペアンプ1は、「H」レベルの信号を出力することになる。結果、判定回路3は、入力した「H」レベルの信号より、DAC回路8に不具合があると判定し、判定フラグ4が「H」を記憶することになる。
 (実施形態1の動作確認テスト5)
 次に、動作確認テストの5つ目の手順を、図12を参照して以下に説明する。図12は、第1の実施形態に係る、動作確認テストの5つ目の手順を示すフローチャート図である。
 DAC回路8においては、自身における隣接する2つ階調がショートするという不具合が発生する場合がある。このように、隣接する2つ階調がショートした場合、DAC回路8は、ショートした2つの階調の中間電圧を出力することになる。この不具合の場合、DAC回路8が出力する階調電圧は、正常な場合と比べて、1階調以上の電圧のずれとならない。したがって、動作確認テスト1~4において、この不具合を検出することはできない。ここで、動作確認テスト5においては、このようなDAC回路8における、隣接する2つの階調がショートした不具合を検出することが目的である。
 同図に示すように、まず、カウンタmを0に初期化する(S61)。次に、TSTR1およびTSTR2をアクティブにし、さらに、データバスを介して、階調mの階調データを、ここでは、階調0の階調データを、サンプリング回路26およびサンプリング回路6が入力する。次に、DAC回路28および8は、ホールド回路27および7を介して、サンプリング回路26および6より、階調0の階調データを取得する。さらにDAC回路28および8は、オペアンプ1の正極性入力端子および負極性入力端子に、階調0の階調電圧を出力する(S62)。
 次に、図示しないスイッチにより、オペアンプ1の正極性入力端子と、負極性入力端子とをショートする。なお、動作確認テスト1および2において、DAC回路8に不具合がないと判定されている場合は、正極性入力端子と負極性入力端子に入力される階調電圧の差は、1階調以上の電圧差にならない。したがって、正極性入力端子と負極性入力端子とをショートすることによって、大きな電流が流れるという問題はない。
 ここで、オペアンプ1の正極性入力端子と負極性入力端子とをショートしたことにより、オペアンプ1の2つの入力端子は、同じ階調電圧を入力することになる。ここで、本来オペアンプ1は、入出力のオフセット電圧を有しているため、自身の2つの入力端子に同じ階調電圧を入力したとしても、オペアンプ1の出力は、「H」または「L」のどちらかを出力することになる。この、オペアンプ1の正極性入力端子と負極性入力端子とをショートした場合の、オペアンプ1の出力のレベルを、判定回路3は、期待値として記憶する(S63)。
 次に、図示しないスイッチをOFFにして、オペアンプ1の正極性入力端子と負極性入力端子とのショートを解除する。このとき、オペアンプ1の正極性入力端子には、DAC回路8からの階調0の階調電圧が入力され、負極性入力端子には、DAC回路28からの階調0の階調電圧が入力される。ここで、DAC回路28および8に不具合がなければ、オペアンプ1の出力は、判定回路3に記憶した期待値と同じ出力となる。したがって、判定回路3は、オペアンプ1からの出力と、自身が記憶する期待値とを比較する(S64)。判定回路3は、オペアンプ1からの出力値が、期待値と異なる値であれば、判定フラグ4に「H」フラグを出力する(S65)。
 次に、図示しないスイッチによって、オペアンプ1の正極性入力端子にDAC回路28からの階調電圧を入力し、負極性入力端子にDAC回路8からの階調電圧を入力するように、オペアンプ1の入力を切り替える(S66)。ここで、S64と同様の処理を行う(S67)。S67において、判定回路3が、オペアンプ1からの出力と、自身が記憶する期待値とが異なれば、判定フラグ4に「H」フラグを出力する(S68)。このように、正極性入力端子と負極性入力端子とを切り替えることにより、判定回路3が記憶する期待値が「H」レベルまたは「L」レベルのどちらであっても、DAC回路8の不具合を検出可能となる。
 以上のS62~S68のステップを、カウンタmの値がnとなるまで、カウンタmの値を1つ増加させて繰り返し行う(S69、S70)。
 (自己修復)
 次に、判定フラグ4が「H」フラグを記憶している場合、言い換えれば、上記動作確認テスト1~5において、DAC回路8-1~8-nのいずれかに不具合があると判定回路3が判定した場合の修復について、図13を参照して以下に説明する。図13は、不良と判定したDAC回路8と、予備のDAC回路28とを切り替え、自己修復する手順を示すフローチャート図である。
 判定回路3は、DAC回路8が不良であると判定した場合、「H」フラグを判定フラグ4に出力する。さらに、判定フラグ4は、判定回路3からの「H」フラグを入力し、自身の内部に記憶する。ここで、制御回路は、判定フラグ4が「H」を記録しているかどうかを検出する(S71)。制御回路は、判定フラグ4が「H」を記憶していないことを検出した場合は、S75の処理に移る。一方、制御回路は、判定フラグ4が「H」を記憶していることを検出した場合、判定フラグ4-1~4-nのそれぞれが記憶している「H」のフラグ数を確認する。ここで、判定フラグ4が記憶している「H」のフラグ数が複数の場合、S73の処理にうつる。一方、判定フラグ4が記憶している「H」のフラグ数が1つの場合は、S74の処理にうつる(S72)。
 S74においては、「H」フラグを記憶している判定フラグ4に対応するDAC回路8を、予備のDAC回路28に切り替える処理を行う(S74)。まず、不良のDAC回路8と予備のDAC回路28との切り替えの手順を説明するにあたり、ここでは、液晶駆動用信号出力端子OUT1に対応する判定フラグ4-1が「H」フラグを記憶しているものとする。
 判定フラグ4-1は、スイッチ2cおよび2dに対して、「H」レベルとなるFlag1の出力信号を出力する。Flag1の出力信号によって、「H」レベルの信号を入力したスイッチ2cはOFFとなり、スイッチ2dはONとなる。これにより、スイッチ2cはオペアンプ1-1からの出力と、液晶駆動用信号出力端子OUT1との接続を遮断することになる。一方、スイッチ2dは、サンプリング回路6-1に入力されるSTR1信号を、サンプリング回路26に出力することになる。これにより、液晶駆動用信号出力端子OUT1に対応する階調データは、サンプリング回路26も格納することになる。さらに、スイッチ2dは、オペアンプ21の出力と、液晶駆動用信号出力端子OUT1とを接続する。このように、判定フラグ4-1からのFlag1の出力信号によって、スイッチ2cおよび2dが切り替わることにより、不良であるDAC回路8-1を予備のDAC回路28に切り替えることになる。
 次に、S73の処理について説明する。判定フラグ4が記憶する「H」フラグの数が、複数であった場合、確率的に予備のDAC回路28が不良であると考えられる。したがって、S73において、制御回路は、判定フラグ4が記憶するフラグを全て「L」フラグにし、S75の処理に移行する。次に、S71においてNOと判定された場合、S73の処理後、または、S74の処理後、制御回路は、test信号を「L」に、testB信号を「H」に切り替え、通常動作に移行する(S75)。
 以上のように、動作確認テスト1~5、および、自己修復の処理を行うことにより、集積回路10は、不良のDAC回路を予備のDAC回路28に切り替えることができる。さらに、第1の実施形態においては、予備のDAC回路28に対応する、予備のサンプリング回路26およびホールド回路27を備えている。したがって、DAC回路8だけでなく、サンプリング回路6またはホールド回路7に不具合があった場合においても、予備のサンプリング回路26およびホールド回路28に切り替えることができる。
 次に、集積回路10を搭載する表示装置の電源投入から、動作確認テストを行い、通常動作を行うまでの手順を、図14を参照して以下に説明する。図14は、表示装置の電源投入から、動作確認テストを行い通常動作に移行するまでの処理手順を示すフローチャート図である。
 同図に示すように、まず、表示装置に電源投入し、集積回路10を初期化することにより、判定フラグ4は全て「L」フラグになる(S81)。次に、制御回路は、test信号を「H」に、testB信号を「L」にし、動作確認テストの状態に集積回路10を切り替える(S82)。次に、制御回路および集積回路10は、上述した動作確認テストを行う(S83)。さらに、全ての動作確認テスト1~5が終了したかどうかを、制御回路は確認し、不良となる回路は、予備の回路に切り替え、通常動作に移行する(S84)。
 (オペアンプ1の動作確認)
 上述した動作確認テストは、オペアンプ1に不具合がないことを前提としている。しかしながら、オペアンプ1においても不具合が発生する可能性がある。したがって、上記動作確認テストを行う前に、オペアンプ1の動作確認を行うことが、本実施形態においては好ましい。そこで、以下に、オペアンプ1の動作確認についても、図15を参照して説明する。図15は、オペアンプ1とオペアンプ1の動作確認のための周辺回路との構成を示す説明図である。
 同図に示すように、オペアンプ1の正極性入力端子には、DAC回路8からの出力と、所定の電圧との入力を切り替えるスイッチS5が接続されている。さらにスイッチS5のB側(所定の電圧の入力側)には、2つの所定の電圧Vref1およびVref2を切り替えるスイッチS3が接続されている。一方、オペアンプ1の負極性入力端子には、オペアンプ1からの負帰還を行うためのオペアンプ1の出力と、所定の電圧との入力を切り替えるスイッチS6が接続されている。さらに、スイッチS4のB側(所定の電圧の入力側)には、2つの所定の電圧Vref1およびVref2を切り替えるスチッチS4が接続されている。
 次に、オペアンプ1の通常動作について説明する。オペアンプ1の通常動作時は、スイッチS5をA側(DAC回路8の出力側)にし、スイッチS6をA側にすることにより、オペアンプ1は、ボルテージフォロワの回路として動作する。
 次に、オペアンプ1の動作確認動作確認を行うための手順を以下に説明する。まず、スイッチS1およびS2をB側に切り替える。これにより、オペアンプ1の負帰還はなくなり、オペアンプ1はコンパレータとして動作する。次に、スイッチS3およびS4をA側に切り替える。これにより、オペアンプ1の正極性入力端子は、Vref1を入力し、負極性入力端子は、Vref2を入力することになる。ここで、Vref1およびVref2は予め生成された電圧であり、Vref1の電圧値は、Vref2の電圧値より大きい値とする。なお、Vref1とVref2との電圧値の差は、オペアンプ1の入出力オフセット値よりも大きい値とする。このとき、オペアンプ1は、負極性入力端子に入力したVref2より、正極性入力端子に入力したVref1の電圧の方が高いため、「H」レベルの信号を出力する。このオペアンプ1からの出力を、判定回路3が検出し、自身が記憶する期待値「H」と比較する。ここで、オペアンプ1の出力が「L」レベルであった場合、判定回路3は、オペアンプ1に不具合があると判定できる。なお、判定回路3が記憶する期待値は、制御回路より与えられたものである。
 次に、オペアンプ1のコンパレータ動作に不具合があり、オペアンプ1は「H」レベルしか出力できない場合も考えられる。したがって、スイッチS3およびS4をB側に切り替え、オペアンプ1の正極性入力端子にVref2を入力し、負極性入力端子にVref1を入力する。このとき、オペアンプ1は、正極性入力端子に入力したVref2よりも、負極性入力端子に入力したVref1の電圧値の方が高いため、「L」レベルを出力する。このオペアンプ1からの出力を、判定回路3が検出し、自身が記憶する期待値「L」と比較する。ここで、オペアンプ1の出力が「H」レベルであった場合、判定回路3は、オペアンプ1に不具合があると判定できる。なお、スイッチS3~S6は、制御回路によって切り替えられるものとする。
 〔実施形態2〕
 次に、本発明に係る第2の実施形態について、図16~図22を参照して、以下に説明する。なお、なお、実施形態2の説明に関しては、実施形態1と異なる箇所についてのみ説明し、重複する箇所についてはその説明を省略する。
 まず、実施形態1と実施形態2の違いについて簡単に説明する。実施形態1は、DAC回路8の出力と、予備のDAC回路28の出力を、オペアンプ1において比較している。一方、実施形態2は、互いに隣接する2つのDAC回路8を一組とし、互いのDAC回路8からの出力を、オペアンプ1において比較する。
 (表示駆動用半導体集積回路20の構成)
 図16を参照して、本発明の表示駆動用半導体集積回路(以下、集積回路とする)20の構成について説明する。図16は、集積回路20(表示装置駆動用の集積回路)の構成を示す説明図である。
 オペアンプ1は、自身に直列に接続されるDAC回路8からの出力を、自身の正極性入力端子に入力する。さらに、オペアンプ1は、自身に隣り合うオペアンプに直列に接続されるDAC回路8からの出力を、自身の負極性入力端子に入力する。具値的には、同図に示すように、オペアンプ1-1は、DAC回路8-1からの出力を、自身の正極性入力端子に入力し、DAC回路8-2にからの出力を、スイッチ2aを介して自身の負極性入力端子に入力する。同様に、オペアンプ1-2は、DAC回路8-2からの出力を、自身の正極性入力端子に入力し、DAC回路8-1からの出力を、スイッチ2aを介して自身の負極性入力端子に入力する。また、集積回路20は、予備のサンプリング回路26Aおよび26Bと、予備のホールド回路27Aおよび27Bと、予備のDAC回路28Aおよび28Bと、オペアンプ21Aおよび21Bと、プルアップ・プルダウン回路25Aおよび25Bとを備えている。オペアンプ21Aにおいても、DAC回路28Aからの出力を自身の正極性入力端子に、DAC回路28Bからの出力を、スイッチ2aを介して自身の負極性入力端子に入力する。さらに、オペアンプ21Bにおいても、DAC回路28Bからの出力を、自身の正極性入力端子に、DAC回路28Aからの出力を、スイッチ2aを介して自身の負極性入力端子に入力している。
 (集積回路20の通常動作)
 集積回路20における通常動作においては、実施形態1と同様に、制御回路は、test信号を「L」レベルに、testB信号を「H」レベルにする。これにより、DAC回路8は、ホールド回路7より入力した階調データを階調電圧信号に変換し、階調電圧としてオペアンプ1の正極性入力端子に出力する。ここでオペアンプ1の出力は、スイッチ2bがONしているため、自身の負極性入力端子への負帰還となる。これにより、オペアンプ1は、ボルテージフォロワとして動作する。よって、オペアンプ1は、DAC回路8からの階調電圧をバッファし、対応する各出力端子OUT1~OUTnに出力する。
 (動作確認テストの切り替え)
 集積回路20における動作確認テストへの切り替えは、制御回路がtest信号を「H」レベルとし、testB信号を「L」レベルとする。まず、スイッチ2aがONとなることにより、サンプリング回路26Aおよび奇数番目のサンプリング回路6(サンプリング回路6-1,6-3,・・・,6-(n-1))には、TSTR1信号が入力される。さらに、サンプリング回路26Bおよび偶数番目のサンプリング回路6(サンプリング回路6-2,6-3,・・・,6-n)には、TSTR2信号が入力される。さらに、スイッチ2aがONとなることにより、奇数番目のオペアンプ1の負極性入力端子には、隣り合う偶数番目のDAC回路8からの出力が入力され、偶数番目のオペアンプ1の負極性入力端子には、隣り合う奇数番目のDAC回路8からの出力が入力される。また、testB信号が「L」レベルとなることにより、スイッチ2bはOFFとなる。これにより、オペアンプ1における、自身の出力の負極性入力端子への負帰還が遮断されることになる。その結果、オペアンプ1は、自身に直列に接続されたDAC回路8からの出力と、隣り合うDAC回路8からの出力とを比較するコンパレータとなる。
 (実施形態2の動作確認テスト1)
 次に、第2の実施形態に係る、動作確認テストの1つ目の手順を、図17を参照して以下に説明する。図17は、第2の実施形態に係る、動作確認テストの1つ目の手順を示すフローチャート図である。
 まず、制御回路はtest信号を「H」レベルに、testB信号を「L」レベルにする(S101)。これにより、オペアンプ1はコンパレータとして動作する(S102)。次に、制御回路は、奇数番目の判定回路3(判定回路3-1,3-3,・・・,3-(n-1))の期待値を「L」レベルに設定する。一方、制御回路は、偶数番目の判定回路3(判定回路3-2,3-4,・・・,3-n)の期待値を「H」レベルに設定する。
 次に、制御回路は、自身が備えるカウンタmを0に初期化する(S103)。さらに、制御回路は、TSTR1をアクティブにし、サンプリング回路26Aおよび奇数番目のサンプリング回路6がデータバスを介して、階調mの階調データを入力する。また、制御回路は、TSTR2をアクティブにし、サンプリング回路26Bおよび偶数番目のサンプリング回路6がデータバスを介して、階調m+1の階調データを入力する(S104)。
 ここで、カウンタmの値が0の場合を考えると、奇数番目のオペアンプ1は、自身の正極性入力端子に階調0の階調電圧を、自身に直列に接続される、奇数番目のDAC回路8より入力する。また、奇数番目のオペアンプ1は、自身の負極性入力端子に階調1の階調電圧を、隣り合う偶数番目のDAC回路8より入力する。ここで、オペアンプ1の2つの入力端子に接続するDAC回路8が正常であれば、奇数番目のオペアンプ1の出力は「L」になる。一方、偶数番目のオペアンプ1は、自身の正極性入力端子に階調1の階調電圧を、自身に直列に接続される、偶数番目のDAC回路8より入力する。また、偶数番目のオペアンプ1は、自身の負極性入力端子に階調0の階調電圧を、隣り合う奇数番目のDAC回路8より入力する。ここで、オペアンプ1の2つの入力端子に接続するDAC回路8が正常であれば、偶数番目のオペアンプ1の出力は「H」になる。
 次に、判定回路3は、オペアンプ1からの出力信号のレベルが、自身が記憶する期待値に合致するかを判定する(S105)。ここで、オペアンプ1からの出力が、期待値と異なる場合、判定回路3は、判定フラグ4に「H」フラグを出力する(S106)。以上のS104~S106までの処理を、カウンタmの値を1つづつ増やし、カウンタmの値がn-1となるまで繰り返し行う(S107,S108)。
 (実施形態2の動作確認テスト2)
 次に、第2の実施形態に係る、動作確認テストの2つ目の手順を、図18を参照して以下に説明する。図18は、第2の実施形態に係る、動作確認テストの2つ目の手順を示すフローチャート図である。
 第2の実施形態における動作確認テスト2は、第2の実施形態における動作確認テスト1における、奇数番目と偶数番目との階調の電圧関係を逆にした動作確認であり、その他は、第2の実施形態における動作確認テストと同様である。
 まず、制御回路は、奇数番目の判定回路3の期待値を「H」に設定し、一方、偶数番目の判定回路3の期待値を「L」に設定する。さらに、制御回路は、自身が備えるカウンタmを0に初期化する(S111)。
 次に、制御回路は、TSTR1をアクティブにし、サンプリング回路26Aおよび奇数番目のサンプリング回路6がデータバスを介して、階調m+1の階調データを入力する。また、制御回路は、TSTR2をアクティブにし、サンプリング回路26Bおよび偶数番目のサンプリング回路6がデータバスを介して、階調mの階調データを入力する(S112)。
