WO2010053087A1 - 成形品の製造方法、及び熱交換用膜エレメント - Google Patents

成形品の製造方法、及び熱交換用膜エレメント Download PDF

Info

Publication number
WO2010053087A1
WO2010053087A1 PCT/JP2009/068815 JP2009068815W WO2010053087A1 WO 2010053087 A1 WO2010053087 A1 WO 2010053087A1 JP 2009068815 W JP2009068815 W JP 2009068815W WO 2010053087 A1 WO2010053087 A1 WO 2010053087A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
solvent
resin
frame
producing
Prior art date
Application number
PCT/JP2009/068815
Other languages
English (en)
French (fr)
Inventor
和弘 丸谷
啓一 山川
今井 隆
Original Assignee
ジャパンゴアテックス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ジャパンゴアテックス株式会社 filed Critical ジャパンゴアテックス株式会社
Priority to KR1020117013006A priority Critical patent/KR101419584B1/ko
Priority to US13/127,554 priority patent/US8920699B2/en
Priority to EP09824786.9A priority patent/EP2351639B1/en
Priority to CN200980149112.0A priority patent/CN102232015B/zh
Publication of WO2010053087A1 publication Critical patent/WO2010053087A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/14Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles
    • B29C45/14631Coating reinforcements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/14Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/0053Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor combined with a final operation, e.g. shaping
    • B29C45/0055Shaping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/14Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles
    • B29C45/14778Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles the article consisting of a material with particular properties, e.g. porous, brittle
    • B29C45/14795Porous or permeable material, e.g. foam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/14Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles
    • B29C45/14827Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles using a transfer foil detachable from the insert
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/14Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles
    • B29C45/14836Preventing damage of inserts during injection, e.g. collapse of hollow inserts, breakage
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F7/00Ventilation
    • F24F7/04Ventilation with ducting systems, e.g. by double walls; with natural circulation
    • F24F7/06Ventilation with ducting systems, e.g. by double walls; with natural circulation with forced air circulation, e.g. by fan positioning of a ventilator in or against a conduit
    • F24F7/08Ventilation with ducting systems, e.g. by double walls; with natural circulation with forced air circulation, e.g. by fan positioning of a ventilator in or against a conduit with separate ducts for supplied and exhausted air with provisions for reversal of the input and output systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/14Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles
    • B29C45/14336Coating a portion of the article, e.g. the edge of the article
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2009/00Layered products
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/14Filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D21/0015Heat and mass exchangers, e.g. with permeable walls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • F28F21/06Constructions of heat-exchange apparatus characterised by the selection of particular materials of plastics material
    • F28F21/065Constructions of heat-exchange apparatus characterised by the selection of particular materials of plastics material the heat-exchange apparatus employing plate-like or laminated conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/08Elements constructed for building-up into stacks, e.g. capable of being taken apart for cleaning

