WO2010054764A1 - Heteroaromatische verbindungen zur verwendung als hif-inhibitoren - Google Patents

Heteroaromatische verbindungen zur verwendung als hif-inhibitoren Download PDF

Info

Publication number
WO2010054764A1
WO2010054764A1 PCT/EP2009/007807 EP2009007807W WO2010054764A1 WO 2010054764 A1 WO2010054764 A1 WO 2010054764A1 EP 2009007807 W EP2009007807 W EP 2009007807W WO 2010054764 A1 WO2010054764 A1 WO 2010054764A1
Authority
WO
WIPO (PCT)
Prior art keywords
alkyl
ring
fluorine
cycloalkyl
substituted
Prior art date
Application number
PCT/EP2009/007807
Other languages
English (en)
French (fr)
Inventor
Michael Härter
Hartmut Beck
Peter Ellinghaus
Kerstin Berhoerster
Susanne Greschat
Karl-Heinz Thierauch
Frank SÜSSMEIER
Original Assignee
Bayer Schering Pharma Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE102008057364A external-priority patent/DE102008057364A1/de
Priority claimed from DE102009041241A external-priority patent/DE102009041241A1/de
Priority to CA2743424A priority Critical patent/CA2743424A1/en
Priority to EP09744089A priority patent/EP2356112A1/de
Priority to CN2009801545900A priority patent/CN102282142A/zh
Priority to MX2011004779A priority patent/MX2011004779A/es
Application filed by Bayer Schering Pharma Aktiengesellschaft filed Critical Bayer Schering Pharma Aktiengesellschaft
Priority to RU2011123672/04A priority patent/RU2011123672A/ru
Priority to US13/129,409 priority patent/US20110301122A1/en
Priority to AU2009315930A priority patent/AU2009315930A1/en
Publication of WO2010054764A1 publication Critical patent/WO2010054764A1/de
Priority to IL212174A priority patent/IL212174A0/en
Priority to ZA2011/03444A priority patent/ZA201103444B/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D413/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms
    • C07D413/02Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing two hetero rings
    • C07D413/04Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/44Non condensed pyridines; Hydrogenated derivatives thereof
    • A61K31/4427Non condensed pyridines; Hydrogenated derivatives thereof containing further heterocyclic ring systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • A61P17/06Antipsoriatics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • A61P19/02Drugs for skeletal disorders for joint disorders, e.g. arthritis, arthrosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P27/00Drugs for disorders of the senses
    • A61P27/02Ophthalmic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P7/00Drugs for disorders of the blood or the extracellular fluid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/06Antiarrhythmics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/10Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/12Antihypertensives
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D413/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms
    • C07D413/14Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D417/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00
    • C07D417/14Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing three or more hetero rings

Definitions

  • the present application relates to novel substituted aryl compounds, processes for their preparation, their use for the treatment and / or prevention of diseases and their use for the preparation of medicaments for the treatment and / or prevention of diseases, in particular for the treatment and / or prevention of hyperproliferative and angiogenic diseases as well as those diseases which arise through a metabolic adaptation to hypoxic conditions.
  • Such treatments may be monotherapy or in combination with other medicines or other therapeutic measures.
  • Cancers are the result of uncontrolled cell growth of various tissues. In many cases, the new cells invade existing tissues (invasive growth) or they metastasize to distant organs. Cancers occur in various organs and often have tissue-specific disease courses. Therefore, the term cancer as a generic term describes a large group of defined diseases of various organs, tissues and cell types.
  • early stage tumors may be removed by surgical and radiotherapeutic measures.
  • metastatic tumors can only be treated palliatively by chemotherapeutic agents.
  • the goal here is to achieve the optimal combination of improving the quality of life and extending the lifetime.
  • Chemotherapies often consist of combinations of cytotoxic drugs. The majority of these substances have a binding mechanism to tubulin, or they are compounds that interact with the formation and processing of nucleic acids. More recently, these include enzyme inhibitors that interfere with epigenetic DNA modification or cell cycle progression (eg, histone deacetylase inhibitors, Aurora kinase inhibitors). Since such therapies are toxic, more and more recently, targeted therapies are being used in which specific processes in the cell are blocked, without any high toxic load occurs. These include in particular inhibitors of kinases which inhibit the phosphorylation of receptors and signal transduction molecules. An example of this is imatinib, which is used very successfully for the treatment of chronic myeloid leukemia (CML) and gastrointestinal stromal tumors (GIST).
  • CML chronic myeloid leukemia
  • GIST gastrointestinal stromal tumors
  • EGFR-kinase and HER2-blocking substances such as erlotinib and VEGFR-kinase inhibitors such as sorafenib and sunitinib, which are used in renal cell carcinoma, liver carcinoma and advanced stages of GIST.
  • Bevacizumab inhibits blood vessel growth, which hinders the rapid expansion of a tumor, as it requires a connection to the blood vessel system for a continuously functioning supply and disposal.
  • hypoxia hypoxia
  • FIH factor inhibiting HIF
  • HIF can be degraded via the proteasome apparatus via the Hippel Lindau protein (part of a ubiquitin E3 ligase complex) (Maxwell, Wiesener et al., 1999). In the absence of oxygen, breakdown is avoided, the protein is up-regulated and leads to the transcription or blockade of the transcription of numerous (more than 100) other proteins (Semenza and Wang, 1992, Wang and Semenza, 1995).
  • the transcription factor HIF is formed by the regulated ⁇ - and a constitutively present ⁇ -subunit (ARNT).
  • ARNT ⁇ -subunit
  • the FTTF subunits are bHLH (basic helix loop helix) proteins which dimerize via their HLH and PAS (per-Arnt-Sim) domains, which starts their transactivating activity (Jiang, Rue et al. , 1996).
  • HIFl ⁇ protein In the most important tumor entities, overexpression of the HIFl ⁇ protein is correlated with increasing blood vessel density and increased VEGF expression (Hirota and Semenza, 2006). Equal- In time, the glucose metabolism is changed towards glycolysis, and the Krebs cycle is reduced in favor of the production of cell building blocks. This also implies a change in lipid metabolism. Such changes seem to ensure the survival of the tumors. On the other hand, if the activity of HIF is inhibited, then it would be possible to suppress the development of tumors.
  • the object of the present invention was thus to provide novel compounds which act as inhibitors of the transactivating effect of the transcription factor HIF and as such can be used for the treatment and / or prevention of diseases, in particular hyperproliferative and angiogenic diseases such as cancers
  • WO 2005/030121-A2 and WO 2007/065010-A2 claim the use of certain pyrazole derivatives for inhibiting the expression of HIF and HIF-regulated genes in tumor cells.
  • WO 2008/141731-A2 describes heteroaryl-substituted N-benzylpyrazoles as inhibitors of the HIF-regulation route for the treatment of cancers.
  • Heteroaryl-substituted 5- (1H-pyrazol-3-yl) -l, 2,4-oxadiazoles as cannabinoid receptor modulators for the treatment of various diseases are disclosed in US 2008/0255211-Al.
  • Further diaryl-substituted isoxazole and 1, 2,4-oxadiazole derivatives are described in WO 2009/029632-A1 as inhibitors of monoamine oxidase B for the treatment of psychiatric disorders.
  • the present invention relates to compounds of the general formula (I)
  • E J is a phenyl or pyridyl ring
  • R 6 and R 7 are independently hydrogen, (Ci-C 6) -alkyl or (C 3 -C 6) -cycloalkyl,
  • Trifluoromethoxy, (C r C 4 ) alkoxycarbonyl and (C 3 -C 6 ) cycloalkyl may be substituted
  • R 8 is hydrogen, amino, (C r C6) alkyl, (C 3 -C 6) cycloalkyl or 5- or 6-membered heteroaryl,
  • (Ci-Cs) alkyl up to three times with fluorine and up to twice, identically or differently, with a group selected from the group hydroxy, (C r C 4 ) alkoxy, trifluoromethoxy, (C r C 4 ) alkoxycarbonyl , (C 3 -C 6 ) -cycloalkyl, oxetanyl, tetrahydrofuranyl, tetrahydropyranyl and 5- or 6-membered heteroaryl
  • heteroaryl groups up to three times, identically or differently, with a radical selected from the group consisting of fluorine, chlorine, cyano, (C 1 -C 4 ) -alkyl, trifluoromethyl, (QC 4 ) -alkoxy and trifluoromethoxy
  • R 2 is hydrogen or a substituent selected from the group fluorine, chlorine, cyano, methyl, trifluoromethyl, hydroxy, methoxy and trifluoromethoxy,
  • R 3 is methyl, ethyl or trifluoromethyl
  • R 4 is hydrogen or a substituent selected from the group halogen, cyano,
  • cycloalkyl and heterocyclic groups in turn up to two times by identical or different radicals selected from the series fluorine, (C r C4) alkyl, hydroxy, (C 1 -Q) -alkoxy, oxo, amino, mono- (Ci-C 4) alkylamino, di- (dC 4) alkylamino, (C 1 -C 4) - alkylcarbonylamino, (C r C4) alkoxycarbonylamino, (CrC 4) alkylcarbonyl, (C 1 - C 4) - alkoxycarbonyl, aminocarbonyl, mono- (C r C4) alkylaminocarbonyl and di (C r C4) alkyl aminocarbonyl
  • heteroaryl groups in turn up to two times by identical or different radicals selected from the series comprising fluorine, chlorine, cyano, (C r C4) alkyl and (C 1 -C 4) - alkoxy
  • (C 3 -C 6) -cycloalkyl or 4- alkyl, to 6-membered heterocyclyl, - R 9 and R 10 are independently at each occurrence hydrogen, (C 1 -C O)
  • (C 1 -C 6 ) -alkyl is up to three times fluorine and up to twice, identically or differently, with a radical selected from the group consisting of hydroxy, (C 1 -C 4 ) -alkoxy, trifluoromethoxy, amino, mono (C r C 4) -alkylamino, di- (C r C 4) alkylamino, (C 1 - C 4) alkoxycarbonyl, (C 3 -C 6) cycloalkyl, and A- to 6-membered heterocyclyl may be substituted
  • said cycloalkyl and heterocyclyl groups up to two times by identical or different radicals selected from the series fluorine, (C r C4) alkyl, trifluoromethyl, hydroxy, (dC 4) -alkoxy, trifluoromethoxy, oxo, amino , mono- (C r C 4) alkylamino, di- (C r C 4) alkylamino, (C r C4) alkylcarbonyl and (C r C 4) - alkoxycarbonyl can be substituted, or
  • R 9 and R 10 in the case where both are attached to a nitrogen atom together with this nitrogen atom form a 4- to 6-membered heterocycle which is another ring heteroatom from the series N, O, S or S (O) 2 may contain up to two times, the same or different, with a radical selected from the series fluorine,
  • (Ci-C 4) -alkyl Trifiuormethyl, hydroxy, (C r C4) alkoxy, oxo, amino, mono- (Ci-C 4) alkylamino, di- (C r C 4) alkylamino, (C r C 4 ) -alkylcarbonyl and (C r C 4 ) -alkoxycarbonyl may be substituted,
  • R 5 is a substituent selected from the group fluorine, chlorine, cyano, methyl, trifluoromethyl and hydroxy
  • n is the number 0, 1 or 2
  • said cycloalkyl groups in turn up to two times, identically or differently, with a radical selected from the group consisting of fluorine, (C 1 -C 4 ) -alkyl, trifluoromethyl, hydroxy, (Q-C 4 ) -alkoxy, trifluoromethoxy and (C r C 4 ) alkoxycarbonyl may be substituted, and in which
  • R 6 and R 7 have the meanings given above
  • R 8 denotes hydrogen, (C r C6) alkyl, (C 3 -C 6) cycloalkyl or 5- or 6-membered hetero-aryl,
  • (C 1 -Co) -alkyl up to three times by fluorine and up to two times, identically or differently, with a residue selected from the series comprising hydroxyl, (Ci-C 4) -alkoxy, trifluoromethoxy, (C r C4) - Alkoxycarbonyl, (C 3 -C 6 ) cycloalkyl, oxetanyl, tetrahydrofuranyl, tetrahydropyranyl and 5- or 6-membered heteroaryl may be substituted
  • heteroaryl groups up to three times, identically or differently, with a radical selected from the group consisting of fluorine, chlorine, cyano, (C 1 -C 4 ) -alkyl, trifluoromethyl, (C 1 -C 4 ) -alkoxy and trifluoromethoxy
  • R 4 is hydrogen or a substituent selected from the group halogen, cyano,
  • said cycloalkyl and heterocyclic groups in turn up to two times by identical or different radicals selected from the series fluorine, (C r C4) alkyl, trifluoro- methyl, hydroxy, (Ci-C 4) alkoxy, trifluoromethoxy, oxo, amino, mono- (Ci-C 4) alkyl amino, di- (C] -C4) alkylamino, (Ci-C4) alkylcarbonylamino, (Ci-C 4) alkoxycarbonyl amino , (C r C4) alkylcarbonyl and (C r C 4) alkoxycarbonyl
  • heteroaryl groups in turn up to two times by identical or different radicals selected from the series comprising fluorine, chlorine, cyano, (C r C4) alkyl, trifluoromethyl, (C r C 4) -alkoxy and trifluoromethoxy
  • Compounds according to the invention are the compounds of the formula (I) and their salts, solvates and solvates of the salts comprising the compounds of the formulas below and their salts, solvates and solvates of the salts and of the formula (I) encompassed by formula (I), hereinafter referred to as exemplary compounds and their salts, solvates and solvates of the salts, as far as the compounds of formula (I), the compounds mentioned below are not already salts, solvates and solvates of the salts.
  • the compounds of the invention may exist in stereoisomeric forms (enantiomers, diastereomers).
  • the invention therefore includes the enantiomers or diastereomers and their respective mixtures. From such mixtures of enantiomers and / or diastereomers, the stereoisomerically uniform components can be isolated in a known manner; Preferably, chromatographic methods are used for this, in particular HPLC chromatography on achiral or chiral phase.
  • the present invention encompasses all tautomeric forms.
  • physiologically acceptable salts of the compounds according to the invention are preferred in the context of the present invention. Also included are salts which are themselves unsuitable for pharmaceutical applications but can be used, for example, for the isolation or purification of the compounds of the invention.
  • Physiologically acceptable salts of the compounds of the invention include acid addition salts of mineral acids, carboxylic acids and sulfonic acids, e.g. Salts of hydrochloric, hydrobromic, sulfuric, phosphoric, methanesulfonic, ethanesulfonic, benzenesulfonic, toluenesulfonic, naphthalenedisulfonic, formic, acetic, trifluoroacetic, propionic, lactic, tartaric, malic, citric, fumaric, maleic and benzoic acids.
  • Salts of hydrochloric, hydrobromic, sulfuric, phosphoric, methanesulfonic, ethanesulfonic, benzenesulfonic, toluenesulfonic, naphthalenedisulfonic formic, acetic, trifluoroacetic, propionic, lactic, tartaric, malic, citric, fumaric, maleic and benzoic
  • Physiologically acceptable salts of the compounds according to the invention also include salts of customary bases, such as, by way of example and by way of preference, alkali metal salts (for example sodium and potassium salts), alkaline earth salts (for example calcium and magnesium salts) and ammonium salts derived from ammonia or organic amines having from 1 to 16 carbon atoms, such as, by way of example and by way of illustration, ethylamine, diethylamine, triethylamine, ethyldiisopropylamine, monoethanolamine, diethanolamine, triethanolamine, dicyclohexylamine, dimethylaminoethanol, procaine, dibenzylamine, N-methylmorpholine, arginine, lysine, ethylenediamine and N-methylpiperidine.
  • customary bases such as, by way of example and by way of preference, alkali metal salts (for example sodium and potassium salts), alkaline earth salts (for example calcium and magnesium salt
  • solvates are those forms of the compounds according to the invention which form a complex in the solid or liquid state by coordination with solvent molecules. Hydrates are a special form of solvates that coordinate with water. As solvates, hydrates are preferred in the context of the present invention.
  • N-oxides of pyridyl rings and tertiary cyclic amine moieties contained in compounds of this invention are also encompassed by the present invention.
  • the present invention also includes prodrugs of the compounds of the invention.
  • prodrugs refers to compounds which themselves may be biologically active or inactive, but are converted during their residence time in the body to compounds of the invention (for example metabolically or hydrolytically).
  • substituents have the following meaning: and (C 1 -Ca) -AlkVl in the context of the invention are a straight-chain or branched alkyl radical having 1 to 6 or 1 to 4 carbon atoms. Preferred is a straight-chain or branched alkyl radical having 1 to 4 carbon atoms.
  • (C 2 -QVAlkenyl and (C 2 -Cd) -AIkCnVl are in the context of the invention a straight-chain or branched alkenyl radical having 2 to 6 or 2 to 4 carbon atoms and one double bond.
  • Preferred is a straight-chain or branched alkenyl radical having 2 to 4 Examples which may be mentioned by way of example and preferably include: vinyl, allyl, ⁇ -prop-1-en-1-yl, isopropenyl, 2-methyl-2-propen-1-yl, ⁇ -but-1-en-1-yl, w-but-2-en-1-yl and n-but-3-en-1-yl.
  • (C 2 -C 4) -AlkJnVl and (C 2 -Cd) -alkynyl are in the context of the invention a straight-chain or branched alkynyl radical having 2 to 6 or 2 to 4 carbon atoms and a triple bond. Preference is given to a straight-chain alkynyl radical having 2 to 4 carbon atoms.
  • Examples which may be mentioned by way of example include: acetyl, propionyl, -butyryl, -butyryl, M-pentanoyl and pivaloyl.
  • Tri-rCpCaValkylsilyl is in the context of the invention for a silyl group having three identical or different straight-chain or branched alkyl substituents, each having 1 to 4 carbon atoms. Examples which may be mentioned by way of example include trimethylsilyl, tert-butyldimethylsilyl and triisopropylsilyl.
  • (C 1 -Cd) -alkoxy is a straight-chain or branched alkoxy radical having 1 to 4 carbon atoms. Examples which may be mentioned are: methoxy, ethoxy, M-propoxy, isopropoxy, n-butoxy, / is-butoxy, sec-butoxy and tert-butoxy.
  • (C 1 -C 4 -alkoxycarbonyl in the context of the invention represents a straight-chain or branched alkoxy radical having 1 to 6 or 1 to 4 carbon atoms which is linked via a carbonyl group [-C (OO) -].
  • Mono- (C 1 -C 1 ) -alkylamino in the context of the invention represents an amino group having a straight-chain or branched alkyl substituent which has 1 to 4 carbon atoms.
  • Di- (C r Q> alkylamino the invention for an amino group having two identical or different straight-chain or branched alkyl substituents having in each case 1 to 4 carbon atoms is for the purposes of example and preferably be mentioned are:.
  • NN-dimethylamino NN-diethylamino, N-ethyl-N-methylamino, N-methyl-Nn-propylamino, N-isopropyl-N-methylamino, N-isopropyl-Nn-propylamino, N, N-diisopropylamino, N - "- butyl-N-methylamino and N-tert. - butyl-N-methylamino.
  • Examples which may be mentioned by way of example and with preference are: methylaminocarbonyl, ethylaminocarbonyl, .alpha.-propylaminocarbonyl, isopropylaminocarbonyl, H-butylaminocarbonyl, tert-butylaminocarbonyl, N, N-dimethylaminocarbonyl, N, N-diethylaminocarbonyl, N-ethyl-N-methylaminocarbonyl, N-methyl-N- -propylaminocarbonyl, N-isopropyl-N-methylaminocarbonyl, N, N-diisopropylaminocarbonyl, N, N-butyl-N-methylaminocarbonyl and N-tert-butyl-N-methylaminocarbonyl.
  • (C 1 -C 4 -alkylcarbonylamino represents an amino group having a straight-chain or branched alkylcarbonyl substituent which has 1 to 4 carbon atoms in the alkyl radical and is bonded to the ⁇ -atom via the carbonyl group, by way of example and preferably: acetylamino , Propionylamino, "-butyrylamino, / so-butyrylamino, n-pentanoylamino and pivaloylamino.
  • (CpCY) -Alkylcarbonyloxy in the context of the invention is an oxo radical having a straight-chain or branched alkylcarbonyl substituent which has 1 to 4 carbon atoms in the alkyl radical and is linked via the carbonyl group to the oxygen atom.
  • Examples which may be mentioned by way of example include: acetoxy, propionoxy, w-butyroxy, / so-butyroxy, w-pentanoyloxy and pivoyloxy.
  • CVCa VAlkoxycarbony lam ino in the context of the invention represents an amino group having a straight-chain or branched alkoxycarbonyl substituent which has 1 to 4 carbon atoms in the alkoxy radical and is linked to the ⁇ -atom via the carbonyl group.
  • CyCfiVcycloalkyl represents a monocyclic, saturated cycloalkyl group having 3 to 6 ring carbon atoms, by way of example and by way of preference: cyclopropyl, cyclobutyl, cyclopentyl and cyclohexyl.
  • 4- to 6-membered heterocyclyl is in the context of the invention for a monocyclic, saturated heterocycle having a total of 4 to 6 ring atoms containing one or two ring heteroatoms from the series N, O, S and / or S (O) 2 and is linked via a ring carbon atom or optionally via a ring nitrogen atom.
  • Preference is given to 4- to 6-membered heterocyclyl having one or two ring heteroatoms from the series N, O and / or S. may be mentioned by way of example: acetamido, oxetanyl, thietanyl, pyrrolidinyl, pyrazolidinyl, tetrahydrofuranyl, thiolanyl, 1,1 -Dioxidothiolanyl, 1,3-oxazolidinyl, 1,3-thiazolidinyl, piperidinyl, piperazinyl, tetrahydropyranyl, tetrahydrothiopyranyl, 1,3-dioxanyl, 1,4-dioxanyl, morpholinyl, thiomorpholinyl and 1,1-dioxothiomorpholinyl , Preference is given to azetidinyl, oxetanyl, pyrrolidinyl, tetrahydro
  • 5- or 6-membered heteroaryl is in the context of the invention for an aromatic heterocycle (heteroaromatic) with a total of 5 or 6 ring atoms, which contains up to three identical or different ring heteroatoms from the series N, O and / or S. a ring carbon atom or optionally linked via a ring nitrogen atom.
  • Examples which may be mentioned are: furyl, pyrrolyl, thienyl, pyrazolyl, imidazolyl, thiazolyl, oxazolyl, isoxazolyl, isothiazolyl, triazolyl, oxadiazolyl, thiadiazolyl, pyridyl, pyrimidinyl, pyridazinyl, pyrazinyl and triazinyl.
  • Halogen in the context of the invention includes fluorine, chlorine, bromine and iodine. Preference is given to chlorine, fluorine or bromine, more preferably fluorine or chlorine.
  • An oxo substituent in the context of the invention is an oxygen atom which is bonded via a double bond to a carbon atom.
  • radicals are substituted in the compounds according to the invention, the radicals can, unless otherwise specified, be monosubstituted or polysubstituted. In the context of the present invention, the meaning is independent of each other for all radicals which occur repeatedly. Substitution with one or two or three identical or different substituents is preferred. Particularly preferred is the substitution with one or two identical or different substituents.
  • the present invention relates, in particular, to those compounds of the general formula (I) in which the ring (AJ stands for a phenyl or pyridyl ring and the adjacent groups R 1 and
  • the ring (AJ is a pyridyl ring and the adjacent groups R 1 and CH 2 are bonded in 1,3- or 1,4-relative to each other at ring carbon atoms of this pyridyl ring
  • the ring (A) is a phenyl ring and the adjacent groups R 1 and CH 2 are bonded in 1,3- or 1,4-relative to one another to this phenyl ring and
  • (Ci-C 4) -alkyl and (C 2 -C 4) -alkynyl turn with a radical selected from the series comprising hydroxyl, (C r C 4) -alkoxy, trifluoromethoxy, trimethylsilyl, (C r C4) -alkoxycarbonyl and (C 3 -C 6 ) -cycloalkyl and may be substituted up to three times by fluorine
  • Oxetanyl, tetrahydrofuranyl, tetrahydropyranyl and said cycloalkyl groups in turn up to two times, same or different, selected from the group fluorine, (Ci-C 4 ) alkyl, trifluoromethyl, hydroxy, (Ci-C 4 ) alkoxy , Trifluoromethoxy and (C 1 -C 4 ) -alkoxycarbonyl may be substituted,
  • R 6 and R 7 independently of one another denote hydrogen, (C 1 -C 4 ) -alkyl or (C 3 -C 6 ) -cycloalkyl,
  • (C r C 4 ) -alkyl can be substituted by a radical selected from the series hydroxy, (Ci-C 4 ) - alkoxy, trifluoromethoxy and (C 3 -C 6 ) -cycloalkyl and up to three times with fluorine
  • the said cycloalkyl groups may be substituted up to twice, identically or differently, by a radical selected from the group consisting of fluoro, (C 1 -C 4 ) -alkyl, trifluoromethyl, hydroxyl, (QC 4 ) -alkoxy and trifluoromethoxy,
  • R 8 is hydrogen, amino, (C r C6) alkyl, (C 3 -C 6) cycloalkyl or 5- or 6-membered heteroaryl,
  • Tetrahydrofuranyl, tetrahydropyranyl and said cycloalkyl groups up to two times, identically or differently, with a radical selected from the group fluorine, (C r C 4 ) alkyl, trifluoromethyl, hydroxy, (C r C 4 ) alkoxy and (CpC 4 ) -
  • heteroaryl groups up to three times, identically or differently, with a radical selected from the group consisting of (Ci-Gi) -alkyl, trifluoromethyl, (Ci-C 4 ) - alkoxy and trifluoromethoxy
  • R 2 is hydrogen or a substituent selected from the group fluorine, chlorine, methyl, trifluoromethyl, methoxy and trifluoromethoxy,
  • R 3 is methyl, ethyl or trifluoromethyl
  • the said cycloalkyl and heterocyclyl groups in turn up to twice, identically or differently, with a radical selected from the group fluorine, (C r C 4 ) alkyl, hydroxy, (C r C 4 ) alkoxy, oxo, (C r C 4 ) -alkylcarbonyl, mono- (Ci-C 4 ) -alkylaminocarbonyl and di- (C] -C 4 ) -alky lam inocarbony 1
  • the said heteroaryl groups in turn up to twice, identically or differently, with a radical selected from the group fluorine, chlorine, cyano, (C] -C 4 ) alkyl and (C] -C 4 ) - alkoxy
  • (C] -C 4 ) -Alkoxy substituents in turn with hydroxy, (Ci-C 4 ) alkoxy, trifluoromethoxy, (Ci-C 4 ) alkoxycarbonyl, mono- (Ci-C 4 ) alkylaminocarbonyl or di (Ci -C 4 ) -alkylaminocarbonyl or may be substituted up to three times by fluorine, and in which
  • R 9 and R 10 independently of one another at each individual occurrence denote hydrogen, (C 1 -C 4 ) -alkyl, (C 3 -C 6) -cycloalkyl or 4- to 6-membered heterocyclyl,
  • cycloalkyl and heterocyclyl groups up to two times by identical or different radicals selected from the series fluorine, (Ci-C4) alkyl, tri- fluoromethyl, hydroxy, (C r C 4) -alkoxy, trifluoromethoxy , oxo and (C r C 4) alkyl carbonyl may be substituted,
  • R 9 and R 10 in the case where both are attached to a nitrogen atom together with this nitrogen atom form a 4- to 6-membered heterocycle which is another ring heteroatom from the series N, O, S or S (O) 2 and may contain up to two times by identical or different radicals selected from the series fluorine, (C r C4) alkyl, trifluoromethyl, hydroxy, (C r C4) alkoxy, oxo and (C r C 4 ) Alkylcarbonyl,
  • R 5 is a substituent selected from the group fluorine, chlorine and methyl
  • n is the number 0 or 1
  • the said cycloalkyl groups in turn up to two times, identically or differently, with a radical selected from the group fluorine, (Ci-C 4 ) alkyl, trifluoromethyl, hydroxy, (C 1 - C 4 ) alkoxy, trifluoromethoxy and (QC 4 ) alkoxycarbonyl may be substituted,
  • R 6 and R 7 have the meanings mentioned in the last-described embodiment
  • R 8 is hydrogen, (C 1 -C 6 ) -alkyl, (C 3 -C 6 ) -cycloalkyl or 5- or 6-membered heteroaryl,
  • Tetrahydrofuranyl, tetrahydropyranyl and said cycloalkyl groups up to two times, same or different, with a radical selected from the series
  • heteroaryl groups of up to three times by identical or different radicals selected from the series (C r C 4) -alkyl, trifluoromethyl, (QC 4) -
  • cycloalkyl and heterocyclic groups in turn up to two times by identical or different radicals selected from the series fluorine, (C r C4) alkyl, trifluoro- methyl, hydroxy, (Ci-C 4) alkoxy, Trifluoromethoxy, oxo and (C r C 4 ) alkylcarbonyl
  • heteroaryl groups in turn up to two times by identical or different radicals selected from the series comprising fluorine, chlorine, cyano, (Ci-C 4) -alkyl, trifluoromethyl, (C r C 4) -alkoxy and trifluoromethoxy
  • R 9 and R 10 have the meanings given in the last-described embodiment
  • R Liinngg f is a heteroaryl ring of the formula
  • CCi-C 4) -alkyl and (C may be 2 -C 4) alkynyl turn with a radical selected from the group of hydroxy, methoxy, ethoxy, trifluoromethoxy, cyclopropyl and cyclobutyl, and up to three times substituted by fluorine
  • Oxetanyl and tetrahydropyranyl may in turn be substituted by methyl, ethyl, hydroxy, methoxy or ethoxy
  • the said cyclopropyl and cyclobutyl groups may in turn be substituted up to twice, identically or differently, by a radical selected from the group consisting of fluorine, methyl, ethyl and trifluoromethyl,
  • R 6 and R 7 independently of one another denote hydrogen, (C 1 -C 4 ) -alkyl or (C 3 -C 6 ) -cycloalkyl,
  • (C 1 -C 4 ) -alkyl can be substituted by one radical selected from the series hydroxy, methoxy, ethoxy, trifluoromethoxy, cyclopropyl and cyclobutyl and up to three times by fluorine,
  • R 8 is hydrogen, (C r C4) alkyl, (C 3 -C 6) cycloalkyl or 5- or 6-membered hetero aryl means,
  • (C r C 4 ) -alkyl having a radical selected from the series hydroxy, methoxy, ethoxy, trifluoromethoxy, (C 3 -C 6 ) -cycloalkyl, tetrahydrofuranyl, tetrahydropyranyl and 5- or 6-membered heteroaryl and up to three times with Fluorine can be substituted
  • Tetrahydrofuranyl, tetrahydropyranyl and said cycloalkyl groups up to two times, same or different, with a radical selected from the group fluorine, methyl, ethyl, trifluoromethyl, hydroxy, methoxy and ethoxy
  • heteroaryl groups up to three times, identically or differently, with a radical selected from the group consisting of methyl, ethyl and trifluoromethyl
  • R 2 is hydrogen or a substituent selected from the group fluorine, chlorine, methyl and methoxy,
  • R 3 is methyl
  • the said cycloalkyl and heterocyclyl groups in turn may be substituted up to twice, identically or differently, by a radical selected from the group consisting of fluorine, (C 1 -C 4 ) -alkyl, (C 1 -C 4 ) -alkoxy and oxo,
  • R 9 and R 10 independently of one another each occurrence represent hydrogen, (Q-C 4 ) -alkyl or (C 3 -C 6 ) -cycloalkyl, wherein (Ci-C 4) -alkyl with a radical selected from the series comprising hydroxyl, (C r C 4) - may be alkoxy, trifluoromethoxy, and (C 3 -C 6) cycloalkyl, and up to trisubstituted by fluorine
  • cycloalkyl groups of up to two times by identical or different radicals selected from the series fluorine, (C r C4) alkyl, trifluoromethyl, (Q- C4) -alkoxy and trifluoromethoxy,
  • R 9 and R 10 when both are attached to a nitrogen atom, together with this nitrogen atom form a 4- to 6-membered heterocycle which is another
  • Ring heteroatom from the series N, O, S or S (O) 2 and which may contain up to twice, identically or differently, a radical selected from the group fluorine, (C 1 -C 4 ) -alkyl, hydroxy, ( C] -C 4 ) alkoxy, oxo, acetyl and propionyl may be substituted,
  • R 5 is fluorine
  • n is the number 0 or 1
  • (C 1 -C 4 ) -alkyl and (C 2 -C 4 ) -alkynyl may in turn be substituted by one radical selected from the series hydroxy, methoxy, ethoxy, trifluoromethoxy, cyclopropyl and cyclobutyl and up to three times by fluorine
  • cyclopropyl and cyclobutyl groups may in turn be substituted up to twice, identically or differently, by a radical selected from the group consisting of fluorine, methyl, ethyl and trifluoromethyl,
  • R 6 , R 7 and R 8 have the meanings given in the last-described embodiment
  • (C 1 -C 6 ) -alkyl in turn contains a radical selected from the group -OR 9 , -NR 9 R 10 ,
  • -CX O) -NR 9 R 1 °, (C 3 -C 6 ) -cycloalkyl and 4- to 6-membered heterocyclyl and may be substituted up to three times by fluorine
  • said cycloalkyl and heterocyclic groups in turn up to two times by identical or different radicals selected from the series fluorine, (C r C4) alkyl, trifluoromethyl, (C] -G t) -alkoxy, trifluoromethoxy, and oxo can be substituted
  • R 9 and R 10 have the meanings given in the last-described embodiment
  • (C 1 -C 4 ) -alkyl and (C 2 -C 4 ) -alkynyl may in turn be substituted by one radical selected from the series hydroxy, methoxy, ethoxy, trifluoromethoxy, cyclopropyl and cyclobutyl and up to three times by fluorine
  • Oxetanyl and tetrahydropyranyl may in turn be substituted by methyl, ethyl, hydroxy, methoxy or ethoxy
  • the said cyclopropyl and cyclobutyl groups may in turn be substituted up to twice, identically or differently, by a radical selected from the group consisting of fluorine, methyl, ethyl and trifluoromethyl,
  • R 6 and R 7 independently of one another denote hydrogen, (C 1 -C 4 ) -alkyl or (C 3 -C 6 ) -cycloalkyl,
  • CC r C 4 ) -alkyl may be substituted by a radical selected from the series hydroxy, methoxy, ethoxy, trifluoromethoxy, cyclopropyl and cyclobutyl and up to three times with fluorine,
  • R 8 is hydrogen, CC r C 4 ) -alkyl, (C 3 -C 6 ) -cycloalkyl or 5- or 6-membered heteroaryl,
  • Tetrahydrofuranyl, tetrahydropyranyl and said cycloalkyl groups up to two times, same or different, with a radical selected from the group fluorine, methyl, ethyl, trifluoromethyl, hydroxy, methoxy and ethoxy
  • heteroaryl groups up to three times, identically or differently, with a radical selected from the group consisting of methyl, ethyl and trifluoromethyl
  • R 2 is hydrogen or a substituent selected from the group fluorine, chlorine, methyl and methoxy,
  • R 3 is methyl
  • the said cycloalkyl and heterocyclyl groups in turn may be substituted up to twice, identically or differently, by a radical selected from the group consisting of fluorine, (C 1 -C 4 ) -alkyl, (C 1 -C 4 ) -alkoxy and oxo,
  • R 9 and R 10 independently of one another at each occurrence represent hydrogen, (C 1 -C 4 ) -alkyl or (C 3 -C 6 ) -cycloalkyl, where (Ci-GO-alkyl having one radical selected from the series hydroxy, (C r C 4 ) - alkoxy, trifluoromethoxy and (C 3 -C 6 ) cycloalkyl and may be substituted up to three times with fluorine
  • the said cycloalkyl groups may be substituted up to twice, identically or differently, by a radical selected from the group consisting of fluoro, (C 1 -C 4 ) -alkyl, trifluoromethyl, ((LVC 4 ) -alkoxy and trifluoromethoxy,
  • R 9 and R 10 when both are attached to a nitrogen atom, together with this nitrogen atom form a 4- to 6-membered heterocycle which is another
  • R 5 is fluorine
  • n is the number 0 or 1
  • cyclopropyl and cyclobutyl groups may in turn be substituted up to two times, identically or differently, by a radical selected from the group consisting of fluorine, methyl, ethyl and trifluoromethyl,
  • the said cycloalkyl and heterocyclyl groups in turn may be substituted up to two times, identically or differently, by a radical selected from the group fluorine, (C 1 -C 4 ) -alkyl, trifluoromethyl, (QG t ) -alkoxy, trifluoromethoxy and oxo .
  • R 9 and R 10 have the meanings given in the last-described embodiment
  • R Liinngg ((D D)) represents a heteroaryl ring of the formula
  • R 1 is methyl or the group -NR 6 R 8 , wherein R 6 is hydrogen, methyl, ethyl or cyclopropyl,
  • R 8 (C r C4) alkyl or (C 3 -C 6) -cycloalkyl
  • (C r C 4 ) -alkyl having a radical selected from the group hydroxy, methoxy, ethoxy, (C 3 -C 6 ) -cycloalkyl, tetrahydrofuranyl, tetrahydropyranyl and 5- or 6-membered heteroaryl and up to three times substituted with fluorine can be
  • Tetrahydrofuranyl, tetrahydropyranyl and said cycloalkyl groups up to two times, same or different, with a radical selected from the group fluorine, methyl, ethyl, trifluoromethyl, hydroxy, methoxy and ethoxy
  • heteroaryl group up to three times, identically or differently, with a radical selected from the group consisting of methyl, ethyl and trifluoromethyl
  • R 2 is hydrogen
  • R 3 is methyl
  • said cycloalkyl and heterocyclyl groups in turn up to twice, identically or differently, with a radical selected from the group fluorine, (C r C 4 ) alkyl, trifluoromethyl, (Ci-C 4 ) alkoxy, trifluoromethoxy and oxo substituted could be, wherein the said (C 1 -C 4 ) -alkyl substituent in turn may be substituted by methoxy, trifluoromethoxy or ethoxy,
  • R 9 and R 10 are independently at each occurrence hydrogen, (Ci-C4) - alkyl or (C 3 -C 6) -cycloalkyl,
  • (Ci-C 4) -alkyl with a radical selected from the series comprising hydroxyl, (C r C 4) - may be alkoxy, trifluoromethoxy, and (C 3 -C 6) cycloalkyl, and up to trisubstituted by fluorine
  • the said cycloalkyl groups may be substituted up to twice, identically or differently, by a radical selected from the group consisting of fluorine, (C 1 -C 4 ) -alkyl, trifluoromethyl, (C 1 -C 4 ) -alkoxy and trifluoromethoxy,
  • R 9 and R 10 when both are attached to a nitrogen atom, together with this nitrogen atom form a 4- to 6-membered heterocycle which is another
  • R 5 is fluorine
  • n is the number 0 or 1
  • the said cycloalkyl and heterocyclyl groups in turn up to two times, identically or differently, with a radical selected from the group fluorine, (C r C 4 ) alkyl, trifluoromethyl, (QG t ) -alkoxy, trifluoromethoxy and oxo substituted could be,
  • R 9 and R 10 have the meanings given in the last-described embodiment
  • denotes the point of attachment to the adjacent CH 2 group
  • the ring f represents a heteroaryl ring of the formula
  • O - N represents N-O, in which
  • R 6 and R 7 independently of one another are hydrogen, (C) -C 4 ) -alkyl or (C 3 -C 6 ) -cycloalkyl,
  • (C 1 -C 4 ) -alkyl may be substituted by a radical selected from the series hydroxy, methoxy, ethoxy, cyclopropyl and cyclobutyl and up to three times by fluorine,
  • R 2 is hydrogen
  • (Ci-Q) -alkyl in turn having a radical selected from the group -OR 9 , -NR 9 R 10 ,
  • the said cycloalkyl and heterocyclyl groups in turn up to two times, identically or differently, with a radical selected from the group fluorine, (Ci-C 4 ) alkyl, trifluoromethyl, (Ci-C 4 ) alkoxy, trifluoromethoxy and Oxo may be substituted,
  • R 9 and R 10 independently of one another each time hydrogen, (Ci-C 4 ) -
  • (C 1 -C 4 ) -alkyl can be substituted by one radical selected from the series hydroxy, (C 1 -C 4 ) -alkoxy, trifluoromethoxy and (C 3 -C 6 ) -cycloalkyl and up to three times by fluorine
  • cycloalkyl groups of up to two times by identical or different radicals selected from the series fluorine, (C r C4) alkyl, Trifiuormethyl, (C r C 4) -alkoxy and trifluoromethoxy,
  • Nitrogen atom form a 4- to 6-membered heterocycle which may contain a further ring heteroatom from the series N, O, S or S (O) 2 and which up to two times, identically or differently, with a radical selected from the series fluorine, (Ci-C 4) alkyl, hydroxy, (C r C4) alkoxy, oxo, acetyl and propionyl may be substituted, R 5 is fluorine
  • n is the number 0 or 1
  • (C 1 -C 6 ) -alkyl in turn contains a radical selected from the group -OR 9 , -NR 9 R 10 ,
  • the said cycloalkyl and heterocyclyl groups in turn up to twice, identically or differently, with a radical selected from the group fluorine, (C r C 4 ) alkyl, trifluoromethyl, (Q-Gi) -alkoxy, trifluoromethoxy and oxo can be substituted
  • R 9 and R 10 have the meanings given in the last-described embodiment
  • Process A (with the variants Al and A.2, see Schemes 1 and 2) is characterized in that compounds of the formula (FV) in which B, D, E, R 3 , R 4 , R 5 and n are as above have been described and in which the indicated hydrogen atom is bonded to a nitrogen atom of the ring B, are reacted with compounds of formula (II) or (Ul) in which A, R 1 and R 2 have the meanings described above and in which Y 1 generally represents an atom or a group from which or with the aid of which, if appropriate, the substituent R 1 can be constructed or introduced, and in which X is a leaving group.
  • FV compounds of the formula (FV) in which B, D, E, R 3 , R 4 , R 5 and n are as above have been described and in which the indicated hydrogen atom is bonded to a nitrogen atom of the ring B, are reacted with compounds of formula (II) or (Ul) in which A, R 1 and R 2 have the meaning
  • Examples of Y 1 are chlorine, bromine, iodine, cyano, nitro, hydroxy, formyl, carboxyl and alkoxycarbonyl; Examples of X are chlorine, bromine, iodine, methanesulfonate (mesylate), trifluoromethanesulfonate (triflate) and 4-methylbenzenesulfonate (tosylate).
  • Imidazole-l, 4-diyl This reaction is preferably carried out using a base such as potassium tert. Butylate or sodium hydride in solvents such as tetrahydrofuran or toluene at temperatures between 0 0 C and the boiling point of the solvent.
  • process B (Schemes 3 and 4), the ring D is built up, the ring D here being a 1,2,4-oxadiazole. Method B is also used in various modifications. tion (variants Bl and B.2).
  • Process variant B.2 is similar to process variant A.2 with regard to the partial reactions which relate to the conversion of the radical Y 1 into the substituent R 1 . In the following, therefore, only the variant B1 will be shown in more detail (scheme 3).
  • reaction of the compounds of the formula (VI) with the compounds of the formula (VIII) is carried out in the presence of coupling reagents, for example 1H-benzotriazol-1-ol and N- [3- (dimethylamino) propyl] -N'- ethylcarbodiimide hydrochloride, as well as in the presence of tertiary amine bases, such as, for example, triethylamine, and in suitable solvents, for example N, N-dimethylformamide.
  • the reactants are first reacted with each other for some time at room temperature before the mixture is then heated to temperatures in the range of +80 0 C to +140 0 C.
  • the compounds of formula (VI) may first be converted to the corresponding carboxylic acid chlorides.
  • chlorination reagents such as oxalyl chloride or thionyl chloride
  • inert solvents such as dichloromethane or chloroform
  • the reaction is preferably carried out at room temperature and in the presence of a catalytic amount of N, N-dimethylformamide.
  • the acid chloride thus obtained is subsequently reacted with the compounds of the formula (VIII).
  • the compounds of the formula (VI) are reacted with the aminoalcohols of the formula (LX) in the presence of coupling reagents, for example 0- (7-azabenzotriazol-1-yl) -N, N, N'N'-tetramethyluronium hexafluorophosphate , reacted to intermediates of formula (X).
  • the reaction is carried out at room temperature in the presence of tertiary amine bases, such as triethylamine, in polar aprotic solvents such as N, N-dimethylformamide.
  • the subsequent cyclization to the compounds of the formula (XI) is achieved with the aid of a cyclization reagent, such as, for example, and preferably with Burgess reagent (carbomethoxysulfamoyltriethylammonium hydroxide).
  • a cyclization reagent such as, for example, and preferably with Burgess reagent (carbomethoxysulfamoyltriethylammonium hydroxide).
  • suitable solvents such as tetrahydrofuran
  • the final oxidation to the 1,3-oxazole derivatives of formula (IB) can be carried out with various oxidizing agents; is preferred the oxidation with activated manganese dioxide in tetrahydrofuran at the boiling point of the solvent.
  • the substituent R 1 in the target compounds of the formula (I) is the group -NR 6 R 8 , in which R 6 and R 8 have the meanings described above, and Y 1 is chlorine, bromine or iodine
  • the intermediates of the Formula (V) with amines of the formula (XII) implemented (see Scheme 6).
  • a tertiary amine as auxiliary base such as NN-diisopropylethylamine
  • the reaction preferably takes place in solvents such as diethylene glycol dimethyl ether or N-methylpyrrolidinone, or the compounds of the formula (XII), used in excess, are themselves solvents.
  • the reaction is carried out at elevated temperature, preferably in a temperature range between +80 0 C and +200 0 C. Reactions in the upper part of said temperature interval are preferably carried out in closed pressure vessels in a microwave oven.
  • the substituent R 1 in the target compounds of the formula (I) is an optionally substituted alkynyl or alkyl group and Y 1 is chlorine, bromine or iodine
  • the intermediates of the formula (V) can be reacted, for example, with propargyl alcohol (XIII ) are converted into products of the formula (ID) (see Scheme 7).
  • the reaction is preferably carried out at room temperature in an aprotic solvent such as tetrahydrofuran in the presence of an amine base such as triethylamine and a palladium catalyst such as tetrakis (triphenylphosphine) palladium (0) and copper (I) iodide (variant of the so-called “Sonogashira coupling").
  • an aprotic solvent such as tetrahydrofuran
  • an amine base such as triethylamine
  • a palladium catalyst such as tetrakis (triphenylphosphine) palladium (0) and copper (I) iodide (variant of the so-called “Sonogashira coupling"
  • An optional subsequent reduction of the alkyne bond to products of formula (IE) is carried out with hydrogen, preferably under normal pressure or at elevated pressure of up to about 100 bar in the presence of a metal catalyst, preferably based on platinum, palladium or
  • Scheme 9 describes the preparation of pyrazole and imidazole derivatives of the formula (VII) starting from compounds of the formula (XV) in which the ring B is 1H-pyrazole-1, 3-diyl or 1H-imidazole-1, 4 Diyl is attached, the hydrogen indicated to the N 'nitrogen atom of the ring B is bound and R 3 has the meaning given above.
  • These compounds are reacted with the compounds of the formula (III) to give intermediates of the formula (XVI).
  • the reaction conditions here are the same as those described in Process A.2 (Scheme 2).
  • the ester hydrolysis in the second reaction step takes place under standard conditions, for example with sodium hydroxide in methanol or ethanol as solvent at temperatures ranging from room temperature to +60 0 C.
  • Scheme 9 Construction of compounds of formula (VII)
  • Such compounds of the formula (IF) can be prepared by reacting an N-hydroxyamidine of the formula (VIII)
  • Y is chlorine, bromine or iodine
  • Y is chlorine, bromine or iodine
  • the starting compounds of the formulas (II), (III), (VIII), (IX), (XII), (XIII), (XIV), (XV), (XVII), (XX), (XXII) and (XXTV ) are either commercially available or described as such in the literature, or they can be prepared in a manner obvious to one skilled in the art, analogously to methods published in the literature. Numerous detailed instructions as well as literature references for the preparation of the starting materials can be found in the Experimental Section in the section on the preparation of the starting compounds and intermediates.
  • the compounds according to the invention have valuable pharmacological properties and can be used for the prevention and treatment of diseases in humans and animals.
  • the compounds according to the invention are highly potent inhibitors of the HIF regulation pathway and have good bioavailability after peroral administration.
  • the compounds according to the invention are particularly suitable for the treatment of hyperproliferative disorders in humans and in mammals in general.
  • the compounds can inhibit, block, reduce or decrease cell proliferation and cell division and, on the other hand, potentiate apoptosis.
  • the hyperproliferative diseases for the treatment of which the compounds according to the invention can be used include, among others, psoriasis, keloids, scarring and other proliferative disorders of the skin, benign diseases such as benign prostatic hyperplasia (BPH), and in particular the group of tumor diseases.
  • benign diseases such as benign prostatic hyperplasia (BPH)
  • BPH benign prostatic hyperplasia
  • tumor diseases include, but are not limited to, breast carcinomas and breast tumors (ductal and lobular forms, also in situ), respiratory tumors (small cell and non-small cell carcinoma, bronchial carcinoma).
  • brain tumors eg of the brain stem and the hypothalamus, astrocytoma, medulloblastoma, ependymoma as well as neuro-ectodermal and pineal tumors
  • tumors of the digestive organs esophagus, stomach, gallbladder, small intestine, large intestine, rectum
  • liver tumors eg hepatocellular carcinoma , Cholangiocarcinoma and mixed-hepatocellular cholangiocarcinoma
  • tumors of the head and neck laarynx, hypopharynx, nasopharynx, oropharynx, lips and oral cavity
  • skin tumors squamous cell carcinoma, Kaposi's sarcoma, malignant melanoma, melanoma skin cancer and non-melanoma skin cancer
  • Tumors of the soft tissues including soft tissue sarcomas, osteosarcomas, malignant fibrous histiocytomas,
  • lymphomas include leukemias and myeloproliferative diseases, eg acute myeloid, acute lymphoblastic, chronic lymphocytic, chronic myelogenous and Haarzeil leukemia, as well as AIDS-correlated lymphomas, Hodgkin's disease. Lymphomas, non-Hodgkin's lymphomas, cutaneous T-cell lymphomas, Burkitt lymphomas and lymphomas in the central nervous system.
  • treatment or “treating” is used conventionally within the context of this invention and means the care, care and supervision of a patient with the aim of combating, reducing, alleviating or alleviating a disease or health deviation and improving living conditions that are affected by this disease, such as cancer.
  • the compounds according to the invention act as modulators of the HIF regulation pathway and are therefore also suitable for the treatment of diseases which are associated with a detrimental expression of the HIF transcription factor.
  • the term "harmful expression of HIF” herein means a non-normal physiological presence of HIF protein. This may be due to excessive synthesis of the protein (due to mRNA or translation), reduced degradation or insufficient counterregulation in the function of the transcription factor.
  • HIF-1 ⁇ and HIF-2 ⁇ regulate more than 100 genes.
  • HIF also plays an important role in the stem cells, in particular the tumor stem cells, which are reported to have elevated HIF levels.
  • the inhibition of the HIF-regulation pathway by the compounds of the present invention also therapeutically influences tumor stem cells which do not have a high proliferation rate and are therefore only insufficiently affected by cytotoxic substances (see Semenza, 2007, Weidemann and Johnson, 2008).
  • HIF inhibitors - such as the compounds of the present invention - are therapeutically useful in those contexts in which, for example, adaptation of cells to hypoxic situations causes additional damage, as damaged cells, if not functioning properly, can cause further damage.
  • An example of this is the formation of epileptic foci in partially destroyed tissue after strokes.
  • cardiovascular disease when ischemic processes occur in the heart or brain as a result of thromboembolic events, inflammation, wounding, intoxication or other causes. These can lead to damage such as a locally slowed down action potential, which in turn can cause arrhythmias or chronic heart failure.
  • transient form e.g. Through apnea, an essential increase in blood pressure may occur under certain circumstances, which can lead to known sequelae such as stroke and myocardial infarction.
  • the inhibition of the HIF-regulation pathway as achieved by the compounds according to the invention can therefore also be used in diseases such as cardiac insufficiency, arrhythmia, myocardial infarction, apnea-induced hypertension, pulmonary hypertension, transplantation ischemia, reperfusion damage, stroke and macular degeneration as well as for the recovery of the nerve function be helpful after traumatic injury or severance.
  • diseases such as cardiac insufficiency, arrhythmia, myocardial infarction, apnea-induced hypertension, pulmonary hypertension, transplantation ischemia, reperfusion damage, stroke and macular degeneration as well as for the recovery of the nerve function be helpful after traumatic injury or severance.
  • HIF is one of the factors controlling the transition from an epithelial to a mesenchymal cell type, which is particularly important for the lung and kidney
  • the compounds of the invention can also be used to access HIF-associated lung and kidney fibroses prevent or curb.
  • Other diseases for the treatment of which the compounds according to the invention can be used are inflammatory joint diseases, such as various forms of arthritis, as well as inflammatory bowel diseases, such as, for example, Crohn's disease.
  • Chugwash polycythemia is mediated by HIF-2 ⁇ activity during erythropoiesis, among others in the spleen.
  • the compounds according to the invention as inhibitors of the HIF regulation route, are therefore also suitable for suppressing the excessive formation of erythrocytes here and thus for alleviating the effects of this disease.
  • the compounds of the present invention may also be used to treat diseases associated with excessive or abnormal angiogenesis. These include diabetic retinopathy, ischemic retinal vein occlusion and retinopathy in preterm birth (see Aiello et al., 1994, Peer et al., 1995), age-related macular degeneration (AMD, Lopez et al., 1996), neovascular glaucoma, psoriasis , retrolental fibroplasia, angiofibroma, inflammation, rheumatoid arthritis (RA), restenosis, / n-5 / e «/ - restenosis and restenosis after vascular implantation.
  • diseases associated with excessive or abnormal angiogenesis include diabetic retinopathy, ischemic retinal vein occlusion and retinopathy in preterm birth (see Aiello et al., 1994, Peer et al., 1995), age-related macular degeneration (AMD, Lopez et al., 1996)
  • Increased blood supply is also associated with cancerous neoplastic tissue, leading to accelerated tumor growth.
  • the growth of new blood and lymph vessels facilitates the formation of metastases and thus the spread of the tumor.
  • New lymphoid and blood vessels are also detrimental to allografts in immune-privileged tissues, such as the eye, which, for example, increases susceptibility to rejection.
  • Compounds of the present invention can therefore also be used to treat any of the aforementioned disorders, e.g. by inhibiting growth or reducing the number of blood vessels. This can be achieved via inhibition of endothelial cell proliferation or other mechanisms to prevent or attenuate vascularization and via reduction of neoplastic cells by apoptosis.
  • Another object of the present invention is the use of the compounds of the invention for the treatment and / or prevention of diseases, in particular the aforementioned diseases.
  • Another object of the present invention is the use of the compounds of the invention for the manufacture of a medicament for the treatment and / or prevention of Erkran- kungen, in particular the aforementioned diseases.
  • Another object of the present invention is the use of the compounds of the invention in a method for the treatment and / or prevention of diseases, in particular the aforementioned diseases.
  • Another object of the present invention is a method for the treatment and / or prevention of diseases, in particular the aforementioned diseases, using an effective amount of at least one of the compounds of the invention.
  • the compounds according to the invention can be used alone or as needed in combination with one or more other pharmacologically active substances, as long as this combination does not lead to undesired and unacceptable side effects.
  • Another object of the present invention are therefore pharmaceutical compositions containing at least one of the compounds of the invention and one or more other active ingredients, in particular for the treatment and / or prevention of the aforementioned diseases.
  • the compounds of the present invention may be combined with known anti-hyperproliferative, cytostatic or cytotoxic agents for the treatment of cancers.
  • the combination of the compounds according to the invention with other substances which are customary for cancer therapy or else with radiotherapy is therefore particularly indicated since hypoxic regions of a tumor respond only slightly to the aforementioned conventional therapies, whereas the compounds of the present invention in particular exert their activity there.
  • Suitable combination active ingredients are:
  • the compounds of the present invention may be combined with anti-hyperproliferative agents, which may be by way of example, without this enumeration being exhaustive:
  • the compounds of the present invention can also be combined with biological therapeutics such as antibodies (e.g., Avastin, Rituxan, Erbitux, Herceptin) and recombinant proteins which additively or synergistically enhance the effects of inhibiting HIF signaling pathway transfer.
  • biological therapeutics such as antibodies (e.g., Avastin, Rituxan, Erbitux, Herceptin) and recombinant proteins which additively or synergistically enhance the effects of inhibiting HIF signaling pathway transfer.
  • Inhibitors of the HIF-regulatory pathway can also provide positive effects in combination with other anti-angiogenic therapies, such as Avastin, axitinib, DAST, recentin, sorafenib, or sunitinib.
  • Combination with proteasome and mTOR inhibitors as well as antihormones and steroidal metabolic enzyme inhibitors are particularly suitable because of their favorable side-effect profile.
  • the compounds of the invention may also be used in conjunction with radiotherapy and / or surgical intervention.
  • Another object of the present invention are pharmaceutical compositions containing at least one compound of the invention, usually together with one or more inert, non-toxic, pharmaceutically suitable excipients, and their use for the purposes mentioned above.
  • the compounds according to the invention can act systemically and / or locally.
  • they may be applied in a suitable manner, e.g. oral, parenteral, pulmonary, nasal, sublingual, lingual, buccal, rectal, dermal, transdermal, cojunctival, otic or as an implant or stent.
  • the compounds according to the invention can be administered in suitable administration forms.
  • the compounds of the invention rapidly and / or modified donating application forms containing the compounds of the invention in crystalline and / or amorphized and / or dissolved form, such.
  • Tablets uncoated or coated tablets, for example with enteric or delayed-release or insoluble coatings which control the release of the compound of the invention
  • tablets or films / wafers rapidly breaking down in the oral cavity, films / lyophilisates
  • capsules e.g. Soft gelatin capsules
  • dragees granules, pellets, powders, emulsions, suspensions, aerosols or solutions.
  • Parenteral administration can be accomplished by bypassing a resorption step (e.g., intravenously, intraarterially, intracardially, intraspinal, or intralumbar) or by resorting to absorption (e.g., intramuscularly, subcutaneously, intracutaneously, percutaneously, or intraperitoneally).
  • a resorption step e.g., intravenously, intraarterially, intracardially, intraspinal, or intralumbar
  • absorption e.g., intramuscularly, subcutaneously, intracutaneously, percutaneously, or intraperitoneally.
  • parenteral administration are suitable as application forms u.a. Injection and infusion preparations in the form of solutions, suspensions, emulsions, lyophilisates or sterile powders.
  • Inhalation medicaments including powder inhalers, nebulizers
  • nasal drops solutions or sprays
  • lingual, sublingual or buccal tablets films / wafers or capsules
  • suppositories ear or ophthalmic preparations
  • vaginal capsules aqueous suspensions (lotions, shake mixtures), lipophilic suspensions
  • Ointments creams, transdermal therapeutic systems (eg patches), milk, pastes, foams, powdered powders, implants or stents.
  • the compounds according to the invention can be converted into the stated administration forms. This can be done in a conventional manner by mixing with inert, non-toxic, pharmaceutically suitable excipients.
  • excipients include excipients (for example microcrystalline cellulose, lactose, mannitol), solvents (for example liquid polyethylene glycols), emulsifiers and dispersants or wetting agents (for example sodium dodecyl sulfate, polyoxysorbitol oleate), binders (for example polyvinylpyrrolidone), synthetic and natural polymers (For example, albumin), stabilizers (eg, antioxidants such as ascorbic acid), dyes (eg, inorganic pigments such as iron oxides) and flavor and / or odoriferous.
  • excipients for example microcrystalline cellulose, lactose, mannitol
  • solvents for example liquid polyethylene glycols
  • emulsifiers and dispersants or wetting agents for example sodium dodecyl sulfate, polyoxysorbitol oleate
  • binders for example polyvinylpyrrolidone
  • synthetic and natural polymers for example,
  • the dosage is about 0.01 to 100 mg / kg, preferably about 0.01 to 20 mg / kg and most preferably 0.1 to 10 mg / kg of body weight.
  • Device type MS Micromass ZQ
  • Device type HPLC HP 1100 Series
  • UV DAD Column: Phenomenex Gemini 3 ⁇ , 30 mm x 3.00 mm
  • Eluent A 1 L of water + 0.5 ml of 50% formic acid
  • eluent B
  • Device Type MS Waters Micromass Quattro Micro
  • Device type HPLC Agilent 1100 series
  • Eluent A 1 L water + 0.5 ml 50% formic acid
  • eluent B 1 L acetonitrile + 0.5 ml 50% formic acid
  • Oven 50 ° C .
  • Device type MS Micromass ZQ
  • Device type HPLC Waters Alliance 2795; Column: Phenomenex syn ergi 2.5 ⁇ MAX-RP 100A Mercury 20mm x 4mm; Eluent A: 1 L water + 0.5 ml 50% formic acid, eluent B: 1 L acetonitrile + 0.5 ml 50% formic acid; Gradient: 0.0 min 90% A -> 0.1 min 90% A ⁇ 3.0 min 5% A ⁇ 4.0 min 5% A ⁇ 4.01 min 90% A; Flow: 2 ml / min; Oven: 50 ° C .; UV detection: 210 nm.
  • Instrument Micromass GCT, GC 6890; Column: Restek RTX-35, 15 m ⁇ 200 ⁇ m ⁇ 0.33 ⁇ m; constant flow with helium: 0.88 ml / min; Oven: 70 ° C; Inlet: 250 ° C; Gradient: 70 0 C, 30 ° C / min ⁇ 310 0 C (3 min hold).
  • Device Type MS Waters ZQ
  • Device type HPLC Agilent 1100 series
  • UV DAD Column: Thermo Hypersil GOLD 3 ⁇ , 20 mm x 4 mm
  • Eluent A 1 L water + 0.5 ml 50% formic acid
  • eluent B 1 L acetonitrile + 0.5 ml 50% formic acid
  • Flow 2 ml / min
  • UV detection 210 nm.
  • a suspension of dichloro (dimethyl) titanium prepared in a heptane / dichloromethane mixture as follows: The mixture was cooled 100 ml (100 mmol) of a 1 M solution of titanium tetrachloride in dichloromethane at -30 0 C, was added dropwise 100 ml (100 mmol) a 1 M solution of dimethylzinc in heptane and stirred for 30 min at -30 0 C after. This suspension was then cooled to -40 0 C and a solution of 10 g (39.5 mmol) l- (4-bromophenyl) -2,2,2-trifluoroethanone added in 50 ml of dichloromethane.
  • Step 4 4- (1,1,1-trifluoro-2-methylpropan-2-yl) benzenecarbonitrile
  • Step 5 N -hydroxy-4- (1,1,1-trifluoro-2-methylpropan-2-yl) benzenecarboxirnidamide
  • Step 1 4- (2-fluoropropan-2-yl) benzenecarbonitrile
  • Step 2 4- (2-Fluo-2-propen-2-yl) -N'-hydroxybenzenecarboximidamide
  • Step 3 2- ⁇ 3 - [4- (Dibenzylamino) phenyl] oxetan-3-yl ⁇ ethanol
  • Step 4 ⁇ 3 - [4- (Dibenzylamino) phenyl] oxetan-3-yl ⁇ acetaldehyde
  • Step 7 4- (3-Methyloxetan-3-yl) benzenecarbonitrile
  • Step 8 N'-hydroxy-4- (3-methyloxetan-3-yl) benzenecarboximidamide
  • Step 1 4- (3-Hydroxyoxetan-3-yl) benzenecarbonitrile
  • Step 2 4- (3-Fluorooxetan-3-yl) benzenecarbonitrile
  • Step 3 4- (3-Fluorooxetan-3-yl) -N'-hydroxybenzenecarboxime idam id
  • Step 1 4- (3-Methoxyoxetan-3-yl) benzenecarbonitrile
  • Step 1 4- (4-hydroxytetrahydro-2H-pyran-4-yl) benzenecarbonitrile
  • Step 2 4- (4-fluorotetrahydro-2H-pyran-4-yl) benzenecarbonitrile
  • Step 3 4- (4-fluorotetrahydro-2H-pyran-4-yl) -N'-hydroxybenzenecarboximidamide
  • Step 1 4- (4-Methoxytetrahydro-2H-pyran-4-yl) benzenecarbonitrile
  • the compounds listed in the following table were prepared by the method described in Example 23A from 5-methyl-1H-pyrazole 1-3-carboxylic acid, 5- (trifluoromethyl) -1H-pyrazole-3-carboxylic acid, 5-nitro-1H-pyrazole 3-carboxylic acid or 2-methyl-1H-imidazole-4-carboxylic acid hydrate and the corresponding N'-Hydroxybenzolcarboximidamiden prepared.
  • the reaction time during which it was stirred initially at RT was 0.5 to 4 h.
  • At 140 0 C was subsequently heated for 1 to 15 h.
  • Step 1 Ethyl 3 - [(tripropan-2-ylsilyl) oxy] benzenecarboxylate
  • Step 2 ⁇ 3 - [(Tripropan-2-ylsilyl) oxy] phenyl ⁇ methanol
  • Step 1 Ethyl 1 - [(6-chloro-pyridin-3-yl) methyl] -5-methyl-1H-pyrazole-3-carboxylate
  • Step 2 1 - [(6-Chloropyridin-3-yl) methyl] -5-methyl-1H-pyrazole-3-carboxylic acid
  • Step 2 Methyl 1 - [(6-chloropyridin-3-yl) methyl] -5-methyl-1H-pyrrole-3-carboxylate
  • Step 3 1 - [(6-Chloropyridin-3-yl) methyl] -5-methyl-1H-pyrrole-3-carboxylic acid
  • Step 1 Methyl 5-methyl-1 - (4-methylbenzyl) -1 H -pyrrole-3-carboxyyl lat
  • Step 2 Methyl 5- [hydroxy (4-methylphenyl) methyl] -1-methyl-1H-pyrrole-3-carboxylate
  • Step 1 Ethyl 4-hydroxy-5- (4-methylphenyl) -2-oxopent-3-enoate

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Veterinary Medicine (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Medicinal Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Cardiology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Diabetes (AREA)
  • Hematology (AREA)
  • Immunology (AREA)
  • Rheumatology (AREA)
  • Obesity (AREA)
  • Ophthalmology & Optometry (AREA)
  • Dermatology (AREA)
  • Urology & Nephrology (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Vascular Medicine (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Epidemiology (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Plural Heterocyclic Compounds (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
  • Pyridine Compounds (AREA)

Abstract

Die vorliegende Anmeldung betrifft neue substituierte Aryl-Verbindungen, Verfahren zu ihrer Herstellung, ihre Verwendung zur Behandlung und/oder Prävention von Krankheiten sowie ihre Verwendung zur Herstellung von Arzneimitteln zur Behandlung und/oder Prävention von Krankheiten, insbesondere zur Behandlung und/oder Prävention von hyperproliferativen und angiogenen Erkrankungen sowie solcher Erkrankungen, die durch eine metabolische Adaptation an hypoxische Zustände entstehen. Solche Behandlungen können als Monotherapie oder auch in Kombination mit anderen Arzneimitteln oder weiteren therapeutischen Maßnahmen erfolgen.

