WO2010055586A1 - 電圧非直線抵抗体、電圧非直線抵抗体を搭載した避雷器及び電圧非直線抵抗体の製造方法 - Google Patents
電圧非直線抵抗体、電圧非直線抵抗体を搭載した避雷器及び電圧非直線抵抗体の製造方法 Download PDFInfo
- Publication number
- WO2010055586A1 WO2010055586A1 PCT/JP2008/070860 JP2008070860W WO2010055586A1 WO 2010055586 A1 WO2010055586 A1 WO 2010055586A1 JP 2008070860 W JP2008070860 W JP 2008070860W WO 2010055586 A1 WO2010055586 A1 WO 2010055586A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- voltage
- nonlinear resistor
- mol
- voltage nonlinear
- sodium
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01C—RESISTORS
- H01C7/00—Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material
- H01C7/10—Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material voltage responsive, i.e. varistors
- H01C7/105—Varistor cores
- H01C7/108—Metal oxide
- H01C7/112—ZnO type
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01C—RESISTORS
- H01C17/00—Apparatus or processes specially adapted for manufacturing resistors
- H01C17/06—Apparatus or processes specially adapted for manufacturing resistors adapted for coating resistive material on a base
- H01C17/065—Apparatus or processes specially adapted for manufacturing resistors adapted for coating resistive material on a base by thick film techniques, e.g. serigraphy
- H01C17/06506—Precursor compositions therefor, e.g. pastes, inks, glass frits
- H01C17/06513—Precursor compositions therefor, e.g. pastes, inks, glass frits characterised by the resistive component
- H01C17/06533—Precursor compositions therefor, e.g. pastes, inks, glass frits characterised by the resistive component composed of oxides
- H01C17/06546—Oxides of zinc or cadmium
Definitions
- the present invention relates to a voltage non-linear resistor suitably used for a lightning arrester, a surge absorber, and the like, a lightning arrester equipped with the voltage non-linear resistor, and a method for manufacturing the voltage non-linear resistor.
- voltage nonlinear resistors used in lightning arresters, surge absorbers, etc. are effective additions to zinc oxide (ZnO), which is the main component, for improving electrical characteristics, including bismuth oxide, which is essential for the expression of voltage nonlinearity. It consists of a sintered body that has been subjected to each step of pulverization, mixing, granulation, molding, firing and post-heat treatment, and is composed by providing an electrode and a side high resistance layer on this sintered body. Yes.
- the operation of the voltage non-linear resistor is roughly divided into a standby state where no surge energy is applied and an operation state where surge energy is applied.
- the voltage non-linear resistor is mainly used in a gapless structure in which a voltage is always applied to both ends during standby. Therefore, it is important that the current (leakage current) flowing through the element during standby does not show an increasing tendency.
- heat treatment after firing is generally indispensable (see, for example, Patent Document 1 and Patent Document 2).
- This heat treatment after firing prevents the leakage current from increasing, and can prevent thermal runaway caused by an increase in the amount of heat generated by the voltage nonlinear resistor accompanying the increase in leakage current.
- the heat treatment after firing is performed, the voltage nonlinearity of the voltage nonlinear resistor generally tends to be greatly deteriorated, and a method of performing the heat treatment in two stages is disclosed to prevent this. (For example, see Patent Document 3).
- a flat rate is used as an index indicating whether the voltage nonlinearity is good or bad.
- the flatness ratio is defined as the ratio of the voltages generated at both ends of the voltage nonlinear resistor when two currents having different sizes are passed through the voltage nonlinear resistor. It depends on the diameter of the linear resistor. For example, the ratio (V 10kA / V 2mA ) of the voltage value (V 10kA ) at the time of 10kA energization and the voltage value (V 2mA ) at the time of 2mA energization, which is a numerical value reflecting the large current region characteristics, is used as the flat rate.
- Technological development for improving the voltage non-linearity of the voltage non-linear resistor, in other words, for reducing the flatness value, has been intensively advanced.
- the sintered body is roughly composed of zinc oxide particles, spinel particles mainly composed of zinc and antimony, and a bismuth oxide phase existing in the vicinity of the triple point of the grain boundary.
- zinc silicate particles mainly composed of silicon are also observed depending on the additive.
- bismuth which is an additive essential for the expression of voltage nonlinearity, exists not only in a bismuth oxide phase but also in a grain boundary between zinc oxide particles (for example, Non-Patent Document 1).