Definitions

  • the present invention relates to a method of attaching a film to a resin frame, and preferably relates to a technique for manufacturing a heat exchange membrane element by attaching a moisture permeable film to a resin frame.
  • a heat exchange membrane element composed of a heat exchange membrane and a resin frame for supporting the membrane is used (Patent Document 1, etc.).
  • 1 (a) and 1 (b) are schematic perspective views of a membrane element introduced as a prior art in Patent Document 1 and a total heat exchanger using this membrane element.
  • FIG. 2 (a) 2 (b) and FIG. 2 (c) are schematic perspective views of a membrane element introduced as an example of the invention of Patent Document 1 and a total heat exchanger using the membrane element.
  • the heat exchange membrane element 41 includes a heat exchange membrane 11 and a resin frame 21, which are manufactured separately.
  • a plurality of rod-shaped spacers (ribs) 31 that are parallel to each other are formed in the resin frame 21, and a portion (parallel portion) 25 that is parallel to the rod-shaped spacers of the frame 21 is also the same as (or that of) the rod-shaped spacer 31.
  • the thickness is as described above.
  • the total heat exchanger 51 can be formed by alternately stacking the resin frames 21 and the heat exchange membranes 11 while changing the direction of the parallel portions 25 (and the bar-shaped spacers 31). In the total heat exchanger 51, the supply air passage and the exhaust passage are separated by the parallel portion 25, and the total heat exchange can be performed between the supply air and the exhaust via the heat exchange membrane 11. Yes.
  • a pair of heat exchange membrane elements 42a and 42b including the first and second are used, and the total heat exchanger 52 is formed by alternately laminating them.
  • the first heat exchange membrane element 42a is composed of the heat exchange membrane 11 and a resin frame 22a formed integrally therewith.
  • a plurality of bar-shaped spacers (ribs) 32a that are parallel to each other are formed on one side of the heat exchange film 11, and a plurality of bar-shaped spacers (ribs) 33a that are also parallel to each other are formed on the opposite side of the heat exchange film 11.
  • the spacer 32a on one side and the spacer 33a on the opposite side are orthogonal to each other.
  • a portion (parallel portion A) 26a parallel to the rod-shaped spacer 32a on one side of the frame 22a is formed to have a thickness similar to (or more than) the parallel rod-shaped spacer 32a.
  • a portion (parallel portion B) 27a parallel to the bar-shaped spacer 33a on the opposite surface side is also formed to have a thickness similar to (or more than) the parallel bar-shaped spacer 33a.
  • the second heat exchange membrane element 42b also has the same structure as the first heat exchange membrane element 42a.
  • the spacer of the second heat exchange membrane element 42b is formed with a second engaging portion 34b for positioning.
  • the second engagement portion 34b is also the same as the first heat exchange membrane element 42a.
  • the supply air passage and the exhaust passage are separated by the parallel portions 26 a, 26 b, 27 a and 27 b, and the total heat is supplied between the supply air and the exhaust via the heat exchange membrane 11. It can be exchanged.
  • Patent Document 1 Japanese plastic films and metal foils cannot be used as a total heat exchange membrane because the humidity (latent heat) cannot be exchanged even if the temperature (sensible heat) can be exchanged.
  • Patent Document 2 also discloses a paper base material.
  • the paper base material has an advantage that the latent heat exchange rate is high, but has low condensation durability, and if the condensation freezes, the total heat exchange membrane (paper) may be broken.
  • a porous resin film such as a stretched porous polytetrafluoroethylene film is also used.
  • the porous resin film has excellent condensation durability.
  • Patent Document 3 an example in which a porous resin film is used as it is is disclosed, but if a porous resin film is attached to a frame as shown in Patent Document 1 and used as a membrane element. It is expected that the heat exchanger can be easily assembled. However, it is not easy to attach the frame to the porous resin film.
  • Patent Document 4 discloses a molten plastic on the peripheral side of the polytetrafluoroethylene porous membrane.
  • An injection molding method for permeating and condensing is disclosed.
  • What is manufactured in Patent Document 4 is a method for manufacturing a ventilation filter having a very small membrane area, which may be about 1 cm in diameter, and this method cannot be applied to a heat exchange membrane having a large membrane area.
  • the porous resin film may shrink due to heat during the injection molding of the frame. Further, the porous resin film is also washed away by the resin pressure of the injection molding, so that the film shape is broken or the film is broken.
  • Patent Document 5 relates to a hollow type gas-liquid separation element, and has a frame shape different from that of a flat membrane type heat exchange membrane element, but the membrane area is the same as that of a flat membrane type heat exchange membrane. Since it is large, insert molding is performed after the nonwoven fabric is laminated on the porous resin film.
  • the porous resin film when attaching a porous resin film having a large area to the frame, the porous resin film had to be reinforced with a nonwoven fabric or the like. However, when the reinforcing layer is laminated, the latent heat exchange rate of the porous resin film is lowered.
  • the present invention has been made paying attention to the circumstances as described above, and its purpose is to establish a technique capable of sticking (integral molding) the film to a frame body independently of the size of the film. There is.
  • a preferred object of the present invention is to provide a heat exchange membrane element having excellent condensation durability and latent heat exchange characteristics (moisture permeability characteristics).
  • the present inventors have reinforced a film by previously laminating a solvent-soluble or solvent-disintegrating reinforcing layer on the film, and injection-molding a frame on the film After that, the present inventors have found that if the reinforcing layer is removed with a solvent, the film can be independently attached (integrated molding) to the frame regardless of the film area, and the present invention has been completed.
  • the manufacturing method of a molded product in which a film is pasted on a resin frame according to the present invention includes 1) reinforcing a film with a solvent-soluble or solvent-disintegrating reinforcing layer, and 2) reinforcing the injection mold. 3) Insert a film (that is, a laminate of a film and a reinforcing layer), 3) supply a resin to the mold and paste the frame body onto the laminate while injection molding, and 4) the resulting injection molded body. Is treated with a solvent to remove the reinforcing layer.