 ここで、カウンタmの値が0の場合を考えると、奇数番目のオペアンプ1は、自身の正極性入力端子に階調1の階調電圧を、自身に直列に接続される、奇数番目のDAC回路8より入力する。また、奇数番目のオペアンプ1は、自身の負極性入力端子に階調0の階調電圧を、隣り合う偶数番目のDAC回路8より入力する。ここで、オペアンプ1の2つの入力端子に接続するDAC回路8が正常であれば、奇数番目のオペアンプ1の出力は「H」レベルになる。一方、偶数番目のオペアンプ1は、自身の正極性入力端子に階調0の階調電圧を、自身に直列に接続される、偶数番目のDAC回路8より入力する。また、偶数番目のオペアンプ1は、自身の負極性入力端子に階調1の階調電圧を、隣り合う奇数番目のDAC回路8より入力する。ここで、オペアンプ1の2つの入力端子に接続するDAC回路8が正常であれば、偶数番目のオペアンプ1の出力は「L」レベルになる。
 次に、判定回路3はオペアンプ1からの出力のレベルと、自身が記憶する期待値とを比較する(S113)。ここで、判定回路3は、オペアンプ1からの出力が期待値と異なる場合、判定フラグ4に「H」フラグを出力する。以上のS112~S114の処理を、カウンタmの値を1つづつ増やし、カウンタmの値がn-1となるまで繰り返し行う(S115、S116)。
 (実施形態2の動作確認テスト3)
 次に、第2の実施形態に係る、動作確認テストの3つ目の手順を、図19を参照して以下に説明する。図19は、第2の実施形態に係る、動作確認テストの3つ目の手順を示すフローチャート図である。
 第1の実施形態の動作確認テスト3において説明したように、DAC回路8において、出力がオープンとなる不具合がある場合、実行済の確認テストによる、オペアンプ1の入力された階調電圧を、オペアンプ1が保持し続け、実施形態2の動作確認テスト1および2において、不具合を検出できない場合がある。
 まず、動作確認テスト1~2と同様に、制御回路は、自身が備えるカウンタmの値を0に初期化する(S121)。また、集積回路20は、DAC回路8の正極性入力端子に、プルアップ・プルダウン回路5を接続している。ここで、奇数番目のオペアンプ1の正極性入力端子をプルアップするように、制御回路は、プルアップ・プルダウン回路5を制御する(S122)。結果、奇数番目のDAC回路8の出力がオープンとなる場合に、奇数番目のオペアンプ1の正極性入力端子に高い電圧を入力することになる。一方、偶数番目のオペアンプ1の正極性入力端子については、プルダウンとなるように、制御回路は、プルアップ・プルダウン回路5を制御する(S122)。結果、偶数番目のDAC回路8の出力がオープンとなる場合に、偶数番目のオペアンプ1の正極性入力端子に低い電圧を入力することになる。
 この後のS123~S127の処理については、第2の実施形態の動作確認テスト1と同様であるため、ここではその説明を省略する。
 (実施形態2の動作確認テスト4)
 次に、第2の実施形態に係る、動作確認テストの4つ目の手順を、図20を参照して以下に説明する。図20は、第2の実施形態に係る、動作確認テストの4つ目の手順を示すフローチャート図である。
 ここでは、上記の動作確認テスト3と同様の不具合を検出することを目的としている。まず、これまでの動作確認テストと同様に、制御回路は、自身が備えるカウンタmの値を0に初期化する(S131)。次に、制御回路は、奇数番目のオペアンプ1の正極性入力端子をプルダウンするように、プルアップ・プルダウン回路5を制御する(S122)。結果、奇数番目のDAC回路8の出力がオープンとなる場合に、奇数番目のオペアンプ1の正極性入力端子に低い電圧を入力することになる。一方、偶数番目のオペアンプ1の正極性入力端子については、プルアップとなるように、制御回路は、プルアップ・プルダウン回路5を制御する(S122)。結果、偶数番目のDAC回路8の出力がオープンとなる場合に、偶数番目のオペアンプ1の正極性入力端子に高い電圧を入力することになる。
 この後のS133~S137の処理については、第2の実施形態の動作確認テスト2と同様であるため、ここではその説明を省略する。
 (実施形態2の動作確認テスト5)
 次に、第2の実施形態に係る、動作確認テストの5つ目の手順を、図21を参照して以下に説明する。図21は、第2の実施形態に係る、動作確認テストの5つ目の手順を示すフローチャート図である。
 第1の実施形態の動作確認テスト5において説明したように、DAC回路8においては、自身における隣接する2つ階調がショートするという不具合が発生する場合がある。第2の実施形態の動作確認テスト5においては、このような不具合を検出することが目的である。
 同図に示すように、まず、制御回路は、自身が備えるカウンタmの値を0に初期化する(S141)。次に、TSTR1およびTSTR2をアクティブにし、さらに、データバスを介して、階調mの階調データを、サンプリング回路26A、サンプリング回路26B、およびサンプリング回路6が入力する。さらに、データLOAD信号をアクティブにすることにより、奇数番目のDAC回路8および偶数番目のDAC回路8は、同じ階調mの階調電圧を出力することになる(S142)。次に、図示しないスイッチを介して、制御回路は、オペアンプ1の正極性入力端子と負極性入力端子とをショートさせる。このオペアンプ1の正極性入力端子と負極性入力端子とをショートさせたことにより、オペアンプ1の正極性入力端子および負極性入力端子は、同じ階調電圧を入力することになる。次に、オペアンプ1の正極性入力端子と負極性入力端子とをショートした場合の、オペアンプの出力のレベルを、判定回路3は、期待値として記憶する(S143)。
 次に、図示しないスイッチをOFFにして、オペアンプ1の正極性入力端子と負極性入力端子とのショートを解除する。このとき、奇数番目のオペアンプ1の正極性入力端子は、自身に直列に接続された奇数番目のDAC回路8からの、階調mの階調電圧が入力され、負極性入力端子には、自身に隣り合う偶数番目のDAC回路8からの、階調mの階調電圧が入力される。一方、偶数番目のオペアンプ1の正極性入力端子は、自身に直列に接続された偶数番目のDAC回路8からの、階調mの階調電圧が入力され、負極性入力端子には、自身に隣り合う奇数番目のDAC回路8からの、階調mの階調電圧が入力される。ここで、判定回路3は、自身が記憶した期待値と、オペアンプ1からの出力とを比較する(S144)。さらに、判定回路3は、オペアンプ1からの出力が、自身が記憶する期待値と異なる場合は、判定フラグ4に「H」フラグを出力する。さらに、判定フラグ4は、判定回路3より入力した「H」フラグを、自身の内部に記憶する。
 次に、制御回路は、図示しないスイッチを用いて、DAC回路8からの、オペアンプ1の正極性入力端子に入力される信号と、負極性入力端子に入力される信号とを入れ替える(S146)。この後、S147の処理と同じ処理を行う(S147)。また、S145と同様に、判定回路3は、オペアンプ1からの出力が、自身が記憶する期待値と異なる場合には、判定フラグ4に「H」を出力する(S148)。
 以上のS142~S148の処理を、カウンタmの値がnとなるまで、カウンタmの値を1つ増加させて繰り返し行う(S149、S150)。
 (実施形態2の自己修復)
 次に、判定フラグ4が「H」を記憶している場合、言い換えれば、上記動作確認テスト1~5において、DAC回路8のいずれかに不具合があると判定回路3が判定した場合の修復について、図22を参照して以下に説明する。図22は、不良と判定したDAC回路8と、予備のDAC回路28Aおよび28Bとを切り替え、自己修復する手順を示すフローチャート図である。
 まず、制御回路は、判定フラグ4が「H」を記憶しているかどうかを検出する(S151)。制御回路は、判定フラグ4が「H」を記憶していないことを検出した場合は、S153の処理に移行する。一方、制御回路が、「H」を記憶している判定フラグ4を検出した場合、「H」を記憶する判定フラグ4に対応するDAC回路8を、予備のDAC回路28Aまたは28Bに切り替える。ここで、実施形態2においては、2つのDAC回路8を1組として動作確認を行っているため、判定フラグ4が「H」フラグを記憶していたとしても、1組のうちの、どちらのDAC回路が不良なのか判断がつかない。したがって、実施形態2においては、「H」を記憶する判定フラグ4に対応する1組のDAC回路8を、言い換えれば、奇数番目および偶数番目の2つのDAC回路8を、予備のDAC回路28Aおよび28Bに切り替える(S152)。具体的な説明として、以下においては、DAC回路8-1に不具合があるものとして説明する。
 ここで、DAC回路8-1に不具合があった場合、動作確認テスト1~5によって、判定回路3-1および3-2は、ともに「H」を判定フラグ4-1および4-2に出力することになる。さらに判定フラグ4-1および4-2は、判定回路3-1および3-2より入力した「H」フラグをスイッチ2cおよび2dに出力し、スイッチ2cをOFF、スイッチ2dをONする。結果、サンプリング回路26AはSTR1信号を入力し、サンプリング回路26BはSTR2信号を入力する。これにより、サンプリング回路26Aは、液晶駆動用信号出力端子OUT1に対応する階調データをデータバスより取得することになり、また、サンプリング回路26Bは、液晶駆動用信号出力端子OUT2に対応する階調データをデータバスより取得することになる。さらに、スイッチ2cがOFFとなることにより、オペアンプ1-1の出力と、液晶駆動用信号出力端子OUT1との接続は遮断され、オペアンプ1-2の出力と、液晶駆動用信号出力端子OUT2との接続も遮断される。さらに、スイッチ2dがONしたことにより、オペアンプ21Aの出力は、液晶駆動用信号出力端子OUT1に接続し、オペアンプ21Bの出力は、液晶駆動用信号出力端子OUT2に接続する。
 以上のように、不具合があるDAC回路8と、これに対となるDAC回路8とを1組として、予備のDAC回路28Aおよび28Bに切り替えることにより、不具合のあるDAC回路8を予備のDAC回路26Aまたは26Bに切り替えることができる。
 次に、制御回路は、test信号を「L」、testB信号を「H」にし、通常動作に移行する(S153)。
 〔実施形態3〕
 以上に説明した実施形態1および実施形態2においては、出力回路ブロック30(図2を参照)からの階調電圧と、予備出力回路ブロック40(図2を参照)からの階調電圧とを切り替える切替回路60(図2を参照)は、集積回路10および20に備えられる構成であったが、本発明はこれに限るものではなく、切替回路60が、表示パネル側に備えられる構成であってもよい。
 以下に、表示パネル側に切替回路60を備えた表示部90’の構成および動作を、本発明に係る第3の実施形態として説明する。なお、本実施形態では、実施形態1と異なる箇所について説明し、重複する箇所についてはその説明を省略する。
 (表示部90’の概略構成)
 まず、図23を参照して、本実施形態に係る表示部90’の概略構成を説明する。図23は、表示部90’の概略構成を示すブロック図である。
 図23に示すように、表示部90’は、表示パネル80’と、外部より入力される階調データに基づき表示パネル80’を駆動する集積回路10’(駆動回路)とを備えている。ここで、集積回路10’において、実施形態1の集積回路10と異なる点は、切替回路60を備えていないことであり、その他の構成は、集積回路10と同じ構成である。また、表示パネル80’において、実施形態1の表示パネル80と異なる点は、切替回路60を備えていることであり、その他の構成は、表示パネル80と同じ構成である。
 (表示部90’の構成)
 次に、図24を参照して、本実施形態に係る表示部90’の、より詳細な構成を説明する。図24は、集積回路10’の構成を示すブロック図である。
 図24に示すよに、集積回路10’は、階調データ入力端子(図示しない)より、データバスを介してn個の出力端子OUT1~OUTnの各々に対応する階調データが入力されるn個のサンプリング回路6と、n個のホールド回路7と、階調データを階調電圧信号に変換するDAC回路8と、DAC回路8からの階調電圧信号に対するバッファ回路の役割を有するオペアンプ1と、n個の判定回路3と、n個のプルアップ・プルダウン回路5とを備えている。
 さらに、図24に示すように、集積回路10’は、test信号によってON,OFFが切替わる複数のスイッチ2aと、testB信号によってON,OFFが切替わる複数のスイッチ2bと、LF信号によってON,OFFが切替わる複数のスイッチ2fと、を備えている。なお、スイッチ2a、2bおよび2fは、「H」の信号を入力された場合にONとなり、「L」の信号を入力された場合にOFFとなる。さらに、集積回路10’予備のサンプリング回路26と、予備のホールド回路27と、予備のDAC回路28と、予備のオペアンプ21と、予備の出力端子OUT0とを、各1回路づつ備えている。
 一方、表示パネル80’は、図24に示すように、集積回路10’が備える出力端子OUT1~OUTnの各々に接続する接続端子(図示せず)と、判定フラグ9-1~9-n(以下、総称する場合は、判定フラグ9とする)と、制御回路(図示せず)からのLF信号によってON,OFFが切替わるスイッチ2fと、LF信号の反転信号であるLFB信号によってON,OFFが切替わるスイッチ2eと、判定フラグ9からの出力信号であるFlag1~FlagnによってON,OFFが切替わるスイッチ2cおよび2dと、を備えている。なお、スイッチ2d、2e、および2fは、「H」の信号を入力された場合にONとなり、「L」の信号を入力された場合にOFFとなる。また、スイッチ2cは、「L」の信号を入力された場合にONとなり、「H」の信号を入力された場合にOFFとなる。
 また、本実施形態における表示パネル80’は、液晶表示パネルであり、図24に示すように、集積回路10’の出力端子OUTの各々に、スイッチ2eおよび2cを介して、データ信号線SL-1~SL-n(以下、総称する場合、データ信号線SLとする)が接続されている。また、データ信号線SLの各々には、走査信号線GLの本数と同数の画素Pが接続されている。なお、図24においては、データ信号線SL-1に接続する画素Pを画素P-1とし、データ信号線SL-nに接続する画素Pを画素P-nとしている。
 (実施形態3の自己修復)
 次に、本実施形態に係る表示部90’において、動作確認テストを行った結果、判定フラグ4が「H」フラグを記憶している場合での、自己修復動作について説明する。なお、本実施形態における、動作確認テストの方法は、実施形態1に述べた動作確認テスト1~5と同様であるため、ここでは、動作確認テストの説明は省略する。
 まず、動作確認テスト1~5が終了した時点においては、test信号は「H」であり、testB信号は「L」となっている。したがって、オペアンプ1と出力端子OUTとの接続は、スイッチ2bによって切り離されている。ここで、制御回路は、動作確認テスト1~5が完了した後、「H」のLF信号を出力するとともに、「L」のLFB信号を出力する。この「H」のLF信号が出力されることにより、スイッチ2fはONし、判定フラグ4の各々は、各出力端子OUTを介して、各判定フラグ9に接続することになる。さらに、判定フラグ4の各々は、自身が記憶する「H」フラグまたは「L」フラグを、Flag1~Flagnとして、各出力端子OUTを介して、各判定フラグ9に出力する。各判定フラグ9は、判定フラグ4より出力されたFlag1~Flagnを、自身の内部メモリに記憶するとともに、自身に接続するスイッチ2cおよび2dに出力する。なお、LF信号が「H」の期間、LFB信号が「L」となることにより、各スイッチ2eはOFFとなる。これにより、判定フラグ4が出力するFlag1~Flagnが、データ信号線SL-1~SL-nに出力されることを防止し、結果、判定フラグ4が出力するFlag1~Flagnが、画素Pに影響を及ぼすことはない。
 以下に、表示部90’における自己修復動作の詳細な説明として、出力端子OUT1に対応する判定フラグ4-1が「H」フラグを記憶している場合を例にとって説明する。
 まず、出力端子OUT1に対応する判定フラグ4-1が「H」フラグを記憶している場合、言い換えれば、DAC回路8-1が不良であった場合、判定フラグ9-1は、判定フラグ4より「H」フラグが出力され、出力された「H」フラグを、自身が備える内部メモリに記録する。なお、この例においては、判定フラグ4-2~4-nは、「L」フラグを記録しているものとする。
 次に、判定フラグ9-1は、「H」フラグのFlag1を、自身に接続するスイッチ2cおよび2dに出力する。これにより、判定フラグ9-1に接続するスイッチ2cは、出力端子OUT1とデータ信号線SL-1との接続を切断することになり、さらに、判定フラグ9-1に接続するスイッチ2dは、出力端子OUT0とデータ信号線SL-1とを接続することになる。一方、判定フラグ9-2~9-nの各々は、自身に接続するスイッチ2cおよび2dに、「L」フラグのFlag2~Flagnを出力するため、判定フラグ9-2~9-nに接続するスイッチ2cはONとなり、判定フラグ9-2~9-nに接続するスイッチ2dはOFFとなる。結果、データ信号線SL-2~SL-nの各々は、スイッチ2eを介して、出力端子OUT2~OUTnの各々に接続することになる。
 各判定フラグ9が、判定フラグ4からのFlag1~Flagnに基づいて、自身に接続するスイッチ2cおよび2dを切り替えた後、制御回路は、「L」のLF信号を出力するとももに、「H」のLFB信号を出力する。これにより、出力端子OUT2~OUTnの各々と、データ信号線SL-2~SL-nの各々とが接続することになる。
 次に、制御回路が、「L」のLF信号を出力した後、「L」のtest信号と、「H」のtestB信号を出力することにより、データ信号線SL-1は、出力端子OUT0を介して、オペアンプ21の出力に接続し、一方、データ信号線SL-2~SL-nの各々は、出力端子OUT2~OUTnを介して、オペアンプ1-2~1-nに接続する。なお、サンプリング回路6-1に接続するスイッチ2dは、判定フラグ4-1からのFlag1によってONしているため、サンプリング回路6-1に入力される階調データ(データ信号線SL-1に対応する階調データ)は、サンプリング回路26にも入力される。結果、データ信号線SL-1には、データ信号線SL-1に対応する階調データが、出力端子OUT1の代わりに、出力端子OUT0より入力される。なお、サンプリング回路6および予備のサンプリング回路26の各々に入力される階調データの切替については、実施形態1における動作と同様でため、ここでは、その詳細な説明を省略する。
 以上のように、表示部90’は、自己修復動作を行うことにより、不良と検出されたDAC回路8の代わりに、予備のDAC回路28を用いて、データ信号線SLに正常な階調電圧を出力することができる。なお、実施形態1と同様に、本実施形態においても、予備のDAC回路28に対応する、予備のサンプリング回路26およびホールド回路27を備えている。したがって、DAC回路8だけでなく、サンプリング回路6またはホールド回路7に不具合があった場合においても、予備のサンプリング回路26およびホールド回路28に切り替えることができる。