- the structure has been elucidated, and the interface states at grain boundaries have been eagerly studied.
- Non-Patent Document 2 states that, as an example, rapid densification occurs when the Sb 2 O 3 / Bi 2 O 3 ratio is 0.5 and the firing temperature is 900 ° C. Furthermore, evaporation of bismuth oxide during firing contributes to void formation, but by firing at a relatively low temperature of 1000 ° C. or lower, evaporation of bismuth oxide during firing can be significantly suppressed. Due to the synergistic effect of the suppression of void generation and the densification, the voltage nonlinearity and energy tolerance of the voltage nonlinear resistor can be improved. That is, in firing at 1000 ° C. or lower, the Sb 2 O 3 / Bi 2 O 3 ratio can be said to be a parameter that greatly affects the densification and voltage nonlinearity of the voltage nonlinear resistor.
- JP 52-53295 A Japanese Patent Laid-Open No. 50-131094 Japanese Patent Laid-Open No. 58-200508 JP 2003-297612 A Kei-Iciro Kobayashi, Journal of American Ceramic Society, "Continuous Existence of Bismuth at Grain Boundaries of Zinc Oxide Varistor without Intergranular Phase", 81, [8], 2071-2076 (1998) Jinho Kim, Toshio Kimura, and Takashi Yamaguchi, Journal of American Ceramic Society, "Sintering of Zinc Oxide Doped with Antimony Oxide and Bismuth Oxide", 72, [395] (395),
- the present invention has been made to solve the above-described problems, and an object of the present invention is to provide a voltage non-linear resistor having both excellent voltage non-linearity and electric charge life characteristics. .
- the present invention includes zinc oxide as a main component, bismuth oxide and antimony oxide in a molar ratio of 0.3 ⁇ Sb 2 O 3 / Bi 2 O 3 ⁇ 1, and from the group consisting of potassium and sodium.
- a composition containing at least one selected alkali metal in the range of 0.013 mol% to 0.026 mol% is baked at 900 ° C. to 1000 ° C., and then heat-treated at 400 ° C. to 600 ° C. This is a method for manufacturing a voltage nonlinear resistor.
- the voltage non-linear resistor obtained by the above production method was composed of zinc oxide particles, spinel particles mainly composed of zinc and antimony, A bismuth oxide phase, and at least one alkali metal selected from the group consisting of potassium and sodium is present in the bismuth oxide phase in a range of 0.036 atomic% to 0.176 atomic%. I found it.
- the present invention it is possible to provide a voltage non-linear resistor having both excellent voltage non-linearity and electric charging life characteristics. Moreover, by using the voltage non-linear resistor according to the present invention, it is possible to realize an overvoltage protection device such as a lightning arrester and surge absorber having excellent protection characteristics and life performance and high reliability at low cost.
- FIG. 3 is a schematic diagram of a fine structure of a voltage nonlinear resistor according to Embodiment 1.
- FIG. It is a schematic cross section of the sample for evaluation used by the Example and the comparative example. It is an example of the reflected electron image of the voltage nonlinear resistor obtained in the Example.
- Embodiments of the present invention will be described below.
- Embodiment 1 FIG.
- the voltage nonlinear resistor according to the embodiment of the present invention includes zinc oxide (ZnO) as a main component, and bismuth oxide and antimony oxide in a molar ratio of 0.3 ⁇ Sb 2 O 3 / Bi 2 O 3 ⁇ 1. And calcining a composition containing at least one alkali metal selected from the group consisting of potassium and sodium in the range of 0.013 mol% to 0.026 mol% at 900 ° C. to 1000 ° C. , 400 ° C. or more and 600 ° C. or less (hereinafter referred to as post heat treatment).
- the sintered body thus obtained is mainly composed of zinc oxide particles 1, spinel particles 2 mainly composed of zinc and antimony, and bismuth oxide phase 3, as shown in FIG. There are twin boundaries 4 in the grains. Furthermore, the microstructure analysis shows that the bismuth oxide phase contains at least one alkali metal selected from the group consisting of potassium and sodium in the range of 0.036 atomic% to 0.176 atomic%. It is known that the alkali metal present in the bismuth oxide phase at a certain ratio is considered to contribute greatly to the improvement of the electric charge lifetime characteristics and the suppression of the deterioration of the voltage nonlinearity due to the post heat treatment.