Description

HETEROAROMATISCHE VERBINDUNGEN ZUR VERWENDUNG ALS HIF-INHIBITOREN
Die vorliegende Anmeldung betrifft neue substituierte Aryl-Verbindungen, Verfahren zu ihrer Herstellung, ihre Verwendung zur Behandlung und/oder Prävention von Krankheiten sowie ihre Verwendung zur Herstellung von Arzneimitteln zur Behandlung und/oder Prävention von Krank- heiten, insbesondere zur Behandlung und/oder Prävention von hyperproliferativen und angiogenen Erkrankungen sowie solcher Erkrankungen, die durch eine metabolische Adaptation an hypoxische Zustände entstehen. Solche Behandlungen können als Monotherapie oder auch in Kombination mit anderen Arzneimitteln oder weiteren therapeutischen Maßnahmen erfolgen.
Krebserkrankungen sind die Folge unkontrollierten Zellwachstums verschiedenster Gewebe. In vielen Fällen dringen die neuen Zellen in bestehende Gewebe ein (invasives Wachstum), oder sie metastasieren in entfernte Organe. Krebserkrankungen treten in verschiedensten Organen auf und haben oft gewebespezifische Krankheitsverläufe. Daher beschreibt die Bezeichnung Krebserkrankung als Oberbegriff eine große Gruppe definierter Erkrankungen verschiedener Organe, Gewebe und Zelltypen.
Im Jahr 2002 wurden weltweit 4,4 Millionen Menschen mit Tumorerkrankungen der Brust, des Darms, der Eierstöcke, der Lunge oder der Prostata diagnostiziert. Für das gleiche Jahr wurden ca. 2,5 Millionen Todesfälle als Folge dieser Erkrankungen angenommen (Globocan 2002 Report). In den USA allein wurden für das Jahr 2005 über 1,25 Millionen neue Fälle und über 500.000 Todesfälle aufgrund von Krebserkrankungen prognostiziert. Die Mehrzahl dieser neuen Fälle betrifft Krebserkrankungen von Darm (~ 100.000), Lunge (~ 170.000), Brust (- 210.000) und Prostata (~ 230.000). Es wird von einer weiteren Zunahme der Krebserkrankungen von ca. 15% über die nächsten 10 Jahre ausgegangen (American Cancer Society, Cancer Facts and Figures 2005).
Tumore früher Stadien lassen sich gegebenenfalls durch chirurgische und radiotherapeutische Maßnahmen entfernen. Metastasierte Tumore können im Regelfall durch Chemotherapeutika nur palliativ therapiert werden. Ziel hierbei ist, die optimale Kombination aus einer Verbesserung der Lebensqualität und der Verlängerung der Lebenszeit zu erreichen.
Chemotherapien setzen sich häufig aus Kombinationen von zytotoxischen Arzneimitteln zusammen. Die Mehrheit dieser Substanzen haben als Wirkmechanismus eine Bindung an Tubulin, oder es handelt sich um Verbindungen, die mit der Bildung und Prozessierung von Nukleinsäuren inter- agieren. In neuerer Zeit zählen dazu auch Enzym-Inhibitoren, die mit der epigenetischen DNA- Modifikation oder der Zellzyklusprogression interferieren (z.B. Histon-Deacetylase-Inhibitoren, Aurora-Kinase-Inhibitoren). Da solche Therapien toxisch sind, setzt man in neuerer Zeit vermehrt auf gezielte Therapien, bei denen spezielle Prozesse in der Zelle blockiert werden, ohne dass eine hohe toxische Belastung erfolgt. Dazu zählen insbesondere Inhibitoren von Kinasen, welche die Phosphorylierung von Rezeptoren und Signalübertragungsmolekülen hemmen. Ein Beispiel hierfür ist Imatinib, das sehr erfolgreich zur Behandlung von chronisch-myeloischer Leukämie (CML) und gastrointestinalen stromalen Tumoren (GIST) eingesetzt wird. Weitere Beispiele sind EGFR- Kinase- und HER2-blockierende Substanzen wie Erlotinib sowie VEGFR-Kinase-Inhibitoren wie Sorafenib und Sunitinib, welche bei Nierenzellkarzinomen, Leberkarzinomen bzw. fortgeschrittenen Stadien von GIST eingesetzt werden.
Mit einem gegen VEGF gerichteten Antikörper ist es gelungen, die Lebenserwartung von KoIo- rektalkarzinom-Patienten zu verlängern. Bevacizumab hemmt das Blutgefäßwachstum, was der schnellen Ausdehnung eines Tumors im Wege steht, da dieser für eine kontinuierlich funktionierende Ver- und Entsorgung einen Anschluß an das Blutgefäßsystem benötigt.
Ein Stimulus für die Angiogenese ist die Hypoxie, welche bei soliden Tumoren immer wieder auftritt, da die Blutversorgung aufgrund des ungeregelten Wachstums unzureichend ist. Bei Sauerstoffarmut stellen die Zellen ihren Stoffwechsel von der oxidativen Phosphorylierung auf die Glykolyse um, damit der ATP-Spiegel in der Zelle stabilisiert wird. Dieser Prozess wird durch einen Transkriptionsfaktor gesteuert, der abhängig vom Sauerstoffgehalt in der Zelle hochreguliert wird. Dieser "Hypoxie-induzierter Faktor" (HIF) genannte Transkriptionsfaktor wird normalerweise post-translational durch einen schnellen Abbau entfernt und am Transport in den Zellkern gehindert. Dies geschieht durch die Hydroxylierung zweier Prolin-Einheiten in der sauerstoff- abbaubaren Domäne (ODD) und einer Asparagin-Einheit in der Nähe des C-Terminus durch die Enzyme Prolyl-Dehydrogenase und FIH ("factor inhibiting HIF"). Nach der Modifikation der Prolin-Einheiten kann HIF vermittels des Hippel-Lindau-Proteins (Teil eines Ubiquitin-E3-Ligase- Komplexes) über den Proteasomenapparat abgebaut werden (Maxwell, Wiesener et al., 1999). Bei Sauerstoffmangel unterbleibt der Abbau, das Protein wird hochreguliert und führt zur Transkrip- tion bzw. zur Blockade der Transkription zahlreicher (mehr als 100) anderer Proteine (Semenza und Wang, 1992; Wang und Semenza, 1995).
Der Transkriptionsfaktor HIF wird durch die regulierte α- und eine konstitutiv vorhandene ß- Untereinheit (ARNT, aryl hydrocarbon receptor nuclear translocator) gebildet. Von der α-Unter- einheit gibt es drei verschiedene Spezies lα, 2α und 3α , wobei die letzte eher als Suppressor anzu- nehmen ist (Makino, Cao et al., 2001). Bei den FTTF-Untereinheiten handelt es sich um bHLH (basic helix loop helix)-Proteine, die über ihre HLH- und PAS (Per-Arnt-Sim)-Domäne dimerisie- ren, was ihre Transaktivierungsaktivität startet (Jiang, Rue et al., 1996).
In den wichtigsten Tumorentitäten wird die Überexpression des HIFlα-Proteins mit zunehmender Blutgefäßdichte und verstärkter VEGF-Expression korreliert (Hirota und Semenza, 2006). Gleich- zeitig wird der Glukosestoffwechsel hin zur Glykolyse verändert, und der Krebs-Zyklus wird zugunsten der Produktion von Zellbausteinen reduziert. Dies impliziert auch eine Änderung des Fettstoffwechsels. Solche Änderungen scheinen das Überleben der Tumore zu gewährleisten. Wird nun andererseits die Aktivität von HIF gehemmt, so könnte man folglich die Entwicklung von Tumoren unterdrücken. Dies wurde bereits in verschiedenen experimentellen Modellen beobachtet (Chen, Zhao et al., 2003; Stoeltzing, McCarty et al., 2004; Li, Lin et al, 2005; Mizukami, Jo et al, 2005; Li, Shi et al, 2006). Spezifische Inhibitoren des von HIF gesteuerten Metabolismus sollten sich daher als Tumortherapeutika eignen.
Aufgabe der vorliegenden Erfindung war somit die Bereitstellung neuer Verbindungen, welche als Inhibitoren der transaktivierenden Wirkung des Transkriptionsfaktors HIF agieren und als solche zur Behandlung und/oder Prävention von Erkrankungen, insbesondere von hyperproliferativen und angiogenen Erkrankungen wie Krebserkrankungen, eingesetzt werden können
Substituierte multicyclische Heteroaryl- Verbindungen mit Pyrrol-, Pyrazol- und/oder Oxadiazol- Partialstrukturen sowie die Verwendung dieser Verbindungen zur Behandlung verschiedenartiger Erkrankungen sind in zahlreicher Form in der Patentliteratur beschrieben, so unter anderem in EP 0 908 456-A1, WO 97/36881-A1, WO 01/12627-A1, WO 01/85723-A1, WO 02/100826-A2, WO 2004/014370-A2, WO 2004/014881 -A2, WO 2004/014902-A2, WO 2004/035566-A1, WO 2004/058176-A2, WO 2004/089303-A2, WO 2004/089308-A2, WO 2005/070925-A1, WO 2006/114313-Al, WO 2007/002559-A1, WO 2007/034279-A2, WO 2008/004096-A1, WO 2008/024390-A2 und WO 2008/114157-A1. In WO 2005/030121-A2 und WO 2007/065010- A2 wird die Verwendung bestimmter Pyrazol-Derivate zur Inhibition der Expression von HIF und HIF-regulierten Genen in Tumorzellen beansprucht. In WO 2008/141731-A2 werden Heteroaryl- substituierte N-Benzylpyrazole als Inhibitoren des HIF-Regulationsweges zur Behandlung von Krebserkrankungen beschrieben. Heteroaryl-substituierte 5-(lH-Pyrazol-3-yl)-l,2,4-oxadiazole als Cannabinoid-Rezeptor-Modulatoren für die Behandlung verschiedenartiger Erkrankungen werden in US 2008/0255211-Al offenbart. Weitere Diaryl-substituierte Isoxazol- und 1 ,2,4-Oxadiazol- Derivate werden in WO 2009/029632-A1 als Inhibitoren der Monoamin-Oxidase B zur Behandlung psychiatrischer Erkrankungen beschrieben.
Gegenstand der vorliegenden Erfindung sind Verbindungen der allgemeinen Formel (I)
CΗKΪKEΗΣX(R5) «• R3 -A- in welcher entweder (α)
der Ring ( AJ für einen Pyridyl-Ring
und
der Ring ( B J mit dem Substituenten R3 für einen Heteroaryl-Ring der Formel
Figure imgf000005_0001
worin
# die Verknüpfungsstelle mit der angrenzenden CH2-Gruppe und
## die Verknüpfungsstelle mit dem Ring ( D ) bezeichnen,
oder (b)
der Ring ( A J für einen Phenyl-Ring
und
der Ring ( ^ ) mit dem Substituenten R3 für einen Heteroaryl-Ring der Formel
Figure imgf000006_0001
worin
# die Verknüpfungsstelle mit der angrenzenden CH2-Gruppe
und
## die Verknüpfungsstelle mit dem Ring [ ^ J bezeichnen,
stehen,
der Ring f D J für einen Heteroaryl-Ring der Formel
Figure imgf000006_0002
~t NL- N , *Y Oj— Jr" ,
Figure imgf000006_0003
-Y N-O
Figure imgf000006_0004
steht, worin * die Verknüpfungsstelle mit dem Ring ( ^ ) und ** die Verknüpfungsstelle mit dem Ring ( ( EE )) bezeichnen,
der Ring ( E J für einen Phenyl- oder Pyridyl-Ring steht,
R1 für Wasserstoff oder einen Substituenten ausgewählt aus der Reihe Halogen, Cyano, (Cr C6)-Alkyl, (C2-C6)-Alkenyl, (C2-C6)-Alkinyl, (C3-C6)-Cycloalkyl, Oxetanyl, Tetrahydro- furanyl, Tetrahydropyranyl, -OR6, -SR6, -S(=O)-R6, -S(=O)2-R6, -C(=O)-OR6,
-C(=O)-NR6R7, -S(=O)2-NR6R7, -NR6R8, -N(R6)-C(=O)-R7 und -N(R6)-S(=O)2-R7 steht,
wobei (Ci-C6)-Alkyl, (C2-C6)-Alkenyl und (C2-C6)-Alkinyl ihrerseits bis zu dreifach mit Fluor sowie bis zu zweifach, gleich oder verschieden, mit einem Rest ausgewählt aus der Reihe Hydroxy, (Ci-C4)-Alkoxy, Trifluormethoxy, Tri-(Ci-C4)-alkylsilyl, (Ci-C4)-Alkoxy- carbonyl und (C3-C6)-Cycloalkyl substituiert sein können
und
Oxetanyl, Tetrahydrofuranyl, Tetrahydropyranyl sowie die genannten Cycloalkyl-Gruppen ihrerseits bis zu zweifach, gleich oder verschieden, mit einem Rest ausgewählt aus der Reihe Fluor, (Ci-C4)-Alkyl, Trifluormethyl, Hydroxy, (Ci-C4)-Alkoxy, Trifluormethoxy und (CrC4)-Alkoxycarbonyl substituiert sein können,
und worin
R6 und R7 unabhängig voneinander Wasserstoff, (Ci-C6)-Alkyl oder (C3-C6)-Cycloalkyl bedeuten,
wobei (Ci-C6)-Alkyl bis zu dreifach mit Fluor sowie bis zu zweifach, gleich oder verschieden, mit einem Rest ausgewählt aus der Reihe Hydroxy, (CrC4)-Alkoxy,
Trifluormethoxy, (C rC4)-Alkoxy carbonyl und (C3-C6)-Cycloalkyl substituiert sein kann
und
die genannten Cycloalkyl-Gruppen bis zu zweifach, gleich oder verschieden, mit einem Rest ausgewählt aus der Reihe Fluor, (Ci-C4)-Alkyl, Trifluormethyl,
Hydroxy, (Ci-C4)-Alkoxy, Trifluormethoxy und (CrC4)-Alkoxycarbonyl substituiert sein können,
und R8 Wasserstoff, Amino, (CrC6)-Alkyl, (C3-C6)-Cycloalkyl oder 5- oder 6-gliedriges Heteroaryl bedeutet,
wobei (Ci-Cs)-Alkyl bis zu dreifach mit Fluor sowie bis zu zweifach, gleich oder verschieden, mit einem Rest ausgewählt aus der Reihe Hydroxy, (CrC4)-Alkoxy, Trifluormethoxy, (CrC4)-Alkoxycarbonyl, (C3-C6)-Cycloalkyl, Oxetanyl, Tetra- hydrofuranyl, Tetrahydropyranyl und 5- oder 6-gliedriges Heteroaryl substituiert sein kann
und wobei
Oxetanyl, Tetrahydrofuranyl, Tetrahydropyranyl sowie die genannten Cycloalkyl- Gruppen bis zu zweifach, gleich oder verschieden, mit einem Rest ausgewählt aus der Reihe Fluor, (Ci-C4)-Alkyl, Trifluormethyl, Hydroxy, (CrC4)-Alkoxy und (C1- C4)-Alkoxycarbonyl
und
die genannten Heteroaryl-Gruppen bis zu dreifach, gleich oder verschieden, mit einem Rest ausgewählt aus der Reihe Fluor, Chlor, Cyano, (Ci-C4)-Alkyl, Trifluormethyl, (Q-C4)-Alkoxy und Trifluormethoxy
substituiert sein können,
R2 für Wasserstoff oder einen Substituenten ausgewählt aus der Reihe Fluor, Chlor, Cyano, Methyl, Trifluormethyl, Hydroxy, Methoxy und Trifluormethoxy steht,
R3 für Methyl, Ethyl oder Trifluormethyl steht,
R4 für Wasserstoff oder einen Substituenten ausgewählt aus der Reihe Halogen, Cyano,
Pentafluorthio, (CrC6)-Alkyl, Tri-(CrC4)-alkylsilyl, -OR9, -NR9R10, -N(R9)-C(=O)-R10,
-N(R9)-C(=O)-OR10, -N(R9)-S(=O)2-R10, -C(=O)-OR9, -C(=O)-NR9R10, -SR9, -S(=O)-R9,
-S(=O)2-R9, -S(=O)2-NR9R10, -SC=O)C=NH)-R9, -S(=O)(=NCH3)-R9, (C3-C6)-Cycloalkyl, 4- bis 6-gliedriges Heterocyclyl und 5- oder 6-gliedriges Heteroaryl steht,
wobei (Ci-C6)-Alkyl seinerseits bis zu dreifach mit Fluor sowie bis zu zweifach, gleich oder verschieden, mit einem Rest ausgewählt aus der Reihe -OR9, -NR9R10, -N(R9)-CC=O)-R10, -N(R9)-CC=O)-OR10, -C(=O)-OR9, -C(=O)-NR9R10, (C3-C6)-Cycloalkyl, 4- bis 6-gliedriges Heterocyclyl und 5- oder 6-gliedriges Heteroaryl substituiert sein kann
und wobei die genannten Cycloalkyl- und Heterocyclyl-Gruppen ihrerseits bis zu zweifach, gleich oder verschieden, mit einem Rest ausgewählt aus der Reihe Fluor, (CrC4)-Alkyl, Hydroxy, (C1-Q)-AIkOXy, Oxo, Amino, Mono-(Ci-C4)-alkylamino, Di-(d-C4)-alkylamino, (C1-C4)- Alkylcarbonylamino, (CrC4)-Alkoxycarbonylamino, (CrC4)-Alkylcarbonyl, (C1-C4)- Alkoxycarbonyl, Aminocarbonyl, Mono-(CrC4)-alkylaminocarbonyl und Di-(CrC4)-alkyl- aminocarbonyl
sowie
die genannten Heteroaryl-Gruppen ihrerseits bis zu zweifach, gleich oder verschieden, mit einem Rest ausgewählt aus der Reihe Fluor, Chlor, Cyano, (CrC4)-Alkyl und (C1-C4)- Alkoxy
substituiert sein können,
wobei die hierin genannten (CrC4)-Alkyl-Substituenten und die hierin genannten (C1-C4)-Alkoxy-Substituenten ihrerseits mit Hydroxy, (C1 -C4)- Alkoxy, Trifluor- methoxy, (CrC4)-Alkylcarbonyloxy, (CrC4)-Alkoxycarbonyl, Aminocarbonyl, Mono-(CrC4)-alkylaminocarbonyl oder Di-(CrC4)-alkylaminocarbonyl oder bis zu dreifach mit Fluor substituiert sein können,
und worin
R9 und R10 unabhängig voneinander bei jedem einzelnen Auftreten Wasserstoff, (C1-CO)- Alkyl, (C3-C6)-Cycloalkyl oder 4- bis 6-gliedriges Heterocyclyl bedeuten,
wobei (CrC6)-Alkyl bis zu dreifach mit Fluor sowie bis zu zweifach, gleich oder verschieden, mit einem Rest ausgewählt aus der Reihe Hydroxy, (C]-C4)-Alkoxy, Trifluormethoxy, Amino, Mono-(CrC4)-alkylamino, Di-(C rC4)-alkylamino, (C1- C4)-Alkoxycarbonyl, (C3-C6)-Cycloalkyl und A- bis 6-gliedriges Heterocyclyl substituiert sein kann
und
die genannten Cycloalkyl- und Heterocyclyl-Gruppen bis zu zweifach, gleich oder verschieden, mit einem Rest ausgewählt aus der Reihe Fluor, (CrC4)-Alkyl, Trifluormethyl, Hydroxy, (d-C4)-Alkoxy, Trifluormethoxy, Oxo, Amino, Mono- (CrC4)-alkylamino, Di-(C rC4)-alkylamino, (CrC4)-Alkylcarbonyl und (CrC4)- Alkoxycarbonyl substituiert sein können, oder
R9 und R10 im Fall, dass beide an ein Stickstoffatom gebunden sind, zusammen mit diesem Stickstoffatom einen 4- bis 6-gliedrigen Heterocyclus bilden, der ein weiteres Ring-Heteroatom aus der Reihe N, O, S oder S(O)2 enthalten kann und der bis zu zweifach, gleich oder verschieden, mit einem Rest ausgewählt aus der Reihe Fluor,
(Ci-C4)-Alkyl, Trifiuormethyl, Hydroxy, (CrC4)-Alkoxy, Oxo, Amino, Mono- (Ci-C4)-alkylamino, Di-(CrC4)-alkylamino, (CrC4)-Alkylcarbonyl und (CrC4)- Alkoxycarbonyl substituiert sein kann,
R5 für einen Substituenten ausgewählt aus der Reihe Fluor, Chlor, Cyano, Methyl, Trifluor- methyl und Hydroxy steht
und
n für die Zahl 0, 1 oder 2 steht,
wobei im Fall, dass der Substituent R5 zweifach auftritt, seine Bedeutungen gleich oder verschieden sein können,
sowie ihre Salze, Solvate und Solvate der Salze.
Eine alternative Ausführungsform innerhalb des zuvor beschriebenen Gegenstands der Erfindung umfasst Verbindungen der Formel (I), in welcher
R1 für Wasserstoff oder einen Substituenten ausgewählt aus der Reihe Halogen, Cyano, (C1- C6)-Alkyl, (C2-C6)-Alkenyl, (C2-C6)-Alkinyl, (C3-C6)-Cycloalkyl, -OR6, -SR6, -S(=O)-R6, -S(=O)2-R6, -C(=O)-OR6, -C(=O)-NR6R7, -S(=O)rNR6R7, -NR6R8, -N(R6)-C(=O)-R7 und
-N(R6)-S(=O)2-R7 steht,
wobei (Ci-C6)-Alkyl, (C2-C6)-Alkenyl und (C2-C6)-Alkinyl ihrerseits bis zu dreifach mit Fluor sowie bis zu zweifach, gleich oder verschieden, mit einem Rest ausgewählt aus der Reihe Hydroxy, (CrC4)-Alkoxy, Trifluormethoxy, Tri-(Ci-C4)-alkylsilyl, (CrC4)-Alkoxy- carbonyl und (C3-C6)-Cycloalkyl substituiert sein können
und
die genannten Cycloalkyl-Gruppen ihrerseits bis zu zweifach, gleich oder verschieden, mit einem Rest ausgewählt aus der Reihe Fluor, (Ci-C4)-Alkyl, Trifiuormethyl, Hydroxy, (Q- C4)-Alkoxy, Trifluormethoxy und (CrC4)-Alkoxycarbonyl substituiert sein können, und worin
R6 und R7 die zuvor angegebenen Bedeutungen haben
und
R8 Wasserstoff, (CrC6)-Alkyl, (C3-C6)-Cycloalkyl oder 5- oder 6-gliedriges Hetero- aryl bedeutet,
wobei (C1-Co)-AIlCyI bis zu dreifach mit Fluor sowie bis zu zweifach, gleich oder verschieden, mit einem Rest ausgewählt aus der Reihe Hydroxy, (Ci-C4)-Alkoxy, Trifluormethoxy, (CrC4)-Alkoxycarbonyl, (C3-C6)-Cycloalkyl, Oxetanyl, Tetra- hydrofuranyl, Tetrahydropyranyl und 5- oder 6-gliedriges Heteroaryl substituiert sein kann
und wobei
Oxetanyl, Tetrahydrofuranyl, Tetrahydropyranyl sowie die genannten Cycloalkyl- Gruppen bis zu zweifach, gleich oder verschieden, mit einem Rest ausgewählt aus der Reihe Fluor, (Ci-C4)- Alkyl, Trifluormethyl, Hydroxy, (Ci-C4)-Alkoxy und (Cr C4)-Alkoxycarbonyl
und
die genannten Heteroaryl-Gruppen bis zu dreifach, gleich oder verschieden, mit einem Rest ausgewählt aus der Reihe Fluor, Chlor, Cyano, (C]-C4)-Alkyl, Trifluormethyl, (Ci-C4)-Alkoxy und Trifluormethoxy
substituiert sein können,
und
R4 für Wasserstoff oder einen Substituenten ausgewählt aus der Reihe Halogen, Cyano,
Pentafluorthio, (CrC6)-Alkyl, Tri-(CrC4)-alkylsilyl, -OR9, -NR9R10, -N(R9)-C(=O)-R10,
-N(R9)-C(=O)-OR10, -N(R9)-S(=O)2-R10, -C(=O)-OR9, -C(=O)-NR9R10, -SR9, -S(=O)-R9, -S(=O)2-R9, -S(=O)2-NR9R10, (C3-C6)-Cycloalkyl, 4- bis 6-gliedriges Heterocyclyl und
5- oder 6-gliedriges Heteroaryl steht,
wobei (Ci-C6)-Alkyl seinerseits bis zu dreifach mit Fluor sowie bis zu zweifach, gleich oder verschieden, mit einem Rest ausgewählt aus der Reihe -OR9, -NR9R10, -N(R9)-C(=O)-R10, -N(R9)-C(=O)-OR10, -C(=O)-OR9, -C(=O)-NR9R10, (C3-C6)-Cycloalkyl, 4- bis 6-gliedriges Heterocyclyl und 5- oder 6-gliedriges Heteroaryl substituiert sein kann
und wobei
die genannten Cycloalkyl- und Heterocyclyl-Gruppen ihrerseits bis zu zweifach, gleich oder verschieden, mit einem Rest ausgewählt aus der Reihe Fluor, (CrC4)-Alkyl, Trifluor- methyl, Hydroxy, (Ci-C4)-Alkoxy, Trifluormethoxy, Oxo, Amino, Mono-(Ci-C4)-alkyl- amino, Di-(C]-C4)-alkylamino, (Ci-C4)-Alkylcarbonylamino, (Ci-C4)-Alkoxycarbonyl- amino, (CrC4)-Alkylcarbonyl und (CrC4)-Alkoxycarbonyl
sowie
die genannten Heteroaryl-Gruppen ihrerseits bis zu zweifach, gleich oder verschieden, mit einem Rest ausgewählt aus der Reihe Fluor, Chlor, Cyano, (CrC4)-Alkyl, Trifluormethyl, (CrC4)-Alkoxy und Trifluormethoxy
substituiert sein können,
und worin R9 und R10 die zuvor angegebenen Bedeutungen haben,
sowie ihre Salze, Solvate und Solvate der Salze.
Erfindungsgemäße Verbindungen sind die Verbindungen der Formel (I) und deren Salze, Solvate und Solvate der Salze, die von Formel (I) umfassten Verbindungen der nachfolgend genannten Formeln und deren Salze, Solvate und Solvate der Salze sowie die von Formel (I) umfassten, nachfolgend als Ausführungsbeispiele genannten Verbindungen und deren Salze, Solvate und Solvate der Salze, soweit es sich bei den von Formel (I) umfassten, nachfolgend genannten Verbindungen nicht bereits um Salze, Solvate und Solvate der Salze handelt.
Die erfindungsgemäßen Verbindungen können in Abhängigkeit von ihrer Struktur in stereoisomeren Formen (Enantiomere, Diastereomere) existieren. Die Erfindung umfasst deshalb die Enantiomeren oder Diastereomeren und ihre jeweiligen Mischungen. Aus solchen Mischungen von Enantiomeren und/oder Diastereomeren lassen sich die stereoisomer einheitlichen Bestandteile in bekannter Weise isolieren; vorzugsweise werden hierfür chromatographische Verfahren verwendet, insbesondere die HPLC-Chromatographie an achiraler bzw. chiraler Phase.
Sofern die erfϊndungsgemäßen Verbindungen in tautomeren Formen vorkommen können, umfasst die vorliegende Erfindung sämtliche tautomere Formen. AIs Salze sind im Rahmen der vorliegenden Erfindung physiologisch unbedenkliche Salze der erfindungsgemäßen Verbindungen bevorzugt. Umfasst sind auch Salze, die für pharmazeutische Anwendungen selbst nicht geeignet sind, jedoch beispielsweise für die Isolierung oder Reinigung der erfindungsgemäßen Verbindungen verwendet werden können.
Physiologisch unbedenkliche Salze der erfindungsgemäßen Verbindungen umfassen Säureadditionssalze von Mineralsäuren, Carbonsäuren und Sulfonsäuren, z.B. Salze der Chlorwasserstoffsäure, Bromwasserstoffsäure, Schwefelsäure, Phosphorsäure, Methansulfonsäure, Ethan- sulfonsäure, Benzolsulfonsäure, Toluolsulfonsäure, Naphthalindisulfonsäure, Ameisensäure, Essigsäure, Trifluoressigsäure, Propionsäure, Milchsäure, Weinsäure, Äpfelsäure, Zitronensäure, Fumarsäure, Maleinsäure und Benzoesäure.
Physiologisch unbedenkliche Salze der erfindungsgemäßen Verbindungen umfassen auch Salze üblicher Basen, wie beispielhaft und vorzugsweise Alkalimetallsalze (z.B. Natrium- und Kaliumsalze), Erdalkalisalze (z.B. Calcium- und Magnesiumsalze) und Ammoniumsalze, abgeleitet von Ammoniak oder organischen Aminen mit 1 bis 16 C-Atomen, wie beispielhaft und vorzugsweise Ethylamin, Diethylamin, Triethylamin, Ethyldiisopropylamin, Monoethanolamin, Diethanolamin, Triethanolamin, Dicyclohexylamin, Dimethylaminoethanol, Prokain, Dibenzylamin, N-Methyl- morpholin, Arginin, Lysin, Ethylendiamin und N-Methylpiperidin.
Als Solvate werden im Rahmen der Erfindung solche Formen der erfindungsgemäßen Verbindungen bezeichnet, welche in festem oder flüssigem Zustand durch Koordination mit Lösungs- mittelmolekülen einen Komplex bilden. Hydrate sind eine spezielle Form der Solvate, bei denen die Koordination mit Wasser erfolgt. Als Solvate sind im Rahmen der vorliegenden Erfindung Hydrate bevorzugt.
Die N-Oxide von in erfindungsgemäßen Verbindungen enthaltenen Pyridyl-Ringen und tertiären cyclischen Amin-Gruppierungen sind gleichfalls von der vorliegenden Erfindung umfasst.
Außerdem umfasst die vorliegende Erfindung auch Prodrugs der erfindungsgemäßen Verbindungen. Der Begriff "Prodrugs" bezeichnet hierbei Verbindungen, welche selbst biologisch aktiv oder inaktiv sein können, jedoch während ihrer Verweilzeit im Körper zu erfindungsgemäßen Verbindungen umgesetzt werden (beispielsweise metabolisch oder hydrolytisch).
Im Rahmen der vorliegenden Erfindung haben die Substituenten, soweit nicht anders spezifiziert, die folgende Bedeutung:
Figure imgf000013_0001
und (C1-Ca)-AIkVl stehen im Rahmen der Erfindung für einen geradkettigen oder verzweigten Alkylrest mit 1 bis 6 bzw. 1 bis 4 Kohlenstoffatomen. Bevorzugt ist ein geradkettiger oder verzweigter Alkylrest mit 1 bis 4 Kohlenstoffatomen. Beispielhaft und vorzugsweise seien genannt: Methyl, Ethyl, n-Propyl, Isopropyl, n-Butyl, «o-Butyl, sec.-Butyl, tert.-Buty\, «-Pentyl, 2- Pentyl, 3-Pentyl, Neopentyl, n-Hexyl, 2-Hexyl und 3-Hexyl.
(C2-QVAlkenyl und (C2-Cd)-AIkCnVl stehen im Rahmen der Erfindung für einen geradkettigen oder verzweigten Alkenylrest mit 2 bis 6 bzw. 2 bis 4 Kohlenstoffatomen und einer Doppelbindung. Bevorzugt ist ein geradkettiger oder verzweigter Alkenylrest mit 2 bis 4 Kohlenstoffatomen. Beispielhaft und vorzugsweise seien genannt: Vinyl, Allyl, w-Prop-1-en-l-yl, Isopropenyl, 2-Methyl-2-propen-l-yl, w-But-1-en-l-yl, w-But-2-en-l-yl und n-But-3-en-l-yl.
(C2-C^)-AIkJnVl und (C2-Cd)-Alkinyl stehen im Rahmen der Erfindung für einen geradkettigen oder verzweigten Alkinylrest mit 2 bis 6 bzw. 2 bis 4 Kohlenstoffatomen und einer Dreifachbindung. Bevorzugt ist ein geradkettiger Alkinylrest mit 2 bis 4 Kohlenstoffatomen. Beispielhaft und vorzugsweise seien genannt: Ethinyl, «-Prop-1-in-l-yl, «-Prop-2-in-l-yl, n-But-1-in-l-yl, rc-But-2-in-l- yl und «-But-3-in-l-yl.
(Ci-Gi)-Alkylcarbonyl steht im Rahmen der Erfindung für einen geradkettigen oder verzweigten Alkylrest mit 1 bis 4 Kohlenstoffatomen, der über eine Carbonyl-Gruppe [-C(=O)-] verknüpft ist. Beispielhaft und vorzugsweise seien genannt: Acetyl, Propionyl, «-Butyryl, wo-Butyryl, M-Pen- tanoyl und Pivaloyl.
Tri-rCpCaValkylsilyl steht im Rahmen der Erfindung für eine Silyl-Gruppe mit drei gleichen oder verschiedenen geradkettigen oder verzweigten Alkylsubstituenten, die jeweils 1 bis 4 Kohlenstoff- atome aufweisen. Beispielhaft und vorzugsweise seien genannt: Trimethylsilyl, tert.-Butyl- dimethylsilyl und Triisopropylsilyl.
(C1-Cd)-AIkOXV steht im Rahmen der Erfindung für einen geradkettigen oder verzweigten Alkoxy- rest mit 1 bis 4 Kohlenstoffatomen. Beispielhaft und vorzugsweise seien genannt: Methoxy, Ethoxy, M-Propoxy, Isopropoxy, n-Butoxy, /so-Butoxy, sec.-Butoxy und tert.-Butoxy.
(C-CdVAlkoxycarbonyl steht im Rahmen der Erfindung für einen geradkettigen oder verzweigten Alkoxyrest mit 1 bis 6 bzw. 1 bis 4 Kohlenstoffatomen, der über eine Carbonyl-Gruppe [-C(=O)-] verknüpft ist. Beispielhaft und vorzugsweise seien genannt: Methoxycarbonyl, Ethoxycarbonyl, n- Propoxycarbonyl, Isopropoxycarbonyl, /z-Butoxycarbonyl und terf.-Butoxycarbonyl.
Mono-(C1-C1)-alkylamino steht im Rahmen der Erfindung für eine Amino-Gruppe mit einem geradkettigen oder verzweigten Alkylsubstituenten, der 1 bis 4 Kohlenstoffatome aufweist. Beispielhaft und vorzugsweise seien genannt: Methylamino, Ethylamino, «-Propylamino, Isopropyl- amino, «-Butylamino und /er/.-Butylamino. Di-(CrQ>alkylamino steht im Rahmen der Erfindung für eine Amino-Gruppe mit zwei gleichen oder verschiedenen geradkettigen oder verzweigten Alkylsubstituenten, die jeweils 1 bis 4 Kohlenstoffatome aufweisen. Beispielhaft und vorzugsweise seien genannt: NN-Dimethylamino, NN- Diethylamino, N-Ethyl-N-methylamino, N-Methyl-N-n-propylamino, N-Isopropyl-N-methylamino, N-Isopropyl-N-n-propylamino, NN-Diisopropylamino, N-«-Butyl-N-methylamino und N-tert.- Butyl-N-methylamino.
Mono- bzw. Di-fQ-QValkylaminocarbonyl steht im Rahmen der Erfindung für eine Amino- Gruppe, die über eine Carbonyl-Gruppe [-C(=O)-] verknüpft ist und die einen geradkettigen oder verzweigten bzw. zwei gleiche oder verschiedene geradkettige oder verzweigte Alkylsubstituenten mit jeweils 1 bis 4 Kohlenstoffatomen aufweist. Beispielhaft und vorzugsweise seien genannt: Methylaminocarbonyl, Ethylaminocarbonyl, w-Propylaminocarbonyl, Isopropylaminocarbonyl, H-Butylaminocarbonyl, tert.-Butylaminocarbonyl, NN-Dimethylaminocarbonyl, NN-Diethyl- aminocarbonyl, N-Ethyl-N-methylaminocarbonyl, N-Methyl-N-«-propylaminocarbonyl, N-Isopro- pyl-N-methylaminocarbonyl, NN-Diisopropylaminocarbonyl, N-w-Butyl-N-methylaminocarbonyl und N-ter/.-Butyl-N-methylaminocarbonyl.
(Cx-CaVAlkylcarbonylamino steht im Rahmen der Erfindung für eine Amino-Gruppe mit einem geradkettigen oder verzweigten Alkylcarbonyl-Substituenten, der 1 bis 4 Kohlenstoffatome im Alkylrest aufweist und über die Carbonylgruppe mit dem Ν-Atom verknüpft ist. Beispielhaft und vorzugsweise seien genannt: Acetylamino, Propionylamino, «-Butyrylamino, /so-Butyrylamino, n- Pentanoylamino und Pivaloylamino.
(CpCY)-Alkylcarbonyloxy steht im Rahmen der Erfindung für einen Oxyrest mit einem geradkettigen oder verzweigten Alkylcarbonyl-Substituenten, der 1 bis 4 Kohlenstoffatome im Alkylrest aufweist und über die Carbonylgruppe mit dem O-Atom verknüpft ist. Beispielhaft und vorzugsweise seien genannt: Acetoxy, Propionoxy, w-Butyroxy, /so-Butyroxy, w-Pentanoyloxy und Piva- loyloxy.
(CVCa VAlkoxycarbony lam ino steht im Rahmen der Erfindung für eine Amino-Gruppe mit einem geradkettigen oder verzweigten Alkoxycarbonyl-Substituenten, der 1 bis 4 Kohlenstoffatome im Alkoxyrest aufweist und über die Carbonylgruppe mit dem Ν-Atom verknüpft ist. Beispielhaft und vorzugsweise seien genannt: Methoxycarbonylamino, Ethoxycarbonylamino, «-Propoxycarbonyl- amino, Isopropoxycarbonylamino, n-Butoxycarbonylamino und ter/.-Butoxycarbonylamino.
(CyCfiVCycloalkyl steht im Rahmen der Erfindung für eine monocyclische, gesättigte Cycloalkyl- gruppe mit 3 bis 6 Ring-Kohlenstoffatomen. Beispielhaft und vorzugsweise seien genannt: Cyclo- propyl, Cyclobutyl, Cyclopentyl und Cyclohexyl. 4- bis 6-gliedriges Heterocvclyl steht im Rahmen der Erfindung für einen monocyclischen, gesättigten Heterocyclus mit insgesamt 4 bis 6 Ringatomen, der ein oder zwei Ring-Heteroatome aus der Reihe N, O, S und/oder S(O)2 enthält und über ein Ring-Kohlenstoffatom oder gegebenenfalls über ein Ring-Stickstoffatom verknüpft ist. Bevorzugt ist 4- bis 6-gliedriges Heterocyclyl mit ein oder zwei Ring-Heteroatomen aus der Reihe N, O und/oder S. Beispielhaft seien genannt: Azeti- dinyl, Oxetanyl, Thietanyl, Pyrrolidinyl, Pyrazolidinyl, Tetrahydrofuranyl, Thiolanyl, 1,1-Dioxido- thiolanyl, 1,3-Oxazolidinyl, 1,3-Thiazolidinyl, Piperidinyl, Piperazinyl, Tetrahydropyranyl, Tetra- hydrothiopyranyl, 1,3-Dioxanyl, 1,4-Dioxanyl, Morpholinyl, Thiomorpholinyl und 1,1-Dioxido- thiomorpholinyl. Bevorzugt sind Azetidinyl, Oxetanyl, Pyrrolidinyl, Tetrahydrofuranyl, Piperi- dinyl, Piperazinyl, Tetrahydropyranyl, Morpholinyl und Thiomorpholinyl.
5- oder 6-gliedriges Heteroaryl steht im Rahmen der Erfindung für einen aromatischen Heterocyclus (Heteroaromaten) mit insgesamt 5 bzw. 6 Ringatomen, der bis zu drei gleiche oder verschiedene Ring-Heteroatome aus der Reihe N, O und/oder S enthält und über ein Ring-Kohlenstoffatom oder gegebenenfalls über ein Ring-Stickstoffatom verknüpft ist. Beispielhaft seien genannt: Furyl, Pyrrolyl, Thienyl, Pyrazolyl, Imidazolyl, Thiazolyl, Oxazolyl, Isoxazolyl, Isothiazolyl, Triazolyl, Oxadiazolyl, Thiadiazolyl, Pyridyl, Pyrimidinyl, Pyridazinyl, Pyrazinyl und Triazinyl. Bevorzugt sind 5- oder 6-gliedrige Heteroaryl-Reste mit bis zu zwei Ring-Heteroatomen aus der Reihe N, O und/oder S, wie beispielsweise Furyl, Pyrrolyl, Thienyl, Thiazolyl, Oxazolyl, Isothiazolyl, Isoxazolyl, Pyrazolyl, Imidazolyl, Pyridyl, Pyrimidinyl, Pyricfazinyl und Pyrazinyl.
Halogen schließt im Rahmen der Erfindung Fluor, Chlor, Brom und Iod ein. Bevorzugt sind Chlor, Fluor oder Brom, besonders bevorzugt Fluor oder Chlor.
Ein Oxo-Substituent steht im Rahmen der Erfindung für ein Sauerstoffatom, das über eine Doppelbindung an ein Kohlenstoffatom gebunden ist.
Wenn Reste in den erfindungsgemäßen Verbindungen substituiert sind, können die Reste, soweit nicht anders spezifiziert, ein- oder mehrfach substituiert sein. Im Rahmen der vorliegenden Erfindung gilt, dass für alle Reste, die mehrfach auftreten, deren Bedeutung unabhängig voneinander ist. Eine Substitution mit einem oder mit zwei oder drei gleichen oder verschiedenen Substituenten ist bevorzugt. Besonders bevorzugt ist die Substitution mit einem oder mit zwei gleichen oder verschiedenen Substituenten.
Gegenstand der vorliegenden Erfindung sind insbesondere solche Verbindungen der allgemeinen Formel (I), in denen der Ring ( A J für einen Phenyl- oder Pyridyl-Ring steht und die angrenzenden Gruppen R1 und
CH2 in 1,3- oder 1,4-Relation zueinander an Ring-Kohlenstoffatome von ( A J gebunden
sind
und
der Ring ( E ) mit den Substituenten R4 und R5 für einen Phenyl-Ring der Formel
Figure imgf000017_0001
steht, worin
*** die Verknüpfungsstelle mit dem R iinngg bezeichnet,
Figure imgf000017_0002
sowie ihre Salze, Solvate und Solvate der Salze.
Bevorzugt im Rahmen der vorliegenden Erfindung sind Verbindungen der Formel (I), in welcher
entweder (α)
der Ring ( A J für einen Pyridyl-Ring steht und die angrenzenden Gruppen R1 und CH2 in 1,3- oder 1,4-Relation zueinander an Ring-Kohlenstoffatome dieses Pyridyl-Rings gebunden sind
und
der Ring ( ^ ) mit dem Substituenten R3 für einen Heteroaryl-Ring der Formel
Figure imgf000018_0001
steht, worin
# die Verknüpfungsstelle mit der angrenzenden CH2-Gruppe und
## die Verknüpfungsstelle mit dem Ring ( D J bezeichnen,
oder (Z>)
der Ring ( A ) für einen Phenyl-Ring steht und die angrenzenden Gruppen R1 und CH2 in 1,3- oder 1 ,4-Relation zueinander an diesen Phenyl-Ring gebunden sind und
der Ring ( ^ ) mit dem Substituenten R3 für einen Heteroaryl-Ring der Formel
Figure imgf000018_0002
steht, worin
# die Verknüpfungsstelle mit der angrenzenden CH2-Gruppe und
## die Verknüpfungsstelle mit dem R iinngg bezeichnen,
Figure imgf000019_0001
der R tiinngg ffüürr eeiinen Heteroaryl-Ring der Formel
Figure imgf000019_0002
Figure imgf000019_0003
steht, worin
* die Verknüpfungsstelle mit dem Ring ( ^ )
und
** die Verknüpfungsstelle mit dem Ring ( ^ ) bezeichnen,
der Ring ( E J mit den Substituenten R4 und R5 für einen Phenyl-Ring der Formel
Figure imgf000019_0004
steht, worin
*** die Verknüpfüngsstelle mit dem R iinngg © I ^ y bezeichnet,
R1 für Wasserstoff oder einen Substituenten ausgewählt aus der Reihe Fluor, Chlor, Brom, Cyano, (CrC4)-Alkyl, (C2-C4)-Alkinyl, (C3-C6)-Cycloalkyl, Oxetanyl, Tetrahydrofuranyl, Tetrahydropyranyl, -OR6, -SR6, -S(=O)-R6, -S(=O)2-R6, -C(=O)-OR6, -C(=O)-NR6R7, -SC=O)2-NR6R7 und -NR6R8 steht,
wobei (Ci-C4)-Alkyl und (C2-C4)-Alkinyl ihrerseits mit einem Rest ausgewählt aus der Reihe Hydroxy, (CrC4)-Alkoxy, Trifluormethoxy, Trimethylsilyl, (CrC4)-Alkoxycarbonyl und (C3-C6)-Cycloalkyl sowie bis zu dreifach mit Fluor substituiert sein können
und Oxetanyl, Tetrahydrofuranyl, Tetrahydropyranyl sowie die genannten Cycloalkyl-Gruppen ihrerseits bis zu zweifach, gleich oder verschieden, mit einem Rest ausgewählt aus der Reihe Fluor, (Ci-C4)-Alkyl, Trifluormethyl, Hydroxy, (Ci-C4)-Alkoxy, Trifluormethoxy und (Ci-C4)-Alkoxycarbonyl substituiert sein können,
und worin
R6 und R7 unabhängig voneinander Wasserstoff, (Ci-C4)-Alkyl oder (C3-C6)-Cycloalkyl bedeuten,
wobei (CrC4)-Alkyl mit einem Rest ausgewählt aus der Reihe Hydroxy, (Ci-C4)- Alkoxy, Trifluormethoxy und (C3-C6)-Cycloalkyl sowie bis zu dreifach mit Fluor substituiert sein kann
und
die genannten Cycloalkyl-Gruppen bis zu zweifach, gleich oder verschieden, mit einem Rest ausgewählt aus der Reihe Fluor, (Ci-C4)-Alkyl, Trifluormethyl, Hydroxy, (Q-C4)-Alkoxy und Trifluormethoxy substituiert sein können,
und
R8 Wasserstoff, Amino, (CrC6)-Alkyl, (C3-C6)-Cycloalkyl oder 5- oder 6-gliedriges Heteroaryl bedeutet,
wobei (Ci-C6)-Alkyl mit einem Rest ausgewählt aus der Reihe Hydroxy, (Ci-C4)- Alkoxy, Trifluormethoxy, (CrC4)-Alkoxycarbonyl, (C3-C6)-Cycloalkyl, Tetra- hydrofuranyl, Tetrahydropyranyl und 5- oder 6-gliedriges Heteroaryl sowie bis zu dreifach mit Fluor substituiert sein kann
und wobei
Tetrahydrofuranyl, Tetrahydropyranyl sowie die genannten Cycloalkyl-Gruppen bis zu zweifach, gleich oder verschieden, mit einem Rest ausgewählt aus der Reihe Fluor, (CrC4)-Alkyl, Trifluormethyl, Hydroxy, (CrC4)-Alkoxy und (CpC4)-
Alkoxycarbonyl
und die genannten Heteroaryl-Gruppen bis zu dreifach, gleich oder verschieden, mit einem Rest ausgewählt aus der Reihe (Ci-Gi)-AIkyl, Trifluormethyl, (Ci-C4)- Alkoxy und Trifluormethoxy
substituiert sein können,
R2 für Wasserstoff oder einen Substituenten ausgewählt aus der Reihe Fluor, Chlor, Methyl, Trifluormethyl, Methoxy und Trifluormethoxy steht,
R3 für Methyl, Ethyl oder Trifluormethyl steht,
R4 für einen Substituenten ausgewählt aus der Reihe Chlor, Cyano, Pentafluorthio, (Ci-C6)- Alkyl, Tri-(Ci-C4)-alkylsilyl, -OR9, -NR9R10, -SR9, -S(=O)-R9, -S(=O)2-R9, -S(=O)(=NH)-R9, -S(=O)(=NCH3)-R9, (C3-C6)-Cycloalkyl und 4- bis 6-gliedriges Hetero- cyclyl steht,
wobei (Ci-C6)-Alkyl seinerseits mit einem Rest ausgewählt aus der Reihe -OR9, -NR9R10, -N(R9)-C(=O)-R10, -C(=O)-NR9R10, (C3-C6)-Cycloalkyl, 4- bis 6-gliedriges Heterocyclyl und 5- oder 6-gliedriges Heteroaryl sowie bis zu dreifach mit Fluor substituiert sein kann
und wobei
die genannten Cycloalkyl- und Heterocyclyl-Gruppen ihrerseits bis zu zweifach, gleich oder verschieden, mit einem Rest ausgewählt aus der Reihe Fluor, (CrC4)-Alkyl, Hydroxy, (CrC4)-Alkoxy, Oxo, (CrC4)-Alkylcarbonyl, Mono-(Ci-C4)-alkylaminocarbonyl und Di- (C ] -C4)-alky lam inocarbony 1
sowie
die genannten Heteroaryl-Gruppen ihrerseits bis zu zweifach, gleich oder verschieden, mit einem Rest ausgewählt aus der Reihe Fluor, Chlor, Cyano, (C]-C4)-Alkyl und (C]-C4)- Alkoxy
substituiert sein können,
wobei die hierin genannten (CrC4)-Alkyl-Substituenten und die hierin genannten
(C]-C4)-Alkoxy-Substituenten ihrerseits mit Hydroxy, (Ci-C4)-Alkoxy, Trifluormethoxy, (Ci-C4)-Alkoxycarbonyl, Mono-(Ci-C4)-alkylaminocarbonyl oder Di- (Ci-C4)-alkylaminocarbonyl oder bis zu dreifach mit Fluor substituiert sein können, und worin
R9 und R10 unabhängig voneinander bei jedem einzelnen Auftreten Wasserstoff, (C1-C4)- Alkyl, (C3-C6)-Cycloalkyl oder 4- bis 6-gliedriges Heterocyclyl bedeuten,
wobei (Ci-C4)-Alkyl mit einem Rest ausgewählt aus der Reihe Hydroxy, (Ci-C4)- Alkoxy, Trifluormethoxy, (C3-C6)-Cycloalkyl und 4- bis 6-gliedriges Heterocyclyl sowie bis zu dreifach mit Fluor substituiert sein kann
und
die genannten Cycloalkyl- und Heterocyclyl-Gruppen bis zu zweifach, gleich oder verschieden, mit einem Rest ausgewählt aus der Reihe Fluor, (Ci-C4)-Alkyl, Tri- fluormethyl, Hydroxy, (CrC4)-Alkoxy, Trifluormethoxy, Oxo und (CrC4)-Alkyl- carbonyl substituiert sein können,
oder
R9 und R10 im Fall, dass beide an ein Stickstoffatom gebunden sind, zusammen mit diesem Stickstoffatom einen 4- bis 6-gliedrigen Heterocyclus bilden, der ein weiteres Ring-Heteroatom aus der Reihe N, O, S oder S(O)2 enthalten kann und der bis zu zweifach, gleich oder verschieden, mit einem Rest ausgewählt aus der Reihe Fluor, (CrC4)-Alkyl, Trifluormethyl, Hydroxy, (CrC4)-Alkoxy, Oxo und (CrC4)-Alkyl- carbonyl substituiert sein kann,
R5 für einen Substituenten ausgewählt aus der Reihe Fluor, Chlor und Methyl steht
und
n für die Zahl 0 oder 1 steht,
sowie ihre Salze, Solvate und Solvate der Salze.
Eine alternative Ausführungsform innerhalb der zuletzt beschriebenen Ausführungsform umfasst Verbindungen der Formel (I), in welcher
R1 für Wasserstoff oder einen Substituenten ausgewählt aus der Reihe Fluor, Chlor, Brom, Cyano, (CrC4)-Alkyl, (C2-C4)-Alkinyl, (C3-C6)-Cycloalkyl, -OR6, -SR6, -S(=O)-R6, -S(=O)2-R6, -C(=O)-OR6, -C(=O)-NR6R7, -S(=O)2-NR6R7 und -NR6R8 steht, wobei (Ci-Gt)-Alkyl und (C2-C4)-Alkinyl ihrerseits mit einem Rest ausgewählt aus der Reihe Hydroxy, (CrC4)-Alkoxy, Trifluormethoxy, Trimethylsilyl, (CrC4)-Alkoxycarbonyl und (C3-C6)-Cycloalkyl sowie bis zu dreifach mit Fluor substituiert sein können
und
die genannten Cycloalkyl-Gruppen ihrerseits bis zu zweifach, gleich oder verschieden, mit einem Rest ausgewählt aus der Reihe Fluor, (Ci-C4)-Alkyl, Trifluormethyl, Hydroxy, (C1- C4)-Alkoxy, Trifluormethoxy und (Q-C4)-Alkoxycarbonyl substituiert sein können,
und worin
R6 und R7 die in der zuletzt beschriebenen Ausfuhrungsform genannten Bedeutungen haben
und
R8 Wasserstoff, (C,-C6)-Alkyl, (C3-C6)-Cycloalkyl oder 5- oder 6-gliedriges Hetero- aryl bedeutet,
wobei (C]-C6)-Alkyl mit einem Rest ausgewählt aus der Reihe Hydroxy, (Ci-C4)- Alkoxy, Trifluormethoxy, (Ci-C4)-Alkoxycarbonyl, (C3-C6)-Cycloalkyl, Tetra- hydrofuranyl, Tetrahydropyranyl und 5- oder 6-gliedriges Heteroaryl sowie bis zu dreifach mit Fluor substituiert sein kann
und wobei
Tetrahydrofuranyl, Tetrahydropyranyl sowie die genannten Cycloalkyl-Gruppen bis zu zweifach, gleich oder verschieden, mit einem Rest ausgewählt aus der Reihe
Fluor, (C,-C4)-Alkyl, Trifluormethyl, Hydroxy, (CrC4)-Alkoxy und (C,-C4)- Alkoxycarbonyl
und
die genannten Heteroaryl-Gruppen bis zu dreifach, gleich oder verschieden, mit einem Rest ausgewählt aus der Reihe (CrC4)-Alkyl, Trifluormethyl, (Q-C4)-
Alkoxy und Trifluormethoxy
substituiert sein können,
und R4 für einen Substituenten ausgewählt aus der Reihe Chlor, Cyano, Pentafluorthio, (Ci-C6)- Alkyl, Tri-(C,-C4)-alkylsilyl, -OR9, -NR9R10, -SR9, -S(=O)-R9, -S(=O)2-R9, (C3-C6)-Cyclo- alkyl und 4- bis 6-gliedriges Heterocyclyl steht,
wobei (Ci-C6)-Alkyl seinerseits mit einem Rest ausgewählt aus der Reihe -OR9, -NR9R10, -N(R9)-C(=O)-R10, -C(=O)-NR9R10, (C3-C6)-Cycloalkyl, 4- bis 6-gliedriges Heterocyclyl und 5- oder 6-gliedriges Heteroaryl sowie bis zu dreifach mit Fluor substituiert sein kann
und wobei
die genannten Cycloalkyl- und Heterocyclyl-Gruppen ihrerseits bis zu zweifach, gleich oder verschieden, mit einem Rest ausgewählt aus der Reihe Fluor, (CrC4)-Alkyl, Trifluor- methyl, Hydroxy, (Ci-C4)-Alkoxy, Trifluormethoxy, Oxo und (CrC4)-Alkylcarbonyl
sowie
die genannten Heteroaryl-Gruppen ihrerseits bis zu zweifach, gleich oder verschieden, mit einem Rest ausgewählt aus der Reihe Fluor, Chlor, Cyano, (Ci-C4)-Alkyl, Trifluormethyl, (CrC4)-Alkoxy und Trifluormethoxy
substituiert sein können,
und worin R9 und R10 die in der zuletzt beschriebenen Ausführungsform genannten Bedeutungen haben,
sowie ihre Salze, Solvate und Solvate der Salze.
Besonders bevorzugt im Rahmen der vorliegenden Erfindung sind Verbindungen der Formel (I), in welcher
der Ring ( A J mit den Substituenten R1 und R2 für einen Pyridyl-Ring der Formel
Figure imgf000024_0001
steht, worin
die Verknüpfungsstelle mit der angrenzenden CH2-Gruppe bezeichnet, der Ring ( ^ ) mit dem Substituenten R3 für einen Heteroaryl-Ring der Formel
Figure imgf000025_0001
steht, worin
# die Verknüpfungsstelle mit der angrenzenden CH2-Gruppe
und
## die Verknüpfungsstelle mit dem Ri inngg bezeichnen,
Figure imgf000025_0002
der R Liinngg f füürr eeiinen Heteroaryl-Ring der Formel
Figure imgf000025_0003
Figure imgf000025_0004
steht, worin
* die Verknüpfungsstelle mit dem R iinngg \ BJ
und
** die Verknüpfungsstelle mit dem Ring ( E J bezeichnen,
der Ring ( E ) mit den Substituenten R4 und R5 für einen Phenyl-Ring der Formel
Figure imgf000025_0005
steht, worin
*** die Verknüpfungsstelle mit dem Ring ( D J bezeichnet,
R1 für Wasserstoff oder einen Substituenten ausgewählt aus der Reihe Chlor, Cyano, (C1-C4)- Alkyl, (C2-C4)-Alkinyl, Cyclopropyl, Cyclobutyl, Oxetanyl, Tetrahydropyranyl, -OR6, -SR6, -S(=O)-R6, -SC=O)2-R6, -C(=O)-OR6, -C(=O)-NR6R7, -S(=O)2-NR6R7 und -NR6R8 steht,
wobei CCi-C4)-Alkyl und (C2-C4)-Alkinyl ihrerseits mit einem Rest ausgewählt aus der Reihe Hydroxy, Methoxy, Ethoxy, Trifluormethoxy, Cyclopropyl und Cyclobutyl sowie bis zu dreifach mit Fluor substituiert sein können
und
Oxetanyl und Tetrahydropyranyl ihrerseits mit Methyl, Ethyl, Hydroxy, Methoxy oder Ethoxy substituiert sein können
und
die genannten Cyclopropyl- und Cyclobutyl-Gruppen ihrerseits bis zu zweifach, gleich oder verschieden, mit einem Rest ausgewählt aus der Reihe Fluor, Methyl, Ethyl und Trifluormethyl substituiert sein können,
und worin
R6 und R7 unabhängig voneinander Wasserstoff, (Ci-C4)-Alkyl oder (C3-C6)-Cycloalkyl bedeuten,
wobei (Ci-C4)-Alkyl mit einem Rest ausgewählt aus der Reihe Hydroxy, Methoxy, Ethoxy, Trifluormethoxy, Cyclopropyl und Cyclobutyl sowie bis zu dreifach mit Fluor substituiert sein kann,
und
R8 Wasserstoff, (CrC4)-Alkyl, (C3-C6)-Cycloalkyl oder 5- oder 6-gliedriges Hetero- aryl bedeutet,
wobei (CrC4)-Alkyl mit einem Rest ausgewählt aus der Reihe Hydroxy, Methoxy, Ethoxy, Trifluormethoxy, (C3-C6)-Cycloalkyl, Tetrahydrofuranyl, Tetrahydropyranyl und 5- oder 6-gliedriges Heteroaryl sowie bis zu dreifach mit Fluor substi- tuiert sein kann
und wobei Tetrahydrofuranyl, Tetrahydropyranyl sowie die genannten Cycloalkyl-Gruppen bis zu zweifach, gleich oder verschieden, mit einem Rest ausgewählt aus der Reihe Fluor, Methyl, Ethyl, Trifluormethyl, Hydroxy, Methoxy und Ethoxy
und
die genannten Heteroaryl-Gruppen bis zu dreifach, gleich oder verschieden, mit einem Rest ausgewählt aus der Reihe Methyl, Ethyl und Trifluormethyl
substituiert sein können,
R2 für Wasserstoff oder einen Substituenten ausgewählt aus der Reihe Fluor, Chlor, Methyl und Methoxy steht,
R3 für Methyl steht,
R4 für einen Substituenten ausgewählt aus der Reihe Chlor, Pentafluorthio, (Ci-C6)-Alkyl, Trimethylsilyl, -OR9, -SR9, -S(=O)-R9, -S(O)2-R9, -S(=0)(=NH)-R9, -S(=O)(=NCH3)-R9, (C3-C6)-Cycloalkyl und 4- bis 6-gliedriges Heterocyclyl steht,
wobei (Ci-C6)-Alkyl seinerseits mit einem Rest ausgewählt aus der Reihe -OR9, -NR9R10, -C(=O)-NR9R10, (C3-C6)-Cycloalkyl und 4- bis 6-gliedriges Heterocyclyl sowie bis zu dreifach mit Fluor substituiert sein kann
und
die genannten Cycloalkyl- und Heterocyclyl-Gruppen ihrerseits bis zu zweifach, gleich oder verschieden, mit einem Rest ausgewählt aus der Reihe Fluor, (Ci-C4)-Alkyl, (Ci-C4)- Alkoxy und Oxo substituiert sein können,
wobei der genannte (CrC4)-Alkyl-Substituent und der (Ci-C4)-Alkoxy-Substituent ihrerseits mit Hydroxy, Methoxy, Trifluormethoxy, Ethoxy, Methoxycarbonyl, Ethoxycarbonyl, ter/.-Butoxycarbonyl, Methylaminocarbonyl oder Dimethyl- aminocarbonyl oder bis zu dreifach mit Fluor substituiert sein können,
und worin
R9 und R10 unabhängig voneinander bei jedem einzelnen Auftreten Wasserstoff, (Q -C4)- Alkyl oder (C3-C6)-Cycloalkyl bedeuten, wobei (Ci-C4)-Alkyl mit einem Rest ausgewählt aus der Reihe Hydroxy, (CrC4)- Alkoxy, Trifluormethoxy und (C3-C6)-Cycloalkyl sowie bis zu dreifach mit Fluor substituiert sein kann
und
die genannten Cycloalkyl-Gruppen bis zu zweifach, gleich oder verschieden, mit einem Rest ausgewählt aus der Reihe Fluor, (CrC4)-Alkyl, Trifluormethyl, (Q- C4)-Alkoxy und Trifluormethoxy substituiert sein können,
oder
R9 und R10 im Fall, dass beide an ein Stickstoffatom gebunden sind, zusammen mit diesem Stickstoffatom einen 4- bis 6-gliedrigen Heterocyclus bilden, der ein weiteres
Ring-Heteroatom aus der Reihe N, O, S oder S(O)2 enthalten kann und der bis zu zweifach, gleich oder verschieden, mit einem Rest ausgewählt aus der Reihe Fluor, (Ci-C4)-Alkyl, Hydroxy, (C]-C4)-Alkoxy, Oxo, Acetyl und Propionyl substituiert sein kann,
R5 für Fluor steht
und
n für die Zahl 0 oder 1 steht,
sowie ihre Salze, Solvate und Solvate der Salze.
Eine alternative Ausführungsform innerhalb der zuletzt beschriebenen Ausfuhrungsform umfasst Verbindungen der Formel (I), in welcher
R1 für Wasserstoff oder einen Substituenten ausgewählt aus der Reihe Chlor, Cyano, (Ci-C4)- Alkyl, (C2-C4)-Alkinyl, Cyclopropyl, Cyclobutyl, -OR6, -SR6, -S(=O)-R6, -S(=O)2-R6, -C(=O)-OR6, -C(=O)-NR6R7, -S(=O)2-NR6R7 und -NR6R8 steht,
wobei (Ci-C4)-Alkyl und (C2-C4)-Alkinyl ihrerseits mit einem Rest ausgewählt aus der Reihe Hydroxy, Methoxy, Ethoxy, Trifluormethoxy, Cyclopropyl und Cyclobutyl sowie bis zu dreifach mit Fluor substituiert sein können
und die genannten Cyclopropyl- und Cyclobutyl-Gruppen ihrerseits bis zu zweifach, gleich oder verschieden, mit einem Rest ausgewählt aus der Reihe Fluor, Methyl, Ethyl und Trifluormethyl substituiert sein können,
und worin R6, R7 und R8 die in der zuletzt beschriebenen Ausfuhrungsform genannten Bedeutungen haben,
und
R4 für einen Substituenten ausgewählt aus der Reihe Chlor, Pentafluorthio, (Ci-C6)-Alkyl, Trimethylsilyl, -OR9, -SR9, -S(=O)-R9, -S(=O)2-R9, (C3-C6)-Cycloalkyl und 4- bis 6-glied- riges Heterocyclyl steht,
wobei (Ci-C6)-Alkyl seinerseits mit einem Rest ausgewählt aus der Reihe -OR9, -NR9R10,
-CX=O)-NR9R1 °, (C3-C6)-Cycloalkyl und 4- bis 6-gliedriges Heterocyclyl sowie bis zu dreifach mit Fluor substituiert sein kann
und
die genannten Cycloalkyl- und Heterocyclyl-Gruppen ihrerseits bis zu zweifach, gleich oder verschieden, mit einem Rest ausgewählt aus der Reihe Fluor, (CrC4)-Alkyl, Trifluormethyl, (C]-Gt)-AIkOXy, Trifluormethoxy und Oxo substituiert sein können,
und worin R9 und R10 die in der zuletzt beschriebenen Ausführungsform genannten Bedeutungen haben,
sowie ihre Salze, Solvate und Solvate der Salze.
Besonders bevorzugt sind auch Verbindungen der Formel (I), in welcher
der Ring ( A ) mit den Substituenten R1 und R2 für einen Phenyl-Ring der Formel
Figure imgf000029_0001
steht, worin
die Verknüpfungsstelle mit der angrenzenden CH2-Gruppe bezeichnet, der Ring ( ^ ) mit dem Substituenten R3 für einen Heteroaryl-Ring der Formel
Figure imgf000030_0001
steht, worin
# die Verknüpfungsstelle mit der angrenzenden CH2-Gruppe
und
## die Verknüpfungsstelle mit dem Ring bezeichnen,
Figure imgf000030_0002
der Ring ( D J für einen Heteroaryl-Ring der Formel
// oder \\ /
O— N N-O steht, worin
* die Verknüpfungsstelle mit dem R iinngg
Figure imgf000030_0003
und
** die Verknüpfungsstelle mit dem Ring ( ^ ) bezeichnen,
der Ring ( E ) mit den Substituenten R4 und R5 für einen Phenyl-Ring der Formel
Figure imgf000030_0004
steht, worin
*** die Verknüpfungsstelle mit dem Ri inngg ( ( üD) ) bezeichnet,
R1 für Wasserstoff oder einen Substituenten ausgewählt aus der Reihe Chlor, Cyano, (C1-Gt)- Alkyl, (C2-C4)-Alkinyl, Cyclopropyl, Cyclobutyl, Oxetanyl, Tetrahydropyranyl, -OR6, -SR6, -S(=O)-R6, -S(=O)2-R6, -C(=O)-OR6, -C(=O)-NR6R7, -SC=O)2-NR6R7 und -NR6R8 steht,
wobei (Ci-C4)-Alkyl und (C2-C4)-Alkinyl ihrerseits mit einem Rest ausgewählt aus der Reihe Hydroxy, Methoxy, Ethoxy, Trifluormethoxy, Cyclopropyl und Cyclobutyl sowie bis zu dreifach mit Fluor substituiert sein können
und
Oxetanyl und Tetrahydropyranyl ihrerseits mit Methyl, Ethyl, Hydroxy, Methoxy oder Ethoxy substituiert sein können
und
die genannten Cyclopropyl- und Cyclobutyl-Gruppen ihrerseits bis zu zweifach, gleich oder verschieden, mit einem Rest ausgewählt aus der Reihe Fluor, Methyl, Ethyl und Trifluormethyl substituiert sein können,
und worin
R6 und R7 unabhängig voneinander Wasserstoff, (Ci-C4)-Alkyl oder (C3-C6)-Cycloalkyl bedeuten,
wobei CCrC4)-Alkyl mit einem Rest ausgewählt aus der Reihe Hydroxy, Methoxy, Ethoxy, Trifluormethoxy, Cyclopropyl und Cyclobutyl sowie bis zu dreifach mit Fluor substituiert sein kann,
und
R8 Wasserstoff, CCrC4)-Alkyl, (C3-C6)-Cycloalkyl oder 5- oder 6-gliedriges Hetero- aryl bedeutet,
wobei (Ci-C4)-Alkyl mit einem Rest ausgewählt aus der Reihe Hydroxy, Methoxy, Ethoxy, Trifluormethoxy, (C3-C6)-Cycloalkyl, Tetrahydrofuranyl, Tetrahydropyranyl und 5- oder 6-gliedriges Heteroaryl sowie bis zu dreifach mit Fluor substi- tuiert sein kann
und wobei Tetrahydrofuranyl, Tetrahydropyranyl sowie die genannten Cycloalkyl-Gruppen bis zu zweifach, gleich oder verschieden, mit einem Rest ausgewählt aus der Reihe Fluor, Methyl, Ethyl, Trifluormethyl, Hydroxy, Methoxy und Ethoxy
und
die genannten Heteroaryl-Gruppen bis zu dreifach, gleich oder verschieden, mit einem Rest ausgewählt aus der Reihe Methyl, Ethyl und Trifluormethyl
substituiert sein können,
R2 für Wasserstoff oder einen Substituenten ausgewählt aus der Reihe Fluor, Chlor, Methyl und Methoxy steht,
R3 für Methyl steht,
R4 für einen Substituenten ausgewählt aus der Reihe Chlor, Pentafluorthio, (Ci-CβJ-Alkyl, Trimethylsilyl, -OR9, -SR9, -S(=O)-R9, -S(=O)2-R9, -S(=O)(=NH)-R9, -S(=O)(=NCH3)-R9, (C3-C6)-Cycloalkyl und 4- bis 6-gliedriges Heterocyclyl steht,
wobei (C]-C6)-Alkyl seinerseits mit einem Rest ausgewählt aus der Reihe -OR9, -NR9R10, -C(=O)-NR9R10, (C3-C6)-Cycloalkyl und 4- bis 6-gliedriges Heterocyclyl sowie bis zu dreifach mit Fluor substituiert sein kann
und
die genannten Cycloalkyl- und Heterocyclyl-Gruppen ihrerseits bis zu zweifach, gleich oder verschieden, mit einem Rest ausgewählt aus der Reihe Fluor, (Ci-C4)-Alkyl, (Ci-C4)- Alkoxy und Oxo substituiert sein können,
wobei der genannte (Ci-C4)-Alkyl-Substituent und der (C]-C4)-Alkoxy-Substituent ihrerseits mit Hydroxy, Methoxy, Trifluormethoxy, Ethoxy, Methoxycarbonyl, Ethoxycarbonyl, ter/.-Butoxycarbonyl, Methylaminocarbonyl oder Dimethyl- aminocarbonyl oder bis zu dreifach mit Fluor substituiert sein können,
und worin
R9 und R10 unabhängig voneinander bei jedem einzelnen Auftreten Wasserstoff, (C1-C4)- Alkyl oder (C3-C6)-Cycloalkyl bedeuten, wobei (Ci-GO-Alkyl mit einem Rest ausgewählt aus der Reihe Hydroxy, (CrC4)- Alkoxy, Trifluormethoxy und (C3-C6)-Cycloalkyl sowie bis zu dreifach mit Fluor substituiert sein kann
und
die genannten Cycloalkyl-Gruppen bis zu zweifach, gleich oder verschieden, mit einem Rest ausgewählt aus der Reihe Fluor, (Ci-C4)-Alkyl, Trifluormethyl, ((LV C4)-Alkoxy und Trifluormethoxy substituiert sein können,
oder
R9 und R10 im Fall, dass beide an ein Stickstoffatom gebunden sind, zusammen mit diesem Stickstoffatom einen 4- bis 6-gliedrigen Heterocyclus bilden, der ein weiteres
Ring-Heteroatom aus der Reihe N, O, S oder S(O)2 enthalten kann und der bis zu zweifach, gleich oder verschieden, mit einem Rest ausgewählt aus der Reihe Fluor, (Ci-Gι)-Alkyl, Hydroxy, (CrC4)-Alkoxy, Oxo, Acetyl und Propionyl substituiert sein kann,
R5 für Fluor steht
und
n für die Zahl 0 oder 1 steht,
sowie ihre Salze, Solvate und Solvate der Salze.
Eine alternative Ausführungsform innerhalb der zuletzt beschriebenen Ausführungsform umfasst Verbindungen der Formel (I), in welcher
R1 für Wasserstoff oder einen Substituenten ausgewählt aus der Reihe Chlor, Cyano, (Ci-C4)- Alkyl, (C2-C4)-Alkinyl, Cyclopropyl, Cyclobutyl, -OR6, -SR6, -S(=O)-R6, -S(=O)2-R6, -C(=O)-OR6, -C(=O)-NR6R7, -S(=O)2-NR6R7 und -NR6R8 steht,
wobei (CrC4)-Alkyl und (C2-C4)-Alkinyl ihrerseits mit einem Rest ausgewählt aus der Reihe Hydroxy, Methoxy, Ethoxy, Trifluormethoxy, Cyclopropyl und Cyclobutyl sowie bis zu dreifach mit Fluor substituiert sein können
und die genannten Cyclopropyl- und Cyclobutyl-Gruppen ihrerseits bis zu zweifach, gleich oder verschieden, mit einem Rest ausgewählt aus der Reihe Fluor, Methyl, Ethyi und Trifluormethyl substituiert sein können,
und worin R6, R7 und R8 die in der zuletzt beschriebenen Ausführungsform genannten Bedeutungen haben,
und
R4 für einen Substituenten ausgewählt aus der Reihe Chlor, Pentafluorthio, (Ci-C6)-Alkyl, Trimethylsilyl, -OR9, -SR9, -S(=O)-R9, -S(=O)2-R9, (C3-C6)-Cycloalkyl und 4- bis 6-glied- riges Heterocyclyl steht,
wobei (CrC6)-Alkyl seinerseits mit einem Rest ausgewählt aus der Reihe -OR9, -NR9R10,
-C(O)-NR9R10, (C3-C6)-Cycloalkyl und 4- bis 6-gliedriges Heterocyclyl sowie bis zu dreifach mit Fluor substituiert sein kann
und
die genannten Cycloalkyl- und Heterocyclyl-Gruppen ihrerseits bis zu zweifach, gleich oder verschieden, mit einem Rest ausgewählt aus der Reihe Fluor, (Ci-C4)-Alkyl, Trifluormethyl, (Q-Gt)-AIkOXy, Trifluormethoxy und Oxo substituiert sein können,
und worin R9 und R10 die in der zuletzt beschriebenen Ausführungsform genannten Bedeutungen haben,
sowie ihre Salze, Solvate und Solvate der Salze.
Ganz besonders bevorzugt im Rahmen der vorliegenden Erfindung sind Verbindungen der Formel (I), in welcher
der Ring ( A J mit den Substituenten R1 und R2 für einen Pyridyl-Ring der Formel
steht, worin
die Verknüpfungsstelle mit der angrenzenden CH2-Gruppe bezeichnet, der Ring ( ^ ) mit dem Substituenten R3 für einen Heteroaryl-Ring der Formel
Figure imgf000035_0001
steht, worin
# die Verknüpfungsstelle mit der angrenzenden CH^-Gruppe
und
## die Verknüpfungsstelle mit dem Ring bezeichnen,
Figure imgf000035_0002
der R Liinngg ( ( D D ) ) ffüürr eeiinen Heteroaryl-Ring der Formel
*^ \^** *-^/ ^ -••
Il oder \\
O— N N-O steht, worin
* die Verknüpfungsstelle mit dem R iinngg (j3j
und
** die Verknüpfungsstelle mit dem Ring ( E J bezeichnen,
der Ring ( E J mit den Substituenten R4 und R5 für einen Phenyl-Ring der Formel
Figure imgf000035_0003
steht, worin
*** die Verknüpfungsstelle mit dem Ring ( D ) bezeichnet,
R1 für Methyl oder die Gruppe -NR6R8 steht, worin R6 Wasserstoff, Methyl, Ethyl oder Cyclopropyl bedeutet,
und
R8 (CrC4)-Alkyl oder (C3-C6)-Cycloalkyl bedeutet,
wobei (CrC4)-Alkyl mit einem Rest ausgewählt aus der Reihe Hydroxy, Methoxy, Ethoxy, (C3-C6)-Cycloalkyl, Tetrahydrofuranyl, Tetrahydropyranyl und 5- oder 6- gliedriges Heteroaryl sowie bis zu dreifach mit Fluor substituiert sein kann
und wobei
Tetrahydrofuranyl, Tetrahydropyranyl sowie die genannten Cycloalkyl-Gruppen bis zu zweifach, gleich oder verschieden, mit einem Rest ausgewählt aus der Reihe Fluor, Methyl, Ethyl, Trifiuormethyl, Hydroxy, Methoxy und Ethoxy
und
die genannte Heteroaryl-Gruppe bis zu dreifach, gleich oder verschieden, mit einem Rest ausgewählt aus der Reihe Methyl, Ethyl und Trifiuormethyl
substituiert sein können,
R2 für Wasserstoff steht,
R3 für Methyl steht,
R4 für einen Substituenten ausgewählt aus der Reihe Chlor, Pentafluorthio, (Ci-C6)-Alkyl, Trimethylsilyl, -OR9, -SR9, -S(=O)-R9, -S(=O)2-R9, -S(=O)(=NH)-CH3, -S(=O)(=NH)-CF3, -S(=O)(=NCH3)-CH3, -S(=O)(=NCH3)-CF3, (C3-C6)-Cycloalkyl und 4- bis 6-gliedriges Heterocyclyl steht,
wobei (Ci-C6)-Alkyl seinerseits mit einem Rest ausgewählt aus der Reihe -OR9, -NR9R10, -CX=O)-NR9R1 °, (C3-C6)-Cycloalkyl und 4- bis 6-gliedriges Heterocyclyl sowie bis zu dreifach mit Fluor substituiert sein kann
und
die genannten Cycloalkyl- und Heterocyclyl-Gruppen ihrerseits bis zu zweifach, gleich oder verschieden, mit einem Rest ausgewählt aus der Reihe Fluor, (CrC4)-Alkyl, Trifiuormethyl, (Ci-C4)-Alkoxy, Trifluormethoxy und Oxo substituiert sein können, wobei der genannte (C1-C4)-Alkyl-Substituent seinerseits mit Methoxy, Trifluor- methoxy oder Ethoxy substituiert sein kann,
und worin
R9 und R10 unabhängig voneinander bei jedem einzelnen Auftreten Wasserstoff, (Ci-C4)- Alkyl oder (C3-C6)-Cycloalkyl bedeuten,
wobei (Ci-C4)-Alkyl mit einem Rest ausgewählt aus der Reihe Hydroxy, (CrC4)- Alkoxy, Trifluormethoxy und (C3-C6)-Cycloalkyl sowie bis zu dreifach mit Fluor substituiert sein kann
und
die genannten Cycloalkyl-Gruppen bis zu zweifach, gleich oder verschieden, mit einem Rest ausgewählt aus der Reihe Fluor, (Ci-C4)-Alkyl, Trifluormethyl, (Ci- C4)-Alkoxy und Trifluormethoxy substituiert sein können,
oder
R9 und R10 im Fall, dass beide an ein Stickstoffatom gebunden sind, zusammen mit diesem Stickstoffatom einen 4- bis 6-gliedrigen Heterocyclus bilden, der ein weiteres
Ring-Heteroatom aus der Reihe N, O, S oder S(O)2 enthalten kann und der bis zu zweifach, gleich oder verschieden, mit einem Rest ausgewählt aus der Reihe Fluor, (Ci-C4)-Alkyl, Hydroxy, (Ci-C4)-Alkoxy, Oxo, Acetyl und Propionyl substituiert sein kann,
R5 für Fluor steht
und
n für die Zahl 0 oder 1 steht,
sowie ihre Salze, Solvate und Solvate der Salze.
Eine alternative Ausführungsform innerhalb der zuletzt beschriebenen Ausführungsform umfasst Verbindungen der Formel (I), in welcher
R4 für einen Substituenten ausgewählt aus der Reihe Chlor, Pentafluorthio, (CrC6)-Alkyl, Trimethylsilyl, -OR9, -SR9, -S(=O)-R9, -S(=O)2-R9, (C3-C6)-Cycloalkyl und 4- bis 6-glied- riges Heterocyclyl steht, wobei (Ci-C6)-Alkyl seinerseits mit einem Rest ausgewählt aus der Reihe -OR9, -NR9R10,
-C(=O)-NR >9r R> 10 , (C3-C6)-Cycloalkyl und 4- bis 6-gliedriges Heterocyclyl sowie bis zu dreifach mit Fluor substituiert sein kann
und
die genannten Cycloalkyl- und Heterocyclyl-Gruppen ihrerseits bis zu zweifach, gleich oder verschieden, mit einem Rest ausgewählt aus der Reihe Fluor, (CrC4)-Alkyl, Trifluor- methyl, (Q-Gt)-AIkOXy, Trifluormethoxy und Oxo substituiert sein können,
und worin R9 und R10 die in der zuletzt beschriebenen Ausführungsform genannten Bedeutungen haben,