 次に、表示部90’における、電源投入から、動作確認テストを行い、通常動作に移行するまでの手順を、図25を参照して以下に説明する。図25は、表示部90’の電源投入から、動作確認テストを行い通常動作に移行するまでの処理手順を示すフローチャート図である。
 図25に示すように、まず、表示部90’は、ユーザーによって電源投入されたことを検出すると、集積回路10を初期化することにより、判定フラグ4が記憶する全てのフラグを「L」フラグにする(S161)。次に、制御回路は、test信号を「H」に、testB信号を「L」にし、集積回路10’を動作確認テストの状態に切り替える(S162)。次に、制御回路および集積回路10は、上述した動作確認テストを行う(S163)。さらに、全ての動作確認テスト1~5が終了したか否かを、制御回路は確認する(S164)。このS164において、制御回路が、全ての動作確認テスト1~5が完了していないことを検出すると、表示部90’は、制御回路からの指示に基づき、処理をS163に移行し、未完了の動作確認テストを行う。一方、S164において、制御回路は、表示部90’において全ての動作確認テストが完了したことを確認すると、「H」のLF信号および「L」のLFB信号を出力し、不良となる回路(サンプリング回路6、ホールド回路7、DAC回路9、オペアンプ1)を検出した場合は、当該不良回路を、予備の回路(サンプリング回路26、ホールド回路27、DAC回路29、オペアンプ21)に切替、通常動作に移行する(S165)。
 なお、本実施形態における表示部90’においては、判定回路3-1における判定結果であるフラグを記憶する回路として、判定フラグ4および判定フラグ9を備える構成であるが、表示部90’の変形例として、判定フラグ9、スイッチ2f、スイッチ2eを備えず、判定フラグ4が、スイッチ2cおよび2dを制御する構成であってもよい。この場合、スイッチ2fおよび2eを制御するLF信号およびLFB信号も不要となる一方、判定フラグ4と、スイッチ2cおよび2dを接続するための配線および接続端子が必要となる。
 〔実施形態4〕
 以上に説明した実施形態1~実施形態3においては、集積回路と表示パネルとが、出力端子OUTを介して接続する構成であったが、出力端子OUTを介さず、集積回路と表示パネルとが一体となる表示装置も、本発明の範疇に含むものである。
 以下に、集積回路と表示パネルとが一体となる表示部90”を、第4の実施形態として、図26を参照して説明する。なお、本実施形態に係る表示部90”は、実施形態1に係る表示部90の変形例であり、本実施形態では、実施形態1と異なる箇所について説明し、重複する箇所についてはその説明を省略する。
 (表示部90”の構成)
 まず、図26を参照して、本実施形態に係る表示部90”の構成を説明する。図26は、表示部90”の構成を示すブロック図である。
 図26に示すように、表示部90”は、実施形態1に示した集積回路10と表示パネル80との区別はなく、オペアンプ1および21の出力が、スイッチ2b、2c、および2dを介して、データ信号線SLに直接接続している。つまり、本実施形態の表示部90”において、実施形態1の表示部90と異なる点は、出力端子OUTを備えているか否かの違いであり、その他の構成は実施形態1の表示部90と同じである。
 なお、本実施形態においては、実施形態1の変形例として説明したが、実施形態2および3も同様に、出力端子OUTを介さず、集積回路と表示パネルとを一体にした表示装置も、本発明の範疇に含まれることは言うまでもない。
 (テレビジョンシステム)
 次に、実施形態1に係る表示部90を備えるテレビジョンシステム300について、図27を参照して説明する。なお、図27は、テレビジョンシステム300の構成を示すブロック図である。なお、以下では、テレビジョンシステム300が、実施形態1に係る表示部90を備えるものとして説明するが、本発明に係るテレビジョンシステムは、これに限るものではなく、表示部90の代わりに、実施形態2~4に係る表示装置を備える構成であってもよい。
 (テレビジョンシステム300の構成)
 図27に示すように、テレビジョンシステム300は、放送波を受信するアンテナ301と、受信した放送波を映像音声信号に復調するチューナー部302と、復調された映像音声信号を、映像信号と音声信号とに分離する信号分離部303と、分離された映像信号をデジタル映像信号に復号する映像信号処理部304と、復号されたデジタル映像信号を、階調データとして取得し、取得した階調データに基づいて映像を表示パネル80(図2を参照)に表示する表示部90と、分離された音声信号をデジタル音声信号に復号する音声信号処理部305と、復号されたデジタル音声信号を、アナログ音声信号に変換した後、変換したアナログ音声信号を音声としてスピーカより出力する音声信号出力部306とを、備えている。
 (テレビジョンシステム300の動作)
 次に、テレビジョンシステム300における動作処理を説明する。まず、放送局からの放送波を、アンテナ301が受信し、受信した放送波を、チューナー部302に出力する。チューナー部302は、出力された放送波を映像音声信号に復調し、信号分離部303に出力する。信号分離部303は、出力された映像音声信号を、映像信号と音声信号とに分離し、それぞれを映像信号処理部304および音声信号処理部305に出力する。映像信号処理部304は、出力された映像信号をデジタル映像信号に復号し、復号したデジタル映像信号を階調データとして表示部90に出力する。表示部90は、出力された階調データを、自身が備える表示パネル80を用いて表示する。一方、音声信号処理部305は、信号分離部303によって分離された音声信号を、デジタル音声信号に復号し、音声出力部306に出力する。音声信号出力部306は、出力されたデジタル音声信号をアナログ音声信号に変換した後、自身が備えるスピーカを用いて、アナログ音声信号を音声として出力する。
 なお、本発明に係るテレビジョンシステム300は、映像音声信号を取得する手段として、アンテナ301およびチューナー部302を用いて放送局より取得する構成としたが、本発明はこれに限るものではなく、記録媒体より当該記録媒体に記録されたコンテンツデータを読み出す、DVDプレーヤー等のコンテンツ読み取り装置や、インターネット等よりPC(パーソナルコンピュータ)を介して取得する構成であってもよい。
 実施形態1および実施形態4において説明した、動作確認テストおよび自己修復の処理動作は、液晶駆動用半導体集積回路10に電源が投入された直後に行う構成としたが、本発明はこれに限るものではなく、液晶駆動用半導体集積回路10へ制御信号を入力することにより行う構成にし、任意のタイミングで行ってもよい。例えば、表示装置のコントローラから表示の帰線期間を示す信号を液晶駆動用半導体集積回路10に入力し、このタイミングで動作確認テスト、自己修復を行ってもよい。
 また、動作確認テストおよび自己修復の処理動作は、液晶駆動用半導体集積回路10に液晶駆動用半導体集積回路10の異常を検知する回路を構成し、液晶駆動用半導体集積回路10に異常が発生したときに行ってもよい。例えば、液晶駆動用半導体集積回路10から出力される信号の電流を検知し、検知した電流が設定電流より多くなった場合、動作確認テストおよび自己修復の処理動作を行ってもよい。
 また、動作確認テストおよび自己修復の処理動作は、定期的に行なってもよい。例えば、表示を行わない垂直帰線期間毎に行なう、または、あらかじめ設定した累計表示時間毎に行ってもよい。
 また、動作確認テストおよび自己修復の処理動作は、表示を行っている期間の一部で行っても良い。例えば、液晶表示装置では画素が表示電圧を記憶するので、表示電圧の充電が終了した後は、液晶駆動用半導体集積回路10の出力をハイインピーダンスにしても表示に問題ない。表示期間の一部で、液晶駆動用半導体集積回路10の出力をハイインピーダンスにして、動作確認テストおよび自己修復の処理動作を行う。このとき、動作確認テストのパターンをすべて行う時間が無ければ、1ラインの表示期間の一部で、例えば1パターンの判定を行い、1画面での表示期間もしくは数画面を表示する期間で行う事もできる。
 なお、本発明に係る集積回路10(図7参照)は、自身の欠陥を自己検出(動作確認テスト)するために、表示パネル80(図2参照)を駆動するための出力信号を停止する必要がある。すなわち、集積回路10は、自己検出の期間において、表示パネル80を駆動できない。したがって、集積回路10が自己検出を行うタイミングは、表示装置の映像の表示に影響を与えない期間において行う必要がある。
 そこで、本発明に係る実施形態においては、集積回路10が自己検出を行う期間として、表示装置の電源投入時における起動プロセス中に、集積回路10が自己検出および自己修復を行うものとして説明した。これは、表示装置の起動プロセス中であれば、表示装置は映像の表示を行っていないため、表示装置の映像の表示に影響を及ぼすことなく、集積回路10が、自己検出および自己修復を行えるためである。
 以上のように、本実施形態における、集積回路10は、表示装置の電源投入時における起動プロセス中に、自身の欠陥を検出する自己検出を行っていたが、本発明はこれに限るものではなく、表示装置の起動プロセス中以外の期間において、自己検出および自己修復を行うことが可能である。
 以下に、表示装置に起動プロセス中以外の、自己検出および自己修復を行うことが可能な期間を、実施例として説明する。
 〔実施例1〕
 (垂直帰線期間における自己検出および自己修復)
 まず、一つ目の実施例として、表示装置の垂直帰線期間中においては、表示装置の映像の表示に影響を及ぼすことなく、集積回路10は、自己検出および自己修復を行うことが可能となる。以下にその理由を説明する。
 以下に、表示装置に入力される各信号のタイミングについて、図28の(a)~(f)を参照して説明する。図28の(a)~(f)は、液晶表示装置に入力する各信号のタイミングを示すタイムチャート図である。
 図28の(a)は、表示装置の走査線を駆動する走査側駆動回路より出力される、表示装置の1本目の走査信号線に与えられる走査信号線SCN1を示し、同図の(b)は、走査側駆動回路より出力される、表示装置の2本目の走査信号線に与えられる走査信号線SCN2を示し、同図の(c)は、集積回路10(図7参照)から映像信号反転回路に与えられる、表示装置のj本目のデータ信号線に対応する映像信号DSjを示し、同図の(d)は、映像信号反転回路からデータ側駆動回路に与えられる、表示装置のj本目のデータ信号線に対応する映像信号DRVjを示し、同図の(e)は、表示装置のj本目のデータ信号線に与えられる映像信号DATAjを示し、同図の(f)は、表示装置における1本目の走査信号線とj本目のデータ信号線とに接続される画素に印加される駆動電圧VD1jを示している。また、図28に示す、時刻t1~t5の期間TVは、表示装置の垂直走査期間であり、期間TV1は垂直帰線期間であり、時刻t1~t3の期間THは水平走査期間であり、時刻t2~t3の期間TH1は水平帰線期間である。なお、上記映像信号反転回路は、水平走査期間THおよび垂直走査期間TV毎に、表示装置の各画素における表示電極の極性を反転させるために、集積回路10からの映像信号DSjの極性を反転させる回路である。
 図28の(a)および(b)に示すように、走査側駆動回路は、表示装置の各走査信号線に対して、走査信号線の1本目から、順次水平走査THずつタイミングを遅延させて、走査信号SCN1、走査信号SCN2、…、走査信号SCNmを出力する。また、走査側駆動回路は、各走査信号SCN1~走査信号SCNmを、表示装置の各走査信号線に対して、垂直走査期間TV毎に繰り返し出力する。なお、ここでは、表示装置は、m本の走査信号線を有するものである。
 図28の(c)に示す、集積回路10からの映像信号DSjは、映像信号反転回路に入力される。次に、映像信号反転回路は、映像信号DSjを、水平走査期間TH毎に極性を反転するとともに、垂直走査期間TV毎にも極性を反転し、図28の(d)に示す映像信号DRVjを生成する。さらに映像信号反転回路は、生成した映像信号DRVjを、データ側駆動回路に入力する。
 次に、データ側駆動回路は、映像信号反転回路からの映像信号DRVjを、水平走査期間TH毎にサンプリングし、サンプリングした信号値を、一水平走査期間TH遅延させて、図28の(e)に示す映像信号DATAjとして、表示装置のj本目のデータ信号線に出力する。
 次に、1本目の走査信号線とj本目のデータ信号線とに接続している表示装置の画素(以下、画素1jとする)においては、時刻t1~t2の水平走査期間THにおける走査信号SCN1によって、画素1j内のTFTが導通し、結果、j本目のデータ信号線を介して、時刻t1~t2における映像信号DATAjの映像信号電圧が、駆動電圧VD1jとして、画素1j内の表示電極に印加される。ここで、画素1jの表示電極に印加された駆動電圧VD1jは、時刻t2~t5において、画素1j内のTFTの導通が遮断されても、時刻t1~t2の間の電圧レベルを保持し続ける。同様に、2本目の走査信号線とj本目のデータ信号線とに接続している表示装置の画素(以下、画素2jとする)においては、時刻t3~t4の水平走査期間THにおける走査信号SCN2によって、画素2j内のTFTが導通し、結果、j本目のデータ信号線を介して、時刻t3~t4における映像信号DATAjの映像信号電圧が、駆動電圧として画素2j内の表示電極に印加される。ここでも、画素2jの表示電極に印加された駆動電圧は、画素2j内のTFTの導通が遮断されても、時刻t3~t4の間の電圧レベルを保持し続けることになる。
 以上のように、表示装置の各画素における駆動電圧は、各画素内のTFTの導通が遮断されても、TFTの導通時に印加された駆動電圧の電圧レベルを保持し続ける。よって、走査側駆動回路が、各画素のTFTを導通させる走査信号SCN1~SCNmを、走査信号線に出力していない、言い換えれば、各画素のTFTの導通が遮断している期間である、垂直帰線期間TV1においては、表示装置は、各画素の表示電極に電圧を印加する必要がない。つまり、駆動電圧の基となる映像信号DSjを、集積回路10は出力する必要がなく、集積回路10と、表示装置とを電気的に切り離しても、表示装置の映像の表示に影響を及ぼすことはない。
 したがって、表示装置の垂直帰線期間であれば、表示装置の映像の表示に影響を及ぼすことなく、集積回路10は、自己検出および自己修復を行うことができる。
 (集積回路10全体の動作不良検出)
 本実施形態における、集積回路10が行う、自身が備える出力回路ブロックの不良を検出する自己検出処理は、各データ信号線ごとに対応する、出力回路ブロック毎に、かつ、各出力回路ブロック全てを対象としている。よって、この自己検出処理は、時間を要することになる。
 このことから、集積回路10が備える各出力回路ブロックに、動作不良が起こっている可能性がない場合に、集積回路10が自己検出処理を行う必要はない。言い換えれば、各出力回路ブロックに、動作不良が起こっている可能性がある場合のみ、集積回路10は、自己検出処理を行えばよい。
 ここで、集積回路10は、集積回路10全体に対して、動作不良の可能性があるかどうかを判定する動作判定回路を備え、動作判定回路によって、集積回路10のどこかに動作不良があると判定された場合にのみ、自己検出処理を行えば、無駄な自己検出処理を行うことを防止できる。
 以下に、集積回路10が備える、集積回路10全体に対して、動作不良の可能性があるかどうかを判定する動作判定回路200について、図29~図31を参照して説明する。
 まず、集積回路10に動作不良が発生した場合、集積回路10に供給される電源電流は、正常動作時と比べて、言い換えれば、製品として出荷される時に良品と判定された初期段階と比べて多くなる。したがって、集積回路10に供給される電源電流の値が、正常動作時に比べて一定の値以上大きくなった場合に、集積回路10に動作不良が発生していることになる。そこで、動作判定回路200は、集積回路10に供給される電源電流の値を検出し、検出した電源電流の値から、集積回路10に動作不良が発生しているかどうかを判定する。