- the fired composition contains zinc oxide as a main component and contains at least one alkali metal selected from the group consisting of bismuth oxide, antimony oxide, potassium, and sodium.
- Zinc oxide is preferably contained in the composition in the range of 90 mol% or more and 98 mol% or less from the comprehensive viewpoints of improvement in voltage nonlinearity, improvement in energy resistance, and life extension, and 95 mol%. More preferably, it is contained in the range of 98 mol% or less. As zinc oxide, it is usually preferable to use a powder having an average particle diameter of 1 ⁇ m or less.
- Bismuth oxide and antimony oxide are blended in the composition so as to satisfy a range of 0.3 ⁇ Sb 2 O 3 / Bi 2 O 3 ⁇ 1 in terms of molar ratio.
- the molar ratio of bismuth oxide to antimony oxide is within the above range, it is possible to remarkably suppress a decrease in voltage nonlinearity due to heat treatment after firing.
- bismuth oxide and antimony oxide are preferably contained in the composition in a range of 0.5 mol% or more and 2 mol% or less in total in order to further improve voltage non-linearity and charging life. More preferably, it is contained in the range of not less than 0.0 mol% and not more than 1.5 mol%.
- At least one alkali metal selected from the group consisting of potassium and sodium needs to be blended in the composition in the range of 0.013 mol% or more and 0.026 mol% or less.
- the blending amount of the alkali metal is less than 0.013 mol%, the voltage non-linearity and the electric charging life characteristics after the post-heat treatment are remarkably deteriorated, and when it exceeds 0.026 mol%, the electric charging life characteristics are reduced. It becomes insufficient.
- This alkali metal is usually preferably blended as Na 2 CO 3 powder and K 2 CO 3 powder having an average particle size of 1 ⁇ m or less, or as an aqueous solution in which these are dissolved.
- nickel oxide, manganese dioxide, chromium oxide, cobalt oxide, silicon dioxide, etc. may be added to the composition in the present embodiment in order to further improve the voltage nonlinearity and the charging life. Good.
- the amount of these components is usually in the range of 1 mol% to 2 mol% in the composition.
- aluminum nitrate may be blended in the composition in the range of 0.001 mol% to 0.01 mol%. Further, in order to further improve the voltage nonlinearity, to reduce the fine pores (pores) in the sintered body and to further improve the energy resistance, the range of 0.01 mol% or more and 0.2 mol% or less in the composition. Boric acid may be added.
- the firing temperature is 900 ° C. despite the fact that a voltage non-linear resistor having both excellent voltage non-linearity and electric charge life characteristics can be obtained. Since the temperature is as low as 1000 ° C. or lower, the power consumption during firing can be significantly reduced. Thus, the method for manufacturing a voltage non-linear resistor according to the present embodiment can be said to be an environmentally friendly method because CO 2 emission during manufacturing can be greatly reduced as compared with the conventional manufacturing method.
- the voltage nonlinear resistor obtained by the present embodiment is singly or stacked and mounted on the lightning arrester, it is possible to obtain a lightning arrester having both good protection characteristics and charging life characteristics.
- Example 1 to 12 and Comparative Examples 1 to 11 Bismuth oxide (Bi 2 O 3 ) powder, antimony oxide (Sb 2 O 3 ) powder, nickel oxide (NiO) powder, manganese dioxide (MnO 2 ) powder, chromium oxide (Cr 2 O 3 ) powder, cobalt oxide (Co 3) O 4 ) powder, aluminum nitrate (Al (NO 3 ) 3 .9H 2 O), and boric acid (H 3 BO 3 ) are 0.9 mol%, 0.4 mol%, 0.5 mol%,.
- compositions shown in Table 1 were prepared by adding in the range of mol% to 0.052 mol%.
- the balance is zinc oxide (ZnO).
- an industrial raw material or a reagent was used for each raw material, and all powder raw materials having an average particle diameter of 1 ⁇ m or less were used. Pure water, a dispersant, and a binder were added to each of the compositions shown in Table 1, and pulverization and mixing were sufficiently performed to prepare a slurry having a uniform composition.
- the produced slurry was granulated with a spray dryer, and the resulting granulated powder was molded at a molding pressure of 500 kgf / cm 2 to obtain a disk-shaped molded body having a diameter of about 40 mm and a thickness of about 10 mm.