sowie ihre Salze, Solvate und Solvate der Salze.
Ganz besonders bevorzugt sind auch Verbindungen der Formel (I), in welcher
der Ring ( A ) mit den Substituenten R1 und R2 für einen Phenyl-Ring der Formel
Figure imgf000038_0001
steht, worin
§ die Verknüpfungsstelle mit der angrenzenden CH2-Gruppe bezeichnet,
der Ring ( B J mit dem Substituenten R3 für einen Heteroaryl-Ring der Formel
Figure imgf000038_0002
steht, worin
# die Verknüpfungsstelle mit der angrenzenden CH2-Gruppe und
## die Verknüpfungsstelle mit dem Ring [ ^ ) bezeichnen, der Ring f füürr eeiinen Heteroaryl-Ring der Formel
Figure imgf000039_0001
\ // oder \\ /
O — N N-O steht, worin
* die Verknüpfungsstelle mit dem Ring ( B ) und
** die Verknüpfungsstelle mit dem Ring ( E ) bezeichnen,
der Ring ( E J mit den Substituenten R4 und R5 für einen Phenyl-Ring der Formel
Figure imgf000039_0002
steht, worin
*** die Verknüpfungsstelle mit dem Ring ( D ) bezeichnet,
R1 für Chlor, Cyano, Methyl, Ethyl, Isopropyl, Cyclopropyl, Cyclobutyl, Methoxy, Ethoxy, Methylsulfonyl, Ethylsulfonyl, Isopropylsulfonyl oder die Gruppe -C(=O)-NR6R7 steht, worin
R6 und R7 unabhängig voneinander Wasserstoff, (C)-C4)-Alkyl oder (C3-C6)-Cycloalkyl bedeuten,
wobei (Ci-C4)-Alkyl mit einem Rest ausgewählt aus der Reihe Hydroxy, Methoxy, Ethoxy, Cyclopropyl und Cyclobutyl sowie bis zu dreifach mit Fluor substituiert sein kann,
R2 für Wasserstoff steht,
R3 für Methyl steht, für einen Substituenten ausgewählt aus der Reihe Chlor, Pentafluorthio, (Ci-C6)-Alkyl, Trimethylsilyl, -OR9, -SR9, -S(=O)-R9, -S(=O)2-R9, -S(=O)(=NH)-CH3, -S(=O)(=NH)-CF3, -S(=O)(=NCH3)-CH3, -S(=O)(=NCH3)-CF3, (C3-C6)-Cycloalkyl und 4- bis 6-gliedriges Heterocyclyl steht,
wobei (Ci-Q)-Alkyl seinerseits mit einem Rest ausgewählt aus der Reihe -OR9, -NR9R10,
-C(=O)-NR9R10, (C3-C6)-Cycloalkyl und 4- bis 6-gliedriges Heterocyclyl sowie bis zu dreifach mit Fluor substituiert sein kann
und
die genannten Cycloalkyl- und Heterocyclyl-Gruppen ihrerseits bis zu zweifach, gleich oder verschieden, mit einem Rest ausgewählt aus der Reihe Fluor, (Ci-C4)-Alkyl, Trifluor- methyl, (Ci-C4)-Alkoxy, Trifluormethoxy und Oxo substituiert sein können,
wobei der genannte (Ci-C4)-Alkyl-Substituent seinerseits mit Methoxy, Trifluormethoxy oder Ethoxy substituiert sein kann,
und worin
R9 und R10 unabhängig voneinander bei jedem einzelnen Auftreten Wasserstoff, (Ci-C4)-
Alkyl oder (C3-C6)-Cycloalkyl bedeuten,
wobei (Ci-C4)-Alkyl mit einem Rest ausgewählt aus der Reihe Hydroxy, (Ci-C4)- Alkoxy, Trifluormethoxy und (C3-C6)-Cycloalkyl sowie bis zu dreifach mit Fluor substituiert sein kann
und
die genannten Cycloalkyl-Gruppen bis zu zweifach, gleich oder verschieden, mit einem Rest ausgewählt aus der Reihe Fluor, (CrC4)-Alkyl, Trifiuormethyl, (Cr C4)-Alkoxy und Trifluormethoxy substituiert sein können,
oder
R9 und R10 im Fall, dass beide an ein Stickstoffatom gebunden sind, zusammen mit diesem
Stickstoffatom einen 4- bis 6-gliedrigen Heterocyclus bilden, der ein weiteres Ring-Heteroatom aus der Reihe N, O, S oder S(O)2 enthalten kann und der bis zu zweifach, gleich oder verschieden, mit einem Rest ausgewählt aus der Reihe Fluor, (Ci-C4)-Alkyl, Hydroxy, (CrC4)-Alkoxy, Oxo, Acetyl und Propionyl substituiert sein kann, R5 für Fluor steht
und
n für die Zahl 0 oder 1 steht,
sowie ihre Salze, Solvate und Solvate der Salze.
Eine alternative Ausführungsform innerhalb der zuletzt beschriebenen Ausfuhrungsform umfasst Verbindungen der Formel (I), in welcher
R4 für einen Substituenten ausgewählt aus der Reihe Chlor, Pentafluorthio, (Ci-C6)-Alkyl, Trimethylsilyl, -OR9, -SR9, -S(=O)-R9, -S(=O)2-R9, (C3-C6)-Cycloalkyl und 4- bis 6-glied- riges Heterocyclyl steht,
wobei (Ci-C6)-Alkyl seinerseits mit einem Rest ausgewählt aus der Reihe -OR9, -NR9R10,
-C(=O)-NR9R10, (C3-C6)-Cycloalkyl und 4- bis 6-gliedriges Heterocyclyl sowie bis zu dreifach mit Fluor substituiert sein kann
und
die genannten Cycloalkyl- und Heterocyclyl-Gruppen ihrerseits bis zu zweifach, gleich oder verschieden, mit einem Rest ausgewählt aus der Reihe Fluor, (CrC4)-Alkyl, Trifluor- methyl, (Q-Gi)-AIkOXy, Trifluormethoxy und Oxo substituiert sein können,
und worin R9 und R10 die in der zuletzt beschriebenen Ausführungsform genannten Bedeutungen haben,
sowie ihre Salze, Solvate und Solvate der Salze.
Die in den jeweiligen Kombinationen bzw. bevorzugten Kombinationen von Resten im einzelnen angegebenen Reste-Definitionen werden unabhängig von den jeweiligen angegebenen Kombinationen der Reste beliebig auch durch Reste-Definitionen anderer Kombinationen ersetzt.
Ganz besonders bevorzugt sind Kombinationen von zwei oder mehreren der oben genannten Vorzugsbereiche.
Die erfindungsgemäßen Verbindungen können auf vielfältige Art und Weise hergestellt werden. Zur Anwendung kamen hier insbesondere die im Folgenden als Verfahren A, B und C bezeichneten prinzipiellen Methoden, die in unterschiedlichen Varianten ausgeführt werden können. Verfahren A (mit den Varianten A.l und A.2; siehe Schemata 1 und 2) ist dadurch gekennzeichnet, dass Verbindungen der Formel (FV), in welcher B, D, E, R3, R4, R5 und n die oben beschriebenen Bedeutungen haben und in der das angezeigte Wasserstoffatom an ein Stickstoffatom des Ringes B gebunden ist, mit Verbindungen der Formel (II) oder (Ul) umgesetzt werden, in denen A, R1 und R2 die oben beschriebenen Bedeutungen haben und in denen Y1 ganz allgemein für ein Atom oder eine Gruppe steht, aus der oder mit deren Hilfe sich gegebenenfalls der Substituent R1 aufbauen oder einführen läßt, und in denen X für eine Abgangsgruppe steht. Beispiele für Y1 sind Chlor, Brom, Iod, Cyano, Nitro, Hydroxy, Formyl, Carboxyl und Alkoxycarbonyl; Beispiele für X sind Chlor, Brom, Iod, Methansulfonat (Mesylat), Trifluormethansulfonat (Triflat) und 4-Methylben- zolsulfonat (Tosylat).
Schema 1 : Verfahren A.1
[Ring B = lH-Pyrazol-l,3-diyl oder lH-Imidazol-l,4-diyl]
Figure imgf000042_0001
Schema 2: Verfahren A.2
[Ring B = lH-Pyrazol-l,3-diyl oder lH-Imidazol-l,4-diyl]
Figure imgf000043_0001
Figure imgf000043_0002
Bei den in Schema 1 und 2 dargestellten Verfahren A.l und A.2 handelt es sich im ersten Reak- tionsschritt um eine Substitutionsreaktion, bei der die Fluchtgruppe X, welche zum Beispiel für
Chlor, Brom, Methansulfonat (Mesylat) oder 4-Methylbenzolsulfonat (Tosylat) stehen kann, gegen das N'-Stickstoffatom des Ringes B ausgetauscht wird (Ring B = lH-Pyrazol-l,3-diyl oder IH-
Imidazol-l,4-diyl). Diese Umsetzung wird bevorzugt unter Verwendung einer Base wie Kalium- tert. -butylat oder Natriumhydrid in Lösungsmitteln wie Tetrahydrofuran oder Toluol bei Tempera- turen zwischen 00C und dem Siedepunkt des Lösungsmittels durchgeführt.
Bei der in Schema 2 (Verfahren A.2) gezeigten Umwandlung von Verbindungen der Formel (V) in die Produkte der Formel (I) kommen unterschiedliche chemische Transformationen zur Anwendung, die dem Fachmann geläufig sind und von denen einige exemplarisch weiter unten beschrieben werden. Für den Fall, dass der Substituent R2 nicht chemisch inert gegenüber der Transforma- tion von Y1 zu R1 ist, können temporäre Schutzgruppen bei R2 eingesetzt werden. Als Beispiel sei der Schutz einer Ηydroxy-Gruppe als Silylether und die nachfolgende Abspaltung der Silylgruppe mit Hilfe von Fluorid-Reagenzien wie Tetrabutylammoniumfluorid oder Kaliumfluorid genannt. Solche Schutzgruppen-Operationen sind in der Literatur beschrieben und dem Fachmann bekannt.
Im Verfahren B (Schemata 3 und 4) wird der Ring D aufgebaut, wobei der Ring D hier für ein 1,2,4-Oxadiazol steht. Auch das Verfahren B kommt in verschiedenen Abwandlungen zur Anwen- dung (Varianten B.l und B.2). Die Verfahrensvariante B.2 ähnelt der Verfahrensvariante A.2 bezüglich der Teilreaktionen, die die Umwandlung des Restes Y1 in den Substituenten R1 betreffen. Im Folgenden soll deshalb nur die Variante B.l detaillierter dargestellt werden (Schema 3). Hierbei werden Verbindungen der Formel (VI), in welcher A, B, R1, R2 und R3 die oben beschriebenen Bedeutungen haben, mit Hydroxyamidinen der Formel (VIII), in welcher E, R4, R5 und n die oben angegebenen Bedeutungen haben, zu den Oxadiazol-Derivaten der Formel (I-A) umgesetzt.
Schema 3: Verfahren B.l
Figure imgf000044_0001
Die Umsetzung der Verbindungen der Formel (VI) mit den Verbindungen der Formel (VIII) erfolgt in Gegenwart von Kupplungsreagenzien, wie zum Beispiel lH-Benzotriazol-1-ol und N-[3-(Di- methylamino)propyl]-N'-ethylcarbodiimid-Ηydrochlorid, sowie in Gegenwart von tertiären Amin- basen, wie zum Beispiel Triethylamin, und in geeigneten Lösungsmitteln wie zum Beispiel NN- Dimethylformamid. Die Reaktionspartner werden zunächst einige Zeit bei Raumtemperatur miteinander umgesetzt, bevor das Gemisch dann auf Temperaturen im Bereich von +800C bis +1400C erhitzt wird. Alternativ können die Verbindungen der Formel (VI) zunächst in die entsprechenden Carbonsäurechloride überführt werden. Dazu werden Chlorierungsreagenzien, wie zum Beispiel Oxalylchlorid oder Thionylchlorid, in inerten Lösungsmitteln, wie zum Beispiel Dichlormethan oder Chloroform, eingesetzt. Die Reaktion erfolgt bevorzugt bei Raumtemperatur und in Gegenwart einer katalytischen Menge NN-Dimethylformamids. Das so erhaltene Säurechlorid wird an- schließend mit den Verbindungen der Formel (VIII) zur Reaktion gebracht. Das primäre Kondensationsprodukt dieser Reaktion wird dann in inerten Lösungsmitteln, wie zum Beispiel Dimethyl- sulfoxid oder NN-Dimethylformamid, auf Temperaturen im Bereich von +800C bis +1400C erhitzt und ergibt so die Zielverbindung der Formel (I-A). In der Verfahrensvariante B.2 kommen anstelle von Verbindungen der Formel (VI) Carbonsäuren der Formel (VII) zum Einsatz, in welcher A, B, R2, R3 und Y1 die oben beschriebenen Bedeutungen haben.
Schema 4: Verfahren B.2
Figure imgf000045_0001
Figure imgf000045_0002
Wenn der Ring D für ein 1,3-Oxazol steht, kann Verfahren C benutzt werden. Hierbei werden Verbindungen der Formel (VI) mit Verbindungen der Formel (IX) zu Intermediaten der Formel (X) umgesetzt, die wiederum zu Intermediaten der Formel (XI) cyclisiert und abschließend zu den Produkten der Formel (I-B) aufoxidiert werden. A, B, E, R1, R2, R3, R4, R5 und n haben jeweils die oben angegebenen Bedeutungen.
Schema 5: Verfahren C
Figure imgf000046_0001
Figure imgf000046_0002
Figure imgf000046_0003
Die Verbindungen der Formel (VI) werden mit den Aminoalkoholen der Formel (LX) in Gegenwart von Kupplungsreagenzien, wie zum Beispiel 0-(7-Azabenzotriazol-l-yl)-N,N,N'N'-tetramethyl- uronium-Hexafluorophosphat, zu Intermediaten der Formel (X) umgesetzt. Die Reaktion erfolgt bei Raumtemperatur in Gegenwart von tertiären Aminbasen, wie zum Beispiel Triethylamin, in polar-aprotischen Lösungsmitteln wie zum Beispiel NN-Dimethylformamid. Die anschließende Cyclisierung zu den Verbindungen der Formel (XI) wird mit Hilfe eines Cyclisierungsreagenzes erreicht, wie beispielsweise und bevorzugt mit Burgess-Reagenz (Carbomethoxysulfamoyl-tri- ethylammoniumhydroxid). Die Reaktion erfolgt in geeigneten Lösungsmitteln, wie zum Beispiel Tetrahydrofuran, am Siedepunkt des Lösungsmittels. Die abschließende Oxidation zu den 1,3-Oxa- zol-Derivaten der Formel (I-B) kann mit verschiedenen Oxidationsmitteln erfolgen; bevorzugt ist die Oxidation mit aktiviertem Mangandioxid in Tetrahydrofliran beim Siedepunkt des Lösungsmittels.
Im Folgenden werden exemplarisch zwei Verfahren beschrieben (siehe Schemata 6 und 7), in denen die Intermediate der Formel (V) (vgl. Schemata 2 und 4) zu Zielverbindungen der Formel (I) umgesetzt werden. Weitere Umsetzungen dieser Art sind im Experimentellen Teil beschrieben und bedürfen hier keiner weiteren Darstellung, da sie nicht den Charakter eines allgemeinen Verfahrens, sondern eher einer spezifischen Funktionsgruppen-Umwandlung haben. Bei dem Ring A handelt es sich in den beiden nachstehend beschriebenen Fällen um einen Pyridinring, welcher den Rest Y1 in direkter Nachbarschaft zum Pyridin-Stickstoffatom trägt.
Wenn der Substituent R1 in den Zielverbindungen der Formel (I) für die Gruppe -NR6R8 steht, worin R6 und R8 die oben beschriebenen Bedeutungen haben, und Y1 für Chlor, Brom oder Iod steht, werden die Intermediate der Formel (V) mit Aminen der Formel (XII) umgesetzt (siehe Schema 6). Gegebenenfalls kann hierbei der Zusatz eines tertiären Amins als Hilfsbase, wie beispielsweise NN-Diisopropylethylamin, von Vorteil sein. Die Reaktion findet bevorzugt in Lösungsmitteln wie Diethylenglykoldimethy lether oder N-Methylpyrrolidinon statt, oder die Verbindungen der Formel (XII) dienen, im Überschuss eingesetzt, selbst als Lösungsmittel. Die Reaktion wird bei erhöhter Temperatur ausgeführt, vorzugsweise in einem Temperaturbereich zwischen +800C und +2000C. Reaktionen im oberen Bereich des genannten Temperaturintervalls werden bevorzugt in geschlossenen Druckgefaßen in einem Mikrowellengerät durchgeführt.
Schema 6: Umsetzung von Verbindungen der Formel (V) mit Aminen
[Ring A = Pyridin mit Y1 in 2-Position; Y1 = Chlor, Brom oder Iod]
Figure imgf000047_0001
Figure imgf000047_0002
Wenn der Substituent R1 in den Zielverbindungen der Formel (I) für eine gegebenenfalls substituierte Alkinyl- oder Alkyl-Gruppe steht und Y1 für Chlor, Brom oder Iod steht, können die Inter- mediate der Formel (V) beispielsweise mit Propargylalkohol (XIII) zu Produkten der Formel (I-D) umgesetzt werden (siehe Schema 7). Die Reaktion wird vorzugsweise bei Raumtemperatur in einem aprotischen Lösungsmittel wie Tetrahydrofuran in Anwesenheit einer Aminbase wie Tri- ethylamin und eines Palladium-Katalysators, wie beispielsweise Tetrakis(triphenylphosphin)palla- dium(0) sowie von Kupfer(I)iodid durchgeführt (Variante der so genannten "Sonogashira-Kupp- lung"). Eine gegebenenfalls anschließende Reduktion der Alkin-Bindung zu Produkten der Formel (I-E) erfolgt mit Wasserstoff bevorzugt unter Normaldruck oder auch bei erhöhtem Druck von bis zu ca. 100 bar in Gegenwart eines Metall-Katalysators, vorzugsweise auf Basis von Platin, Palladium oder Nickel; beispielhaft erwähnt seien Platin(IV)oxid, Palladium auf Aktivkohle sowie Raney-Nickel.
Schema 7: Umsetzung von Verbindungen der Formel (V) mit Propargylalkohol und nachfolgende Hydrierung [Ring A = Pyridin mit Y1 in 2-Position; Y1 = Chlor, Brom oder Iod]
Figure imgf000048_0001
Figure imgf000048_0002
Figure imgf000048_0003
Im Folgenden werden exemplarisch Verfahren beschrieben, mit denen die in Schema 1 und 2 aufgeführten Verbindungen der Formel (IV) hergestellt werden können. Verbindungen der Formel (IV), in welcher der Ring D die Bedeutung eines 1,2,4-Oxadiazols hat und der Ring B für eine lH-Pyrazol-l,3-diyl- oder lH-Imidazol-l,4-diyl-Gruppe steht, werden aufgebaut, indem Verbindungen der Formel (VIII), in welcher E, R4, R5 und n die oben angegebenen Bedeutungen haben, und Verbindungen der Formel (XIV), in welcher R3 die oben angegebene Bedeutung hat und Ring B für lH-Pyrazol-l,3-diyl oder lH-Imidazol-l,4-diyl steht, miteinander umgesetzt werden (siehe Schema 8). Dieser Typ von Kondensationsreaktion ist bereits in Verfahren B.l (Schema 3) beschrieben worden und wird hier unter vollkommen analogen Bedingungen durchgeführt.
Schema 8: Aufbau von Verbindungen der Formel (IV)
[Ring B = lH-Pyrazol-l,3-diyl oder lH-Imidazol-l,4-diyl]
Figure imgf000049_0001
Im Folgenden werden Verfahren beschrieben, mit denen die in Schema 3 gezeigten Verbindungen der Formel (VI) und die in Schema 4 gezeigten Verbindungen der Formel (VII) in Abhängigkeit von der Natur des Ringes B aufgebaut werden können (siehe Schemata 9-11).
Schema 9 beschreibt die Herstellung von Pyrazol- und Imidazol-Derivaten der Formel (VII) ausgehend von Verbindungen der Formel (XV), in welcher der Ring B für lH-Pyrazol-l,3-diyl oder lH-Imidazol-l,4-diyl steht, der angezeigte Wasserstoff an das N '-Stickstoffatom des Ringes B gebunden ist und R3 die oben angegebene Bedeutung hat. Diese Verbindungen werden mit den Verbindungen der Formel (III) zu Intermediaten der Formel (XVI) umgesetzt. Die Reaktionsbedin- gungen hierbei sind die gleichen wie die in Verfahren A.2 (Schema 2) beschriebenen. Die Ester- Hydrolyse im zweiten Reaktionsschritt erfolgt unter Standardbedingungen, beispielsweise mit Natronlauge in Methanol oder Ethanol als Lösungsmittel bei Temperaturen in einem Bereich von Raumtemperatur bis +600C. Schema 9: Aufbau von Verbindungen der Formel (VII)
[Ring B = lH-Pyrazol-l,3-diyl oder lH-Imidazol-l,4-diyl]
Figure imgf000050_0001
Figure imgf000050_0002
Die Darstellung von korrespondierenden Pyrazol- und Imidazol-Derivaten der Formel (VI) erfolgt in Analogie zu dem in Schema 9 beschriebenen Verfahren, indem Ausgangsverbindungen der Formeln (II) und (XV) eingesetzt werden.
Zur Herstellung von Verbindungen der Formel (VII), in welcher der Ring B für lH-Pyrrol-l,3-diyl steht, kann wie in Schema 10 gezeigt vorgegangen werden: γ-Ketoester der Formel (XVII), in welcher R3 die oben angegebene Bedeutung hat, werden zunächst mit Hilfe von Trimethylorthoformiat in Acetale der Formel (XVIII) überführt und anschließend mit Ameisensäuremethylester in Gegenwart einer Base, wie vorzugsweise Natriumhydrid, in inerten Lösungsmitteln wie Diethylether oder Pentan, gegebenenfalls unter Zusatz von protischen Lösungsmitteln wie Methanol, umgesetzt. Nachfolgende Acetalspaltung unter sauren Bedingungen, zum Beispiel mittels einer wässrigen oder methanolischen Chlorwasserstoff-Lösung, liefert die Intermediate der Formel (XIX). Diese werden dann mit Aminen der Formel (XX), in welcher A, R2 und Y1 die oben angegebenen Bedeutungen haben, zu Verbindungen der Formel (XXI) kondensiert. Diese Reaktion wird bevorzugt bei Raumtemperatur oder leicht erhöhter Temperatur in Methanol als Lösungsmittel durchgeführt. Die abschließende Ester-Hydrolyse erfolgt unter basischen Standardbedingungen. Schema 10: Aufbau von Verbindungen der Formel (VII) [Ring B = lH-Pyrrol-l,3-diyl]
Figure imgf000051_0001
(XiX) (XXl)
Figure imgf000051_0002
(VII-A)
Wird anstelle des Amins der Formel (XX) die entsprechende Verbindung verwendet, die statt des Restes Y1 bereits den Substituenten R1 enthält, so werden nach dem oben beschriebenen Verfahren in analoger Weise die zur Formel (VI) korrespondierenden Pyrrol-Derivate erhalten.
Verbindungen der Formel (VII), in welcher der Ring B für eine Pyrazol-3,5-diyl-Gruppe steht, können gemäß dem in Schema 11 beschriebenen Verfahren hergestellt werden: Im ersten Schritt werden Verbindungen der Formel (XXII), in welcher A, R2 und Y1 die oben angegebenen Bedeu- tungen haben, mit Oxalsäurediethylester unter Verwendung einer Base, wie vorzugsweise Natriumhydrid, in einem protischen Lösungsmittel wie Ethanol bei Temperaturen zwischen -100C und Raumtemperatur zu Intermediaten der Formel (XXIII) umgesetzt. Diese werden dann in Essigsäure bei Temperaturen zwischen Raumtemperatur und +1000C mit Hydrazin-Derivaten der Formel (XXIV), in welcher R3 die oben angegebene Bedeutung hat, zu Verbindungen der Formel (XXV) kondensiert. Die abschließende Ester-Hydrolyse erfolgt nach Standardmethoden, beispielsweise durch Behandlung mit Lithiumhydroxid in Ethanol bei Temperaturen von Raumtemperatur bis zum Siedepunkt des Lösungsmittels. Schema 11 : Aufbau von Verbindungen der Formel (VII) [Ring B = Pyrazol-3,5-diyl]
Figure imgf000052_0001
(XXV)
Figure imgf000052_0002
(VII-B)
Der Formel (VI) entsprechende Pyrazol-Derivate werden in analoger Weise erhalten, indem man von den korrespondierenden Verbindungen der Formel (XXII) ausgeht, in denen der Rest Y1 bereits gegen den Substituenten R1 ausgetauscht ist.
Zur beispielhaften Veranschaulichung der zuvor beschriebenen Verfahrensvarianten wird im Folgenden die Herstellung von erfindungsgemäßen Verbindungen der Formel (I-F)
Figure imgf000052_0003
in welcher der Ring E sowie R3, R4, R5, R6, R8 und n jeweils die oben angegebenen Bedeutungen haben,
näher erläutert: Solche Verbindungen der Formel (I-F) können dadurch hergestellt werden, dass man ein N- Hydroxyamidin der Formel (VIII)
Figure imgf000053_0001
in welcher der Ring E sowie R , R und n die oben angegebenen Bedeutungen haben,
zunächst entweder
[A] mit einer Pyrazolcarbonsäure der Formel (XXVI)
Figure imgf000053_0002
in welcher R3 die oben angegebene Bedeutung hat,
zu einem 1,2,4-Oxadiazol-Derivat der Formel (XXVII)
Figure imgf000053_0003
in welcher der Ring E sowie R , R , R und n die oben angegebenen Bedeutungen haben,
kondensiert und dieses dann in Gegenwart einer Base mit einer Verbindung der Formel (XXVIII)
(XXVIII),
Figure imgf000053_0004
in welcher
Y für Chlor, Brom oder Iod steht
und für Chlor, Brom, Iod, Mesylat, Triflat oder Tosylat steht,
zu einer Verbindung der Formel (XXIX)
Figure imgf000054_0001
in welcher der Ring E sowie R3, R4, R5, n und Y1 die oben angegebenen Bedeutungen haben,
alkyliert
oder
[B] mit einer Pyrazolcarbonsäure der Formel (XXX)
Figure imgf000054_0002
in welcher R3 die oben angegebene Bedeutung hat
und
Y für Chlor, Brom oder Iod steht,
zu der Verbindung der Formel (XXIX)
Figure imgf000054_0003
in welcher der Ring E sowie R3, R4, R5, n und Y1 die oben angegebenen Bedeutungen haben,
kondensiert und anschließend die so erhaltene Verbindung der Formel (XXIX) gegebenenfalls in Gegenwart einer Hilfsbase mit einer Verbindung der Formel (XH)
R*
^- H (xπ),
R8
in welcher R6 und R8 die oben angegebenen Bedeutungen haben,
umsetzt (vgl. hierzu die zuvor beschriebenen Verfahren A.2 und B.2 in Verbindung mit den in Schema 6, 8 und 9 dargestellten Umsetzungen sowie die dort jeweils angegebenen Reaktionsparameter).
Die Ausgangsverbindungen der Formeln (II), (III), (VIII), (IX), (XII), (XIII), (XIV), (XV), (XVII), (XX), (XXII) und (XXTV) sind entweder kommerziell erhältlich oder als solche in der Literatur be- schrieben, oder sie können auf für den Fachmann offensichtlichem Wege analog zu in der Literatur publizierten Methoden hergestellt werden. Zahlreiche detaillierte Vorschriften sowie Literaturangaben zur Herstellung der Ausgangsmaterialien befinden sich auch im Experimentellen Teil im Abschnitt zur Herstellung der Ausgangsverbindungen und Intermediate.
Die erfindungsgemäßen Verbindungen besitzen wertvolle pharmakologische Eigenschaften und können zur Vorbeugung und Behandlung von Erkrankungen bei Menschen und Tieren verwendet werden.
Die erfindungsgemäßen Verbindungen stellen hochpotente Inhibitoren des HIF-Regulationsweges dar und weisen eine gute Bioverfügbarkeit nach peroraler Gabe auf.
Die erfindungsgemäßen Verbindungen eignen sich aufgrund ihres Wirkprofils insbesondere zur Behandlung von hyperproliferativen Erkrankungen beim Menschen und bei Säugetieren allgemein. Die Verbindungen können die Zeilproliferation und Zellteilung hemmen, blockieren, verringern oder senken und andererseits die Apoptose verstärken.
Zu den hyperproliferativen Erkrankungen, zu deren Behandlung die erfindungsgemäßen Verbindungen eingesetzt werden können, zählen unter anderem Psoriasis, Keloide, Narbenbildungen und andere proliferative Erkrankungen der Haut, benigne Erkrankungen wie die benigne Prostatahyperplasie (BPH), sowie insbesondere die Gruppe der Tumorerkrankungen. Hierunter werden im Rahmen der vorliegenden Erfindung insbesondere die folgenden Erkrankungen verstanden, ohne jedoch auf sie beschränkt zu sein: Brustkarzinome und Brusttumore (ductale und lobuläre Formen, auch in situ), Atemwegstumore (kleinzelliges und nicht-kleinzelliges Karzinom, Bronchialkarzi- nom), Himtumore (z.B. des Himstamms und des Hypothalamus, Astrocytoma, Medulloblastoma, Ependymoma sowie neuro-ectodermale und pineale Tumore), Tumore der Verdauungsorgane (Speiseröhre, Magen, Gallenblase, Dünndarm, Dickdarm, Rektum), Lebertumore (u.a. hepatozellu- läres Karzinom, Cholangiokarzinom und gemischt-hepatozelluläres Cholangiokarzinom), Tumore des Kopf- und Halsbereiches (Larynx, Hypopharynx, Nasopharynx, Oropharynx, Lippen und Mundhöhle), Hauttumore (Plattenepithelkarzinom, Kaposi-Sarkom, malignes Melanom, Merkel- zell-Hautkrebs und nicht-melanomartiger Hautkrebs), Tumore der Weichteile (u.a. Weichteilsarkome, Osteosarkome, maligne fibröse Histiozytome, Lymphosarkome und Rhabdomyosarkome), Tumore der Augen (u.a. intraokuläres Melanom und Retinoblastom), Tumore der endo- krinen und exokrinen Drüsen (z.B. thyroide und parathyroide Drüsen, Bauchspeicheldrüse und Speicheldrüse), Tumore des Harntrakts (Blasen-, Penis-, Nieren-, Nierenbecken- und Harnleiter- tumore) sowie Tumore der reproduktiven Organe (Endometrium-, Zervix-, Ovarial-, Vaginal-, Vulva- und Uteruskarzinome der Frau sowie Prostata- und Hodenkarzinome des Mannes). Dazu gehören auch proliferative Bluterkrankungen in solider Form und als zirkulierende Blutzellen, wie Lymphome, Leukämien und myeloproliferative Erkrankungen, z.B. akute myeloide, akute lympho- blastische, chronisch-lymphozytische, chronisch-myelogene und Haarzeil-Leukämie, sowie AIDS- korrelierte Lymphome, Hodgkin-Lymphome, Non-Hodgkin-Lymphome, kutane T-Zell-Lym- phome, Burkitt-Lymphome und Lymphome im zentralen Nervensystem.
Diese gut beschriebenen Krankheiten des Menschen können mit vergleichbarer Ätiologie auch in anderen Säugetieren vorkommen und dort mit den Verbindungen der vorliegenden Erfindung behandelt werden.
Der Begriff "Behandlung" oder "behandeln" wird im Rahmen dieser Erfindung konventionell verwendet und bedeutet die Versorgung, Pflege und Betreuung eines Patienten mit dem Ziel, eine Krankheit oder gesundheitliche Abweichung zu bekämpfen, zu verringern, abzuschwächen oder zu erleichtern und die Lebensbedingungen zu verbessern, die durch diese Krankheit beeinträchtigt werden, wie beispielsweise bei einer Krebserkrankung.
Die erfindungsgemäßen Verbindungen wirken als Modulatoren des HIF-Regulationsweges und eignen sich daher auch zur Behandlung von Erkrankungen, welche mit einer schädlichen Expression des HIF-Transkriptionsfaktors assoziiert sind. Dies betrifft insbesondere die Transkriptions- faktoren HIF-lα und HIF-2α. Der Begriff "schädliche Expression von HIF" bedeutet hierbei ein nicht-normal-physiologisches Vorhandensein von HIF-Protein. Dies kann bedingt sein durch übermäßige Synthese des Proteins (mRNA- oder translationsbedingt), durch verringerten Abbau oder durch unzureichende Gegenregulation bei der Funktion des Transkriptionsfaktors. HIF- lα und HIF-2α regulieren mehr als 100 Gene. Dies betrifft Proteine, die bei der Angiogenese eine Rolle spielen und daher direkt tumorrelevant sind, und auch solche, die den Glukose-, Aminosäure- und Lipid-Stoffwechsel sowie Zellmigration, Metastase und DNA-Reparatur beeinflussen oder durch Unterdrückung der Apoptose das Überleben der Tumorzellen verbessern. Andere wir- ken eher indirekt über die Hemmung der Immunreaktion und Hochregulierung von angiogenen Faktoren in Entzündungszellen. Eine wichtige Rolle spielt HIF auch bei den Stammzellen, hier insbesondere den Tumorstammzellen, von denen berichtet wird, dass sie erhöhte HIF-Spiegel aufweisen. Durch die Hemmung des HIF-Regulationsweges durch die Verbindungen der vorliegenden Erfindung werden damit auch Tumorstammzellen therapeutisch beeinflusst, die keine hohe Pro- liferationsrate aufweisen und daher von zytotoxischen Substanzen nur unzureichend betroffen sind (vgl. Semenza, 2007; Weidemann und Johnson, 2008).
Veränderungen des Zellmetabolismus durch HIF sind nicht exklusiv für Tumore, sondern treten auch bei anderen hypoxischen pathophysiologischen Prozessen auf, mögen sie chronisch oder transient sein. HIF-Inhibitoren - wie die Verbindungen der vorliegenden Erfindung - sind in solchen Zusammenhängen therapeutisch hilfreich, in denen beispielsweise durch eine Adaptation von Zellen an hypoxische Situationen zusätzlicher Schaden entsteht, da geschädigte Zellen, wenn sie nicht wie vorgesehen funktionieren, weitere Schäden hervorrufen können. Ein Beispiel hierfür ist die Bildung von epileptischen Herden in partiell zerstörtem Gewebe nach Schlaganfällen. Ähnliches findet man bei Herz-Kreislauf-Erkrankungen, wenn als Folge von thromboembolischen Ereignissen, Entzündungen, Verwundungen, Intoxikationen oder anderen Ursachen ischämische Prozesse im Herzen oder im Gehirn auftreten. Diese können zu Schäden führen wie einem lokal verlangsamten Aktionspotential, welches seinerseits Arrhythmien oder ein chronisches Herzversagen nach sich ziehen kann. In transienter Form, z.B. durch Apnoe, kann es unter Umständen zu einer essentiellen Blutdruckerhöhung kommen, was zu bekannten Folgeerkrankungen wie bei- spielsweise Schlaganfall und Herzinfarkt führen kann.
Die Hemmung des HIF-Regulationsweges, wie sie durch die erfindungsgemäßen Verbindungen erreicht wird, kann daher auch bei Erkrankungen wie Herzinsuffizienz, Arrhythmie, Herzinfarkt, Apnoe-induzierte Hypertonie, pulmonale Hypertonie, Transplantationsischämie, Reperfusions- schäden, Schlaganfall und Makuladegeneration sowie zur Wiedergewinnung der Nervenfunktion nach traumatischer Schädigung oder Durchtrennung hilfreich sein.
Da HIF einer der Faktoren ist, welche den Übergang von einem epithelialen zu einem mesenchymalen Zelltyp steuern, was im Speziellen für die Lunge und die Niere von Bedeutung ist, können die erfindungsgemäßen Verbindungen auch eingesetzt werden, um mit HIF assoziierte Fibrosen von Lunge und Niere zu verhindern oder einzudämmen. Weitere Erkrankungen, zu deren Behandlung die erfindungsgemäßen Verbindungen verwendet werden können, sind entzündliche Gelenkerkrankungen, wie verschiedene Formen der Arthritis, sowie entzündliche Darmerkrankungen, wie beispielsweise Morbus Crohn.
Die Chugwash-Polyzythämie wird durch HIF-2α-Aktivität während der Erythropoese unter ande- rem in der Milz vermittelt. Die erfindungsgemäßen Verbindungen, als Hemmstoffe des HIF- Regulationsweges, sind daher auch geeignet, hier die exzessive Erythrozytenbildung zu unterdrücken und damit die Auswirkungen dieser Erkrankung zu mildern.
Die Verbindungen der vorliegenden Erfindung können ferner verwendet werden zur Behandlung von Erkrankungen, die mit exzessiver oder anormaler Angiogenese verbunden sind. Dazu gehören unter anderem diabetische Retinopathie, ischämische Retinalvenenocclusion und Retinopathie bei Frühgeburt (vgl. Aiello et al., 1994; Peer et al., 1995), altersabhängige Makuladegeneration (AMD; vgl. Lopez et al., 1996), neovaskuläres Glaukom, Psoriasis, retrolentale Fibroplasie, Angiofibrom, Entzündung, rheumatische Arthritis (RA), Restenose, /n-5/e«/-Restenose sowie Restenose nach Gefäßimplantation.
Eine gesteigerte Blutversorgung ist außerdem mit kanzerösem, neoplastischem Gewebe assoziiert und führt hier zu einem beschleunigten Tumorwachstum. Zudem erleichtert das Wachstum neuer Blut- und Lymphgefäße die Bildung von Metastasen und damit die Verbreitung des Tumors. Neue Lymph- und Blutgefäße sind auch schädlich für Allografts in immunprivilegierten Geweben, wie dem Auge, was zum Beispiel die Anfälligkeit für Abstoßungsreaktionen erhöht. Verbindungen der vorliegenden Erfindung können daher auch eingesetzt werden, um eine der vorgenannten Erkrankungen zu therapieren, z.B. durch eine Hemmung des Wachstums oder eine Verringerung der Anzahl von Blutgefäßen. Dies kann über eine Hemmung der Endothelzellproliferation oder andere Mechanismen zur Verhinderung oder Abschwächung der Gefäßbildung und über eine Reduktion von neoplastischen Zellen durch Apoptose erreicht werden.
Weiterer Gegenstand der vorliegenden Erfindung ist die Verwendung der erfindungsgemäßen Verbindungen zur Behandlung und/oder Prävention von Erkrankungen, insbesondere der zuvor genannten Erkrankungen.
Weiterer Gegenstand der vorliegenden Erfindung ist die Verwendung der erfindungsgemäßen Verbindungen zur Herstellung eines Arzneimittels zur Behandlung und/oder Prävention von Erkran- kungen, insbesondere der zuvor genannten Erkrankungen.
Weiterer Gegenstand der vorliegenden Erfindung ist die Verwendung der erfindungsgemäßen Verbindungen in einem Verfahren zur Behandlung und/oder Prävention von Erkrankungen, insbesondere der zuvor genannten Erkrankungen. Weiterer Gegenstand der vorliegenden Erfindung ist ein Verfahren zur Behandlung und/oder Prävention von Erkrankungen, insbesondere der zuvor genannten Erkrankungen, unter Verwendung einer wirksamen Menge von mindestens einer der erfindungsgemäßen Verbindungen.
Die erfindungsgemäßen Verbindungen können allein oder bei Bedarf in Kombination mit einer oder mehreren anderen pharmakologisch wirksamen Substanzen eingesetzt werden, solange diese Kombination nicht zu unerwünschten und inakzeptablen Nebenwirkungen führt. Weiterer Gegenstand der vorliegenden Erfindung sind daher Arzneimittel, enthaltend mindestens eine der erfindungsgemäßen Verbindungen und einen oder mehrere weitere Wirkstoffe, insbesondere zur Behandlung und/oder Prävention der zuvor genannten Erkrankungen.
Beispielsweise können die Verbindungen der vorliegenden Erfindung mit bekannten anti-hyperproliferativen, zytostatischen oder zytotoxischen Substanzen zur Behandlung von Krebserkrankungen kombiniert werden. Die Kombination der erfindungsgemäßen Verbindungen mit anderen für die Krebstherapie gebräuchlichen Substanzen oder auch mit der Strahlentherapie ist deshalb besonders angezeigt, da hypoxische Regionen eines Tumors nur wenig auf die genannten konventio- nellen Therapien ansprechen, wohingegen die Verbindungen der vorliegenden Erfindung insbesondere dort ihre Aktivität entfalten.
Als geeignete Kombinationswirkstoffe seien beispielhaft genannt:
Aldesleukin, Alendronsäure, Alfaferon, Alitretinoin, Allopurinol, Aloprim, Aloxi, Altretamin, Aminoglutethimid, Amifostin, Amrubicin, Amsacrin, Anastrozol, Anzmet, Aranesp, Arglabin, Arsentrioxid, Aromasin, 5-Azacytidin, Azathioprin, BCG oder tice-BCG, Bestatin, Betamethason- Acetat, Betamethason-Natriumphosphat, Bexaroten, Bleomycin-Sulfat, Broxuridin, Bortezomib, Busulfan, Calcitonin, Campath, Capecitabin, Carboplatin, Casodex, Cefeson, Celmoleukin, Ceru- bidin, Chlorambucil, Cisplatin, Cladribin, Clodronsäure, Cyclophosphamid, Cytarabin, Dacarba- zin, Dactinomycin, DaunoXome, Decadron, Decadron-Phosphat, Delestrogen, Denileukin Diftitox, Depomedrol, Deslorelin, Dexrazoxan, Diethylstilbestrol, Diflucan, Docetaxel, Doxifluridin, Doxo- rubicin, Dronabinol, DW- 166HC, Eligard, Elitek, Ellence, Emend, Epirubicin, Epoetin-alfa, Epo- gen, Eptaplatin, Ergamisol, Estrace, Estradiol, Estramustin-Natriumphosphat, Ethinylestradiol, Ethyol, Etidronsäure, Etopophos, Etoposid, Fadrozol, Farston, Filgrastim, Finasterid, Fligrastim, Floxuridin, Fluconazol, Fludarabin, 5-Fluordeoxyuridin-Monophosphat, 5-Fluoruracil (5-FU), FIu- oxymesteron, Flutamid, Formestan, Fosteabin, Fotemustin, Fulvestrant, Gammagard, Gemcitabin, Gemtuzumab, Gleevec, Gliadel, Goserelin, Granisetron-Hydrochlorid, Histrelin, Hycamtin, Hydro- corton, erythro-Hydroxynonyladenin, Hydroxyharnstoff, Ibritumomab Tiuxetan, Idarubicin, Ifos- famid, Interferon-alpha, Interferon-alpha-2, Interferon-alpha-2α, Interferon-alpha-2ß, Interferon- alpha-nl, Interferon-alpha-n3, Interferon-beta, Interferon-gamma-lα, Interleukin-2, Intron A, Iressa, Irinotecan, Kytril, Lentinan-Sulfat, Letrozol, Leucovorin, Leuprolid, Leuprolid-Acetat, Levamisol, Levofolinsäure-Calciumsalz, Levothroid, Levoxyl, Lomustin, Lonidamin, Marinol, Mechlorethamin, Mecobalamin, Medroxyprogesteron-Acetat, Megestrol-Acetat, Melphalan, Menest, 6-Mercaptopurin, Mesna, Methotrexat, Metvix, Miltefosin, Minocyclin, Mitomycin C, Mitotan, Mitoxantron, Modrenal, Myocet, Nedaplatin, Neulasta, Neumega, Neupogen, Nilutamid, Nolvadex, NSC-631570, OCT-43, Octreotid, Ondansetron-Hydrochlorid, Orapred, Oxaliplatin, Paclitaxel, Pediapred, Pegaspargase, Pegasys, Pentostatin, Picibanil, Pilocarpin-Hydrochlorid, Pirarubicin, Plicamycin, Porfimer-Natrium, Prednimustin, Prednisolon, Prednison, Premarin, Pro- carbazin, Procrit, Raltitrexed, Rebif, Rhenium- 186-Etidronat, Rituximab, Roferon-A, Romurtid, Salagen, Sandostatin, Sargramostim, Semustin, Sizofiran, Sobuzoxan, Solu-Medrol, Streptozocin, Strontium-89-chlorid, Synthroid, Tamoxifen, Tamsulosin, Tasonermin, Tastolacton, Taxoter, Teceleukin, Temozolomid, Teniposid, Testosteron-Propionat, Testred, Thioguanin, Thiotepa, Thyrotropin, Tiludronsäure, Topotecan, Toremifen, Tositumomab, Tastuzumab, Teosulfan, Tretinoin, Trexall, Trimethylmelamin, Trimetrexat, Triptorelin-Acetat, Triptorelin-Pamoat, UFT, Uri- din, Valrubicin, Vesnarinon, Vinblastin, Vincristin, Vindesin, Vinorelbin, Virulizin, Zinecard, Zinostatin-Stimalamer, Zofran; ABI-007, Acolbifen, Actimmun, Affinitak, Aminopterin, Arzoxi- fen, Asoprisnil, Atamestan, Atrasentan, Avastin, BAY 43-9006 (Sorafenib), CCI-779, CDC-501, Celebrex, Cetuximab, Crisnatol, Cyproteron-Acetat, Decitabin, DN-101, Doxorubicin-MTC, dSLIM, Dutasterid, Edotecarin, Eflornithin, Exatecan, Fenretinid, Histamin-Dihydrochlorid, Histrelin-Hydrogel-Implant, Holmium- 166-DOTMP, Ibandronsäure, Interferon-gamma, Intron- PEG, Ixabepilon, Keyhole Limpet-Hemocyanin, L-651582, Lanreotid, Lasofoxifen, Libra, Lona- farnib, Miproxifen, Minodronat, MS-209, liposomales MTP-PE, MX-6, Nafarelin, Nemorubicin, Neovastat, Nolatrexed, Oblimersen, Onko-TCS, Osidem, Paclitaxel-Polyglutamat, Pamidronat- Dinatrium, PN-401, QS-21, Quazepam, R-1549, Raloxifen, Ranpirnas, 13-c/s-Retinsäure, Satra- platin, Seocalcitol, T- 138067, Tarceva, Taxoprexin, Thymosin-alpha-1, Tiazofurin, Tipifarnib, Tirapazamin, TLK-286, Toremifen, TransMID-107R, Valspodar, Vapreotid, Vatalanib, Vertepor- fin, Vinflunin, Z-100, Zoledronsäure, sowie Kombinationen hiervon.
In einer bevorzugten Ausführungsform können die Verbindungen der vorliegenden Erfindung mit anti-hyperproliferativen Agentien kombiniert werden, welche beispielhaft - ohne dass diese Auf- Zählung abschließend wäre - sein können:
Aminoglutethimid, L-Asparaginase, Azathioprin, 5-Azacytidin, Bleomycin, Busulfan, Camptothe- cin, Carboplatin, Carmustin, Chlorambucil, Cisplatin, Colaspase, Cyclophosphamid, Cytarabin, Dacarbazin, Dactinomycin, Daunorubicin, Diethylstilbestrol, 2',2'-Difluordeoxycytidin, Docetaxel, Doxorubicin (Adriamycin), Epirubicin, Epothilon und seine Derivate, erythro-Hydroxynonyl- adenin, Ethinylestradiol, Etoposid, Fludarabin-Phosphat, 5-Fluordeoxyuridin, 5-Fluordeoxyuridin- Monophosphat, 5-Fluoruracil, Fluoxymesteron, Flutamid, Hexamethylmelamin, Hydroxyhamstoff, Hydroxyprogesteron-Caproat, Idarubicin, Ifosfamid, Interferon, Irinotecan, Leucovorin, Lomustin, Mechlorethamin, Medroxyprogesteron-Acetat, Megestrol-Acetat, Melphalan, 6-Mercaptopurin, Mesna, Methotrexat, Mitomycin C, Mitotan, Mitoxantron, Paclitaxel, Pentostatin, N-Phosphono- acetyl-L-aspartat (PALA), Plicamycin, Prednisolon, Prednison, Procarbazin, Raloxifen, Semustin, Streptozocin, Tamoxifen, Teniposid, Testosteron-Propionat, Thioguanin, Thiotepa, Topotecan, Trimethylmelamin, Uridin, Vinblastin, Vincristin, Vindesin und Vinorelbin.
In viel versprechender Weise lassen sich die erfindungsgemäßen Verbindungen auch mit biologischen Therapeutika wie Antikörpern (z.B. Avastin, Rituxan, Erbitux, Herceptin) und rekombinan- ten Proteinen kombinieren, welche additiv oder synergistisch die Effekte der Hemmung der HIF- Signalwegsübertragung verstärken.
Inhibitoren des HIF-Regulationsweges wie die erfindungsgemäßen Verbindungen können auch in Kombination mit anderen, gegen die Angiogenese gerichteten Therapien positive Effekte erzielen, wie zum Beispiel mit Avastin, Axitinib, DAST, Recentin, Sorafenib oder Sunitinib. Kombina- tionen mit Inhibitoren des Proteasoms und von mTOR sowie Antihormone und steroidale metabolische Enzyminhibitoren sind wegen ihres günstigen Νebenwirkungsprofils besonders geeignet.
Generell können mit der Kombination von Verbindungen der vorliegenden Erfindung mit anderen, zytostatisch oder zytotoxisch wirksamen Agentien folgende Ziele verfolgt werden:
• eine verbesserte Wirksamkeit bei der Verlangsamung des Wachstums eines Tumors, bei der Reduktion seiner Größe oder sogar bei seiner völligen Eliminierung im Vergleich zu einer Behandlung mit einem einzelnen Wirkstoff
• die Möglichkeit, die verwendeten Chemotherapeutika in geringerer Dosierung als bei der Monotherapie einzusetzen;
• die Möglichkeit einer verträglicheren Therapie mit weniger Νebeneffekten im Vergleich zur Einzelgabe;
• die Möglichkeit zur Behandlung eines breiteren Spektrums von Tumorerkrankungen;
• das Erreichen einer höheren Ansprechrate auf die Therapie;
• eine längere Überlebenszeit der Patienten im Vergleich zur heutigen Standardtherapie.
Darüber hinaus können die erfindungsgemäßen Verbindungen auch in Verbindung mit einer Strahlentherapie und/oder einer chirurgischen Intervention eingesetzt werden. Weiterer Gegenstand der vorliegenden Erfindung sind Arzneimittel, die mindestens eine erfindungsgemäße Verbindung, üblicherweise zusammen mit einem oder mehreren inerten, nichttoxischen, pharmazeutisch geeigneten Hilfsstoffen enthalten, sowie deren Verwendung zu den zuvor genannten Zwecken.
Die erfϊndungsgemäßen Verbindungen können systemisch und/oder lokal wirken. Zu diesem Zweck können sie auf geeignete Weise appliziert werden, wie z.B. oral, parenteral, pulmonal, nasal, sublingual, lingual, buccal, rectal, dermal, transdermal, coηjunctival, otisch oder als Implantat bzw. Stent.
Für diese Applikationswege können die erfindungsgemäßen Verbindungen in geeigneten Appli- kationsformen verabreicht werden.
Für die orale Applikation eignen sich nach dem Stand der Technik funktionierende, die erfindungsgemäßen Verbindungen schnell und/oder modifiziert abgebende Applikationsformen, die die erfindungsgemäßen Verbindungen in kristalliner und/oder amorphisierter und/oder gelöster Form enthalten, wie z.B. Tabletten (nicht-überzogene oder überzogene Tabletten, beispielsweise mit magensaftresistenten oder sich verzögert auflösenden oder unlöslichen Überzügen, die die Freisetzung der erfindungsgemäßen Verbindung kontrollieren), in der Mundhöhle schnell zerfallende Tabletten oder Filme/Oblaten, Filme/Lyophylisate, Kapseln (beispielsweise Hart- oder Weichgelatinekapseln), Dragees, Granulate, Pellets, Pulver, Emulsionen, Suspensionen, Aerosole oder Lösungen.
Die parenterale Applikation kann unter Umgehung eines Resorptionsschrittes geschehen (z.B. intravenös, intraarteriell, intrakardial, intraspinal oder intralumbal) oder unter Einschaltung einer Resorption (z.B. intramuskulär, subcutan, intracutan, percutan oder intraperitoneal). Für die parenterale Applikation eignen sich als Applikationsformen u.a. Injektions- und Infusionszubereitungen in Form von Lösungen, Suspensionen, Emulsionen, Lyophilisaten oder sterilen Pulvern.
Für die sonstigen Applikationswege eignen sich z.B. Inhalationsarzneiformen (u.a. Pulverinhalatoren, Nebulizer), Nasentropfen, -lösungen oder -sprays, lingual, sublingual oder buccal zu applizierende Tabletten, Filme/Oblaten oder Kapseln, Suppositorien, Ohren- oder Augenpräparationen, Vaginalkapseln, wäßrige Suspensionen (Lotionen, Schüttelmixturen), lipophile Suspensionen, Salben, Cremes, transdermale therapeutische Systeme (z.B. Pflaster), Milch, Pasten, Schäume, Streupuder, Implantate oder Stents.
Bevorzugt sind die orale oder parenterale Applikation, insbesondere die orale und die intravenöse Applikation. Die erfindungsgemäßen Verbindungen können in die angeführten Applikationsformen überführt werden. Dies kann in an sich bekannter Weise durch Mischen mit inerten, nichttoxischen, pharmazeutisch geeigneten Hilfsstoffen geschehen. Zu diesen Hilfsstoffen zählen u.a. Trägerstoffe (beispielsweise mikrokristalline Cellulose, Lactose, Mannitol), Lösungsmittel (z.B. flüssige PoIy- ethylenglycole), Emulgatoren und Dispergier- oder Netzmittel (beispielsweise Natriumdodecyl- sulfat, Polyoxysorbitanoleat), Bindemittel (beispielsweise Polyvinylpyrrolidon), synthetische und natürliche Polymere (beispielsweise Albumin), Stabilisatoren (z.B. Antioxidantien wie beispielsweise Ascorbinsäure), Farbstoffe (z.B. anorganische Pigmente wie beispielsweise Eisenoxide) und Geschmacks- und/oder Geruchskorrigentien.
Im Allgemeinen hat es sich als vorteilhaft erwiesen, bei parenteraler Applikation Mengen von etwa 0.001 bis 1 mg/kg, vorzugsweise etwa 0.01 bis 0.5 mg/kg Körpergewicht zur Erzielung wirksamer Ergebnisse zu verabreichen. Bei oraler Applikation beträgt die Dosierung etwa 0.01 bis 100 mg/kg, vorzugsweise etwa 0.01 bis 20 mg/kg und ganz besonders bevorzugt 0.1 bis 10 mg/kg Körpergewicht.
Trotzdem kann es gegebenenfalls erforderlich sein, von den genannten Mengen abzuweichen, und zwar in Abhängigkeit von Körpergewicht, Applikationsweg, individuellem Verhalten gegenüber dem Wirkstoff, Art der Zubereitung und Zeitpunkt bzw. Intervall, zu welchem die Applikation erfolgt. So kann es in einigen Fällen ausreichend sein, mit weniger als der vorgenannten Mindestmenge auszukommen, während in anderen Fällen die genannte obere Grenze überschritten werden muss. Im Falle der Applikation größerer Mengen kann es empfehlenswert sein, diese in mehreren Einzelgaben über den Tag zu verteilen.
Die nachfolgenden Ausführungsbeispiele erläutern die Erfindung. Die Erfindung ist nicht auf die Beispiele beschränkt.
Die Prozentangaben in den folgenden Tests und Beispielen sind, sofern nicht anders angegeben, Gewichtsprozente; Teile sind Gewichtsteile. Lösungsmittelverhältnisse, Verdünnungsverhältnisse und Konzentrationsangaben von flüssig/flüssig-Lösungen beziehen sich jeweils auf das Volumen. A. Beispiele
Abkürzungen und Akronyme:
abs. absolut aq. wässrig
Boc ter/.-Butoxycarbonyl
Bsp. Beispiel
Bu Butyl ca. circa, ungefähr
CI chemische Ionisation (bei MS) d Dublett (bei NMR) d Tag(e)
DC Dünnschichtchromatographie
DCI direkte chemische Ionisation (bei MS) dd Dublett von Dublett (bei NMR)
DMAP 4-NN-Dimethylaminopyridin
DME 1 ,2-Dimethoxyethan
DMF Dimethylformamid
DMSO Dimethylsulfoxid dt Dublett von Triplett (bei NMR) d. Th. der Theorie (bei chemischer Ausbeute)
EDC N'-(3-Dimethylaminopropyl)-N-ethylcarbodiimid-Hydrochlorid
EI Elektronenstoß-Ionisation (bei MS) eq. Äquivalent(e)
ESI Elektrospray-Ionisation (bei MS)
Et Ethyl
GC Gaschromatographie h Stunde(n)
HATU 0-(7-Azabenzotriazol-l-yl)-NN,N',N'-tetrarnethyIuronium-
Hexafluorophosphat
HOBt 1 -Hydroxy- 1 H-benzotriazol-Hydrat
HPLC Hochdruck-, Hochleistungsflüssigchromatographie
1Pr Isopropyl
LC-MS Flüssigchromatographie-gekoppelte Massenspektrometrie m Multiple« (bei NMR) min Minute(n) MPLC Mitteldruckflüssigchromatographie (über Kieselgel; auch "flash-
Chromatographie" genannt)
MS Massenspektrometrie
NMP N-Methyl-2-pyrrolidon
NMR Kernresonanzspektrometrie
Pd/C Palladium auf Aktivkohle
PEG Polyethylenglykol
Pr Propyl quart Quartett (bei NMR) quint Quintett (bei NMR)
Rf Retentionsindex (bei DC)
RT Raumtemperatur
Rt Retentionszeit (bei HPLC)
S Singulett (bei NMR) sept Septett (bei NMR) t Triplett (bei NMR)
'Bu tert.-Butyl
TFA Trifluoressigsäure
THF Tetrahydrofuran
UV Ultraviolett-Spektrometrie v/v Volumen zu Volumen-Verhältnis (einer Lösung) zus. zusammen
HPLC-. LC/MS- und GC/MS-Methoden;
Methode A (analytische HPLO:
Instrument: HP 1100 mit DAD-Detektion; Säule: Kromasil 100 RP-18, 60 mm x 2.1 mm, 3.5 μm; Eluent A: 5 ml Perchlorsäure (70%-ig) / L Wasser, Eluent B: Acetonitril; Gradient: 0 min 2% B -» 0.5 min 2% B → 4.5 min 90% B → 6.5 min 90% B → 6.7 min 2% B → 7.5 min 2% B; Fluss: 0.75 ml/min; Säulentemperatur: 300C; UV-Detektion: 210 nm.
Methode B (analytische HPLO:
Instrument: HP 1100 mit DAD-Detektion; Säule: Kromasil 100 RP-18, 60 mm x 2.1 mm, 3.5 μm; Eluent A: 5 ml Perchlorsäure (70%-ig) / L Wasser, Eluent B: Acetonitril; Gradient: 0 min 2% B → 0.5 min 2% B → 4.5 min 90% B → 9 min 90% B → 9.2 min 2% B → 10 min 2% B; Fluss: 0.75 ml/min; Säulentemperatur: 300C; UV-Detektion: 210 nm.
Methode C (LC/MS):
Gerätetyp MS: Micromass ZQ; Gerätetyp HPLC: HP 1100 Series; UV DAD; Säule: Phenomenex Gemini 3μ, 30 mm x 3.00 mm; Eluent A: 1 L Wasser + 0.5 ml 50%-ige Ameisensäure, Eluent B:
1 L Acetonitril + 0.5 ml 50%-ige Ameisensäure; Gradient: 0.0 min 90% A → 2.5 min 30% A → 3.0 min 5% A -> 4.5 min 5% A; Fluss: 0.0 min 1 ml/min -» 2.5 min/3.0 min/4.5 min 2 ml/min; Ofen: 500C; UV-Detektion: 210 nm.
Methode D (LC/MS*):
Gerätetyp MS: Waters Micromass Quattro Micro; Gerätetyp HPLC: Agilent 1100 Serie; Säule: Thermo Hypersil GOLD 3μ, 20 mm x 4 mm; Eluent A: 1 L Wasser + 0.5 ml 50%-ige Ameisensäure, Eluent B: 1 L Acetonitril + 0.5 ml 50%-ige Ameisensäure; Gradient: 0.0 min 100% A -> 3.0 min 10% A → 4.0 min 10% A → 4.01 min 100% A → 5.00 min 100% A; Ofen: 500C; Fluss:
2 ml/min; UV-Detektion: 210 nm.
Methode E (LC/MS):
Gerätetyp MS: Micromass ZQ; Gerätetyp HPLC: Waters Alliance 2795; Säule: Phenomenex Syn- ergi 2.5μ MAX-RP 100A Mercury 20 mm x 4 mm; Eluent A: 1 L Wasser + 0.5 ml 50%-ige Ameisensäure, Eluent B: 1 L Acetonitril + 0.5 ml 50%-ige Ameisensäure; Gradient: 0.0 min 90% A — > 0.1 min 90% A → 3.0 min 5% A → 4.0 min 5% A → 4.01 min 90% A; Fluss: 2 ml/min; Ofen: 500C; UV-Detektion: 210 nm.
Methode F (LCMS):
Instrument: Micromass Quattro Premier mit Waters UPLC Acquity; Säule: Thermo Hypersil GOLD 1.9μ, 50 mm x 1 mm; Eluent A: 1 L Wasser + 0.5 ml 50%-ige Ameisensäure, Eluent B: 1 L Acetonitril + 0.5 ml 50%-ige Ameisensäure; Gradient: 0.0 min 90% A → 0.1 min 90% A → 1.5 min 10% A → 2.2 min 10% A; Fluss: 0.33 ml/min; Ofen:50°C; UV-Detektion: 210 nm.
Methode G (LC/MS):
Instrument: Micromass Platform LCZ mit HPLC Agilent Serie 1100; Säule: Thermo Hypersil GOLD 3μ, 20 mm x 4 mm; Eluent A: 1 L Wasser + 0.5 ml 50%-ige Ameisensäure, Eluent B: 1 L Acetonitril + 0.5 ml 50%-ige Ameisensäure; Gradient: 0.0 min 100% A → 0.2 min 100% A → 2.9 min 30% A → 3.1 min 10% A → 5.5 min 10% A; Ofen: 500C; Fluss: 0.8 ml/min; UV-Detektion: 210 nm.
Methode H (LC/MSV
Instrument: Micromass Quattro LCZ mit HPLC Agilent Serie 1100; Säule: Phenomenex Synergi 2.5μ MAX-RP 100A Mercury 20 mm x 4 mm; Eluent A: 1 L Wasser + 0.5 ml 50%-ige Ameisensäure, Eluent B: 1 L Acetonitril + 0.5 ml 50%-ige Ameisensäure; Gradient: 0.0 min 90% A -> 0.1 min 90% A → 3.0 min 5% A → 4.0 min 5% A → 4.1 min 90% A; Fluss: 2 ml/min; Ofen: 500C; UV-Detektion: 208-400 nm.
Methode I (LC/MSV
Instrument: Waters Acquity SQD UPLC System; Säule: Waters Acquity UPLC HSS T3 1.8 μm, 50 mm x 1 mm; Eluent A: 1 L Wasser + 0.25 ml 99%-ige Ameisensäure, Eluent B: 1 L Acetonitril + 0.25 ml 99%-ige Ameisensäure; Gradient: 0.0 min 90% A → 1.2 min 5% A → 2.0 min 5% A; Fluss: 0.40 ml/min; Ofen: 500C; UV-Detektion: 210-400 nm.
Methode J (LC/MS):
Instrument MS: Waters ZQ 2000; Instrument HPLC: Agilent 1100, 2-Säulen-Schaltung; Auto- sampler: HTC PAL; Säule: YMC-ODS-AQ, 50 mm x 4.6 mm, 3.0 μm; Eluent A: Wasser + 0.1% Ameisensäure, Eluent B: Acetonitril + 0.1% Ameisensäure; Gradient: 0.0 min 100% A — > 0.2 min 95% A → 1.8 min 25% A → 1.9 min 10% A → 2.0 min 5% A → 3.2 min 5% A → 3.21 min 100% A → 3.35 min 100% A; Ofen: 400C; Fluss: 3.0 ml/min; UV-Detektion: 210 nm.
Methode K (GC/MS*):
Instrument: Micromass GCT, GC 6890; Säule: Restek RTX-35, 15 m x 200 μm x 0.33 μm; konstanter Fluss mit Helium: 0.88 ml/min; Ofen: 700C; Inlet: 2500C; Gradient: 700C, 30°C/min → 3100C (3 min halten).
Methode L (GCMS):
Instrument: Micromass GCT, GC 6890; Säule: Restek RTX-35, 15 m x 200 μm x 0.33 μm; konstanter Fluss mit Helium: 0.88 ml/min; Ofen: 700C; Inlet: 2500C; Gradient: 700C, 30°C/min → 3100C (12 min halten). Methode M fpräparative HPLC):
Säule: GROM-SIL 120 ODS-4 HE, 10 μm, 250 mm x 30 mm; Laufmittel und Gradientenprogramm: Acetonitril/0.1% aq. Ameisensäure 10:90 (0-3 min), Acetonitril/0.1% aq. Ameisensäure 10:90 → 95:5 (3-27 min), Acetonitril/0.1% aq. Ameisensäure 95:5 (27-34 min), Acetonitril/ 0.1% aq. Ameisensäure 10:90 (34-38 min); Fluss: 50 ml/min; Temperatur: 22°C; UV-Detektion: 254 nm.
Methode N (präparative HPLO:
Säule: Reprosil Cl 8, 10 μm, 250 mm x 30 mm; Laufmittel und Gradientenprogramm: Acetonitril/ 0.1% aq. Trifluoressigsäure 10:90 (0-2 min), Acetonitril/0.1% aq. Trifluoressigsäure 10:90 → 90: 10 (2-23 min), Acetonitril/0.1% aq. Trifluoressigsäure 90:10 (23-28 min), Acetonitril/0.1% aq. Trifluoressigsäure 10:90 (28-30 min); Fluss: 50 ml/min; Temperatur: 22°C; UV-Detektion: 210 nm.
Methode O (LC/MS):
Instrument MS: Waters SQD; Instrument HPLC: Waters UPLC; Säule: Zorbax SB-Aq (Agilent), 50 mm x 2.1 mm, 1.8 μm; Eluent A: Wasser + 0.025% Ameisensäure, Eluent B: Acetonitril + 0.025% Ameisensäure; Gradient: 0.0 min 98% A → 0.9 min 25% A → 1.0 min 5% A → 1.4 min 5% A → 1.41 min 98% A → 1.5 min 98% A; Ofen: 400C; Fluss: 0.60 ml/min; UV-Detektion: DAD, 210 nm.
Methode P (präparative HPLO:
Säule: Reprosil C18, 10 μm, 250 mm x 30 mm; Laufmittel und Gradientenprogramm: Acetonitril/ 0.1% aq. Ammoniak 20:80 (0-3 min), Acetonitril/0.1% aq. Ammoniak 20:80 → 98:2 (3-35 min), Acetonitril/0.1% aq. Ammoniak 98:2 (35^0 min); Fluss: 50 ml/min; Temperatur: 22°C; UV- Detektion: 210 nm.
Methode O (LC/MS):
Gerätetyp MS: Waters ZQ; Gerätetyp HPLC: Agilent 1100 Serie; UV DAD; Säule: Thermo Hypersil GOLD 3μ, 20 mm x 4 mm; Eluent A: 1 L Wasser + 0.5 ml 50%-ige Ameisensäure, Eluent B: 1 L Acetonitril + 0.5 ml 50%-ige Ameisensäure; Gradient: 0.0 min 100% A → 3.0 min 10% A → 4.0 min 10% A → 4.1 min 100% A (Fluss 2.5 ml/min); Ofen: 55°C; Fluss: 2 ml/min; UV- Detektion: 210 nm. Methode R (präparative HPLC):
Säule: Sunfire C18 OBD, 5 μm, 19 mm x 150 mm; Laufmittel und Gradientenprogramm: Wasser/ Methanol/1% aq. TFA 40:50: 10 (0:00-1 : 15 min), Wasser/Methanol/ 1% aq. TFA 40:50:10 → 24:70:6 (1 : 15-1 :30 min), Wasser/Methanol/l % aq. TFA 24:70:6 → 8:90:2 (1 :30-8:30 min), Wasser/Methanol/ 1% aq. TFA 8:90:2 → 80:0:20 (8:30-9:00 min), Wasser/Methanol/ 1% aq. TFA 80:0:20 (9:00-11 :30 min); Fluss: 25 ml/min; Temperatur: 400C; UV-Detektion: 210 nm.
Für alle Reaktanden oder Reagenzien, deren Herstellung im Folgenden nicht explizit beschrieben ist, gilt, dass sie von allgemein zugänglichen Quellen kommerziell bezogen wurden. Für alle übrigen Reaktanden oder Reagenzien, deren Herstellung im Folgenden ebenfalls nicht beschrieben ist und die nicht kommerziell erhältlich waren oder von Quellen bezogen wurden, die nicht allgemein zugänglich sind, ist ein Verweis auf die veröffentlichte Literatur angegeben, in der ihre Herstellung beschrieben ist.
Ausgangsverbindungen und Intermediate:
Beispiel IA
N -Hydroxy-4-( 1,1,1 -trifluor-2-methylpropan-2-yl)benzolcarboximidarnid
Figure imgf000070_0001
Schritt 1: 2-(4-Bromphenyl)-l,l,l-trifluorpropan-2-ol
Figure imgf000070_0002
Zunächst wurde eine Suspension von Dichlor(dimethyl)titan in einem Heptan/Dichlormethan- Gemisch wie folgt hergestellt: Man kühlte 100 ml (100 mmol) einer 1 M Lösung von Titantetrachlorid in Dichlormethan auf -300C, tropfte 100 ml (100 mmol) einer 1 M Lösung von Dimethyl- zink in Heptan hinzu und rührte 30 min bei -300C nach. Anschließend wurde diese Suspension auf -400C abgekühlt und eine Lösung von 10 g (39.5 mmol) l-(4-Bromphenyl)-2,2,2-trifluorethanon in 50 ml Dichlormethan hinzugegeben. Man rührte 5 min bei -400C nach, ließ dann die Temperatur auf RT kommen und rührte weitere 2 h bei RT. Unter Eiskühlung ließ man langsam 50 ml Wasser hinzutropfen und verdünnte anschließend mit weiteren 300 ml Wasser. Man extrahierte zweimal mit Dichlormethan, wusch die vereinigten Dichlormethan-Phasen einmal mit Wasser, trocknete über wasserfreiem Magnesiumsulfat, filtrierte und entfernte das Lösungsmittel am Rotationsverdampfer. Der Rückstand wurde säulenchromatographisch an Kieselgel gereinigt (Laufmittel: Cyclohexan/Ethylacetat 85: 15). Es wurden 10.5 g (100% d. Th.) der Titelverbindung erhalten, wobei laut 1H-NMR noch Reste von Lösungsmittel enthalten waren.
1H-NMR (400 MHz, CDCl3, δ/ppm): 7.52 (d, 2H), 7.47 (d, 2H), 1.76 (s, 3H).
LC/MS (Methode C, ESIpos): R. = 2.27 min, m/z = 268 [M+H]+. Schritt 2: 2-(4-Brompheny I)- 1,1,1 -trifluorpropan-2-ylmethansulfonat
Figure imgf000071_0001
Man legte 3.12 g (78.05 mmol, 60%-ig in Mineralöl) Natriumhydrid in 45 ml THF unter Argon vor und tropfte eine Lösung von 10.5 g (39.03 mmol) der in Beispiel IA / Schritt 1 erhaltenen Verbin- düng in 20 ml THF bei RT hinzu. Nachdem man 1 h bei RT und 30 min bei 400C gerührt hatte, wurde eine Lösung von 8.94 g (78.05 mmol) Methansulfonylchlorid in 45 ml THF hinzugetropft und das Reaktionsgemisch weitere 60 min bei 4O0C gerührt. Anschließend tropfte man langsam 50 ml Wasser zum Gemisch hinzu, verdünnte mit gesättigter wässriger Natriumhydrogencarbonat- Lösung und extrahierte zweimal mit Ethylacetat. Man trocknete die vereinigten Ethylacetat-Phasen über wasserfreiem Magnesiumsulfat, filtrierte und entfernte das Lösungsmittel am Rotationsverdampfer. Der Rückstand wurde in Hexan verrührt und der erhaltene Feststoff abfϊltriert und im Vakuum getrocknet. Es wurden 12.4 g (92% d. Th.) der Titelverbindung erhalten.
1H-NMR (400 MHz, CDCl3, δ/ppm): 7.58 (d, 2H), 7.43 (d, 2H), 3.16 (s, 3H), 2.28 (s, 3H).
LC/MS (Methode D, ESIpos): R. = 2.32 min, m/z = 364 [M+NH,]+.
Schritt 3: l-Brom-4-(l,l,l-trifluor-2-methylpropan-2-yl)benzol
Figure imgf000071_0002
Man legte 12.4 g (35.72 mmol) der in Beispiel IA / Schritt 2 erhaltenen Verbindung in 250 ml Di- chlormethan vor und kühlte auf 00C ab. Dann tropfte man langsam unter Rühren 35.7 ml (71.44 mmol) einer 2 M Lösung von Trimethylaluminium bei 00C hinzu, ließ das Gemisch anschließend auf RT kommen und rührte weitere 1.5 h bei RT nach. Zu dem Gemisch tropfte man langsam 120 ml einer gesättigten wässrigen Natriumhydrogencarbonat-Lösung und danach 40 ml einer gesättigten wässrigen Natriumchlorid-Lösung hinzu. Man filtrierte über Kieselgur und wusch das Kieselgur zweimal mit Dichlormethan nach. Man wusch die vereinigten Dichlormethan-Phasen einmal mit gesättigter wässriger Natriumchlorid-Lösung, trocknete über wasserfreiem Magnesium- sulfat und entfernte das Lösungsmittel am Rotationsverdampfer. Es wurden 8.69 g (87% d. Th.) der Titelverbindung in 95%-iger Reinheit erhalten.
1H-NMR (400 MHz, CDCl3, δ/ppm): 7.49 (d, 2H), 7.33 (d, 2H), 1.55 (s, 6H).
LC/MS (Methode E, ESIpos): R4 = 2.54 min, keine Ionisierung.
GC/MS (Methode K, EI): R, = 3.48 min, m/z = 266 [M]+.
Schritt 4: 4-( 1 , 1 , 1 -Trifluor-2-methylpropan-2-yl)benzolcarbonitril
Figure imgf000072_0001
Man legte 3.34 g (12.50 mmol) der in Beispiel IA / Schritt 3 erhaltenen Verbindung in 2.5 ml entgastem DMF unter Argon vor, gab 881 mg (7.50 mmol) Zinkcyanid sowie 867 mg (0.75 mmol) Tetrakis(triphenylphosphin)palladium(0) hinzu und rührte über Nacht bei 800C. Nach Abkühlen auf RT verdünnte man das Reaktionsgemisch mit Ethylacetat und filtrierte feste Bestandteile ab. Das Filtrat wurde zweimal mit 2 N wässriger Ammoniak-Lösung und einmal mit gesättigter wäss- riger Natriumchlorid-Lösung gewaschen, über wasserfreiem Magnesiumsulfat getrocknet und am Rotationsverdampfer vom Lösungsmittel befreit. Der Rückstand wurde säulenchromatographisch an Kieselgel gereinigt (Laufmittel: Cyclohexan/Ethylacetat 85:15). Es wurden 2.08 g (78% d. Th.) der Titelverbindung erhalten.