 (動作判定回路200の構成)
 以下に、動作判定回路200の構成を、図29を参照して説明する。図29は、動作判定回路200の構成を示すブロック図である。
 図29に示すように、動作判定回路200は、集積回路10の電源を供給するVA201と、集積回路10との間に、抵抗202(検出手段)およびスイッチ203を備えている。なお、抵抗202とスイッチ203とは、互いに並列となるように接続されている。さらに、動作判定回路200は、抵抗202およびスイッチ203の、集積回路10側の一端に接続された、A/Dコンバータ204(検出手段)と、A/Dコンバータ204からの出力信号を入力するスイッチ205と、スイッチ205の一方の出力端子に接続された不揮発性メモリーであるEEPROM206(正常電流値記憶手段)と、スイッチ205のもう一方の出力端視に接続されたデータラッチ回路207と、EEPROM206の出力値とデータラッチ回路207からの出力値とを比較する比較回路208(電流値比較手段、駆動回路判定手段)と、を備えている。なお、比較回路208の出力端子は、比較回路208における比較結果を、集積回路10が備える制御回路に接続している。なお、スイッチ203および205の切替は、集積回路10が備える制御回路によって制御される。
 (動作判定回路200の概略動作)
 動作判定回路200は、予め、集積回路10の正常動作時における電源電流値に応じた値を、基準データとしてEEPROM206に記憶しておく。ここで、動作判定回路200は、集積回路10に動作不良が発生しているかどうかを判定する場合、集積回路10に供給される電源電流値に応じた値を検出し、この検出した値と予めEEPROM206が記憶する基準データの値とを比較し、検出した値が一定の値以上の場合に、集積回路10に動作不良が発生していると判定する。さらに、動作判定回路200は、集積回路10に動作不良が発生していることを示す信号を、集積回路10が備える制御回路に対して出力することにより、制御回路は、集積回路10の自己検出処理および自己修復処理を開始する。
 (基準データの生成および記憶処理)
 上述したように、動作判定回路200は、予め、基準データを、自身が備えるEEPROM206に記憶しておく必要がある。そこで、以下に、動作判定回路200がEEPROM206に基準データを記憶するための処理を、図30を参照して説明する。図30は、動作判定回路200が、基準データをEEPROM206に記憶する動作処理を示すフローチャート図である。
 図30に示すように、基準データの生成にあたり、制御回路が、スイッチ203を開放し、抵抗202にVA201からの電源電流が流れるようにする(S301)。ここで、抵抗202の抵抗値は、集積回路10の正常動作時における抵抗202の電圧降下が約0.1Vとなるような抵抗値である。なお、抵抗202の抵抗値は、集積回路の消費電流を考慮して決定されることが好ましい。
 次に、抵抗202の集積回路10側の一端の電圧値を、A/Dコンバータ204がデジタル値に変換する(S302)。A/Dコンバータ204は、変換したデジタル値を、スイッチ205を介して、EEPROM206に入力する。EEPROM206は、入力されたA/Dコンバータからのデジタル値を、基礎データとして記憶する(S303)。なお、S303におけるスイッチ205は、制御回路によって、A/Dコンバータ204とEEPROM206とを接続するように、切替られているものとする。
 次に、EEPROM206が基礎データを記憶した後、制御回路が、スイッチ203を短絡し、集積回路10を通常動作状態に戻す(S304)。なお、S301~S304までの、基準データの生成および記憶処理は、集積回路10を備える表示装置の製品出荷段階、言い換えれば、集積回路10が様々な出荷検査によって正常と判定された段階において、行われる。
 (動作判定回路200による動作不良検出処理)
 次に、動作判定回路200における、集積回路10の動作不良を検出する処理を、図31を参照して、以下に説明する。図31は、動作判定回路200における、集積回路10の動作不良を検出する処理を示すフローチャート図である。
 図31に示すように、まず、制御回路がスイッチ203を開放し、抵抗202にVA201からの電源電流が流れるようにする(S305)。
 次に、抵抗202の集積回路10側の一端の電圧値を、A/Dコンバータ204がデジタル値に変換する(S306)。A/Dコンバータ204は、変換したデジタル値を、スイッチ205を介して、データラッチ回路207に入力する。データラッチ回路207は、入力されたA/Dコンバータからのデジタル値を、検出データとして記憶する(S307)。なお、S306におけるスイッチ205は、制御回路によって、A/Dコンバータ204とデータラッチ回路207とを接続するように、切替られているものとする。
 次に、比較回路208は、EEPROM206が記憶する基準データと、データラッチ回路207が記憶する検出データとを読み出し、読み出した基準データの値と、検出データの値とを比較する(S308)。さらに比較回路208は、基準データの値と、検出データの値との差が、所定の値以上(例えば、デジタル値で3以上)であるかどうかを検出する(S309)。ここで、基準データの値と、検出データの値との差が所定の値以上(例えば、デジタル値で3以上)であった場合に、集積回路10に動作不良が発生していることを示す信号を、集積回路10が備える制御回路に出力する。
 ここで、制御回路は、比較回路208より、集積回路10に動作不良が発生していることを示す信号を入力されると、集積回路10の自己検出を開始する(S311)。さらに、集積回路10の自己検出において、集積回路10が自身の出力回路ブロックに不具合を検出した場合、集積回路10は、不具合の出力回路ブロックの出力と、予備の出力回路ブロックの出力を切替え、自己修復を行う。なお、S311の集積回路10の自己検出において、出力回路ブロックの不具合を検出できない場合は、他の要因による電源電流値の変動と考えれる。したがって、この場合は、電源電流値に変動が生じているため、動作判定回路200は、S301~S304に示した基準データを生成および記憶処理を行い、変動が生じている電源電流値を、新たな基準データとしてEEPROM206に記憶する(S312)。さらに、S312の後、制御回路が、スイッチ203を短絡し、動作判定回路200および集積回路10を通常動作状態にする(S310)。
 一方、S309において、比較回路208が、基準データの値と、検出データの値との差が所定の値未満(例えば、デジタル値で3未満)であることを検出した場合は、S310に処理が移行する。
 〔実施例2〕
 (定期的な集積回路10の自己検出)
 また、集積回路10の自己検出(動作確認テスト)および自己修復を、定期的に行ってもよい。具体的には、上述の実施例1において説明した、表示装置の垂直帰線期間毎に、集積回路10の自己検出(動作確認テスト)および自己修復を行ってもよい。この場合、垂直同期信号をカウントし、一定回数の表示毎に行う。この場合、不揮発性のメモリーにてカウンタを構成し、カウンタが垂直同期信号の回数をカウントすることにより実現できる。さらに、集積回路10が時間を測定するタイマを備え、このタイマにより、動作時間をカウントし、予め設定した累計動作時間毎に、集積回路10の自己検出および自己修復を行う構成としてもよい。
 〔実施例3〕
 また、集積回路10の自己検出(動作確認テスト)および自己修復の処理動作は、表示装置が映像の表示を行っている期間の一部で行っても良い。例えば、表示装置の各画素は、表示電極の電圧を記憶するため、表示電極の電圧の充電が終了した後は、集積回路10の出力端子OUT1~OUTnを、ハイインピーダンスにしても、表示装置における映像の表示に問題はない。
 したがって、表示装置が映像の表示を行っている表示期間の一部において、集積回路10の出力端子OUT1~OUTnをハイインピーダンスにして、自己検出(動作確認テスト)および自己修復の処理動作を行う。出力端子OUT1~OUTnをハイインピーダンスにする方法の一例として、出力端子OUT1~OUTnと、表示装置とを接続する信号伝送路毎に対して、直列にスイッチを設け、このスイッチを開放することにより、出力端子OUT1~OUTnと、表示装置とをハイインピーダンスとする、言い換えれば、電気的に切り離すことができる。
 また、自己検出(動作確認テスト)には、本実施形態1に説明したように、いくつかのパターンがある。そこで、自己検出(動作確認テスト)のパターンをすべて行う時間が無ければ、1ラインの表示期間の一部において、自己検出(動作確認テスト)の一部のパターン(例えば1パターンのみ)を行ってもよい。これにより、自己検出(動作確認テスト)の全てのパターンを、表示装置の1フレーム分の表示期間、または、数フレーム分の表示期間において行うことができる。また、自己検出(動作確認テスト)のパターンを、一度に行わず、各パターンを分割して行う上記手法を使用すれば、図28に示す水平帰線期間において、自己検出(動作確認テスト)を行うことができる。
 なお、上記実施例1~3においては、実施形態1における集積回路10を対象として説明したが、本発明はこれに限るものではなく、実施形態2および3における集積回路10’、20、および、実施形態4における表示部90”に対しても適用できる。
 また、本実施形態1~4においては、液晶表示パネルによって映像を表示する液晶表示装置について説明したが、本発明はこれに限るものでなく、液晶表示装置以外の表示装置、例えばプラズマテレビ等にも適用できる。
 本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。
 なお、本発明の表示装置駆動用の集積回路、および、表示装置を以下のように構成してもよい。
 〔第1の構成〕
 表示パネルに接続された出力端子と、
 上記出力端子に接続可能であり上記表示パネルを駆動するための出力信号を出力する出力回路を含む出力回路ブロックと、
 上記出力端子に接続可能であり上記表示パネルに上記出力信号を出力可能な予備出力回路を含む予備出力回路ブロックとを備えた、上記表示パネルを駆動する駆動回路であって、
 不良になった当該駆動回路を自己修復する自己修復手段を備え、
 上記自己修復手段は、
  上記出力回路からの出力信号と、上記予備出力回路からの出力信号とを比較する比較手段と、
  上記比較手段の比較結果に基づき、上記出力回路が不良か否かを判定する判定手段と、
  上記判定手段の判定結果が不良である場合、上記出力端子に、上記出力回路の代わりに上記予備出力回路を接続させる接続切替手段と、を備え、
 上記出力回路ブロックおよび上記予備出力回路ブロックは、さらに、オペアンプを使用した出力バッファを含み、上記比較手段として上記オペアンプを使用することを特徴とする駆動回路。
 〔第2の構成〕
 上記出力回路ブロックおよび上記予備出力回路ブロックは、さらに、出力回路の入力に与える信号を記憶する回路を含むことを特徴とする第1の構成に記載の駆動回路。
 〔第3の構成〕
 上記出力回路および予備出力回路に入力する入力信号を制御する制御手段を備え、
 上記制御手段は、
  上記出力回路と予備出力回路とに、異なる大きさの入力信号を入力するとともに、
  上記異なる大きさの入力信号に対応する、上記比較手段からの比較結果の期待値を出力し、
 上記判定手段は、上記比較結果と上記期待値とが異なる場合に、上記出力回路を不良と判定することを特徴とする、第1の構成または第2の構成に記載の駆動回路。
 〔第4の構成〕
 上記判定手段の判定結果を示すフラグを格納するフラグ格納手段をさらに備え、
 上記接続切替手段は、上記フラグの値が、上記出力回路が不良であることを示すとき、上記出力端子に、上記出力回路の代わりに上記予備出力回路を接続させることを特徴とする、第1の構成から第3の構成までのいずれかに記載の駆動回路。
 〔第5の構成〕
 上記表示パネルが表示する画像に影響を与えない期間に、
  上記比較手段は、上記出力回路からの出力信号と上記予備出力回路からの出力信号とを比較し、
  上記判定手段は、上記比較手段による比較結果に基づき、上記出力回路が不良か否かを判定し、
  上記接続切替手段は、上記出力端子に対する接続を、上記判定手段によって不良と判定された出力回路の出力から、上記予備出力回路の出力に切り替え、
  上記接続切替手段が、上記出力端子と上記予備出力回路の出力とを接続した後、上記予備出力回路が上記出力端子に出力信号を出力することを特徴とする、第1の構成から第4の構成のいずれかに記載の駆動回路。
 〔第6の構成〕
 上記駆動回路に供給される電源電流の値を検出する検出手段と、
 上記駆動回路の正常動作時における上記電源電流の値を、予め記憶する正常電流値記憶手段と、
 上記検出手段からの電源電流の値と、上記正常電流値記憶手段からの電源電流の値とを比較する電流値比較手段と、
 上記電流値比較手段の比較結果に基づき、上記駆動回路が不良か否かを判定する駆動回路判定手段と、をさらに備え、
 上記駆動回路判定手段の判定結果が不良である場合に、
  上記比較手段は、上記出力回路からの出力信号と上記予備出力回路からの出力信号とを比較し、
  上記判定手段は、上記比較手段による比較結果に基づき、上記出力回路が不良か否かを判定し、
  上記接続切替手段は、上記出力端子に対する接続を、上記判定手段によって不良と判定された出力回路の出力から、上記予備出力回路の出力に切り替えることを特徴とする、第1の構成から第5の構成までのいずれか1つの構成に記載の駆動回路。
 〔第7の構成〕
 上記表示パネルの電源投入直後に、
  上記比較手段は、上記出力回路からの出力信号と上記予備出力回路からの出力信号とを比較し、
  上記判定手段は、上記比較手段による比較結果に基づき、上記出力回路が不良か否かを判定し、
  上記接続切替手段は、上記出力端子に対する接続を、上記判定手段によって不良と判定された出力回路の出力から、上記予備出力回路の出力に切り替えることを特徴とする、第1の構成から第6の構成までのいずれかに記載の駆動回路。
 〔第8の構成〕
 上記表示パネルの垂直帰線期間に、
  上記比較手段は、上記出力回路からの出力信号と上記予備出力回路からの出力信号とを比較し、
  上記判定手段は、上記比較手段による比較結果に基づき、上記出力回路が不良か否かを判定し、
  上記接続切替手段は、上記出力端子に対する接続を、上記判定手段によって不良と判定された出力回路の出力から、上記予備出力回路の出力に切り替えることを特徴とする、第1の構成から第6の構成までのいずれかに記載の駆動回路。
 〔第9の構成〕
 上記出力端子から上記表示パネルへの信号伝送路を遮断する遮断手段を、さらに備え、
 上記遮断手段が、上記出力端子から上記表示パネルへの信号伝送路を遮断した後に、
  上記比較手段は、上記出力回路からの出力信号と上記予備出力回路からの出力信号とを比較し、
  上記判定手段は、上記比較手段による比較結果に基づき、上記出力回路が不良か否かを判定し、
  上記接続切替手段は、上記出力端子に対する接続を、上記判定手段によって不良と判定された出力回路の出力から、上記予備出力回路の出力に切り替えることを特徴とする、第1の構成から第8の構成までのいずれかに記載の駆動回路。
 〔第10の構成〕
 表示パネルに接続されたN(N:正の偶数)個の出力端子と、
 上記各出力端子に接続可能であり上記表示パネルを駆動するための出力信号を出力する出力回路を含むN個の出力回路ブロックと、
 上記奇数番目の出力端子に接続可能であり上記表示パネルに上記出力信号を出力可能な第1予備出力回路を含む第1予備出力回路ブロックと、
 上記偶数番目の出力端子に接続可能であり上記表示パネルに上記出力信号を出力可能な第2予備出力回路を含む第2予備出力回路ブロックとを備えた、上記表示パネルを駆動する駆動回路であって、
 不良になった当該駆動回路を自己修復する自己修復手段を備え、
 上記自己修復手段は、
  上記出力回路からの出力信号と、当該出力回路に隣接する出力回路からの出力信号とを比較する比較手段と、