- the molded body was heat-treated in air at 450 ° C. for 5 hours (debinding step), and then fired at a firing temperature of 950 ° C., 1000 ° C. or 1050 ° C. for 5 hours (firing step).
- the temperature raising and lowering rate was 50 ° C./hour.
- some of the sintered bodies (Examples 1 to 12 and Comparative Examples 1 to 10) were heat-treated in the atmosphere at 500 ° C. for 5 hours (post heat treatment step).
- the side surface of the sintered body 5 thus obtained is coated with a side high resistance layer 6 (resin) for preventing side flashing when an impulse voltage is applied, and aluminum electrodes 7 are formed on both sides of the disk by aluminum spraying.
- a sample for evaluation was obtained. A schematic cross-sectional view of the sample is shown in FIG.
- V 2.35 kA / V 0.46 mA The quality of the voltage nonlinearity was evaluated by the flat rate (V 2.35 kA / V 0.46 mA ).
- V 2.35 kA an impulse voltage of 8 ⁇ 20 ⁇ s was applied to the sample, and the peak value was read as V 2.35 kA .
- V 0.46 mA was measured using an AC voltage (sine wave) of 60 Hz.
- Ir resistive component
- Ic capacitive component
- Ir was extracted using a resistance leakage current extraction device. Specifically, the applied voltage at which Ir becomes 0.46 mA was read and set to V 0.46 mA .
- the deterioration rate of the flat rate was evaluated by comparing the flat rates before and after the post heat treatment.
- the deterioration rate was calculated according to the following formula. (Flat rate after post-heat treatment-flat rate before post-heat treatment) ⁇ flat rate before heat treatment after firing ⁇ 100 (%)
- the time-dependent change of Ir was measured for the sample after the post heat treatment under the conditions of 120 ° C. and an electric charge rate of 90%, and the electric charge life characteristics were evaluated by the increase / decrease.
- the pass / fail judgment of the charging life was determined to pass if the Ir at the time of voltage application did not show an increasing tendency.
- Table 1 shows the evaluation results of the flatness rate, deterioration rate, and electrical charging life characteristics.
- the firing temperature is desirably 1000 ° C. or lower. If the firing temperature is too low, firing does not proceed and the sintered body may not be densified.
- Examples 13 to 15 and Comparative Examples 12 to 13> A sample for evaluation was prepared in the same manner as in Example 2 except that the mixing ratio of bismuth oxide and antimony oxide was changed to the Sb 2 O 3 / Bi 2 O 3 ratio shown in Table 2. The deterioration rate of the flatness is shown in Table 2. From this result, when the molar ratio of bismuth oxide and antimony oxide is in the range of 0.3 ⁇ Sb 2 O 3 / Bi 2 O 3 ⁇ 1, the deterioration rate can be suppressed to 2% or less. It is clear that the deterioration rate increases rapidly outside.
- Sodium and potassium are generally known to be elements that deteriorate the electrical characteristics of the voltage nonlinear resistor. Therefore, a technique for obtaining excellent voltage non-linearity by reducing the mixing amount as much as possible has been published so far (for example, Japanese Patent Laid-Open No. 8-138910). However, since the technology known so far has a firing temperature of 1100 ° C. or higher, the knowledge obtained in the present invention is considered to be a unique effect with a firing temperature of 1000 ° C. or lower.
- JEOL's high performance electron probe microanalyzer (EPMA: Electron Probe Microanalyzer) was used to determine which part of the sintered body sodium and potassium were segregated. And analyzed.
- the EPMA used for the analysis is a device equipped with a field emission type FE (Field Emission) electron gun, and is equipped with a wavelength dispersive spectrometer (WDS: Wavelength Dispersive Spectroscopy) capable of analyzing trace elements in a minute region.
- FE Field Emission
- WDS Wavelength Dispersive Spectroscopy
- the sintered body evaluated in Table 1 was cut to about 5 mm square, the surface was polished, and then etched with hydrochloric acid for about 10 seconds to clarify the grain boundaries. After washing with pure water, a carbon film was coated by vapor deposition to prevent charge-up, and quantitative analysis of sodium and potassium content was performed with EPMA.