1H-NMR (400 MHz, CDCl3, δ/ppm): 7.68 (d, 2H), 7.62 (d, 2H), 1.60 (s, 6H).
GC/MS (Methode K, EI): R, = 3.83 min, m/z = 213 [M]+.
Schritt 5: N -Hydroxy-4-( 1,1,1 -trifluor-2-methylpropan-2-yl)benzolcarboxirnidamid
Figure imgf000072_0002
Ein Gemisch aus 2.40 g (11.26 mmol) der Verbindung aus Beispiel IA / Schritt 4, 1.72 g (24.77 mmol) Hydroxylamin-Hydrochlorid und 3.45 ml (24.77 mmol) Triethylamin in 60 ml Ethanol wur- de 1 h unter Rückfluss gerührt. Nach Abkühlen auf RT wurde das Lösungsmittel am Rotationsverdampfer entfernt. Man versetzte den Rückstand mit Ethylacetat und filtrierte den vorhandenen Feststoff ab. Die Ethylacetat-Lösung wurde nacheinander mit Wasser und gesättigter wässriger Natriumchlorid-Lösung gewaschen, über wasserfreiem Magnesiumsulfat getrocknet und filtriert. Nach Entfernen des Lösungsmittels wurde das erhaltene Öl mit Petrolether verrieben. Nach Absaugen des resultierenden Feststoffs und Trocknen im Hochvakuum wurden 2.65 g (96% d. Th.) der Titelverbindung erhalten.
1H-NMR (400 MHz, CDCl3, δ/ppm): 8.0 (s, breit, IH), 7.62 (d, 2H), 7.52 (d, 2H), 4.88 (s, breit, 2H), 1.60 (s, 6H).
LC/MS (Methode D, ESIpos): R. = 1.34 min, m/z = 247 [M+H]+.
Beispiel 2A
4-(2-Fluorpropan-2-yl)-N'-hydroxybenzolcarboximidamid
Figure imgf000073_0001
Schritt 1: 4-(2-Fluorpropan-2-yl)benzolcarbonitril
Figure imgf000073_0002
Zu einer Lösung von 1.00 g (6.20 mmol) 4-(2-Hydroxypropan-2-yl)benzolcarbonitril [erhalten aus 4-(Propan-2-yl)benzolcarbonitril gemäß J.L. Tucker et al, Synth. Comm. 2006, 36 (15), 2145- 2155] in 20 ml Dichlormethan wurden 1.20 g (7.44 mmol) Diethylaminoschwefeltrifluorid (DAST) bei einer Temperatur von 0°C gegeben. Das Reaktionsgemisch wurde 2 h bei RT gerührt und danach mit Wasser verdünnt und mit Dichlormethan extrahiert. Die organische Phase wurde mit Wasser gewaschen, über wasserfreiem Magnesiumsulfat getrocknet und filtriert. Nach Entfernen des Lösungsmittels am Rotationsverdampfer wurde der Rückstand mittels MPLC gereinigt (Kieselgel, Laufmittel: Cyclohexan/Ethylacetat 95:5). Es wurden 675 mg (67% d. Th.) der Titelverbindung erhalten. 1H-NMR (400 MHz, CDCl3, δ/ppm): 7.57 (d, 2H), 7.48 (d, 2H), 1.72 (s, 3H), 1.68 (s, 3H).
LC/MS (Methode D, ESIpos): R1 = 2.12 min, m/z = 163 [M+H]+.
Schritt 2: 4-(2-Fluoφropan-2-yl)-N'-hydroxybenzolcarboximidamid
Figure imgf000074_0001
Nach dem unter Beispiel IA / Schritt 5 beschriebenen Verfahren wurden aus 675 mg (4.14 mmol) der Verbindung aus Beispiel 2A / Schritt 1 756 mg (93% d. Th.) der Titelverbindung erhalten.
1H-NMR (400 MHz, CDCl3, δ/ppm): 7.62 (d, 2H), 7.41 (d, 2H), 4.89 (s, breit, 2H), 1.72 (s, 3H), 1.68 (s, 3H).
LC/MS (Methode D, ESIpos): R1 = 1.04 min, m/z = 197 [M+H]+.
Beispiel 3A
N'-Hydroxy-4-[(trifluormethyl)sulfonyl]benzolcarboximidamid
Figure imgf000074_0002
Nach dem unter Beispiel IA / Schritt 5 beschriebenen Verfahren wurden aus 4.60 g (19.56 mmol) 4-[(Trifluorrnethyl)sulfonyl]benzolcarbonitril [W. Su, Tetrahedron. LeU. 1994, 55 (28), 4955- 4958] 5.08 g (97% d. Th.) der Titelverbindung erhalten.
1H-NMR (400 MHz, DMSOd6, δ/ppm): 10.26 (s, IH), 8.13 (dd, 4H), 6.12 (s, 2H).
LC/MS (Methode D, ESIpos): R. = 1.57 min, m/z = 269 [M+H]+.
Beispiel 4A
N'-Hydroxy-4-(3 -methy loxetan-3 -y l)benzolcarboxim idam id
Figure imgf000075_0001
Schritt 1: [4-(Dibenzylamino)phenyl]boronsäure
Unter inerten Bedingungen wurde eine Lösung von 6.0 g (17.03 mmol) NN-Dibenzyl-4-brom- anilin [T. Saitoh et al, J. Am. Chem. Soc. 2005, 127 (27), 9696-9697] in einem Gemisch aus 75 ml wasserfreiem Diethylether und 75 ml wasserfreiem THF vorgelegt. Bei -78°C wurde diese Lösung tropfenweise mit 13.9 ml (22.14 mmol) einer 1.6 M Lösung von n-Butyllithium in Hexan versetzt. Nach beendeter Zugabe wurde 60 min bei -78°C gerührt, bevor bei derselben Temperatur 6.3 ml (27.25 mmol) Borsäuretriisopropylester zugetropft wurden. Nach weiteren 15 min bei -78°C ließ man das Reaktionsgemisch auf RT kommen. Nach 3 h Rühren bei RT wurden 18 ml 2 M Salzsäure hinzugefügt und das resultierende Gemisch 20 min intensiv bei RT gerührt. Nach Verdünnen mit ca. 200 ml Wasser wurde dreimal mit je ca. 200 ml Ethylacetat extrahiert. Die vereinigten organischen Extrakte wurden nacheinander mit Wasser und gesättigter Kochsalz-Lösung gewaschen. Nach Trocknen über wasserfreiem Magnesiumsulfat wurde filtriert und das Lösungsmittel am Rotationsverdampfer entfernt. Der erhaltene ölige Rückstand wurde mit einem Gemisch aus 50 ml /er/.-Butylmethylether und 50 ml Pentan verrieben. Nach Absaugen des resultierenden Feststoffs und Trocknen im Hochvakuum wurden 3.91 g (72% d. Th., 90% Reinheit) der Titelverbindung erhalten, welche ohne weitere Reinigung in der nächsten Stufe eingesetzt wurde.
1H-NMR (400 MHz, DMSO-d6, δ/ppm): 7.58 (d, 2H), 7.32-7.30 (m, 4H), 7.27-7.23 (m, 6H), 6.66 (d, 2H), 4.70 (s, 4H).
HPLC (Methode A): R, = 4.35 min.
MS (ESIpos): m/z = 318 [M+H]+. Schritt 2: Ethyl-{3-[4-(dibenzylamino)phenyl]oxetan-3-yl}acetat
Figure imgf000076_0001
Eine Lösung von 304 mg (0.616 mmol) (l,5-Cyclooctadien)rhodium(I)chlorid-Dimer in 30 ml 1,4- Dioxan wurde mit 10.7 ml (16.0 mmol) einer 1.5 M Kalilauge versetzt. Nacheinander wurden dann Lösungen von 1.75 g (12.31 mmol) Ethyl-oxetan-3-ylidenacetat [G. Wuitschik et ah, Angew. Chem. Int. Ed. Engl. 2006, 45 (46), 7736-7739] in 1 ml 1,4-Dioxan und 3.91 g (12.31 mmol) der Verbindung aus Beispiel 4A / Schritt 1 in 60 ml 1,4-Dioxan hinzugefügt. Das Reaktionsgemisch wurde 6 h bei RT gerührt. Anschließend wurde mit ca. 200 ml Wasser verdünnt und dreimal mit je ca. 200 ml Ethylacetat extrahiert. Die vereinigten organischen Extrakte wurden nacheinander mit Wasser und gesättigter Kochsalz-Lösung gewaschen. Nach Trocknen über wasserfreiem Magnesiumsulfat wurde filtriert und das Lösungsmittel am Rotationsverdampfer entfernt. Das erhaltene Rohprodukt wurde mittels MPLC gereinigt (Kieselgel, Laufmittel: Cyclohexan/Ethylacetat 20:1 -> 5:1). Es wurden 3.51 g (67% d. Th.) der Titelverbindung erhalten.
1H-NMR (400 MHz, CDCl3, δ/ppm): 7.33-7.30 (m, 4H), 121-123 (m, 6H), 6.97 (d, 2H), 6.69 (d, 2H), 4.94 (d, 2H), 4.81 (d, 2H), 4.62 (s, 4H), 4.00 (quart, 2H), 3.04 (s, 2H), 1.11 (t, 3H).
LC/MS (Methode E, ESIpos): R. = 2.57 min, m/z = 416 [M+H]+.
Schritt 3: 2- { 3 - [4-(Dibenzy lam ino)pheny 1] oxetan-3 -y 1 } ethanol
Figure imgf000076_0002
Unter inerten Bedingungen und bei einer Temperatur von 00C wurde eine Lösung von 2.90 g (6.98 mmol) der Verbindung aus Beispiel 4A / Schritt 2 in 145 ml wasserfreiem THF tropfenweise mit 4.9 ml (4.88 mmol) einer 1 M Lösung von Lithiumaluminiumhydrid in THF versetzt. Nach beendetem Zutropfen wurde das Reaktionsgemisch 1.5 h bei 00C gerührt. Anschließend wurden 2 g Kieselgur und 2 ml Wasser vorsichtig hinzugefügt. Das heterogene Gemisch wurde über ein Papierfilter abgesaugt. Das Filtrat wurde mit ca. 250 ml Wasser verdünnt und dreimal mit je ca. 250 ml Ethylacetat extrahiert. Die vereinigten organischen Extrakte wurden nacheinander mit Wasser und gesättigter Kochsalz-Lösung gewaschen. Nach Trocknen über wasserfreiem Magnesiumsulfat wurde filtriert und das Lösungsmittel am Rotationsverdampfer entfernt. Das erhaltene Rohprodukt wurde mittels MPLC gereinigt (Kieselgel, Laufmittel: Cyclohexan/Ethylacetat 4: 1). Es wurden 2.34 g (87% d. Th.) der Titelverbindung erhalten.
1H-NMR (400 MHz, CDCl3, δ/ppm): 7.36-7.31 (m, 4H), 7.27-7.22 (m, 6H), 6.88 (d, 2H), 6.71 (d, 2H), 4.93 (d, 2H), 4.71 (d, 2H), 4.63 (s, 4H), 3.55 (quart, 2H), 2.29 (t, 2H), 1.12 (t, IH).
HPLC (Methode B): R, = 3.98 min.
MS (DCI, NH3): m/z = 374 [M+H]+.
LC/MS (Methode E, ESIpos): R. = 2.15 min, m/z = 374 [M+H]+.
Schritt 4: { 3 -[4-(Dibenzy lam ino)pheny 1] oxetan-3 -y 1 } acetaldehyd
Figure imgf000077_0001
Unter inerten Bedingungen wurde eine Lösung von 496 μl (5.68 mmol) Oxalylchlorid in 5 ml wasserfreiem Dichlormethan bei -78°C tropfenweise mit 807 μl wasserfreiem DMSO versetzt. Nach 20 min wurde bei derselben Temperatur eine Lösung von 1.93 g (5.17 mmol) der Verbindung aus Beispiel 4A / Schritt 3 in 5 ml wasserfreiem Dichlormethan langsam zugetropft. Nach 60 min Rühren bei -78°C wurden 3.7 ml (26.87 mmol) wasserfreies Triethylamin zugetropft. Nach weiteren 10 min bei dieser Temperatur ließ man das Reaktionsgemisch auf RT erwärmen. An- schließend wurde das Gemisch in einen mit Kieselgel gefüllten Saugfilter gegeben, und es wurde zunächst mit Cyclohexan und dann mit Cyclohexan/Ethylacetat 7:1 -> 1 : 1 eluiert. Die Produkt- fraktionen wurden vereinigt, zur Trockene eingedampft und der Rückstand in Ethylacetat aufgenommen. Es wurde nacheinander mit gesättigter Natriumhydrogencarbonat-Lösung, Wasser und gesättigter Kochsalz-Lösung gewaschen. Nach Trocknen über wasserfreiem Magnesiumsulfat wurde filtriert und das Lösungsmittel am Rotationsverdampfer entfernt. Es wurden 1.81 g (92% d. Th.) der Titel Verbindung erhalten.
1H-NMR (400 MHz, CDCl3, δ/ppm): 9.69 (t, IH), 7.34-7.31 (m, 4H), 7.28-7.23 (m, 6H), 6.97 (d, 2H), 6.70 (d, 2H), 5.00 (d, 2H), 4.72 (d, 2H), 4.63 (s, 4H), 3.18 (d, 2H).
HPLC (Methode B): R, = 4.61 min.
MS (DCI, NH3): m/z = 372 [M+H]+.
LC/MS (Methode F, ESIpos): R. = 1.43 min, m/z = 372 [M+H]+.
Schritt 5: NN-Dibenzyl-4-(3-methyloxetan-3-yl)anilin
Figure imgf000078_0001
Unter inerten Bedingungen wurde eine Lösung von 1.81 g (4.87 mmol) der Verbindung aus Beispiel 4A / Schritt 4 und 13.57 g (14.62 mmol) Tris(triphenylphosphin)rhodium(I)chlorid in 240 ml Toluol eine Stunde unter Rückfluss erhitzt. Nach dem Abkühlen auf RT wurde von unlöslichen Bestandteilen abfiltriert. Das Lösungsmittel wurde am Rotationsverdampfer entfernt und der Rückstand mittels MPLC gereinigt (Kieselgel, Laufmittel: Cyclohexan/Ethylacetat 20: 1 -» 5:1). Es wurden 1.36 g (73% d. Th., ca. 90% Reinheit) der Titelverbindung erhalten.
1H-NMR (400 MHz, CDCl3, δ/ppm): 7.35-7.31 (m, 4H), 7.27-7.24 (m, 6H), 7.07 (d, 2H), 6.72 (d, 2H), 4.90 (d, 2H), 4.64 (s, 4H), 4.55 (d, 2H), 1.96 (s, 3H).
LC/MS (Methode F, ESIpos): R, = 1.55 min, m/z = 344 [M+H]+. Schritt 6: 4-(3-Methyloxetan-3-yl)anilin
Figure imgf000079_0001
In einer Durchfluss-Hydrierapparatur ("H-Cube" der Firma ThalesNano, Budapest, Ungarn) wurde eine Lösung von 1.35 g (3.93 mmol) der Verbindung aus Beispiel 4A / Schritt 5 in 135 ml Ethanol hydriert (Bedingungen: 10% Pd/C-Katalysator, "füll H2"-Modus, 1 ml/min, 500C). Nach Entfernen des Lösungsmittels am Rotationsverdampfer wurde das Rohprodukt mittels MPLC gereinigt (Kieselgel, Laufmittel: Cyclohexan/Ethylacetat 4: 1 → 2:1). Es wurden 386 mg (60% d. Th.) der Titelverbindung erhalten.
1H-NMR (400 MHz, CDCl3, δ/ppm): 7.03 (d, 2H), 6.69 (d, 2H), 4.92 (d, 2H), 4.58 (d, 2H), 3.63 (s, breit, 2H), 1.69 (s, 3H).
LC/MS (Methode D, ESIpos): R, = 0.77 min, m/z = 164 [M+H]+.
Schritt 7: 4-(3-Methyloxetan-3-yl)benzolcarbonitril
Figure imgf000079_0002
Eine Lösung von 375 mg (2.30 mmol) der Verbindung aus Beispiel 4A / Schritt 6 in 17 ml Wasser wurde bei 00C zunächst mit 1.7 ml (20.7 mmol) konzentrierter Salzsäure und dann tropfenweise mit einer Lösung von 159 mg (2.30 mmol) Natriumnitrit in 5 ml Wasser versetzt. Es wurde 30 min bei 00C gerührt, bevor 1.1 g (10.3 mmol) festes Natriumcarbonat portionsweise zugesetzt wurden. Die so erhaltene Lösung wurde bei 00C zu einer Lösung von 257 mg (2.87 mmol) Kupfer(I)cyanid und 464 mg (7.12 mmol) Kaliumcyanid in 16 ml Toluol/Wasser (2: 1) getropft. Das Reaktionsgemisch wurde 1 h bei 00C gerührt. Anschließend ließ man das Gemisch auf RT erwärmen. Die organische Phase wurde danach abgetrennt und nacheinander mit Wasser und gesättigter Kochsalz-Lösung gewaschen. Nachdem das Lösungsmittel am Rotationsverdampfer abgetrennt worden war, wurde das Rohprodukt mittels MPLC gereinigt (Kieselgel, Laufmittel: Cyclohexan/Ethylacetat 10: 1 → 2: 1). Es wurden 390 mg (83% d. Th., 84% Reinheit) der Titelverbindung erhalten. 1H-NMR (400 MHz, CDCl3, δ/ppm): 7.66 (d, 2H), 7.31 (d, 2H), 4.92 (d, 2H), 4.68 (d, 2H), 1.73 (s, 3H).
GC/MS (Methode K, EIpos): R, = 5.45 min, m/z = 173 (M)+.
Schritt 8: N'-Hydroxy-4-(3-methyloxetan-3-yl)benzolcarboximidamid
Figure imgf000080_0001
Nach dem unter Beispiel IA / Schritt 5 beschriebenen Verfahren wurden aus 375 mg (1.83 mmol) der Verbindung aus Beispiel 4A / Schritt 7 297 mg (74% d. Th.) der Titelverbindung erhalten.
1H-NMR (400 MHz, DMSOd6, δ/ppm): 9.59 (s, IH), 7.64 (d, 2H), 7.23 (d, 2H), 5.79 (s, breit, 2H), 4.80 (d, 2H), 4.53 (d, 2H), 1.62 (s, 3H).
HPLC (Methode A): R, = 2.74 min.
MS (DCI, NH3): m/z = 207 [M+H]+.
Beispiel 5A
4-(3-Fluoroxetan-3-yl)-N'-hydroxybenzolcarboximidamid
Schritt 1: 4-(3-Hydroxyoxetan-3-yl)benzolcarbonitril
Figure imgf000081_0001
Unter inerten Bedingungen wurde bei -400C eine Lösung von 5.0 g (21.8 mmol) 4-Iodbenzonitril in 100 ml wasserfreiem THF tropfenweise mit 11 ml (21.8 mmol) einer 2 M Lösung von Isopro- pylmagnesiumchlorid in Diethylether versetzt. Nachdem das Gemisch 1.5 h bei derselben Temperatur gerührt worden war, wurde es auf -78°C heruntergekühlt und mit Hilfe einer Kanüle zu einer ebenfalls auf -78°C gekühlten Lösung von 2.95 g (32.7 mmol, 80% in Dichlormethan) 3-Oxo- oxetan [G. Wuitschik et al, Angew. Chem. Int. Ed. Engl. 2006, 45 (46), 7736-7739] in 100 ml wasserfreiem THF langsam hinzugefügt. Nach beendeter Zugabe wurde das Reaktionsgemisch zunächst 10 min bei -78°C, dann 2 h bei 00C und schließlich 30 min bei RT gerührt. Es wurde dann mit einigen ml gesättigter wässriger Ammoniumchlorid-Lösung versetzt. Anschließend wurde das Lösungsmittel am Rotationsverdampfer weitgehend entfernt. Der erhaltene Rückstand wurde mit 200 ml Wasser verdünnt und dreimal mit je ca. 200 ml Ethylacetat extrahiert. Die vereinigten organischen Extrakte wurden nacheinander mit Wasser und gesättigter Kochsalz-Lösung gewaschen. Nach Trocknen über wasserfreiem Magnesiumsulfat wurde filtriert und das Lösungsmittel am Rotationsverdampfer entfernt. Das erhaltene Rohprodukt wurde durch Kristallisation aus Cyclohexan/Ethylacetat 10:1 gereinigt. Es wurden 2.42 g (63% d. Th.) der Titelverbindung erhalten.
1H-NMR (400 MHz, DMSOd6, δ/ppm): 7.88 (d, 2H), 7.80 (d, 2H), 6.63 (s, IH), 4.79 (d, 2H), 4.65 (d, 2H).
HPLC (Methode A): R, = 3.09 min.
MS (DCI, NH3): m/z = 193 [MH-NH4I+.
Schritt 2: 4-(3-Fluoroxetan-3-yl)benzolcarbonitril
Figure imgf000081_0002
Unter inerten Bedingungen wurde bei -78°C eine Suspension von 600 mg (3.43 mmol) der Verbindung aus Beispiel 5A / Schritt 1 in 55 ml Dichlormethan tropfenweise mit einer Lösung von 662 mg (4.11 mmol) Diethylaminoschwefeltrifluorid (DAST) in 5 ml Dichlormethan versetzt. Nach 30 min bei -78°C wurde das Reaktionsgemisch mit Hilfe eines Eis/Wasser-Bades sehr schnell auf -200C erwärmt. Nach ca. 30 Sekunden wurden 20 ml 1 M Natronlauge zugesetzt, und man ließ das Gemisch auf RT erwärmen. Nach Verdünnen mit 150 ml Wasser wurde dreimal mit je ca. 50 ml Diethylether extrahiert. Die vereinigten organischen Extrakte wurden über wasserfreiem Magnesiumsulfat getrocknet. Nach Filtration wurde das Lösungsmittel am Rotationsverdampfer entfernt. Das Rohprodukt wurde mittels MPLC gereinigt (Kieselgel, Laufmittel: Cyclo- hexan/Ethylacetat 8:1). Es wurden 495 mg (82% d. Th.) der Titelverbindung erhalten.
1H-NMR (400 MHz, CDCl3, δ/ppm): 7.76 (d, 2H), 7.73 (d, 2H), 5.15 (dd, 2H), 4.81 (dd, 2H).
LC/MS (Methode D, ESIpos): R. = 1.59 min, m/z = 178 [M+H]+.
Schritt 3: 4-(3 -F luoroxetan-3 -y l)-N'-hydroxybenzolcarboxim idam id
Figure imgf000082_0001
Nach dem unter Beispiel IA / Schritt 5 beschriebenen Verfahren wurden aus 450 mg (2.54 mmol) der Verbindung aus Beispiel 5A / Schritt 2 470 mg (86% d. Th.) der Titelverbindung erhalten.
1H-NMR (400 MHz, DMSOd6, δ/ppm): 9.71 (s, IH), 7.77 (d, 2H), 7.54 (d, 2H), 5.87 (breites s, 2H), 4.97 (dd, 2H), 4.91 (dd, 2H).
HPLC (Methode A): R, = 2.64 min.
MS (DCI, NH3): m/z = 211 [M+H]+.
LC/MS (Methode D, ESIpos): R. = 0.80 min, m/z = 211 [M+H]+.
Beispiel 6A
N'-Hydroxy-4-(3-methoxyoxetan-3-yl)benzolcarboximidamid
Figure imgf000083_0001
Schritt 1: 4-(3-Methoxyoxetan-3-yl)benzolcarbonitril
Figure imgf000083_0002
Eine Lösung von 600 mg (3.43 mmol) der Verbindung aus Beispiel 5 A / Schritt 1 in 12.5 ml was- serfreiem DMF wurde bei 5°C mit 151 mg (3.77 mmol) einer 60%-igen Dispersion von Natriumhydrid in Mineralöl versetzt. Das Gemisch wurde 1 h bei 5°C gerührt, bevor 256 μl (4.11 mmol) Methyliodid zugesetzt wurden. Man ließ das Reaktionsgemisch dann auf RT kommen. Nach 15 h Rühren wurden 150 ml Wasser zugesetzt, und es wurde zweimal mit je ca. 150 ml Diethylether extrahiert. Die vereinigten organischen Extrakte wurden über wasserfreiem Magnesiumsulfat getrocknet. Nach Filtration und Entfernen des Lösungsmittels am Rotationsverdampfer wurde der erhaltene Rückstand mittels MPLC gereinigt (Kieselgel, Laufmittel: Cyclohexan/Ethylacetat 20:1 -» 4:1). Es wurden 566 mg (87% d. Th.) der Titelverbindung erhalten.
1H-NMR (400 MHz, DMSO-(I6, δ/ppm): 7.92 (d, 2H), 7.68 (d, 2H), 4.81 (d, 2H), 4.74 (d, 2H), 3.07 (s, 3H).
HPLC (Methode A): R, = 3.63 min.
MS (DCI, NH3): m/z = 207 [M+NHtf.
LC/MS (Methode D, ESIpos): R, = 1.50 min, m/z = 190 [M+H]+. Schritt 2: N'-Hydroxy-4-(3-methoxyoxetan-3-yl)benzolcarboximidamid
Figure imgf000084_0001
Nach dem unter Beispiel IA / Schritt 5 beschriebenen Verfahren wurden aus 500 mg (2.64 mmol) der Verbindung aus Beispiel 6A / Schritt 1 520 mg (89% d. Th.) der Titelverbindung erhalten.
1H-NMR (400 MHz, DMSOd6, δ/ppm): 9.67 (s, IH), 7.73 (d, 2H), 7.43 (d, 2H), 5.83 (breites s, 2H), 4.77 (m, 4H), 3.03 (s, 3H).
HPLC (Methode A): R1 = 2.54 min.
MS (DCI, NH3): m/z = 223 [M+H]+.
Beispiel 7A
4-(4-Fluortetrahydro-2H-pyran-4-yl)-N'-hydroxybenzolcarboximidamid
Figure imgf000084_0002
Schritt 1: 4-(4-Ηydroxytetrahydro-2H-pyran-4-yl)benzolcarbonitril
Figure imgf000084_0003
Nach dem unter Beispiel 5A / Schritt 1 beschriebenen Verfahren wurden 25.0 g (109 mmol) 4-Iod- benzonitril mit 16.4 g (164 mmol) Tetrahydro-4H-pyran-4-on zu 7.56 g (34% d. Th.) der Titelverbindung umgesetzt.
1H-NMR (400 MHz, DMSOd6, δ/ppm): 7.80 (d, 2H), 7.70 (d, 2H), 5.30 (s, IH), 3.81-3.70 (m, 4H), 2.02-1.94 (m, 2H), 1.51-1.48 (m, 2H).
HPLC (Methode A): R, = 3.35 min.
MS (DCI, NH3): m/z = 204 [M+H]+, 221 [M+NH,]+.
Schritt 2: 4-(4-Fluortetrahydro-2H-pyran-4-yl)benzolcarbonitril
Figure imgf000085_0001
Nach dem unter Beispiel 5A / Schritt 2 beschriebenen Verfahren wurden 6.5 g (31.98 mmol) der Verbindung aus Beispiel 7A / Schritt 1 zu 3.73 g (57% d. Th.) der Titelverbindung umgesetzt.
1H-NMR (400 MHz, CDCl3, δ/ppm): 7.68 (d, 2H), 7.50 (d, 2H), 3.98-3.83 (m, 4H), 2.23-2.05 (m, 2H), 1.91-1.85 (m, 2H).
HPLC (Methode A): R, = 4.04 min.
MS (DCI, NH3): m/z = 223 [M+NHtf.
Schritt 3: 4-(4-Fluortetrahydro-2H-pyran-4-yl)-N'-hydroxybenzolcarboximidamid
Figure imgf000085_0002
Nach dem unter Beispiel IA / Schritt 5 beschriebenen Verfahren wurden aus 3.5 g (17.05 mmol) der Verbindung aus Beispiel 7A / Schritt 2 3.57 g (88% d. Th.) der Titelverbindung erhalten. 1H-NMR (500 MHz, DMSO-d6, δ/ppm): 9.64 (s, IH), 7.70 (d, 2H), 7.44 (d, 2H), 5.81 (s, 2H), 3.88- 3.83 (m, 2H), 3.73-3.67 (m, 2H), 2.23-2.06 (m, 2H), 1.87-1.81 (m, 2H).
HPLC (Methode A): R, = 3.06 min.
MS (DCI, NH3): m/z = 239 [M+H]+.
LC/MS (Methode F, ESIpos): R, = 0.40 min, m/z = 239 [M+H]+.
Beispiel 8A
N'-Hydroxy-4-(4-methoxytetrahydro-2H-pyran-4-yl)benzolcarboximidamid
Figure imgf000086_0001
Schritt 1: 4-(4-Methoxytetrahydro-2H-pyran-4-yl)benzolcarbonitril
Figure imgf000086_0002
Nach dem unter Beispiel 6A / Schritt 1 beschriebenen Verfahren wurden aus 300 mg (1.48 mmol) der Verbindung aus Beispiel 7A / Schritt 1 und 111 μl (1.77 mmol) Methyliodid 238 mg (74% d. Th.) der Titelverbindung erhalten.
1H-NMR (500 MHz, CDCl3, δ/ppm): 7.68 (d, 2H), 7.51 (d, 2H), 3.89-3.82 (m, 4H), 2.99 (s, 3H), 2.03-1.98 (m, 2H), 1.94-1.91 (m, 2H).
HPLC (Methode A): R, = 3.99 min.
MS (DCI, NH3): m/z = 235 [M+NΪL,]*.
GC/MS (Methode K, EIpos): R, = 6.57 min, m/z = 217 (M)+. Schritt 2: N'-Hydroxy-4-(4-tnethoxytetrahydro-2H-pyran-4-yl)benzolcarboximidamid
Figure imgf000087_0001
Nach dem unter Beispiel IA / Schritt 5 beschriebenen Verfahren wurden aus 200 mg (0.921 mmol) der Verbindung aus Beispiel 8A / Schritt 1 229 mg (99% d. Th.) der Titelverbindung erhalten.
1H-NMR (400 MHz, DMSO-d6, δ/ppm): 9.63 (s, IH), 7.68 (d, 2H), 7.39 (d, 2H), 5.80 (s, 2H), 3.71- 3.67 (m, 4H), 2.88 (m, 2H), 1.93-1.89 (m, 4H).
HPLC (Methode B): R1 = 2.95 min.
MS (DCI, NH3): m/z = 251 [M+H]+.
LC/MS (Methode D, ESIpos): R, = 0.93 min, m/z = 251 [M+H]+.
Analog zu dem unter Beispiel IA / Schritt 5 beschriebenen Verfahren wurden die in der folgenden Tabelle aufgeführten N'-Hydroxybenzolcarboximidamide aus den entsprechenden, kommerziell erhältlichen Benzonitrilen hergestellt. Die nicht kommerziell erhältlichen Benzonitrile wurden gemäß der folgenden Literaturvorschriften hergestellt: 4-Cyclohexylbenzolcarbonitril [E. Riguet et al, J. Organomet. Chem. 2001, 624 (1-2), 376-379], 4-(Piperidin-l-yl)benzolcarbonitril [A.-H. Kuthier et al, J. Org. Chem. 1987, 52 (9), 1710-1713], 4-(Pentafluor-λ6-sulfanyl)benzolcarbonitril [PJ. Crowley et al, Chimia 2004, 58 (3), 138-142], 4-(Trimethylsilyl)benzolcarbonitril [P. di Raddo et al., J. Chem. Soc. Chem. Commun. 1984 (3), 159-160], 4-(2-Hydroxypropan-2-yl)benzol- carbonitril [J.L. Tucker et al, Synth. Comm. 2006, 36 (15), 2145-2155].
Figure imgf000088_0001
Figure imgf000089_0001
Figure imgf000090_0001
Figure imgf000091_0003
Beispiel 22A
2- Am ino-2- [4-(tr ifluormethoxy)pheny 1] ethanol
Figure imgf000091_0001
Eine Lösung von 3.0 g (12.8 mmol) racemischem 4-(Trifluormethoxy)phenylglycin in 20 ml THF wurde nacheinander mit 834 mg (38.3 mmol) Lithiumborhydrid und 1 ml (19.1 mmol) konzentrierter Schwefelsäure, gelöst in 1 ml THF, versetzt. Das Reaktionsgemisch wurde 24 h bei RT gerührt. Dann wurden 15 ml Methanol zugesetzt und die Mischung so lange gerührt, bis eine klare Lösung entstand. Zu dieser Lösung wurden anschließend 20 ml 4 M Natronlauge hinzugetropft. Dabei fiel ein Niederschlag aus, der abgesaugt und verworfen wurde. Das Filtrat wurde am Rotationsverdampfer von den organischen Lösungsmitteln befreit. Der Rückstand wurde dreimal mit je ca. 20 ml Toluol extrahiert. Die vereinigten organischen Extrakte wurden am Rotationsverdampfer eingeengt. Es wurden 2.25 g (80% d. Th.) der Titelverbindung erhalten.
1H-NMR (400 MHz, DMSO-d6, δ/ppm): 7.48 (d, 2H), 7.31 (d, 2H), 5.63 und 5.51 (jeweils breit, zus. 2H), 4.91 (breit, IH), 3.71-3.67 (m, IH), 3.66-3.59 (m, 2H).
MS (DCI, NH3): m/z = 222 [M+H]+.
Beispiel 23A
5-(5-Methyl- lH-pyrazol-3-yl)-3-[4-(trifluormethoxy)phenyl]- 1 ,2,4-oxadiazol
Figure imgf000091_0002
Eine Lösung von 15.3 g (0.121 mol) 5-Methyl-lH-pyrazoI-3-carbonsäure in 600 ml wasserfreiem DMF wurde bei RT nacheinander mit 23.3 g (0.121 mol) EDC, 16.4 g (0.121 mol) ΗOBt und 26.7 g (0.121 mol) N'-Ηydroxy-4-(trifluormethoxy)benzolcarboximidamid versetzt. Das Gemisch wurde zunächst 2 h bei RT und anschließend 5 h bei 1400C gerührt. Nach dem Abkühlen wurde mit 2 Litern Wasser verdünnt und dreimal mit je 1 Liter Ethylacetat extrahiert. Die vereinigten organischen Extrakte wurden nacheinander mit Wasser und gesättigter Kochsalz-Lösung gewaschen. Nach Trocknen über wasserfreiem Magnesiumsulfat wurde filtriert und das Lösungsmittel am Rotationsverdampfer entfernt. Das erhaltene Rohprodukt wurde mittels Saugfiltration über eine mit Kieselgel gefüllte Filternutsche gereinigt (Eluent: Cyclohexan/Ethylacetat 5:1 → 1 :1). Die Produktfraktionen wurden vereinigt und das Lösungsmittel am Rotationsverdampfer so weit entfernt, dass das Produkt gerade begann auszufallen. Die Fällung wurde bei RT vervollständigt. Durch Filtration und weiteres Einengen der Mutterlauge wurden zwei Fraktionen Feststoff erhalten, die vereinigt und im Hochvakuum getrocknet wurden. Insgesamt wurden so 19.7 g (52% d. Th.) der Titelverbindung erhalten.
1H-NMR (400 MHz, CDCl3, δ/ppm): 10.75 (breit, IH), 8.24 (d, 2H), 7.34 (d, 2H), 6.81 (s, IH), 2.46 (s, 3H).
HPLC (Methode A): R, = 4.72 min.
MS (DCI, NH3): m/z = 311 [M+H]+.
LC/MS (Methode F, ESIpos): R, = 1.27 min, m/z = 311 [M+H]+.
Die in der folgenden Tabelle aufgeführten Verbindungen wurden nach dem in Beispiel 23A beschriebenen Verfahren aus 5-Methyl-lH-pyrazo 1-3 -carbonsäure, 5-(Trifluormethyl)-lH-pyrazol-3- carbonsäure, 5-Nitro-lH-pyrazol-3-carbonsäure bzw. 2-Methyl-lH-imidazol-4-carbonsäure-Ηydrat und den entsprechenden N'-Hydroxybenzolcarboximidamiden hergestellt. Je nach Größe des Ansatzes betrug die Reaktionszeit, während der zunächst bei RT gerührt wurde, 0.5 bis 4 h. Auf 1400C wurde nachfolgend für 1 bis 15 h erhitzt. Je nach Polarität des erhaltenen Produkts fiel dieses bereits bei der Zugabe von Wasser nach der beendeten Reaktion aus, es wurde dann gewaschen und im Hochvakuum getrocknet. Alternativ wurde, wie oben beschrieben, extraktiv aufgearbeitet und anschließend chromatographisch über Kieselgel gereinigt; für die Chromatographie wurden unterschiedliche Laufmittel verwendet. In manchen Fällen konnte auf die Chromatogra- phie verzichtet und das Produkt direkt durch Ausrühren in Dichlormethan, Ethylacetat, Acetonitril oder /ert.-Butyl-methylether gereinigt werden. Die Verbindung in Beispiel 36A wurde mittels prä- parativer HPLC (Methode M) gereinigt.
Figure imgf000093_0001
Figure imgf000094_0001
Figure imgf000095_0001
Beispiel 37A
3-{3-[4-(Trifluormethoxy)phenyl]-l,2,4-oxadiazol-5-yl}-lH-pyrazol-5-amin
Figure imgf000096_0001
In einer Durchfluss-Hydrierapparatur ("H-Cube" der Firma ThalesNano, Budapest, Ungarn) wurde eine Lösung von 342 mg (1.0 mmol) der Verbindung aus Beispiel 34A in 43 ml Ethylacetat hydriert (Bedingungen: 10% Pd/C-Katalysator, 1 bar H2, 25°C, 1 ml/min). Nach Entfernen des Lösungsmittels am Rotationsverdampfer wurde das Rohprodukt mittels MPLC gereinigt (Kieselgel, Laufmittel: Cyclohexan/Ethylacetat 1 : 1). Es wurden 322 mg (93% d. Th.) der Titelverbindung erhalten.
1H-NMR (400 MHz, DMSO-d6, δ/ppm): 12.49 (s, IH), 8.19 (d, 2H), 7.49 (d, 2H), 5.93 (s, IH), 5.44 (s, 2H).
MS (DCI, NH3): m/z = 312 [M+H]+.
LC/MS (Methode E, ESIpos): R, = 1.76 min, m/z = 312 [M+H]+.
Beispiel 38A
2-Chlor-4-(chlormethyl)pyridin
Figure imgf000096_0002
Man löste 1.00 g (6.97 mmol) (2-Chlorpyridin-4-yl)methanol in 40 ml Dichlormethan, gab langsam 10 ml Thionylchlorid bei RT hinzu und rührte das Gemisch über Nacht bei RT. Anschließend wurde das Gemisch am Rotationsverdampfer eingeengt und der Rückstand in einem Mischung aus Dichlormethan und wässriger Natriumhydrogencarbonat-Lösung verrührt. Man trennte die Phasen, trocknete die Dichlormethan-Phase über wasserfreiem Magnesiumsulfat, filtrierte und engte am Rotationsverdampfer ein. Es wurden 1.10 g (97% d. Th.) der Titelverbindung erhalten.
1H-NMR (400 MHz, CDCl3, δ/ppm): 8.49 (d, IH), 7.38 (s, IH), 7.27-7.22 (m, IH), 4.52 (s, 2H).
LC/MS (Methode E, ESIpos): R, = 1.43 min, m/z = 162 [M+H]+.
Beispiel 39A
2-(Chlormethyl)-5-iodpyridin
Figure imgf000097_0001
Schritt 1: 2-(Hydroxymethyl)-5-iodpyridin
Figure imgf000097_0002
Unter inerten Bedingungen und einer Temperatur von -78°C wurde eine Lösung von 2.50 g (7.56 mmol) 2,5-Diiodpyridin in 90 ml Toluol tropfenweise mit 5.7 ml (9.07 mmol) einer 1.6 M Lösung von n-Butyllithium in Hexan versetzt. Es wurde 2.5 h bei -78°C gerührt und dann bei derselben Temperatur 756 μl wasserfreies DMF zugegeben. Nach weiteren 60 min bei -78°C ließ man das Reaktionsgemisch auf -100C erwärmen, fügte 572 mg (15.11 mmol) festes Natriumborhydrid hinzu und setzte das Rühren für 30 min bei 00C fort. Anschließend wurde mit 25 ml gesättigter wässriger Ammoniumchlorid-Lösung versetzt und das Gemisch auf RT erwärmt. Die organische Phase wurde abgetrennt und das Lösungsmittel am Rotationsverdampfer entfernt. Der Rückstand wurde mittels präparativer HPLC gereinigt. Es wurden 890 mg (50% d. Th.) der Titelverbindung (analytische Daten siehe unten) sowie 243 mg (14% d. Th.) des isomeren 5-(Hydroxymethyl)-2-iodpyri- dins erhalten [präparative HPLC-Bedingungen: Säule: Sunfire Cl 8 OBD 5 μm, 19 mm x 150 mm; Temperatur: 400C; Laufmittel: Wasser/Acetonitril/l%-ige wässrige TFA 76:5:19; Flussrate: 25 ml/min; 1.3 g Rohprodukt wurden in einem Gemisch aus 8 ml 1%-iger wässriger TFA und 4 ml Acetonitril gelöst; Injektionsvolumen: 1 ml].
1H-NMR (400 MHz, CDCl3, δ/ppm): 8.87 (d, IH), 8.30 (dd, IH), 7.38 (d, IH), 5.43 (breit, IH), 4.85 (s, 2H).
HPLC (Methode A): R, = 0.87 min.
MS (DCI, NH3): m/z = 236 [M+H]+.
LC/MS (Methode E, ESIpos): R. = 0.85 min, m/z = 236 [M+H]+.
Schritt 2: 2-(Chlormethyl>5-iodpyridin
Figure imgf000097_0003
Eine Lösung von 765 mg (3.26 mmol) der Verbindung aus Beispiel 39A / Schritt 1 in 12 ml wasserfreiem Dichlormethan wurde bei 00C tropfenweise mit 357 μl (4.88 mmol) Thionylchlorid versetzt. Man ließ das Reaktionsgemisch anschließend 15 h bei RT rühren. Dann wurde mit ca. 50 ml gesättigter wässriger Natriumhydrogencarbonat-Lösung versetzt und dreimal mit je ca. 50 ml Di- chlormethan extrahiert. Die vereinigten organischen Extrakte wurden mit gesättigter Kochsalz- Lösung gewaschen und über wasserfreiem Magnesiumsulfat getrocknet. Nach dem Filtrieren wurde das Lösungsmittel am Rotationsverdampfer entfernt. Es wurden 541 mg (66% d. Th.) der Titelverbindung erhalten.
1H-NMR (400 MHz, CDCl3, δ/ppm): 8.79 (d, IH), 8.03 (dd, IH), 7.29 (d, IH), 4.61 (s, 2H).
MS (ESIpos): m/z = 254/256 (35C1/37C1) [M+H]+.
LC/MS (Methode D, ESIpos): R, = 1.87 min, m/z = 254/256 (35C1/37C1) [M+H]+.
Beispiel 4OA
5-(Chlormethyl)pyridin-2-carbonitril-Hydrochlorid
Figure imgf000098_0001
Eine Lösung von 250 mg (1.86 mmol) 5-(Hydroxymethyl)pyridin-2-carbonitril [A. Ashimori et ah, Chem. Pharm. Bull. 1990, 38 (9), 2446-2458] in 5 ml wasserfreiem Dichlormethan wurde bei 00C mit 272 μl (3.73 mmol) Thionylchlorid versetzt. Dann wurde das Reaktionsgemisch 6 h bei RT gerührt. Anschließend wurden alle flüchtigen Bestandteile am Rotationsverdampfer entfernt und der erhaltene Rückstand im Hochvakuum getrocknet. Es wurden 263 mg (75% d. Th.) der Titelver- bindung erhalten.
1H-NMR (400 MHz, CDCl3, δ/ppm): 8.73 (d, IH), 7.90 (dd, IH), 7.72 (d, IH), 4.63 (s, 2H).
MS (ESIpos): m/z = 153/155 (35C1/37C1) [M+H]+.
LC/MS (Methode F, ESIpos): R, = 0.75 min, m/z = 153/155 (35C1/37C1) [M+H]+.
Beispiel 41A
(6-Cyanopyridin-3-yl)methylmethansulfonat
Figure imgf000099_0001
Eine Lösung von 2.8 g (20.87 mmol) 5-(Hydroxymethyl)pyridin-2-carbonitril [A. Ashimori et al., Chem. Pharm. Bull. 1990, 38 (9), 2446-2458] in 50 ml wasserfreiem Dichlormethan wurde bei 00C nacheinander mit 3.51 ml (27.14 mmol) NN-Diisopropylethylamin und 2.87 ml (25.05 mmol) Methansulfonsäurechlorid versetzt. Dann wurde das Reaktionsgemisch 1 h bei RT gerührt. Anschließend wurde mit 10 ml Wasser versetzt, die Phasen getrennt und die wässrige Phase zweimal mit je ca. 10 ml Dichlormethan extrahiert. Die vereinigten organischen Extrakte wurden mit gesättigter Kochsalz-Lösung gewaschen, über wasserfreiem Magnesiumsulfat getrocknet, filtriert und am Rotationsverdampfer vom Lösungsmittel befreit. Der erhaltene Rückstand wurde mittels MPLC in seine Komponenten aufgetrennt (Kieselgel, Laufmittel: Cyclohexan/Ethylacetat 1 : 1). Es wurden 2.12 g (48% d. Th.) der Titelverbindung (analytische Daten siehe unten) sowie 1.51 g (47% d. Th.) der in Beispiel 4OA beschriebenen Verbindung erhalten.
1H-NMR (400 MHz, CDCl3, δ/ppm): 8.76 (d, IH), 7.93 (dd, IH), 7.78 (d, IH), 5.32 (s, 2H), 3.10 (s, 3H).
MS (DCI, NH3): m/z = 213 [M+H]+, 230 [M+NHJ*.
LC/MS (Methode F, ESIpos): R, = 0.57 min, m/z = 213 [M+H]+.
Beispiel 42A
[3-(Brommethyl)phenoxy](tripropan-2-yl)silan
Figure imgf000099_0002
Schritt 1: Ethyl-3-[(tripropan-2-ylsilyl)oxy]benzolcarboxylat
Figure imgf000099_0003
Eine Lösung von 5.0 g (30.09 mmol) 3-Hydroxybenzoesäureethylester und 2.41 g (35.35 mmol) Imidazol in 20 ml wasserfreiem DMF wurde bei 00C tropfenweise mit 5.98 g (30.99 mmol) Tri- isopropylsilylchlorid versetzt. Nachdem das Reaktionsgemisch 15 h bei RT gerührt worden war, wurde mit ca. 100 ml Wasser versetzt und dreimal mit je ca. 100 ml Diethylether extrahiert. Die vereinigten organischen Extrakte wurden nacheinander mit Wasser und gesättigter Kochsalz- Lösung gewaschen. Nach Trocknen über wasserfreiem Magnesiumsulfat und Filtration wurde das Lösungsmittel am Rotationsverdampfer entfernt. Der erhaltene Rückstand wurde per Saugfiltration über Kieselgel mit Cyclohexan/Ethylacetat 10:1 — > 1: 1 als Laufmittel gereinigt. Es wurden 9.70 g (100% d. Th.) der Titelverbindung erhalten.
1H-NMR (400 MHz, CDCl3, δ/ppm): 7.62 (dd, IH), 7.53 (m, IH), 7.28 (dd, IH), 7.06 (dd, IH), 4.37 (quart, 2H), 1.39 (t, 3H), 1.28 (sept, 3H), 1.10 (d, 18H).
GC/MS (Methode K, EI): R. = 6.62 min, m/z = 322 (M)+, 279 (M-C3H7)".
Schritt 2: {3-[(Tripropan-2-ylsilyl)oxy]phenyl}methanol
Figure imgf000100_0001
Unter inerten Bedingungen wurden 50 ml (49.61 mmol) einer 1 M Lösung von Lithiumaluminiumhydrid in THF mit 50 ml wasserfreiem Diethylether verdünnt und anschließend bei 00C tropfenweise mit einer Lösung von 8.0 g (24.80 mmol) der Verbindung aus Beispiel 42A / Schritt 1 in 50 ml wasserfreiem Diethylether versetzt. Das Reaktionsgemisch wurde 1 h bei RT gerührt. Dann wurden zunächst einige ml Methanol zugesetzt, um überschüssiges Hydrid zu solvolysieren, und anschließend ca. 150 ml 0.1 M Salzsäure. Die organische Phase wurde zügig abgetrennt, und die wässrige Phase wurde zweimal mit je ca. 50 ml Diethylether extrahiert. Die vereinigten organischen Extrakte wurden nacheinander mit Wasser und gesättigter Kochsalz-Lösung gewaschen. Nach Trocknen über wasserfreiem Magnesiumsulfat und anschließender Filtration wurde das Lösungsmittel am Rotationsverdampfer entfernt. Der erhaltene Rückstand wurde per Saugfiltration über Kieselgel mit Cyclohexan/Ethylacetat 5:1 -» 1:1 als Laufmittel gereinigt. Es wurden 6.69 g (96% d. Th.) der Titelverbindung erhalten.
1H-NMR (400 MHz, CDCl3, δ/ppm): 7.20 (dd, IH), 6.93-6.90 (m, 2H), 6.80 (dd, IH), 4.64 (d, 2H), 1.61 (t, 3H), 1.26 (sept, 3H), 1.09 (d, 18H).
GC/MS (Methode K, EI): R. = 6.38 min, m/z = 280 (M)+, 237 (M-C3Hy)+. Schritt 3: [3-(Brommethyl)phenoxy](tripropan-2-yl)silan
Figure imgf000101_0001
1.0 g (3.57 mmol) der Verbindung aus Beispiel 42A / Schritt 2 wurde in 20 ml wasserfreiem THF gelöst und mit 1.12 g (4.28 mmol) Triphenylphosphin versetzt. Nachdem dieses in Lösung gegan- gen war, wurden 1.42 g (4.28 mmol) Tetrabrommethan zugesetzt. Anschließend wurde 20 h bei RT gerührt. Dann wurde von dem ausgefallenen Niederschlag abfiltriert und das Filtrat am Rotationsverdampfer vom Lösungsmittel befreit. Das Rohprodukt wurde mittels MPLC gereinigt (Kieselgel, Laufmittel: Cyclohexan/Ethylacetat 50: 1). Es wurden 1.10 g (90% d. Th., ca. 90% Reinheit) der Titelverbindung erhalten, welche ohne weitere Aufreinigung verwendet wurde.
1H-NMR (400 MHz, CDCl3, δ/ppm): 7.18 (dd, IH), 6.95 (dd, IH), 6.91 (m, IH), 6.80 (dd, IH), 4.43 (s, 2H), 1.25 (sept, 3H), 1.10 (d, 18H).
HPLC (Methode B): R, = 6.17 min.
GC/MS (Methode K, EI): R, = 6.56 min, m/z = 342/344 (79Br/81Br) (M)+.
Beispiel 43A
Ethyl-(4- { [(methylsulfonyl)oxy]methyl} phenyl)acetat
Figure imgf000101_0002
Eine Lösung von 1.1 g (5.66 mmol) [4-(Hydroxymethyl)phenyl]essigsäureethylester [G. Biagi et ed., Farmaco Ed. Sei. 1988, 43 (7/8), 597-612] und 1.03 ml (7.36 mmol) Triethylamin in 10 ml wasserfreiem THF wurde auf 00C abgekühlt. Dann wurde tropfenweise mit einer Lösung von 526 μl (6.80 mmol) Methansulfonsäurechlorid in 5 ml wasserfreiem THF versetzt. Nach 15 min bei 00C wurde auf RT erwärmt. Nach einer weiteren Stunde wurden ca. 60 ml Wasser hinzugefugt und zweimal mit je ca. 50 ml Ethylacetat extrahiert. Die vereinigten organischen Extrakte wurden mit gesättigter Kochsalz-Lösung gewaschen. Nach Trocknen über wasserfreiem Magnesiumsulfat und Filtration wurde das Lösungsmittel am Rotationsverdampfer entfernt. Das Rohprodukt wurde mittels MPLC aufgereinigt (Kieselgel, Laufmittel: Cyclohexan/Ethylacetat 7:3). Es wurden 1.19 g (56% d. Th., ca. 73% Reinheit) der Titelverbindung erhalten, welche ohne weitere Reinigung verwendet wurde.
MS (DCI, NH3): m/z = 290 [M+NH,]+.
LC/MS (Methode C, ESIpos): R, = 1.96 min, m/z = 177 (M-CH3SO2O)+.
Beispiel 44A
3-[4-(Chlormethyl)phenyl]propan-l-ol
Figure imgf000102_0001
Eine Lösung von 1.0 g (6.02 mmol) 3-[4-(Hydroxymethyl)phenyl]propan-l-ol [K. Tanaka et al., Org. Lett. 2007, 9 (7), 1215-1218] in 12 ml wasserfreiem Dichlormethan wurde bei RT mit 483 μl (6.62 mmol) Thionylchlorid und 717 mg (6.02 mmol) HOBt versetzt. Nach 5 min wurde eine Lösung von 999 mg (6.02 mmol) Kaliumiodid in 12 ml DMF hinzugefügt. Nachdem das Reaktionsgemisch 16 h bei RT gerührt worden war, wurde mit 36 ml Wasser verdünnt und dreimal mit je ca. 25 ml Diethylether extrahiert. Die vereinigten organischen Extrakte wurden nacheinander mit 5%-iger wässriger Natriumthiosulfat-Lösung, Wasser und gesättigter Kochsalz-Lösung ge- waschen. Nach Trocknen über wasserfreiem Magnesiumsulfat, Filtration und anschließendem Abdampfen des Lösungsmittels am Rotationsverdampfer wurde das Rohprodukt mittels MPLC aufgereinigt (Kieselgel, Laufmittel: Cyclohexan/Ethylacetat 2:1). Es wurden 236 mg (21% d. Th.) der Titelverbindung erhalten.
1H-NMR (400 MHz, CDCl3, δ/ppm): 7.31 (d, 2H), 7.20 (d, 2H), 4.57 (s, 2H), 3.68 (t, 2H), 2.71 (t, 2H), 1.89 (quint, 2H), 1.31 (s, breit, IH).
MS (DCI, NH3): m/z = 202 [M+NH,]*.
GC/MS (Methode K, EI): R, = 5.51 min, m/z = 184 [M]+.
Beispiel 45A
l-[(6-Chloφyridin-3-yl)methyl]-5-methyl-lH-pyrazol-3-carbonsäure
Figure imgf000103_0001
Schritt 1: Ethyl-l-[(6-chlθφyridin-3-yl)methyl]-5-methyl-lH-pyrazol-3-carboxylat
Figure imgf000103_0002
Zu einer Lösung von 10.0 g (64.9 mmol) EthyW-methyl-lH-pyrazol-S-carboxylat und 13.66 g (84.3 mmol) 2-Chlor-5-(chlormethyl)pyridin in 162 ml wasserfreiem TΗF gab man 9.46 g (84.3 mmol) Kalium-te/"/.-butylat bei 00C hinzu. Man ließ das Gemisch auf RT kommen und rührte weitere 18 h bei RT. Anschließend verdünnte man mit 200 ml Ethylacetat und 350 ml Wasser, durchmischte die Phasen und extrahierte die abgetrennte wässrige Phase noch zweimal mit jeweils 200 ml Ethylacetat. Man trocknete die vereinigten organischen Phasen über wasserfreiem Natrium- sulfat, filtrierte und engte am Rotationsverdampfer ein. Der Rückstand wurde säulenchromato- graphisch an Kieselgel gereinigt (Laufmittel: Cyclohexan/Ethylacetat 4: 1 → 2:1). Nach Trocknen im Vakuum erhielt man 12.4 g (65% d. Th.) der Titelverbindung in einer Reinheit von 95%.
1H-NMR (400 MHz, DMSO-d6, δ/ppm): 8.30 (d, IH), 7.58 (dd, IH), 7.52 (d, IH), 6.60 (s, IH), 5.45 (s, 2H), 4.24 (quart, 2H), 2.28 (s, 3H), 1.27 (t, 3H).
LC/MS (Methode C, ESIpos): R. = 1.88 min, m/z = 280 [M+H]+.
Schritt 2: l-[(6-Chloφyridin-3-yl)methyl]-5-methyl-lH-pyrazol-3-carbonsäure
Figure imgf000103_0003
Zu einer Lösung von 11.85 g (42.36 mmol) der Verbindung aus Beispiel 45 A / Schritt 1 in 100 ml TΗF gab man 3.39 g (84.7 mmol) Natriumhydroxid, gelöst in 100 ml Wasser, und rührte das Ge- misch 5 h bei RT. Anschließend verdünnte man das Gemisch mit 150 ml Wasser und wusch einmal mit 100 ml Ethylacetat. Die wässrige Phase wurde mit 1 N Salzsäure auf einen pH-Wert von ca. 3 eingestellt und dreimal mit jeweils 150 ml Ethylacetat extrahiert. Letztere Ethylacetat-Phasen wurden vereinigt, über wasserfreiem Natriumsulfat getrocknet, filtriert und am Rotationsverdampfer eingeengt. Nach Trocknen des Rückstands im Vakuum wurden 9.72 g (91% d. Th.) der Titelverbindung erhalten.
1H-NMR (400 MHz, DMSOd6, δ/ppm): 12.60 (s, breit, IH), 8.31 (d, IH), 7.60 (dd, IH), 7.52 (d, IH), 6.53 (s, IH), 5.42 (s, 2H), 2.28 (s, 3H).
LC/MS (Methode F, ESIpos): R, = 0.75 min, m/z = 252 [M+H]+.
Beispiel 46A
l-[(6-Chlorpyridin-3-yl)methyl]-5-methyl-lH-pyrrol-3-carbonsäure
Figure imgf000104_0001
Schritt 1: Methyl-2-(hydroxymethyliden)-4-oxopentanoat
Figure imgf000104_0002
Unter inerten Bedingungen wurden 7.63 g (190.7 mmol) einer 60%-igen Suspension von Natriumhydrid in Mineralöl mit Pentan entölt. Anschließend wurden 150 ml wasserfreier Diethylether und bei 00C 138 μl (3.4 mmol) Methanol zugesetzt. Nach 10 min Rühren bei RT wurde erneut auf 00C abgekühlt und ein Gemisch von 12.6 ml (204.3 mmol) Ameisensäuremethylester und 30.0 g (170.2 mmol) Methyl-4,4-dimethoxypentanoat [C. Meister et al, Liebigs Ann. Chem. 1983 (6), 913-921] langsam hinzugefügt. Das Reaktionsgemisch wurde 16 h bei RT gerührt. Dann wurden ca. 60 ml Eiswasser zugesetzt, und es wurde mit 100 ml Diethylether extrahiert. Der organische Extrakt wurde verworfen und die wässrige Phase mit 3 M Salzsäure auf einen pH-Wert von 2-3 gebracht. Es wurde viermal mit je ca. 50 ml tert. -Butyl-methy lether extrahiert. Die vereinigten organischen Extrakte wurden über wasserfreiem Magnesiumsulfat getrocknet, filtriert und am Rotationsverdampfer vom Lösungsmittel befreit. Es wurden 4.2 g (13% d. Th., 85% Reinheit) der Titelverbindung erhalten, welche ohne weitere Reinigung in der nächsten Stufe eingesetzt wurde. GC/MS (Methode K, EI): R, = 3.33 min, m/z = 158 [M]+, 140 [M-H2O]+.
Schritt 2: Methyl- l-[(6-chloφyridin-3-yl)methyl]-5-methyl-lH-pyrrol-3-carboxylat
Figure imgf000105_0001
Eine Mischung von 4.20 g (22.73 mmol, 85% Reinheit) der Verbindung aus Beispiel 46A / Schritt 1 und 3.24 g (22.73 mmol) 5-(Aminomethyl)-2-chlorpyridin in 42 ml Methanol wurde drei Tage lang bei RT gerührt. Anschließend wurde das Lösungsmittel am Rotationsverdampfer entfernt und das Rohprodukt mittels MPLC gereinigt (Kieselgel, Laufmittel: Cyclohexan/Ethylacetat 2: 1). Es wurden 3.37 g (56% d. Th.) der Titelverbindung erhalten.
1H-NMR (400 MHz, CDCl3, δ/ppm): 8.19 (d, IH), 7.30-7.20 (m, 3H), 6.38 (d, IH), 5.03 (s, 2H), 3.79 (s, 3H), 2.12 (s, 3H).
HPLC (Methode A): R4 = 4.10 min.
MS (DCI, NH3): m/z = 265 [M+H]+.
Schritt 3: 1 -[(6-Chlorpyridin-3 -yl)methy l]-5-methyl- 1 H-pyrrol-3 -carbonsäure
Figure imgf000105_0002
Eine Lösung von 1.93 g (7.29 mmol) der Verbindung aus Beispiel 46A / Schritt 2 in 38 ml Methanol wurde mit 14.5 ml (14.5 mmol) 1 M Natronlauge versetzt. Das Reaktionsgemisch wurde 15 h unter Rückfluss erhitzt. Nach dem Abkühlen auf RT wurde das Methanol am Rotationsverdampfer weitestgehend entfernt. Der Rückstand wurde zunächst mit 100 ml Wasser verdünnt und dann mit 2 M Salzsäure sauer gestellt. Der ausfallende Niederschlag wurde abfiltriert, mit Wasser nachgewaschen und im Hochvakuum getrocknet. Es wurden 1.41 g (76% d. Th.) der Titelverbindung erhalten.
1H-NMR (400 MHz, DMSOd6, δ/ppm): 11.67 (s, IH), 8.23 (s, IH), 7.51 (d, 2H), 7.45 (d, 2H), 6.18 (d, IH), 5.19 (s, 2H), 2.07 (s, 3H). HPLC (Methode A): R4 = 3.59 min.
MS (ESIpos): m/z = 251 [M+H]+.
Beispiel 47A
5-Methyl- 1 -(4-methylbenzyl)- 1 H-pyrrol-3 -carbonsäure
Figure imgf000106_0001
Schritt 1: Methyl 5 -methy 1- 1 -(4-methylbenzyl)- 1 H-pyrrol-3 -carboxy lat
Figure imgf000106_0002
13.25 g (36.03 mmol) der Verbindung aus Beispiel 46A / Schritt 1 sowie 4.6 ml (36.03 mmol) 4- Methylbenzylamin wurden in 100 ml Methanol gelöst. Diese Lösung wurde, verteilt auf sieben Portionen, in der Mikrowelle (CEM Discover, initiale Einstrahlleistung 100 W) 10 min lang auf 1000C erhitzt. Anschließend wurden die Reaktionsmischungen wieder vereinigt und am Rotationsverdampfer vom Lösungsmittel befreit. Die Titelverbindung wurde mittels Saugfiltration über Kieselgel isoliert (Cyclohexan/Ethylacetat-Gradient 7: 1 → 6: 1 → 5:1). Es wurden 7.25 g (83% d. Th.) erhalten.
1H-NMR (400 MHz, CDCl3, δ/ppm): 7.26 (d, IH), 7.13 (d, 2H), 6.92 (d, 2H), 6.34 (d, IH), 4.97 (s, 2H), 3.77 (s, 3H), 2.33 (s, 3H), 2.1 1 (s, 3H).
LC/MS (Methode D, ESIpos): R1 = 2.35 min, m/z = 244 [M+H]+.
Schritt 2: 5-Methyl- 1 -(4-methylbenzyl)- 1 H-pyrrol-3 -carbonsäure
Figure imgf000106_0003
Nach dem unter Beispiel 46A / Schritt 3 beschriebenen Verfahren wurden aus 2.0 g (8.22 mmol) der Verbindung aus Beispiel 47A / Schritt 1 1.78 g (94% d. Th.) der Titelverbindung erhalten.
1H-NMR (400 MHz, DMSO-d6, δ/ppm): 1 1.58 (s, breit, IH), 7.36 (d, IH), 7.15 (d, 2H), 6.99 (d, 2H), 6.14 (d, IH), 5.05 (s, 2H), 2.28 (s, 3H), 2.05 (s, 3H).
HPLC (Methode A): R, = 4.22 min.
MS (DCI, NH3): m/z = 230 [M+H]+, 247 [M+NR,]*.
LC/MS (Methode C, ESIpos): R, = 2.12 min, m/z = 230 [M+H]+.
Beispiel 48A
l-Methyl-5-(4-methylbenzyl)-lH-pyrrol-3-carbonsäure
Figure imgf000107_0001
Schritt 1: Methyl 5-brom-l-methyMH-pyπOl-3-carboxylat
Figure imgf000107_0002
Eine Lösung von 4.75 g (23.28 mmol) Methyl 5-brom-lH-pyrrol-3-carboxylat [Η.J. Anderson et al, Can. J. Chem. 1967 (45), 897-902] in 45 ml wasserfreiem DMF wurde mit 3.40 g (30.26 mmol) Kalium-te/-/.-butylat versetzt und 15 min bei RT gerührt. Dann wurden 1.9 ml (30.26 mmol) Methyliodid hinzugefugt. Das Reaktionsgemisch wurde 90 min bei RT gerührt. Anschließend wurde es auf 150 ml Eiswasser gegossen. Der ausgefallene Niederschlag wurde abgesaugt, mit Wasser gewaschen und im Hochvakuum getrocknet. Es wurden 3.76 g (74% d. Th.) der Titelverbindung erhalten.
1H-NMR (400 MHz, CDCl3, δ/ppm): 7.31 (d, IH), 6.60 (d, IH), 3.79 (s, 3H), 3.62 (s, 3H).
HPLC (Methode A): R4 = 3.85 min. MS (ESIpos): m/z = 218/220 (79Br/81Br) [M+H]+.
LC/MS (Methode F, ESIpos): R, = 1.02 min, m/z = 218/220 (79Br/81Br) [M+H]+.
Schritt 2: Methyl 5-[hydroxy(4-methylphenyl)methyl]-l-methyl-lH-pyrrol-3-carboxylat
Figure imgf000108_0001
Unter inerten Bedingungen und bei -300C wurde eine Lösung von 500 mg (2.29 mmol) der Verbindung aus Beispiel 48A / Schritt 1 in 10 ml wasserfreiem THF tropfenweise mit 1.3 ml (2.52 mmol) einer 2 M Lösung von Isopropylmagnesiumchlorid in TFIF versetzt. Nach beendeter Zugabe wurde das Reaktionsgemisch ca. 45 min bei 00C gerührt. Dann wurde bei dieser Temperatur mit 307 μl (2.6 mmol) 4-Methylbenzaldehyd versetzt. Nachdem das Reaktionsgemisch 15 h bei RT gerührt worden war, wurden ca. 40 ml Wasser zugesetzt, und es wurde dreimal mit je ca. 20 ml Ethylacetat extrahiert. Die vereinigten organischen Extrakte wurden nacheinander mit Wasser und gesättigter Kochsalz-Lösung gewaschen. Nach Trocknen über wasserfreiem Magnesiumsulfat wurde filtriert und das Filtrat am Rotationsverdampfer vom Lösungsmittel befreit. Der erhaltene Rückstand wurde mittels MPLC gereinigt (Kieselgel, Laufmittel: Dichlormethan → Dichlormethan/Methanol 20: 1). Es wurden 328 mg (55% d. Th.) der Titelverbindung erhalten.
1H-NMR (400 MHz, CDCl3, δ/ppm): 7.27 (d, 2H), 7.23 (d, IH), 7.18 (d, 2H), 6.26 (d, IH), 5.80 (d, IH), 3.75 (s, 3H), 3.60 (s, 3H), 2.37 (s, 3H), 2.19 (d, IH).
HPLC (Methode A): R4 = 3.95 min.
MS (DCI, NH3): m/z = 260 [M+H]+.
LC/MS (Methode F, ESIpos): R, = 1.06 min, m/z = 260 [M+H]+.
Schritt 3: Methyl l-methyl-5-(4-methylbenzyl)-lH-pyrrol-3-carboxylat
Figure imgf000108_0002
Eine Lösung von 321 mg (1.23 mmol) der Verbindung aus Beispiel 48A / Schritt 2 in 20 ml wasserfreiem Dichlormethan wurde bei 00C nacheinander mit 217 μl (1.36 mmol) Triethylsilan und 2.5 ml (13.6 mmol) Trifluormethansulfonsäure-trimethylsilylester versetzt. Nachdem das Reaktionsgemisch 2 h bei RT gerührt worden war, wurde mit Dichlormethan verdünnt und mit ge- sättigter wässriger Natriumhydrogencarbonat-Lösung gewaschen. Das Lösungsmittel wurde am Rotationsverdampfer entfernt und der erhaltene Rückstand mittels MPLC gereinigt (Kieselgel, Laufmittel: Dichlormethan). Es wurden 159 mg (52% d. Th.) der Titelverbindung erhalten.
1H-NMR (400 MHz, CDCl3, δ/ppm): 7.21 (d, IH), 7.10 (d, 2H), 7.13 (d, 2H), 6.33 (d, IH), 3.87 (s, 2H), 3.77 (s, 3H), 3.42 (s, 3H), 2.32 (s, 3H).
HPLC (Methode A): R, = 4.44 min.
MS (DCI, NH3): m/z = 244 [M+H]+.
LC/MS (Methode F, ESIpos): R4 = 1.28 min, m/z = 244 [M+H]+.
Schritt 4: l-Methyl-5-(4-methylbenzyl)-lH-pyrrol-3-carbonsäure
Figure imgf000109_0001
Nach dem unter Beispiel 46A / Schritt 3 beschriebenen Verfahren wurden aus 155 mg (0.637 mmol) der Verbindung aus Beispiel 48A / Schritt 3 139 mg (98% d. Th.) der Titelverbindung erhalten.
1H-NMR (400 MHz, DMSO-d6, δ/ppm): 11.53 (s, IH), 7.28 (d, IH), 7.11 (d, 2H), 7.05 (d, 2H), 6.02 (d, IH), 3.84 (s, 2H), 3.44 (s, 3H), 2.28 (s, 3H).
HPLC (Methode A): R, = 4.05 min.
MS (DCI, NH3): m/z = 230 [M+H]+.
LC/MS (Methode F, ESIpos): R, = 1.08 min, m/z = 230 [M+H]+.
Beispiel 49A
l-Methyl-5-(4-methylbenzyl)-lH-pyrazol-3-carbonsäure
Figure imgf000110_0001
Schritt 1: Ethyl 4-hydroxy-5-(4-methylphenyl)-2-oxopent-3-enoat
Figure imgf000110_0002
Aus 935 mg (23.4 mmol) einer 60%-igen Suspension von Natriumhydrid in Mineralöl und 30 ml wasserfreiem Ethanol wurde eine Natriumethanolat-Lösung hergestellt. Zu dieser Lösung wurden bei 00C zunächst 2.76 ml (20.3 mmol) Oxalsäurediethylester und dann eine Lösung von 3.01 g (20.3 mmol) l-(4-Methylphenyl)propan-2-on [S. Sugai et al, Chem. Lett. 1982, 597-600] in weiteren 10 ml Ethanol hinzugetropft. Nach 1 h bei 0°C ließ man das Reaktionsgemisch auf RT erwärmen und setzte das Rühren weitere 5 h fort. Anschließend wurde das Ethanol am Rotations- Verdampfer entfernt und der Rückstand in ca. 50 ml Wasser aufgenommen. Unter Eiskühlung wurde mit 1 M Salzsäure angesäuert und dann mit Dichlormethan extrahiert. Nach Trocknen der organischen Phase über wasserfreiem Magnesiumsulfat wurde das Lösungsmittel am Rotationsverdampfer entfernt. Es wurden 4.48 g (89% d. Th.) eines Produktgemisches erhalten, das neben dem £/Z-Gemisch der Titelverbindung noch das isomere Ethyl 4-hydroxy-3-(4-methylphenyl)-2-oxo- pent-3-enoat enthielt. Dieses Gemisch wurde ohne weitere Aufreinigung für die nachfolgende Reaktion verwendet.
1H-NMR (400 MHz, CDCl3, δ/ppm): 14.30 (breit, IH), 7.17-7.11 (m, 4H), 6.36 (s, IH), 4.31 (quart, 2H), 3.73 (s, 2H), 2.33 (s, 3H), 1.34 (t, 3H).
MS (DCI, NH3): m/z = 249 [M+H]+, 266 [M+NR,]".
Schritt 2: Ethyl l-methyl-5-(4-methylbenzyl>lH-pyrazol-3-carboxylat
Figure imgf000110_0003
Eine Mischung von 330 mg (1.33 mmol) der Verbindung aus Beispiel 49A / Schritt 1 und 78 μl (1.46 mmol) Methylhydrazin in 3 ml Eisessig wurde 4 h bei 900C gerührt. Anschließend wurde die Essigsäure am Rotationsverdampfer entfernt und der erhaltene Rückstand mittels MPLC gereinigt (Kieselgel, Laufmittel: Cyclohexan/Ethylacetat 1 : 1). Es wurden 270 mg (79% d. Th.) der Titelverbindung erhalten.
1H-NMR (400 MHz, CDCl3, δ/ppm): 7.12 (d, 2H), 7.02 (d, 2H), 6.58 (s, IH), 4.38 (quart, 2H), 3.95 (s, 2H), 3.78 (s, 3H), 2.33 (s, 3H), 1.39 (t, 3H).
LC/MS (Methode C, ESIpos): R, = 2.26 min, m/z = 259 [M+H]+.
Schritt 3: l-Methyl-5-(4-methylbenzyl)-lH-pyrazol-3-carbonsäure
Figure imgf000111_0001
Eine Lösung von 250 mg (0.968 mmol) der Verbindung aus Beispiel 49A / Schritt 2 in 5 ml Ethanol wurde mit 9.6 ml (4.84 mmol) einer 0.5 M Lithiumhydroxid-Lösung in Wasser versetzt. Nachdem das Reaktionsgemisch 1 h bei 400C gerührt worden war, ließ man auf RT abkühlen und versetzte mit 2.9 ml (5.81 mmol) 2 M Salzsäure. Das dabei ausgefallene Produkt wurde abgesaugt, mit Wasser gewaschen und im Hochvakuum getrocknet. Es wurden 203 mg (91% d. Th.) der Titelverbindung erhalten.
1H-NMR (400 MHz, DMSOd6, δ/ppm): 12.51 (breit, IH), 7.13 (d, 2H), 7.10 (d, 2H), 6.37 (s, IH), 3.99 (s, 2H), 3.73 (s, 3H), 2.28 (s, 3H).
LC/MS (Methode C, ESIpos): R, = 1.92 min, m/z = 231 [M+H]+.
Beispiel 5OA
2-Methyl- 1 -(4-methylbenzyl)- lH-imidazol-4-carbonsäure
Figure imgf000111_0002
Schritt 1: 2-Methyl-l-(4-methylbenzyl)-lH-imidazol-4-carbaldehyd
Figure imgf000112_0001
Eine Lösung von 1.0 g (9.08 mmol) 2-Methyl-lH-imidazol-4-carbaldehyd in 20 ml wasserfreiem TΗF wurde nacheinander mit 2.52 g (13.6 mmol) 4-Methylbenzylbromid und 1.12 g (9.99 mmol) festem Kalium-tert.-butylat versetzt. Das Reaktionsgemisch wurde 15 h bei RT gerührt. Anschließend wurde mit ca. 100 ml Wasser versetzt und dreimal mit je ca. 100 ml Ethylacetat extrahiert. Die vereinigten organischen Extrakte wurden nacheinander mit Wasser und gesättigter Kochsalz- Lösung gewaschen. Nach Trocknen über wasserfreiem Magnesiumsulfat und Filtrieren wurde das Lösungsmittel am Rotationsverdampfer entfernt. Das verbleibende Rohprodukt wurde mittels MPLC gereinigt (Kieselgel, Laufmittel: Cyclohexan/Ethylacetat 10: 1 -> 1 :2). Es wurden 1.24 g (64% d. Th.) der Titelverbindung erhalten, die ca. 9% des isomeren 2-Methyl-l-(4-methylbenzyl)- lH-imidazol-5-carbaldehyds enthielt.
1H-NMR (400 MHz, CDCl3, δ/ppm): 9.79 (s, IH), 7.53 (s, IH), 7.19 (d, 2H), 7.01 (d, 2H), 5.04 (s, 2H), 2.40 (s, 3H), 2.36 (s, 3H).
HPLC (Methode A): R, = 3.39 min.
MS (DCI, NH3): m/z = 215 [M+H]+.
LC/MS (Methode C, ESIpos): R. = 1.43 min, m/z = 215 [M+H]+.
Schritt 2: 2-Methyl-l-(4-methylbenzyl)-lH-imidazol-4-carbonsäure
Figure imgf000112_0002
Eine Lösung von 980 mg (4.57 mmol) der Verbindung aus Beispiel 5OA / Schritt 1 in 90 ml Iso- butanol wurde bei RT mit 25 ml (50.8 mmol) einer 2 M Lösung von 2-Methyl-2-buten in TΗF und einer Lösung von 5.48 g (48.5 mmol, 80%-ig) Natriumchlorit sowie 4.93 g (35.7 mmol) Natrium- dihydrogenphosphat in 45 ml Wasser versetzt. Das Reaktionsgemisch wurde 2 h bei RT gerührt. Anschließend wurde dreimal mit je ca. 100 ml Ethylacetat extrahiert. Die vereinigten organischen Extrakte wurden über wasserfreiem Magnesiumsulfat getrocknet, filtriert und am Rotationsverdampfer vom Lösungsmittel befreit. Das verbliebene Rohprodukt wurde mittels MPLC gereinigt (Kieselgel, Laufmittel: Dichlormethan/Methanol 5: 1). Es wurden 1.23 g (99% d. Th. bei 85% Reinheit) der Titelverbindung erhalten, die als Hauptverunreinigung ca. 8% der isomeren 2- Methyl-l-(4-methylbenzyl)-lH-imidazol-5-carbonsäure enthielt.
1H-NMR (400 MHz, DMSOd6, δ/ppm): 7.80 (s, IH), 7.18 (d, 2H), 7.10 (d, 2H), 5.13 (s, 2H), 3.46 (breit, IH), 2.29 (s, 3H), 2.23 (s, 3H).
HPLC (Methode A): R, = 3.43 min.
MS (ESIpos): m/z = 231 [M+H]+.
LC/MS (Methode F, ESIpos): R, = 0.60 min, m/z = 231 [M+H]+.
Beispiel 51A
N'-Hydroxy-4-( 1 -hydroxycyclobuty^benzolcarboximidamid
Figure imgf000113_0001
Schritt 1: 4-( 1 -Hydroxycyclobuty^benzolcarbonitril
Figure imgf000113_0002
Analog zu dem unter Beispiel 5A / Schritt 1 beschriebenen Verfahren wurden aus 15.0 g (65.5 mmol) 4-Iodbenzonitril, 34.4 ml (68.8 mmol) Isopropylmagnesiumchlorid-Lösung (2 M in Diethyl- ether) sowie 7.4 ml (98.2 mmol) Cyclobutanon 9.47 g (83% d. Th.) der Titelverbindung erhalten. Die Aufreinigung des Produktes erfolgte mittels MPLC (Kieselgel; Laufmittel: Cyclohexan/Ethyl- acetat 10:1 → 4: 1). 1H-NMR (400 MHz, CDCl3, δ/ppm): 7.67 (d, 2H), 7.62 (d, 2H), 2.58-2.51 (m, 2H), 2.44-2.37 (m, 2H), 2.23-2.04 (m, 2H), 1.83-1.72 (m, IH).
HPLC (Methode A): R, = 3.47 min.
MS (DCI, NH3): m/z = 191 [M+NH^.
Schritt 2: N'-Hydroxy-4-(l-hydroxycyclobutyl)benzolcarboximidamid
Figure imgf000114_0001
Analog zu dem unter Beispiel IA / Schritt 5 beschriebenen Verfahren wurden ausgehend von 1.0 g (5.77 mmol) der Verbindung aus Beispiel 51A / Schritt 1 1.1 g der Titelverbindung (92% d. Th.) erhalten. Anders als unter Beispiel IA / Schritt 5 beschrieben, wurde jedoch nach dem Entfernen des Lösungsmittels der Rückstand mit ca. 50 ml Wasser versetzt und dreimal mit je ca. 50 ml Ethylacetat extrahiert. Die vereinigten organischen Extrakte wurden mit gesättigter Kochsalz- Lösung gewaschen und über wasserfreiem Magnesiumsulfat getrocknet. Nach Filtration wurde das Lösungsmittel am Rotationsverdampfer entfernt und der erhaltene Rückstand mittels MPLC gereinigt (Kieselgel; Laufmittel: Dichlormethan/Methanol 50: 1 — > 10:1).
1H-NMR (400 MHz, DMSOd6, δ/ppm): 9.57 (s, IH), 7.63 (d, 2H), 7.47 (d, 2H), 5.79 (s, breit, 2H), 5.50 (s, IH), 2.42-2.33 (m, 2H), 2.30-2.22 (m, 2H), 1.97-1.60 (m, IH), 1.70-1.59 (m, IH).
HPLC (Methode A): R, = 2.26 min.
MS (EIpos): m/z = 207 [M+H]+.
LC/MS (Methode I, ESIpos): R, = 0.25 min, m/z = 207 [M+H]+.
Beispiel 52A
N -Hydroxy-4-( 1 -methoxycyclobutyObenzolcarboximidamid
Figure imgf000115_0001
Schritt 1: 4-( 1 -Methoxycyclobuty^benzolcarbonitril
Figure imgf000115_0002
Analog zu dem unter Beispiel 6A / Schritt 1 beschriebenen Verfahren wurden aus 2.0 g (11.5 mmol) der Verbindung aus Beispiel 5 IA / Schritt 1, 508 mg (12.7 mmol) einer 60%-igen Dispersion von Natriumhydrid in Mineralöl sowie 863 μl (13.9 mmol) Methyliodid 1.27 g (59% d. Th.) der Titelverbindung erhalten. Die Aufreinigung des Produktes erfolgte mittels MPLC (Kieselgel; Laufmittel: Cyclohexan/Ethylacetat 20:1 → 4:1).
1H-NMR (400 MHz, CDCl3, δ/ppm): 7.68 (d, 2H), 7.54 (d, 2H), 2.95 (s, 3H), 2.46-2.32 (m, 4H), 2.03-1.93 (m, IH), 1.76-1.63 (m, IH).
MS (DCI, NH3): m/z = 205 [M+NH,]*.
Schritt 2: N'-Hydroxy-4-( 1 -methoxycyclobutyObenzolcarboximidamid
Figure imgf000115_0003
Analog zu dem unter Beispiel IA / Schritt 5 beschriebenen Verfahren wurden ausgehend von 1.1 g (5.87 mmol) der Verbindung aus Beispiel 52A / Schritt 1 1.28 g der Titelverbindung (98% d. Th.) erhalten.
1H-NMR (400 MHz, DMSOd6, δ/ppm): 9.62 (s, IH), 7.68 (d, 2H), 7.40 (d, 2H), 5.80 (s, breit, 2H), 2.83 (s, 3H), 2.37-2.24 (m, 4H), 1.91-1.81 (m, IH), 1.65-1.53 (m, IH). HPLC (Methode A): R, = 3.02 min.
MS (DCI, NH3): m/z = 221 [M+H]+.
Beispiel 53A
4-( 1 -Fluorcyclobuly l)-N'-hydroxybenzolcarboximidamid
Figure imgf000116_0001
Schritt 1: 4-( 1 -Fluorcyclobuty l)benzolcarbonitril
Figure imgf000116_0002
Analog zu dem unter Beispiel 5A / Schritt 2 beschriebenen Verfahren wurden aus 2.0 g (1 1.5 mmol) der Verbindung aus Beispiel 51A / Schritt 1 und 1.8 ml (13.9 mmol) Diethylamino- schwefeltrifluorid (DAST) 1.39 g (69% d. Th.) der Titelverbindung erhalten. Die Aufreinigung des Produktes erfolgte mittels MPLC (Kieselgel; Laufmittel: Cyclohexan/Ethylacetat 10: 1 → 5:1).
1H-NMR (400 MHz, CDCl3, δ/ppm): 7.69 (d, 2H), 7.57 (d, 2H), 2.78-2.62 (m, 2H), 2.58-2.48 (m, 2H), 2.20-2.09 (m, IH), 1.87-1.75 (m, IH).
GC/MS (Methode K, EIpos): R1 = 4.71 min, m/z = 155 [M-HF]+.
Schritt 2: 4-(l-Fluorcyclobutyl)-N'-hydroxybenzolcarboximidamid
Figure imgf000116_0003
Analog zu dem unter Beispiel IA / Schritt 5 beschriebenen Verfahren wurden ausgehend von 1.25 g (7.13 mmol) der Verbindung aus Beispiel 53 A / Schritt 1 1.16 g der Titelverbindung (78% d. Th.) erhalten.
1H-NMR (400 MHz, CDCl3, δ/ppm): 7.67 (d, 2H), 7.50 (d, 2H), 4.87 (s, breit, 2H), 2.72-2.52 (m, 5H), 2.16-2.05 (m, IH), 1.82-1.71 (m, IH).
HPLC (Methode A): R, = 3.17 min.
MS (DCI, NH3): m/z = 209 [M+H]+.
Beispiel 54A
N'-Hydroxy-4-(2,2,2-trifluorethoxy)benzolcarboximidamid
Figure imgf000117_0001
Analog zu dem unter Beispiel IA / Schritt 5 beschriebenen Verfahren wurden ausgehend von 7.0 g (34.8 mmol) 4-(2,2,2-Trifluorethoxy)benzolcarbonitril [J.T. Gupton et al, Synth. Commun. 1982, 12 (9), 695-700] 6.61 g der Titelverbindung (81% d. Th.) erhalten.
1H-NMR (400 MHz, DMSOd6, δ/ppm): 9.51 (s, IH), 7.64 (d, 2H), 7.06 (d, 2H), 5.77 (s, breit, 2H), 4.79 (quart, 2H).
HPLC (Methode A): R, = 3.08 min.
MS (DCI, NH3): m/z = 235 [M+H]+.
LC/MS (Methode I, ESIpos): R. = 0.51 min, m/z = 235 [M+H]+.
Beispiel 55A
N'-Hydroxy-4-(lH-pyrrol-l-ylrnethyl)benzolcarboximidarnid
Figure imgf000118_0001
Analog zu dem unter Beispiel IA / Schritt 5 beschriebenen Verfahren wurden aus 670 mg (3.68 mmol) 4-(lH-Pyrrol-l-ylmethyl)benzolcarbonitril [M. Artico et ah, Eur. J. Med. Chem. 1992, 27 (3), 219-228] 702 mg der Titelverbindung (86% d. Th.) erhalten.