  上記比較手段の比較結果に基づき、上記出力回路および当該出力回路に隣接する出力回路が不良か否かを判定する判定手段と、
  上記判定手段の判定結果が不良である場合、上記出力端子に、上記出力回路および当該出力回路に隣接する出力回路の代わりに上記第1予備出力回路および第2予備出力回路をそれぞれ接続させる接続切替手段と、を備え、
 上記出力回路ブロック、上記第1予備出力回路ブロック、および上記第2予備出力回路ブロックは、さらに、オペアンプを使用した出力バッファを含み、上記比較手段として上記オペアンプを使用することを特徴とする駆動回路。
 〔第11の構成〕
 上記出力回路、上記第1予備出力回路、および上記第2予備出力回路に入力する入力信号を制御する制御手段を備え、
 上記制御手段は、
  上記奇数番目の出力回路および上記第1予備出力回路と、上記偶数番目の出力回路および上記第2予備出力回路とに、異なる大きさの入力信号を入力するとともに、
  上記異なる大きさの入力信号に対応する、上記比較手段からの比較結果の期待値を出力し、
 上記判定手段は、上記比較結果と上記期待値とが異なる場合に、上記出力回路および当該出力回路に隣接する出力回路を不良と判定することを特徴とする、第10の構成に記載の駆動回路。
 〔第12の構成〕
 第1の構成から第11の構成までのいずれかに記載の駆動回路と、上記表示パネルとを、備えていることを特徴とする表示装置。
 〔第13の構成〕
 表示パネルと、
 上記表示パネルを駆動するための出力信号を、上記表示パネルに接続された出力端子から出力する出力回路を含む駆動回路と、を備えた表示装置であって、
 上記駆動回路は、
  上記表示パネルに上記出力信号を出力可能な予備出力回路と、
  上記出力回路からの出力信号と、上記予備出力回路からの出力信号とを比較する比較手段と、
  上記比較手段の比較結果に基づき、上記出力回路が不良か否かを判定する判定手段とを備え、
 上記表示パネルは、
  上記判定手段からの判定結果が不良であった場合、当該表示パネルを駆動する出力信号として、上記不良となった出力回路からの出力信号を、上記予備出力回路からの出力信号に切り替える切替手段を、備え、
 上記駆動回路では、上記比較手段として、上記出力回路および上記予備出力回路の出力バッファに使用されたオペアンプを使用することを特徴とする表示装置。
 〔第14の構成〕
 表示パネルと、
 上記表示パネルを駆動するための出力信号を出力する出力回路と、
 上記表示パネルに上記出力信号を出力可能な予備出力回路と、
 上記出力回路からの出力信号と、上記予備出力回路からの出力信号とを比較する比較手段と、
 上記比較手段の比較結果に基づき、上記出力回路が不良か否かを判定する判定手段と、
 上記判定手段の判定結果が不良である場合、上記表示パネルを駆動する出力信号として、上記不良となった出力回路からの出力信号を、上記予備出力回路からの出力信号に切り替える切替手段と、を備え、
 上記比較手段として、上記出力回路および上記予備出力回路の出力バッファに使用されたオペアンプを使用することを特徴とする表示装置。
 〔第15の構成〕
 第12の構成から第14の構成までのいずれか1項に記載の表示装置を備えていることを特徴とするテレビジョンシステム。
 (実施形態の総括)
 本実施形態に係る表示部90は、表示パネル80と、表示パネル80を駆動する駆動回路であって、表示パネル80との電気的な接続を切り離した状態で当該駆動回路の不良を検出し、修復する自己検出・自己修復手段を有する液晶駆動用半導体集積回路10とを備え、上記自己検出・自己修復手段は、上記表示パネルに表示すべき画像が不連続に切り替わるときに、上記駆動回路の不良を検出する処理を実行する。
 上記の構成によれば、液晶駆動用半導体集積回路10は、表示パネル80を駆動する。そして、液晶駆動用半導体集積回路10は、液晶駆動用半導体集積回路10自身の不良を検出可能であり、検出した不良を修復する自己検出・自己修復手段とを有している。液晶駆動用半導体集積回路10は、自身の不良を検出し修復する処理を、表示パネル80との電気的な接続を切り離した状態で実行する。つまり、液晶駆動用半導体集積回路10は、表示パネル80との電気的接続を切り離して自身の不良を検出する(すなわち自己検出する)ことで、表示パネル80に表示中の画像を表す階調データだけでなく、全ての階調データを用いて自己検出の処理を実行することができる。なお、画像は、静止画像であってもよいし、動画像すなわち映像であってもよい。
 そして、上記の構成によれば、自己検出・自己修復手段は、表示パネル80に表示すべき画像が不連続に切り替わるときに、駆動回路の不良を検出する処理を実行する。例えば、自己検出・自己修復手段は、1チャンネルから2チャンネルへの切替によって、1チャンネルの画像信号に基づく表示が中断する場合に、表示パネル80に表示すべき画像が不連続に切り替わるときに、液晶駆動用半導体集積回路10の不良を検出する処理を実行する。また、例えば、自己検出・自己修復手段は、番組からCMへの移行によって、番組を表す画像信号に基づく表示が中断する場合に、表示パネル80に表示すべき画像が不連続に切り替わるときに、液晶駆動用半導体集積回路10の不良を検出する処理を実行する。
 これにより、本実施形態に係る表示部90によれば、表示部90の動作において、表示に影響のない期間に、自己検出の処理を実行することができる。つまり、本実施形態に係る表示部90は、表示パネル80との電気的な接続を切り離した状態で液晶駆動用半導体集積回路10の不良を検出する処理を実行するが、表示部90の画面において現在表示中の内容が一旦途切れるタイミングで、自己検出の処理を実行するため、ユーザに違和感を感じさせることがない。したがって、本実施形態に係る表示部90によれば、ユーザの視聴を妨げずに適切なタイミングにおいて、自己検出および自己修復の処理を実行することが可能となり、ユーザにとっての利便性を向上させることができる。
 本実施形態に係る表示部90では、上記処理は、1つ以上の工程を含む複数の工程群に分割され、上記自己検出・自己修復手段は、表示パネル80における上記表示が1回中断するごとに、上記工程群を1つずつ実行することが好ましい。
 上記の構成によれば、液晶駆動用半導体集積回路10の不良を検出する処理、すなわち、自己検出処理には、複数の工程が含まれ、それらの工程は複数の工程群に分割される。そして、自己検出・自己修復手段は、表示パネル80に供給中の画像信号に基づく表示が1回中断するごとに、上記工程群を1つずつ実行する。例えば、工程群の数がnの場合、上記表示がn回中断したときに、自己検出処理に含まれる全ての工程を完了させることができる。
 これにより、自己検出処理に含まれる工程の数が多く、全ての自己検出処理が完了するまでに長時間を要する場合であっても、表示パネル80の表示が1回中断するごとに実行される工程群の処理時間はそれほど長くならないため、ユーザに違和感を感じさせずに、自己検出および自己修復の処理を実行することが可能となる。
 本実施形態に係る表示部90では、上記処理は、複数の工程を含んでおり、上記自己検出・自己修復手段は、上記表示パネルにおける上記表示が1回中断したときに、上記処理に含まれる全ての工程を実行することが好ましい。
 上記の構成によれば、液晶駆動用半導体集積回路10の不良を検出する処理、すなわち、自己検出処理には、複数の工程が含まれるが、自己検出・自己修復手段は、表示パネル80に供給中の画像信号に基づく表示が1回中断したときに、自己検出処理に含まれる全ての工程を実行する。
 これにより、液晶駆動用半導体集積回路10の自己検出および自己修復の処理を、短時間で完了させることが可能となる。
 本実施形態に係る表示部90では、ユーザによる選局操作を受け付けるリモコンI/F401と、リモコンI/F401が受け付けた選局操作に対応する放送を受信し、該放送の画像信号を上記表示パネルに供給するチューナーと、チューナーが受信する放送を切り替える際に、表示パネル80に表示すべき画像が不連続に切り替わることを検知するコントローラ100とをさらに備え、上記自己検出・自己修復手段は、コントローラ100によって表示パネル80に表示すべき画像の切替が検知されたときに、液晶駆動用半導体集積回路10の不良を検出する処理を開始することが好ましい。
 上記の構成によれば、リモコンI/F401はユーザによる放送番組の選局を受け付ける。また、チューナーは、リモコンI/F401が受け付けた選局に対応する放送を受信し、当該放送の画像信号を表示パネルに供給する。例えば、チューナーがユーザによって指定されたチャンネルの放送を受信して映像信号を表示パネル80に供給する。
 また、上記の構成によれば、コントローラ100は、チューナーがユーザの選局に応じて放送を新たに受信することによって、表示パネル80における上記表示が中断するときに、表示パネル80に表示すべき画像が不連続に切り替わることを検知する。例えば、表示パネル80において1チャンネルの放送を表示中にユーザが2チャンネルを選局した場合、チューナーが2チャンネルの放送を受信するために、1チャンネルの表示が中断するときに、表示パネル80に表示すべき画像が不連続に切り替わることを検知する。
 そして、自己検出・自己修復手段は、チューナーが受信する放送を切り替える際に、液晶駆動用半導体集積回路10の不良を検出する処理、すなわち、自己検出処理を開始する。
 これにより、ユーザによって新たな選局操作が行われた場合に表示部90の画面における表示が途切れるタイミングにおいて、自己検出の処理を実行することが可能となる。したがって、自己検出処理によって一瞬画面表示されない期間が生じても、ユーザに違和感を感じさせることがない。
 本実施形態に係る表示部90では、放送を受信し、該放送の画像信号を表示パネル80に供給するチューナーと、チューナーが受信する放送の内容が番組からCM(Commercial Message)に切り替わる際に、表示パネル80に表示すべき画像が不連続に切り替わることを検知するコントローラ100とをさらに備え、上記自己検出・自己修復手段は、コントローラ100によって表示パネル80に表示すべき画像の切替が検知されたときに、液晶駆動用半導体集積回路10の不良を検出する処理を実行することが好ましい。
 上記の構成によれば、チューナーは、放送を受信し、当該放送の画像信号を表示パネル80に供給する。例えば、チューナーがユーザによって指定されたチャンネルの放送を受信して映像信号を表示パネル80に供給する。
 また、上記の構成によれば、コントローラ100は、表示パネル80に供給される画像信号が、放送に含まれる番組を表す画像信号から、放送に含まれるCMを表す画像信号に切り替わるために、上記番組を表す画像信号に基づく表示が中断するときに、表示パネル80に表示すべき画像が不連続に切り替わることを検知する。つまり、コントローラ100は、放送中の番組がCMに移行することによって、番組を表す画像信号に基づく表示が中断するときに、表示パネル80に表示すべき画像が不連続に切り替わること検知する。
 そして、自己検出・自己修復手段は、コントローラ100によって表示パネル80における上記表示の中断を検知したときに、液晶駆動用半導体集積回路10の不良を検出する処理、すなわち、自己検出処理を開始する。
 これにより、放送中の番組がCMへ移行する場合に表示部90の画面における番組の表示が途切れるタイミングにおいて、自己検出の処理を実行することが可能となる。したがって、自己検出処理によって一瞬画面表示されない期間が生じても、ユーザに違和感を感じさせることがない。
 本実施形態に係る表示部90は、表示パネル80と、表示パネル80に画像を表示している期間のうち、画像信号を供給している供給期間と、画像信号の供給を停止している供給停止期間とを切り替えながら表示パネル80を駆動する駆動回路であって、表示パネル80との電気的な接続を切り離した状態で当該駆動回路の不良を検出し、修復する自己検出・自己修復手段を有する液晶駆動用半導体集積回路10とを備え、上記自己検出・自己修復手段は、上記供給停止期間に、液晶駆動用半導体集積回路10の不良を検出する処理を実行する。
 上記の構成によれば、液晶駆動用半導体集積回路10は、表示パネル80に画像を表示している期間のうち、画像信号を供給している供給期間と、画像信号の供給を停止している供給停止期間とを切替ながら、表示パネル80を駆動する。そして、液晶駆動用半導体集積回路10は、液晶駆動用半導体集積回路10自身の不良を検出可能であり、検出した不良を修復する自己検出・自己修復手段とを有している。液晶駆動用半導体集積回路10は、自身の不良を検出し修復する処理を、表示パネル80との電気的な接続を切り離した状態で実行する。つまり、液晶駆動用半導体集積回路10は、表示パネル80との電気的接続を切り離して自身の不良を検出する(すなわち自己検出する)ことで、表示パネル80に表示中の画像を表す階調データだけでなく、全ての階調データを用いて自己検出の処理を実行することができる。なお、画像は、静止画像であってもよいし、動画像すなわち映像であってもよい。
 そして、上記の構成によれば、自己検出・自己修復手段は、供給停止期間に、液晶駆動用半導体集積回路10の不良を検出する処理を実行する。例えば、自己検出・自己修復手段は、水平走査期間や垂直走査期間において、液晶駆動用半導体集積回路10の不良を検出する処理を実行する。
 これにより、本実施形態に係る表示部90によれば、表示部90の駆動において、表示に影響のない期間に、自己検出の処理を実行することができる。つまり、本実施形態に係る表示部90は、表示パネル80との電気的な接続を切り離した状態で液晶駆動用半導体集積回路10の不良を検出する処理を実行するが、画像を表示中の表示パネル80に画像信号の供給が行われないタイミングで、自己検出の処理を実行するため、表示パネル80の駆動を妨げない。したがって、本実施形態に係る表示部90によれば、ユーザの視聴を妨げずに適切なタイミングにおいて、自己検出および自己修復の処理を実行することが可能となり、ユーザにとっての利便性を向上させることができる。
 本実施形態に係る表示部90では、上記処理は、1つ以上の工程を含む複数の工程群に分割され、上記自己検出・自己修復手段は、1回の上記供給停止期間ごとに上記工程群を1つずつ実行することが好ましい。
 上記の構成によれば、液晶駆動用半導体集積回路10の不良を検出する処理、すなわち、自己検出処理には、複数の工程が含まれ、それらの工程は複数の工程群に分割される。そして、自己検出・自己修復手段は、1回の供給停止期間ごとに、上記工程群を1つずつ実行する。例えば、工程群の数がnの場合、n回の供給停止期間で、自己検出処理に含まれる全ての工程を完了させることができる。
 これにより、自己検出処理に含まれる工程の数が多く、全ての自己検出処理が完了するまでに長時間を要する場合であっても、1回の供給停止期間内に各工程群の処理を収めることができるため、ユーザの視聴を妨げることなく、適切なタイミングにおいて自己検出および自己修復の処理を実行することが可能となる。
 本実施形態に係る表示部90では、上記処理は、複数の工程を含んでおり、上記自己検出・自己修復手段は、1回の上記供給停止期間で上記処理に含まれる全ての工程を実行することが好ましい。
 上記の構成によれば、液晶駆動用半導体集積回路10の不良を検出する処理、すなわち、自己検出処理には、複数の工程が含まれるが、自己検出・自己修復手段は、1回の供給停止期間において、自己検出処理に含まれる全ての工程を実行する。
 これにより、液晶駆動用半導体集積回路10の自己検出および自己修復の処理を、短時間で完了させることが可能となる。
 本実施形態に係る表示部90では、表示パネル80に画像を表示している期間において、上記供給期間から、上記供給停止期間としての水平ブランキング期間への切替を検知するコントローラ100をさらに備え、上記自己検出・自己修復手段は、コントローラ100によって上記切替が検知されたとき、上記処理を開始することが好ましい。