- the sintered body has a fine structure roughly composed of zinc oxide particles, spinel particles, and a bismuth oxide phase existing near the triple point of the grain boundary.
- the added bismuth oxide can be prevented from evaporating during the calcination, so that a large amount of bismuth oxide phase exists near the triple point.
- An example of the reflected electron image (COMPO image) of the part used for the actual analysis is shown in FIG. The part shining white is the bismuth oxide phase.
- zinc oxide is the main component, bismuth oxide and antimony oxide are included in a molar ratio of 0.3 ⁇ Sb 2 O 3 / Bi 2 O 3 ⁇ 1, and selected from the group consisting of potassium and sodium Voltage non-linear resistor comprising a sintered body obtained by firing a composition containing at least one alkali metal in a range of 0.013 mol% or more and 0.026 mol% or less at 900 ° C. or more and 1000 ° C. or less Is deteriorated after post-heat treatment by the presence of at least one alkali metal of sodium and potassium in the bismuth oxide phase present in the sintered body in the range of 0.036 atomic% to 0.176 atomic%. The rate was suppressed, and as a result, it was confirmed that excellent voltage non-linearity and electrical charging lifetime characteristics can be achieved.
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Manufacturing & Machinery (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Thermistors And Varistors (AREA)
- Compositions Of Oxide Ceramics (AREA)
Abstract
Description
従って、本発明は、上記のような課題を解決するためになされたものであり、優れた電圧非直線性と課電寿命特性とを兼ね備えた電圧非直線抵抗体を提供することを目的とする。
即ち、本発明は、酸化亜鉛を主成分とし、酸化ビスマス及び酸化アンチモンをモル比率で0.3≦Sb2O3/Bi2O3≦1の範囲で含み、且つカリウム及びナトリウムからなる群から選択される少なくとも1種のアルカリ金属を0.013モル%以上0.026モル%以下の範囲で含む組成物を900℃以上1000℃以下で焼成した後、400℃以上600℃以下の熱処理を施すことを特徴とする電圧非直線抵抗体の製造方法である。
また、本発明者らは、焼結体の微細構造を分析したところ、上記製造方法により得られた電圧非直線抵抗体は、酸化亜鉛粒子と、亜鉛及びアンチモンを主成分とするスピネル粒子と、酸化ビスマス相とから主として構成され、酸化ビスマス相中にカリウム及びナトリウムからなる群から選択される少なくとも1種のアルカリ金属が0.036原子%以上0.176原子%以下の範囲で存在することも見出した。
実施の形態1.
本発明の実施の形態による電圧非直線抵抗体は、酸化亜鉛(ZnO)を主成分とし、酸化ビスマス及び酸化アンチモンをモル比率で0.3≦Sb2O3/Bi2O3≦1の範囲で含み、且つカリウム及びナトリウムからなる群から選択される少なくとも1種のアルカリ金属を0.013モル%以上0.026モル%以下の範囲で含む組成物を900℃以上1000℃以下で焼成した後、400℃以上600℃以下の熱処理(以下、後熱処理と呼ぶ)を施すことにより得られるものである。このようにして得られる焼結体は、図1に示すように、酸化亜鉛粒子1と、亜鉛及びアンチモンを主成分とするスピネル粒子2と、酸化ビスマス相3とから主として構成され、酸化亜鉛結晶粒子内には双晶境界4が存在している。更に、酸化ビスマス相中には、カリウム及びナトリウムからなる群から選択される少なくとも1種のアルカリ金属が0.036原子%以上0.176原子%以下の範囲で存在することが、微細構造分析により分かっており、この一定の割合で酸化ビスマス相中に存在するアルカリ金属が、課電寿命特性の改善及び後熱処理よる電圧非直線性の悪化の抑制に大きく寄与しているものと考えられる。