1H-NMR (400 MHz, CDCl3, δ/ppm): 7.76 (breit, IH), 7.58 (d, 2H), 7.13 (d, 2H), 6.68 (dd, 2H), 6.20 (dd, 2H), 5.09 (s, 2H), 4.84 (s, breit, 2H).
LC/MS (Methode I, ESIpos): R, = 0.54 min, m/z = 216 [M+H]+.
Beispiel 56A
(2-Carbamoylpyridin-4-yl)methylmethansulfonat
Figure imgf000118_0002
Analog zu dem unter Beispiel 43A beschriebenen Verfahren wurden aus 1.07 g (7.00 mmol) 4-(Hydroxymethyl)pyridin-2-carboxamid [I. Martin et ah, Ada Chem. Scand. 1995, 49 (3), 230- 232] 1.45 g der Titelverbindung (90% d. Th.) erhalten.
1H-NMR (400 MHz, CDCl3, δ/ppm): 8.62 (d, IH), 8.21 (s, IH), 7.83 (s, breit, IH), 7.51 (d, IH), 5.70 (s, breit, IH), 5.31 (s, 2H), 3.10 (s, 3H).
LC/MS (Methode I, ESIpos): R, = 0.43 min, m/z = 231 [M+H]+.
Beispiel 57A
ter/.-Butyl-({l-[4-(N'-hydroxycarbamimidoyl)phenyl]cyclobutyl}cκy)acetat
Figure imgf000119_0001
Schritt 1: tert. -Butyl- { [ 1 -(4-cyanophenyl)cyclobutyl]oxy } acetat
Figure imgf000119_0002
Eine Lösung von 2.0 g (11.5 mmol) der Verbindung aus Beispiel 51A / Schritt 1 in 40 ml wasserfreiem DMF wurde bei einer Temperatur von ca. 5°C mit 508 mg (12.7 mmol) Natriumhydrid (60%-ige Suspension in Mineralöl) versetzt. Nach 1 h Rühren bei dieser Temperatur wurden 2.0 ml (13.9 mmol) Bromessigsäure-terf.-butylester hinzugetropft. Man ließ das Reaktionsgemisch auf RT erwärmen und rührte über Nacht. Danach wurden weitere 1.5 ml (10.2 mmol) Bromessig- säure-te/7.-butylester hinzugefügt und das Rühren für weitere 4 h fortgesetzt. Anschließend wurde das Reaktionsgemisch auf ca. 150 ml Wasser gegossen, und es wurde mit insgesamt ca. 300 ml Diethylether extrahiert. Die vereinigten organischen Extrakte wurden nacheinander mit Wasser und gesättigter Kochsalz-Lösung gewaschen. Nach Trocknen über wasserfreiem Magnesiumsulfat wurde filtriert und das Lösungsmittel am Rotationsverdampfer entfernt. Das erhaltene Rohprodukt wurde mittels Saugfiltration über Kieselgel mit Cyclohexan/Ethylacetat 100:0 → 80:20 als Laufmittel gereinigt. Es wurden 767 mg der Titelverbindung erhalten (33% d. Th. bezogen auf den Umsatz) und 581 mg des Ausgangsmaterials (Verbindung aus Beispiel 5 IA / Schritt 1) zurückgewonnen.
1H-NMR (400 MHz, CDCl3, δ/ppm): 7.68 (d, 2H), 7.59 (d, 2H), 3.58 (s, 2H), 2.56-2.49 (m, 2H), 2.40-2.33 (m, 2H), 2.08-1.98 (m, IH), 1.75-1.63 (m, IH), 1.43 (s, 9H).
LC/MS (Methode F, ESIpos): R. = 1.35 min, m/z = 288 [M+H]+. Schritt 2: ter/.-Butyl-({ l-[4-(N'-hydroxycarbamimidoyl)phenyl]cyclobutyl}oxy)acetat
Figure imgf000120_0001
Analog zu dem unter Beispiel IA / Schritt 5 beschriebenen Verfahren wurden 720 mg (2.51 mmol) der Verbindung aus Beispiel 57A / Schritt 1 zu 584 mg (73% d. Th.) der Titelverbindung umge- setzt.
1H-NMR (400 MHz, CDCl3, δ/ppm): 9.63 (s, IH), 7.69 (d, 2H), 7.43 (d, 2H), 5.81 (s, breit, 2H), 3.57 (s, 2H), 2.39-2.32 (m, 4H), 1.94-1.85 (m, IH), 1.63-1.52 (m, IH), 1.34 (s, 9H).
LC/MS (Methode I, ESIpos): R4 = 0.78 min, m/z = 321 [M+H]+.
Beispiel 58A
N'-Hydroxy-4-(tetrahydro-2H-pyran-4-yl)benzolcarboximidamid
Figure imgf000120_0002
Schritt 1: 4-(Tetrahydro-2H-pyran-4-yl)benzonitril
Figure imgf000120_0003
Eine Lösung von 2.91 g (19.8 mmol) 4-Cyanophenylboronsäure [M. Νishimura et al, Tetrahedron 2002, 58 (29), 5779-5788] in 20 ml Isopropanol wurde mit 186 mg (0.594 mmol) Νickel(II)iodid, 90 mg (0.594 mmol) /rαra-2-Aminocyclohexanol-Ηydrochlorid und 3.63 g (19.8 mmol) Natrium- hexamethyldisilazid versetzt. Die so erhaltene Suspension wurde 5 min bei RT unter einer Argonatmosphäre gerührt. Dann wurden 2.1 g (9.90 mmol) 4-Iodtetrahydropyran [Heuberger et al, J. Chem. Soc. 1952, 910] zugefügt. Nachdem das Reaktionsgemisch 15 h bei einer Temperatur von 75°C gerührt worden war, wurde es auf RT abgekühlt und mit Dichlormethan durch Filtration über ca. 50 g Kieselgel von anorganischen Salzen weitgehend befreit. Das Rohprodukt wurde durch MPLC (Kieselgel, Laufmittel: Dichlormethan) gereinigt. Es wurden so 986 mg (53% d. Th.) der Titelverbindung erhalten.
1H-NMR (400 MHz, CDCl3, δ/ppm): 7.60 (d, 2H), 7.32 (d, 2H), 4.12-4.07 (m, 2H), 3.56-3.50 (m, 2H), 2.87-2.79 (m, IH), 1.86-1.73 (m, 4H).
GC/MS (Methode K, EIpos): R1 = 5.97 min, m/z = 187 [M]+.
Schritt 2: N'-Hydroxy-4-(tetrahydro-2H-pyran-4-yl)benzolcarboximidamid
Figure imgf000121_0001
Analog zu dem unter Beispiel IA / Schritt 5 beschriebenen Verfahren wurden 480 mg (2.56 mmol) der Verbindung aus Beispiel 58A / Schritt 1 zu 525 mg (93% d. Th.) der Titelverbindung umge- setzt.
1H-NMR (400 MHz, CDCl3, δ/ppm): 7.58 (d, 2H), 7.26 (d, 2H), 6.79 (breit, IH), 4.82 (s, breit, 2H), 4.11-4.05 (m, 2H), 3.57-3.50 (m, 2H), 2.83-2.74 (m, IH), 1.87-1.73 (m, 4H).
LC/MS (Methode D, ESIpos): R. = 0.92 min, m/z = 221 [M+H]+.
Beispiel 59A
N'-Hydroxy-4-isobutylbenzolcarboximidamid
Figure imgf000121_0002
Schritt 1: 4-Isobutylbenzonitril
Figure imgf000121_0003
Unter inerten, sauerstofffreien Bedingungen wurde eine Mischung aus 5.0 g (23.5 mmol) 1-Brom- 4-isobutylbenzol, 3.14 g (26.7 mmol) Zinkcyanid, 963 mg (2.35 mmol) Dicyclohexyl-(2',6'-di- methoxybiphenyl-2-yl)phosphan und 1.08 g (1.17 mmol) Tris(dibenzylidenaceton)dipalladium in 230 ml DMF/Wasser (99: 1) 1 h lang auf 1200C erhitzt. Nach dem Abkühlen auf RT wurde mit ca. 1000 ml Wasser verdünnt und dreimal mit je ca. 150 ml Ethylacetat extrahiert. Die vereinigten organischen Extrakte wurden nacheinander mit Wasser und gesättigter Kochsalz-Lösung gewa- sehen. Nach Trocknen über wasserfreiem Magnesiumsulfat wurde filtriert und das Filtrat am Rotationsverdampfer vom Lösungsmittel befreit. Der erhaltene Rückstand wurde mittels Saugfiltration über Kieselgel mit Cyclohexan/Ethylacetat 10: 1 als Laufmittel gereinigt. Es wurden 3.04 g (81% d. Th.) der Titelverbindung erhalten.
1H-NMR (400 MHz, CDCl3, δ/ppm): 7.56 (d, 2H), 7.23 (d, 2H), 2.53 (d, 2H), 1.94-1.83 (m, IH), 0.90 (d, 6H).
GC/MS (Methode K, EIpos): R, = 4.05 min, m/z = 159 [M]+.
Schritt 2: N'-Hydroxy-4-isobutylbenzolcarboximidamid
Figure imgf000122_0001
Analog zu dem unter Beispiel IA / Schritt 5 beschriebenen Verfahren wurden 3.03 g (19.0 mmol) der Verbindung aus Beispiel 59A / Schritt 1 zu 3.39 g (93% d. Th.) der Titelverbindung umgesetzt.
1H-NMR (400 MHz, DMSOd6, δ/ppm): 9.53 (s, IH), 7.57 (d, 2H), 7.14 (d, 2H), 5.74 (breit, 2H), 2.46 (d, 2H), 1.89-1.79 (m, IH), 0.87 (d, 6H).
LC/MS (Methode I, ESIpos): R, = 0.68 min, m/z = 193 [M+H]+.
Beispiel 6OA
N'-Hydroxy-4-isopropylbenzolcarboximidamid
Figure imgf000122_0002
Analog zu dem unter Beispiel IA / Schritt 5 beschriebenen Verfahren wurden aus 5.0 g (34.4 mmol) 4-Isopropylbenzonitril 4.65 g (71% d. Th., 94% Reinheit) der Titelverbindung erhalten.
1H-NMR (400 MHz, DMSO-d6, δ/ppm): 9.53 (s, IH), 7.58 (d, 2H), 7.23 (d, 2H), 5.74 (s, breit, 2H), 2.89 (sept, IH), 1.20 (d, 6H).
LC/MS (Methode F, ESIpos): R, = 0.64 min, m/z = 179 [M+H]+.
Beispiel 61A
N'-Hydroxy-4-[ 1 -(methoxymethyOcyclobutylJbenzolcarboximidamid
Figure imgf000123_0001
Schritt 1: Ethyl- 1 -(4-brompheny l)cyclobutancarboxylat
Figure imgf000123_0002
Eine Lösung von 10.0 g (41.1 mmol) 4-Bromphenylessigsäureethylester in 250 ml wasserfreiem THF wurde bei 00C mit 45 ml (45.2 mmol) einer 1 M Lösung von Lithiumhexamethyldisilazid in THF versetzt. Nach 15 min wurden 5.4 ml (53.5 mmol) 1,3-Dibrompropan hinzugefügt. Man ließ das Reaktionsgemisch auf RT erwärmen und 1 h bei dieser Temperatur nachrühren. Dann wurde erneut auf 00C gekühlt und mit weiteren 45 ml (45.2 mmol) Lithiumhexamethyldisilazid-Lösung (1 M in THF) versetzt. Danach wurde wieder auf RT erwärmt. Nach 1 h wurde die Reaktion durch Zugabe von ca. 10 ml gesättigter wässriger Ammoniumchlorid-Lösung beendet. Das THF wurde am Rotationsverdampfer weitgehend entfernt. Es wurde mit Wasser verdünnt und mit Ethylacetat extrahiert. Der organische Extrakt wurde nacheinander mit Wasser und gesättigter Kochsalz- Lösung gewaschen. Nach Trocknen über wasserfreiem Magnesiumsulfat wurde filtriert und das Filtrat am Rotationsverdampfer vom Lösungsmittel befreit. Das so erhaltene Rohprodukt wurde mittels Saugfiltration über ca. 300 g Kieselgel mit Cyclohexan/Ethylacetat 3: 1 als Laufmittel grob gereinigt. Es wurden 7.1 g (44% d. Th., 73% Reinheit) der Titelverbindung erhalten, welche in dieser Form weiter umgesetzt wurde.
1H-NMR (400 MHz, CDCl3, δ/ppm): 7.44 (d, 2H), 7.17 (d, 2H), 4.10 (quart, 2H), 2.85-2.79 (m, 2H), 2.49-2.41 (m, 2H), 2.10-1.98 (m, IH), 1.91-1.81 (m, IH), 1.18 (t, 3H).
MS (DCI, NH3): m/z = 300/302 [M+NH,]*.
LC/MS (Methode D, ESIpos): R. = 2.70 min, m/z = 283/285 [M+H]+.
Schritt 2: [ 1 -(4-Bromphenyl)cyclobutyl]methanol
Figure imgf000124_0001
7.20 g (25.4 mmol) der Verbindung aus Beispiel 61A / Schritt 1 wurden in 150 ml wasserfreiem THF gelöst und bei 00C tropfenweise mit 25 ml (25 mmol) einer 1 M Lösung von Lithiumaluminiumhydrid in THF versetzt. Nach beendeter Zugabe wurde das Eis/Wasser-Bad entfernt und das Rühren bei RT fortgesetzt. Nach 1 h wurde die Reaktion durch - anfangs vorsichtiges - Hinzufügen von ca. 450 ml gesättigter wässriger Ammoniumchlorid-Lösung beendet. Es wurde dann mit Ethylacetat extrahiert. Nach Trocknen des organischen Extrakts über wasserfreiem Magnesium- sulfat und anschließender Filtration wurde das Lösungsmittel am Rotationsverdampfer entfernt. Es wurden 6.04 g (88% d. Th., 90% Reinheit) der Titelverbindung erhalten.
1H-NMR (400 MHz, CDCl3, δ/ppm): 7.43 (d, 2H), 7.02 (d, 2H), 3.72 (d, 2H), 2.33-2.20 (m, 4H), 2.13-2.01 (m, IH), 1.93-1.83 (m, IH).
MS (DCI, NH3): m/z = 258/260 [M+NH,]+.
GC/MS (Methode K, ESIpos): R. = 5.77 min, m/z = 240/242 [M]+.
Schritt 3: l-Brom-4-[l-(methoxymethyl)cyclobutyl]benzol
Figure imgf000124_0002
Eine Lösung von 7.0 g (29.0 mmol) der Verbindung aus Beispiel 61 A / Schritt 2 in 120 ml wasserfreiem DMF wurde bei ca. 5°C mit 1.28 g (31.9 mmol) einer 60%-igen Suspension von Natriumhydrid in Mineralöl versetzt. Nachdem 1 h bei dieser Temperatur gerührt worden war, wurden 2.2 ml (34.8 mmol) Methyliodid zugefügt. Man ließ das Reaktionsgemisch auf RT erwärmen und setzte das Rühren 15 h lang fort. Anschließend wurde das Reaktionsgemisch am Rotationsverdampfer auf ein Volumen von ca. 20 ml eingeengt. Es wurden ca. 500 ml Wasser zugefügt und das Gemisch dreimal mit je ca. 200 ml Diethylether extrahiert. Die vereinigten organischen Extrakte wurden mit gesättigter Kochsalz-Lösung gewaschen und über wasserfreiem Magnesiumsulfat getrocknet. Nach Filtration und Entfernen des Lösungsmittels am Rotationsverdampfer wurde das er- haltene Rohprodukt mittels Saugfiltration über ca. 200 g Kieselgel mit Cyclohexan/Ethylacetat 50:1 als Laufmittel gereinigt. Es wurden 4.92 g (66% d. Th.) der Titelverbindung erhalten.
1H-NMR (400 MHz, CDCl3, δ/ppm): 7.41 (d, 2H), 7.04 (d, 2H), 3.48 (s, 2H), 3.27 (s, 3H), 2.32- 2.22 (m, 4H), 2.12-2.00 (m, IH), 1.90-1.80 (m, IH).
MS (DCI, NH3): m/z = 272/274 [M+NEL,]*.
GC/MS (Methode K, ESIpos): R, = 5.25 min, m/z = 254/256 [M]+.
Schritt 4: 4-[ 1 -(Methoxymethyl)cyclobutyl]benzonitril
Figure imgf000125_0001
Analog zu dem unter Beispiel 59A / Schritt 1 beschriebenen Verfahren wurden aus 4.80 g (18.8 mmol) der Verbindung aus Beispiel 61A / Schritt 3 1.82 g (48% d. Th.) der Titelverbindung erhal- ten.
1H-NMR (400 MHz, CDCl3, δ/ppm): 7.58 (d, 2H), 7.24 (d, 2H), 3.52 (s, 2H), 3.26 (s, 3H), 2.34- 2.24 (m, 4H), 2.16-2.03 (m, IH), 1.92-1.83 (m, IH).
LC/MS (Methode F, ESIpos): R. = 1.22 min, m/z = 202 [M+H]+. Schritt 5: N'-Hydroxy-4-[l-(methoxymethyl)cyclobutyl]benzolcarboximidamid
Figure imgf000126_0001
Analog zu dem unter Beispiel IA / Schritt 5 beschriebenen Verfahren wurden aus 1.82 g (9.04 mmol) der Verbindung aus Beispiel 61 A / Schritt 4 2.04 g (96% d. Th.) der Titelverbindung erhal- ten.
1H-NMR (400 MHz, CDCl3, δ/ppm): 7.55 (d, 2H), 7.20 (d, 2H), 7.10 (breit, IH), 4.83 (breit, 2H), 3.51 (s, 2H), 3.27 (s, 3H), 2.36-2.25 (m, 4H), 2.12-2.01 (m, IH), 1.90-1.81 (m, IH).
LC/MS (Methode I, ESIpos): R. = 0.61 min, m/z = 235 [M+H]+.
Beispiel 62A
N'-Hydroxy-4-(methoxymethyl)benzolcarboximidamid
Figure imgf000126_0002
Analog zu dem unter Beispiel IA / Schritt 5 beschriebenen Verfahren wurden aus 2.80 g (19.0 mmol) 4-(Methoxymethyl)benzonitril [H. Nakata et al, Org. Mass Spec. 1990, 25 (12), 649-654] 3.11 g (91% d. Th.) der Titelverbindung erhalten.
LC/MS (Methode D, ESIpos): R, = 0.77 min, m/z = 181 [M+H]+.
Beispiel 63A
3-Fluor-N'-hydroxy-4-methoxybenzolcarboximidamid
Figure imgf000127_0001
Analog zu dem unter Beispiel IA / Schritt 5 beschriebenen Verfahren wurden aus 4.0 g (26.5 mmol) 3-Fluor-4-methoxybenzonitril 3.8 g (78% d. Th.) der Titelverbindung erhalten.
1H-NMR (400 MHz, DMSO-(I6, δ/ppm): 9.60 (s, breit, IH), 7.48 (d, 2H), 7.17 (t, IH), 5.84 (s, breit, 2H), 3.86 (s, 3H).
LC/MS (Methode D, ESIpos): R, = 0.69 min, m/z = 185 [M+H]+.
Beispiel 64A
N -Hydroxy-3 -methy l-4-(tetrahydro-2H-pyran-4-y l)benzolcarboxim idam id
Figure imgf000127_0002
Schritt 1: 3-Methyl-4-(tetrahydro-2H-pyran-4-yl)benzonitril
Figure imgf000127_0003
Analog zu dem unter Beispiel 58A / Schritt 1 beschriebenen Verfahren wurden aus 4.17 g (25.9 mmol) 4-Cyano-2-methylphenylboronsäure [D. Stones et al, Chem. Eur. J. 2004, 10 (J), 92-100] und 2.75 g (13.0 mmol) 4-Iodtetrahydropyran [Ηeuberger et al, J. Chem. Soc. 1952, 910] 481 mg (18% d. Th.) der Titelverbindung erhalten.
1H-NMR (400 MHz, CDCl3, δ/ppm): 7.49 (dd, IH), 7.43 (d, IH), 7.31 (d, IH), 4.12-4.09 (m, 2H), 3.59-3.52 (m, 2H), 3.05-2.97 (m, IH), 2.39 (s, 3H), 1.86-1.75 (m, 2H), 1.69-1.64 (m, 2H). GC/MS (Methode K, EIpos): R, = 6.31 min, m/z = 201 [M]+.
Schritt 2: N'-Hydroxy-3-methyl-4-(tetrahydro-2H-pyran-4-yl)benzolcarboximidamid
Figure imgf000128_0001
Analog zu dem unter Beispiel IA / Schritt 5 beschriebenen Verfahren wurden aus 500 mg (2.48 mmol) der Verbindung aus Beispiel 64A / Schritt 1 492 mg (84% d. Th.) der Titelverbindung erhalten.
1H-NMR (400 MHz, DMSOd6, δ/ppm): 9.49 (s, IH), 7.45 (d, IH), 7.44 (s, IH), 7.21 (d, IH), 5.69 (s, breit, 2H), 3.97-3.93 (m, 2H), 3.50-3.43 (m, 2H), 3.00-2.92 (m, IH), 2.33 (s, 3H), 1.72-1.57 (m, 4H).
LC/MS (Methode I, ESIpos): R1 = 0.49 min, m/z = 235 [M+H]+.
Beispiel 65A
4-[(Diisopropylamino)methyl]-N'-hydroxybenzolcarboximidamid
Figure imgf000128_0002
Schritt 1: 4-[(Diisopropylamino)methyl]benzonitril
Man erhitzte ein Gemisch aus 4.00 g (20.4 mmol) 4-(Brommethyl)benzonitril und 6.19 g (61.2 mmol) Diisopropylamin in 40 ml Toluol in zwei Portionen in einem Mikrowellengerät (CEM Dis- cover, initiale Einstrahlleistung 250 W) für jeweils 3 h auf 1500C. Nach dem Abkühlen auf RT filtrierte man vom gebildeten Feststoff ab, engte das Filtrat ein und erhielt so 4.52 g (92% d. Th., 90% Reinheit) der Titelverbindung.
LC/MS (Methode F, ESIpos): R, = 0.30 min, m/z = 217 [M+H]+.
Schritt 2: 4-[(Diisopropylamino)methyl]-N'-hydroxybenzolcarboximidamid
Figure imgf000129_0001
Analog zu dem unter Beispiel IA / Schritt 5 beschriebenen Verfahren wurden aus 6.80 g (28.3 mmol, Reinheit 90%) der Verbindung aus Beispiel 65A / Schritt 1 4.93 g (70% d. Th.) der Titelverbindung erhalten.
1H-NMR (400 MHz, CDCl3, δ/ppm): 7.52 (d, 2H), 7.41 (d, 2H), 4.84 (s, breit, 2H), 3.64 (s, 2H), 3.05-2.95 (m, 2H), 1.01 (d, 12H).
LC/MS (Methode I, ESIpos): R. = 0.18 min, m/z = 250 [M+H]+.
Beispiel 66A
3-Chlor-N'-hydroxy-4-(trifluorrnethoxy)benzolcarboximidamid
Figure imgf000129_0002
Analog zu dem unter Beispiel IA / Schritt 5 beschriebenen Verfahren wurden aus 1.00 g (4.51 mmol) 3-Chlor-4-(trifluormethoxy)benzonitril 842 mg (73% d. Th.) der Titelverbindung erhalten.
1H-NMR (400 MHz, CDCl3, δ/ppm): 7.77 (d, IH), 7.58-7.55 (dd, IH), 7.37-7.33 (m, IH), 4.82 (s, breit, IH). LC/MS (Methode D, ESIpos): R, = 1.64 min, m/z = 255/257 [M+H]+.
Beispiel 67A
N'-Hydroxy-4-[l-(trifluormethyl)cyclopropyl]benzolcarboximidamid
Figure imgf000130_0001
Schritt 1: l-Brom-4-[l-(trifluormethyl)cyclopropyl]benzol
Figure imgf000130_0002
Zunächst wurde aktiviertes Zinkbromid auf Montmorillonit wie folgt dargestellt: Man legte 1.40 g (6.22 mmol) Zinkbromid in 56 ml Methanol vor, versetzte mit 5.64 g Montmorillonit KlO und rührte das Gemisch 1 h bei RT. Nach Entfernen des Methanols wurde das verbleibende Pulver 1 h bei 2000C Bad-Temperatur im Sandbad erhitzt und dann unter Argon erkalten gelassen.
Die Titelverbindung wurde anschließend wie folgt dargestellt: 10.0 g (53.7 mmol) l-Phenyl-l-(tri- fluormethyl)cyclopropan wurden in 50 ml Pentan vorgelegt. Man fügte 6.1 g (5.37 mmol) des oben erhaltenen aktivierten Zinkbromids auf Montmorillonit hinzu und tropfte anschließend langsam unter Rühren in der Dunkelheit 27.7 ml (537 mmol) Brom hinzu. Das Gemisch wurde dann über Nacht bei RT in der Dunkelheit weiter gerührt. Man tropfte danach langsam 150 ml einer gesättigten wässrigen Natriumsulfit-Lösung unter Eiskühlung hinzu und rührte weitere ca. 30 min bei RT bis zur Entfärbung des Gemisches. Der Feststoff wurde abfiltriert und zweimal mit Pentan nachgewaschen. Nach Trennung der Filtrat-Phasen wurde die wässrige Phase zweimal mit je 200 ml Pentan extrahiert. Die vereinigten organischen Phasen wurden über Natriumsulfat getrocknet, fϊl- triert und schonend eingeengt (signifikante Flüchtigkeit der Zielverbindung). Man erhielt auf diese Weise 17.1 g (> 100% d. Th.) der Titelverbindung, welche laut 1H-NMR noch Pentan enthielt.
1H-NMR (400 MHz, CDCl3, δ/ppm): 7.47 (d, 2H), 7.32 (s, 2H), 1.39-1.30 (m, 2H), 1.04-0.95 (m, 2H).
GC/MS (Methode K, ESIpos): R1 = 3.45 min, m/z = 264/266 [M+H]+. Schritt 2: 4-[l-(Trifluormethyl)cyclopropyl]benzonitril
Figure imgf000131_0001
Man legte 6.00 g (22.6 mmol) der Verbindung aus Beispiel 67A / Schritt 1 in 30 ml DMF unter Argon vor, gab 1.86 g (15.8 mmol) Zinkcyanid sowie 1.57 g (1.36 mmol) Tetrakis(triphenylphos- phin)palladium(O) hinzu und rührte das Gemisch über Nacht bei 800C. Nach Abkühlen auf RT gab man weitere 4.0 g (34.1 mmol) Zinkcyanid sowie 3.0 g (2.56 mmol) Tetrakis(triphenylphosphin)- palladium(O) hinzu und erhitzte erneut unter Rühren für 5 h auf 120°C. Nach Abkühlen auf RT wurde der vorhandene Feststoff abfϊltriert und einmal mit DMF gewaschen. Das mit der Waschlösung vereinigte Filtrat wurde eingeengt. Der Rückstand wurde in 200 ml Ethylacetat aufgenom- men und die erhaltene Lösung zweimal mit 2 M wässriger Ammoniak-Lösung und einmal mit gesättigter wässriger Natriumchlorid-Lösung gewaschen. Nach Trocknen über Natriumsulfat, Filtrieren und Einengen wurde der erhaltene Rückstand durch Flash-Chromatographie (Kieselgel, Laufmittel: Cyclohexan/Ethylacetat 40: 1) gereinigt. Nach kurzem Trocknen im Vakuum wurden 3.46 g (72% d. Th.) der Titelverbindung erhalten.
1H-NMR (400 MHz, CDCl3, δ/ppm): 7.66 (d, 2H), 7.58 (d, 2H), 1.47-1.41 (m, 2H), 1.09-1.03 (m, 2H).
GC/MS (Methode K, ESIpos): R, = 3.81 min, m/z = 212 [M+H]+.
Schritt 3: N'-Hydroxy-4-[l-(trifluormethyl)cyclopropyl]benzolcarboximidamid
Figure imgf000131_0002
Analog zu dem unter Beispiel IA / Schritt 5 beschriebenen Verfahren wurden aus 3.40 g (16.1 mmol) der Verbindung aus Beispiel 67A / Schritt 2 3.82 g (98% d. Th.) der Titelverbindung erhalten.
1H-NMR (400 MHz, CDCl3, δ/ppm): 7.62 (d, 2H), 7.50 (d, 2H), 4.88 (s, breit, 2H), 1.42-1.36 (m, 2H), 1.06-1.00 (m, 2H). LC/MS (Methode F, ESIpos): R, = 0.81 min, m/z = 245 [M+H]+.
Beispiel 68A
N'-Hydroxy-4-[N-methyl-S-(trifluormethyl)sulfonimidoyl]benzolcarboximidamid(i?αce7wα/)
Figure imgf000132_0001
Schritt 1: 4-[5-(Trifluormethyl)sulfonimidoyl]benzonitril {Racemai)
Figure imgf000132_0002
150 mg (0.66 mmol) l-Fluor-4-[S-(trifluormethyl)sulfonimidoyl]benzol [Ν.V. Kondratenko, Zhur- nal Organicheskoi Khimii 1986, 22 (8), 1716-1721; ibid. 1984, 20 (10), 2250-2252] wurden in 20 ml DMSO gelöst und mit 115 mg (0.83 mmol) Kaliumcarbonat, 140 mg (0.84 mmol) Kalium- iodid sowie 130 mg (2.0 mmol) Kaliumcyanid versetzt. Man erhitzte das Gemisch über Nacht unter Rühren auf 1100C. Nach dem Abkühlen auf RT wurde das Gemisch mit ca. 10 ml Wasser versetzt und mit Ethylacetat extrahiert. Nach Einengen der organischen Phase wurde der Rückstand mittels Flash-Chromatographie an Kieselgel gereinigt. Man erhielt 50 mg (33% d. Th.) der Titelverbindung.
Schritt 2: 4-[N-Methyl-5-(trifluormethyl)sulfonimidoyl]benzonitril (Racemaf)
Figure imgf000132_0003
400 mg (1.60 mmol) der Verbindung aus Beispiel 68A / Schritt 1 wurden in 8 ml THF unter Argon gelöst und mit 224 mg (2.0 mmol) Kalium-ter/.-butylat versetzt. Man rührte das Gemisch zunächst
1 h bei RT, gab dann 283 mg (2.0 mmol) Iodmethan hinzu und rührte das Gemisch weiter über Nacht bei RT. Anschließend wurde der Ansatz mit Wasser versetzt und mit Ethylacetat extrahiert. Der organische Extrakt wurde mit gesättigter wässriger Natriumchlorid-Lösung gewaschen, über Magnesiumsulfat getrocknet und eingeengt. Der Rückstand wurde mittels Flash-Chromatographie an Kieselgel gereinigt. Man erhielt 298 mg (70% d. Th.) der Titelverbindung.
1H-NMR (400 MHz, CDCl3, δ/ppm): 8.22 (d, 2H), 7.90 (d, 2H), 3.10 (s, 3H).
LC/MS (Methode D, ESIpos): R, = 2.17 min, m/z = 249 [M+H]+.
Schritt 3: N'-Hydroxy-4-[N-methyl-S-(trifluormethyl)sulfonimidoyl]benzolcarboximidamid
(Racemat)
Figure imgf000133_0001
1.00 g (4.03 mmol) der Verbindung aus Beispiel 68A / Schritt 2 wurden in 20 ml Ethanol vorge- legt. Man gab 616 mg (8.86 mmol) Hydroxylamin-Hydrochlorid sowie 1.2 ml (8.86 mmol) Tri- ethylamin hinzu und erhitzte das Gemisch 1 h unter Rückfluss. Anschließend engte man ein und nahm den Rückstand in einem Gemisch aus Ethylacetat und Wasser auf. Die Phasen wurden getrennt, und die wässrige Phase wurde einmal mit Ethylacetat extrahiert. Man wusch die vereinigten Ethylacetat-Phasen einmal mit gesättigter wässriger Natriumchlorid-Lösung, trocknete über Mag- nesiumsulfat, filtrierte und engte ein. Der Rückstand wurde mittels Säulenchromatographie (Kieselgel, Laufmittel: Cyclohexan/Ethylacetat 7:3) gereinigt. Die vereinigten Produktfraktionen wurden eingeengt und der Rückstand mit Pentan verrührt. Der resultierende Feststoff wurde abfiltriert und im Vakuum getrocknet. Man erhielt 775 mg (66% d. Th.) der Titelverbindung.
1H-NMR (400 MHz, CDCl3, δ/ppm): 8.12 (d, 2H), 8.04 (s, breit, IH), 7.87 (d, 2H), 4.93 (s, 2H), 3.10 (s, 3H).
LC/MS (Methode I, ESIpos): R. = 0.76 min, m/z = 282 [M+H]+.
Beispiel 69A
N'-Hydroxy-4-[.S'-(trifluormethyl)sulfonimidoyl]benzolcarboximidamid(7?ύfceffjα/)
Figure imgf000134_0001
Analog zu dem unter Beispiel 68A / Schritt 3 beschriebenen Verfahren wurden aus 2.60 g (11.1 mmol) der Verbindung aus Beispiel 68A / Schritt 1 2.21 g (67% d. Th., Reinheit 90%) der Titelverbindung erhalten.
1H-NMR (400 MHz, CDCl3, δ/ppm): 8.19 (d, 2H), 7.90 (d, 2H), 4.92 (s, breit, 2H), 3.69 (s, breit, IH).
LC/MS (Methode I, ESIpos): R. = 0.51 min, m/z = 268 [M+H]+.
Beispiel 7OA
3-Fluor-N'-hydroxy-4-(trifluorrnethoxy)benzolcarboximidamid
Figure imgf000134_0002
Analog zu dem unter Beispiel IA / Schritt 5 beschriebenen Verfahren wurden aus 5.0 g (23.9 mmol) 3-Fluor-4-(trifluormethoxy)benzonitril 5.7 g (99% d. Th.) der Titelverbindung erhalten.
1H-NMR (400 MHz, CDCl3, δ/ppm): 7.53-7.49 (dd, IH), 7.45-7.41 (m, IH), 7.37-7.31 (t, IH), 4.87 (s, breit, 2H).
LC/MS (Methode I, ESIpos): R, = 0.74 min, m/z = 239 [M+H]+.
Beispiel 71A
Ethyl-4-[4-(N'-hydroxycarbamimidoyl)phenyl]tetrahydro-2H-pyran-4-carboxylat
Figure imgf000135_0001
Schritt 1: Ethyl-4-(4-bromphenyl)tetrahydro-2H-pyran-4-carboxylat
Figure imgf000135_0002
6.0 g (24.7 mmol) Ethyl-4-bromphenylacetat wurden in 120 ml abs. DMF unter Argon gelöst, unter Eisbadkühlung mit 1.48 g (37.0 mmol, 60%-ig) Natriumhydrid versetzt und 30 min gerührt. Anschließend gab man unter stetiger Eisbadkühlung 5.72 g (24.7 mmol) Bis(2-bromethyl)ether hinzu und rührte das Gemisch 1 h bei ca. O0C. Nach erneuter Zugabe von 1.48 g 60%-igem Natriumhydrid wurde nochmals 1 h unter Eisbadkühlung gerührt. Anschließend wurde mit gesättigter wässriger Ammoniumchlorid-Lösung versetzt und mit Ethylacetat extrahiert. Die organische Phase wurde mit Wasser und mit gesättigter wässriger Natriumchlorid-Lösung gewaschen, über Magnesiumsulfat getrocknet, filtriert und am Rotationsverdampfer eingeengt. Der Rückstand wurde säulenchromatographisch an Kieselgel gereinigt (Laufmittel: Cyclohexan/Ethylacetat 10: 1). Es wurden 2.62 g (33% d. Th.) der Titelverbindung erhalten.
1H-NMR (400 MHz, CDCl3, δ/ppm): 7.47 (d, 2H), 7.25 (d, 2H), 4.14 (q, 2H), 3.93 (dt, 2H), 3.56 (td, 2H), 2.59 (dd, 2H), 1.93 (m, 2H), 1.19 (t, 3H).
MS (DCI, NH3): m/z = 329/331 [MH-NH4J+.
LC/MS (Methode F, ESIpos): R. = 1.33 min, keine Ionisierung. Schritt 2: Ethyl-4-(4-cyanophenyl)tetrahydro-2H-pyran-4-carboxylat
Figure imgf000136_0001
Man legte 0.50 g (1.60 mmol) der Verbindung aus Beispiel 71A / Schritt 1 in 2.5 ml entgastem DMF unter Argon vor, gab 112 mg (0.96 mmol) Zinkcyanid sowie 110 mg (0.09 mmol) Tetrakis- (triphenylphosphin)palladium(O) hinzu und rührte 1 h in der Mikrowelle bei 1000C. Nach Abkühlen auf RT wurde vom Feststoff abfϊltriert und das Filtrat direkt mittels präparativer FIPLC gereinigt (Methode P). Es wurden 250 mg (60% d. Th.) der Titelverbindung erhalten.
1H-NMR (400 MHz, DMSOd6, δ/ppm): 7.84 (d, 2H), 7.58 (d, 2H), 4.10 (q, 2H), 3.81 (m, 2H), 3.44 (t, 2H), 2.39 (d, 2H), 1.90 (m, 2H), 1.11 (t, 3H).
GC/MS (Methode K, EIpos): R, = 7.00 min, m/z = 215 [M-OCH2CH3J+.
Schritt 3: Ethyl-4-[4-(N'-hydroxycarbamimidoyl)phenyl]tetrahydro-2H-pyran-4-carboxylat
Figure imgf000136_0002
Ein Gemisch aus 240 mg (0.93 mmol) der Verbindung aus Beispiel 71 A / Schritt 2, 141 mg (2.04 mmol) Ηydroxylamin-Ηydrochlorid und 0.28 ml (2.04 mmol) Triethylamin in 4.5 ml Ethanol wur- de 2 h lang bei 600C gerührt. Nach dem Abkühlen auf RT wurde das Lösungsmittel am Rotationsverdampfer nahezu vollständig entfernt. Der Rückstand wurde anschließend in 20 ml Wasser unter Ultraschallbestrahlung aufgeschlämmt Der weiße Festkörper wurde abfiltriert, mit etwas Wasser gewaschen und im Hochvakuum getrocknet. Man erhielt so 245 mg (91% d. Th.) der Titelverbindung.
LC/MS (Methode I, ESIpos): R, = 0.56 min, m/z = 293 [M+H]+. Beispiel 72A
4-[4-(N'-Hydroxycarbamimidoyl)phenyl]-N,N-dimethyl-tetrahydro-2H-pyran-4-carboxamid
Figure imgf000137_0001
Schritt 1: 4-(4-Bromphenyl)tetrahydro-2H-pyran-4-carbonsäure
Figure imgf000137_0002
1.3 g (4.15 mmol) der Verbindung aus Beispiel 71A / Schritt 1 wurden in 45 ml Dioxan gelöst, mit 9.1 ml 1 Ν Natronlauge versetzt und unter Rückfluss gerührt. Nach 18 h gab man nochmals 8.3 ml 1 N Natronlauge hinzu und rührte weitere 24 h unter Rückfluss. Nach dem Abkühlen wurde mit ca. 19 ml 1 N Salzsäure versetzt und 15 min bei RT gerührt. Der entstandene Niederschlag wurde ab- fϊltriert, mit Wasser gewaschen und im Vakuum getrocknet. Man erhielt 1.22 g (99% d. Th.) der Titelverbindung.
1H-NMR (400 MHz, DMSO-d6, δ/ppm): 7.55 (d, 2H), 7.34 (d, 2H), 3.79 (m, 2H), 3.45 (t, 2H), 2.34 (d, 2H), 1.79 (m, 2H).
Schritt 2: 4-(4-Bromphenyl)tetrahydro-2H-pyran-4-carbonsäurechlorid
Figure imgf000137_0003
1.34 g (4.70 mmol) der Verbindung aus Beispiel 72A / Schritt 1 wurden in 6.5 ml Thionylchlorid 2 h lang unter Rückfluss gerührt. Der Ansatz wurde anschließend am Rotationsverdampfer einge- engt, der Rückstand in Toluol aufgenommen und das Gemisch erneut eingeengt. Der resultierende Rückstand wurde dann in einer Mischung aus Dichlormethan und Pentan (1 :2) verrührt, der verbliebene Feststoff abfiltriert und das Filtrat vom Lösungsmittel befreit. Der erhaltene Filtrat-Rück- stand wurde im Vakuum getrocknet. Es wurden 1.49 g (>100% d. Th.) der Zielverbindung isoliert, welche ohne weitere Reinigung in Folgestufen eingesetzt wurde.
Schritt 3: 4-(4-Bromphenyl)-NN-dimethyl-tetrahydro-2H-pyran-4-carboxamid
Figure imgf000138_0001
Zu einer Lösung von 1.0 g (3.29 mmol) der Verbindung aus Beispiel 72A / Schritt 2 in 33 ml Dichlormethan tropfte man unter Eisbadkühlung 3.29 ml (6.59 mmol) Dimethylamin und rührte 1 h bei RT nach. Das Gemisch wurde anschließend am Rotationsverdampfer vom Lösungsmittel befreit. Der Rückstand wurde unter Ultraschallbehandlung in 50 ml 1 Ν Natronlauge suspendiert und dann filtriert. Der Filterkuchen wurde mit Wasser gewaschen und im Vakuum getrocknet. Man erhielt 820 mg (90% d. Th.) der Titelverbindung.
1H-NMR (400 MHz, DMSOd6, δ/ppm): 7.56 (d, 2H), 7.19 (d, 2H), 3.74 (dt, 2H), 3.58 (t, 2H), 2.52 (s, 6H, unter DMSO-Signal verborgen), 2.16 (d, 2H), 1.87 (m, 2H).
LC/MS (Methode F, ESIpos): R, = 1.07 min, m/z = 312/314 [M+H]+.
Schritt 4: 4-(4-Cyanophenyl)-NN-dimethyl-tetrahydro-2H-pyran-4-carboxamid
Figure imgf000138_0002
Man legte 0.40 g (1.28 mmol) der in Beispiel 72A / Schritt 3 erhaltenen Verbindung in 2.0 ml ent- gastem DMF unter Argon vor, gab 90 mg (0.77 mmol) Zinkcyanid sowie 89 mg (0.08 mmol) Tetrakis(triphenylphosphin)palladium(0) hinzu und rührte 1 h in der Mikrowelle bei 1100C. Nach dem Abkühlen auf RT wurde vom Feststoff abfiltriert und das Filtrat direkt mittels präparativer ΗPLC gereinigt (Methode P). Es wurden 230 mg (68% d. Th.) der Titelverbindung erhalten. 1H-NMR (400 MHz, DMSOd6, δ/ppm): 7.85 (d, 2H), 7.44 (d, 2H), 3.76 (dt, 2H), 3.59 (t, 2H), 2.52 (s, 6H, unter DMSO-Signal verborgen), 2.17 (d, 2H), 1.91 (m, 2H).
LC/MS (Methode I, ESIpos): R, = 0.75 min, m/z = 259 [M+H]+.
Schritt 5: 4-[4-(N'-Hydroxycarbamimidoyl)phenyl]-N,N-dimethyl-tetrahydro-2H-pyran-4- carboxamid
Figure imgf000139_0001
Ein Gemisch aus 333 mg (1.28 mmol) der Verbindung aus Beispiel 72A / Schritt 4, 186 mg (2.68 mmol) Ηydroxylamin-Ηydrochlorid und 0.37 ml (2.68 mmol) Triethylamin in 6.2 ml Ethanol wurde 2 h lang bei 8O0C gerührt. Nach dem Abkühlen wurde der entstandene Niederschlag abfiltriert, mit etwas Ethanol gewaschen und im Hochvakuum getrocknet. Man erhielt 180 mg (47% d. Th.) der Titelverbindung.
LC/MS (Methode F, ESIpos): R, = 0.27 min, m/z = 291 [M+H]+.
Beispiel 73A
4-[4-(N'-Hydroxycarbamimidoyl)phenyl]-N-methyl-tetrahydro-2H-pyran-4-carboxamid
Figure imgf000139_0002
Schritt 1: 4-(4-Bromphenyl)-N-methyl-tetrahydro-2H-pyran-4-carboxamid
Figure imgf000140_0001
Analog zu dem unter Beispiel 72A / Schritt 3 beschriebenen Verfahren wurden 1.0 g (3.29 mmol) der Verbindung aus Beispiel 72A / Schritt 2 und 3.29 ml (6.58 mmol) einer 2 M Lösung von Methylamin in TΗF zu 680 mg (69% d. Th.) der Titelverbindung umgesetzt.
1H-NMR (400 MHz, DMSO-d6, δ/ppm): 7.62 (q, IH), 7.52 (d, IH), 7.28 (d, 2H), 3.71 (m, 2H), 3.43 (t, 2H), 2.54 (d, 3H), 2.39 (d, 2H), 1.81 (m, 2H).
LC/MS (Methode I, ESIpos): R, = 0.82 min, m/z = 297/299 [M+H]+.
Schritt 2: 4-(4-Cyanophenyl)-N-methyl-tetrahydro-2H-pyran-4-carboxamid
Figure imgf000140_0002
Analog zu dem unter Beispiel 72 A / Schritt 4 beschriebenen Verfahren wurden 660 mg (2.21 mmol) der Verbindung aus Beispiel 73A / Schritt 1 zu 390 mg (72% d. Th.) der Titelverbindung umgesetzt.
1H-NMR (400 MHz, DMSOd6, δ/ppm): 7.80 (d, 2H), 7.66 (d, IH), 7.53 (d, 2H), 3.73 (d, 2H), 3.45 (t, 2H), 2.55 (d, 3H), 2.41 (d, 2H), 1.85 (m, 2H).
LC/MS (Methode I, ESIpos): R, = 0.63 min, m/z = 245 [M+H]+. Schritt 3: 4-[4-(N'-Hydroxycarbamimidoyl)phenyl]-N-methyl-tetrahydro-2H-pyran-4-carboxamid
Figure imgf000141_0001
Analog zu dem unter Beispiel 72A / Schritt 5 beschriebenen Verfahren wurden 380 mg (0.16 mmol) der Verbindung aus Beispiel 73A / Schritt 2 zu 360 mg (83% d. Th.) der Titelverbindung umgesetzt.
1H-NMR (400 MHz, DMSO-d6, δ/ppm): 9.57 (s, IH), 7.62 (d, 2H), 7.59 (m, IH), 7.33 (d, 2H), 5.76 (s, 2H), 3.71 (m, 2H), 3.45 (t, 2H), 2.54 (d, 3H), 2.41 (d, 2H), 1.84 (m, 2H).
LC/MS (Methode I, ESIpos): R, = 0.53 min, m/z = 253 [M+H]+.
Beispiel 74A
5-(5-Methyl- lH-pyrazol-3-yl)-3-[4-(tetrahydro-2H-pyran-4-yl)phenyl]- 1 ,2,4-oxadiazol
Figure imgf000141_0002
Analog zu dem unter Beispiel 23 A beschriebenen Verfahren wurden aus 469 mg (3.72 mmol) 5-Methyl-lH-pyrazol-3-carbonsäure und 820 mg (3.72 mmol) der Verbindung aus Beispiel 58A 450 mg der Titelverbindung nach Ausrühren des Rohprodukts in Acetonitril und weitere 97 mg der Titelverbindung nach Aufreinigung der Mutterlauge durch präparative ΗPLC (Methode M) erhalten (Ausbeute insgesamt 47% d. Th.).
1H-NMR (400 MHz, DMSO-d6, δ/ppm): 13.52 (s, IH), 8.01 (d, 2H), 7.49 (d, 2H), 6.79 (s, IH), 3.99-3.95 (m, 2H), 3.49-3.42 (m, 2H), 2.92-2.84 (m, IH), 2.34 (s, 3H), 1.77-1.65 (m, 4H).
LC/MS (Methode I, ESIpos): R, = 0.98 min, m/z = 311 [M+H]+. Beispiel 75A
S^S-Methyl-lH-pyrazol-S-yO-S-fS-methyM-Ctetrahydro^H-pyran^-yOphenylJ-l^^-oxadiazol
Figure imgf000142_0001
Analog zu dem unter Beispiel 23 A beschriebenen Verfahren wurden 180 mg (1.43 mmol) 5-Methyl-lH-pyrazol-3-carbonsäure und 335 mg (1.43 mmol) der Verbindung aus Beispiel 64A zu 189 mg (39% d. Th.) der Titelverbindung umgesetzt. Das Reaktionsgemisch wurde hier zunächst 16 h bei RT und anschließend 30 min bei 1400C gerührt. Die Reinigung des Produktes erfolgte mittels präparativer ΗPLC (Methode M).
1H-NMR (400 MHz, CDCl3, δ/ppm): 10.63 (breit, IH), 8.00 (d, IH), 7.99 (s, IH), 7.36 (d, IH), 6.80 (s, IH), 4.13-4.10 (m, 2H), 3.61-3.54 (m, 2H), 3.07-3.00 (m, IH), 2.45 (s, 3H), 2.43 (s, 3H), 1.92-1.80 (m, 2H), 1.73-1.68 (m, 2H).
LC/MS (Methode I, ESIpos): R, = 1.02 min, m/z = 325 [M+H]+.
Beispiel 76A
3-(4-Isobutylphenyl)-5-(5-methyl- lH-pyrazol-3-yl)- 1 ,2,4-oxadiazol
Figure imgf000142_0002
Eine Lösung von 2.0 g (15.9 mmol) 5-Methyl-lH-pyrazol-3-carbonsäure in 80 ml wasserfreiem DMF wurde nacheinander mit 3.19 g (16.7 mmol) EDC, 2.55 g (16.7 mmol) ΗOBt und 3.35 g (17.4 mmol) der Verbindung aus Beispiel 59A versetzt. Es wurde 1 h bei RT gerührt, bevor für 30 min auf 1400C erhitzt wurde. Nach dem Abkühlen auf RT wurde das Lösungsmittel weitest- gehend am Rotationsverdampfer entfernt. Der Rückstand wurde mit ca. 500 ml Wasser versetzt, und es wurde dreimal mit je ca. 200 ml Diethylether extrahiert. Die vereinigten organischen Extrakte wurden nacheinander mit Wasser und gesättigter Kochsalz-Lösung gewaschen. Nach Trocknen über wasserfreiem Magnesiumsulfat wurde filtriert und das Filtrat am Rotationsverdampfer eingedampft. Der erhaltene Rückstand wurde mittels MPLC gereinigt (Kieselgel, Laufmittel: Cyclohexan/Ethylacetat 2: 1). Nach abschließendem Verrühren mit ca. 50 ml Pentan wurden 1.7 g (38% d. Th.) der Titelverbindung erhalten.
1H-NMR (400 MHz, CDCl3, δ/ppm): 10.84 (breit, IH), 8.08 (d, 2H), 7.27 (d, 2H), 6.81 (s, IH), 2.54 (d, 2H), 2.44 (s, 3H), 1.97-1.87 (m, IH), 0.93 (d, 6H).
LC/MS (Methode Q, ESIpos): R, = 2.59 min, m/z = 283 [M+H]+.
Beispiel 77A
3-{4-[l -(Methoxymethyl)cyclobuty l]phenyl}-5-(5-methy 1- 1 H-pyrazol-3-yl)- 1 ,2,4-oxadiazol
Figure imgf000143_0001
Analog zu dem unter Beispiel 76A beschriebenen Verfahren wurden 1.08 g (8.52 mmol) 5-Methyl- lH-pyrazol-3-carbonsäure und 2.0 g (8.52 mmol) der Verbindung aus Beispiel 61 A zu 1.87 g (46% d. Th.) der Titelverbindung umgesetzt. Bei der MPLC-Reinigung des Rohprodukts wurde ein Laufmittel-Gradient von Cyclohexan/Ethylacetat (5:1 -> 1 : 1) verwendet.
1H-NMR (400 MHz, CDCl3, δ/ppm): 11.57 (breit, IH), 8.10 (d, 2H), 7.30 (d, 2H), 6.81 (s, IH), 3.57 (s, 2H), 3.29 (s, 3H), 2.45 (s, 3H), 2.41-2.28 (m, 4H), 2.15-2.03 (m, IH), 1.93-1.84 (m, IH).
LC/MS (Methode F, ESIpos): R, = 1.28 min, m/z = 325 [M+H]+.
Beispiel 78A
3-[4-(Methoxymethyl)phenyl]-5-(5-methyl-lH-pyrazol-3-yl)-l,2,4-oxadiazol
Figure imgf000143_0002
Analog zu dem unter Beispiel 76A beschriebenen Verfahren wurden 1.50 g (11.9 mmol) 5-Methyl- lH-pyrazol-3 -carbonsäure und 2.36 g (13.1 mmol) der Verbindung aus Beispiel 62A zu 346 mg (11% d. Th.) der Titelverbindung umgesetzt. Bei der MPLC-Reinigung des Rohprodukts wurde Cyclohexan/Ethylacetat 2: 1 als Laufmittel verwendet.
LC/MS (Methode I, ESIpos): R, = 0.95 min, m/z = 271 [M+H]+.
Beispiel 79A
3-(3-Fluor-4-methoxyphenyl)-5-(5-methyl-lH-pyrazol-3-yl)-l,2,4-oxadiazol
Figure imgf000144_0001
Analog zu dem unter Beispiel 76A beschriebenen Verfahren wurden 1.0 g (7.93 mmol) 5-Methyl- lH-pyrazol-3 -carbonsäure und 1.61 g (8.72 mmol) der Verbindung aus Beispiel 63A zu 559 mg (26% d. Th.) der Titelverbindung umgesetzt.
1H-NMR (400 MHz, CDCl3, δ/ppm): 10.81 (breit, IH), 7.96-7.89 (m, 2H), 7.06 (t, IH), 6.80 (s, IH), 3.97 (s, 3H), 2.47 (s, 3H).
LC/MS (Methode I, ESIpos): R, = 0.96 min, m/z = 275 [M+H]+.
Beispiel 8OA
3-(4-Methoxyphenyl)-5-(5-methyl-lH-pyrazol-3-yl)-l,2,4-oxadiazol
Figure imgf000144_0002
Analog zu dem unter Beispiel 76A beschriebenen Verfahren wurden 1.50 g (1 1.9 mmol) 5-Methyl- lH-pyrazo 1-3 -carbonsäure und 2.17 g (13.1 mmol) N-Ηydroxy-4-methoxybenzolcarboximidamid [A. Renodon-Corniere et al, J. Med. Chem. 2002, 45 (4), 944-954] zu 1.71 g (56% d. Th.) der Titelverbindung umgesetzt.
1H-NMR (400 MHz, CDCl3, δ/ppm): 8.1 1 (d, 2H), 7.00 (d, 2H), 6.80 (s, IH), 3.88 (s, 3H), 2.47 (s, 3H).
LC/MS (Methode I, ESIpos): R4 = 0.94 min, m/z = 257 [M+H]+. Beispiel 81A
3-(4-Isopropylphenyl>5-(5-methyl-lH-pyrazol-3-yl)-l,2,4-oxadiazol
Figure imgf000145_0001
Analog zu dem unter Beispiel 76A beschriebenen Verfahren wurden 2.0 g (15.9 mmol) 5-Methyl- lH-pyrazol-3 -carbonsäure und 3.11 g (17.4 mmol) der Verbindung aus Beispiel 6OA zu 2.20 g (52% d. Th.) der Titelverbindung umgesetzt.
1H-NMR (400 MHz, CDCl3, δ/ppm): 8.10 (d, 2H), 7.36 (d, 2H), 6.81 (s, IH), 2.97 (sept, IH), 2.43 (s, 3H), 1.29 (d, 6H).
LC/MS (Methode Q, ESIpos): R, = 2.42 min, m/z = 269 [M+H]+.
Beispiel 82A
3-(4-tert. -Butylphenyl)-5-(5-methyl- lH-pyrazol-3-yl)- 1 ,2,4-oxadiazol
Figure imgf000145_0002
Analog zu dem unter Beispiel 76A beschriebenen Verfahren wurden 2.50 g (19.8 mmol) 5-Methyl- lH-pyrazol-3 -carbonsäure und 4.19 g (21.8 mmol) 4-ter/.-Butyl-N'-hydroxy-benzolcarboximid- amid zu 2.60 g (46% d. Th.) der Titelverbindung umgesetzt.
1H-NMR (400 MHz, CDCl3, δ/ppm): 11.08 (s, breit, IH), 8.10 (d, 2H), 7.51 (d, 2H), 6.81 (s, IH), 2.46 (s, 3H), 1.37 (s, 9H).
LC/MS (Methode I, ESIpos): R1 = 1.21 min, m/z = 283 [M+H]+.
Beispiel 83A
N-Isopropyl-N-{4-[5-(5-methyl-lH-pyrazol-3-yl)-l,2,4-oxadiazol-3-yl]benzyl}propan-2-amin
Figure imgf000146_0001
Analog zu dem unter Beispiel 23 A beschriebenen Verfahren wurden 2.00 g (15.9 mmol) 5-Methyl- lH-pyrazol-3-carbonsäure und 3.95 g (15.9 mmol) der Verbindung aus Beispiel 65A zu 1.49 g (26% d. Th., Reinheit 93%) der Titelverbindung umgesetzt.
1H-NMR (400 MHz, CDCl3, δ/ppm): 11.50 (s, breit, IH), 8.08 (d, 2H), 7.51 (d, 2H), 6.81 (s, IH), 3.70 (s, 2H), 3.10-2.98 (m, 2H), 2.42 (s, 3H), 1.02 (d, 12H).
LC/MS (Methode F, ESIpos): R, = 0.73 min, m/z = 340 [M+H]+.
Beispiel 84A
3-[3-Chlor-4-(trifluormethoxy)phenyl]-5-(5-methyl- lH-pyrazol-3-yl)- 1 ,2,4-oxadiazol
Figure imgf000146_0002
Analog zu dem unter Beispiel 23A beschriebenen Verfahren wurden 631 mg (5.00 mmol) 5-Methyl-lH-pyrazol-3-carbonsäure und 1.27 g (5.00 mmol) der Verbindung aus Beispiel 66A zu 1.08 g (60% d. Th., Reinheit 95%) der Titelverbindung umgesetzt. Die Reaktionszeiten betrugen hier ca. 30 min bei RT und ca. 1 h bei 1500C. Das Produkt wurde erhalten, indem man nach beendeter Reaktion den nach Zugabe von Wasser ausgefallenen Feststoff abfiltrierte, mit Wasser wusch und im Vakuum trocknete.
LC/MS (Methode I, ESIpos): R, = 1.20 min, m/z = 345/347 [M+Η]+.
Beispiel 85A
3-[3-Fluor-4-(trifluormethoxy)phenyl]-5-(5-methyl-lH-pyrazol-3-yl)-l,2,4-oxadiazol
Figure imgf000147_0001
Analog zu dem unter Beispiel 23A beschriebenen Verfahren wurden 2.0 g (15.9 mmol) 5-Methyl- lH-pyrazol-3-carbonsäure und 3.78 g (15.9 mmol) der Verbindung aus Beispiel 7OA zu 3.15 g (56% d. Th., Reinheit 92%) der Titelverbindung umgesetzt. Das Produkt wurde in diesem Fall nicht über eine chromatographische Reinigung, sondern durch Waschen des Rohprodukts mit Wasser und Pentan und anschließendes Trocknen im Vakuum erhalten.
1H-NMR (400 MHz, CDCl3, δ/ppm): 12.0-9.5 (s, breit, IH), 8.10-7.97 (m, 2H), 7.46-7.41 (t, IH), 6.81 (s, IH), 2.47 (s, 3H).
LC/MS (Methode I, ESIpos): R1 = 1.16 min, m/z = 329 [M+H]+.
Beispiel 86A
5-(5-Methyl-lH-pyrazol-3-yl)-3-{4-[l-(trifluormethyl)cyclopropyl]phenyl}-l,2,4-oxadiazol
Figure imgf000147_0002
Analog zu dem unter Beispiel 23 A beschriebenen Verfahren wurden 1.19 g (9.42 mmol) 5-Methyl- lH-pyrazol-3-carbonsäure und 2.30 g (9.42 mmol) der Verbindung aus Beispiel 67A zu 1.05 g (62% d. Th.) der Titelverbindung umgesetzt. Die Reinigung des Rohprodukts erfolgte über präpa- rative ΗPLC (Methode N).
1H-NMR (400 MHz, CDCl3, δ/ppm): 11.0-10.5 (s, breit, IH), 8.16 (d, 2H), 7.60 (d, 2H), 6.82 (s, IH), 1.43-1.39 (m, 2H), 1.12-1.08 (m, 2H).
LC/MS (Methode I, ESIpos): Rt = 1.17 min, m/z = 335 [M+H]+.
Beispiel 87 A
2-Brom-4-(brommethyl)pyridin
Figure imgf000148_0001
Analog zu dem unter Beispiel 42A / Schritt 3 beschriebenen Verfahren wurden aus 1.50 g (7.66 mmol) 2-Brom-4-(hydroxymethyl)pyridin 1.83 g (95% d. Th.) der Titelverbindung hergestellt.
1H-NMR (400 MHz, CDCl3, δ/ppm): 8.36 (d, IH), 7.52 (s, IH), 7.27 (d, IH), 4.32 (s, 2H).
HPLC (Methode A): R, = 3.47 min.
MS (DCI, NH3): m/z = 250/252/254 [M+H]+.
Beispiel 88A
[2-(4-Hydroxytetrahydro-2H-pyran-4-yl)pyridin-4-yl]methylmethansulfonat
Figure imgf000148_0002
Schritt 1: 2-Brom-4-({[tert.-butyl(dimethyl)silyl]oxy}methyl)pyridin
Figure imgf000148_0003
4.65 g (24.7 mmol) 2-Brom-4-(hydroxymethyl)pyridin und 3.91 g (26.0 mmol) /er/.-Butyl- dimethylsilylchlorid wurden in 46 ml Dichlormethan vorgelegt, unter Eisbadkühlung mit 2.02 g (29.7 mmol) Imidazol versetzt und 2 h bei RT gerührt. Vom entstandenen Niederschlag wurde da- nach abfiltriert, und das Filtrat wurde nacheinander mit Wasser, 1 N Natronlauge, erneut Wasser und gesättigter Natriumchlorid-Lösung gewaschen. Die organische Phase wurde über Magnesiumsulfat getrocknet, filtriert und das Lösungsmittel am Rotationsverdampfer entfernt. Nach Trocknen des Rückstands im Vakuum wurden 6.92 g (93% d. Th.) der Titelverbindung erhalten.
1H-NMR (400 MHz, DMSO-d6, δ/ppm): 8.34 (d, IH), 7.53 (s, IH), 7.36 (d, IH), 4.77 (s, 2H), 0.92 (s, 9H), 0.10 (s, 6H). LC/MS (Methode I, ESIpos): R, = 1.40 min, m/z = 302/304 [M+H]+.
Schritt 2: 4-[4-({[^r/.-Butyl(dimethyl)silyl]oxy}methyl)pyridin-2-yl]tetrahydro-2H-pyran-4-ol
Figure imgf000149_0001
500 mg (1.65 mmol) der Verbindung aus Beispiel 88A / Schritt 1 wurden unter Argon in 16 ml absolutem THF gelöst und bei -78°C tropfenweise mit 1.14 ml (1.82 mmol) einer 1.6 M Lösung von π-Butyllithium in THF versetzt. Das Gemisch wurde 20 min unter Trockeneiskühlung gerührt. Anschließend wurde bei -78°C mit einer Lösung von 182 mg (1.82 mmol) Tetrahydro-4H-pyran-4- on in 2.0 ml TΗF versetzt und 30 min bei dieser Temperatur nachgerührt. Danach wurde mit gesättigter wässriger Ammoniumchlorid-Lösung versetzt und mit Ethylacetat extrahiert. Die organi- sehe Phase wurde mit Wasser und gesättigter Natriumchlorid-Lösung gewaschen, über Magnesiumsulfat getrocknet und filtriert. Nach Entfernen des Lösungsmittels am Rotationsverdampfer wurde der Rückstand mittels präparativer ΗPLC gereinigt (Methode P). Es wurden 110 mg (17% d. Th.) der Titelverbindung erhalten.
LC/MS (Methode I, ESIpos): R, = 1.00 min, m/z = 324 [M+Η]+.
Schritt 3: 4-[4-(Hydroxymethyl)pyridin-2-yl]tetrahydro-2H-pyran-4-ol
Figure imgf000149_0002
Zu einer Lösung von 105 mg (0.33 mmol) der Verbindung aus Beispiel 88A / Schritt 2 in 6.5 ml TΗF gab man 0.65 ml (0.65 mmol) einer 1 M Lösung von Tetra-n-butylammoniumfluorid in TΗF und rührte das Gemisch 30 min bei RT. Der Ansatz wurde danach am Rotationsverdampfer einge- engt, der Rückstand in Ethylacetat aufgenommen und nacheinander mit 1 N Natronlauge, Wasser und gesättigter Natriumchlorid-Lösung gewaschen. Die organische Phase wurde über Natriumsulfat getrocknet, filtriert und das Lösungsmittel am Rotationsverdampfer entfernt. Nach Trocknen des Rückstands im Vakuum wurden 45 mg (33% d. Th., Reinheit ca. 50%) der Titelverbindung erhalten, welche in dieser Form in der Folgestufe eingesetzt wurde. LC/MS (Methode F, ESIpos): R, = 0.21 min, m/z = 210 [M+H]+.
Schritt 4: [2-(4-Hydroxytetrahydro-2H-pyran-4-yl)pyridin-4-yl]methylmethansulfonat
Figure imgf000150_0001
40 mg (ca. 0.1 mmol) der Verbindung aus Beispiel 88A / Schritt 3 wurden in 1.9 ml Dichlor- methan gelöst, mit 16 μl (0.21 mmol) Methansulfonsäurechlorid sowie 29 μl (0.21 mmol) Triethyl- amin versetzt und 1 h bei RT gerührt. Danach wurde mit Ethylacetat verdünnt und die Lösung nacheinander mit Wasser und gesättigter Natriumchlorid-Lösung gewaschen. Die organische Phase wurde über Magnesiumsulfat getrocknet, filtriert und das Lösungsmittel am Rotationsverdampfer entfernt. Nach Trocknen des Rückstands im Vakuum wurden 44 mg der Titelverbindung in noch verunreinigter Form erhalten; dieses Produkt wurde ohne weitere Reinigung weiterverwendet.
MS (DCI, NH3): m/z = 288 [M+H]+.
Beispiel 89A
[2-(2-Hydroxypropan-2-yl)pyridin-4-yl]methylmethansulfonat
Figure imgf000150_0002
Schritt 1: 2-[4-({[ter/.-Butyl(dimethyl)silyl]oxy}methyl)pyridin-2-yl]propan-2-ol
Figure imgf000150_0003
Analog zu dem unter Beispiel 88A / Schritt 2 beschriebenen Verfahren wurden 1.0 g (3.3 mmol) der Verbindung aus Beispiel 88A / Schritt 1 und 0.29 ml (3.97 mmol) Aceton zu 0.95 g (88% d. Th., Reinheit 87%) der Titelverbindung umgesetzt. Das Aceton wurde hierbei in reiner Form, ohne Zusatz von THF als Lösungsmittel, eingesetzt. Das erhaltene Produkt wurde als solches, ohne weitere HPLC-Reinigung, in der Folgestufe weiterverarbeitet.
LC/MS (Methode D, ESIpos): R1 = 1.82 min, m/z = 281 [M+H]+.
Schritt 2: 2-[4-(Hydroxymethyl)pyridin-2-yl]propan-2-ol
Figure imgf000151_0001
Zu einer Lösung von 0.95 g (3.37 mmol) der Verbindung aus Beispiel 89A / Schritt 1 in 68 ml THF gab man 6.75 ml (6.75 mmol) einer 1 M Lösung von Tetra-w-butylammoniumfluorid in THF und rührte das Gemisch 1 h bei RT. Der Ansatz wurde dann mit 4.2 g Ionenaustauscher Dowex 50WX8-400 sowie 1.4 g (14.0 mmol) Calciumcarbonat versetzt und 1 h bei RT gerührt. Vom Fest- körper wurde abfiltriert und das Filtrat eingeengt. Man erhielt einen zweiphasigen Rückstand, dessen obere Phase abgetrennt und verworfen wurde. Die untere Phase wurde mit Ethylacetat verdünnt und mit Wasser extrahiert. Die wässrige Phase wurde eingeengt und der Rückstand mittels präparativer HPLC gereinigt (Methode P). Es wurden 166 mg (29% d. Th.) der Titelverbindung erhalten.
1H-NMR (400 MHz, DMSO-d6, δ/ppm): 8.39 (d, IH), 7.62 (s, IH), 7.14 (d, IH), 5.38 (t, IH), 5.17 (s, IH), 4.53 (d, 2H), 1.42 (s, 6H).
MS (DCI, NH3): m/z = 168 [M+H]+.
Schritt 3: [2-(2-Hydroxypropan-2-yl)pyridin-4-yl]methylmethansulfonat
Figure imgf000151_0002
Analog zu dem unter Beispiel 88A / Schritt 4 beschriebenen Verfahren wurden 160 mg (0.96 mmol) der Verbindung aus Beispiel 89A / Schritt 2 zu 177 mg (75% d. Th.) der Titelverbindung umgesetzt.
MS (DCI, NH3): m/z = 246 [M+H]+. Beispiel 9OA
S-CChlormethyiy-N^S^-dimethoxybenzyiyN-methylpyridin^-amin-Dihydrochlorid
Figure imgf000152_0001
Schritt 1: 6-[(3,4-Dimethoxybenzyl)(methyl)amino]nicotinsäure
Figure imgf000152_0002
Ein Gemisch aus 5.0 g (31.7 mmol) 6-Chlornicotinsäure und 15.1 ml (79.4 mmol) 3,4-Dimethoxy- N-methylbenzylamin wurde über Nacht unter Rühren auf 1500C erhitzt. Nach Abkühlen auf RT wurden 300 ml Ethylacetat und 600 ml Wasser hinzugegeben. Der entstandene Feststoff wurde im Zuge der Phasentrennung abfiltriert und im Vakuum getrocknet. Man erhielt 7.38 g (77% d. Th.) der Titelverbindung.
1H-NMR (400 MHz, CDCl3, δ/ppm): 8.91 (d, IH), 8.07-8.02 (dd, IH), 6.81 (d, IH), 6.78-6.73 (m, 2H), 6.52 (d, IH), 4.82 (d, 2H), 3.86 (s, 3H), 3.82 (s, 3H), 3.12 (s, 3H).
LC/MS (Methode I, ESIpos): R4 = 0.74 min, m/z = 303 [M+H]+.
Schritt 2: {6-[(3,4-Dimethoxybenzyl)(methyl)amino]pyridin-3-yl}methanol
Figure imgf000152_0003
Man legte 7.38 g (24.4 mmol) der Verbindung aus Beispiel 9OA / Schritt 1 in 225 ml THF bei 00C unter Argon vor, tropfte langsam 20.3 ml (48.8 mmol) einer 2.4 M Lösung von Lithiumaluminiumhydrid in THF hinzu und rührte das Gemisch anschließend 2 h bei RT. Danach gab man langsam unter Eiskühlung 2 ml Wasser und 2 ml 15%-ige Natronlauge hinzu. Man verdünnte mit 200 ml tert. -Butylmethy lether, filtrierte den vorhandenen Feststoff ab und wusch ihn dreimal mit je 100 ml tert. -Butylmethy lether. Filtrat und Waschlösungen wurden vereinigt und eingeengt, und der resultierende Rückstand wurde im Vakuum getrocknet. Es wurden 6.20 g (87% d. Th.) der Titelverbindung erhalten.
1H-NMR (400 MHz, CDCl3, δ/ppm): 8.15 (d, IH), 7.51-7.48 (dd, IH), 6.81-6.72 (m, 3H), 6.52 (d, IH), 4.72 (s, 2H), 4.54 (d, 2H), 3.85 (s, 3H), 3.82 (s, 3H), 3.05 (s, 3H), 1.65-1.60 (m, IH).
LC/MS (Methode I, ESIpos): R, = 0.48 min, m/z = 289 [M+H]+.
Schritt 3: 5-(Chlormethyl)-N-(3,4-dimethoxybenzyl)-N-methylpyridin-2-arnin— Dihydrochlorid
Figure imgf000153_0001
Zu einer Lösung von 3.54 g (12.3 mmol) der Verbindung aus Beispiel 9OA / Schritt 2 in 22 ml Di- chlormethan gab man 1.8 ml (24.5 mmol) Thionylchlorid bei RT hinzu und rührte das Gemisch 2 h bei dieser Temperatur. Anschließend wurde der Ansatz eingeengt und der Rückstand im Vakuum getrocknet. Man erhielt 4.64 g (99% d. Th.) der Titelverbindung.
1H-NMR (400 MHz, CDCl3, δ/ppm): 15.7 (s, breit, IH), 8.31 (s, IH), 7.85 (d, IH), 6.90 (d, IH), 6.84 (d, IH), 6.80-6.72 (m, 2H), 4.84 (s, 2H), 4.49 (s, 2H), 3.88 (s, 6H), 3.55 (s, 3H).
LC/MS (Methode D, ESIpos): R. = 1.05 min, m/z = 289/291 [M+H]+.
Beispiel 91A
l-[(6-Chlorpyridin-3-yl)methyl]-N'-hydroxy-5-methyl-lH-pyrazol-3-carboximidamid
Figure imgf000153_0002
Schritt 1: l-[(6-Chlθφyridin-3-yl)methyl]-5-methyl-lH-pyrazol-3-carboxamid
Figure imgf000154_0001
Man legte 500 mg (1.99 mmol) der Verbindung aus Beispiel 45 A in 15 ml Dichlormethan unter Argon vor und gab 867 μl (9.93 mmol) Oxalylchlorid langsam hinzu, gefolgt von einem Tropfen DMF. Man rührte das Gemisch 1 h bei RT und engte anschließend ein. Der Rückstand wurde in 4 ml Dioxan aufgenommen und die erhaltene Lösung langsam bei 00C zu 5.8 ml (99.3 mmol) 33%- iger wässriger Ammoniak-Lösung hinzugetropft. Man rührte das Gemisch 30 min bei RT, filtrierte dann den entstandenen Feststoff ab und wusch ihn zweimal mit je 3 ml Wasser. Nach Trocknen im Vakuum erhielt man 423 mg (85% d. Th.) der Titelverbindung.
1H-NMR (400 MHz, CDCl3, δ/ppm): 8.28 (d, IH), 7.40-7.36 (dd, IH), 7.31 (d, IH), 6.68 (s, breit, IH), 6.63 (s, IH), 5.38 (s, breit, IH), 5.26 (s, 2H), 2.26 (s, 3H).
LC/MS (Methode I, ESIpos): R, = 0.64 min, m/z = 251/253 [M+H]+.
Schritt 2: l-[(6-Chloφyridin-3-yl)methyl]-5-methyl-lH-pyrazol-3-carbonitril
Figure imgf000154_0002
Zu einer Lösung von 400 mg (1.60 mmol) der Verbindung aus Beispiel 91 A / Schritt 1 und 1.4 ml (7.98 mmol) N,N-Diisopropylethylamin in 15 ml Dichlormethan unter Argon wurden unter Eiskühlung 486 μl (2.87 mmol) Trifluormethansulfonsäureanhydrid langsam hinzugetropft. Man rührte das Gemisch zunächst 16 h bei 00C, gab dann weitere 486 μl (2.87 mmol) Trifluormethansulfon- säureanhydrid und 1.4 ml (7.98 mmol) NN-Diisopropylethylamin hinzu und rührte erneut für 72 h bei RT. Anschließend wurde das Gemisch eingeengt und der Rückstand säulenchromatographisch vorgereinigt (Kieselgel, Laufmittel: Dichlormethan → Dichlormethan/Methanol 95:5). Man nahm das erhaltene Produkt in 50 ml Dichlormethan auf, wusch die Lösung einmal mit 50 ml Wasser, trocknete über Magnesiumsulfat, filtrierte und engte wieder ein. Der Rückstand wurde nochmals säulenchromatographisch gereinigt (Kieselgel, Laufmittel: Cyclohexan/Ethylacetat 1 :1). Es wur- den so 302 mg (81% d. Th.) der Titelverbindung erhalten. 1H-NMR (400 MHz, CDCl3, δ/ppm): 8.28 (d, IH), 7.49-7.46 (dd, IH), 7.33 (d, IH), 6.47 (s, IH), 5.30 (s, 2H), 2.28 (s, 3H).
LC/MS (Methode I, ESIpos): R1 = 0.87 min, m/z = 233/235 [M+H]+.
Schritt 3: l-[(6-Chlθφyridin-3-yl)methyl]-N'-hydroxy-5-methyl-lH-pyrazol-3-carboximidamid
Figure imgf000155_0001
Analog zu dem unter Beispiel IA / Schritt 5 beschriebenen Verfahren wurden aus 300 mg (1.29 mmol) der Verbindung aus Beispiel 91A / Schritt 2 222 mg (63% d. Th., Reinheit 97%) der Titelverbindung erhalten.
1H-NMR (400 MHz, CDCl3, δ/ppm): 8.26 (d, IH), 7.38-7.36 (dd, IH), 7.27 (d, IH), 6.36 (s, IH), 5.25 (s, 2H), 5.12 (s, 2H), 2.25 (s, 3H).
LC/MS (Methode C, ESIpos): R, = 0.52 min, m/z = 266/288 [M+H]+.
Beispiel 92A
l-({6-[(3,4-Dimethoxybenzyl)(methyl)amino]pyridin-3-yl}methyl)-5-methyl-lH-pyrazol-3-carbon- säure
Figure imgf000155_0002
Ein Gemisch aus 1.0 g (3.97 mmol) der Verbindung aus Beispiel 45A und 3.8 ml (19.9 mmol) 3,4- Dimethoxy-N-methylbenzylamin wurde unter Argon über Nacht unter Rühren auf 1500C erhitzt. Nach dem Abkühlen auf RT fügte man Ethylacetat und Wasser hinzu, trennte die Phasen und extrahierte die wässrige Phase dreimal mit Ethylacetat. Diese Ethylacetat-Extrakte wurden verwor- fen. Die wässrige Phase wurde anschließend zunächst mit 1 M Salzsäure auf einen pH-Wert von 3 eingestellt, viermal mit Ethylacetat extrahiert, sodann mit Natriumhydrogencarbonat-Lösung auf einen pH-Wert von 7 eingestellt und erneut dreimal mit Ethylacetat extrahiert. Die vereinigten Ethylacetat-Phasen wurden über Magnesiumsulfat getrocknet, filtriert und eingeengt. Nach Trocknen des Rückstands im Vakuum wurden 839 mg (49% d. Th., Reinheit 92%) der Titelverbindung erhalten.
1H-NMR (400 MHz, CDCl3, δ/ppm): 8.10 (s, IH), 7.32 (d, IH), 6.81-6.70 (m, 3H), 6.61 (s, IH), 6.46 (d, IH), 5.21 (s, 2H), 4.70 (s, 2H), 3.84 (s, 3H), 3.81 (s, 3H), 3.04 (s, 3H), 2.25 (s, 3H).
LC/MS (Methode I, ESIpos): R, = 0.66 min, m/z = 397 [M+H]+.
Ausfiihrunesbeispiele:
Beispiel 1
5-[(5-Methyl-3-{3-[4-(trifluormethoxy)phenyl]-l,2,4-oxadiazol-5-yl}-lH-pyrazol-l-yl)methyl]- pyridin-2-carbonitril
Figure imgf000157_0001
Unter inerten Bedingungen wurde bei 00C eine Lösung von 2.42 g (7.81 mmol) der Verbindung aus Beispiel 23A und 2.16 g (10.2 mmol) der Verbindung aus Beispiel 41A in 80 ml wasserfreiem TΗF mit 1.05 g (9.73 mmol) festem Kalium-ter/.-butylat versetzt. Anschließend wurde das Reaktionsgemisch 3 h bei RT gerührt. Dann wurde mit ca. 350 ml Wasser versetzt und dreimal mit je ca. 250 ml Ethylacetat extrahiert. Die vereinigten organischen Extrakte wurden nacheinander mit Wasser und gesättigter Kochsalz-Lösung gewaschen. Nach Trocknen über wasserfreiem Magnesiumsulfat und Filtrieren wurde das Lösungsmittel am Rotationsverdampfer entfernt. Das Rohprodukt wurde mittels MPLC gereinigt (Kieselgel, Laufmittel: Cyclohexan/Ethylacetat 5:1 → 1:1). Es wurden 2.1 g (63% d. Th.) der Titelverbindung erhalten.
1H-NMR (400 MHz, CDCl3, δ/ppm): 8.62 (d, IH), 8.24 (d, 2H), 7.70 (d, IH), 7.63 (dd, IH), 7.34 (d, 2H), 6.87 (s, IH), 5.53 (s, 2H), 2.34 (s, 3H).
HPLC (Methode A): R. = 4.96 min.
MS (DCI, NH3): m/z = 427 [M+H]+.
LC/MS (Methode C, ESIpos): R, = 2.70 min, m/z = 427 [M+H]+.
Beispiel 2
2-Chlor-5-[(5-methyl-3-{3-[4-(trifluormethoxy)phenyl]-l,2,4-oxadiazol-5-yl}-lH-pyrazol-l-yl)- methyl]pyridin
Figure imgf000157_0002
Zu einer auf 00C gekühlten Lösung von 5.0 g (16.1 mmol) der Verbindung aus Beispiel 23A und 3.54 g (20.9 mmol) 2-Chlor-5-(chlormethyl)pyridin in 150 ml THF gab man 1.99 g (17.7 mmol) Kalium-terf.-butylat und ließ das Gemisch dann auf RT kommen. Man rührte über Nacht bei RT und danach noch 4.5 h bei 45°C. Anschließend verdünnte man das Gemisch mit Wasser und extra- hierte zweimal mit Ethylacetat. Die vereinigten Ethylacetat-Phasen wurden einmal mit gesättigter wässriger Natriumchlorid-Lösung gewaschen, über Magnesiumsulfat getrocknet, filtriert und eingeengt. Der Rückstand wurde säulenchromatographisch an Kieselgel gereinigt (Laufmittel: Cyclo- hexan/Ethylacetat 3:2). Nach Trocknen im Vakuum erhielt man 4.65 g (66% d. Th.) der Titelverbindung.
1H-NMR (400 MHz, CDCl3, δ/ppm): 8.31 (d, IH), 8.25 (d, 2H), 7.51 (dd, IH), 7.36-7.30 (m, 3H), 6.82 (s, IH), 5.43 (s, 2H), 2.32 (s, 3H).
HPLC (Methode A): R, = 4.91 min.
MS (DCI, NH3): m/z = 436 [M+H]+.
LC/MS (Methode C, ESIpos): R. = 2.83 min, m/z = 436 [M+H]+.
Beispiel 3
2-Chlor-4-[(5-methyl-3-{3-[4-(trifluormethoxy)phenyl]-l,2,4-oxadiazol-5-yl}-lH-pyrazol-l-yl)- methyljpyridin
Figure imgf000158_0001
Zu einer auf 00C gekühlten Lösung von 11.88 g (38.3 mmol) der Verbindung aus Beispiel 23A und 8.4 g (49.8 mmol) der Verbindung aus Beispiel 38A in 350 ml TΗF gab man 4.73 g (42.1 mmol) Kalium-ter/.-butylat und ließ das Gemisch dann auf RT kommen. Man rührte über Nacht bei RT und dann noch 4 h unter Rückfluss. Anschließend verdünnte man das Gemisch mit Wasser und extrahierte zweimal mit Ethylacetat. Die vereinigten Ethylacetat-Phasen wurden einmal mit gesättigter wässriger Natriumchlorid-Lösung gewaschen, über Magnesiumsulfat getrocknet, filtriert und eingeengt. Der Rückstand wurde säulenchromatographisch an Kieselgel gereinigt (Laufmittel: Cyclohexan/Ethylacetat 3:2). Die vereinigten Produktfraktionen wurden eingeengt und der Rückstand in Hexan verrührt, abfiltriert und im Vakuum getrocknet. Man erhielt 8.2 g (49% d. Th.) der Titelverbindung. 1H-NMR (400 MHz, CDCl3, δ/ppm): 8.37 (d, IH), 8.28-8.22 (m, 2H), 7.34 (d, 2H), 7.05 (s, IH), 6.97 (d, IH), 6.88 (s, IH), 5.43 (s, 2H), 2.32 (s, 3H).
LC/MS (Methode F, ESIpos): R. = 1.47 min, m/z = 436 [M+H]+.
Die Verbindungen in der folgenden Tabelle wurden analog zu den in den Beispielen 1 bis 3 beschriebenen Verfahren aus den entsprechenden Edukten hergestellt. In Abhängigkeit von der
Polarität der Verbindungen wurden diese entweder durch Ausrühren des Rohproduktes in Dichlor- methan, Ethylacetat, Acetonitril oder Diethylether isoliert, oder mittels präparativer HPLC oder mittels MPLC über Kieselgel mit Cyclohexan/Ethylacetat-Gemischen als Laufmittel erhalten. Die als Edukte verwendeten Arylmethylchloride, -bromide oder -methansulfonate waren entweder kommerziell erhältlich oder ihre Herstellung ist in der Literatur beschrieben oder sie wurden, wie weiter oben beschrieben, hergestellt.
Figure imgf000159_0001
Figure imgf000160_0001
7.32 (d,
7.07 (d,
7.10 (d,
7.59
Figure imgf000161_0001
Beispiel 17
2-Brom-5-[(5-methyl-3-{3-[4-(trifluormethoxy)phenyl]-l,2,4-oxadiazol-5-yl}-lH-pyrazol-l-yl)- methyljpyridin
Figure imgf000161_0002
Man erhitzte ein Gemisch von 1.95 g (4.47 mmol) der Verbindung aus Beispiel 2 und 1.37 g (8.95 mmol) Brom(trimethyl)silan in 0.5 ml Propionitril unter Rühren 70 min lang in einem Mikrowellengerät (CEM Discover, initiale Einstrahlleistung 250 W) auf 1200C. Dabei war in den ersten 10 min ein relativ starker Druck- und Temperaturanstieg zu beobachten. Nach Abkühlen auf RT gab man weitere 350 mg (2.29 mmol) Brom(trimethyl)silan hinzu und erhitzte das Gemisch erneut für 60 min in der Mikrowelle auf 1200C. Dabei war abermals in den ersten 10 min ein relativ starker Druck- und Temperaturanstieg festzustellen. Nach Abkühlen auf RT verdünnte man das Gemisch mit 100 ml Wasser und 100 ml Ethylacetat und trennte die Phasen. Die organische Phase wurde einmal mit 100 ml Wasser gewaschen, über Natriumsulfat getrocknet, filtriert und am Rota- tionsverdampfer eingeengt. Der Rückstand wurde säulenchromatographisch an Kieselgel gereinigt (Laufmittel: Cyclohexan/Ethylacetat 3:2). Es wurden 1.45 g (65% d. Th., 86% Reinheit nach LC- MS) der Titelverbindung erhalten.
1H-NMR (400 MHz, CDCl3, δ/ppm): 8.31 (d, IH), 8.23 (d, 2H), 7.47 (d, IH), 7.40 (dd, IH), 7.33 (d, 2H), 6.82 (s, IH), 5.41 (s, 2H), 2.32 (s, 3H).
LC/MS (Methode E, ESIpos): R, = 2.54 min, m/z = 480 [M+H]+.
Beispiel 18
3-{5-[(5-Methyl-3-{3-[4-(trifluormethoxy)phenyl]-l,2,4-oxadiazol-5-yl}-lH-pyrazol-l-yl)methyl]- pyridin-2-yl} prop-2-in- 1 -ol