 上記の構成によれば、コントローラ100は、表示パネル80に画像を表示している期間において、水平ブランキング期間を検知する。そして、自己検出・自己修復手段は、水平ブランキング期間において、自己検出処理を実行する。水平ブランキング期間においては、画像は表示されているが、画像信号は表示パネル80に供給されておらず、表示パネル80は駆動されない。
 これにより、画像信号を表示パネル80に供給していない水平ブランキング期間において、自己検出の処理を実行することが可能となる、したがって、自己検出の処理によって画面表示に影響を与えることがなく、ユーザに違和感を感じさせることがない。
 本実施形態に係る表示部90では、表示パネル80に画像を表示している期間において、上記供給期間から、上記供給停止期間としての垂直ブランキング期間への切替を検知するコントローラ100をさらに備え、上記自己検出・自己修復手段は、コントローラ100によって上記切替が検知されたとき、上記処理を開始することが好ましい。
 上記の構成によれば、コントローラ100は、表示パネル80に画像を表示している期間において、垂直ブランキング期間を検知する。そして、自己検出・自己修復手段は、垂直ブランキング期間において、自己検出処理を実行する。垂直ブランキング期間においては、画像は表示されているが、画像信号は表示パネル80に供給されておらず、表示パネル80は駆動されない。
 これにより、画像信号を表示パネル80に供給していない垂直ブランキング期間において、自己検出の処理を実行することが可能となる、したがって、自己検出の処理によって画面表示に影響を与えることがなく、ユーザに違和感を感じさせることがない。
 本実施形態に係る表示部90では、液晶駆動用半導体集積回路10は、表示パネル80を駆動するための出力信号を出力する出力回路ブロック30を備え、上記自己検出・自己修復手段は、出力回路ブロック30が不良か否かを判定する比較判定回路50を備え、比較判定回路50の判定結果が不良であった場合に、表示パネル80に正常な出力信号を出力するように、液晶駆動用半導体集積回路10を自己修復することが好ましい。
 上記の構成によれば、液晶駆動用半導体集積回路10は、表示パネル80を駆動するための出力信号を出力する出力回路ブロック30を備えている。出力回路ブロック30は、例えば映像データを階調電圧に変換して表示パネル80を駆動する出力信号として出力する。
 また、上記の構成によれば、自己検出・自己修復手段は、出力回路ブロック30が不良であるか否かを判定する比較判定回路50を備えており、比較判定回路50における判定結果が不良であった場合、表示パネル80に正常な出力信号を出力するように、液晶駆動用半導体集積回路10を自己修復する。
 これにより、本実施形態に係る表示部90では、液晶駆動用半導体集積回路10の出力回路ブロック30における欠陥を検出することができ、出力回路ブロック30に欠陥があった場合に自己修復できる。
 本実施形態に係る表示部90では、液晶駆動用半導体集積回路10は、表示パネル80に上記出力信号を出力可能な予備出力回路ブロック40を備え、上記自己検出・自己修復手段は、比較判定回路50の判定結果が不良である場合、表示パネル80への出力信号として、上記不良となった出力回路ブロック30からの出力信号を、予備出力回路ブロック40からの出力信号に切り替える切替回路60を、備えていることが好ましい。
 上記の構成によれば、上記駆動回路は、表示パネル80に出力信号を出力可能な予備出力回路ブロック40を備えている。予備出力回路ブロック40は、出力回路ブロック30と同様、例えば映像データを階調電圧に変換して表示パネル80を駆動する出力信号として出力することができる。
 また、上記の構成によれば、自己検出・自己修復手段は、比較判定回路50において不良と判定された出力回路ブロック30を、予備出力回路ブロック40に切り替える切替回路60を備えている。
 これにより、本実施形態に係る表示部90では、出力回路ブロック30に欠陥があった場合、欠陥のある出力回路ブロック30を予備出力回路ブロック40に切り替えることにより、液晶駆動用半導体集積回路10の自己修復を容易に行うことができる。
 本実施形態に係る表示部90では、比較判定回路50は、出力回路ブロック30からの出力信号と、予備出力回路ブロック40からの出力信号とを比較するオペアンプ1-1,1-2,1-nを備え、オペアンプ1-1,1-2,1-nの比較結果に基づき、出力回路ブロック30が不良か否かを判定することが好ましい。
 上記の構成によれば、比較判定回路50は、オペアンプ1-1,1-2,1-nを備えている。また、オペアンプ1-1,1-2,1-nは、出力回路ブロック30からの出力信号と、予備出力回路ブロック40からの出力信号とを比較する。そして、比較判定回路50は、オペアンプ1-1,1-2,1-nの比較結果に基づいて、出力回路ブロック30が不良か否かを判定する。
 これにより、本実施形態に係る表示部90では、出力回路ブロック30の出力と予備出力回路ブロック40の出力とを比較することで出力回路ブロック30の不良を判定できるため、簡素な構成にて、容易に出力回路ブロック30の不良を検出することができる。
 本実施形態に係る表示部90では、出力回路ブロック30および予備出力回路ブロック40に入力する入力信号を制御する制御手段をさらに備え、上記制御手段は、出力回路ブロック30と予備出力回路ブロック40とに、異なる大きさの入力信号を入力するとともに、上記異なる大きさの入力信号に対応する、オペアンプ1-1,1-2,1-nからの比較結果の期待値を出力し、比較判定回路50は、上記比較結果と上記期待値とが異なる場合に、出力回路ブロック30を不良と判定することが好ましい。
 上記の構成によれば、制御手段は、出力回路ブロック30と予備出力回路ブロック40に入力する入力信号を制御し、異なる大きさの入力信号を入力する。また、制御手段は、異なる大きさの入力信号に対応する、オペアンプ1-1,1-2,1-nからの比較結果の期待値を出力する。そして、比較判定回路50は、オペアンプ1-1,1-2,1-nからの実際の比較結果と制御手段からの期待値とが異なる場合、出力回路ブロック30を不良と判定する。
 具体的には、例えば、出力回路ブロック30に階調mの入力信号を入力し、予備出力回路ブロック40に階調m+1の入力信号を入力する。なお、階調mの階調電圧は、階調m+1の階調電圧よりも低い電圧である。ここで、出力回路ブロック30が正常であれば、オペアンプ1-1,1-2,1-nは、予備出力回路ブロック40から入力した階調電圧の方が高いことを示す信号を出力する。一方、出力回路ブロック30に欠陥があり、階調mの信号を入力しても、出力回路ブロック30は高い階調電圧しか出力できない場合、オペアンプ1-1,1-2,1-nは、出力回路ブロック30より入力した階調電圧の方が高いことを示す信号を出力する。
 このように、本実施形態の液晶駆動用半導体集積回路10では、オペアンプ1-1,1-2,1-nは、出力回路ブロック30および予備出力回路ブロック40より出力される階調電圧を比較し、出力回路ブロック30に欠陥がある場合とない場合とにおいて、異なる値の信号を出力する。
 次に、比較判定回路50は、オペアンプ1-1,1-2,1-nより出力された信号より、出力回路ブロック30が不良か否かを判定する。具体的には、上述したような、出力回路ブロック30に階調mの入力信号を入力し、予備出力回路ブロック40に階調m+1の入力信号を入力した場合に、出力回路ブロック30からの階調電圧が高いことを示す信号を、オペアンプ1-1,1-2,1-nより入力したときは、出力回路ブロック30は不良であると判定する。一方、予備出力回路ブロック40からの階調電圧が高いことを示す信号を、オペアンプ1-1,1-2,1-nより入力した場合は、比較判定回路50は、出力回路ブロック30は不良でないと判定する。
 これにより、本実施形態に係る表示部90では、容易に出力回路ブロック30の欠陥を検出する具体的な手段を備え、出力回路ブロック30に欠陥があった場合に自己修復できる。
 本実施形態に係る表示部90では、比較判定回路50は、出力回路ブロック30のうち、少なくとも2つの出力回路からの出力信号を比較するオペアンプ1-1,1-2,1-nを備え、オペアンプ1-1,1-2,1-nの比較結果に基づき、出力回路ブロック30が不良か否かを判定することが好ましい。
 上記の構成によれば、比較判定回路50は、オペアンプ1-1,1-2,1-nを備えている。また、オペアンプ1-1,1-2,1-nは、出力回路ブロック30のうち、少なくとも2つの出力回路からの出力信号を比較する。そして、比較判定回路50は、オペアンプ1-1,1-2,1-nの比較結果に基づいて、出力回路ブロック30が不良か否かを判定する。
 これにより、本実施形態に係る表示部90では、出力回路ブロック30の出力を比較することで出力回路ブロック30の不良を判定できるため、簡素な構成にて、容易に出力回路ブロック30の不良を検出することができる。
 本実施形態に係る表示部90では、出力回路ブロック30のうち、少なくとも2つの出力回路に入力する入力信号を制御する制御手段をさらに備え、上記制御手段は、上記少なくとも2つの出力回路に、異なる大きさの入力信号を入力するとともに、上記異なる大きさの入力信号に対応する、オペアンプ1-1,1-2,1-nからの比較結果の期待値を出力し、比較判定回路50は、上記比較結果と上記期待値とが異なる場合に、上記少なくとも2つの出力回路のいずれかが不良であると判定することが好ましい。
 上記の構成によれば、制御手段は、出力回路ブロック30のうち、少なくとも2つの出力回路に入力する入力信号を制御し、異なる大きさの入力信号を入力する。また、制御手段は、異なる大きさの入力信号に対応する、オペアンプ1-1,1-2,1-nからの比較結果の期待値を出力する。そして、比較判定回路50は、オペアンプ1-1,1-2,1-nからの実際の比較結果と制御手段からの期待値とが異なる場合、出力回路ブロック30を不良と判定する。
 具体的には、例えば、第1の出力回路と第2の出力回路との2つの出力回路に異なる入力信号を入力する場合、第1の出力回路に階調mの入力信号を入力し、第2の出力回路に階調m+1の入力信号を入力する。なお、階調mの階調電圧は、階調m+1の階調電圧よりも低い電圧である。ここで、第1の出力回路が正常であれば、オペアンプ1-1,1-2,1-nは、第2の出力回路から入力した階調電圧の方が高いことを示す信号を出力する。一方、第1の出力回路に欠陥があり、階調mの信号を入力しても、第1の出力回路は高い階調電圧しか出力できない場合、オペアンプ1-1,1-2,1-nは、第1の出力回路より入力した階調電圧の方が高いことを示す信号を出力する。
 このように、本実施形態の液晶駆動用半導体集積回路10では、オペアンプ1-1,1-2,1-nは、出力回路ブロック30のうち、少なくとも2つの出力回路より出力される階調電圧を比較し、出力回路ブロック30に欠陥がある場合とない場合とにおいて、異なる値の信号を出力する。
 次に、比較判定回路50は、オペアンプ1-1,1-2,1-nより出力された信号より、出力回路ブロック30が不良か否かを判定する。具体的には、上述したような、第1の出力回路と第2の出力回路との2つの出力回路に異なる入力信号を入力する場合、第1の出力回路に階調mの入力信号を入力し、第2の出力回路に階調m+1の入力信号を入力した場合に、第1の出力回路からの階調電圧が高いことを示す信号を、オペアンプ1-1,1-2,1-nより入力したときは、比較判定回路50は、第1の出力回路と第2の出力回路との少なくともいずれかの出力回路は不良であると判定する。このとき、第1の出力回路と第2の出力回路は、予備の出力回路に切り替えられる。一方、第2の出力回路からの階調電圧が高いことを示す信号を、オペアンプ1-1,1-2,1-nより入力した場合は、比較判定回路50は、出力回路ブロック30は不良でないと判定する。
 これにより、本実施形態に係る表示部90では、容易に出力回路ブロック30の欠陥を検出する具体的な手段を備え、出力回路ブロック30に欠陥があった場合に自己修復できる。
 本実施形態に係る表示部90では、出力回路ブロック30は、出力バッファーとしてオペアンプ21を備え、オペアンプ1-1,1-2,1-nは、オペアンプ21を含んで構成されるコンパレーターであることが好ましい。
 上記の構成によれば、出力回路ブロック30は、出力バッファーとしてオペアンプ21を備えている。また、オペアンプ1-1,1-2,1-nは、オペアンプ21によって構成されるコンパレーターである。
 一般的に、表示パネル80を駆動する出力回路ブロック30からの出力信号は、バッファリングされて出力端子に出力される。ここで、オペアンプ21は、自身の出力を、自身の負極性入力端子に負帰還させることにより、ボルテージフォロワ回路となり、バッファ回路としての機能を有することになる。
 したがって、上記のように、オペアンプ1-1,1-2,1-nをオペアンプ21を含んで構成されるコンパレーターとすることにより、オペアンプ21が、出力回路ブロック30からの出力信号をバッファリングするバッファ回路とオペアンプ1-1,1-2,1-nとの両方の役割を兼ね備えることになる。よって、本実施形態の液晶駆動用半導体集積回路10は、出力回路ブロック30からの出力信号をバッファリングするためのバッファ回路を別途備える必要がなく、コストを低減する効果を奏する。
 本実施形態に係る表示部90では、オペアンプ21は、表示パネル80を駆動する場合、ボルテージフォロワとして動作することが好ましい。
 さらに、本実施形態に係るテレビジョンシステム300は、表示部90を備えている構成であってもよい。
 本発明は、出力回路の欠陥の検出および自己修復の具体的な手段を備え、より容易に出力回路の不具合に対処可能な表示駆動用集積回路を備えた表示装置を提供するものであり、特に、適切なタイミングにて自己検出および自己修復を行うことができる液晶表示装置に好適である。
 1-1 オペアンプ(比較手段)
 1-2 オペアンプ(比較手段)
 1-n オペアンプ(比較手段)
 2c  スイッチ(接続切替手段)
 2d  スイッチ(接続切替手段)
 3-1 判定回路(判定手段)
 3-2 判定回路(判定手段)
 3-n 判定回路(判定手段)
 4-1 判定フラグ(フラグ格納手段)
 4-2 判定フラグ(フラグ格納手段)
 4-n 判定フラグ(フラグ格納手段)
 8-1 DAC回路(出力回路)
 8-2 DAC回路(出力回路)
 8-n DAC回路(出力回路)
 10  液晶駆動用半導体集積回路(駆動回路)
 10’ 液晶駆動用半導体集積回路(駆動回路)
 10a 液晶駆動用半導体集積回路(駆動回路、ソースドライバ)
 10b 液晶駆動用半導体集積回路(駆動回路、ソースドライバ)
 20  液晶駆動用半導体集積回路(駆動回路)
 21  オペアンプ(比較手段)
 21A オペアンプ(比較手段)
 21B オペアンプ(比較手段)
 28  DAC回路(予備出力回路)
 28A DAC回路(予備出力回路)
 28B DAC回路(予備出力回路)
 50  比較判定回路(自己検出・自己修復手段、判定手段)
 60  切替回路(自己検出・自己修復手段、切替手段)
 61  切替回路(自己検出・自己修復手段)
 80  表示パネル
 80’ 表示パネル
 81  メモリ(記憶装置)
 82  動作切換入力端子
 83  フィルム基材
 84  入力端子
 85  ソルダーレジスト
 86  出力側配線
 87  デバイスホール
 88  入力側配線
 89  テープキャリア
 90  表示部(表示装置)
 92  画素
 93  TFT
 94  ゲート線
 95  ソース線
 96  ガラス基板
 97  プリント基板(PWD)
 98  フィルムケーブル(FPC)
 99  ゲートドライバ
 100 コントローラ(画像切替手段、期間切替検知手段)
 202 抵抗(検出手段)
 204 A/Dコンバータ(検出手段)
 206 EEPROM(正常電流値記憶手段)
 208 比較回路(電流値比較手段、駆動回路判定手段)
 300 テレビジョンシステム
 400 液晶テレビジョン
 401 リモコンI/F(選局受付手段)
 402 リモコン