本実施の形態による電圧非直線抵抗体の製造方法によれば、優れた電圧非直線性と課電寿命特性とを兼ね備えた電圧非直線抵抗体が得られるにも関わらず、焼成温度が900℃以上1000℃以下と低いため、焼成時の電力消費量を大幅に削減することができる。このように、本実施の形態による電圧非直線抵抗体の製造方法は、従来の製造方法に比べて製造時のCO2排出量を大幅に削減することができるので、環境に優しい方法といえる。
<実施例1~12及び比較例1~11>
酸化ビスマス(Bi2O3)粉末、酸化アンチモン(Sb2O3)粉末、酸化ニッケル(NiO)粉末、二酸化マンガン(MnO2)粉末、酸化クロム(Cr2O3)粉末、酸化コバルト(Co3O4)粉末、硝酸アルミ(Al(NO3)3・9H2O)及びホウ酸(H3BO3)をそれぞれ0.9モル%、0.4モル%、0.5モル%、0.5モル%、0.1モル%、0.4モル%、0.004モル%及び0.16モル%配合したものを基本組成とし、これにNa2CO3又はK2CO3を0.003モル%~0.052モル%の範囲で添加し、表1に示す11種の組成物を用意した。残部は酸化亜鉛(ZnO)である。なお、それぞれの原料には工業用原料又は試薬を用い、粉末原料についてはすべて平均粒子径が1μm以下のものを使用した。
表1に示した組成物それぞれに、純水、分散剤及び結合剤を添加し、粉砕・混合を十分に行って均一な組成を持つスラリーを作製した。
作製したスラリーをスプレードライヤーで造粒し、得られた造粒粉を成形圧500kgf/cm2で成形して、直径40mm、厚さ10mm程度のディスク状の成形体を得た。
このようにして得られた焼結体5の側面に、インパルス電圧印加時の側面閃絡防止用の側面高抵抗層6(樹脂)を塗布し、ディスク両面にはアルミニウム溶射によりアルミニウム電極7を形成して、評価用の試料とした。試料の模式断面図を図2に示した。
実施例1~12及び比較例1~10の試料では、後熱処理の前後の平坦率を比較することで、平坦率の悪化率を評価した。なお、悪化率は、下記の式に従って計算した。
(後熱処理後の平坦率-後熱処理前の平坦率)÷焼成後の熱処理前の平坦率×100(%)
また、後熱処理後の試料は120℃、課電率90%の条件下でIrの経時変化を測定し、その増減によって課電寿命特性を評価した。課電寿命の合否判定は、電圧印加時のIrが増加傾向を示さないものを合格とした。
これら平坦率、悪化率及び課電寿命特性の評価結果を表1に示した。
酸化ビスマス及び酸化アンチモンの配合割合を変えて、表2に示すSb2O3/Bi2O3比にした以外は、実施例2と同様にして評価用の試料を作製した。平坦率の悪化率を表2に示した。この結果から、酸化ビスマス及び酸化アンチモンがモル比率で0.3≦Sb2O3/Bi2O3≦1の範囲にあると、悪化率を2%以下に抑制することができるが、その範囲外では急激に悪化率が増大することが明らかである。
Claims (3)
- 酸化亜鉛粒子と、亜鉛及びアンチモンを主成分とするスピネル粒子と、酸化ビスマス相とから主として構成される焼結体からなる電圧非直線抵抗体であって、酸化ビスマス相中にカリウム及びナトリウムからなる群から選択される少なくとも1種のアルカリ金属が0.036原子%以上0.176原子%以下の範囲で存在することを特徴とする電圧非直線抵抗体。
- 請求項1に記載の電圧非直線抵抗体を搭載したことを特徴とする避雷器。
- 酸化亜鉛を主成分とし、酸化ビスマス及び酸化アンチモンをモル比率で0.3≦Sb2O3/Bi2O3≦1の範囲で含み、且つカリウム及びナトリウムからなる群から選択される少なくとも1種のアルカリ金属を0.013モル%以上0.026モル%以下の範囲で含む組成物を900℃以上1000℃以下で焼成した後、400℃以上600℃以下の熱処理を施すことを特徴とする電圧非直線抵抗体の製造方法。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2008/070860 WO2010055586A1 (ja) | 2008-11-17 | 2008-11-17 | 電圧非直線抵抗体、電圧非直線抵抗体を搭載した避雷器及び電圧非直線抵抗体の製造方法 |
JP2010537652A JP5264929B2 (ja) | 2008-11-17 | 2008-11-17 | 電圧非直線抵抗体の製造方法 |
US13/125,942 US8562859B2 (en) | 2008-11-17 | 2008-11-17 | Voltage nonlinear resistor, lightning arrester equipped with voltage nonlinear resistor, and process for producing voltage nonlinear resistor |
EP08878132.3A EP2367178B1 (en) | 2008-11-17 | 2008-11-17 | Voltage nonlinear resistor, lightning arrester loaded with voltage nonlinear resistor, and process for producing voltage nonlinear resistor |
CN200880131984.XA CN102217010B (zh) | 2008-11-17 | 2008-11-17 | 电压非线性电阻器、搭载了电压非线性电阻器的避雷器和电压非线性电阻器的制造方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2008/070860 WO2010055586A1 (ja) | 2008-11-17 | 2008-11-17 | 電圧非直線抵抗体、電圧非直線抵抗体を搭載した避雷器及び電圧非直線抵抗体の製造方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2010055586A1 true WO2010055586A1 (ja) | 2010-05-20 |
Family