Figure imgf000162_0001
Zu einer Lösung von 1.10 g (2.29 mmol) der Verbindung aus Beispiel 17 in 23 ml entgastem TΗF gab man unter Argon bei RT 11.4 ml Triethylamin, 385 mg (6.87 mmol) Prop-2-in-l-ol, 132 mg (0.115 mmol) Tetrakis(triphenylphosphin)palladium(0) sowie 44 mg (0.229 mmol) Kupfer(l)iodid hinzu und rührte die Mischung 16 h bei RT. Anschließend engte man das Gemisch am Rotationsverdampfer ein, löste den Rückstand in 8 ml Acetonitril und versetzte mit 20 ml Wasser. Der gebildete Feststoff wurde nach 30 min Rühren bei RT abfiltriert und jeweils zweimal mit Wasser und mit Ethylacetat gewaschen. Die Waschphasen wurden vereinigt, eingeengt und der Rückstand sowie der zuvor erhaltene Feststoff jeweils über präparative ΗPLC (Methode N) gereinigt. Man vereinigte jeweils die produkthaltigen Fraktionen, versetzte mit gesättigter wässriger Natrium- hydrogencarbonat-Lösung, engte bis auf ein kleines Restvolumen an Lösungsmittel ein und extra- hierte dreimal mit Ethylacetat. Die vereinigten organischen Phasen wurden jeweils über Natriumsulfat getrocknet und eingeengt. Man erhielt aus beiden Reinigungsoperationen zusammen 634 mg (59% d. Th.) der Titelverbindung.
1H-NMR (400 MHz, CDCl3, δ/ppm): 8.25 (d, 2H), 7.48-7.45 (dd, IH), 7.40 (d, IH), 7.33 (d, 2H), 6.82 (s, IH), 5.46 (s, 2H), 4.51 (d, 2H), 2.31 (s, 3H), 1.96-1.91 (t, IH).
LC/MS (Methode E, ESIpos): R, = 2.08 min, m/z = 456 [M+H]+.
Beispiel 19
3-{5-[(5-Methyl-3-{3-[4-(trifluormethoxy)phenyl]-l,2,4-oxadiazol-5-yl}-lH-pyrazol-l-yl)methyl]- pyridin-2-y 1} propan- 1 -ol
Figure imgf000163_0001
Man löste 633 mg (1.39 mmol) der Verbindung aus Beispiel 18 in einem Gemisch aus 7.5 ml Ethanol und 7.5 ml TΗF, gab 358 μl (2.57 mmol) Triethylamin sowie 32 mg (0.139 mmol) Platin(IV)oxid hinzu und hydrierte 4 h bei RT und Normaldruck. Anschließend wurde das Reaktionsgemisch filtriert und das Filtrat am Rotationsverdampfer eingeengt. Der Rückstand wurde mittels präparativer ΗPLC (Methode N) gereinigt. Die produkthaltigen Fraktionen wurden vereinigt und mit gesättigter wässriger Natriumhydrogencarbonat-Lösung versetzt. Nach Entfernen eines Teils des Lösungsmittels am Rotationsverdampfer extrahierte man den verbliebenen Teil dreimal mit je 40 ml Ethylacetat. Die vereinigten organischen Phasen trocknete man über Natriumsulfat, filtrierte und entfernte das Lösungsmittel. Man erhielt 390 mg (61% d. Th.) der Titelverbin- düng.
1H-NMR (400 MHz, CDCl3, δ/ppm): 8.41 (s, IH), 8.24 (d, 2H), 7.48 (dd, IH), 7.32 (d, 2H), 7.18 (d, IH), 6.82 (s, IH), 5.42 (s, 2H), 3.70 (t, 2H), 2.96 (t, 2H), 2.31 (s, 3H), 2.01-1.93 (m, 2H).
LC/MS (Methode D, ESIpos): R, = 2.04 min, m/z = 460 [M+H]+.
Beispiel 20
2-Ethinyl-5-[(5-methyl-3-{3-[4-(trifluormethoxy)phenyl]-l,2,4-oxadiazol-5-yl}-lH-pyrazol-l-yl)- methyl]pyridin
Figure imgf000164_0001
Man löste 22 mg (0.117 mmol) Kupfer(I)iodid in 1.6 ml Triethylamin unter Argon bei 40°C, kühlte die Lösung auf RT ab, gab dann 26 μl (0.185 mmol) Ethinyl(trimethyl)silan hinzu und rührte 10 min bei RT. Anschließend gab man 45 mg (0.065 mmol) Bis(triphenylphosphin)palla- dium(II)chlorid hinzu und rührte weitere 10 min bei RT. Schließlich gab man 622 mg (1.30 mmol) der Verbindung aus Beispiel 17, gefolgt von 14.4 ml Triethylamin und 235 μl (1.67 mmol) Ethinyl(trimethyl)silan, hinzu. Das Gemisch wurde danach 16 h lang auf 1000C erhitzt. Nach Abkühlen auf RT nahm man das Gemisch in 50 ml Dichlormethan und 70 ml Wasser auf, trennte die Phasen und extrahierte die wässrige Phase noch zweimal mit je 30 ml Ethylacetat. Man trocknete die vereinigten organischen Phasen über Natriumsulfat, filtrierte und engte am Rotationsverdampfer ein. Der Rückstand wurde in 16 ml THF gelöst, bei RT mit 16 ml einer 0.1 M Natronlauge versetzt und 4 h bei RT gerührt. Anschließend versetzte man das Reaktionsgemisch mit 100 ml Ethylacetat und 150 ml Wasser, trennte die Phasen und extrahierte die wässrige Phase noch zweimal mit je 100 ml Ethylacetat. Man vereinigte die organischen Phasen, trocknete über Natriumsulfat, filtrierte und entfernte das Lösungsmittel. Der Rückstand wurde mittels präparativer HPLC (Methode N) gereinigt. Man vereinigte die produkthaltigen Fraktionen, versetzte mit 20 ml einer gesättigten wässrigen Natriumhydrogencarbonat-Lösung, entfernte einen Teil des Lösungsmittels, versetzte mit 30 ml Wasser und extrahierte dreimal mit je 50 ml Ethylacetat. Man trocknete die vereinigten organischen Phasen über Natriumsulfat, filtrierte und entfernte das Lösungs- mittel. Man erhielt auf diese Weise 119 mg (22% d. Th.) der Titelverbindung.
1H-NMR (400 MHz, CDCl3, δ/ppm): 8.51 (s, IH), 8.25 (d, 2H), 7.50-7.44 (m, 2H), 7.34 (d, 2H), 6.83 (s, IH), 5.48 (s, 2H), 3.19 (s, IH), 2.32 (s, 3H).
LC/MS (Methode C, ESIpos): R, = 2.71 min, m/z = 426 [M+H]+.
Beispiel 21
5-[(5-Methyl-3-{3-[4-(trifluormethoxy)phenyl]-l,2,4-oxadiazol-5-yl}-lH-pyrazol-l-yl)methyl]-2- [(trimethylsilyl)ethinyl]pyridin
Figure imgf000165_0001
Man löste 3.4 mg (0.018 mmol) Kupfer(I)iodid in 0.3 ml Triethylamin unter Argon bei 400C, kühlte die Lösung auf RT ab, gab dann 4 μl (0.029 mmol) Ethinyl(trimethyl)silan hinzu und rührte 10 min bei RT. Anschließend gab man 7.0 mg (0.010 mmol) Bis(triphenylphosphin)palladium(II)- chlorid hinzu und rührte weitere 10 min bei RT. Schließlich gab man 96 mg (0.20 mmol) der Verbindung aus Beispiel 17, gefolgt von 2.7 ml Triethylamin und 36 μl (0.257 mmol) Ethinyl(tri- methyl)silan, hinzu. Das Gemisch wurde danach 16 h lang auf 1000C erhitzt. Nach Abkühlen auf RT nahm man das Gemisch in 300 ml Ethylacetat und 50 ml Wasser auf, trennte die Phasen und extrahierte die wässrige Phase noch dreimal mit je 30 ml Ethylacetat. Man trocknete die vereinig- ten organischen Phasen über Natriumsulfat, filtrierte und engte am Rotationsverdampfer ein. Der Rückstand wurde mittels präparativer HPLC (Methode N) gereinigt. Man erhielt 53 mg (51% d. Th.) der Titelverbindung.
1H-NMR (400 MHz, CDCl3, δ/ppm): 8.51 (s, IH), 8.49 (s, 2H), 8.25 (d, 2H), 7.48-7.40 (m, 2H), 7.34 (d, 2H), 6.83 (s, IH), 5.46 (s, 2H), 2.30 (s, 3H), 0.26 (s, 9H).
LC/MS (Methode F, ESIpos): R, = 1.68 min, m/z = 498 [M+H]+.
Beispiel 22
2-Iod-5-[(5-methyl-3-{3-[4-(trifluormethoxy)phenyl]-l,2,4-oxadiazol-5-yl}-lH-pyrazol-l-yl)- methyl]pyridin
Figure imgf000165_0002
In einem Mikrowellen-Reaktionsgefäß wurden zu einer Lösung von 100 mg (0.229 mmol) der Verbindung aus Beispiel 2 in 0.5 ml Propionitril 103 mg (0.688 mmol) Natriumiodid und 27 mg (0.252 mmol) Chlor(trimethyl)silan bei RT hinzugegeben, wonach das Reaktionsgemisch rasch eine feste Konsistenz annahm. Das Gemisch wurde anschließend in einem Mikrowellengerät 1 h lang auf 1200C erhitzt (CEM Discover, initiale Einstrahlleistung 250 W). Nach Abkühlen auf RT wurde das Reaktionsgemisch mit 2 ml Acetonitril und 1 ml Wasser verdünnt. Es bildeten sich zwei Phasen, welche voneinander getrennt wurden. Die organische Phase wurde ohne weitere Behandlung mittels präparativer HPLC (Methode N) aufgereinigt. Man erhielt 61 mg (50% d. Th.) der Titelverbindung.
1H-NMR (400 MHz, CDCl3, δ/ppm): 8.29 (d, IH), 8.24 (d, 2H), 7.71 (d, IH), 7.32 (d, 2H), 7.18 (dd, IH), 6.82 (s, IH), 5.39 (s, 2H), 2.31 (s, 3H).
LC/MS (Methode F, ESIpos): R, = 1.52 min, m/z = 528 [M+H]+.
Beispiel 23
4-[(5-Methyl-3-{3-[4-(trifluormethoxy)phenyl]-l,2,4-oxadiazol-5-yl}-lH-pyrazol-l-yl)methyl]- pyridin-2-carbonitril
Figure imgf000166_0001
Man legte 200 mg (0.459 mmol) der Verbindung aus Beispiel 3 in 3.4 ml Dimethylacetamid vor, gab nacheinander 31 mg (0.266 mmol) Zinkcyanid, 6.7 mg (0.020 mmol) Palladium(II)trifluor- acetat, 16 mg (0.040 mmol) racemisches 2-(Di-tert.-butylphosphino)-l,l'-binaphthyl sowie 6 mg (0.092 mmol) Zink-Pulver (97.5%, 325 mesh) bei RT hinzu und rührte die Mischung über Nacht bei 900C. Nach Abkühlen auf RT gab man weitere 6.7 mg (0.020 mmol)Palladium(II)trifluoracetat hinzu und rührte erneut für 24 h bei 900C. Nach Abkühlen auf RT gab man nochmals 6.7 mg (0.020 mmol) Palladium(II)trifluoracetat, 16 mg (0.040 mmol) racemisches 2-(Di-te/-/.-butylphos- phino)-l,l'-binaphthyl sowie 6 mg (0.092 mmol) Zink-Pulver (97.5%, 325 mesh) hinzu und rührte abermals über Nacht bei 900C. Nach Abkühlen auf RT wurden dann die festen Bestandteile abfiltriert und das verbleibende Gemisch mittels präparativer ΗPLC (Methode N) gereinigt. Die vereinigten produkthaltigen Fraktionen wurden bis auf ein kleines Restvolumen am Rotationsverdampfer eingeengt und anschließend mit Natriumhydrogencarbonat versetzt, worauf ein Feststoff ausfiel. Man filtrierte den Feststoff ab, trocknete im Vakuum und erhielt so 21 mg (11% d. Th.) der Titelverbindung.
1H-NMR (400 MHz, CDCl3, δ/ppm): 8.71 (d, IH), 8.24 (d, 2H), 7.41 (s, IH), 7.34 (d, 2H), 7.24 (s, IH), 6.90 (s, IH), 5.51 (s, 2H), 2.32 (s, 3H).
LC/MS (Methode D, ESIpos): R, = 2.52 min, m/z = 427 [M+H]+. Beispiel 24
N-Methyl-5-[(5-methyl-3-{3-[4-(trifluormethoxy)phenyl]-l,2,4-oxadiazol-5-yl}-lH-pyrazol-l-yl)- methyl]pyridin-2-amin
Figure imgf000167_0001
Ein Gemisch aus 200 mg (0.459 mmol) der Verbindung aus Beispiel 2 und 285 mg (9.179 mmol) Methylamin wurde unter Rühren in einem Mikrowellengerät (CEM Discover, initiale Einstrahlleistung 250 W) zunächst 3 h lang auf 1600C und dann 6 h lang auf 1700C erhitzt. Nach Abkühlen auf RT wurde das Gemisch direkt mittels präparativer ΗPLC (Methode N) gereinigt. Man engte die vereinigten produkthaltigen Fraktionen am Rotationsverdampfer bis auf ein Restvolumen ein, versetzte mit gesättigter wässriger Natriumhydrogencarbonat-Lösung und extrahierte zweimal mit Ethylacetat. Die vereinigten organischen Phasen wurden über Magnesiumsulftat getrocknet, filtriert und eingeengt. Nach Trocknen im Vakuum wurden 99 mg (50% d. Th.) der Titelverbindung erhalten.
1H-NMR (400 MHz, CDCl3, δ/ppm): 8.25 (d, 2H), 8.02 (d, IH), 7.37 (dd, IH), 7.32 (d, 2H), 6.77 (s, IH), 6.35 (d, IH), 5.29 (s, 2H), 4.65-4.58 (m, breit, IH), 2.90 (d, 3H), 2.31 (s, 3H).
LC/MS (Methode F, ESIpos): R, = 1.08 min, m/z = 431 [M+H]+.
Die Beispiele in der folgenden Tabelle wurden analog zu dem unter Beispiel 24 beschriebenen Verfahren unter Verwendung des jeweils korrespondierenden Amins und der entsprechenden 2-Chlorpyridin- Verbindung aus Beispiel 2 bzw. 3 hergestellt. Anders als in Beispiel 24 beschrie- ben, wurden diese Reaktionen zumeist in DMSO als Lösungsmittel durchgeführt (ca. 0.5 ml DMSO auf 0.10 mmol des 2-Chlorpyridin-Edukts). Zur Herstellung einiger Beispiele war es erforderlich, die Reaktionsdauer um bis zu weitere 10 Stunden zu verlängern und/oder die Menge an eingesetztem Edukt-Amin um weitere bis zu 10 Äquivalente, bezogen auf das eingesetzte 2-Chlor- pyridin-Derivat, zu erhöhen. Bei einigen Beispielen war es zudem erforderlich, eine zweimalige Reinigung mittels präparativer HPLC durchzuführen. Die meisten der eingesetzten Amin-Kompo- nenten waren kommerziell erhältlich; einige wurden nach literaturbeschriebenen Verfahren hergestellt.
Figure imgf000168_0001
3H), (s, 3H),
7.32 (d,
7.30 (d, (s, 3H).
6.98 3H).
6.82 (s, 2H),
Figure imgf000169_0001
Figure imgf000170_0001
Figure imgf000171_0001
Figure imgf000172_0001
Beispiel 65
2-Chlor-5-[(3-{3-[4-(2-fluorpropan-2-yl)phenyl]-l,2,4-oxadiazol-5-yl}-5-methyl-lH-pyrazol-l-yl)- methyl]pyridin
Figure imgf000173_0001
Eine Lösung von 667 mg (2.65 mmol) der Verbindung aus Beispiel 45 A in 10 ml wasserfreiem DMF wurde bei RT mit 508 mg (2.65 mmol) EDC und 358 mg (2.65 mmol) HOBt versetzt. Nach 30 min wurden 520 mg (2.65 mmol) der Verbindung aus Beispiel 2A, gelöst in 5 ml DMF, hinzugefügt. Das Gemisch wurde zunächst 1 h bei RT und anschließend 1 h bei 1400C gerührt. Nach dem Abkühlen wurde der Großteil des Lösungsmittels am Rotationsverdampfer entfernt. Es wur- den je 50 ml Wasser und Ethylacetat zugesetzt. Nach Phasentrennung wurde die organische Phase nacheinander mit je 50 ml 10%-iger wässriger Zitronensäure, gesättigter Natriumhydrogencarbo- nat-Lösung und gesättigter Kochsalz-Lösung gewaschen. Nach dem Trocknen über wasserfreiem Natriumsulfat wurde filtriert und das Lösungsmittel am Rotationsverdampfer entfernt. Das erhaltene Rohprodukt wurde mittels MPLC gereinigt (Kieselgel, Laufmittel: Cyclohexan/Ethylacetat 2:1). Es wurden 418 mg (36% d. Th., 93% Reinheit) der Titelverbindung erhalten, welche ohne weitere Reinigung eingesetzt wurde.
1H-NMR (400 MHz, DMSOd6, δ/ppm): 8.39 (d, IH), 8.08 (d, 2H), 7.68 (dd, IH), 7.62 (d, 2H), 7.52 (d, IH), 6.93 (s, IH), 5.56 (s, 2H), 2.39 (s, 3H), 1.72 (s, 3H), 1.86 (s, 3H).
LC/MS (Methode F, ESIpos): R, = 1.43 min, m/z = 412 [M+H]+.
Beispiel 66
2-Chlor-5-[(3-{3-[4-(3-fluoroxetan-3-yl)phenyl]-l,2,4-oxadiazol-5-yl}-5-methyl-lH-pyrazol-l-yl)- methyljpyridin
Figure imgf000173_0002
Unter inerten Bedingungen wurde bei O0C eine Lösung von 80 mg (0.318 mmol) der Verbindung aus Beispiel 45A in 3 ml wasserfreiem Dichlormethan mit 83 μl (0.954 mmol) Oxalylchlorid versetzt. Das Reaktionsgemisch wurde 2 h bei RT gerührt. Anschließend wurden alle flüchtigen Bestandteile am Rotationsverdampfer entfernt und der so erhaltene Rückstand 20 min im Hoch- vakuum getrocknet, bevor erneut in 2 ml Dichlormethan gelöst wurde. Diese Lösung wurde bei 0°C zu einer Lösung von 80 mg (0.381 mmol) der Verbindung aus Beispiel 5A und 89 μl (0.636 mmol) Triethylamin in 1 ml Dichlormethan getropft. Nachdem das Reaktionsgemisch 1 h bei RT gerührt worden war, wurde wiederum alles Flüchtige am Rotationsverdampfer entfernt und der Rückstand in 4 ml DMSO gelöst. Diese Lösung wurde in einem Mikrowellenofen 30 min lang auf 800C und dann weitere 30 min auf 1000C erhitzt (CEM Discover, initiale Einstrahlleistung 250 W). Nach dem Abkühlen auf RT wurde das Reaktionsgemisch direkt mittels präparativer HPLC (Methode M) aufgereinigt. Es wurden 78 mg (58% d. Th.) der Titelverbindung erhalten.
1H-NMR (400 MHz, CDCl3, δ/ppm): 8.32 (d, IH), 8.28 (d, 2H), 7.72 (d, 2H), 7.52 (dd, IH), 7.33 (d, IH), 6.84 (s, IH), 5.45 (s, 2H), 5.05 (dd, 2H), 5.00 (dd, 2H), 2.33 (s, 3H).
HPLC (Methode A): R, = 4.45 min.
MS (DCI, NH3): m/z = 426 [M+H]+.
LC/MS (Methode I, ESIpos): R, = 1.14 min, m/z = 426 [M+H]+.
Die Verbindungen in der folgenden Tabelle wurden analog zu einem der unter Beispiel 65 und Beispiel 66 beschriebenen Verfahren aus den entsprechenden Vorstufen hergestellt. Die Herstel- lung der meisten der eingesetzten N'-Hydroxycarboximidamide (Hydroxyamidine) wurde weiter oben beschrieben; einige wenige waren kommerziell erhältlich oder sind in der Literatur beschrieben.
Figure imgf000174_0001
Figure imgf000175_0001
Beispiel 72
5-({4-[3-(4-ter/. -Butylphenyl)- 1 ,2,4-oxadiazol-5-yl]-2-methyl- lH-pyrrol- 1 -yl} methyl>2-chlor- pyridin
Figure imgf000176_0001
Unter inerten Bedingungen wurde bei 00C eine Lösung von 100 mg (0.399 mmol) der Verbindung aus Beispiel 46A in 3 ml wasserfreiem Dichlormethan mit 104 μl (1.20 mmol) Oxalylchlorid versetzt. Das Reaktionsgemisch wurde 2 h bei RT gerührt. Anschließend wurden alle flüchtigen Bestandteile am Rotationsverdampfer entfernt und der so erhaltene Rückstand 20 min im Hochvakuum getrocknet, bevor erneut in 2 ml Dichlormethan gelöst wurde. Diese Lösung wurde bei 00C zu einer Lösung von 92 mg (0.479 mmol) 4-te/γ.-Butyl-N'-hydroxybenzolcarboximidamid und 11 1 μl (0.798 mmol) Triethylamin in 1 ml Dichlormethan getropft. Nachdem das Reaktionsgemisch 1 h bei RT gerührt worden war, wurde wiederum alles Flüchtige am Rotationsverdampfer entfernt und der Rückstand in 4 ml DMSO gelöst. Diese Lösung wurde in einem Mikrowellenofen 30 min lang auf 1200C erhitzt (CEM Discover, initiale Einstrahlleistung 250 W). Nach dem Abkühlen auf RT wurde das Reaktionsgemisch direkt mittels präparativer HPLC (Methode M) aufgereinigt. Es wurden 71 mg (44% d. Th.) der Titelverbindung erhalten.
1H-NMR (400 MHz, CDCl3, δ/ppm): 8.25 (d, IH), 8.03 (d, 2H), 7.50 (d, 2H), 7.47 (d, IH), 7.33 (d, IH), 7.30 (dd, IH), 6.60 (d, IH), 5.10 (s, 2H), 2.20 (s, 3H), 1.37 (s, 9H).
HPLC (Methode A): R, = 5.20 min.
MS (DCI, NH3): m/z = 407 [M+H]+.
Beispiel 73
3-(4-fe/-r.-Butylphenyl)-5-[5-methyl-l-(4-methylbenzyl>lH-pyrrol-3-yl]-l,2,4-oxadiazol
Figure imgf000176_0002
Ein Gemisch aus 300 mg (1.31 mmol) der Verbindung aus Beispiel 47A, 177 mg (1.31 mmol) HOBt und 251 mg (1.31 mmol) EDC in 12 ml wasserfreiem DMF wurde zunächst 30 min bei RT gerührt und dann mit 252 mg (1.31 mmol) 4-/er/.-Butyl-N'-hydroxybenzolcarboximidamid versetzt. Nachdem das Reaktionsgemisch 2 h bei RT gerührt worden war, wurde es in einem Mikrowellenofen für 2 min auf 1700C erhitzt (CEM Discover, initiale Einstrahlleistung 250 W). Nach dem Abkühlen auf RT wurde das Reaktionsgemisch direkt mittels präparativer HPLC (Methode M) aufgereinigt. Es wurden 34 mg (7% d. Th.) der Titelverbindung erhalten.
1H-NMR (500 MHz, CDCl3, δ/ppm): 8.04 (d, 2H), 7.49 (d, 2H), 7.47 (d, IH), 7.15 (d, 2H), 6.98 (d, 2H), 6.55 (d, IH), 5.03 (s, 2H), 2.34 (s, 3H), 2.20 (s, 3H), 1.36 (s, 9H).
LC/MS (Methode F, ESIpos): R1 = 1.78 min, m/z = 386 [M+H]+.
Die Verbindungen in der folgenden Tabelle wurden analog zu einem der unter Beispiel 72 und Beispiel 73 beschriebenen Verfahren aus den entsprechenden Vorstufen hergestellt. Die Herstel- lung der meisten der eingesetzten N'-Hydroxycarboximidamide (Hydroxyamidine) wurde weiter oben beschrieben; einige wenige waren kommerziell erhältlich oder sind in der Literatur beschrieben.
Figure imgf000177_0001
7.48 (d, 2.29-
7.50 (d,
(d, IH),
7.16 (d,
7.15 (d, 2.29-
Figure imgf000178_0001
Figure imgf000179_0001
Figure imgf000180_0001
7.03 (d, 1.73-
7.21
7.03 (d, 1.98-
7.13 (d,
7.07 (d,
Figure imgf000181_0001
4H), 6.78
7.07 (d, 2.29-2.10
6.70 (m, 6H).
6.94 (d, 1.99-1.77
Figure imgf000182_0001
Figure imgf000183_0002
Beispiel 100
2-({5-[(2-Methyl-4-{3-[4-(trifluormethoxy)phenyl]-l,2,4-oxadiazol-5-yl}-lH-pyrrol-l-yl)methyl]- pyridin-2-yl}amino)ethanol
Figure imgf000183_0001
Eine Lösung von 120 mg (0.276 mmol) der Verbindung aus Beispiel 74 und 968 mg (5.52 mmol) 2-{[/er/.-Butyl(dimethyl)silyl]oxy}ethanamin in 1 ml Diethylenglykokümethylether wurde 8 h lang in einem Mikrowellenofen auf 1800C erhitzt (CEM Discover, initiale Einstrahlleistung 250 W). Nach dem Abkühlen auf RT wurde das Reaktionsgemisch bei 00C mit 6.1 ml (6.07 mmol) einer I M Lösung von Tetra-w-butylammoniumfluorid in TΗF versetzt und 30 min bei dieser Temperatur gerührt. Anschließend wurde das komplette Reaktionsgemisch direkt mittels präparativer ΗPLC (Methode M) aufgereinigt. Die Produktfraktionen wurden vereinigt, eingeengt, in Methanol wieder aufgenommen und über eine Ηydrogencarbonat-Kartusche (Fa. Polymerlabs, Stratospheres SPE, PL-HCO3 MP SPE, Kapazität 0.9 mmol) von der Ameisensäure aus der HPLC-Chromatogra- phie befreit. Nach Entfernen des Lösungsmittels am Rotationsverdampfer wurden 45 mg (36% d. Th.) der Titelverbindung erhalten.
1H-NMR (400 MHz, CDCl3, δ/ppm): 8.17 (d, 2H), 7.92 (d, IH), 7.42 (d, IH), 7.31 (d, 2H), 7.17 (dd, IH), 6.53 (d, IH), 6.46 (d, IH), 4.91 (s, 2H), 4.90 (breit, IH), 4.13 (breit, IH), 3.81 (dd, 2H), 3.55-3.51 (m, 2H), 2.24 (s, 3H).
LC/MS (Methode D, ESIpos): R, = 1.96 min, m/z = 460 [M+H]+.
Analog zu dem unter Beispiel 100 beschriebenen Verfahren (jedoch ohne Einsatz von Tetra-«- butylammoniumfluorid) wurden die Verbindungen in der folgenden Tabelle aus den entsprechenden Edukten erhalten. Die eingesetzten Amin-Komponenten waren kommerziell erhältlich.
Figure imgf000184_0003
Beispiel 103
2-[ 1 -Methyl-5-(4-methylbenzyl)- lH-pyrazol-3-yl]-4-[4-(trifluormethoxy)phenyl]- 1 ,3-oxazol
Figure imgf000184_0001
Schritt 1: N- {2-Ηydroxy- 1 -[4-(trifluormethoxy)phenyl]ethyl}- 1 -methyl-5-(4-methylbenzyl)- 1 H-pyrazol-3 -carboxam id
Figure imgf000184_0002
Eine Lösung von 350 mg (1.52 mmol) der Verbindung aus Beispiel 49A in 7 ml wasserfreiem
DMF wurde mit 867 mg (2.28 mmol) ΗATU versetzt und 30 min bei RT gerührt. Dann wurde eine Lösung von 504 mg (2.28 mmol) der Verbindung aus Beispiel 22A und 1.7 ml (12.2 mmol) Tri- ethylamin in weiteren 7 ml wasserfreiem DMF hinzugefügt und das Gemisch 16 h bei RT gerührt. Anschließend wurde mit ca. 300 ml Wasser versetzt und dreimal mit je ca. 200 ml Ethylacetat extrahiert. Der organische Extrakt wurde nacheinander mit Wasser und gesättigter Kochsalz-Lösung gewaschen. Nach Trocknen über wasserfreiem Magnesiumsulfat wurde filtriert und das Lösungsmittel am Rotationsverdampfer entfernt. Der erhaltene Rückstand wurde zunächst mittels MPLC vorgereinigt (Kieselgel, Laufmittel: Cyclohexan/Ethylacetat 1 :1). Anschließend wurde die saubere Titelverbindung mittels präparativer HPLC (Methode M) erhalten (516 mg, 78% d. Th.).
1H-NMR (400 MHz, CDCl3, δ/ppm): 7.45 (d, IH), 7.42 (d, 2H), 7.20 (d, 2H), 7.10 (d, 2H), 7.01 (d, 2H), 6.57 (s, IH), 5.24-5.20 (m, IH), 3.98 (dd, 2H), 3.94 (s, 2H), 3.70 (s, 3H), 2.32 (s, 3H).
HPLC (Methode B): R, = 4.58 min.
MS (DCI, NH3): m/z = 434 [M+H]+.
LC/MS (Methode E, ESIpos): R. = 2.12 min, m/z = 434 [M+HJ\
Schritt 2: 2-[l-Methyl-5-(4-methylbenzyl>lH-pyrazol-3-yl]-4-[4-(trifluormethoxy)phenyl]-
4,5-dihydro-l,3-oxazol
Figure imgf000185_0001
Eine Lösung von 485 mg (1.12 mmol) der Verbindung aus Beispiel 103 / Schritt 1 und 320 mg (1.34 mmol) Burgess-Reagens [Methoxycarbonylsulfamoyl-triethylammonium-N-betain] in 10 ml wasserfreiem TΗF wurde 1 h auf 700C erhitzt. Nach dem Abkühlen auf RT wurde mit ca. 40 ml Wasser versetzt und dreimal mit je ca. 20 ml Ethylacetat extrahiert. Der vereinigte organische Extrakt wurde nacheinander mit Wasser und gesättigter Kochsalz-Lösung gewaschen. Nach Trocknen über wasserfreiem Magnesiumsulfat und Filtration wurde das Lösungsmittel am Rotationsverdampfer entfernt. Der erhaltene Rückstand wurde mittels MPLC gereinigt (Kieselgel, Laufmittel: Cyclohexan/Ethylacetat 2: 1). Es wurden 398 mg (86% d. Th.) der Titelverbindung erhalten.
1H-NMR (400 MHz, CDCl3, δ/ppm): 7.33 (d, 2H), 7.19 (d, 2H), 7.11 (d, 2H), 7.03 (d, 2H), 6.57 (s, IH), 5.35 (dd, IH), 4.79 (dd, IH), 4.24 (dd, IH), 3.96 (s, 2H), 3.79 (s, 3H), 2.33 (s, 3H).
MS (DCI, NH3): m/z = 416 [M+H]+.
LC/MS (Methode F, ESIpos): R. = 2.12 min, m/z = 416 [M+H]+. Schritt 3: 2-[l-Methyl-5-(4-methylbenzyl>lH-pyrazol-3-yl]-4-[4-(trifluormethoxy)phenyl]-
1,3-oxazol
Figure imgf000186_0001
250 mg (0.602 mmol) der Verbindung aus Beispiel 103 / Schritt 2 wurden in 6 ml TΗF gelöst und mit 209 mg (2.41 mmol) Mangandioxid ("gefallt, aktiv"-Qualität) versetzt. Nachdem das Reaktionsgemisch 2.5 h unter Rückfluss erhitzt worden war, wurde nochmals die gleiche Menge an Mangandioxid zugesetzt und das Gemisch weitere 2.5 h unter Rückfluss erhitzt. Nach dem Abkühlen auf RT wurde mit TΗF verdünnt und über Kieselgur filtriert. Das Filtrat wurde am Rotationsverdampfer vom Lösungsmittel befreit. Der Rückstand wurde in Dichlormethan gelöst und jeweils einmal mit 1 M Salzsäure und Wasser gewaschen. Nach Trocknen über wasserfreiem Magnesiumsulfat und Filtration wurde das Lösungsmittel am Rotationsverdampfer entfernt. Das Rohprodukt wurde mittels präparativer ΗPLC gereinigt (Methode M). Es wurden 107 mg (43% d. Th.) der Titelverbindung erhalten.
1H-NMR (400 MHz, CDCl3, δ/ppm): 7.92 (s, IH), 7.84 (d, 2H), 7.25 (d, 2H), 7.13 (d, 2H), 7.07 (d, 2H), 6.62 (s, IH), 4.00 (s, 2H), 3.82 (s, 3H), 2.34 (s, 3H).
HPLC (Methode B): R, = 5.32 min.
MS (ESIpos): m/z = 414 [M+H]+.
LC/MS (Methode D, ESIpos): R, = 2.81 min, m/z = 414 [M+H]+.
Die Verbindungen in der folgenden Tabelle wurden analog zu den in den Beispielen 1 bis 3 be- schriebenen Verfahren aus den entsprechenden Edukten hergestellt. In Abhängigkeit von der Polarität der Verbindungen wurden diese entweder durch Ausrühren in Dichlormethan, Ethylacetat, Acetonitril oder Diethylether isoliert, oder sie wurden mittels präparativer HPLC oder mittels MPLC über Kieselgel mit Cyclohexan/Ethylacetat-Gemischen als Laufmittel gereinigt. Die als Edukte verwendeten Arylmethylchloride, -bromide oder -methansulfonate waren entweder kom- merziell erhältlich oder wurden wie weiter oben beschrieben hergestellt, oder ihre Herstellung ist in der Literatur beschrieben.
Figure imgf000187_0001
Die Verbindungen in der folgenden Tabelle wurden analog zu einem der unter Beispiel 65, 66, 72 und 73 beschriebenen Verfahren aus den entsprechenden Vorstufen hergestellt. Die Herstellung der meisten der verwendeten N'-Hydroxycarboximidamide (Hydroxyamidine) wurde weiter oben beschrieben; einige wenige waren kommerziell erhältlich oder sind in der Literatur beschrieben.
Figure imgf000188_0001
Figure imgf000189_0001
Figure imgf000190_0001
Die Beispiele in der folgenden Tabelle wurden analog zu dem unter Beispiel 24 oder Beispiel 100 beschriebenen Verfahren unter Verwendung des jeweils korrespondierenden Amins und der entsprechenden 2-Chlorpyridin- Verbindung aus den Beispielen 2, 3 112 bzw. 113 hergestellt. Anders als in Beispiel 24 beschrieben, wurden diese Reaktionen zumeist in DMSO als Lösungsmittel durchgeführt (ca. 0.5 ml DMSO auf 0.10 mmol des 2-Chlorpyridin-Edukts). Zur Herstellung einiger Beispiele war es erforderlich, die Reaktionsdauer um bis zu weitere 10 Stunden zu verlängern und/oder die Menge an eingesetztem Edukt-Amin um weitere bis zu 10 Äquivalente, bezogen auf das eingesetzte 2-Chlorpyridin-Derivat, zu erhöhen. Bei einigen Beispielen war es zudem erforderlich, eine zweimalige Reinigung mittels präparativer HPLC durchzuführen. Die meisten der eingesetzten Amin-Komponenten waren kommerziell erhältlich; einige wurden nach literaturbeschriebenen Verfahren hergestellt.
Figure imgf000191_0001
7.40 2.79-
Figure imgf000192_0001
Figure imgf000193_0003
Beispiel 135
5-[(5-Methyl-3-{3-[4-(trifluormethoxy)phenyl]-l,2,4-oxadiazol-5-yl}-lH-pyrazol-l-yl)methyl]- pyridin-2-amin
Figure imgf000193_0001
Schritt 1: 2-Ηydrazinyl-5-[(5-methyl-3-{3-[4-(trifluormethoxy)phenyl]-l,2,4-oxadiazol-5- yl } - lH-pyrazol- 1 -yl)methy ljpyridin
Figure imgf000193_0002
1.0 g (2.29 mmol) der Verbindung aus Beispiel 2 wurde unter Argon bei RT mit 5.0 ml (103 mmol) Ηydrazinhydrat versetzt. Man erhitzte das Gemisch 16 h lang unter Rühren zum Rückfluss, gab dann weitere 5.0 ml Ηydrazinhydrat hinzu und ließ das Gemisch erneut 16 h unter Rückfluss rühren. Der entstandene Feststoff wurde durch Zugabe von 10 ml Ethanol in Lösung gebracht und das Gemisch anschließend weitere 24 h unter Rühren zum Rückfluss erhitzt. Nach Abkühlen auf
RT wurde der beim Abkühlen ausgefallene Feststoff abgesaugt, einmal mit einem l :l-Gemisch von Wasser und Ethanol gewaschen und im Vakuum getrocknet. Man erhielt 788 mg (80% d. Th.) der Titelverbindung. 1H-NMR (400 MHz, CDCl3, δ/ppm): 8.25 (d, 2H), 8.06 (d, IH), 7.41 (dd, IH), 7.32 (d, 2H), 6.78 (s, IH), 6.69 (d, IH), 5.88 (s, IH), 5.31 (s, 2H), 3.80 (s, breit, 2H), 2.31 (s, 3H).
LC/MS (Methode I, ESIpos): R, = 0.90 min, m/z = 432 [M+H]+.
Schritt 2: 2-Azido-5-[(5-methyl-3-{3-[4-(trifluormethoxy)phenyl]-l,2,4-oxadiazol-5-yl}-lH- pyrazol-l-yl)methyl]pyridin
Figure imgf000194_0001
450 mg (1.04 mmol) der Verbindung aus Beispiel 135 / Schritt 1 wurden in 10 ml konzentrierter Salzsäure vorgelegt und mit einem Eisbad gekühlt. Man tropfte langsam unter Rühren eine Lösung von 576 mg (8.35 mmol) Natriumnitrit in 20 ml Wasser hinzu, ließ das Gemisch anschließend auf RT kommen und rührte weitere 5 h bei RT. Das Gemisch wurde dann durch Zugabe von 10%-iger Natronlauge alkalisch gestellt. Der gebildete Feststoff wurde abfiltriert, zweimal mit Wasser gewaschen und im Vakuum getrocknet. Man erhielt 459 mg (99% d. Th.) der Titelverbindung.
1H-NMR (400 MHz, CD3OD, δ/ppm): 9.10 (s, IH), 8.22 (d, 2H), 8.09 (d, IH), 7.79 (d, IH), 7.46 (d, 2H), 6.92 (s, IH), 5.65 (s, 2H), 2.49 (s, 3H).
LC/MS (Methode I, ESIpos): R4 = 1.17 min, m/z = 443 [M+H]+.
Schritt 3: 5-[(5-Methyl-3-{3-[4-(trifluormethoxy)phenyl]-l,2,4-oxadiazol-5-yl}-lH-pyrazol- 1 -yl)methyl]pyridin-2-amin
Figure imgf000194_0002
450 mg (1.02 mmol) der Verbindung aus Beispiel 135 / Schritt 2 wurden unter Argon in 20 ml eines 7:3-Gemisches von Methanol und Wasser vorgelegt. Man gab 1.03 g (5.99 mmol) Tributyl- phosphan hinzu und erhitzte das Gemisch 2 h unter Rühren zum Rückfluss. Nach Abkühlen auf RT wurde das Gemisch filtriert und das Filtrat eingeengt. Der erhaltene Rückstand wurde in Aceto- nitril gelöst und mittels präparativer ΗPLC (Methode N) gereinigt. Die vereinigten produkihaltigen Fraktionen wurden bis auf ein geringes Restvolumen an Lösungsmittel eingeengt. Man setzte etwas Natriumhydrogencarbonat hinzu, woraufhin ein Feststoff ausfiel. Dieser wurde abfiltriert, zweimal mit Wasser gewaschen und im Vakuum getrocknet. Man erhielt 339 mg (80% d. Th.) der Titelverbindung.
1H-NMR (400 MHz, CDCl3, δ/ppm): 8.24 (d, 2H), 8.01 (d, IH), 7.38-7.31 (m, 3H), 6.79 (s, IH), 6.48 (d, IH), 5.30 (s, 2H), 4.50 (s, 2H), 2.32 (s, 3H).
LC/MS (Methode F, ESIpos): R4 = 1.05 min, m/z = 417 [M+H]+.
Beispiel 136
3-[(5-Methyl-3-{3-[4-(trifluormethoxy)phenyl]-l,2,4-oxadiazol-5-yl}-lH-pyrazol-l-yl)methyl]- pyridin-1-oxid
Figure imgf000195_0001
Eine Lösung von 50 mg (0.125 mmol) der Verbindung aus Beispiel 6 in 2 ml TΗF wurde mit 70 mg (0.262 mmol) Wasserstoffperoxid-Ηarnstoff-Komplex versetzt und auf 00C abgekühlt. Das Gemisch wurde unter Rühren langsam mit 39 μl (0.274 mmol) Trifluoressigsäureanhydrid versetzt und 30 min bei 00C gerührt. Dann wurde auf RT erwärmt und mit ca. 2 ml gesättigter wässriger Natriumthiosulfat-Lösung und ca. 1 ml 0.5 M Salzsäure versetzt. Anschließend wurde mit Dichlor- methan extrahiert. Nach Trocknen der organischen Phase über wasserfreiem Magnesiumsulfat und Filtration wurde das Lösungsmittel am Rotationsverdampfer entfernt. Das so erhaltene Rohprodukt wurde durch Verrühren mit Diethylether gereinigt. Es wurden 30 mg (59% d. Th.) der Titelverbindung erhalten.
1H-NMR (400 MHz, CDCl3, δ/ppm): 8.24 (d, 2H), 8.15 (d, IH), 8.04 (s, IH), 7.33 (d, 2H), 7.28 (t, IH), 7.10 (d, IH), 6.87 (s, IH), 5.41 (s, 2H), 2.37 (s, 3H).
HPLC (Methode A): R, = 4.39 min.
MS (DCI, NH3): m/z = 418 [M+H]+, 435 [M+NRjf.
LC/MS (Methode F, ESIpos): R. = 1.18 min, m/z = 418 [M+H]+, 835 [2M+H]+. Beispiel 137
2-Methyl-5-[(5-methyl-3-{3-[4-(trifluormethoxy)phenyl]-l,2,4-oxadiazol-5-yl}-lH-pyrazol-l-yl)- methy ljpyridin- 1 -oxid
Figure imgf000196_0001
Analog zu dem unter Beispiel 136 beschriebenen Verfahren wurden aus 60 mg (0.144 mmol) der Verbindung aus Beispiel 7 24 mg (39% d. Th.) der Titelverbindung erhalten.
1H-NMR (400 MHz, CDCl3, δ/ppm): 8.25 (d, 2H), 8.12 (s, IH), 7.34 (d, 2H), 7.23 (d, IH), 7.02 (d, IH), 6.83 (s, IH), 5.38 (s, 2H), 2.50 (s, 3H), 2.33 (s, 3H).
MS (DCI, NH3): m/z = 432 [M+H]+.
Beispiel 138
2-Chlor-5-[(5-methyl-3-{3-[4-(trifluormethoxy)phenyl]-l,2,4-oxadiazol-5-yl}-lH-pyrazol-l-yl)- methyl]pyridin- 1 -oxid
Figure imgf000196_0002
Eine Lösung von 500 mg (1.15 mmol) der Verbindung aus Beispiel 2 und 1.06 g (4.59 mmol, Gehalt ca. 75%) mefα-Chlorperbenzoesäure (MCPBA) in 10 ml Dichlormethan wurde 3 Tage bei RT gerührt. Anschließend wurde mit 50 ml Dichlormethan verdünnt und nacheinander jeweils einmal mit 50 ml 1 N Natronlauge, Wasser und gesättigter Natriumchlorid-Lösung gewaschen. Man trocknete die organische Phase über Magnesiumsulfat, filtrierte und entfernte das Lösungsmittel. Nach Trocknen des Rückstands im Vakuum wurden 482 mg (93% d. Th.) der Titelverbindung er- halten.
1H-NMR (400 MHz, CDCl3, δ/ppm): 8.24 (d, 2H), 8.19 (d, IH), 7.48 (d, IH), 7.33 (d, 2H), 7.09- 7.05 (dd, IH), 6.85 (s, IH), 5.39 (s, 2H), 2.35 (s, 3H). LC/MS (Methode F, ESIpos): R, = 1.26 min, m/z = 452/454 [M+H]+.
Beispiel 139
N-Methyl-S-KS-methyl-S-fS-^-ClJ^-trifluor^-methylpropan^-yOphenylJ-l^^-oxadiazol-S-yl}- lH-pyrazol-l-yl)methyl]pyridin-2-amin-l-oxid
Figure imgf000197_0001
Ein Gemisch aus 100 mg (0.219 mmol) der Verbindung aus Beispiel 121 und 151 mg (0.676 mmol, Gehalt ca. 75%) meta-Chlorperbenzoesäure (MCPBA) in 4 ml Dichlormethan wurde 30 min bei RT gerührt. Man verdünnte dann mit 20 ml Dichlormethan, wusch zweimal mit 20 ml gesättigter wässriger Νatriumhydrogencarbonat-Lösung, trocknete die organische Phase über Mag- nesiumsulfat, filtrierte und engte ein. Der Rückstand wurde mittels präparativer ΗPLC (Methode Ν) gereinigt. Die vereinigten Produktfraktionen wurden bis auf ein Restvolumen an wässriger Phase eingeengt. Man versetzte mit gesättigter Νatriumhydrogencarbonat-Lösung und extrahierte zweimal mit Dichlormethan. Die vereinigten Dichlormethan-Phasen wurden über Magnesiumsulfat getrocknet, filtriert und eingeengt. Der Rückstand wurde mit 0.5 ml Diethylether verrieben, und das Lösungsmittel wurde am Rotationsverdampfer wieder entfernt. Nach Trocknen im Vakuum erhielt man 50 mg (47% d. Th., Reinheit 98%) der Titelverbindung.
1H-NMR (400 MHz, CDCl3, δ/ppm): 8.19 (d, 2H), 8.05 (s, breit, IH), 7.63 (d, 2H), 7.15 (d, IH), 6.80 (s, IH), 6.80-6.70 (m, IH), 6.56 (d, IH), 5.29 (s, 2H), 3.08-2.95 (d, 3H), 2.33 (s, 3H), 1.63 (s, 6H).
LC/MS (Methode I, ESIpos): R, = 1.12 min, m/z = 473 [M+H]+.
Beispiel 140
tert. -Butyl-( { 1 -[4-(5- { 1 -[(6-chlorpyridin-3-yl)methyl]-5-methyl- 1 H-pyrazol-3-yl } - 1 ,2,4-oxadiazol- 3-yl)phenyl]cyclobutyl}oxy)acetat
Figure imgf000198_0001
Analog zu dem unter Beispiel 66 beschriebenen Verfahren wurden aus 150 mg (0.596 mmol) der Verbindung aus Beispiel 45A und 210 mg (0.656 mmol) der Verbindung aus Beispiel 57A 192 mg (60% d. Th.) der Titelverbindung hergestellt.
1H-NMR (400 MHz, CDCl3, δ/ppm): 8.32 (d, IH), 8.20 (d, 2H), 7.60 (d, 2H), 7.52 (dd, IH), 7.32 (d, IH), 6.83 (s, IH), 5.43 (s, 2H), 3.60 (s, 2H), 2.56-2.41 (m, 4H), 2.33 (s, 3H), 2.08-1.99 (m, IH), 1.78-1.66 (m, IH), 1.43 (s, 9H).
HPLC (Methode A): R. = 4.95 min.
MS (DCI, NH3): m/z = 536 [M+H]+, 553 [M+NH,]+.
LC/MS (Methode F, ESIpos): R, = 1.56 min, m/z = 536/538 [M+H]+.
Beispiel 141
2-Chlor-5-[(5-methyl-3-{3-[4-(piperidin-l-yl)phenyl]-l,2,4-oxadiazol-5-yl}-lH-pyrazol-l-yl)- methyl]pyridin
Figure imgf000198_0002
Analog zu dem unter Beispiel 66 beschriebenen Verfahren wurden aus 125 mg (0.497 mmol) der Verbindung aus Beispiel 45 A und 184 mg (0.546 mmol) der Verbindung aus Beispiel 10A 33 mg (14% d. Th., 94% Reinheit) der Titelverbindung hergestellt.
1H-NMR (400 MHz, CDCl3, δ/ppm): 8.31 (d, IH), 8.04 (d, 2H), 7.50 (dd, IH), 7.31 (d, IH), 6.96 (d, 2H), 6.80 (s, IH), 5.42 (s, 2H), 3.32-3.28 (m, 4H), 2.30 (s, 3H), 1.73-1.67 (m, 4H), 1.65-1.61 (m, 2H).
LC/MS (Methode I, ESIpos): R. = 1.33 min, m/z = 435/437 [M+H]+. Beispiel 142
2-Chlor-5-[(5-methyl-3-{3-[4-(tetrahydro-2H-pyran-4-yl)phenyl]-l,2,4-oxadiazol-5-yl}-lH- pyrazol- 1 -yl)methy l]pyridin
Figure imgf000199_0001
Analog zu dem unter Beispiel 2 beschriebenen Verfahren wurden 106 mg (0.628 mmol) 2-Chlor-5- (chlormethyl)pyridin und 150 mg (0.483 mmol) der Verbindung aus Beispiel 74A zu 74 mg (34% d. Th., 95% Reinheit) der Titelverbindung umgesetzt. Das Produkt wurde mittels präparativer ΗPLC isoliert (Methode M).
1H-NMR (400 MHz, CDCl3, δ/ppm): 8.32 (d, IH), 8.14 (d, 2H), 7.50 (dd, IH), 7.35 (d, 2H), 7.31 (d, IH), 6.82 (s, IH), 5.42 (s, 2H), 4.12-4.07 (m, 2H), 3.58-3.51 (m, 2H), 2.87-2.80 (m, IH), 2.32 (s, 3H), 1.91-1.79 (m, 4H).
LC/MS (Methode I, ESIpos): R. = 1.18 min, m/z = 436/438 [M+H]+.
Beispiel 143
l-[4-(5-{ l-[(6-Chloφyridin-3-yl)methyl]-5-methyl-lH-pyrazol-3-yl}-l,2,4-oxadiazol-3-yl)phenyl]- cyclobutanol
Figure imgf000199_0002
Analog zu dem unter Beispiel 65 beschriebenen Verfahren wurden aus 250 mg (0.993 mmol) der Verbindung aus Beispiel 45A und 225 mg (1.09 mmol) der Verbindung aus Beispiel 51A 135 mg (32% d. Th.) der Titelverbindung hergestellt. Das Produkt wurde mittels präparativer ΗPLC iso- liert (Methode M). 1H-NMR (400 MHz, CDCl3, δ/ppm): 8.32 (d, IH), 8.20 (d, 2H), 7.63 (d, 2H), 7.51 (dd, IH), 7.32 (d, IH), 6.83 (s, IH), 5.43 (s, 2H), 2.64-2.58 (m, 2H), 2.45-2.38 (m, 2H), 2.33 (s, 3H), 2.14-2.03 (m, 2H), 1.82-1.71 (m, IH).
LC/MS (Methode I, ESIpos): R1 = 1.11 min, m/z = 422/424 [M+H]+.
Beispiel 144
2-Chlor-5-[(5-methyl-3-{3-[4-(methylsulfonyl)phenyl]-l,2,4-oxadiazol-5-yl}-lH-pyrazol-l-yl> methyl]pyridin
Figure imgf000200_0001
Analog zu dem unter Beispiel 66 beschriebenen Verfahren wurden aus 125 mg (0.497 mmol) der Verbindung aus Beispiel 45A und 117 mg (0.546 mmol) der Verbindung aus Beispiel 14A 140 mg (66% d. Th.) der Titelverbindung hergestellt.
1H-NMR (400 MHz, CDCl3, δ/ppm): 8.42 (d, 2H), 8.32 (d, IH), 8.09 (d, 2H), 7.52 (dd, IH), 7.33 (d, IH), 7.31 (d, IH), 6.85 (s, IH), 5.45 (s, 2H), 3.11 (s, 3H), 2.34 (s, 3H).
LC/MS (Methode F, ESIpos): R, = 1.13 min, m/z = 430/432 [M+H]+.
Beispiel 145
2-Chlor-5-({3-[3-(4-isobutylphenyl)-l,2,4-oxadiazol-5-yl]-5-methyl-lH-pyrazol-l-yl}methyl>- pyridin
Figure imgf000200_0002
Analog zu dem unter Beispiel 3 beschriebenen Verfahren wurden 689 mg (4.25 mmol) 2-Chlor-5- (chlormethyl)pyridin und 600 mg (2.13 mmol) der Verbindung aus Beispiel 76A zu 585 mg (67% d. Th.) der Titelverbindung umgesetzt. 1H-NMR (400 MHz, CDCl3, δ/ppm): 8.33 (d, IH), 8.10 (d, 2H), 7.51 (dd, IH), 7.31 (d, IH), 7.27 (d, 2H), 6.82 (s, IH), 5.43 (s, 2H), 2.54 (d, 2H), 2.32 (s, 3H), 1.97-1.87 (m, IH), 0.93 (d, 6H).
LC/MS (Methode I, ESIpos): R, = 1.41 min, m/z = 408/410 [M+H]+.
Beispiel 146
2-Chlor-5-{[3-(3-{4-[l-(methoxymethyl)cyclobutyl]phenyl}-l,2,4-oxadiazol-5-yl)-5-methyl-lH- pyrazol- 1 -yl]methyl } pyridin
Figure imgf000201_0001
Analog zu dem unter Beispiel 3 beschriebenen Verfahren wurden 500 mg (3.08 mmol) 2-Chlor-5- (chlormethyl)pyridin und 500 mg (1.54 mmol) der Verbindung aus Beispiel 77A zu 341 mg (49% d. Th.) der Titelverbindung umgesetzt.
1H-NMR (400 MHz, CDCl3, δ/ppm): 8.32 (d, IH), 8.13 (d, 2H), 7.51 (dd, IH), 7.32 (d, IH), 7.30 (d, 2H), 6.82 (s, IH), 5.43 (s, 2H), 3.55 (s, 2H), 3.28 (s, 3H), 2.43-2.28 (m, 4H), 2.31 (s, 3H), 2.15- 2.03 (m, IH), 1.93-1.83 (m, IH).
LC/MS (Methode I, ESIpos): R. = 1.33 min, m/z = 450/452 [M+H]+.
Beispiel 147
2-Chlor-5-[(3-{3-[4-(methoxymethyl)phenyl]-l,2,4-oxadiazol-5-yl}-5-methyl-lH-pyrazol-l-yl)- methyljpyridin
Figure imgf000201_0002
Analog zu dem unter Beispiel 3 beschriebenen Verfahren wurden 300 mg (1.85 mmol) 2-Chlor-5- (chlormethyl)pyridin und 250 mg (0.925 mmol) der Verbindung aus Beispiel 78A zu 121 mg (33% d. Th.) der Titelverbindung umgesetzt. 1H-NMR (400 MHz, CDCl3, δ/ppm): 8.32 (d, IH), 8.19 (d, 2H), 7.51 (dd, IH), 7.47 (d, 2H), 7.31 (d, IH), 6.83 (s, IH), 5.43 (s, 2H), 3.53 (s, 2H), 3.43 (s, 3H), 2.33 (s, 3H).
LC/MS (Methode I, ESIpos): R, = 1.14 min, m/z = 396/398 [M+H]+.
Beispiel 148
2-Chlor-5-({3-[3-(3-fluor-4-methoxyphenyl)-l,2,4-oxadiazol-5-yl]-5-methyl-lH-pyrazol-l-yl}- methyl)pyridin
Figure imgf000202_0001
Analog zu dem unter Beispiel 3 beschriebenen Verfahren wurden 354 mg (2.19 mmol) 2-Chlor-5- (chlormethyl)pyridin und 300 mg (1.09 mmol) der Verbindung aus Beispiel 79A zu 150 mg (34% d. Th.) der Titelverbindung umgesetzt.
1H-NMR (400 MHz, CDCl3, δ/ppm): 8.31 (d, IH), 7.97-7.91 (m, 2H), 7.51 (dd, IH), 7.32 (d, IH), 7.06 (t, IH), 6.82 (s, IH), 5.43 (s, 2H), 3.97 (s, 3H), 2.33 (s, 3H).
LC/MS (Methode I, ESIpos): R, = 1.19 min, m/z = 400/402 [M+H]+.
Beispiel 149
2-Chlor-5-({3-[3-(4-methoxyphenyl>l,2,4-oxadiazol-5-yl]-5-methyl-lH-pyrazol-l-yl}methyl> pyridin
Figure imgf000202_0002
Analog zu dem unter Beispiel 3 beschriebenen Verfahren wurden 474 mg (2.93 mmol) 2-Chlor-5- (chlormethyl)pyridin und 500 mg (1.95 mmol) der Verbindung aus Beispiel 80A zu 203 mg (27% d. Th.) der Titelverbindung umgesetzt.
1H-NMR (400 MHz, CDCl3, δ/ppm): 8.31 (d, IH), 8.13 (d, 2H), 7.51 (dd, IH), 7.31 (d, IH), 7.00 (d, 2H), 6.81 (s, IH), 5.43 (s, 2H), 3.88 (s, 3H), 2.32 (s, 3H). LC/MS (Methode F, ESIpos): R4 = 1.27 min, m/z = 382/384 [M+H]+.
Beispiel 150
2-Chlor-5-({3-[3-(4-isopropylphenyl>l,2,4-oxadiazol-5-yl]-5-methyl-lH-pyrazol-l-yl}methyl> pyridin
Figure imgf000203_0001
Analog zu dem unter Beispiel 3 beschriebenen Verfahren wurden 1.21 g (7.45 mmol) 2-Chlor-5- (chlormethyl)pyridin und 1.0 g (3.73 mmol) der Verbindung aus Beispiel 81A zu 300 mg (20% d. Th., 96% Reinheit) der Titelverbindung umgesetzt.
1H-NMR (400 MHz, CDCl3, δ/ppm): 8.32 (d, IH), 8.11 (d, 2H), 7.51 (dd, IH), 7.34 (d, 2H), 7.32 (d, IH), 6.82 (s, IH), 5.44 (s, 2H), 2.98 (sept, IH), 2.31 (s, 3H), 1.30 (d, 6H).
LC/MS (Methode I, ESIpos): R, = 1.34 min, m/z = 394/396 [M+H]+.
Beispiel 151
2-Chlor-5-{[5-methyl-3-(3-{4-[l-(trifluormethyl)cyclopropyl]phenyl}-l,2,4-oxadiazol-5-yl)-lH- pyrazol-l-yl]methyl} pyridin
Figure imgf000203_0002
Zu einem Gemisch aus 450 mg (1.35 mmol) der Verbindung aus Beispiel 86A und 328 mg (1.48 mmol) (6-Chlorpyridin-3-yl)methylmethansulfonat [K. C. Lee et al, J. Org. Chem. 1999, 64 (23), 8576-8581] in 10 ml TΗF gab man bei 00C 166 mg (1.48 mmol) Kalium-/er/.-butylat hinzu und ließ das Gemisch dann unter Rühren auf RT kommen. Nach 1 h Rühren bei RT wurden weitere 100 mg (0.299 mmol) (6-Chlorpyridin-3-yl)methylmethansulfonat sowie 60 mg (0.535 mmol) Kalium-tert.-butylat hinzugefügt, und das Gemisch wurde nochmals 2 h bei RT gerührt. Man gab danach Wasser und Ethylacetat hinzu, trennte die Phasen und extrahierte die wässrige Phase ein- mal mit Ethylacetat. Die vereinigten organischen Phasen wurden einmal mit gesättigter Natriumchlorid-Lösung gewaschen, über Magnesiumsulfat getrocknet, filtriert und eingeengt. Der Rückstand wurde mittels Säulenchromatographie gereinigt (Kieselgel, Laufmittel: Cyclohexan/Ethyl- acetat 7:3). Man erhielt so 275 mg (39% d. Th., Reinheit 88%) der Titelverbindung.
1H-NMR (400 MHz, CDCl3, δ/ppm): 8.31 (s, IH), 8.18 (d, 2H), 7.59 (d, 2H), 7.51 (d, IH), 7.31 (d, IH), 6.82 (s, IH), 5.42 (s, 2H), 2.31 (s, 3H), 1.42-1.38 (m, 2H), 1.10 (s, breit, 2H).
LC/MS (Methode F, ESIpos): R, = 1.50 min, m/z = 460/462 [M+H]+.
Beispiel 152
N-[4-(5-{ l-[(6-Chlorpyridin-3-yl)methyl]-5-methyl-lH-pyrazol-3-yl}-l,2,4-oxadiazol-3-yl)benzyl]- N-isopropylpropan-2-amin
Figure imgf000204_0001
Ein Gemisch aus 679 mg (2.0 mmol) der Verbindung aus Beispiel 83 A, 421 mg (2.60 mmol) 2-Chlor-5-(chlormethyl)pyridin und 292 mg (2.60 mmol) Kalium-tert.-butylat in 20 ml THF wurde über Nacht unter Rühren zum Rückfluss erhitzt. Nach Abkühlen auf RT wurde erneut mit 100 mg (0.891 mmol) Kalium-ter/.-butylat versetzt und dann weitere 5 h unter Rühren zum Rückfluss erhitzt. Nach Abkühlen auf RT wurde das Gemisch mit Ethylacetat und Wasser versetzt. Man trennte die Phasen und extrahierte die wässrige Phase einmal mit Ethylacetat. Die vereinigten organischen Phasen wurden einmal mit gesättigter Natriumchlorid-Lösung gewaschen, über Magnesiumsulfat getrocknet, filtriert und eingeengt. Der Rückstand wurde mittels Säulenchromatographie gereinigt (Kieselgel, Laufmittel: Cyclohexan/Ethylacetat 6:4). Nach Trocknen im Vakuum wurden 387 mg (40% d. Th.) der Titelverbindung erhalten.
1H-NMR (400 MHz, CDCl3, δ/ppm): 8.31 (d, IH), 8.23 (d, 2H), 7.76 (d, 2H), 7.53-7.49 (dd, IH), 7.31 (d, IH), 6.82 (s, IH), 5.42 (s, 2H), 4.30 (s, 2H), 3.85-3.76 (m, 2H), 2.32 (s, 3H), 1.44 (d, 12H).
LC/MS (Methode F, ESIpos): R, = 0.93 min, m/z = 465/467 [M+H]+. Beispiel 153
Ethyl-4-[4-(5-{ l-[(6-chloφyridin-3-yl)methyl]-5-methyl-lH-pyrazol-3-yl}-l,2,4-oxadiazol-3-yl)- phenyl]tetrahydro-2H-pyran-4-carboxylat
Figure imgf000205_0001
Analog zu dem unter Beispiel 65 beschriebenen Verfahren wurden 344 mg (1.37 mmol) der Verbindung aus Beispiel 45 A und 400 mg (1.37 mmol) der Verbindung aus Beispiel 71 A zu 190 mg (26% d. Th.) der Titelverbindung umgesetzt. Die Isolierung des Produkts erfolgte direkt aus dem Reaktionsgemisch mittels präparativer ΗPLC (Methode P).
1H-NMR (400 MHz, DMSOd6, δ/ppm): 8.38 (d, IH), 8.06 (d, 2H), 7.69 (dd, IH), 7.60 (d, 2H), 7.54 (d, IH), 6.94 (s, IH), 5.56 (s, 2H), 4.12 (q, 2H), 3.84 (m, 2H), 3.46 (t, 2H), 2.42 (m, 2H), 2.39 (s, 3H), 1.94 (m, 2H), 1.12 (t, 3H).
LC/MS (Methode I, ESIpos): R, = 1.21 min, m/z = 508/510 [M+H]+.
Beispiel 154
2-Chlor-5-[(3-{3-[3-chlor-4-(trifluormethoxy)phenyl]-l,2,4-oxadiazol-5-yl}-5-methyl-lH-pyrazol- l-yl)methyl]pyridin
Figure imgf000205_0002
Zu einem Gemisch aus 500 mg (1.38 mmol, Reinheit 95%) der Verbindung aus Beispiel 84A und 336 mg (1.52 mmol) (6-Chlorpyridin-3-yl)methylmethansulfonat [K. C. Lee et al., J. Org. Chem. 1999, 64 (23), 8576-8581] in 10 ml TΗF gab man bei 00C 170 mg (1.52 mmol) Kalium-ter/.- butylat hinzu und ließ das Gemisch dann unter Rühren auf RT kommen. Nach 1 h wurden nochmals 336 mg (1.52 mmol) (6-Chlorpyridin-3-yl)methylmethansulfonat sowie 170 mg (1.52 mmol) Kalium-te/Ϋ.-butylat hinzugefugt, und das Gemisch wurde weitere 2 h bei RT gerührt. Man gab danach Wasser und Ethylacetat hinzu, trennte die Phasen und extrahierte die wässrige Phase einmal mit Ethylacetat. Die vereinigten organischen Phasen wurden einmal mit gesättigter Natriumchlorid-Lösung gewaschen, über Magnesiumsulfat getrocknet, filtriert und eingeengt. Der Rückstand wurde mittels Säulenchromatographie gereinigt (Kieselgel, Laufmittel: Cyclohexan/Ethyl- acetat 7:3). Man erhielt 248 mg (33% d. Th., Reinheit 86%) der Titelverbindung.
LC/MS (Methode I, ESIpos): R, = 1.40 min, m/z = 470/472 [M+H]+.
Beispiel 155
{4-[4-(5-{ l-[(6-Chloφyridin-3-yl)methyl]-5-methyl-lH-pyrazol-3-yl}-l,2,4-oxadiazol-3-yl)- phenyl]tetrahydro-2H-pyran-4-yl}methanol
Figure imgf000206_0001
90 mg (0.18 mmol) der Verbindung aus Beispiel 153 wurden in 1.8 ml TΗF gelöst, bei 00C mit 0.18 ml (0.18 mmol) einer 1 M Lösung von Lithiumaluminiumhydrid in TΗF versetzt und 1 h unter Eisbadkühlung gerührt. Anschließend wurde gesättigte wässrige Ammoniumchlorid-Lösung zugetropft und mit Ethylacetat verdünnt. Die organische Phase wurde nacheinander mit 1 N Natronlauge, Wasser und gesättigter Natriumchlorid-Lösung gewaschen, über Magnesiumsulfat getrocknet, filtriert und am Rotationsverdampfer eingeengt. Nach Trocknen des Rückstands im Vakuum wurden 59 mg (68% d. Th.) der Titelverbindung erhalten.
1H-NMR (400 MHz, DMSO-d6, δ/ppm): 8.38 (d, IH), 8.02 (d, 2H), 7.69 (dd, IH), 7.57 (d, 2H), 7.54 (d, IH), 6.94 (s, IH), 5.58 (s, 2H), 4.70 (t, IH), 3.71 (m, 2H), 3.44 (d, 2H), 3.38 (t, 2H), 2.39 (s, 3H), 2.02 (m, 2H), 1.94 (m, 2H).
LC/MS (Methode I, ESIpos): R, = 0.98 min, m/z = 466/468 [M+H]+.
Beispiel 156
4-[4-(5-{ l-[(6-Chloφyridin-3-yl)methyl]-5-methyl-lH-pyrazol-3-yl}-l,2,4-oxadiazol-3-yl)phenyl]- NN-dimethyl-tetrahydro-2H-pyran-4-carboxamid
Figure imgf000207_0001
Analog zu dem unter Beispiel 65 beschriebenen Verfahren wurden 155 mg (0.62 mmol) der Verbindung aus Beispiel 45 A und 180 mg (0.62 mmol) der Verbindung aus Beispiel 72A zu 126 mg (40% d. Th.) der Titelverbindung umgesetzt. Die Isolierung des Produkts erfolgte direkt aus dem Reaktionsgemisch mittels präparativer HPLC (Methode P).
1H-NMR (400 MHz, DMSO-d6, δ/ppm): 8.38 (d, IH), 8.07 (d, 2H), 7.69 (dd, IH), 7.60 (d, 2H), 7.53 (d, IH), 7.46 (d, 2H), 6.93 (s, IH), 5.56 (s, 2H), 3.78 (d, 2H), 3.61 (t, 2H), 2.38 (s, 3H), 2.21 (d, 2H), 1.95 (m, 2H).
LC/MS (Methode I, ESIpos): R, = 1.06 min, m/z = 507/509 [M+H]+.
Beispiel 157
4-[4-(5.{l-[(6-Chlorpyridin-3-yl)methyl]-5-methyl-lH-pyrazol-3-yl}-l,2,4-oxadiazol-3-yl)phenyl]- N-methyl-tetrahydro-2H-pyran-4-carboxamid
Figure imgf000207_0002
Analog zu dem unter Beispiel 65 beschriebenen Verfahren wurden 163 mg (0.65 mmol) der Ver- bindung aus Beispiel 45A und 180 mg (0.65 mmol) der Verbindung aus Beispiel 73A zu 120 mg (35% d. Th.) der Titelverbindung umgesetzt. Die Isolierung des Produkts erfolgte direkt aus dem Reaktionsgemisch mittels präparativer ΗPLC (Methode P).
1H-NMR (400 MHz, DMSO-d6, δ/ppm): 8.38 (d, IH), 8.02 (d, 2H), 7.68 (m, 2H), 7.54 (m, 3H), 6.93 (s, IH), 5.56 (s, 2H), 3.74 (m, 2H), 3.48 (t, 2H), 2.56 (d, 3H), 2.46 (d, 2H), 2.38 (s, 3H), 1.89 (m, 2H).
LC/MS (Methode I, ESIpos): R, = 0.96 min, m/z = 493/495 [M+H]+. Beispiel 158
2-Iod-5-[(5-methyl-3-{3-[4-(trifluormethoxy)phenyl]-l,2,4-oxadiazol-5-yl}-lH-pyrazol-l-yl)- methyljpyridin
Figure imgf000208_0001
Zu einer Lösung von 100 mg (0.229 mmol) der Verbindung aus Beispiel 2 in 0.5 ml Propionitril gab man bei RT 103 mg (0.688 mmol) Natriumiodid sowie 32 μl (0.252 mmol) Chlor(trimethyl)- silan hinzu und erhitzte das Gemisch anschließend in einem Mikrowellengerät (CEM Discover, initiale Einstrahlleistung 250 W) 1 h lang auf 1200C. Nach Abkühlen auf RT wurde das Gemisch mit 2 ml Acetonitril und 1 ml Wasser verdünnt. Es bildeten sich zwei Flüssigkeitsphasen, welche voneinander getrennt wurden. Die organische Phase wurde direkt mittels präparativer ΗPLC aufgereinigt (Methode N). Man erhielt 61 mg (50% d. Th.) der Titelverbindung.
1H-NMR (400 MHz, CDCl3, δ/ppm): 8.29 (d, IH), 8.24 (d, 2H), 7.71 (d, IH), 7.32 (d, 2H), 7.20- 7.16 (dd, IH), 6.82 (s, IH), 5.39 (s, 2H), 2.31 (s, 3H).
LC/MS (Methode F, ESIpos): R1 = 1.52 min, m/z = 528 [M+H]+.
Beispiel 159
2-Chlor-5-[(5-methyl-3-{5-[4-(trifluormethoxy)phenyl]-l,2,4-oxadiazol-3-yl}-lH-pyrazol-l-yl)- methyl]pyridin
Figure imgf000208_0002
Man legte 215 mg (0.809 mmol) der Verbindung aus Beispiel 91 A und 169 μl (1.21 mmol) Tri- ethylamin in 8 ml Dichlormethan vor, gab dann bei 00C 182 mg (0.809 mmol) 4-(Trifluormeth- oxy)benzoylchlorid hinzu und ließ das Gemisch 1 h bei RT rühren. Anschließend engte man ein, nahm den Rückstand in 5 ml DMSO auf und erhitzte das Gemisch 30 min lang in einem Mikrowellengerät (CEM Discover, initiale Einstrahlleistung 250 W) auf 1200C. Nach Abkühlen auf RT gab man 5 ml Wasser hinzu, filtrierte den gebildeten Feststoff ab, wusch diesen zweimal mit 2 ml Wasser und trocknete im Vakuum. Man erhielt 220 mg (62% d. Th.) der Titelverbindung.
1H-NMR (400 MHz, CDCl3, δ/ppm): 8.33-8.28 (m, 3H), 7.50-7.46 (dd, IH), 7.38 (d, 2H), 7.29 (d, IH), 6.74 (s, IH), 5.42 (s, 2H), 2.30 (s, 3H).
LC/MS (Methode I, ESIpos): R, = 1.27 min, m/z = 436/438 [M+H]+.
Beispiel 160
2-Chlor-5-[(4-{3-[4-(2-fluoφropan-2-yl)phenyl]-l,2,4-oxadiazol-5-yl}-2-methyl-lH-pyrrol-l-yl)- methyl]pyridin
Figure imgf000209_0001
Analog zu dem unter Beispiel 72 beschriebenen Verfahren wurden 200 mg (0.798 mmol) der Verbindung aus Beispiel 46A und 157 mg (0.798 mmol) der Verbindung aus Beispiel 2A zu 78 mg (24% d. Th.) der Titelverbindung umgesetzt. Nach der Reinigung des Rohprodukts durch präpara- tive HPLC (Methode N) wurden die vereinigten Produktfraktionen bis auf ein Restvolumen an wässriger Phase eingeengt, der Rückstand mit gesättigter wässriger Natriumhydrogencarbonat- Lösung versetzt und zweimal mit Ethylacetat extrahiert. Die vereinigten Ethylacetat-Phasen wurden anschließend über Magnesiumsulfat getrocknet, filtriert, eingeengt und der resultierende Rückstand im Vakuum getrocknet.
1H-NMR (400 MHz, CDCl3, δ/ppm): 8.25 (d, IH), 8.11 (d, 2H), 7.52-7.47 (m, 3H), 7.33-7.28 (m, 2H), 6.60 (s, IH), 5.11 (s, 2H), 2.20 (s, 3H), 1.72 (s, 3H), 1.70 (s, 3H).
LC/MS (Methode F, ESIpos): R. = 1.50 min, m/z = 411/413 [M+H]+.
Beispiel 161
2-Chlor-5-[(2-methyl-4-{3-[4-(trifluormethyl)phenyl]-l,2,4-oxadiazol-5-yl}-lH-pyrrol-l-yl)- methyljpyridin
Figure imgf000210_0001
Analog zu dem unter Beispiel 72 beschriebenen Verfahren wurden 200 mg (0.798 mmol) der Verbindung aus Beispiel 46A und 162 mg (0.798 mmol) N'-Hydroxy-4-(trifluormethyl)benzolcarbox- imidamid zu 102 mg (30% d. Th.) der Titelverbindung umgesetzt. Nach der Reinigung des Roh- produkts durch präparative HPLC (Methode N) wurden die vereinigten Produktfraktionen bis auf ein Restvolumen an wässriger Phase eingeengt, der Rückstand mit gesättigter wässriger Natrium- hydrogencarbonat-Lösung versetzt und zweimal mit Ethylacetat extrahiert. Die vereinigten Ethyl- acetat-Phasen wurden anschließend über Magnesiumsulfat getrocknet, filtriert, eingeengt und der resultierende Rückstand im Vakuum getrocknet.
1H-NMR (400 MHz, CDCl3, δ/ppm): 8.28-8.23 (m, 3H), 7.75 (d, 2H), 7.49 (s, IH), 7.33-7.28 (m, 2H), 6.61 (s, IH), 5.11 (s, 2H), 2.21 (s, 3H).
LC/MS (Methode F, ESIpos): R, = 1.55 min, m/z = 419/421 [M+H]+.
Beispiel 162
2-Chlor-5-[(2-methyl-4- {3-[4-(trimethylsilyl)phenyl]- 1 ,2,4-oxadiazol-5-yl}- lH-pyrrol- 1 -yl)- methyljpyridin
Figure imgf000210_0002
Analog zu dem unter Beispiel 72 beschriebenen Verfahren wurden 200 mg (0.798 mmol) der Verbindung aus Beispiel 46A und 166 mg (0.798 mmol) der Verbindung aus Beispiel 17A zu 83 mg (25% d. Th.) der Titelverbindung umgesetzt. Nach der Reinigung des Rohprodukts durch präparative HPLC (Methode N) wurden die vereinigten Produktfraktionen bis auf ein Restvolumen an wässriger Phase eingeengt, der Rückstand mit gesättigter wässriger Natriumhydrogencarbonat- Lösung versetzt und zweimal mit Ethylacetat extrahiert. Die vereinigten Ethylacetat-Phasen wurden anschließend über Magnesiumsulfat getrocknet, filtriert, eingeengt und der resultierende Rückstand im Vakuum getrocknet. 1H-NMR (400 MHz, CDCl3, δ/ppm): 8.25 (s, IH), 8.08 (d, 2H), 7.63 (d, 2H), 7.48 (d, IH), 7.35- 7.27 (m, 2H), 6.60 (s, IH), 5.1 1 (s, 2H), 2.20 (s, 3H), 0.30 (s, 9H).
LC/MS (Methode F, ESIpos): R4 = 1.71 min, m/z = 423/425 [M+H]+.
Beispiel 163
N-[4-(5-{ l-[(6-Chloφyridin-3-yl)methyl]-5-methyl-lH-pyrrol-3-yl}-l,2,4-oxadiazol-3-yl)benzyl]- N-isopropylpropan-2-amin
Figure imgf000211_0001
Analog zu dem unter Beispiel 72 beschriebenen Verfahren wurden 200 mg (0.798 mmol) der Verbindung aus Beispiel 46A und 172 mg (0.798 mmol) der Verbindung aus Beispiel 65A zu 80 mg (22% d. Th.) der Titelverbindung umgesetzt. Nach der Reinigung des Rohprodukts durch präpara- tive ΗPLC (Methode N) wurden die vereinigten Produktfraktionen bis auf ein Restvolumen an wässriger Phase eingeengt, der Rückstand mit gesättigter wässriger Natriumhydrogencarbonat- Lösung versetzt und zweimal mit Ethylacetat extrahiert. Die vereinigten Ethylacetat-Phasen wurden anschließend über Magnesiumsulfat getrocknet, filtriert, eingeengt und der resultierende Rück- stand im Vakuum getrocknet.
1H-NMR (400 MHz, CDCl3, δ/ppm): 8.25 (d, IH), 8.02 (d, 2H), 7.52-7.47 (m, 3H), 7.33-7.27 (m, 2H), 6.60 (s, IH), 5.10 (s, 2H), 3.70 (s, 2H), 3.08-2.98 (m, 2H), 2.20 (s, 3H), 1.02 (d, 12H).
LC/MS (Methode F, ESIpos): R, = 1.03 min, m/z = 464/466 [M+H]+.
Beispiel 164
2-Chlor-5-[(2-methyl-4-{3-[4-(lH-pyrrol-l-ylmethyl)phenyl]-l,2,4-oxadiazol-5-yl}-lH-pyrrol-l- yl)methyl]pyridin
Figure imgf000211_0002
Analog zu dem unter Beispiel 72 beschriebenen Verfahren wurden 200 mg (0.798 mmol) der Verbindung aus Beispiel 46A und 199 mg (0.798 mmol) der Verbindung aus Beispiel 55A zu 57 mg (16% d. Th.) der Titelverbindung umgesetzt. Nach der Reinigung des Rohprodukts durch präpara- tive HPLC (Methode N) wurden die vereinigten Produktfraktionen bis auf ein Restvolumen an wässriger Phase eingeengt, der Rückstand mit gesättigter wässriger Natriumhydrogencarbonat- Lösung versetzt und zweimal mit Ethylacetat extrahiert. Die vereinigten Ethylacetat-Phasen wurden anschließend über Magnesiumsulfat getrocknet, filtriert, eingeengt und der resultierende Rückstand im Vakuum getrocknet.
1H-NMR (400 MHz, CDCl3, δ/ppm): 8.25 (d, IH), 8.08 (d, 2H), 7.46 (s, IH), 7.32-7.24 (m, 2H), 7.21 (d, 2H), 6.72-6.70 (t, 2H), 6.59 (s, IH), 6.22-6.20 (t, 2H), 5.13 (s, 2H), 5.1 1 (s, 2H), 2.20 (s, 3H).
LC/MS (Methode D, ESIpos): R, = 2.70 min, m/z = 430/432 [M+H]+.
Beispiel 165
/e^.-Butyl-[(l-{4-[5-(5-methyl-l-{[6-(methylamino)pyridin-3-yl]methyl}-lH-pyrazol-3-yl)-l,2,4- oxadiazol-3-yl]phenyl}cyclobutyl)oxy]acetat
Figure imgf000212_0001
110 mg (0.205 mmol) der Verbindung aus Beispiel 140 wurden in 3 ml einer 33%-igen Lösung von Methylamin in Ethanol gelöst und in einem Mikrowellenofen (CEM Discover, initiale Einstrahlleistung 250 W) 5 h lang bei 1500C gerührt. Nach dem Abkühlen auf RT wurde das Reak- tionsgemisch am Rotationsverdampfer von allen flüchtigen Komponenten befreit. Der erhaltene Rückstand wurde mittels präparativer HPLC (Methode M) in seine Komponenten aufgetrennt. Es wurden 11 mg (10% d. Th.) der Titelverbindung als Nebenprodukt der Reaktion erhalten (vgl. Beispiel 169).
1H-NMR (400 MHz, CDCl3, δ/ppm): 8.21 (d, 2H), 8.01 (d, IH), 7.59 (d, 2H), 7.41 (dd, IH), 6.78 (s, IH), 6.37 (d, IH), 5.30 (s, 2H), 4.91 (breit, IH), 3.60 (s, IH), 2.91 (s, 3H), 2.55-2.41 (m, 4H), 2.31 (s, 3H), 2.07-1.98 (m, IH), 1.77-1.67 (m, IH), 1.41 (s, 9H).
LC/MS (Methode I, ESIpos): R, = 1.04 min, m/z = 531 [M+H]+. Beispiel 166
N-Methyl-5-[(5-methyl-3-{3-[4-(tetrahydro-2H-pyran-4-yl)phenyl]-l,2,4-oxadiazol-5-yl}-lH- pyrazol- 1 -yl)methyl]pyridin-2-amin
Figure imgf000213_0001
66 mg (0.151 mmol) der Verbindung aus Beispiel 142 wurden in 4 ml einer 33%-igen Lösung von Methylamin in Ethanol gelöst und in einem Mikrowellenofen (CEM Discover, initiale Einstrahlleistung 250 W) 5 h lang bei 1500C gerührt. Nach dem Abkühlen auf RT wurde das Reaktionsgemisch am Rotationsverdampfer von allen flüchtigen Komponenten befreit. Der erhaltene Rückstand wurde mit Acetonitril verrührt. Es wurden 34 mg (53% d. Th.) der Titelverbindung erhalten.
1H-NMR (400 MHz, CDCl3, δ/ppm): 8.14 (d, 2H), 8.03 (d, IH), 7.38 (dd, IH), 7.34 (d, 2H), 6.77 (s, IH), 6.35 (d, IH), 5.29 (s, 2H), 4.59-4.53 (m, breit, IH), 4.12-4.08 (m, 2H), 3.59-3.52 (m, 2H), 2.91 (d, 3H), 2.87-2.79 (m, IH), 2.31 (s, 3H), 1.92-1.79 (m, 4H).
LC/MS (Methode F, ESIpos): R. = 0.93 min, m/z = 431 [M+H]+.
Beispiel 167
l-{4-[5-(5-Methyl-l-{[6-(methylamino)pyridin-3-yl]methyl}-lH-pyrazol-3-yl)-l,2,4-oxadiazol-3- yl]phenyl}cyclobutanol
Figure imgf000213_0002
Analog zu dem unter Beispiel 165 beschriebenen Verfahren wurden aus 60 mg (0.142 mmol) der Verbindung aus Beispiel 143 50 mg (84% d. Th.) der Titelverbindung erhalten. 1H-NMR (400 MHz, CDCl3, δ/ppm): 8.20 (d, 2H), 7.91 (d, IH), 7.63 (d, 2H), 7.49 (dd, IH), 6.79 (s, IH), 6.43 (d, IH), 5.29 (s, 2H), 2.90 (s, 3H), 2.63-2.57 (m, 2H), 2.44-2.38 (m, 2H), 2.32 (s, 3H), 2.13-2.03 (m, IH), 1.82-1.71 (m, IH).
LC/MS (Methode D, ESIpos): R, = 1.56 min, m/z = 417 [M+H]+.
Beispiel 168
N-Methyl-5-[(5-methyl-3-{3-[4-(methylsulfonyl)phenyl]-l,2,4-oxadiazol-5-yl}-lH-pyrazol-l-yl)- methyl]pyridin-2-amin
Figure imgf000214_0001
Analog zu dem unter Beispiel 165 beschriebenen Verfahren wurden aus 54 mg (0.126 mmol) der Verbindung aus Beispiel 144 15 mg (28% d. Th.) der Titelverbindung erhalten.
1H-NMR (400 MHz, CDCl3, δ/ppm): 8.42 (d, 2H), 8.08 (d, 2H), 7.98 (d, IH), 7.43 (dd, IH), 6.80 (s, IH), 6.40 (d, IH), 5.31 (breit, IH), 5.30 (s, 2H), 3.10 (s, 3H), 2.90 (s, 3H), 2.33 (s, 3H).
LC/MS (Methode I, ESIpos): R, = 0.70 min, m/z = 425 [M+H]+.
Beispiel 169
N-Methyl-2-[(l-{4-[5-(5-methyl-l-{[6-(methylamino)pyridin-3-yl]methyl}-lH-pyrazol-3-yl)-l,2,4- oxadiazol-3-yl]phenyl}cyclobutyl)oxy]acetamid
Figure imgf000214_0002
110 mg (0.205 mmol) der Verbindung aus Beispiel 140 wurden in 3 ml einer 33%-igen Lösung von Methylamin in Ethanol gelöst und in einem Mikrowellenofen (CEM Discover, initiale Ein- Strahlleistung 250 W) 5 h lang bei 1500C gerührt. Nach dem Abkühlen auf RT wurde das Reaktionsgemisch am Rotationsverdampfer von allen flüchtigen Komponenten befreit. Der erhaltene Rückstand wurde mittels präparativer HPLC (Methode M) in seine Komponenten aufgetrennt. Es wurden 87 mg (87% d. Th.) der Titelverbindung erhalten.
1H-NMR (400 MHz, CDCl3, δ/ppm): 8.21 (d, 2H), 8.00 (d, IH), 7.51 (d, 2H), 7.42 (dd, IH), 6.79 (s, IH), 6.67-6.62 (m, IH), 6.39 (d, IH), 5.30 (s, 2H), 5.20 (breit, IH), 3.61 (s, 2H), 2.91 (s, 3H), 2.85 (d, 3H), 2.53-2.40 (m, 4H), 2.32 (s, 3H), 2.08-1.97 (m, IH), 1.80-1.70 (m, IH).