Claims (19)

  1.  表示パネルと、
     上記表示パネルを駆動する駆動回路であって、上記表示パネルとの電気的な接続を切り離した状態で当該駆動回路の不良を検出し、修復する自己検出・自己修復手段を有する駆動回路とを備え、
     上記自己検出・自己修復手段は、上記表示パネルに表示すべき画像が不連続に切り替わるときに、上記駆動回路の不良を検出する処理を実行することを特徴とする表示装置。
  2.  上記処理は、1つ以上の工程を含む複数の工程群に分割され、
     上記自己検出・自己修復手段は、上記表示パネルにおける上記表示が1回中断するごとに、上記工程群を1つずつ実行することを特徴とする請求項1に記載の表示装置。
  3.  上記処理は、複数の工程を含んでおり、
     上記自己検出・自己修復手段は、上記表示パネルにおける上記表示が1回中断したときに、上記処理に含まれる全ての工程を実行することを特徴とする請求項1に記載の表示装置。
  4.  ユーザによる選局操作を受け付ける選局受付手段と、
     選局受付手段が受け付けた選局操作に対応する放送を受信し、該放送の画像信号を上記表示パネルに供給する放送受信手段と、
     上記放送受信手段が受信する放送を切り替える際に、上記表示パネルに表示すべき画像が不連続に切り替わることを検知する画像切替手段とをさらに備え、
     上記自己検出・自己修復手段は、画像切替手段によって上記表示パネルに表示すべき画像の切替が検知されたときに、上記駆動回路の不良を検出する処理を開始することを特徴とする請求項1に記載の表示装置。
  5.  放送を受信し、該放送の画像信号を上記表示パネルに供給する放送受信手段と、
     上記放送受信手段が受信する放送の内容が番組からCM(Commercial Message)に切り替わる際に、上記表示パネルに表示すべき画像が不連続に切り替わることを検知する画像切替手段とをさらに備え、
     上記自己検出・自己修復手段は、画像切替手段によって上記表示パネルに表示すべき画像の切替が検知されたときに、上記駆動回路の不良を検出する処理を実行することを特徴とする請求項1に記載の表示装置。
  6.  表示パネルと、
     上記表示パネルに画像を表示している期間のうち、画像信号を供給している供給期間と、画像信号の供給を停止している供給停止期間とを切り替えながら上記表示パネルを駆動する駆動回路であって、上記表示パネルとの電気的な接続を切り離した状態で当該駆動回路の不良を検出し、修復する自己検出・自己修復手段を有する駆動回路とを備え、
     上記自己検出・自己修復手段は、上記供給停止期間に、上記駆動回路の不良を検出する処理を実行することを特徴とする表示装置。
  7.  上記処理は、1つ以上の工程を含む複数の工程群に分割され、
     上記自己検出・自己修復手段は、1回の上記供給停止期間ごとに上記工程群を1つずつ実行することを特徴とする請求項6に記載の表示装置。
  8.  上記処理は、複数の工程を含んでおり、
     上記自己検出・自己修復手段は、1回の上記供給停止期間で上記処理に含まれる全ての工程を実行することを特徴とする請求項6に記載の表示装置。
  9.  上記表示パネルに画像を表示している期間において、上記供給期間から、上記供給停止期間としての水平ブランキング期間への切替を検知する期間切替検知手段をさらに備え、
     上記自己検出・自己修復手段は、上記期間切替検知手段によって上記切替が検知されたとき、上記処理を開始すること特徴とする請求項6に記載の表示装置。
  10.  上記表示パネルに画像を表示している期間において、上記供給期間から、上記供給停止期間としての垂直ブランキング期間への切替を検知する期間切替検知手段をさらに備え、
     上記自己検出・自己修復手段は、上記期間切替検知手段によって上記切替が検知されたとき、上記処理を開始すること特徴とする請求項8に記載の表示装置。
  11.  上記駆動回路は、
     上記表示パネルを駆動するための出力信号を出力する複数の出力回路を備え、
     上記自己検出・自己修復手段は、
     上記出力回路が不良か否かを判定する判定手段を備え、上記判定手段の判定結果が不良であった場合に、上記表示パネルに正常な出力信号を出力するように、当該駆動回路を自己修復することを特徴とする請求項1に記載の表示装置。
  12.  上記駆動回路は、
     上記表示パネルに上記出力信号を出力可能な予備出力回路を備え、
     上記自己検出・自己修復手段は、
     上記判定手段の判定結果が不良である場合、上記表示パネルへの出力信号として、上記不良となった出力回路からの出力信号を、上記予備出力回路からの出力信号に切り替える切替手段を、備えていることを特徴とする請求項11に記載の表示装置。
  13.  上記判定手段は、
     上記出力回路からの出力信号と、上記予備出力回路からの出力信号とを比較する比較手段を備え、上記比較手段の比較結果に基づき、上記出力回路が不良か否かを判定することを特徴とする請求項12に記載の表示装置。
  14.  上記出力回路および上記予備出力回路に入力する入力信号を制御する制御手段をさらに備え、
     上記制御手段は、上記出力回路と上記予備出力回路とに、異なる大きさの入力信号を入力するとともに、上記異なる大きさの入力信号に対応する、上記比較手段からの比較結果の期待値を出力し、
     上記判定手段は、上記比較結果と上記期待値とが異なる場合に、上記出力回路を不良と判定することを特徴とする、請求項13に記載の駆動回路。
  15.  上記判定手段は、上記複数の出力回路のうち、少なくとも2つの出力回路からの出力信号を比較する比較手段を備え、上記比較手段の比較結果に基づき、上記出力回路が不良か否かを判定することを特徴とする請求項12に記載の表示装置。
  16.  上記複数の出力回路のうち、少なくとも2つの出力回路に入力する入力信号を制御する制御手段をさらに備え、
     上記制御手段は、上記少なくとも2つの出力回路に、異なる大きさの入力信号を入力するとともに、上記異なる大きさの入力信号に対応する、上記比較手段からの比較結果の期待値を出力し、
     上記判定手段は、上記比較結果と上記期待値とが異なる場合に、上記少なくとも2つの出力回路のいずれかが不良であると判定することを特徴とする、請求項15に記載の駆動回路。
  17.  上記出力回路は、出力バッファーとしてオペアンプを備え、
     上記比較手段は、上記オペアンプを含んで構成されるコンパレーターであることを特徴とする請求項13に記載の表示装置。
  18.  上記オペアンプは、表示パネルを駆動する場合、ボルテージフォロワとして動作することを特徴とする請求項17に記載の表示装置。
  19.  請求項1に記載の表示装置を備えていることを特徴とするテレビジョンシステム。
PCT/JP2009/069697 2008-11-20 2009-11-20 表示装置、およびテレビジョンシステム WO2010058836A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008296965A JP2010122513A (ja) 2008-11-20 2008-11-20 表示装置、およびテレビジョンシステム
JP2008-296965 2008-11-20