ID=42169735
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2008/070860 WO2010055586A1 (ja) | 2008-11-17 | 2008-11-17 | 電圧非直線抵抗体、電圧非直線抵抗体を搭載した避雷器及び電圧非直線抵抗体の製造方法 |
Country Status (5)
Country | Link |
---|---|
US (1) | US8562859B2 (ja) |
EP (1) | EP2367178B1 (ja) |
JP (1) | JP5264929B2 (ja) |
CN (1) | CN102217010B (ja) |
WO (1) | WO2010055586A1 (ja) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106663510B (zh) * | 2014-08-08 | 2019-05-03 | 东莞令特电子有限公司 | 具有多层涂层的变阻器以及制造方法 |
US11501900B2 (en) * | 2020-11-11 | 2022-11-15 | RIPD Intellectual Assets Ltd. | Zinc oxide varistor ceramics |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1012407A (ja) * | 1996-04-23 | 1998-01-16 | Mitsubishi Electric Corp | 電圧非直線抵抗体、電圧非直線抵抗体の製造方法および避雷器 |
JP2001052907A (ja) * | 1999-08-10 | 2001-02-23 | Toshiba Corp | セラミック素子とその製造方法 |
JP2001326108A (ja) * | 2000-05-18 | 2001-11-22 | Mitsubishi Electric Corp | 電圧非直線抵抗体およびその製造方法 |
JP2002217006A (ja) * | 2001-01-22 | 2002-08-02 | Toshiba Corp | 非直線抵抗体 |
JP2002305105A (ja) * | 2001-04-06 | 2002-10-18 | Mitsubishi Electric Corp | 電圧非直線抵抗体の製造方法 |
JP2002305104A (ja) * | 2001-04-06 | 2002-10-18 | Mitsubishi Electric Corp | 電圧非直線抵抗体およびその製造方法 |
JP2004238257A (ja) * | 2003-02-06 | 2004-08-26 | Mitsubishi Electric Corp | 電圧非直線抵抗体及びその製造方法 |
JP2008162820A (ja) * | 2006-12-27 | 2008-07-17 | Mitsubishi Electric Corp | 電圧非直線抵抗体とその製造方法 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA970476A (en) * | 1971-08-27 | 1975-07-01 | Matsushita Electric Industrial Co., Ltd. | Process for making a voltage dependent resistor |
US5277843A (en) | 1991-01-29 | 1994-01-11 | Ngk Insulators, Ltd. | Voltage non-linear resistor |
JPH11340009A (ja) * | 1998-05-25 | 1999-12-10 | Toshiba Corp | 非直線抵抗体 |
JP2003297612A (ja) | 2002-04-03 | 2003-10-17 | Mitsubishi Electric Corp | 電圧非直線抵抗体およびその製造方法 |
JP4292901B2 (ja) * | 2002-08-20 | 2009-07-08 | 株式会社村田製作所 | バリスタ |
US7683753B2 (en) * | 2007-03-30 | 2010-03-23 | Tdk Corporation | Voltage non-linear resistance ceramic composition and voltage non-linear resistance element |
-
2008
- 2008-11-17 JP JP2010537652A patent/JP5264929B2/ja not_active Expired - Fee Related
- 2008-11-17 CN CN200880131984.XA patent/CN102217010B/zh not_active Expired - Fee Related
- 2008-11-17 EP EP08878132.3A patent/EP2367178B1/en not_active Not-in-force
- 2008-11-17 WO PCT/JP2008/070860 patent/WO2010055586A1/ja active Application Filing
- 2008-11-17 US US13/125,942 patent/US8562859B2/en active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1012407A (ja) * | 1996-04-23 | 1998-01-16 | Mitsubishi Electric Corp | 電圧非直線抵抗体、電圧非直線抵抗体の製造方法および避雷器 |