LC/MS (Methode I, ESIpos): R, = 0.80 min, m/z = 488 [M+H]+.
Beispiel 170
5-({3-[3-(4-/er/.-Butylphenyl>l,2,4-oxadiazol-5-yl]-5-methyl-lH-pyrazol-l-yl}methyl>N-methyl- pyridin-2-amin
Figure imgf000215_0001
125 mg (0.306 mmol) der Verbindung aus Beispiel 70 wurden in 2.3 ml (18.4 mmol) einer 8 M Lösung von Methylamin in Ethanol gelöst. Das Reaktionsgemisch wurde in einem Mikrowellenofen (Biotage Initiator 2.5, automatische Steuerung der Einstrahlleistung) automatisch gesteuert auf 1400C erhitzt. Nach Erreichen von 1400C wurde die Temperatur manuell gesteuert über einen Zeitraum von 3 min auf 1600C gesteigert. Nachdem das Reaktionsgemisch 4 h lang bei 1600C gehalten worden war, ließ man es auf RT abkühlen. Alle flüchtigen Bestandteile wurden am Rotationsverdampfer entfernt. Der erhaltene Rückstand wurde mittels MPLC gereinigt (15 g Kieselgel, Laufmittel: Cyclohexan/Ethylacetat 1 : 1). Es wurden 120 mg (97% d. Th.) der Titelverbindung erhalten.
1H-NMR (400 MHz, CDCl3, δ/ppm): 8.13 (d, 2H), 8.03 (d, IH), 7.51 (d, 2H), 7.38 (dd, IH), 6.77 (s, IH), 6.36 (d, IH), 5.29 (s, 2H), 4.58 (breit, IH), 2.91 (d, 3H), 2.31 (s, 3H), 1.37 (s, 9H).
LC/MS (Methode I, ESIpos): R, = 0.99 min, m/z = 403 [M+H]+.
Beispiel 171
5-{[3-(3-{4-[l-(Methoxymethyl)cyclobutyl]phenyl}-l,2,4-oxadiazol-5-yl)-5-methyl-lH-pyrazol-l- yl]methyl}-N-methylpyridin-2-amin
Figure imgf000216_0001
Analog zu dem unter Beispiel 170 beschriebenen Verfahren wurden 125 mg (0.278 mmol) der Verbindung aus Beispiel 146 zu 100 mg (81% d. Th.) der Titelverbindung umgesetzt.
1H-NMR (400 MHz, CDCl3, δ/ppm): 8.13 (d, 2H), 8.03 (d, IH), 7.38 (dd, IH), 7.29 (d, 2H), 6.77 (s, IH), 6.35 (d, IH), 5.29 (s, 2H), 4.57 (breit, IH), 3.55 (s, 2H), 3.28 (s, 3H), 2.91 (d, 3H), 2.41- 2.29 (m, 4H), 2.31 (s, 3H), 2.15-2.03 (m, IH), 1.93-1.83 (m, IH).
LC/MS (Methode I, ESIpos): R, = 0.94 min, m/z = 445 [M+H]+.
Beispiel 172
5-[(3-{3-[4-(Methoxymethyl)phenyl]-l,2,4-oxadiazol-5-yl}-5-methyl-lH-pyrazol-l-yl)methyl]-N- methylpyridin-2-amin
Figure imgf000216_0002
Analog zu dem unter Beispiel 170 beschriebenen Verfahren wurden 100 mg (0.253 mmol) der Verbindung aus Beispiel 147 zu 71 mg (72% d. Th.) der Titelverbindung umgesetzt.
1H-NMR (400 MHz, CDCl3, δ/ppm): 8.20 (d, 2H), 8.04 (d, IH), 7.47 (d, 2H), 7.38 (dd, IH), 6.78 (s, IH), 6.36 (d, IH), 5.30 (s, 2H), 4.59 (breit, IH), 3.52 (s, 2H), 3.43 (s, 3H), 2.91 (d, 3H), 2.31 (s, 3H).
LC/MS (Methode I, ESIpos): R, = 0.79 min, m/z = 391 [M+H]+.
Beispiel 173
5-({3-[3-(4-Methoxyphenyl>l,2,4-oxadiazol-5-yl]-5-methyl-lH-pyrazol-l-yl}methyl>N-methyl- pyridin-2-amin
Figure imgf000217_0001
Analog zu dem unter Beispiel 170 beschriebenen Verfahren wurden 100 mg (0.262 mmol) der Verbindung aus Beispiel 149 zu 80 mg (81% d. Th.) der Titelverbindung umgesetzt.
1H-NMR (400 MHz, CDCl3, δ/ppm): 8.14 (d, 2H), 8.03 (d, IH), 7.38 (dd, IH), 7.00 (d, 2H), 6.76 (s, IH), 6.35 (d, IH), 5.29 (s, 2H), 4.60 (breit, IH), 3.88 (s, 3H), 2.90 (d, 3H), 2.31 (s, 3H).
LC/MS (Methode I, ESIpos): R, = 0.81 min, m/z = 377 [M+H]+.
Beispiel 174
5-({3-[3-(3-Fluor-4-methoxyphenyl)-l,2,4-oxadiazol-5-yl]-5-methyl-lH-pyrazol-l-yl}methyl)-N- methylpyridin-2-amin
Figure imgf000217_0002
Analog zu dem unter Beispiel 170 beschriebenen Verfahren wurden 100 mg (0.250 mmol) der Verbindung aus Beispiel 148 zu 42 mg (41% d. Th.) der Titelverbindung umgesetzt.
1H-NMR (400 MHz, CDCl3, δ/ppm): 8.03 (d, IH), 7.99-7.91 (m, 2H), 7.38 (dd, IH), 7.05 (t, IH), 6.77 (s, IH), 6.37 (d, IH), 5.29 (s, 2H), 4.61 (breit, IH), 3.97 (s, 3H), 2.91 (d, 3H), 2.32 (s, 3H).
LC/MS (Methode I, ESIpos): R. = 0.83 min, m/z = 395 [M+H]+.
Beispiel 175
5-( {3-[3-(4-Isobutylphenyl> 1 ,2,4-oxadiazol-5-yl]-5-methyl- lH-pyrazol-1 -yl} methyl>N-methyl- pyridin-2-amin
Figure imgf000217_0003
Analog zu dem unter Beispiel 170 beschriebenen Verfahren wurden 125 mg (0.306 mmol) der Verbindung aus Beispiel 145 zu 102 mg (83% d. Th.) der Titelverbindung umgesetzt.
1H-NMR (400 MHz, CDCl3, δ/ppm): 8.10 (d, 2H), 8.03 (d, IH), 7.39 (dd, IH), 7.27 (d, 2H), 6.77 (s, IH), 6.36 (d, IH), 5.30 (s, 2H), 4.58 (breit, IH), 2.91 (d, 3H), 2.53 (d, 2H), 2.31 (s, 3H), 1.92 (m, IH), 0.92 (d, 6H).
LC/MS (Methode I, ESIpos): R, = 1.01 min, m/z = 403 [M+H]+.
Beispiel 176
5-( (3-[3-(4-Isopropylphenyl)- 1 ,2,4-oxadiazol-5-yl]-5-methyl- lH-pyrazol- 1 -yl} methyl)-N-methyl- pyridin-2-amin
Figure imgf000218_0001
Analog zu dem unter Beispiel 170 beschriebenen Verfahren wurden 125 mg (0.317 mmol) der Verbindung aus Beispiel 150 zu 96 mg (76% d. Th.) der Titelverbindung umgesetzt.
1H-NMR (400 MHz, CDCl3, δ/ppm): 8.12 (d, 2H), 8.03 (d, IH), 7.38 (dd, IH), 7.34 (d, 2H), 6.77 (s, IH), 6.36 (d, IH), 5.30 (s, 2H), 4.59 (breit, IH), 2.98 (sept, IH), 2.91 (d, 3H), 2.31 (s, 3H), 1.30 (d, 6H).
LC/MS (Methode Q, ESIpos): R, = 1.89 min, m/z = 389 [M+H]+.
Beispiel 177
N-Ethyl-5-[(5-methyl-3-{3-[4-(trifluormethoxy)phenyl]-l,2,4-oxadiazol-5-yl}-lH-pyrazol-l-yl)- methyl]pyridin-2-amin
Figure imgf000218_0002
Ein Gemisch aus 200 mg (0.459 mmol) der Verbindung aus Beispiel 2 und 4.6 ml (9.2 mmol) einer 2 M Lösung von Ethylamin in THF wurde in einem Mikrowellengerät (CEM Discover, initiale Einstrahlleistung 250 W) 6 h lang auf 1700C erhitzt. Nach Abkühlen auf RT gab man 1 ml (12.0 mmol) einer 70%-igen Ethylamin-Lösung in Wasser hinzu und erhitzte erneut in dem Mikrowel- lengerät für 8 h auf 1700C. Nach Abkühlen auf RT wurde das Gemisch eingeengt und der Rückstand mittels präparativer HPLC gereinigt (Methode N). Die vereinigten Produktfraktionen wurden bis auf ein Restvolumen an wässriger Phase eingeengt und der Rückstand mit gesättigter wässriger Natriumhydrogencarbonat-Lösung versetzt. Man filtrierte den gebildeten Feststoff ab, wusch ihn zweimal mit Wasser und trocknete im Vakuum. Man erhielt 110 mg (54% d. Th.) der Titelverbin- düng.
1H-NMR (400 MHz, CDCl3, δ/ppm): 8.25 (d, 2H), 8.02 (s, IH), 7.38-7.31 (m, 3H), 6.77 (s, IH), 6.33 (d, IH), 5.30 (s, 2H), 4.51 (t, IH), 3.32-3.25 (m, 2H), 2.31 (s, 3H), 1.26-1.22 (t, 3H).
LC/MS (Methode I, ESIpos): R. = 0.99 min, m/z = 445 [M+H]+.
Beispiel 178
N-Methyl-5-[(5-methyl-3-{3-[4-(trimethylsilyl)phenyl]-l,2,4-oxadiazol-5-yl}-lH-pyrazol-l-yl> methyl]pyridin-2-amin
Figure imgf000219_0001
Ein Gemisch aus 120 mg (0.283 mmol) der Verbindung aus Beispiel 9 und 3.5 ml (28.3 mmol) einer 33%-igen Methylamin-Lösung in Ethanol wurde 5 h lang in einem Mikrowellengerät (CEM Discover, initiale Einstrahlleistung 100 W) auf 1400C erhitzt. Nach dem Abkühlen auf RT wurde das Gemisch direkt mittels präparativer HPLC gereinigt (Methode N). Die vereinigten Produktfraktionen wurden bis auf ein Restvolumen an wässriger Phase eingeengt und der Rückstand mit gesättigter wässriger Natriumhydrogencarbonat-Lösung versetzt und zweimal mit Ethylacetat extrahiert. Die vereinigten Ethylacetat-Phasen wurden anschließend über Magnesiumsulfat getrock- net, filtriert und eingeengt. Nach Trocknen des Rückstands im Vakuum wurden 99 mg (83% d. Th.) der Titelverbindung erhalten.
1H-NMR (400 MHz, CDCl3, δ/ppm): 8.17 (d, 2H), 8.04 (d, IH), 7.64 (d, 2H), 7.40-7.36 (dd, IH), 6.78 (s, IH), 6.36 (d, IH), 5.30 (s, 2H), 4.63 (s, breit, IH), 2.91 (d, 3H), 2.31 (s, 3H), 0.31 (s, 9H). LC/MS (Methode I, ESIpos): R, = 1.01 min, m/z = 419 [M+H]+.
Beispiel 179
N-Ethyl-S-CCS-methyl-S-IS-^^lJ^-trifluor^-methylpropan^-yOphenyll-l^^-oxadiazol-S-yl}- lH-pyrazol-l-yl)methyl]pyridin-2-amin
Figure imgf000220_0001
Ein Gemisch aus 200 mg (0.433 mmol) der Verbindung aus Beispiel 68, 4.3 ml (8.66 mmol) einer 2 M Lösung von Ethylamin in THF sowie 1.0 ml (12.4 mmol) einer 70%-igen Ethylamin-Lösung in Wasser wurde 6 h lang in einem Mikrowellengerät (CEM Discover, initiale Einstrahlleistung 250 W) auf 1700C erhitzt. Nach Abkühlen auf RT wurden weitere 2.0 ml (24.8 mmol) einer 70%- igen Ethylamin-Lösung in Wasser hinzugegeben, und das Gemisch wurde erneut in dem Mikrowellengerät für 18 h auf 1700C erhitzt. Nach Abkühlen auf RT wurde das Gemisch eingeengt und der Rückstand mittels präparativer HPLC gereinigt (Methode N). Die vereinigten Produktfraktionen wurden bis auf ein Restvolumen an wässriger Phase eingeengt. Man versetzte mit gesättigter Natriumhydrogencarbonat-Lösung und extrahierte zweimal mit Ethylacetat. Die Ethylacetat- Phasen wurden vereinigt, über Magnesiumsulfat getrocknet, filtriert und eingeengt. Nach Trocknen des Rückstands im Vakuum erhielt man 161 mg (79% d. Th.) der Titelverbindung.
1H-NMR (400 MHz, CDCl3, δ/ppm): 8.19 (d, 2H), 8.02 (s, IH), 7.62 (d, 2H), 7.40-7.35 (dd, IH), 6.77 (s, IH), 6.34 (d, IH), 5.29 (s, 2H), 4.55 (s, breit, IH), 3.32-3.25 (m, 2H), 2.31 (s, 3H), 1.62 (s, 6H), 1.28-1.21 (t, 3H).
LC/MS (Methode I, ESIpos): R, = 1.01 min, m/z = 471 [M+H]+.
Beispiel 180
N-Ethyl-5-[(5-methyl-3-{3-[4-(trimethylsilyl)phenyl]-l,2,4-oxadiazol-5-yl}-lH-pyrazol-l-yl)- methyl]pyridin-2-amin
Figure imgf000221_0001
Ein Gemisch aus 212 mg (0.50 mmol) der Verbindung aus Beispiel 9, 5.0 ml (10.0 mmol) einer 2 M Lösung von Ethylamin in THF sowie 1.0 ml (12.4 mmol) einer 70%-igen Ethylamin-Lösung in Wasser wurde 6 h lang in einem Mikrowellengerät (CEM Discover, initiale Einstrahlleistung 250 W) auf 1700C erhitzt. Nach Abkühlen auf RT wurden weitere 1.0 ml (12.4 mmol) einer 70%- igen Ethylamin-Lösung in Wasser hinzugegeben, und das Gemisch wurde erneut in dem Mikrowellengerät für 10 h auf 1700C erhitzt. Nach Abkühlen auf RT wurde das Gemisch eingeengt und der Rückstand mittels präparativer HPLC gereinigt (Methode N). Die vereinigten Produktfraktionen wurden bis auf ein Restvolumen an wässriger Phase eingeengt. Man versetzte mit gesättig- ter Natriumhydrogencarbonat-Lösung und extrahierte zweimal mit Ethylacetat. Die Ethylacetat- Phasen wurden vereinigt, über Magnesiumsulfat getrocknet, filtriert und eingeengt. Nach Trocknen des Rückstands im Vakuum erhielt man 76 mg (35% d. Th.) der Titelverbindung.
1H-NMR (400 MHz, CDCl3, δ/ppm): 8.17 (d, 2H), 8.02 (s, IH), 7.64 (d, 2H), 7.40-7.35 (dd, IH), 6.78 (s, IH), 6.35 (d, IH), 5.29 (s, 2H), 4.62 (s, breit, IH), 3.35-3.22 (m, 2H), 2.31 (s, 3H), 1.27- 1.21 (t, 3H), 0.31 (s, 9H).
LC/MS (Methode F, ESIpos): R4 = 1.23 min, m/z = 433 [M+H]+.
Beispiel 181
5-[(3-{3-[3-Chlor-4-(trifluormethoxy)phenyl]-l,2,4-oxadiazol-5-yl}-5-methyl-lH-pyrazol-l-yl)- methyl]-N-methylpyridin-2-amin
Figure imgf000221_0002
Ein Gemisch aus 224 mg (0.410 mmol, Reinheit 86%) der Verbindung aus Beispiel 154 und 5.1 ml (41.0 mmol) einer 33%-igen Methylamin-Lösung in Ethanol wurde 3 h lang in einem Mikrowellengerät (CEM Discover, initiale Einstrahlleistung 100 W) auf 1500C erhitzt. Nach Abkühlen auf RT wurde das Gemisch mit Wasser versetzt. Der entstandene Feststoff wurde abfiltriert, mit Was- ser gewaschen und in DMSO aufgenommen. Diese DMSO-Lösung wurde anschließend mittels präparativer HPLC aufgereinigt (Methode N). Die vereinigten Produktfraktionen wurden bis auf ein Restvolumen an wässriger Phase eingeengt, mit gesättigter wässriger Natriumhydrogencarbo- nat-Lösung versetzt und zweimal mit Ethylacetat extrahiert. Die vereinigten Ethylacetat-Phasen wurden über Magnesiumsulfat getrocknet, filtriert und eingeengt. Nach Trocknen des Rückstands im Vakuum wurden 118 mg (62% d. Th.) der Titelverbindung erhalten.
1H-NMR (400 MHz, CDCl3, δ/ppm): 9.96 (s, breit, IH), 8.36 (s, IH), 8.13 (d, IH), 7.82 (d, IH), 7.63 (s, IH), 7.45 (d, IH), 6.83 (s, IH), 6.72 (d, IH), 5.29 (s, 2H), 2.98 (s, 3H), 2.36 (s, 3H).
LC/MS (Methode I, ESIpos): R, = 1.04 min, m/z = 465/467 [M+H]+.
Beispiel 182
5-[(3-{3-[3-Fluor-4-(trifluormethoxy)phenyl]-l,2,4-oxadiazol-5-yl}-5-methyl-lH-pyrazol-l-yl)- methyl]-N-methylpyridin-2-amin
Figure imgf000222_0001
Schritt 1: N-(3,4-Dimethoxybenzyl>5-[(3-{3-[3-fluor-4-(trifluormethoxy)phenyl]-l,2,4- oxadiazol-5-yl}-5-methyl-lH-pyrazol-l-yl)methyl]-N-methylpyridin-2-amin
Figure imgf000222_0002
Analog zu dem unter Beispiel 76A beschriebenen Verfahren wurden 328 mg (1.00 mmol) der Verbindung aus Beispiel 85 A und 418 mg (1.10 mmol) der Verbindung aus Beispiel 9OA zu 154 mg (26% d. Th.) der Titelverbindung umgesetzt.
1H-NMR (400 MHz, CDCl3, δ/ppm): 8.25 (d, IH), 8.02-7.97 (m, 2H), 7.52-7.43 (m, 2H), 6.89 (s, IH), 6.80-6.69 (m, 3H), 6.43 (d, IH), 5.78 (s, 2H), 4.68 (s, 2H), 3.82 (s, 3H), 3.79 (s, 3H), 3.00 (s, 3H), 2.32 (s, 3H). LC/MS (Methode F, ESIpos): R1 = 1.41 min, m/z = 599 [M+H]+.
Schritt 2: 5-[(3-{3-[3-Fluor-4-(trifluormethoxy)phenyl]-l,2,4-oxadiazol-5-yl}-5-methyl-lH- pyrazol- 1 -yl)methyl]-N-methylpyridin-2-amin
Figure imgf000223_0001
Man löste 137 mg (0.228 mmol) der Verbindung aus Beispiel 182 / Schritt 1 in 1 ml Dichlor- methan, gab 1 ml (12.98 mmol) TFA hinzu und rührte das Gemisch 48 h lang bei RT. Anschließend wurde das Gemisch eingeengt und der Rückstand mittels präparativer HPLC gereinigt (Methode Ν). Die vereinigten Produktfraktionen wurden bis auf ein Restvolumen an Wasser eingeengt und der Rückstand mit gesättigter wässriger Νatriumhydrogencarbonat-Lösung versetzt. Der ent- standene Feststoff wurde abfiltriert, zweimal mit Wasser gewaschen und im Vakuum getrocknet. Man erhielt 78 mg (76% d. Th.) der Titelverbindung.
1H-NMR (400 MHz, CDCl3, δ/ppm): 8.10-8.00 (m, 2H), 7.89 (s, IH), 7.52 (d, IH), 7.48-7.40 (t, IH), 6.80 (s, IH), 6.60 (s, breit, IH), 6.50 (d, IH), 5.30 (s, 2H), 2.92 (s, 3H), 2.32 (s, 3H).
LC/MS (Methode I, ESIpos): R4 = 0.95 min, m/z = 449 [M+H]+.
Beispiel 183
N-Methyl-5-{[5-methyl-3-(3-{4-[l-(trifluormethyl)cyclopropyl]phenyl}-l,2,4-oxadiazol-5-yl)-lH- pyrazol- 1 -y ljmethyl } pyridin-2-amin
Figure imgf000223_0002
Ein Gemisch aus 150 mg (0.294 mmol, Reinheit 90%) der Verbindung aus Beispiel 151 und 3.64 ml (29.4 mmol) einer 33%-igen Methylamin-Lösung in Ethanol wurde 3 h lang in einem Mikrowellengerät (CEM Discover, initiale Einstrahlleistung 100 W) auf 1500C erhitzt. Nach Abkühlen auf RT wurde das Gemisch eingeengt und der Rückstand mittels präparativer ΗPLC gereinigt (Methode N). Die vereinigten Produktfraktionen wurden bis auf ein Restvolumen an wässriger Phase eingeengt. Man versetzte mit gesättigter wässriger Natriumhydrogencarbonat-Lösung. Der gebildete Feststoff wurde abfiltriert und zweimal mit Wasser gewaschen. Nach Trocknen im Vakuum erhielt man 64 mg (46% d. Th.) der Titelverbindung.
1H-NMR (400 MHz, CDCl3, δ/ppm): 8.18 (d, 2H), 8.04 (d, IH), 7.58 (d, 2H), 7.40-7.36 (dd, IH), 6.77 (s, IH), 6.36 (d, IH), 5.30 (s, 2H), 4.65-4.57 (m, breit, IH), 2.91 (d, 3H), 2.32 (s, 3H), 1.42- 1.38 (m, 2H), 1.12-1.05 (m, 2H).
LC/MS (Methode F, ESIpos): R. = 1.10 min, m/z = 455 [M+H]+.
Beispiel 184
5-{[3-(3-{4-[(Diisopropylamino)methyl]phenyl}-l,2,4-oxadiazol-5-yl)-5-methyl-lH-pyrazol-l-yl]- methyl}-N-methylpyridin-2-amin
Figure imgf000224_0001
Ein Gemisch aus 280 mg (0.542 mmol, Reinheit 90%) der Verbindung aus Beispiel 152 und 6.72 ml (54.193 mmol) einer 33%-igen Methylamin-Lösung in Ethanol wurde 3 h lang in einem Mikrowellengerät (CEM Discover, initiale Einstrahlleistung 100 W) auf 1500C erhitzt. Nach Abkühlen auf RT wurde das Gemisch eingeengt und der Rückstand mittels präparativer HPLC gerei- nigt (Methode N). Die vereinigten Produktfraktionen wurden bis auf ein Restvolumen an wässriger Phase eingeengt. Man versetzte mit gesättigter wässriger Natriumhydrogencarbonat-Lösung und extrahierte zweimal mit Ethylacetat. Die vereinigten Ethylacetat-Phasen wurden über Magnesiumsulfat getrocknet, filtriert und eingeengt. Nach Trocknen des Rückstands im Vakuum wurden 136 mg (66% d. Th.) der Titelverbindung erhalten.
1H-NMR (400 MHz, CDCl3, δ/ppm): 8.10 (d, 2H), 8.02 (d, IH), 7.50 (d, 2H), 7.40-7.38 (dd, IH), 6.76 (s, IH), 6.35 (d, IH), 5.30 (s, 2H), 4.65-4.49 (m, IH), 3.70 (s, 2H), 3.10-3.00 (m, 2H), 2.90 (d, 3H), 2.30 (s, 3H), 1.02 (d, 12H).
LC/MS (Methode F, ESIpos): R, = 0.65 min, m/z = 460 [M+H]+.
Beispiel 185
N-Methyl-5-[(5-methyl-3-{3-[4-(pentafluor-λ6-sulfanyl)phenyl]-l,2,4-oxadiazol-5-yl}-lH-pyrazol- l-yl)methyl]pyridin-2-amin
Figure imgf000225_0001
Schritt 1: N-(3,4-Dimethoxybenzyl>N-methyl-5-[(5-methyl-3-{3-[4-(pentafluor-λ6-sulfanyl)- phenyl]-l,2,4-oxadiazol-5-yl}-lH-pyrazol-l-yl)methyl]pyridin-2-amin
Figure imgf000225_0002
Analog zu dem unter Beispiel 66 beschriebenen Verfahren wurden 400 mg (0.923 mmol, Reinheit 92%) der Verbindung aus Beispiel 92A und 242 mg (0.923 mmol) der Verbindung aus Beispiel 1 IA zu 222 mg (37% d. Th., Reinheit 95%) der Titelverbindung umgesetzt. Das Rohprodukt wurde mittels präparativer ΗPLC gereinigt (Methode Ν).
1H-NMR (400 MHz, CDCl3, δ/ppm): 8.31 (d, 2H), 8.12 (d, IH), 7.88 (d, 2H), 7.42-7.38 (dd, IH), 6.82-6.70 (m, 4H), 6.49 (d, IH), 5.31 (s, 2H), 4.71 (s, 2H), 3.84 (s, 3H), 3.81 (s, 3H), 3.04 (s, 3H), 2.34 (s, 3H).
LC/MS (Methode I, ESIpos): R, = 1.25 min, m/z = 623 [M+H]+.
Schritt 2: N-Methyl-5-[(5-methyl-3-{3-[4-(pentafluor-λ6-sulfanyl)phenyl]-l,2,4-oxadiazol-5- yl}-lH-pyrazol-l-yl)methyl]pyridin-2-amin
Figure imgf000225_0003
Zu einer Lösung von 180 mg (0.289 mmol) der Verbindung aus Beispiel 185 / Schritt 1 in 1 ml Di- chlormethan gab man 1 ml Trifluoressigsäure hinzu und rührte das Gemisch 3 Tage bei RT. Man engte das Gemisch anschließend ein und reinigte den Rückstand mittels präparativer ΗPLC (Methode Ν). Die vereinigten Produktfraktionen wurden bis auf ein Restvolumen an wässriger Phase eingeengt und mit gesättigter wässriger Natriumhydrogencarbonat-Lösung versetzt. Der gebildete Feststoff wurde abfiltriert, zweimal mit Wasser gewaschen und im Vakuum getrocknet. Man erhielt 109 mg (80% d. Th.) der Titelverbindung.
1H-NMR (400 MHz, CDCl3, δ/ppm): 8.31 (d, 2H), 8.03 (d, IH), 7.89 (d, 2H), 7.40-7.37 (dd, IH), 6.78 (s, IH), 6.36 (d, IH), 5.30 (s, 2H), 4.65-4.57 (m, breit, IH), 2.91 (d, 3H), 2.33 (s, 3H).
LC/MS (Methode D, ESIpos): R, = 1.90 min, m/z = 473 [M+H]+.
Beispiel 186
N-Methyl-5-{[5-methyl-3-(3-{4-[(trifluormethyl)sulfonyl]phenyl}-l,2,4-oxadiazol-5-yl)-lH- pyrazol-l-yl]methyl}pyridin-2-amin
Figure imgf000226_0001
Schritt 1: N-(3,4-Dimethoxybenzyl>N-methyl-5-{[5-methyl-3-(3-{4-[(trifluormethyl)- sulfonyl]phenyl}-l,2,4-oxadiazol-5-yl)-lH-pyrazol-l-yl]methyl}pyridin-2-amin
Figure imgf000226_0002
Analog zu dem unter Beispiel 3 beschriebenen Verfahren wurden 200 mg (0.558 mmol) der Verbindung aus Beispiel 26A und 171 mg (0.558 mmol) der Verbindung aus Beispiel 9OA zu 127 mg (36% d. Th.) der Titelverbindung umgesetzt. Abweichend von der genannten Vorschrift wurden hier nach 18 h Reaktionszeit bei RT weitere 16 mg (0.140 mmol) Kalium-ter/.-butylat hinzugefügt und das Gemisch erneut für 4 h bei RT gerührt. Das Rohprodukt wurde mittels präparativer ΗPLC gereinigt (Methode Ν).
1H-NMR (400 MHz, CDCl3, δ/ppm): 8.46 (d, 2H), 8.26 (d, IH), 8.21 (d, 2H), 7.52-7.49 (dd, IH), 6.92 (s, IH), 6.79-6.70 (m, 2H), 6.45 (d, IH), 5.79 (s, 2H), 4.67 (s, 2H), 3.82 (s, 3H), 3.79 (s, 3H), 3.01 (s, 3H), 2.36 (s, 3H). LC/MS (Methode D, ESIpos): R, = 2.39 min, m/z = 629 [M+H]+.
Schritt 2: N-Methyl-5-{[5-methyl-3-(3-{4-[(trifluormethyl)sulfonyl]phenyI}-l,2,4-oxadiazol-
5-yl)-lH-pyrazol-l-yl]methyl}pyridin-2-amin
Figure imgf000227_0001
Analog zu dem unter Beispiel 185 / Schritt 2 beschriebenen Verfahren wurden 100 mg (0.159 mmol) der Verbindung aus Beispiel 186 / Schritt 1 zu 76 mg (79% d. Th., Reinheit 95%) der Titelverbindung umgesetzt. Abweichend von der genannten Vorschrift wurde hier nach Zusatz der Νatriumhydrogencarbonat-Lösung dreimal mit Ethylacetat extrahiert. Die vereinigten Ethylacetat- Extrakte wurden über Magnesiumsulfat getrocknet, filtriert und eingeengt und der Rückstand unter Erhalt der Titelverbindung im Vakuum getrocknet.
1H-NMR (400 MHz, CDCl3, δ/ppm): 8.46 (d, 2H), 8.22-8.18 (m, 3H), 7.52-7.49 (dd, IH), 6.92 (s, IH), 6.32 (d, IH), 5.76 (s, 2H), 4.60 (s, breit, IH), 2.88 (d, 3H), 2.35 (s, 3H).
LC/MS (Methode F, ESIpos): R, = 1.09 min, m/z = 479 [M+H]+.
Beispiel 187
N-Methyl-5-{[5-methyl-3-(3-{4-[N-methyl-S-(trifluormethyl)sulfonimidoyl]phenyl}-l,2,4-oxa- diazol-5-yl)-lH-pyrazol-l-yl]methyl}pyridin-2-amin (i?αcewα/)
Figure imgf000227_0002
Schritt 1: N-(3,4-Dimethoxybenzyl>N-methyl-5-{[5-methyl-3-(3-{4-[N-methyl-5'-(trifluor- methyl)sulfonimidoyl]phenyl}-l,2,4-oxadiazol-5-yl)-lH-pyrazol-l-yl]methyl}- pyridin-2-amin (Racemat)
Figure imgf000228_0001
Zu einer Lösung von 282 mg (0.650 mmol, Reinheit 92%) der Verbindung aus Beispiel 92A und einem Tropfen DMF in 6.5 ml Dichlormethan gab man bei 00C 170 μl (1.95 mmol) Oxalylchlorid hinzu und rührte das Gemisch 1 h bei RT. Man engte das Gemisch anschließend ein, trocknete den Rückstand im Vakuum und nahm ihn danach in 4 ml Dichlormethan auf. Dieses Gemisch gab man dann bei 0°C zu einer Lösung von 188 mg (0.650 mmol, Reinheit 97%) der Verbindung aus Bei- spiel 68A und 181 μl (1.30 mmol) Triethylamin in 2.5 ml Dichlormethan hinzu und rührte 1 h bei RT. Man engte das Gemisch anschließend ein, trocknete den Rückstand im Vakuum und nahm ihn danach in 6.5 ml DMSO auf. Dieses Gemisch wurde anschließend in einem Mikrowellengerät (CEM Discover, initiale Einstrahlleistung 100 W) 30 min lang auf 1200C erhitzt. Nach dem Abkühlen auf RT wurde das Gemisch direkt mittels präparativer ΗPLC gereinigt (Methode N). Man erhielt so 89 mg (21% d. Th., Reinheit 96%) der Titelverbindung.
LC/MS (Methode D, ESIpos): R, = 2.36 min, m/z = 642 [M+Η]+.
Schritt 2: N-Methyl-5-{[5-methyl-3-(3-{4-[N-methyl-S-(trifluormethyl)sulfonimidoyl]- phenyl}-l,2,4-oxadiazol-5-yl)-lH-pyrazol-l-yl]methyl}pyridin-2-amin (Racemat)
Figure imgf000228_0002
Zu einer Lösung von 89 mg (0.133 mmol, Reinheit 96%) der Verbindung aus Beispiel 187 / Schritt 1 in 0.5 ml Dichlormethan gab man 0.5 ml (6.49 mmol) Trifluoressigsäure hinzu und rührte das Gemisch über Nacht bei RT. Man engte danach ein und reinigte den Rückstand mittels präparativer ΗPLC (Methode N). Die vereinigten Produktfraktionen wurden bis auf ein Restvolumen an wässriger Phase eingeengt, mit gesättigter wässriger Natriumhydrogencarbonat-Lösung versetzt und zweimal mit Ethylacetat extrahiert. Die vereinigten Ethylacetat-Phasen wurden über Magnesiumsulfat getrocknet, filtriert und eingeengt. Der Rückstand wurde im Vakuum getrocknet und anschließend nochmals mittels präparativer HPLC gereinigt (Methode N). Die vereinigten Produktfraktionen wurden wiederum bis auf ein Restvolumen an wässriger Phase eingeengt, mit gesät- tigter wässriger Natriumhydrogencarbonat-Lösung versetzt und zweimal mit Ethylacetat extrahiert. Die vereinigten Ethylacetat-Phasen wurden über Magnesiumsulfat getrocknet, filtriert und eingeengt. Nach Trocknen des Rückstands im Vakuum erhielt man 38 mg (54% d. Th.) der Titelverbindung.
1H-NMR (400 MHz, CDCl3, δ/ppm): 8.44 (d, 2H), 8.21 (d, 2H), 8.02 (d, IH), 7.42-7.39 (dd, IH), 6.79 (s, IH), 6.38 (d, IH), 5.30 (s, 2H), 4.92 (s, breit, IH), 3.12 (d, 3H), 2.92 (d, 3H), 2.33 (s, 3H).
LC/MS (Methode I, ESIpos): R, = 0.96 min, m/z = 492 [M+H]+.
Beispiel 188
N-Methyl-5-{[5-methyl-3-(3-{4-[S-(trifluormethyl)sulfonimidoyl]phenyl}-l,2,4-oxadiazol-5-yl)- 1 H-pyrazol- 1 -yl]methyl} pyridin-2-amin {Racemai)
Figure imgf000229_0001
Schritt 1: N-(3,4-Dimethoxybenzyl>N-methyl-5-{[5-methyl-3-(3-{4-[S-(trifluormethyl> sulfonimidoyljphenyl } - 1 ,2,4-oxadiazol-5-yl)- lH-pyrazol- 1 -yl]methyl} pyridin-2- amin {Racemai)
Figure imgf000229_0002
Zu einer Lösung von 700 mg (1.68 mmol, Reinheit 95%) der Verbindung aus Beispiel 92A in 8 ml DMF gab man 322 mg (1.677 mmol) EDC sowie 227 mg (1.677 mmol) HOBt hinzu, rührte das Gemisch 30 min bei RT und fügte anschließend 498 mg (1.68 mmol, Reinheit 90%) der Verbindung aus Beispiel 69A hinzu. Man rührte weitere 30 min bei RT und erhitzte das Gemisch an- schließend für 30 min unter Rühren auf 150°C. Nach dem Abkühlen auf RT engte man das Gemisch ein und nahm den Rückstand in Ethylacetat und Wasser auf. Nach Trennung der Phasen wurde die wässrige Phase einmal mit Ethylacetat extrahiert. Die vereinigten Ethylacetat-Phasen wurden einmal mit gesättigter Natriumchlorid-Lösung gewaschen, über Magnesiumsulfat getrock- net, filtriert und eingeengt. Der Rückstand wurde mittels präparativer HPLC gereinigt (Methode N). Nach Trocknen des Produkts im Vakuum wurden 87 mg (8% d. Th., Reinheit 98%) der Titelverbindung erhalten.
LC/MS (Methode I, ESIpos): R. = 1.08 min, m/z = 628 [M+H]+.
Schritt 2: N-Methyl-5-{ [5-methyl-3-(3-{4-[S-(trifluormethyl)sulfonimidoyl]phenyl}-l ,2,4-
Figure imgf000230_0001
Zu einer Lösung von 85 mg (0.135 mmol, Reinheit 96%) der Verbindung aus Beispiel 188 / Schritt 1 in 0.7 ml Dichlormethan gab man 0.7 ml (9.086 mmol) Trifluoressigsäure hinzu und rührte das Gemisch 28 h bei RT. Man engte danach ein und reinigte den Rückstand mittels präparativer ΗPLC (Methode Ν). Die vereinigten Produktfraktionen wurden bis auf ein Restvolumen an wäss- riger Phase eingeengt und mit gesättigter wässriger Νatriumhydrogencarbonat-Lösung versetzt. Der entstandene Feststoff wurde abfiltriert, zweimal mit Wasser gewaschen und im Vakuum getrocknet. Man erhielt 39 mg (60% d. Th.) der Titelverbindung.
1H-NMR (400 MHz, CDCl3, δ/ppm): 8.49 (d, 2H), 8.28 (d, 2H), 8.03 (s, IH), 7.40 (d, IH), 6.80 (s, IH), 6.36 (d, IH), 5.30 (s, 2H), 4.61 (s, breit, IH), 3.72 (s, IH), 2.92 (d, 3H), 2.32 (s, 3H).
LC/MS (Methode F, ESIpos): R, = 0.94 min, m/z = 478 [M+H]+.
Beispiel 189
Ethyl-4-{4-[5-(5-methyl-l-{[6-(methylamino)pyridin-3-yl]methyl}-lH-pyrazol-3-yl)-l,2,4-oxa- diazol-3 -y 1] pheny 1 } tetrahydro-2H-pyran-4-carboxy lat
Figure imgf000231_0001
80 mg (0.16 mmol) der Verbindung aus Beispiel 153 wurden in 0.97 ml (7.87 mmol) einer 33%- igen Lösung von Methylamin in Ethanol in der Mikrowelle für 9 h auf 1600C erhitzt. Nach dem Abkühlen auf RT wurde das Gemisch direkt mittels präparativer HPLC gereinigt (Methode P). Man engte die vereinigten Produktfraktionen am Rotationsverdampfer ein. Nach Trocknen des Rückstands im Vakuum wurden 36 mg (40% d. Th.) der Titelverbindung erhalten.
1H-NMR (400 MHz, DMSO-(I6, δ/ppm): 8.06 (d, 2H), 7.99 (d, IH), 7.59 (d, 2H), 7.30 (dd, IH), 6.87 (s, IH), 6.54 (m, IH), 6.42 (d, IH), 5.27 (s, 2H), 4.12 (q, 2H), 3.84 (m, 2H), 3.46 (t, 2H), 2.74 (d, 3H), 2.42 (m, 2H), 2.38 (s, 3H), 1.94 (m, 2H), 1.12 (t, 3H).
LC/MS (Methode D, ESIpos): R, = 1.74 min, m/z = 503 [M+H]+.
Beispiel 190
(4-{4-[5-(5-Methyl-l-{[6-(methylamino)pyridin-3-yl]methyl}-lH-pyrazol-3-yl)-l,2,4-oxadiazol-3- yl]phenyl}tetrahydro-2H-pyran-4-yl)methanol
50 mg (0.11 mmol) der Verbindung aus Beispiel 155 wurden in 505 mg (5.36 mmol) einer 33%- igen Lösung von Methylamin in Ethanol für 9 h in der Mikrowelle bei 1500C gerührt. Nach dem Abkühlen auf RT wurde das Gemisch direkt mittels präparativer ΗPLC gereinigt (Methode P). Man engte die vereinigten Produktfraktionen am Rotationsverdampfer ein. Nach Trocknen des Rückstands im Vakuum wurden 15 mg (29% d. Th.) der Titelverbindung erhalten. 1H-NMR (400 MHz, DMSOd6, δ/ppm): 8.02 (d, 2H), 7.99 (d, IH), 7.57 (d, 2H), 7.30 (dd, IH), 6.87 (s, IH), 6.56 (q, IH), 6.42 (d, IH), 5.27 (s, 2H), 4.70 (t, IH), 3.71 (m, 2H), 3.43 (d, 2H), 3.38 (m, 2H), 2.74 (d, 3H), 2.38 (s, 3H), 2.03 (m, 2H), 1.89 (m, 2H).
LC/MS (Methode D, ESIpos): R, = 1.43 min, m/z = 461 [M+H]+.
Beispiel 191
NN-Dimethyl-4-{4-[5-(5-methyl-l-{[6-(methylamino)pyridin-3-yl]methyl}-lH-pyrazol-3-yl)- l,2,4-oxadiazol-3-yl]phenyl}tetrahydro-2H-pyran-4-carboxamid
Figure imgf000232_0001
60 mg (0.12 mmol) der Verbindung aus Beispiel 156 wurden in 1.2 ml Ethanol und 1.2 ml einer 8 M Lösung von Methylamin in Ethanol für 10 h in der Mikrowelle bei 16O0C gerührt. Nach dem Abkühlen auf RT wurde das Gemisch direkt mittels präparativer HPLC gereinigt (Methode P). Man engte die vereinigten Produktfraktionen am Rotationsverdampfer ein. Nach Trocknen des Rückstands im Vakuum wurden 25 mg (42% d. Th.) der Titelverbindung erhalten.
1H-NMR (400 MHz, DMSOd6, δ/ppm): 8.07 (d, 2H), 7.99 (d, IH), 7.46 (d, 2H), 7.30 (dd, IH), 6.86 (s, IH), 6.56 (q, IH), 6.41 (d, IH), 5.27 (s, 2H), 3.78 (m, 2H), 3.61 (t, 2H), 2.73 (d, 3H), 2.38 (s, 3H), 2.21 (d, 2H), 1.95 (m, 2H).
LC/MS (Methode I, ESIpos): R, = 0.76 min, m/z = 502 [M+H]+.
Beispiel 192
N-Methyl-4-{4-[5-(5-methyl-l-{[6-(methylamino)pyridin-3-yl]methyl}-lH-pyrazol-3-yl)-l,2,4- oxadiazol-3-yl]phenyl}tetrahydro-2H-pyran-4-carboxamid
Figure imgf000233_0001
Analog zu dem unter Beispiel 191 beschriebenen Verfahren erhielt man aus 100 mg (0.20 mmol) der Verbindung aus Beispiel 157 34 mg (34% d. Th.) der Titelverbindung.
1H-NMR (400 MHz, DMSOd6, δ/ppm): 8.03 (d, 2H), 7.99 (d, IH), 7.67 (q, IH), 7.55 (d, 2H), 7.29 (dd, IH), 6.86 (s, IH), 6.54 (q, IH), 6.41 (d, IH), 5.27 (s, 2H), 3.75 (m, 2H), 3.47 (t, 2H), 2.73 (d, 3H), 2.56 (d, 3H), 2.46 (d, 2H), 2.38 (s, 3H), 1.89 (m, 2H).
LC/MS (Methode I, ESIpos): R, = 0.70 min, m/z = 488 [M+H]+.
Beispiel 193
2,2-Dimethyl-3-({5-[(5-methyl-3-{3-[4-(l,l,l-trifluor-2-methylpropan-2-yl)phenyl]-l,2,4-oxa- diazol-5-y 1 } - lH-pyrazol- 1 -yl)methyl]pyridin-2-y 1 } amino)propan- 1 -ol
Figure imgf000233_0002
100 mg (0.22 mmol) der Verbindung aus Beispiel 68 und 111 mg (1.08 mmol) 3-Amino-2,2-di- methylpropan-1-ol wurden in 1 ml DMSO gelöst und über Nacht auf 1600C erhitzt. Nach dem Abkühlen auf RT wurde das Gemisch direkt mittels präparativer HPLC gereinigt (Methode P). Man engte die vereinigten Produktfraktionen am Rotationsverdampfer ein. Nach Trocknen des Rückstands im Vakuum wurden 18 mg (15% d. Th.) der Titelverbindung erhalten.
1H-NMR (400 MHz, DMSO-d6, δ/ppm): 8.09 (d, 2H), 7.92 (d, IH), 7.77 (d, 2H), 7.29 (dd, IH), 6.88 (s, IH), 6.67 (breit, IH), 6.54 (d, IH), 5.26 (s, 2H), 4.97 (breit, IH), 3.10 (d, 2H), 3.06 (d, 2H), 2.38 (s, 3H), 1.61 (s, 6H), 0.81 (s, 6H).
LC/MS (Methode C, ESIpos): R, = 2.00 min, m/z = 529 [M+H]+. Beispiel 194
3-(Methyl{5-[(5-methyl-3-{3-[4-(l,l,l-trifluor-2-methylpropan-2-yl)phenyl]-l,2,4-oxadiazol-5- yl}-lH-pyrazol-l-yl)methyl]pyridin-2-yl}amino)propan-l-ol
Figure imgf000234_0001
90 mg (0.19 mmol) der Verbindung aus Beispiel 68 und 87 mg (0.97 mmol) 3-(Methylamino)- propan-1-ol wurden in 1 ml N-Methylpyrrolidin-2-on gelöst und in der Mikrowelle 8 h lang auf 1600C erhitzt. Nach dem Abkühlen auf RT wurde das Gemisch direkt mittels präparativer HPLC gereinigt (Methode P). Man engte die vereinigten Produktfraktionen am Rotationsverdampfer ein. Nach Trocknen des Rückstands im Vakuum wurden 48 mg (48% d. Th.) der Titelverbindung erhal- ten.
1H-NMR (400 MHz, DMSO-d6, δ/ppm): 8.09 (d, 2H), 8.07 (d, IH), 7.77 (d, 2H), 7.41 (dd, IH), 6.88 (s, IH), 6.60 (d, IH), 5.30 (s, 2H), 4.51 (t, IH), 3.51 (d, 2H), 3.40 (q, 2H), 2.97 (s, 3H), 2.39 (s, 3H), 1.64 (m, 2H), 1.61 (s, 6H).
LC/MS (Methode I, ESIpos): R, = 1.03 min, m/z = 515 [M+H]+.
Beispiel 195
2-Hydrazino-5-[(5-methyl-3-{3-[4-(trifluormethoxy)phenyl]-l,2,4-oxadiazol-5-yl}-lH-pyrazol-l- yl)methyl]pyridin
Figure imgf000234_0002
1.00 g (2.29 mmol) der Verbindung aus Beispiel 2 wurden unter Argon bei RT mit 5.0 ml (103 mmol) Ηydrazinhydrat versetzt. Man erhitzte das Gemisch 16 h lang unter Rühren zum Rückfluss, gab dann weitere 5.0 ml Ηydrazinhydrat hinzu und ließ das Gemisch erneut für 16 h unter Rückfluss rühren. Der dabei gebildete Feststoff wurde durch Zugabe von 10 ml Ethanol wieder in Lösung gebracht, und das Gemisch wurde anschließend weitere 24 h unter Rühren zum Rückfluss erhitzt. Nach dem Abkühlen auf RT wurde der gebildete Feststoff abfiltriert, einmal mit einem 1 : 1- Gemisch von Wasser und Ethanol gewaschen und im Vakuum getrocknet. Man erhielt 788 mg (80% d. Th.) der Titelverbindung.
1H-NMR (400 MHz, CDCl3, δ/ppm): 8.25 (d, 2H), 8.06 (d, IH), 7.43-7.39 (dd, IH), 7.32 (d, 2H), 6.79 (s, IH), 6.69 (d, IH), 5.88 (s, IH), 5.31 (s, 2H), 3.80 (s, breit, 2H), 2.31 (s, 3H).
LC/MS (Methode I, ESIpos): R, = 0.90 min, m/z = 432 [M+H]+.
Beispiel 196
N-Methyl-5-[(2-methyl-4-{3-[4-(l,l,l-trifluor-2-methylpropan-2-yl)phenyl]-l,2,4-oxadiazol-5-yl}- lH-pyrrol- 1 -yl)methyl]pyridin-2-amin
Figure imgf000235_0001
Ein Gemisch aus 200 mg (0.434 mmol) der Verbindung aus Beispiel 75 und 5.4 ml (43.4 mmol) einer 33%-igen Methylamin-Lösung in Ethanol wurde 5 h lang in einem Mikrowellengerät (CEM Discover, initiale Einstrahlleistung 100 W) auf 1600C erhitzt. Nach dem Abkühlen auf RT wurde das Gemisch durch zweimalige präparative HPLC gereinigt (Methode N). Die vereinigten Produkt- fraktionen wurden bis auf ein Restvolumen an wässriger Phase eingeengt, mit gesättigter wässriger Natriumhydrogencarbonat-Lösung versetzt und zweimal mit Ethylacetat extrahiert. Die vereinigten Ethylacetat-Phasen wurden anschließend über Magnesiumsulfat getrocknet, filtriert und eingeengt. Nach Trocknen des Rückstands im Vakuum erhielt man 62 mg (31% d. Th.) der Titelverbindung.
1H-NMR (400 MHz, CDCl3, δ/ppm): 8.10 (d, 2H), 7.99 (d, IH), 7.60 (d, 2H), 7.42 (d, IH), 7.21- 7.18 (dd, IH), 6.53 (s, IH), 6.38 (d, IH), 4.92 (s, 2H), 4.63-4.55 (m, breit, IH), 2.93 (d, 3H), 2.24 (s, 3H), 1.61 (s, 6H).
LC/MS (Methode F, ESIpos): R, = 1.14 min, m/z = 456 [M+H]+.
Beispiel 197
N-Ethyl-5-[(2-methyl-4- {3-[4-( 1,1,1 -trifluor-2-methylpropan-2-yl)phenyl]- 1 ,2,4-oxadiazol-5-yl}- lH-pyrrol-l-yl)methyl]pyridin-2-amin
Figure imgf000236_0001
Ein Gemisch aus 200 mg (0.434 mmol) der Verbindung aus Beispiel 75, 4.3 ml (8.68 mmol) einer 2 M Lösung von Ethylamin in THF sowie 2.0 ml (24.8 mmol) einer 70%-igen Ethylamin-Lösung in Wasser wurde 6 h lang in einem Mikrowellengerät (CEM Discover, initiale Einstrahlleistung 250 W) auf 1700C erhitzt. Nach Abkühlen auf RT wurden weitere 1.0 ml (12.4 mmol) einer 70%- igen Ethylamin-Lösung in Wasser hinzugegeben, und das Gemisch wurde erneut für 6 h in dem Mikrowellengerät auf 1700C erhitzt. Nach Abkühlen auf RT wurde das Gemisch eingeengt und der Rückstand mittels präparativer HPLC gereinigt (Methode N). Die vereinigten Produktfraktionen wurden bis auf ein Restvolumen an wässriger Phase eingeengt. Man versetzte mit gesättigter wäss- riger Natriumhydrogencarbonat-Lösung und extrahierte zweimal mit Ethylacetat. Die Ethylacetat- Phasen wurden vereinigt, über Magnesiumsulfat getrocknet, filtriert und eingeengt. Nach Trocknen des Rückstands im Vakuum erhielt man 83 mg (40% d. Th.) der Titelverbindung.
1H-NMR (400 MHz, CDCl3, δ/ppm): 8.10 (d, 2H), 7.96 (s, IH), 7.61 (s, 2H), 7.43 (s, IH), 7.21- 7.17 (dd, IH), 6.54 (s, IH), 6.37 (d, IH), 4.92 (s, 2H), 4.65 (s, breit, IH), 3.35-3.28 (m, 2H), 2.24 (s, 3H), 1.61 (s, 6H), 1.29-1.22 (t, 3H).
LC/MS (Methode F, ESIpos): R. = 1.20 min, m/z = 470 [M+H]+.
Beispiel 198
2-(Methylsulfanyl)-5-[(5-methyl-3-{3-[4-(l,l,l-trifluor-2-methylpropan-2-yl)phenyl]-l,2,4-oxa- diazol-5-yl}-lH-pyrazol-l-yl)methyl]pyridin
Figure imgf000236_0002
Ein Gemisch aus 100 mg (0.217 mmol) der Verbindung aus Beispiel 68 und 46 mg (0.650 mmol) Natriummethanthiolat in 1 ml Dioxan wurde 5 h lang unter Rühren zum Rückfluss erhitzt. Nach Abkühlen auf RT versetzte man das Gemisch mit 20 ml Wasser und 20 ml Ethylacetat, trennte die Phasen und extrahierte die wässrige Phase noch zweimal mit 20 ml Ethylacetat. Die vereinigten Ethylacetat-Phasen wurden über Natriumsulfat getrocknet, filtriert und eingeengt. Der Rückstand wurde mittels Flash-Chromatographie gereinigt (Kieselgel, Laufmittel: Cyclohexan/Ethylacetat 3:2). Nach Trocknen im Vakuum erhielt man 64 mg (62% d. Th.) der Titelverbindung.
1H-NMR (400 MHz, CDCl3, δ/ppm): 8.35 (s, IH), 8.19 (d, 2H), 7.62 (d, 2H), 7.37 (d, IH), 7.15 (d, IH), 6.81 (s, IH), 5.39 (s, 2H), 2.55 (s, 3H), 2.32 (s, 3H), 1.63 (s, 6H).
LC/MS (Methode F, ESIpos): R, = 1.55 min, m/z = 474 [M+H]+.
Beispiel 199
2-Methoxy-5-[(5-methyl-3-{3-[4-(trifluormethoxy)phenyl]-l,2,4-oxadiazol-5-yl}-lH-pyrazol-l-yl)- methyl]pyridin
Figure imgf000237_0001
Analog zu dem unter Beispiel 2 beschriebenen Verfahren wurden 155 mg (0.50 mmol) der Verbindung aus Beispiel 23A und 118 mg (0.750 mmol) 5-(Chlormethyl)-2-methoxypyridin [Η. Ηarada et al, WO 2006/101081] zu 24 mg (11% d. Th., Reinheit 99%) einer ersten Charge und 49 mg (19% d. Th., Reinheit 83%) einer zweiten Charge der Titelverbindung umgesetzt. Abweichend von der genannten Vorschrift betrug die Reaktionszeit in diesem Fall 36 h bei einer Temperatur von 500C. Die Reinigung des Rohprodukts erfolgte mittels präparativer ΗPLC (Methode N). Die Titelverbindung wurde isoliert, indem man die in zwei getrennten Chargen vereinigten Produktfraktionen jeweils bis auf ein Restvolumen an wässriger Phase einengte, den Rückstand mit gesättigter wässri- ger Natriumhydrogencarbonat-Lösung versetzte und zweimal mit Ethylacetat extrahierte. Die in zwei Chargen vereinigten Ethylacetat-Phasen wurden anschließend über Magnesiumsulfat getrocknet, filtriert und eingeengt und die jeweiligen Rückstände im Vakuum getrocknet.
1H-NMR (400 MHz, CDCl3, δ/ppm): 8.25 (d, 2H), 8.09 (d, IH), 7.51-7.48 (dd, IH), 7.33 (d, 2H), 6.80 (s, IH), 6.72 (d, IH), 5.38 (s, 2H), 3.92 (s, 3H), 2.32 (s, 3H).
LC/MS (Methode F, ESIpos): R. = 1.47 min, m/z = 432 [M+H]+.
Beispiel 200
2-Methoxy-5-[(5-methyl-3-{3-[4-(l,l,l-trifluor-2-methylpropan-2-yl)phenyl]-l,2,4-oxadiazol-5- yl}-lH-pyrazol-l-yl)methyl]pyridin
Figure imgf000238_0001
Analog zu dem unter Beispiel 2 beschriebenen Verfahren wurden 168 mg (0.50 mmol) der Verbindung aus Beispiel 24A und 118 mg (0.750 mmol) 5-(Chlormethyl)-2-methoxypyridin [H. Harada et al, WO 2006/101081] zu 83 mg (36% d. Th.) der Titelverbindung umgesetzt. Abweichend von der genannten Vorschrift betrug die Reaktionszeit hier 36 h bei einer Temperatur von 500C. Die Reinigung des Rohprodukts erfolgte mittels präparativer HPLC (Methode N). Die Titelverbindung wurde isoliert, indem man die vereinigten Produktfraktionen bis auf ein Restvolumen an wässriger Phase einengte, mit gesättigter wässriger Natriumhydrogencarbonat-Lösung versetzte und zweimal mit Ethylacetat extrahierte. Die vereinigten Ethylacetat-Phasen wurden anschließend über Magne- siumsulfat getrocknet, filtriert und eingeengt und der Rückstand im Vakuum getrocknet.
1H-NMR (400 MHz, CDCl3, δ/ppm): 8.19 (d, 2 H), 8.08 (d, 1 H), 7.62 (d, 2H), 7.51-7.48 (dd, IH), 6.80 (d, IH), 6.72 (d, IH), 5.38 (s, 2H), 3.92 (s, 3H), 2.32 (d, 3H), 1.62 (s, 6H).
LC/MS (Methode F, ESIpos): R. = 1.50 min, m/z = 458 [M+H]+.
Beispiel 201
2-Cyclopropyl-5-[(5-methyl-3 - { 3-[4-(trifluormethoxy)phenyl]- 1 ,2,4-oxadiazol-5-y 1 } - 1 H-pyrazol- 1 - yl)methyl]pyridin
Figure imgf000238_0002
Zu einer Lösung von 150 mg (0.284 mmol) der Verbindung aus Beispiel 158 in 1.5 ml DMF gab man unter Argon bei RT 16 mg (0.014 mmol) Tetrakis(triphenylphosphin)palladium(0) sowie 1.14 ml (0.569 mmol) einer 0.5 M Lösung von Brom(cyclopropyl)zink in TΗF hinzu und rührte das Gemisch über Nacht bei RT. Man versetzte danach mit 20 ml Wasser, filtrierte den entstandenen Feststoff ab, wusch diesen zweimal mit Wasser und trocknete ihn im Vakuum. Anschließend wurde der Feststoff in einem Gemisch aus Wasser, Acetonitril und DMSO in der Wärme ver- rührt. Der verbliebene Niederschlag wurde abfiltriert, zweimal mit 2 ml Wasser gewaschen und im Vakuum getrocknet. Man erhielt 92 mg (73% d. Th.) der Titelverbindung.
1H-NMR (400 MHz, CDCl3, δ/ppm): 8.35 (s, IH), 8.25 (d, 2H), 7.42-7.31 (m, 4H), 7.10 (d, IH), 6.80 (s, IH), 5.40 (s, 2H), 2.31 (s, 3H), 2.06-1.99 (m, IH), 1.03-0.99 (m, 4H).
LC/MS (Methode I, ESIpos): R4 = 1.28 min, m/z = 442 [M+H]+.
Beispiel 202
2-Chlor-4-[(5-methyl-3-{3-[4-(tetrahydro-2H-pyran-4-yl)phenyl]-l,2,4-oxadiazol-5-yl}-lH- pyrazol-l-yl)methyl]pyridin
Figure imgf000239_0001
Analog zu dem unter Beispiel 3 beschriebenen Verfahren wurden 204 mg (1.26 mmol) der Verbindung aus Beispiel 38A und 300 mg (0.967 mmol) der Verbindung aus Beispiel 74A zu 220 mg (52% d. Th.) der Titelverbindung umgesetzt. Die Isolierung des Produkts erfolgte mittels präpara- tiver ΗPLC (Methode M).
1H-NMR (400 MHz, CDCl3, δ/ppm): 8.37 (d, IH), 8.14 (d, 2H), 7.35 (d, 2H), 7.05 (d, IH), 6.96 (dd, IH), 6.88 (s, IH), 5.43 (s, 2H), 4.12-4.08 (m, 2H), 3.58-3.52 (m, 2H), 2.88-2.79 (m, IH), 2.31 (s, 3H), 1.92-1.79 (m, 4H).
LC/MS (Methode I, ESIpos): R1 = 1.16 min, m/z = 436/438 [M+H]+.
Beispiel 203
2-Chlor-4-[(5-methyl-3-{3-[3-methyl-4-(tetrahydro-2H-pyran-4-yl)phenyl]-l,2,4-oxadiazol-5-yl}- lH-pyrazol-l-yl)methyl]pyridin
Figure imgf000239_0002
Analog zu dem unter Beispiel 3 beschriebenen Verfahren wurden 121 mg (0.749 mmol) der Verbindung aus Beispiel 38A und 187 mg (0.576 mmol) der Verbindung aus Beispiel 75A zu 150 mg (58% d. Th.) der Titelverbindung umgesetzt. Das Reaktionsgemisch wurde in diesem Fall 8 h unter Rückfluss erhitzt. Die Isolierung des Produkts erfolgte mittels präparativer HPLC (Methode M).
1H-NMR (400 MHz, CDCl3, δ/ppm): 8.37 (d, IH), 8.02 (d, IH), 8.01 (dd, IH), 7.34 (d, IH), 7.05 (d, IH), 6.96 (dd, IH), 6.88 (s, IH), 5.43 (s, 2H), 4.13-4.09 (m, 2H), 3.61-3.53 (m, 2H), 3.07-2.99 (m, IH), 2.43 (s, 3H), 2.31 (s, 3H), 1.92-1.81 (m, 2H), 1.74-1.69 (m, 2H).
LC/MS (Methode F, ESIpos): R, = 1.34 min, m/z = 448/450 [M+H]+.
Beispiel 204
4-( {3-[3-(4-ter/. -Butylphenyl> 1 ,2,4-oxadiazol-5-yl]-5-methyl- lH-pyrazol- 1 -yl}methyl>2-chlor- pyridin
Figure imgf000240_0001
Analog zu dem unter Beispiel 3 beschriebenen Verfahren wurden 1.15 g (7.08 mmol) der Verbindung aus Beispiel 38A und 1.0 g (3.54 mmol) der Verbindung aus Beispiel 82A zu 578 mg (40% d. Th.) der Titelverbindung umgesetzt.
1H-NMR (400 MHz, CDCl3, δ/ppm): 8.37 (d, IH), 8.13 (d, 2H), 7.51 (d, 2H), 7.06 (s, IH), 6.97 (d, IH), 6.89 (s, IH), 5.44 (s, 2H), 2.30 (s, 3H), 1.36 (s, 9H).
LC/MS (Methode F, ESIpos): R. = 1.55 min, m/z = 408/410 [M+H]+.
Beispiel 205
2-Chlor-4-{[3-(3-{4-[l-(methoxymethyl)cyclobutyl]phenyl}-l,2,4-oxadiazol-5-yl)-5-methyl-lH- pyrazol- 1 -yl]methy 1} pyridin
Figure imgf000241_0001
Analog zu dem unter Beispiel 3 beschriebenen Verfahren wurden 749 mg (4.62 mmol) der Verbindung aus Beispiel 38A und 750 mg (2.31 mmol) der Verbindung aus Beispiel 77A zu 447 mg (43% d. Th.) der Titelverbindung umgesetzt.
1H-NMR (400 MHz, CDCl3, δ/ppm): 8.37 (d, IH), 8.13 (d, 2H), 7.30 (d, 2H), 7.06 (s, IH), 6.97 (d, IH), 6.88 (s, IH), 5.43 (s, 2H), 3.56 (s, 2H), 3.29 (s, 3H), 2.41-2.29 (m, 4H), 2.31 (s, 3H), 2.16- 2.04 (m, IH), 1.93-1.83 (m, IH).
LC/MS (Methode I, ESIpos): R. = 1.34 min, m/z = 450/452 [M+H]+.
Beispiel 206
2-Chlor-4-[(3-{3-[3-chlor-4-(trifluormethoxy)phenyl]-l,2,4-oxadiazol-5-yl}-5-methyl-lH-pyrazol- 1 -yl)methyl]pyridin
Figure imgf000241_0002
Analog zu dem unter Beispiel 2 beschriebenen Verfahren wurden 500 mg (1.38 mmol, Reinheit 95%) der Verbindung aus Beispiel 84A und 290 mg (1.79 mmol) der Verbindung aus Beispiel 38A zu 386 mg (57% d. Th., Reinheit 96%) der Titelverbindung umgesetzt. Das Reaktionsgemisch wurde in diesem Fall 14 h unter Rückfluss erhitzt.
1H-NMR (400 MHz, CDCl3, δ/ppm): 8.40-8.37 (m, 2H), 8.12 (d, IH), 7.44 (d, IH), 7.05 (s, IH), 6.96 (d, IH), 6.89 (s, IH), 5.45 (s, 2H), 2.31 (s, 3H).
LC/MS (Methode I, ESIpos): R. = 1.36 min, m/z = 469/471 [M+H]+.
Beispiel 207
2-Chlor-4-{[5-methyl-3-(3-{4-[l-(trifluormethyl)cyclopropyl]phenyl}-l,2,4-oxadiazol-5-yl)-lH- pyrazol- 1 -y l]methyl} pyridin
Figure imgf000242_0001
Ein Gemisch aus 450 mg (1.35 mmol) der Verbindung aus Beispiel 86A, 284 mg (1.75 mmol)
2-Chlor-4-(chlormethyl)pyridin und 166 mg (1.48 mmol) Kalium-ter/.-butylat in 12 ml THF wurde über Nacht unter Rühren zum Rückfluss erhitzt. Nach Abkühlen auf RT wurde das Gemisch mit Ethylacetat und Wasser versetzt. Man trennte die Phasen und extrahierte die wässrige Phase noch zweimal mit Ethylacetat. Die vereinigten Ethylacetat-Phasen wurden einmal mit gesättigter
Natriumchlorid-Lösung gewaschen, über Magnesiumsulfat getrocknet, filtriert und eingeengt. Der
Rückstand wurde mittels Säulenchromatographie gereinigt (Kieselgel, Laufmittel: Cyclohexan/
Ethylacetat 7:3). Nach Trocknen im Vakuum erhielt man 352 mg (57% d. Th.) der Titelverbin- düng.
1H-NMR (400 MHz, CDCl3, δ/ppm): 8.37 (d, IH), 8.19 (d, 2H), 7.60 (d, 2H), 7.05 (s, IH), 6.96 (d, IH), 6.88 (s, IH), 5.44 (s, 2H), 2.30 (s, 3H), 1.42-1.39 (m, 2H), 1.09 (s, breit, 2H).
LC/MS (Methode F, ESIpos): R, = 1.48 min, m/z = 460/462 [M+H]+.
Beispiel 208
2-Brom-4-[(5-methyl-3-{3-[4-(trifluormethoxy)phenyl]-l,2,4-oxadiazol-5-yl}-lH-pyrazol-l-yl)- methyljpyridin
Figure imgf000242_0002
Analog zu dem unter Beispiel 1 beschriebenen Verfahren wurden 1.05 g (4.19 mmol) der Verbindung aus Beispiel 87A mit 1.0 g (3.22 mmol) der Verbindung aus Beispiel 23 A zu 0.71 g (45% d. Th.) der Titelverbindung umgesetzt. Die Reaktionsdauer betrug in diesem Fall 16 h.
1H-NMR (400 MHz, CDCl3, δ/ppm): 8.35 (d, IH), 8.24 (d, 2H), 7.33 (d, 2H), 7.22 (d, IH), 6.99 (dd, IH), 6.89 (s, IH), 5.42 (s, 2H), 2.31 (s, 3H).
LC/MS (Methode I, ESIpos): R, = 1.32 min, m/z = 480/482 [M+H]+. Beispiel 209
N-Methyl-4-[(5-methyl-3-{3-[4-(trifluormethoxy)phenyl]-l,2,4-oxadiazol-5-yl}-lH-pyrazol-l-yl)- methyl]pyridin-2-amin
Figure imgf000243_0001
Analog zu dem unter Beispiel 24 beschriebenen Verfahren wurden 150 mg (0.344 mmol) der Verbindung aus Beispiel 3 und 4.3 ml (34.4 mmol) einer 33%-igen Methylamin-Lösung in Ethanol zu 97 mg (66% d. Th.) der Titelverbindung umgesetzt. Die Reaktionsdauer betrug in diesem Fall 3 h bei 1400C in einem Mikrowellengerät (initiale Einstrahlleistung 100 W).
1H-NMR (400 MHz, CDCl3, δ/ppm): 8.31-8.20 (m, 2H), 8.05 (d, IH), 7.34 (d, 2H), 6.84 (s, IH), 6.33 (d, IH), 6.03 (s, IH), 5.34 (s, 2H), 4.54 (d, IH), 2.88 (d, 3H), 2.29 (s, 3H).
LC/MS (Methode I, ESIpos): R, = 0.94 min, m/z = 431 [M+H]+.
Beispiel 210
2-Cyclopropyl-4-[(5-methyl-3-{3-[4-(trifluormethoxy)phenyl]-l,2,4-oxadiazol-5-yl}-lH-pyrazol-l- y l)methy 1] pyridin
Figure imgf000243_0002
Unter inerten Bedingungen wurde eine Lösung von 100 mg (0.208 mmol) der Verbindung aus Beispiel 208 und 12 mg (0.010 mmol) Tetrakis(triphenylphosphin)palladium(0) in 2 ml wasserfreiem DMF mit 833 μl (0.416 mmol) einer 0.5 M Lösung von Cyclopropylzinkbromid in TΗF versetzt. Nachdem das Reaktionsgemisch 16 h bei RT gerührt worden war, wurde mit 3 Tropfen Wasser hydrolysiert und mit ca. 2 ml Ethanol verdünnt. Die so erhaltene Lösung wurde direkt mittels prä- parativer ΗPLC (Methode M) in ihre Komponenten aufgetrennt. Es wurden 68 mg (73% d. Th.) der Titelverbindung erhalten.
1H-NMR (400 MHz, CDCl3, δ/ppm): 8.39 (d, IH), 8.25 (d, 2H), 7.33 (d, 2H), 6.86 (dd, IH und s, IH), 6.75 (dd, IH), 5.40 (s, 2H), 2.29 (s, 3H), 2.00-1.93 (m, IH), 1.03-0.94 (m, 4H). LC/MS (Methode I, ESIpos): R, = 1.22 min, m/z = 442 [M+H]+.
Beispiel 211
4-{4-[(5-Methyl-3-{3-[4-(trifluormethoxy)phenyl]-l,2,4-oxadiazol-5-yl}-lH-pyrazol-l-yl)methyl]- pyridin-2-yl}tetrahydro-2H-pyran-4-ol
Figure imgf000244_0001
Zu 39 mg (0.13 mmol) der Verbindung aus Beispiel 23 A in 1.3 ml TΗF gab man bei 00C 17 mg (0.15 mmol) Kalium-tert.-butylat hinzu, versetzte anschließend mit einer Lösung von 40 mg (max. 0.14 mmol) der Verbindung aus Beispiel 88A in 1 ml TΗF und rührte das Gemisch über Nacht bei RT. Der Ansatz wurde danach am Rotationsverdampfer eingeengt und der Rückstand mittels prä- parativer ΗPLC aufgereinigt (Methode P). Das so erhaltene Produkt wurde durch nochmalige prä- parative ΗPLC (Methode R) nachgereinigt. Es wurden 13 mg (20% d. Th.) der Titelverbindung erhalten.
1H-NMR (400 MHz, DMSOd6, δ/ppm): 8.53 (d, IH), 8.20 (d, 2H), 7.60 (d, 2H), 7.54 (s, IH), 7.04 (d, IH), 7.00 (s, IH), 5.63 (s, 2H), 3.72 (d, 4H), 2.34 (s, 3H), 2.15 (m, 2H), 1.43 (d, 2H).
LC/MS (Methode D, ESIpos): R4 = 2.25 min, m/z = 502 [M+H]+.
Beispiel 212
2-{4-[(5-Methyl-3-{3-[4-(trifluormethoxy)phenyl]-l,2,4-oxadiazol-5-yl}-lH-pyrazol-l-yl)methyl]- pyridin-2-yl}propan-2-ol
Figure imgf000244_0002
Analog zu dem unter Beispiel 211 beschriebenen Verfahren wurden 103 mg (0.33 mmol) der Verbindung aus Beispiel 23A und 113 mg (0.37 mmol) der Verbindung aus Beispiel 89A zu 50 mg (33% d. Th.) der Titelverbindung umgesetzt. 1H-NMR (400 MHz, DMSOd6, δ/ppm): 8.45 (d, IH), 8.20 (d, 2H), 7.59 (d, 2H), 7.46 (s, IH), 6.98 (s, IH), 6.92 (d, 2H), 5.58 (s, 2H), 5.20 (s, IH), 2.34 (s, 3H), 1.41 (s, 6H).
LC/MS (Methode D, ESIpos): R, = 2.18 min, m/z = 459 [M+H]+.
B. Bewertung der pharmakologischen Wirksamkeit
Die pharmakologische Aktivität der erfindungsgemäßen Verbindungen kann durch in vitro- und in v/vo-Untersuchungen, wie sie dem Fachmann bekannt sind, nachgewiesen werden. Die Nützlichkeit der erfindungsgemäßen Substanzen kann beispielhaft illustriert werden durch in vitro- (Tumor-)Zellversuche und in v/vo-Tumormodelle, wie sie weiter unten aufgeführt sind. Der Zusammenhang zwischen einer Hemmung der HIF-Transkriptionsaktivität und der Hemmung von Tumorwachstum ist durch zahlreiche in der Literatur beschriebene Untersuchungen belegt (vgl. z.B. Warburg, 1956; Semenza, 2007).
B-I . HIF-Luciferase-Assav:
HCT 116-Zellen wurden mit einem Plasmid stabil transfiziert, das einen Luciferase-Reporter unter der Kontrolle einer FflF-responsiven Sequenz enthielt. Diese Zellen wurden in Mikrotiterplatten ausgesät [20.000 Zellen/Kavität in RPMI 1640-Medium mit 10% fötalem Kälberserum (FKS) und 100 μg/ml Hygromycin]. Es wurde über Nacht unter Standardbedingungen inkubiert (5% CO2, 21% O2, 37°C, befeuchtet). Am anderen Morgen wurden die Zellen mit unterschiedlichen Konzen- trationen der Testsubstanzen (0-10 μmol/L) in einer Hypoxiekammer (1% Q2) inkubiert. Nach 24 h wurde Bright Glo-Reagenz (Fa. Promega, Wisconsin, USA) entsprechend den Vorschriften des Herstellers zugefügt, und nach 5 min wurde die Lumineszenz gemessen. Zellen, die unter Norm- oxie inkubiert wurden, dienten als Hintergrundkontrollen.
In der folgenden Tabelle sind für repräsentative Ausführungsbeispiele die IC50- Werte aus diesem Assay aufgeführt:
Figure imgf000246_0001
Figure imgf000247_0001
B-2. Suppression von HIF-Target-Genen in vitro:
Humane Bronchialkarzinom-Zellen (H460 und A549) wurden unter normoxischen Bedingungen sowie unter 1% Sauerstoffpartialdruck (siehe HIF-Luciferase-Assay) für 16 h mit variablen Kon- zentrationen der Testsubstanzen inkubiert (1 nM bis 10 μM). Aus den Zellen wurde die Gesamt- RNA isoliert, in cDNA umgeschrieben und in der Echtzeit-PCR die mRNA-Expression von HIF- Target-Genen analysiert. Bereits unter normoxischen Bedingungen, vor allem aber unter hypoxi- schen Bedingungen, erniedrigen aktive Testsubstanzen die mRNA-Expression der FflF-Target- Gene verglichen mit unbehandelten Zellen.
B-3. Humane Xenograft- und syngene Tumormodelle:
Humane Tumor-Xenograftmodelle in immundefizienten Mäusen und syngene Tumor-Mausmodelle wurden zur Substanzbewertung herangezogen. Dazu wurden Tumorzellen in vitro kultiviert und subkutan implantiert, oder es wurden Tumor-Xenotransplantatstückchen subkutan weiter- transplantiert. Die Behandlung der Tiere erfolgte durch orale, subkutane oder intraperitoneale Therapie nach der Etablierung des Tumors. Die Wirksamkeit von Testsubstanzen wurde in Monotherapie und in Kombinationstherapie mit anderen pharmakologischen Wirksubstanzen analysiert. Außerdem wurde die tumorinhibitorische Potenz von Testsubstanzen an Tumoren fortgeschrittener Größe (ca. 100 mm2) charakterisiert. Der Gesundheitszustand der Tiere wurde täglich überprüft, und die Behandlungen erfolgten entsprechend den Tierschutzbestimmungen. Die Tumorfläche wurde mit Schublehren gemessen (Länge L, Breite B = kleinere Ausdehnung). Das Tumorvolumen wurde nach der Formel (L x B2)/2 berechnet. Die Hemmung des Tumorwachstums wurde am Ende des Versuches als T/C-Verhältnis der Tumorflächen bzw. Tumorgewichte und als TGI-Wert (tumor growth inhibition, berechnet nach der Formel [1-(T/C)] x 100) bestimmt (T = Tumorgröße der behandelten Gruppe; C = Tumorgröße der unbehandelten Kontrollgruppe).
Der Einfluss von Testsubstanzen auf die Tumor-Gefäßarchitektur und den Blutfluss innerhalb des Tumors wurde mit Hilfe von Mikro-Computertomographie- und Mikro-Ultraschall-Untersuchun- gen anhand von behandelten und unbehandelten tumortragenden Mäusen identifiziert.
B-4. Bestimmung pharmakokinetischer Kenngrößen nach intravenöser und peroraler Gabe:
Die zu untersuchende Substanz wurde Tieren (z.B. Mäusen oder Ratten) intravenös als Lösung appliziert (z.B. in entsprechendem Plasma mit geringem DMSO-Zusatz oder in einem PEG/ Ethanol/Wasser-Gemisch), die perorale Applikation erfolgte als Lösung (z.B. in Solutol/Ethanol/ Wasser- oder PEG/Ethanol/Wasser-Gemischen) oder als Suspension (z.B. in Tylose) jeweils über eine Schlundsonde. Nach Substanzgabe wurde den Tieren zu festgelegten Zeitpunkten Blut ent- nommen. Dieses wurde heparinisiert, anschließend wurde daraus durch Zentrifugation Plasma gewonnen. Die Substanz wurde im Plasma über LC-MS/MS analytisch quantifiziert. Aus den so ermittelten Plasmakonzentration-Zeit- Verläufen wurden unter Verwendung eines internen Standards und mit Hilfe eines validierten Rechenprogramms die pharmakokinetischen Kenngrößen berechnet, wie AUC (Fläche unter der Konzentration-Zeit-Kurve), Cmax (maximale Plasmakonzentration), T1/2 (Halbwertszeit), Vss (Verteilungsvolumen) und CL (Clearance) sowie die absolute und die relative Bioverfügbarkeit (i.v./p.o.-Vergleich bzw. Vergleich von Suspension zu Lösung nach p.o.- Gabe). C. Ausführungsbeispiele für pharmazeutische Zusammensetzungen
Die erfindungsgemäßen Verbindungen können folgendermaßen in pharmazeutische Zubereitungen überführt werden:
Tablette:
Zusammensetzung:
100 mg der erfindungsgemäßen Verbindung, 50 mg Lactose (Monohydrat), 50 mg Maisstärke (nativ), 10 mg Polyvinylpyrrolidon (PVP 25) (Fa. BASF, Ludwigshafen, Deutschland) und 2 mg Magnesiumstearat.
Tablettengewicht 212 mg. Durchmesser 8 mm, Wölbungsradius 12 mm.
Herstellung:
Die Mischung aus erfindungsgemäßer Verbindung, Lactose und Stärke wird mit einer 5%-igen Lösung (m/m) des PVPs in Wasser granuliert. Das Granulat wird nach dem Trocknen mit dem Magnesiumstearat 5 Minuten gemischt. Diese Mischung wird mit einer üblichen Tablettenpresse verpresst (Format der Tablette siehe oben). Als Richtwert für die Verpressung wird eine Presskraft von 15 kN verwendet.
Oral applizierbare Suspension:
Zusammensetzung:
1000 mg der erfindungsgemäßen Verbindung, 1000 mg Ethanol (96%), 400 mg Rhodigel® (Xanthan gum der Firma FMC, Pennsylvania, USA) und 99 g Wasser.
Einer Einzeldosis von 100 mg der erfindungsgemäßen Verbindung entsprechen 10 ml orale Suspension.
Herstellung:
Das Rhodigel wird in Ethanol suspendiert, die erfindungsgemäße Verbindung wird der Suspension zugefügt. Unter Rühren erfolgt die Zugabe des Wassers. Bis zum Abschluß der Quellung des Rhodigels wird ca. 6 h gerührt. Oral applizierbare Lösung:
Zusammensetzung:
500 mg der erfindungsgemäßen Verbindung, 2.5 g Polysorbat und 97 g Polyethylenglycol 400. Einer Einzeldosis von 100 mg der erfindungsgemäßen Verbindung entsprechen 20 g orale Lösung.
Herstellung:
Die erfindungsgemäße Verbindung wird in der Mischung aus Polyethylenglycol und Polysorbat unter Rühren suspendiert. Der Rührvorgang wird bis zur vollständigen Auflösung der erfindungsgemäßen Verbindung fortgesetzt.
i.v.-Lösung:
Die erfindungsgemäße Verbindung wird in einer Konzentration unterhalb der Sättigungslöslichkeit in einem physiologisch verträglichen Lösungsmittel (z.B. isotonische Kochsalzlösung, Glucose- lösung 5% und/oder PEG 400-Lösung 30%) gelöst. Die Lösung wird steril filtriert und in sterile und pyrogenfreie Injektionsbehältnisse abgefüllt.
D. Literaturangaben
• Globocan 2002 Report
IARC International Agency for Research on Cancer: Globocan 2002, http://www-dep.iarc.fr/globocan/downloads.htm
• American Cancer Society, Cancer Facts and Figures 2005
American Cancer Society: Cancer Facts and Figures 2007, http://www.cancer.org/docroot/STT/content/STT_lx_Cancer_Facts_Figures_2007.asp
• Gibbs JB, 2000
Gibbs JB: Mechanism-based target identifϊcation and drug discovery in cancer research, Science 2000, 287 (5460), 1969- 1973.
• Semenza und Wang, 1992
Semenza GL, Wang GL: A nuclear factor induced by hypoxia via de novo protein synthesis binds to the human erythropoietin gene enhancer at a site required for transcriptional activation, Mol. Cell. Biol. 1992, 12 (12), 5447-5454.
• Wang und Semenza, 1995
Wang GL, Semenza GL: Purifϊcation and characterization of hypoxia-inducible factor 1, J. Biol. Chem. 1995, 270 (3), 1230-1237.
• Wang, Jiang et al., 1995
Wang GL, Jiang BH, Rue EA, Semenza GL: Hypoxia-inducible factor 1 is a basic-helix-loop- helix-PAS heterodimer regulated by cellular O2 tension, PNAS 1995, 92 (12), 5510-5514.
• Jiang, Rue et al., 1996
Jiang BH, Rue E, Wang GL, Roe R, Semenza GL: Dimerization, DNA binding, and transactivation properties of hypoxia-inducible factor 1, J. Biol. Chem. 1996, 271 (30), 17771-17778.
• Makino, Cao et al., 2001 Makino Y, Cao R, Svensson K, Bertilsson G, Asman M, Tanaka H, Cao Y, Poellinger L: Nature 2001, 414 (6863), 550-554. • Jiang, Semenza et al., 1996
Jiang BH, Semenza GL, Bauer C, Marti HH: Hypoxia-inducible factor 1 levels vary exponentially over a physiologically relevant ränge of O2 tension, Am. J. Physiol. 1996, 277, 1 172-1 180.
• Maxwell, Wiesener et al., 1999 Maxwell PH, Wiesener MS, Chang GW, Clifford SC, Vaux EC, Cockman ME, Wykoff CC, Ratcliffe PJ: The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen- dependent proteolysis, Nature 1999, 399 (6733), 271-275.
• Hirota und Semenza, 2006
Hirota K, Semenza GL: Regulation of angiogenesis by hypoxia-inducible factor 1, Crit. Rev. Oncol. Hematol. 2006, 59 (J), 15-26.
• Chen, Zhao et al, 2003
Chen J, Zhao S, Nakada K, Kuge Y, Tamaki N, Okada F, Wang J, Shindo M, Higashino F, Takeda K, Asaka M, Katoh H, Sugiyama T, Hosokawa M, Kobayashi M: Dominant-negative hypoxia- inducible factor- 1 alpha reduces tumorigenicity of pancreatic cancer cells through the suppression of glucose metabolism, Am. J. Pathol. 2003, 162 (4), 1283-1291.
• Stoeltzing, McCarty et al, 2004
Stoeltzing O, McCarty MF, Wey JS, Fan F, Liu W, Belcheva A, Bucana CD, Semenza GL, Ellis LM: RoIe of hypoxia-inducible factor- 1 alpha in gastric cancer cell growth, angiogenesis, and vessel maturation, J. Natl. Cancer Inst. 2004, 96 (12), 946-956.
• Li, Lin et al, 2005
Li L, Lin X, Staver M, Shoemaker A, Semizarov D, Fesik SW, Shen Y: Evaluating hypoxia- inducible factor- 1 alpha as a cancer therapeutic target via inducible RNA interference in vivo, Cancer Res. 2005, 65 (16), 7249-7258.
• Mizukami, Jo et al, 2005 Mizukami Y, Jo WS, Duerr EM, Gala M, Li J, Zhang X, Zimmer MA, Iliopoulos O, Zukerberg LR, Kohgo Y, Lynch MP, Rueda BR, Chung DC: Induction of interleukin-8 preserves the angio- genic response in HIF-lalpha-deficient colon cancer cells, Nat. Med. 2005, 11 (9), 992-997. • Li, Shi et al., 2006
Li J, Shi M, Cao Y, Yuan W, Pang T, Li B, Sun Z, Chen L, Zhao RC: Knockdown of hypoxia- inducible factor-lalpha in breast Carcinoma MCF-7 cells results in reduced tumor growth and increased sensitivity to methotrexate, Biochem. Biophys. Res. Commun. 2006, 342, 1341-1351.
• Semenza, 2007
Semenza GL: Drug Discov. Today 2007, 12 (19-20), 853-859.
• Weidemann und Johnson, 2008
Weidemann A, Johnson RS: Cell Death and Differentiation 2008, 15, 621-627.
Figure imgf000253_0001
Aiello et al.: New Engl. J. Med. 1994, 331, 1480.
• Peer et al., 1995
Peer et al.: Lab. Invest. 1995, 72, 638.
• Lopez et al., 1996
Lopez et al.: Invest. Ophthalmol. Vis. Sei. 1996, 37, 855.
• Warburg, 1956
Warburg O: Science 1956, 123 (3191), 309-314.