Publications (1)

Publication Number Publication Date
WO2010058836A1 true WO2010058836A1 (ja) 2010-05-27

Family

ID=42198275

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/069697 WO2010058836A1 (ja) 2008-11-20 2009-11-20 表示装置、およびテレビジョンシステム

Country Status (3)

Country Link
JP (1) JP2010122513A (ja)
TW (1) TW201037680A (ja)
WO (1) WO2010058836A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6666993B2 (ja) * 2016-03-01 2020-03-18 ローム株式会社 液晶駆動装置
JP6706954B2 (ja) 2016-04-01 2020-06-10 三菱電機株式会社 ドライバicおよび液晶表示装置
CN109906607A (zh) * 2016-10-26 2019-06-18 Nec显示器解决方案株式会社 视频信号输出装置、显示系统以及视频信号输出方法
JP7132010B2 (ja) * 2018-07-23 2022-09-06 ローム株式会社 異常検知回路
JP7040368B2 (ja) * 2018-09-06 2022-03-23 株式会社デンソー 液晶表示装置の異常検出装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10339861A (ja) * 1997-03-15 1998-12-22 Sharp Corp フォールトトレラントアーキテクチャ
JP2002043943A (ja) * 2000-07-21 2002-02-08 Toshiba Corp アナログ出力装置
JP2008139861A (ja) * 2006-11-10 2008-06-19 Toshiba Matsushita Display Technology Co Ltd 有機発光素子を用いたアクティブマトリクス型表示装置、および有機発光素子を用いたアクティブマトリクス型表示装置の駆動方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10339861A (ja) * 1997-03-15 1998-12-22 Sharp Corp フォールトトレラントアーキテクチャ
JP2002043943A (ja) * 2000-07-21 2002-02-08 Toshiba Corp アナログ出力装置
JP2008139861A (ja) * 2006-11-10 2008-06-19 Toshiba Matsushita Display Technology Co Ltd 有機発光素子を用いたアクティブマトリクス型表示装置、および有機発光素子を用いたアクティブマトリクス型表示装置の駆動方法

Also Published As

Publication number Publication date
JP2010122513A (ja) 2010-06-03
TW201037680A (en) 2010-10-16

Similar Documents

Publication Publication Date Title
JP4277055B2 (ja) 駆動回路、表示装置、およびテレビジョンシステム
WO2010035797A1 (ja) 表示装置、およびテレビジョンシステム
JP6653593B2 (ja) 表示装置及び表示装置の検査方法
WO2010061839A1 (ja) 駆動回路、表示装置および駆動回路の自己検出・自己修復方法
WO2010058836A1 (ja) 表示装置、およびテレビジョンシステム
CN105761704A (zh) 显示面板及其驱动电路和驱动方法
JP2002032053A (ja) データドライバ及びそれを用いた表示装置
WO2010035792A1 (ja) 表示装置、およびテレビジョンシステム
WO2010035785A1 (ja) 表示装置、およびテレビジョンシステム
WO2008047495A1 (fr) Dispositif d'affichage
JPH1130772A (ja) 液晶表示装置
JP2006153927A (ja) 表示装置
WO2010035801A1 (ja) 表示装置、およびテレビジョンシステム
US20090243981A1 (en) Driving module of display device and method for extending lifetime of the driving module
US9953599B2 (en) Display device and driving board
JP5015038B2 (ja) 駆動回路および該駆動回路を備えた表示装置
JP5015037B2 (ja) 駆動回路および該駆動回路を備えた表示装置
JPH07199872A (ja) 液晶表示装置
JP5015041B2 (ja) 駆動回路および駆動回路を備えた表示装置
JPH06281944A (ja) 修復可能の冗長駆動マトリックス表示装置
JP2002196743A (ja) ディスプレイ装置、異常動作防止回路及び方法
JPH07199876A (ja) シフトレジスタ及びアクティブマトリクス方式tft−lcd並びに駆動回路の駆動方法
JP3230393B2 (ja) 液晶パネルの検査方法
JPH06214210A (ja) マトリクス表示装置
JP2002287714A (ja) 液晶表示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09827617

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09827617

Country of ref document: EP

Kind code of ref document: A1