JP2001052907A (ja) * | 1999-08-10 | 2001-02-23 | Toshiba Corp | セラミック素子とその製造方法 |
JP2001326108A (ja) * | 2000-05-18 | 2001-11-22 | Mitsubishi Electric Corp | 電圧非直線抵抗体およびその製造方法 |
JP2002217006A (ja) * | 2001-01-22 | 2002-08-02 | Toshiba Corp | 非直線抵抗体 |
JP2002305105A (ja) * | 2001-04-06 | 2002-10-18 | Mitsubishi Electric Corp | 電圧非直線抵抗体の製造方法 |
JP2002305104A (ja) * | 2001-04-06 | 2002-10-18 | Mitsubishi Electric Corp | 電圧非直線抵抗体およびその製造方法 |
JP2004238257A (ja) * | 2003-02-06 | 2004-08-26 | Mitsubishi Electric Corp | 電圧非直線抵抗体及びその製造方法 |
JP2008162820A (ja) * | 2006-12-27 | 2008-07-17 | Mitsubishi Electric Corp | 電圧非直線抵抗体とその製造方法 |
Non-Patent Citations (1)
Title |
---|
See also references of EP2367178A4 * |
Also Published As
Publication number | Publication date |
---|---|
CN102217010B (zh) | 2014-04-02 |
JPWO2010055586A1 (ja) | 2012-04-05 |
US8562859B2 (en) | 2013-10-22 |
US20110204287A1 (en) | 2011-08-25 |
CN102217010A (zh) | 2011-10-12 |
EP2367178A4 (en) | 2012-10-10 |
JP5264929B2 (ja) | 2013-08-14 |
EP2367178A1 (en) | 2011-09-21 |
EP2367178B1 (en) | 2014-03-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5327555B2 (ja) | 半導体セラミック及び正特性サーミスタ | |
JPH11340009A (ja) | 非直線抵抗体 | |
KR100812425B1 (ko) | 전류-전압 비직선 저항체 | |
JP5264929B2 (ja) | 電圧非直線抵抗体の製造方法 | |
CN1106021C (zh) | 非线性电压的电阻体与避雷器 | |
JP5065688B2 (ja) | 電流−電圧非直線抵抗体 | |
JP5334636B2 (ja) | 電圧非直線抵抗体、電圧非直線抵抗体を搭載した避雷器及び電圧非直線抵抗体の製造方法 | |
JP5388937B2 (ja) | 電圧非直線抵抗体及び電圧非直線抵抗体を搭載した避雷器 | |
JP4282243B2 (ja) | 非直線抵抗体 | |
EP2144256B1 (en) | Current/voltage nonlinear resistor | |
JP2008162820A (ja) | 電圧非直線抵抗体とその製造方法 | |
JP2012060003A (ja) | 電圧非直線抵抗体素子およびこの製造方法、並びに過電圧保護装置 | |
JP6937390B2 (ja) | 電流−電圧非直線抵抗体用材料、電流−電圧非直線抵抗体およびその製造方法 | |
JP5995772B2 (ja) | 電圧非直線抵抗体、その製造方法およびそれを含む過電圧保護装置 | |
JP2001326108A (ja) | 電圧非直線抵抗体およびその製造方法 | |
JP2005097070A (ja) | 酸化亜鉛系焼結体と酸化亜鉛バリスタ | |
JPH01228105A (ja) | 電圧非直線抵抗体の製造方法 | |
JP2003007512A (ja) | 非線形抵抗素子 | |
JP2002289408A (ja) | 電圧非直線抵抗体の製造法 | |
JPH0831615A (ja) | 電圧非直線抵抗体およびその製造方法 | |
KR20040078915A (ko) | 산화아연계 소결체와 그 제조방법 및 산화아연 바리스터 | |
JPS62282410A (ja) | 電圧非直線抵抗体素子の製造方法 | |
JP2001006904A (ja) | 電圧非直線抵抗体 | |
JPS62208605A (ja) | 電圧非直線抵抗体素子の製造方法 | |
JPH10241911A (ja) | 非直線抵抗体 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 200880131984.X Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 08878132 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2010537652 Country of ref document: JP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13125942 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2008878132 Country of ref document: EP |