Claims

Patentansprüche
1. Verbindung der Formel (I)
Figure imgf000254_0001
in welcher entweder (a)
der R liinngg für einen Pyridyl-Ring
Figure imgf000254_0002
und
der Ring ( ^ ) mit dem Substituenten R3 für einen Heteroaryl-Ring der Formel
worin
# die Verknüpfungsstelle mit der angrenzenden CH2-Gruppe
und
## die Verknüpfungsstelle mit dem Ring ( D ) bezeichnen,
oder (b)
der Ring f A ^ für einen Phenyl-Ring und
der Ring ( ^ ) mit dem Substituenten R3 für einen Heteroaryl-Ring der Formel
Figure imgf000255_0001
worin
# die Verknüpfungsstelle mit der angrenzenden CEIrGruppe und
## die Verknüpfungsstelle mit dem Ring ( D ) bezeichnen,
stehen,
der Ring ( D J für einen Heteroaryl-Ring der Formel
Figure imgf000255_0002
"t N}— N " , *Ύ OJ—H JΓ" , -t V-O " , -Y N-O
Figure imgf000255_0003
steht, worin die Verknüpfüngsstelle mit dem Ring ( B )
und
** die Verknüpfungsstelle mit dem Ring ( E J bezeichnen,
der Ring für einen Phenyl- oder Pyridyl-Ring steht,
Figure imgf000256_0001
R1 für Wasserstoff oder einen Substituenten ausgewählt aus der Reihe Halogen,
Cyano, (CrC6)-Alkyl, (C2-C6)-Alkenyl, (C2-C6)-Alkinyl, (C3-C6)-Cycloalkyl, Oxe- tanyl, Tetrahydrofuranyl, Tetrahydropyranyl, -OR6, -SR6, -S(=O)-R6, -S(=O)2-R6, -C(=O)-OR6, -C(=O)-NR6R7, -SC=O)2-NR6R7, -NR6R8, -N(R6)-C(=O)-R7 und -N(R6)-S(=O)2-R7 steht,
wobei (Ci-C6)-Alkyl, (C2-C6)-Alkenyl und (C2-C6)-Alkinyl ihrerseits bis zu dreifach mit Fluor sowie bis zu zweifach, gleich oder verschieden, mit einem Rest ausgewählt aus der Reihe Hydroxy, (Q-C4)-Alkoxy, Trifluormethoxy, Tn-(C]-C4)- alkylsilyl, (Ci-C4)-Alkoxycarbonyl und (C3-C6)-Cycloalkyl substituiert sein können
und
Oxetanyl, Tetrahydrofuranyl, Tetrahydropyranyl sowie die genannten Cycloalkyl-
Gruppen ihrerseits bis zu zweifach, gleich oder verschieden, mit einem Rest ausgewählt aus der Reihe Fluor, (Ci-C4)-Alkyl, Trifluormethyl, Hydroxy, (CrC4)- Alkoxy, Trifluormethoxy und (Ci-C4)-Alkoxycarbonyl substituiert sein können,
und worin
R6 und R7 unabhängig voneinander Wasserstoff, (CrC6)-Alkyl oder (C3-C6)-Cyclo- alkyl bedeuten,
wobei (Ci-C6)-Alkyl bis zu dreifach mit Fluor sowie bis zu zweifach, gleich oder verschieden, mit einem Rest ausgewählt aus der Reihe Hydroxy, (Ci-C4)-Alkoxy, Trifluormethoxy, (C]-C4)-Alkoxycarbonyl und (C3-C6)-Cycloalkyl substituiert sein kann
und die genannten Cycloalkyl-Gruppen bis zu zweifach, gleich oder verschieden, mit einem Rest ausgewählt aus der Reihe Fluor, (Ci-C4)-Alkyl, Tri- fiuormethyl, Hydroxy, (CrC4)-Alkoxy, Trifluormethoxy und (Ci-C4)- Alkoxycarbonyl substituiert sein können,
und
R8 Wasserstoff, Amino, (CrC6)-Alkyl, (C3-C6)-Cycloalkyl oder 5- oder 6- gliedriges Heteroaryl bedeutet,
wobei (Ci-C6)-Alkyl bis zu dreifach mit Fluor sowie bis zu zweifach, gleich oder verschieden, mit einem Rest ausgewählt aus der Reihe Hydroxy, (Ci-C4)-Alkoxy, Trifluormethoxy, (CrC4)-Alkoxycarbonyl, (C3-
C6)-Cycloalkyl, Oxetanyl, Tetrahydrofuranyl, Tetrahydropyranyl und 5- oder 6-gliedriges Heteroaryl substituiert sein kann
und wobei
Oxetanyl, Tetrahydrofuranyl, Tetrahydropyranyl sowie die genannten Cycloalkyl-Gruppen bis zu zweifach, gleich oder verschieden, mit einem
Rest ausgewählt aus der Reihe Fluor, (CrC4)-Alkyl, Trifluormethyl, Hydroxy, (Q-C4)-Alkoxy und (CrC4)-Alkoxycarbonyl
und
die genannten Heteroaryl-Gruppen bis zu dreifach, gleich oder verschie- den, mit einem Rest ausgewählt aus der Reihe Fluor, Chlor, Cyano, (Cp
C4)-Alkyl, Trifluormethyl, (Q-C4)-Alkoxy und Trifluormethoxy
substituiert sein können,
R2 für Wasserstoff oder einen Substituenten ausgewählt aus der Reihe Fluor, Chlor, Cyano, Methyl, Trifluormethyl, Hydroxy, Methoxy und Trifluormethoxy steht,
R3 für Methyl, Ethyl oder Trifluormethyl steht,
R4 für Wasserstoff oder einen Substituenten ausgewählt aus der Reihe Halogen, Cyano, Pentafluorthio, (CrC6)-Alkyl, Tri-(C,-C4)-alkylsilyl, -OR9, -NR9R10, -N(R9)-C(=O)-R10, -N(R9)-C(=O)-OR10, -N(R9)-S(=O)2-R10, -C(=O)-OR9, -C(=O)-NR9R10, -SR9, -S(=O)-R9, -S(=O)2-R9, -S(=O)2-NR9R10, -S(=O)(=NH)-R9, -S(=O)(=NCH3)-R9, (C3-C6)-Cycloalkyl, 4- bis 6-gliedriges Heterocyclyl und 5- oder 6-gliedriges Heteroaryl steht,
wobei (Ci-C6)-Alkyl seinerseits bis zu dreifach mit Fluor sowie bis zu zweifach, gleich oder verschieden, mit einem Rest ausgewählt aus der Reihe -OR9, -NR9R10, -N(R9)-C(=O)-R10, -N(R9)-C(=O)-OR10, -C(=O)-OR9, -C(=O)-NR9R10, (C3-C6)-
Cycloalkyl, 4- bis 6-gliedriges Heterocyclyl und 5- oder 6-gliedriges Heteroaryl substituiert sein kann
und wobei
die genannten Cycloalkyl- und Heterocyclyl-Gruppen ihrerseits bis zu zweifach, gleich oder verschieden, mit einem Rest ausgewählt aus der Reihe Fluor, (Ci-C4)-
Alkyl, Hydroxy, (C1-Q)-AIkOXy, Oxo, Amino, Mono-(Ci-C4)-alkylamino, Di-(Q- C4)-alkylamino, (Ci-C4)-Alkylcarbonylamino, (Ci-C4)-Alkoxycarbonylamino, (Q- C4)-Alkylcarbonyl, (Q-C4)-Alkoxycarbonyl, Aminocarbonyl, Mono-(Q-Q)-alkyl- aminocarbonyl und Di-(Ci-C4)-alkylaminocarbonyl
sowie
die genannten Heteroaryl-Gruppen ihrerseits bis zu zweifach, gleich oder verschieden, mit einem Rest ausgewählt aus der Reihe Fluor, Chlor, Cyano, (Ci-C4)-Alkyl und (CrC4)-Alkoxy
substituiert sein können,
wobei die hierin genannten (CrC4)-Alkyl-Substituenten und die hierin genannten (Ci-C4)-Alkoxy-Substituenten ihrerseits mit Hydroxy, (Q-C4)- Alkoxy, Trifluormethoxy, (CrC4)-Alkylcarbonyloxy, (Q-Q)-Alkoxy- carbonyl, Aminocarbonyl, Mono-(CrC4)-alkylaminocarbonyl oder Di-(Q- C4)-alkylaminocarbonyl oder bis zu dreifach mit Fluor substituiert sein können,
und worin
R9 und R10 unabhängig voneinander bei jedem einzelnen Auftreten Wasserstoff, (C]-C6)-Alkyl, (C3-C6)-Cycloalkyl oder 4- bis 6-gliedriges Heterocyclyl bedeuten, wobei (Ci-C6)-Alkyl bis zu dreifach mit Fluor sowie bis zu zweifach, gleich oder verschieden, mit einem Rest ausgewählt aus der Reihe Hydroxy, (Ci-C4)-Alkoxy, Trifluormethoxy, Amino, Mono-(Ci-C4)-alkyl- amino, Di-(Ci-Gt)-alkylamino, (Ci-C4)-Alkoxycarbonyl, (C3-C6)-Cyclo- alkyl und 4- bis 6-gliedriges Heterocyclyl substituiert sein kann
und
die genannten Cycloalkyl- und Heterocyclyl-Gruppen bis zu zweifach, gleich oder verschieden, mit einem Rest ausgewählt aus der Reihe Fluor, (CrC4)-Alkyl, Trifluormethyl, Hydroxy, (Ci-C4)-Alkoxy, Trifluormethoxy, Oxo, Amino, Mono-(Ci-C4)-alkylamino, Di-(C i-C4)-alkylamino, (Ci-C4)-
Alkylcarbonyl und (CrC4)-Alkoxycarbonyl substituiert sein können,
oder
R9 und R10 im Fall, dass beide an ein Stickstoffatom gebunden sind, zusammen mit diesem Stickstoffatom einen 4- bis 6-gliedrigen Heterocyclus bilden, der ein weiteres Ring-Heteroatom aus der Reihe N, O, S oder S(O)2 enthalten kann und der bis zu zweifach, gleich oder verschieden, mit einem Rest ausgewählt aus der Reihe Fluor, (Ci-Q)-Alkyl, Trifluormethyl, Hydroxy, (Ci- C4)-Alkoxy, Oxo, Amino, Mono-(Ci-C4)-alkylamino, Di-(C rC4)-alkyl- amino, (Ci-C4)-Alkylcarbonyl und (Ci-C4)-Alkoxycarbonyl substituiert sein kann,
R5 für einen Substituenten ausgewählt aus der Reihe Fluor, Chlor, Cyano, Methyl, Trifluormethyl und Hydroxy steht
und
n für die Zahl 0, 1 oder 2 steht,
wobei im Fall, dass der Substituent R5 zweifach auftritt, seine Bedeutungen gleich oder verschieden sein können,
sowie ihre Salze, Solvate und Solvate der Salze.
2. Verbindung der Formel (I) nach Anspruch 1, in welcher der Ring ( A ) für einen Phenyl- oder Pyridyl-Ring steht und die angrenzenden Gruppen
R1 und CH2 in 1,3- oder 1 ,4-Relation zueinander an Ring-Kohlenstoffatome von
( A ) gebunden sind
und
der Ring ( E ) mit den Substituenten R4 und R5 für einen Phenyl-Ring der Formel
Figure imgf000260_0001
steht, worin
♦** die Verknüpfungsstelle mit dem Ring bezeichnet,
Figure imgf000260_0002
sowie ihre Salze, Solvate und Solvate der Salze.
3. Verbindung der Formel (I) nach Anspruch 1 oder 2, in welcher
entweder (α)
der Ring ( A ) für einen Pyridyl-Ring steht und die angrenzenden Gruppen R1 und
CH2 in 1,3- oder 1,4-Relation zueinander an Ring-Kohlenstoffatome dieses Pyridyl-Rings gebunden sind
und
der R Üinngg ( ( B B j ) mmiit dem Substituenten R für einen Heteroaryl-Ring der Formel
Figure imgf000261_0001
steht, worin
# die Verknüpfungsstelle mit der angrenzenden Ct^-Gruppe
und
## die Verknüpfungsstelle mit dem Ring ( D ) bezeichnen,
oder (b)
der Ring ( A J für einen Phenyl-Ring steht und die angrenzenden Gruppen R1 und CH2 in 1,3- oder 1,4-Relation zueinander an diesen Phenyl-Ring gebunden sind
und
der R Liinngg ( \ B° J) mmiit dem Substituenten R für einen Heteroaryl-Ring der Formel
Figure imgf000261_0002
steht, worin
# die Verknüpfungsstelle mit der angrenzenden CH2-Gruppe und
## die Verknüpfungsstelle mit dem Ring ( ©D ) bezeichnen,
der R Liinngg ffüürr eeiinen Heteroaryl-Ring der Formel
Figure imgf000262_0001
Figure imgf000262_0002
steht, worin
* die Verknüpfungsstelle mit dem Ring ( ^ )
und
** die Verknüpfungsstelle mit dem Ring ( E J bezeichnen,
der Ring ( E ) mit den Substituenten R4 und R5 für einen Phenyl-Ring der Formel
Figure imgf000262_0003
steht, worin
*** die Verknüpfungsstelle mit dem Ring bezeichnet,
Figure imgf000262_0004
R1 für Wasserstoff oder einen Substituenten ausgewählt aus der Reihe Fluor, Chlor, Brom, Cyano, (CrC4)-Alkyl, (C2-C4)-Alkinyl, (C3-C6)-Cycloalkyl, Oxetanyl, Tetrahydrofuranyl, Tetrahydropyranyl, -OR6, -SR6, -S(=O)-R6, -S(=O)2-R6, -C(=O)-OR6, -C(=O)-NR6R7, -S(=O)2-NR6R7 und -NR6R8 steht,
wobei (CrC4)-Alkyl und (C2-C4)-Alkinyl ihrerseits mit einem Rest ausgewählt aus der Reihe Hydroxy, (Ci-C4)-Alkoxy, Trifluormethoxy, Trimethylsilyl, (Ci-C4)- Alkoxycarbonyl und (C3-C6)-Cycloalkyl sowie bis zu dreifach mit Fluor substituiert sein können und
Oxetanyl, Tetrahydrofuranyl, Tetrahydropyranyl sowie die genannten Cycloalkyl- Gruppen ihrerseits bis zu zweifach, gleich oder verschieden, mit einem Rest ausgewählt aus der Reihe Fluor, (CrC4)-Alkyl, Trifluormethyl, Hydroxy, (CrC4)- Alkoxy, Trifluormethoxy und (Ci-C4)-Alkoxycarbonyl substituiert sein können,
und worin
R6 und R7 unabhängig voneinander Wasserstoff, (CrC4)-Alkyl oder (C3-C6)-Cyclo- alkyl bedeuten,
wobei (Ci-C4)-Alkyl mit einem Rest ausgewählt aus der Reihe Hydroxy, (CrC4)-Alkoxy, Trifluormethoxy und (C3-C6)-Cycloalkyl sowie bis zu dreifach mit Fluor substituiert sein kann
und
die genannten Cycloalkyl-Gruppen bis zu zweifach, gleich oder verschieden, mit einem Rest ausgewählt aus der Reihe Fluor, (Ci-C4)-Alkyl, Tri- fluormethyl, Hydroxy, (Ci-C4)-Alkoxy und Trifluormethoxy substituiert sein können,
und
R8 Wasserstoff, Amino, (CrC6)-Alkyl, (C3-C6)-Cycloalkyl oder 5- oder 6- gliedriges Heteroaryl bedeutet,
wobei (Ci-C6)-Alkyl mit einem Rest ausgewählt aus der Reihe Hydroxy,
(Ci-C4)-Alkoxy, Trifluormethoxy, (CrC4)-Alkoxycarbonyl, (C3-C6)-Cyclo- alkyl, Tetrahydrofuranyl, Tetrahydropyranyl und 5- oder 6-gliedriges Heteroaryl sowie bis zu dreifach mit Fluor substituiert sein kann
und wobei
Tetrahydrofuranyl, Tetrahydropyranyl sowie die genannten Cycloalkyl-
Gruppen bis zu zweifach, gleich oder verschieden, mit einem Rest ausgewählt aus der Reihe Fluor, (CrC4)-Alkyl, Trifluormethyl, Hydroxy, (Ci- C4)-Alkoxy und (Ci-C4)-Alkoxycarbonyl
und die genannten Heteroaryl-Gruppen bis zu dreifach, gleich oder verschieden, mit einem Rest ausgewählt aus der Reihe (Ci-C4)-Alkyl, Trifluor- methyl, (Q-C4)-Alkoxy und Trifluormethoxy
substituiert sein können,
R2 für Wasserstoff oder einen Substituenten ausgewählt aus der Reihe Fluor, Chlor,
Methyl, Trifluormethyl, Methoxy und Trifluormethoxy steht,
R3 für Methyl, Ethyl oder Trifluormethyl steht,
R4 für einen Substituenten ausgewählt aus der Reihe Chlor, Cyano, Pentafluorthio, (C,-C6)-Alkyl, Tri-(CrC4)-alkylsilyl, -OR9, -NR9R10, -SR9, -S(=O)-R9, -S(=O)2-R9, -S(=O)(=NH)-R9, -S(=O)(=NCH3)-R9, (C3-C6)-Cycloalkyl und 4- bis 6-gliedriges
Heterocyclyl steht,
wobei (Ci-C6)-Alkyl seinerseits mit einem Rest ausgewählt aus der Reihe -OR9, -NR9R10, -N(R9)-C(=O)-R10, -C(=O)-NR9R10, (C3-C6)-Cycloalkyl, 4- bis 6-gliedriges Heterocyclyl und 5- oder 6-gliedriges Heteroaryl sowie bis zu dreifach mit Fluor substituiert sein kann
und wobei
die genannten Cycloalkyl- und Heterocyclyl-Gruppen ihrerseits bis zu zweifach, gleich oder verschieden, mit einem Rest ausgewählt aus der Reihe Fluor, (Ci-C4)- Alkyl, Hydroxy, (CrC4)-Alkoxy, Oxo, (C,-C4)-Alkylcarbonyl, Mono-(C,-C4)- alkylaminocarbonyl und Di-(Ci-C4)-alkylaminocarbonyl
sowie
die genannten Heteroaryl-Gruppen ihrerseits bis zu zweifach, gleich oder verschieden, mit einem Rest ausgewählt aus der Reihe Fluor, Chlor, Cyano, (Ci-C4)-Alkyl und (CrC4)-Alkoxy
substituiert sein können,
wobei die hierin genannten (Ci-C4)-Alkyl-Substituenten und die hierin genannten (Ci-C4)-Alkoxy-Substituenten ihrerseits mit Hydroxy, (Ci-C4)- Alkoxy, Trifluormethoxy, (Ci-C4)-Alkoxycarbonyl, Mono-(CrC4)-alkyl- aminocarbonyl oder Di-(Ci-C4)-alkylaminocarbonyl oder bis zu dreifach mit Fluor substituiert sein können, und worin
R9 und R10 unabhängig voneinander bei jedem einzelnen Auftreten Wasserstoff, (Ci-O-Alkyl, (C3-C6)-Cycloalkyl oder 4- bis 6-gliedriges Heterocyclyl bedeuten,
wobei (CrC4)-Alkyl mit einem Rest ausgewählt aus der Reihe Hydroxy,
(CrC4)-Alkoxy, Trifluormethoxy, (C3-C6)-Cycloalkyl und 4- bis 6-gliedriges Heterocyclyl sowie bis zu dreifach mit Fluor substituiert sein kann
und
die genannten Cycloalkyl- und Heterocyclyl-Gruppen bis zu zweifach, gleich oder verschieden, mit einem Rest ausgewählt aus der Reihe Fluor,
(Ci-C4)-Alkyl, Trifluormethyl, Hydroxy, (Q-C4)-Alkoxy, Trifluormethoxy, Oxo und (Ci-C4)-Alkylcarbonyl substituiert sein können,
oder
R9 und R10 im Fall, dass beide an ein Stickstoffatom gebunden sind, zusammen mit diesem Stickstoffatom einen 4- bis 6-gliedrigen Heterocyclus bilden, der ein weiteres Ring-Heteroatom aus der Reihe N, O, S oder S(O)2 enthalten kann und der bis zu zweifach, gleich oder verschieden, mit einem Rest ausgewählt aus der Reihe Fluor, (Ci-C4)-Alkyl, Trifluormethyl, Hydroxy, (Cr C4)-Alkoxy, Oxo und (Q-C4)-Alkylcarbonyl substituiert sein kann,
R5 für einen Substituenten ausgewählt aus der Reihe Fluor, Chlor und Methyl steht
und
n für die Zahl 0 oder 1 steht,
sowie ihre Salze, Solvate und Solvate der Salze.
4. Verbindung der Formel (I) nach Anspruch 1, 2 oder 3, in welcher
der Ring ( A J mit den Substituenten R1 und R2 für einen Pyridyl-Ring der Formel
Figure imgf000266_0001
steht, worin
§ die Verknüpfungsstelle mit der angrenzenden CH2-Gruppe bezeichnet,
der Ring ( B ) mit dem Substituenten R3 für einen Heteroaryl-Ring der Formel
Figure imgf000266_0002
steht, worin
# die Verknüpfungsstelle mit der angrenzenden CFk-Gruppe
und
## die Verknüpfungsstelle mit dem Ring bezeichnen,
Figure imgf000266_0003
der R Liinngg ( ( DD )) f füürr eeiinen Heteroaryl-Ring der Formel
// oder \\ /
O — N N-O steht, worin
* die Verknüpfungsstelle mit dem R iinngg QBJ
und
** die Verknüpfungsstelle mit dem Ring ( ^ ) bezeichnen,
der Ring ( E J mit den Substituenten R4 und R5 für einen Phenyl-Ring der Formel
Figure imgf000267_0001
steht, worin
*** die Verknüpfungsstelle mit dem Ring ( D ) bezeichnet,
für Wasserstoff oder einen Substituenten ausgewählt aus der Reihe Chlor, Cyano, (Ci-C4)-Alkyl, (C2-C4)-Alkinyl, Cyclopropyl, Cyclobutyl, Oxetanyl, Tetrahydro- pyranyl, -OR6, -SR6, -S(O)-R6, -S(=O)2-R6, -C(=O)-OR6, -C(=O)-NR6R7,
-S(=O)2-NR6R7 und -NR6R8 steht,
wobei (Ci-C4)-Alkyl und (C2-C4)-Alkinyl ihrerseits mit einem Rest ausgewählt aus der Reihe Hydroxy, Methoxy, Ethoxy, Trifluormethoxy, Cyclopropyl und Cyclobutyl sowie bis zu dreifach mit Fluor substituiert sein können
und
Oxetanyl und Tetrahydropyranyl ihrerseits mit Methyl, Ethyl, Hydroxy, Methoxy oder Ethoxy substituiert sein können
und
die genannten Cyclopropyl- und Cyclobutyl-Gruppen ihrerseits bis zu zweifach, gleich oder verschieden, mit einem Rest ausgewählt aus der Reihe Fluor, Methyl,
Ethyl und Trifluormethyl substituiert sein können,
und worin
R6 und R7 unabhängig voneinander Wasserstoff, (Ci-C4)-Alkyl oder (C3-C6)-Cyclo- alkyl bedeuten,
wobei (Ci-C4)-Alkyl mit einem Rest ausgewählt aus der Reihe Hydroxy,
Methoxy, Ethoxy, Trifluormethoxy, Cyclopropyl und Cyclobutyl sowie bis zu dreifach mit Fluor substituiert sein kann,
und
R8 Wasserstoff, (CrC4)-Alkyl, (C3-C6)-Cycloalkyl oder 5- oder 6-gliedriges Heteroaryl bedeutet, wobei (Ci-GO-Alkyl mit einem Rest ausgewählt aus der Reihe Hydroxy, Methoxy, Ethoxy, Trifluormethoxy, (C3-C6)-Cycloalkyl, Tetrahydro- furanyl, Tetrahydropyranyl und 5- oder 6-gliedriges Heteroaryl sowie bis zu dreifach mit Fluor substituiert sein kann
und wobei
Tetrahydrofuranyl, Tetrahydropyranyl sowie die genannten Cycloalkyl- Gruppen bis zu zweifach, gleich oder verschieden, mit einem Rest ausgewählt aus der Reihe Fluor, Methyl, Ethyl, Trifluormethyl, Hydroxy, Methoxy und Ethoxy
und
die genannten Heteroaryl-Gruppen bis zu dreifach, gleich oder verschieden, mit einem Rest ausgewählt aus der Reihe Methyl, Ethyl und Trifluormethyl
substituiert sein können,
R2 für Wasserstoff oder einen Substituenten ausgewählt aus der Reihe Fluor, Chlor,
Methyl und Methoxy steht,
R3 für Methyl steht,
R4 für einen Substituenten ausgewählt aus der Reihe Chlor, Pentafluorthio, (CrC6)- Alkyl, Trimethylsilyl, -OR9, -SR9, -S(=O)-R9, -S(=O)2-R9, -S(=O)(=NH)-R9, -S(=O)(=NCH3)-R9, (C3-C6)-Cycloalkyl und A- bis 6-gliedriges Heterocyclyl steht,
wobei (CrC6)-Alkyl seinerseits mit einem Rest ausgewählt aus der Reihe -OR9, -NR9R10, -C(=O)-NR9R10, (C3-C6)-Cycloalkyl und 4- bis 6-gliedriges Heterocyclyl sowie bis zu dreifach mit Fluor substituiert sein kann
und
die genannten Cycloalkyl- und Heterocyclyl-Gruppen ihrerseits bis zu zweifach, gleich oder verschieden, mit einem Rest ausgewählt aus der Reihe Fluor, (C1-C4)- Alkyl, (CrC4)-Alkoxy und Oxo substituiert sein können,
wobei der genannte (d-C4)-Alkyl-Substituent und der Substituent ihrerseits mit Hydroxy, Methoxy, Trifluormethoxy, Ethoxy, Methoxycarbonyl, Ethoxycarbonyl, ter/.-Butoxycarbonyl, Methylamino- carbonyl oder Dimethylaminocarbonyl oder bis zu dreifach mit Fluor substituiert sein können,
und worin
R9 und R10 unabhängig voneinander bei jedem einzelnen Auftreten Wasserstoff,
(CrC4)-Alkyl oder (C3-C6)-Cycloalkyl bedeuten,
wobei (Ci-C4)-Alkyl mit einem Rest ausgewählt aus der Reihe Hydroxy, (Ci-C4)-Alkoxy, Trifluormethoxy und (C3-C6)-Cycloalkyl sowie bis zu dreifach mit Fluor substituiert sein kann
und
die genannten Cycloalkyl-Gruppen bis zu zweifach, gleich oder verschieden, mit einem Rest ausgewählt aus der Reihe Fluor, (Q-GO-Alkyl, Tri- fluormethyl, (C]-C4)-Alkoxy und Trifluormethoxy substituiert sein können,
oder
R9 und R10 im Fall, dass beide an ein Stickstoffatom gebunden sind, zusammen mit diesem Stickstoffatom einen 4- bis 6-gliedrigen Heterocyclus bilden, der ein weiteres Ring-Heteroatom aus der Reihe N, O, S oder S(O)2 enthalten kann und der bis zu zweifach, gleich oder verschieden, mit einem Rest ausgewählt aus der Reihe Fluor, (CrC4)-Alkyl, Hydroxy, (CrC4)-Alkoxy, Oxo, Acetyl und Propionyl substituiert sein kann,
R5 für Fluor steht
und
n für die Zahl 0 oder 1 steht,
sowie ihre Salze, Solvate und Solvate der Salze.
Verbindung der Formel (I) nach Anspruch 1, 2 oder 3, in welcher
der R t-iinngg mmiit den Substituenten R und R für einen Phenyl-Ring der Formel
Figure imgf000269_0001
Figure imgf000270_0001
steht, worin
§ die Verknüpfungsstelle mit der angrenzenden CH2-Gruppe bezeichnet,
der Ring ( B ) mit dem Substituenten R3 für einen Heteroaryl-Ring der Formel
Figure imgf000270_0002
steht, worin
# die Verknüpfungsstelle mit der angrenzenden CHj-Gruppe
und
## die Verknüpfungsstelle mit dem Riinngg (©D ) bezeichnen,
der R liinngg ( ( DD )) ffüürr eeiinen Heteroaryl-Ring der Formel
// oder \\ /
O — N N-O steht, worin
* die Verknüpfungsstelle mit dem R iinngg Qy
und
** die Verknüpfungsstelle mit dem Ring ( E J bezeichnen,
der Ring ( E ) mit den Substituenten R4 und R5 für einen Phenyl-Ring der Formel
Figure imgf000271_0001
steht, worin
*** die Verknüpfüngsstelle mit dem Ring ( D ) bezeichnet,
für Wasserstoff oder einen Substituenten ausgewählt aus der Reihe Chlor, Cyano, (CrC4)-Alkyl, (C2-C4)-Alkinyl, Cyclopropyl, Cyclobutyl, Oxetanyl, Tetrahydro- pyranyl, -OR6, -SR6, -S(=O)-R6, -S(O)2-R6, -C(=0)-0R6, -C(=O)-NR6R7,
-S(=O)2-NR6R7 und -NR6R8 steht,
wobei (Ci-C4)-Alkyl und (C2-C4)-Alkinyl ihrerseits mit einem Rest ausgewählt aus der Reihe Hydroxy, Methoxy, Ethoxy, Trifluormethoxy, Cyclopropyl und Cyclobutyl sowie bis zu dreifach mit Fluor substituiert sein können
und
Oxetanyl und Tetrahydropyranyl ihrerseits mit Methyl, Ethyl, Hydroxy, Methoxy oder Ethoxy substituiert sein können
und
die genannten Cyclopropyl- und Cyclobutyl-Gruppen ihrerseits bis zu zweifach, gleich oder verschieden, mit einem Rest ausgewählt aus der Reihe Fluor, Methyl,
Ethyl und Trifluormethyl substituiert sein können,
und worin
R6 und R7 unabhängig voneinander Wasserstoff, (Ci-C4)-Alkyl oder (C3-C6)-Cyclo- alkyl bedeuten,
wobei (Ci-C4)-Alkyl mit einem Rest ausgewählt aus der Reihe Hydroxy,
Methoxy, Ethoxy, Trifluormethoxy, Cyclopropyl und Cyclobutyl sowie bis zu dreifach mit Fluor substituiert sein kann,
und
R8 Wasserstoff, (CrC4)-Alkyl, (C3-C6)-Cycloalkyl oder 5- oder 6-gliedriges Heteroaryl bedeutet, wobei (Ci-C4)-Alkyl mit einem Rest ausgewählt aus der Reihe Hydroxy, Methoxy, Ethoxy, Trifluormethoxy, (C3-C6)-Cycloalkyl, Tetrahydro- furanyl, Tetrahydropyranyl und 5- oder 6-gliedriges Heteroaryl sowie bis zu dreifach mit Fluor substituiert sein kann
und wobei
Tetrahydrofuranyl, Tetrahydropyranyl sowie die genannten Cycloalkyl- Gruppen bis zu zweifach, gleich oder verschieden, mit einem Rest ausgewählt aus der Reihe Fluor, Methyl, Ethyl, Trifluormethyl, Hydroxy, Methoxy und Ethoxy
und
die genannten Heteroaryl-Gruppen bis zu dreifach, gleich oder verschieden, mit einem Rest ausgewählt aus der Reihe Methyl, Ethyl und Trifluormethyl
substituiert sein können,
R2 für Wasserstoff oder einen Substituenten ausgewählt aus der Reihe Fluor, Chlor,
Methyl und Methoxy steht,
R3 für Methyl steht,
R4 für einen Substituenten ausgewählt aus der Reihe Chlor, Pentafluorthio, (CrC6)- Alkyl, Trimethylsilyl, -OR9, -SR9, -S(=O)-R9, -S(=O)2-R9, -S(=O)(=NH)-R9, -S(=O)(=NCH3)-R9, (C3-C6)-Cycloalkyl und 4- bis 6-gliedriges Heterocyclyl steht,
wobei (Ci-C6)-Alkyl seinerseits mit einem Rest ausgewählt aus der Reihe -OR9, -NR9R10, -C(=O)-NR9R10, (C3-C6)-Cycloalkyl und 4- bis 6-gliedriges Heterocyclyl sowie bis zu dreifach mit Fluor substituiert sein kann
und
die genannten Cycloalkyl- und Heterocyclyl-Gruppen ihrerseits bis zu zweifach, gleich oder verschieden, mit einem Rest ausgewählt aus der Reihe Fluor, (Ci-C4)- Alkyl, (CrC4)-Alkoxy und Oxo substituiert sein können,
wobei der genannte (Ci-C4)-Alkyl-Substituent und der (CrC4)-Alkoxy- Substituent ihrerseits mit Hydroxy, Methoxy, Trifluormethoxy, Ethoxy, Methoxycarbonyl, Ethoxycarbonyl, ter/.-Butoxycarbonyl, Methylamino- carbonyl oder Dimethylaminocarbonyl oder bis zu dreifach mit Fluor substituiert sein können,
und worin
R9 und R10 unabhängig voneinander bei jedem einzelnen Auftreten Wasserstoff,
(CrC4)-Alkyl oder (C3-C6)-Cycloalkyl bedeuten,
wobei (Ci-C4)-Alkyl mit einem Rest ausgewählt aus der Reihe Hydroxy, (CrC4)-Alkoxy, Trifluormethoxy und (C3-C6)-Cycloalkyl sowie bis zu dreifach mit Fluor substituiert sein kann
und
die genannten Cycloalkyl-Gruppen bis zu zweifach, gleich oder verschieden, mit einem Rest ausgewählt aus der Reihe Fluor, (Ci-C4)-Alkyl, Tri- fiuormethyl, (Ci-C4)-Alkoxy und Trifluormethoxy substituiert sein können,
oder
R9 und R10 im Fall, dass beide an ein Stickstoffatom gebunden sind, zusammen mit diesem Stickstoffatom einen 4- bis 6-gliedrigen Heterocyclus bilden, der ein weiteres Ring-Heteroatom aus der Reihe N, O, S oder S(O)2 enthalten kann und der bis zu zweifach, gleich oder verschieden, mit einem Rest ausgewählt aus der Reihe Fluor, (CrC4)-Alkyl, Hydroxy, (Ci-C4)-Alkoxy, Oxo, Acetyl und Propionyl substituiert sein kann,
R5 für Fluor steht
und
n für die Zahl 0 oder 1 steht,
sowie ihre Salze, Solvate und Solvate der Salze.
Verbindung der Formel (I) nach Anspruch 1, 2, 3 oder 4, in welcher
der Ring ( A ) mit den Substituenten R1 und R2 für einen Pyridyl-Ring der Formel
Figure imgf000274_0001
steht, worin
§ die Verknüpfungsstelle mit der angrenzenden CH2-Gruppe bezeichnet, der Ring ( B ) mit dem Substituenten R3 für einen Heteroaryl-Ring der Formel
Figure imgf000274_0002
steht, worin
# die Verknüpfungsstelle mit der angrenzenden CH2-Gruppe und
## die Verknüpfungsstelle mit dem Ring ( D ) bezeichnen,
der Ring ( D J für einen Heteroaryl-Ring der Formel
Il oder \\ /
O— N N-O steht, worin
* die Verknüpfungsstelle mit dem R iinngg Qy und
** die Verknüpfungsstelle mit dem Ring ( E ) bezeichnen,
der Ring ( E J mit den Substituenten R4 und R5 für einen Phenyl-Ring der Formel
Figure imgf000275_0001
steht, worin
*** die Verknüpfungsstelle mit dem Ring ( D ) bezeichnet,
R1 für Methyl oder die Gruppe -NR6R8 steht, worin
R6 Wasserstoff, Methyl, Ethyl oder Cyclopropyl bedeutet,
und
R8 (CrC4)-Alkyl oder (C3-C6)-Cycloalkyl bedeutet,
wobei (CrC4)-Alkyl mit einem Rest ausgewählt aus der Reihe Hydroxy, Methoxy, Ethoxy, (C3-Ce)-Cycloalkyl, Tetrahydrofuranyl, Tetrahydro- pyranyl und 5- oder 6-gliedriges Heteroaryl sowie bis zu dreifach mit Fluor substituiert sein kann
und wobei
Tetrahydrofuranyl, Tetrahydropyranyl sowie die genannten Cycloalkyl- Gruppen bis zu zweifach, gleich oder verschieden, mit einem Rest ausgewählt aus der Reihe Fluor, Methyl, Ethyl, Trifluormethyl, Hydroxy, Methoxy und Ethoxy
und
die genannte Heteroaryl-Gruppe bis zu dreifach, gleich oder verschieden, mit einem Rest ausgewählt aus der Reihe Methyl, Ethyl und Trifluormethyl
substituiert sein können,
R2 für Wasserstoff steht,
R3 für Methyl steht,
R4 für einen Substituenten ausgewählt aus der Reihe Chlor, Pentafluorthio, (C]-C6)- Alkyl, Trimethylsilyl, -OR9, -SR9, -S(=O)-R9, -S(=O)2-R9, -S(=O)(=NH)-CH3, -S(OX=NH)-CF3, -S(=O)(=NCH3)-CH3, -S(=O)(=NCH3)-CF3, (C3-C6)-Cycloalkyl und 4- bis 6-gliedriges Heterocyclyl steht,
wobei (Ci-C6)-Alkyl seinerseits mit einem Rest ausgewählt aus der Reihe -OR9, -NR9R10, -Q=O)-NR9R10, (C3-C6)-Cycloalkyl und 4- bis 6-gliedriges Heterocyclyl sowie bis zu dreifach mit Fluor substituiert sein kann
und
die genannten Cycloalkyl- und Heterocyclyl-Gruppen ihrerseits bis zu zweifach, gleich oder verschieden, mit einem Rest ausgewählt aus der Reihe Fluor, (C1-C4)- Alkyl, Trifluormethyl, (CrC4)-Alkoxy, Trifluormethoxy und Oxo substituiert sein können,
wobei der genannte (Q-CO-Alkyl-Substituent seinerseits mit Methoxy, Trifluormethoxy oder Ethoxy substituiert sein kann,
und worin
R9 und R10 unabhängig voneinander bei jedem einzelnen Auftreten Wasserstoff, (C,-C4)-Alkyl oder (C3-C6)-Cycloalkyl bedeuten,
wobei (CrC4)-Alkyl mit einem Rest ausgewählt aus der Reihe Hydroxy, (CrC4)-Alkoxy, Trifluormethoxy und (C3-C6)-Cycloalkyl sowie bis zu dreifach mit Fluor substituiert sein kann
und
die genannten Cycloalkyl-Gruppen bis zu zweifach, gleich oder verschieden, mit einem Rest ausgewählt aus der Reihe Fluor, (CrC4)-Alkyl, Trifluormethyl, (C1-Q)-AIkOXy und Trifluormethoxy substituiert sein können,
oder
R9 und R10 im Fall, dass beide an ein Stickstoffatom gebunden sind, zusammen mit diesem Stickstoffatom einen 4- bis 6-gliedrigen Heterocyclus bilden, der ein weiteres Ring-Heteroatom aus der Reihe N, O, S oder S(O)2 enthalten kann und der bis zu zweifach, gleich oder verschieden, mit einem Rest ausgewählt aus der Reihe Fluor, (C]-C4)-Alkyl, Hydroxy, (CrC4)-Alkoxy, Oxo, Acetyl und Propionyl substituiert sein kann, R5 für Fluor steht und n für die Zahl 0 oder 1 steht, sowie ihre Salze, Solvate und Solvate der Salze. Verbindung der Formel (I) nach Anspruch 1, 2, 3 oder 5, in welcher
der Ring ( A J mit den Substituenten R1 und R2 für einen Phenyl-Ring der Formel
Figure imgf000277_0001
steht, worin
die Verknüpfungsstelle mit der angrenzenden CH2-Gruppe bezeichnet,
der R liinngg mmiit dem Substituenten R für einen Heteroaryl-Ring der Formel
Figure imgf000277_0002
Figure imgf000277_0003
steht, worin
# die Verknüpfungsstelle mit der angrenzenden CH2-Gruppe
und
## die Verknüpfungsstelle mit dem Ring ( ^ ) bezeichnen,
der Ring ( D ) für einen Heteroaryl-Ring der Formel
Figure imgf000277_0004
steht, worin die Verknüpfungsstelle mit dem Ring ( ^ )
und
** die Verknüpfungsstelle mit dem Ring ( E ) bezeichnen,
der Ring ( E j mit den Substituenten R4 und R5 für einen Phenyl-Ring der Formel
Figure imgf000278_0001
steht, worin
*** die Verknüpfungsstelle mit dem R iinngg bezeichnet,
Figure imgf000278_0002
R1 für Chlor, Cyano, Methyl, Ethyl, Isopropyl, Cyclopropyl, Cyclobutyl, Methoxy, Ethoxy, Methylsulfonyl, Ethylsulfonyl, Isopropylsulfonyl oder die Gruppe -C(=O)-NR6R7 steht, worin
R6 und R7 unabhängig voneinander Wasserstoff, (Ci-C4)-Alkyl oder (C3-C6)-Cyclo- alkyl bedeuten,
wobei (Ci-C4)-Alkyl mit einem Rest ausgewählt aus der Reihe Hydroxy, Methoxy, Ethoxy, Cyclopropyl und Cyclobutyl sowie bis zu dreifach mit Fluor substituiert sein kann,
R2 für Wasserstoff steht,
R3 für Methyl steht,
R4 für einen Substituenten ausgewählt aus der Reihe Chlor, Pentafluorthio, (Ci-C6)- Alkyl, Trimethylsilyl, -OR9, -SR9, -S(=O)-R9, -S(=O)2-R9, -S(=O)(=NH)-CH3, -S(=O)(=NH)-CF3, -S(=O)(=NCH3)-CH3, -S(=O)(=NCH3)-CF3, (C3-C6)-Cycloalkyl und 4- bis 6-gliedriges Heterocyclyl steht,
wobei (Ci-C6)-Alkyl seinerseits mit einem Rest ausgewählt aus der Reihe -OR9, -NR9R10, -C(=O)-NR9R10, CC3-C6)-Cycloalkyl und 4- bis 6-gliedriges Heterocyclyl sowie bis zu dreifach mit Fluor substituiert sein kann und
die genannten Cycloalkyl- und Heterocyclyl-Gruppen ihrerseits bis zu zweifach, gleich oder verschieden, mit einem Rest ausgewählt aus der Reihe Fluor, (C1-C4)- Alkyl, Trifluormethyl, (Ci-C4)-Alkoxy, Trifluormethoxy und Oxo substituiert sein können,
wobei der genannte (CrC4)-Alkyl-Substituent seinerseits mit Methoxy, Trifluormethoxy oder Ethoxy substituiert sein kann,
und worin
R9 und R10 unabhängig voneinander bei jedem einzelnen Auftreten Wasserstoff, (CrC4)-Alkyl oder (C3-C6)-Cycloalkyl bedeuten,
wobei (C]-C4)-Alkyl mit einem Rest ausgewählt aus der Reihe Hydroxy, (Ci-C4)-Alkoxy, Trifluormethoxy und (C3-C6)-Cycloalkyl sowie bis zu dreifach mit Fluor substituiert sein kann
und
die genannten Cycloalkyl-Gruppen bis zu zweifach, gleich oder verschieden, mit einem Rest ausgewählt aus der Reihe Fluor, (CrC4)-Alkyl, Trifluormethyl, (C]-C4)-Alkoxy und Trifluormethoxy substituiert sein können,
oder
R9 und R10 im Fall, dass beide an ein Stickstoffatom gebunden sind, zusammen mit diesem Stickstoffatom einen 4- bis 6-gliedrigen Heterocyclus bilden, der ein weiteres Ring-Heteroatom aus der Reihe N, O, S oder S(O)2 enthalten kann und der bis zu zweifach, gleich oder verschieden, mit einem Rest ausgewählt aus der Reihe Fluor, (Ci-C4)-Alkyl, Hydroxy, (CrC4)-Alkoxy, Oxo, Acetyl und Propionyl substituiert sein kann,
R5 für Fluor steht
und
n für die Zahl 0 oder 1 steht,
sowie ihre Salze, Solvate und Solvate der Salze.
8. Verbindung, wie in einem der Ansprüche 1 bis 7 definiert, zur Behandlung und/oder Prävention von Krankheiten.
9. Verbindung, wie in einem der Ansprüche 1 bis 7 definiert, zur Verwendung in einem Verfahren zur Behandlung und/oder Prävention von Krebs- oder Tumorerkrankungen.
10. Verbindung, wie in einem der Ansprüche 1 bis 7 definiert, zur Verwendung in einem Verfahren zur Behandlung und/oder Prävention von ischämischen Herz-Kreislauf-Erkrankungen, Herzinsuffizienz, Herzinfarkt, Arrhythmie, Schlaganfall, pulmonaler Hypertonie, fibrotischen Erkrankungen von Niere und Lunge, Psoriasis, diabetischer Retinopathie, Makuladegeneration, rheumatischer Arthritis und der Chugwash-Polyzythämie.
11. Verwendung einer Verbindung, wie in einem der Ansprüche 1 bis 7 definiert, zur Herstellung eines Arzneimittels zur Behandlung und/oder Prävention von Krebs- oder Tumorerkrankungen.
12. Verwendung einer Verbindung, wie in einem der Ansprüche 1 bis 7 definiert, zur Herstellung eines Arzneimittels zur Behandlung und/oder Prävention von ischämischen Herz- Kreislauf-Erkrankungen, Herzinsuffizienz, Herzinfarkt, Arrhythmie, Schlaganfall, pulmonaler Hypertonie, fibrotischen Erkrankungen von Niere und Lunge, Psoriasis, diabetischer Retinopathie, Makuladegeneration, rheumatischer Arthritis und der Chugwash-Polyzythämie.
13. Arzneimittel enthaltend eine Verbindung, wie in einem der Ansprüche 1 bis 7 definiert, in Kombination mit einem oder mehreren inerten, nicht-toxischen, pharmazeutisch geeigneten Hilfsstoffen.
14. Arzneimittel enthaltend eine Verbindung, wie in einem der Ansprüche 1 bis 7 definiert, in Kombination mit einem oder mehreren weiteren Wirkstoffen.
15. Arzneimittel nach Anspruch 13 oder 14 zur Behandlung und/oder Prävention von Krebs- oder Tumorerkrankungen.
16. Arzneimittel nach Anspruch 13 oder 14 zur Behandlung und/oder Prävention von ischämischen Herz-Kreislauf-Erkrankungen, Herzinsuffizienz, Herzinfarkt, Arrhythmie, Schlaganfall, pulmonaler Hypertonie, fibrotischen Erkrankungen von Niere und Lunge, Psoriasis, diabetischer Retinopathie, Makuladegeneration, rheumatischer Arthritis und der Chug- wash-Polyzythämie.
17. Verfahren zur Behandlung und/oder Prävention von Krebs- oder Tumorerkrankungen in Menschen und Tieren unter Verwendung einer wirksamen Menge mindestens einer Verbindung, wie in einem der Ansprüche 1 bis 7 definiert, oder eines Arzneimittels, wie in einem der Ansprüche 13 bis 15 definiert.
18. Verfahren zur Behandlung und/oder Prävention von ischämischen Herz-Kreislauf-Erkrankungen, Herzinsuffizienz, Herzinfarkt, Arrhythmie, Schlaganfall, pulmonaler Hypertonie, fibrotischen Erkrankungen von Niere und Lunge, Psoriasis, diabetischer Retinopathie, Makuladegeneration, rheumatischer Arthritis und der Chugwash-Polyzythämie in Menschen und Tieren unter Verwendung einer wirksamen Menge mindestens einer Verbin- düng, wie in einem der Ansprüche 1 bis 7 definiert, oder eines Arzneimittels, wie in einem der Ansprüche 13, 14 und 16 definiert.
19. Verfahren zur Herstellung von Verbindungen der Formel (I-F)
Figure imgf000281_0001
in welcher der Ring E sowie R3, R4, R5, R6, R8 und n jeweils die in den Ansprüchen 1 bis 7 angegebenen Bedeutungen haben,
dadurch gekennzeichnet, dass man ein N'-Hydroxyamidin der Formel (VIII)
Figure imgf000281_0002
in welcher der Ring E sowie R4, R5 und n die oben angegebenen Bedeutungen haben,
zunächst entweder
[A] mit einer Pyrazolcarbonsäure der Formel (XXVI)
Figure imgf000281_0003
in welcher R3 die oben angegebene Bedeutung hat,
zu einem 1 ,2,4-Oxadiazol-Derivat der Formel (XXVII)
(XXVII),
Figure imgf000282_0001
in welcher der Ring E sowie R3, R4, R5 und n die oben angegebenen Bedeutungen haben,
kondensiert und dieses dann in Gegenwart einer Base mit einer Verbindung der Formel (XXVIII)
(XXVIII),
Figure imgf000282_0002
in welcher
Y für Chlor, Brom oder Iod steht
und
X für Chlor, Brom, Iod, Mesylat, Triflat oder Tosylat steht,
zu einer Verbindung der Formel (XXIX)
Figure imgf000282_0003
in welcher der Ring E sowie R3, R4, R5, n und Y1 die oben angegebenen Bedeutungen haben,
alkyliert
oder [B] mit einer Pyrazolcarbonsäure der Formel (XXX)
Figure imgf000283_0001
in welcher R die oben angegebene Bedeutung hat
und
Y1 für Chlor, Brom oder Iod steht,
zu der Verbindung der Formel (XXIX)
Figure imgf000283_0002
in welcher der Ring E sowie R3, R4, R5, n und Y1 die oben angegebenen Bedeutungen haben,
kondensiert
und anschließend die so erhaltene Verbindung der Formel (XXIX) gegebenenfalls in Gegenwart einer Hilfsbase mit einer Verbindung der Formel (XII)
\
N-H (XII),
/
in welcher R und R die oben angegebenen Bedeutungen haben,
umsetzt.
PCT/EP2009/007807 2008-11-14 2009-10-31 Heteroaromatische verbindungen zur verwendung als hif-inhibitoren WO2010054764A1 (de)

Priority Applications (9)

Application Number Priority Date Filing Date Title
AU2009315930A AU2009315930A1 (en) 2008-11-14 2009-10-31 Heteroaromatic compounds for use as HIF inhibitors
US13/129,409 US20110301122A1 (en) 2008-11-14 2009-10-31 Heteroaromatic compounds for use as hif inhibitors
EP09744089A EP2356112A1 (de) 2008-11-14 2009-10-31 Heteroaromatische verbindungen zur verwendung als hif-inhibitoren
CN2009801545900A CN102282142A (zh) 2008-11-14 2009-10-31 取代的芳族化合物和它们的用途
MX2011004779A MX2011004779A (es) 2008-11-14 2009-10-31 Compuestos de arilo sustituido y su uso como inhibidores de hif.
CA2743424A CA2743424A1 (en) 2008-11-14 2009-10-31 Heteroaromatic compounds for use as hif inhibitors
RU2011123672/04A RU2011123672A (ru) 2008-11-14 2009-10-31 Гетероароматические соединения для применения в качестве hif ингибиторов
IL212174A IL212174A0 (en) 2008-11-14 2011-04-06 Substituted aryl compounds and their use
ZA2011/03444A ZA201103444B (en) 2008-11-14 2011-05-11 Heteroaromatic compounds for use as hif inhibitors

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE102008057364A DE102008057364A1 (de) 2008-11-14 2008-11-14 Substituierte Aryl-Verbindungen und ihre Verwendung
DE102008057364.7 2008-11-14
DE102009041241A DE102009041241A1 (de) 2009-09-11 2009-09-11 Substituierte Aryl-Verbindungen und ihre Verwendung
DE102009041241.7 2009-09-11

Publications (1)

Publication Number Publication Date
WO2010054764A1 true WO2010054764A1 (de) 2010-05-20

Family

ID=41403126

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2009/007807 WO2010054764A1 (de) 2008-11-14 2009-10-31 Heteroaromatische verbindungen zur verwendung als hif-inhibitoren

Country Status (14)

Country Link
US (1) US20110301122A1 (de)
EP (1) EP2356112A1 (de)
KR (1) KR20110082570A (de)
CN (1) CN102282142A (de)
AR (1) AR074337A1 (de)
AU (1) AU2009315930A1 (de)
CA (1) CA2743424A1 (de)
IL (1) IL212174A0 (de)
MX (1) MX2011004779A (de)
RU (1) RU2011123672A (de)
TW (1) TW201029998A (de)
UY (1) UY32236A (de)
WO (1) WO2010054764A1 (de)
ZA (1) ZA201103444B (de)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013011033A1 (de) 2011-07-21 2013-01-24 Bayer Intellectual Property Gmbh 3-(fluorvinyl)pyrazole und ihre verwendung
WO2013057101A1 (de) 2011-10-17 2013-04-25 Bayer Intellectual Property Gmbh Substituierte oxadiazolylpyridinone und - pyridazinone als hif - hemmer
JP2013528204A (ja) * 2010-06-11 2013-07-08 アストラゼネカ アクチボラグ モルホリノピリミジンおよび治療におけるそれらの使用
WO2014031936A3 (en) * 2012-08-24 2014-05-22 Philip Jones Heterocyclic modulators of hif activity for treatment of disease
WO2014031933A3 (en) * 2012-08-24 2014-05-22 Philip Jones Heterocyclic modulators of hif activity for treatment of disease
WO2015060368A1 (ja) * 2013-10-23 2015-04-30 武田薬品工業株式会社 複素環化合物
EP3015459A1 (de) * 2014-10-30 2016-05-04 Sanofi Benzylhydroxidderivate, Herstellung davon und therapeutische Verwendung davon
US9663504B2 (en) 2014-02-25 2017-05-30 Board Of Regents, The University Of Texas System Salts of heterocyclic modulators of HIF activity for treatment of disease
US10214508B2 (en) 2014-06-13 2019-02-26 Takeda Pharmaceutical Company Limited Nitrogen-containing heterocyclic compound
WO2019100053A1 (en) 2017-11-20 2019-05-23 University Of Georgia Research Foundation, Inc. Compositions and methods for modulating hif-2α to improve muscle generation and repair

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130108997A (ko) * 2010-05-08 2013-10-07 바이엘 인텔렉쳐 프로퍼티 게엠베하 치환된 헤테로시클릴 벤질 피라졸 및 그의 용도
BR112020014474A2 (pt) * 2018-01-30 2020-12-01 Pi Industries Ltd. novos oxadiazóis

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005030121A2 (en) * 2003-06-30 2005-04-07 Hif Bio, Inc. Compounds, compositions and methods
WO2007065010A2 (en) * 2005-12-02 2007-06-07 Hif Bio, Inc. Anti-angiogenesis compounds

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2008253311A1 (en) * 2007-05-18 2008-11-27 Bayer Schering Pharma Aktiengesellshaft Inhibitors of hypoxia inducible factor (HIF) useful for treating hyper-proliferative disorders and diseases associated with angiogenesis

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005030121A2 (en) * 2003-06-30 2005-04-07 Hif Bio, Inc. Compounds, compositions and methods
WO2007065010A2 (en) * 2005-12-02 2007-06-07 Hif Bio, Inc. Anti-angiogenesis compounds

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2356112A1 *

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013528204A (ja) * 2010-06-11 2013-07-08 アストラゼネカ アクチボラグ モルホリノピリミジンおよび治療におけるそれらの使用
WO2013011033A1 (de) 2011-07-21 2013-01-24 Bayer Intellectual Property Gmbh 3-(fluorvinyl)pyrazole und ihre verwendung
CN104144925A (zh) * 2011-10-17 2014-11-12 拜耳知识产权有限责任公司 作为hif抑制剂的取代的噁二唑基吡啶酮和噁二唑基哒嗪酮
WO2013057101A1 (de) 2011-10-17 2013-04-25 Bayer Intellectual Property Gmbh Substituierte oxadiazolylpyridinone und - pyridazinone als hif - hemmer
US9018380B2 (en) 2012-08-24 2015-04-28 Boar of Regents, The University of Texas System Heterocyclic modulators of HIF activity for treatment of disease
WO2014031933A3 (en) * 2012-08-24 2014-05-22 Philip Jones Heterocyclic modulators of hif activity for treatment of disease
US10208059B2 (en) 2012-08-24 2019-02-19 Board Of Regents, The University Of Texas System Heterocyclic modulators of HIF activity for treatment of disease
WO2014031936A3 (en) * 2012-08-24 2014-05-22 Philip Jones Heterocyclic modulators of hif activity for treatment of disease
US9115120B2 (en) 2012-08-24 2015-08-25 Board Of Regents, The University Of Texas Systems Heterocyclic modulators of HIF activity for treatment of disease
JP2015526478A (ja) * 2012-08-24 2015-09-10 ボード オブ リージェンツ,ザ ユニバーシティーオブ テキサス システム 疾患を治療するためのhif活性の複素環式修飾物質
EP2888255A4 (de) * 2012-08-24 2016-04-13 Univ Texas Heterocyclische modulatoren der hif-aktivität zur behandlung von krankheiten
US11001594B2 (en) 2012-08-24 2021-05-11 Board Of Regents, The University Of Texas System Heterocyclic modulators of HIF activity for treatment of disease
RU2698197C2 (ru) * 2012-08-24 2019-08-23 Боард Оф Регентс, Зе Юниверсити Оф Тексас Систем Гетероциклические модуляторы активности hif для лечения заболеваний
US9481692B2 (en) 2012-08-24 2016-11-01 Board Of Regents, The University Of Texas System Heterocyclic modulators of HIF activity for treatment of disease
WO2015060368A1 (ja) * 2013-10-23 2015-04-30 武田薬品工業株式会社 複素環化合物
US10363248B2 (en) 2014-02-25 2019-07-30 Board Of Regents, The University Of Texas System Salts of heterocyclic modulators of HIF activity for treatment of disease
US10888554B2 (en) 2014-02-25 2021-01-12 Board Of Regents, The University Of Texas System Salts of heterocyclic modulators of HIF activity for treatment of disease
US9663504B2 (en) 2014-02-25 2017-05-30 Board Of Regents, The University Of Texas System Salts of heterocyclic modulators of HIF activity for treatment of disease
US10214508B2 (en) 2014-06-13 2019-02-26 Takeda Pharmaceutical Company Limited Nitrogen-containing heterocyclic compound
KR20170072226A (ko) * 2014-10-30 2017-06-26 사노피 벤질히드록시드 유도체, 그의 제조법 및 그의 치료 용도
WO2016066742A1 (en) * 2014-10-30 2016-05-06 Sanofi Benzylhydroxyde derivatives, preparation thereof and therapeutic use thereof
RU2704017C2 (ru) * 2014-10-30 2019-10-23 Санофи Производные бензилгидроксида, их получение и их терапевтическое применение
AU2015340584B2 (en) * 2014-10-30 2019-11-07 Sanofi Benzylhydroxyde derivatives, preparation thereof and therapeutic use thereof
US9878990B2 (en) 2014-10-30 2018-01-30 Sanofi Benzylhydroxide derivatives, preparation thereof and therapeutic use thereof
EP3015459A1 (de) * 2014-10-30 2016-05-04 Sanofi Benzylhydroxidderivate, Herstellung davon und therapeutische Verwendung davon
KR102598818B1 (ko) 2014-10-30 2023-11-03 사노피 벤질히드록시드 유도체, 그의 제조법 및 그의 치료 용도
WO2019100053A1 (en) 2017-11-20 2019-05-23 University Of Georgia Research Foundation, Inc. Compositions and methods for modulating hif-2α to improve muscle generation and repair
US10953036B2 (en) 2017-11-20 2021-03-23 University Of Georgia Research Foundation, Inc. Compositions and methods of modulating HIF-2A to improve muscle generation and repair

Also Published As

Publication number Publication date
IL212174A0 (en) 2011-06-30
US20110301122A1 (en) 2011-12-08
KR20110082570A (ko) 2011-07-19
EP2356112A1 (de) 2011-08-17
CA2743424A1 (en) 2010-05-20
AR074337A1 (es) 2011-01-12
AU2009315930A1 (en) 2010-05-20
UY32236A (es) 2010-06-30
TW201029998A (en) 2010-08-16
ZA201103444B (en) 2012-07-25
RU2011123672A (ru) 2012-12-20
MX2011004779A (es) 2011-05-30
CN102282142A (zh) 2011-12-14

Similar Documents

Publication Publication Date Title
EP2356113B1 (de) Heterocyclisch substituierte aryl-verbindungen als hif-inhibitoren
WO2010054764A1 (de) Heteroaromatische verbindungen zur verwendung als hif-inhibitoren
JP5702138B2 (ja) 過剰増殖障害および血管新生に関連する疾患の処置に有用なヘテロアリール置換ピラゾール誘導体
EP2569312B1 (de) Substituierte heterocyclylbenzyl-pyrazole und ihre verwendung
EP2768826A1 (de) Substituierte oxadiazolylpyridinone und - pyridazinone als hif - hemmer
WO2013011033A1 (de) 3-(fluorvinyl)pyrazole und ihre verwendung
WO2010054762A1 (de) Aminoalkyl-substituerte verbindungen als hif-inhibitoren
WO2011141325A1 (de) Hydroxyalkylbenzyl- pyrazole und ihre verwendung zur behandlung von hyperproliferativen und angiogenen erkrankungen
DE102008057364A1 (de) Substituierte Aryl-Verbindungen und ihre Verwendung
DE102009041241A1 (de) Substituierte Aryl-Verbindungen und ihre Verwendung
DE102009041242A1 (de) Heterocyclisch substituierte Aryl-Verbindungen und ihre Verwendung
DE102008057343A1 (de) Heterocyclisch substituierte Aryl-Verbindungen und ihre Verwendung
TW201311646A (zh) 3-(氟乙烯基)吡唑類及其用途

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980154590.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09744089

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 212174

Country of ref document: IL

WWE Wipo information: entry into national phase

Ref document number: 2009744089

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: MX/A/2011/004779

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 2009315930

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 2743424

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 20117010976

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 3870/DELNP/2011

Country of ref document: IN

ENP Entry into the national phase

Ref document number: 2009315930

Country of ref document: AU

Date of ref document: 20091031

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2011123672

Country of ref document: RU

WWE Wipo information: entry into national phase

Ref document number: 13129409

Country of ref document: US

REG Reference to national code

Ref country code: BR

Ref legal event code: B01E

Ref document number: PI0921824

Country of ref document: BR

Free format text: APRESENTE DOCUMENTOS COMPROBATORIOS QUE EXPLIQUEM A DIVERGENCIA NO NOME DO INVENTOR KERSTIN BERHOERSTER, QUE CONSTA NA PUBLICACAO INTERNACIONAL WO 2010/054764 DE 20/05/2010 E O CONSTANTE DA PETICAO INICIAL NO 020110049719 DE 13/05/2011.

ENPW Started to enter national phase and was withdrawn or failed for other reasons

Ref document number: PI0921824

Country of ref document: BR

Free format text: PEDIDO RETIRADO EM RELACAO AO BRASIL POR NAO ATENDER AS DETERMINACOES REFERENTES A ENTRADA DO PEDIDO NA FASE NACIONAL E POR NAO CUMPRIMENTO DA EXIGENCIA FORMULADA NA RPI NO 2368.