  • a preferred film is a stretched porous polytetrafluoroethylene film, and more preferably a moisture-permeable resin is combined with the stretched porous polytetrafluoroethylene film.
  • the moisture-permeable resin examples include a urethane resin, a crosslinked polyvinyl alcohol, and a fluorine ion exchange resin.
  • the thickness of the film is, for example, about 0.5 to 100 ⁇ m.
  • the reinforcing layer may be formed of, for example, water-soluble fibers, such as a molded article of polyvinyl alcohol fiber, or paper formed of pulp fibers finely dispersed in water. There may be.
  • the film-reinforcing layer laminate is inserted between a pair of injection molds, and both molds are provided with frame part forming cavities and are used for forming these frame parts. It is desirable that the mold surface inside the cavity is engraved.
  • the present invention also includes a heat exchange membrane element in which a stretched porous polytetrafluoroethylene film is singly attached to a resin frame by integral molding.
  • the film can be attached to the frame alone (integral molding). If a molded product that can be manufactured in this way is used for an element for a heat exchange membrane, it is possible to achieve both condensation durability and latent heat exchange characteristics (moisture permeability characteristics).
  • FIG. 1 is a schematic perspective view showing an example of a frame shape that can be manufactured by the present invention.
  • FIG. 2 is a schematic perspective view showing another example of a frame shape that can be manufactured by the present invention.
  • FIG. 3 is a schematic sectional view showing an example of a mold used in the present invention.
  • FIG. 4 is a schematic sectional view showing an example of the production method of the present invention.
  • FIG. 5 is a schematic perspective view showing an example of a molded product that can be produced by the present invention.
  • FIG. 3A is a schematic sectional view of a pair of injection molds used in the present invention as seen from the side
  • FIG. 3B is a front view of one mold.
  • the cross-sectional view of FIG. 3A corresponds to a cut surface taken along line II ′ of FIG. 4 is a cross-sectional view showing an insert molding procedure using the mold of FIG. 3
  • FIG. 5 (a) is a schematic perspective view showing the front side of the molded product obtained by the method of FIG. b) is a schematic perspective view showing the back side of the molded product.
  • a reinforcing film (laminated film) 16 obtained by laminating and bonding the film 12 with a solvent-soluble or solvent-disintegrating reinforcing layer 15 is inserted between a pair of injection molds 61 and 71 (FIG. 4).
  • 4 (a) after being fixed to the mold by appropriate means (pins, vacuuming, etc.), the resin for forming the frame 23 is injected from one mold 61 and pasted to the reinforcing film 16 (FIG. 4).
  • B) After demolding (FIG. 4C), the reinforcing layer 15 is removed by treatment with a solvent (FIG. 4D).
  • the resin supply port 64 is formed in one mold 61, but the resin may be supplied from both molds 61 and 71. Further, in the molds 61 and 71, the mold surfaces 63 and 73 inside the frame body forming cavities 64 and 74 are engraved, and a space between the cavities 64 and 74 and the engraved parts (recesses) 63 and 73 is engraved.
  • the film pressing portions 62 and 72 are formed by protruding in a peak shape. By forming the engraving parts (recesses) 63 and 73, the film 12 can be prevented from coming into contact with the mold, and thermal damage to the film 12 can be prevented.
  • the engraved portions (recessed portions) 63 and 73 are not essential, and the height of the engraved portions (recessed portions) 63 and 73 may be the same as that of the film pressing portions 62 and 72 to hold the film in a planar shape.
  • the film 12 is suitable for the application of the molded product 43 (for example, a filter (including a vent filter), a gas-liquid separation membrane, a dehumidifying membrane, a humidifying membrane, a pervaporation membrane, a heat exchange membrane, an ion exchange membrane, etc.).
  • a film based on a porous resin particularly stretched porous polytetrafluoroethylene is preferred.
  • Porous resins, particularly stretched porous polytetrafluoroethylene films are extremely soft and easy to stretch, and shrink easily due to heat, so it is very difficult to insert-mold them as they are. However, it can be attached to the frame by integral molding alone.
  • a porous resin may be used as the film 12 as it is.
  • the porous resin may be used as it is as the film 12, but for example, a moisture-permeable resin may be used as the porous resin film.
  • the combined composite film is used as film 12.
  • a moisture-permeable resin is preferably laminated on the porous resin film, and more preferably, the moisture-permeable resin is filled in the porous space in the porous film together with or instead of the lamination.
  • the average pore diameter and porosity of the porous resin film are appropriately set according to the use of the molded product.
  • the average pore diameter is, for example, 0.05 to It is about 10 ⁇ m, preferably about 0.1 to 5 ⁇ m, and the porosity is, for example, about 30 to 97%, preferably about 50 to 95%, and more preferably about 70 to 90%.
  • the average pore diameter is a value obtained from the pore distribution (volume distribution with respect to the pore diameter). That is, the pore distribution was measured on the assumption that all the pores of the porous resin film were cylindrical, and the pore diameter corresponding to the intermediate value of the pore volume was determined as the average pore diameter. In the present invention, the average pore size was determined using a Coulter Porometer manufactured by Coulter Electronics.
  • the thickness when the volume V is calculated is based on an average thickness measured with a dial thickness gauge (measured with “SM-1201” manufactured by Teclock Co., Ltd. in a state where no load other than the main body spring load is applied).
  • Porosity (%) [1 ⁇ (D / Dstandard)] ⁇ 100
  • moisture-permeable resin to be combined with the porous resin film examples include, for example, urethane resin, polystyrene sulfonic acid, polyvinyl alcohol cross-linked product (for example, cross-linked product of mixed solution of glutaraldehyde and HCl, cross-linked product of formaldehyde, blocked).
  • Cross-linked products such as isocyanate), vinyl alcohol copolymers (ethylene-vinyl alcohol copolymers, tetrafluoroethylene-vinyl alcohol copolymers), fluorine-based ion exchange resins (“Nafion (registered trademark)” manufactured by DuPont), Asahi Glass Resin having a protic hydrophilic group in the repeating unit such as ion exchange resin such as “Flemion (registered trademark)” manufactured by Co., Ltd., divinylbenzenesulfonic acid copolymer, divinylbenzenecarboxylic acid copolymer, etc.
  • ion exchange resin such as “Flemion (registered trademark)” manufactured by Co., Ltd., divinylbenzenesulfonic acid copolymer, divinylbenzenecarboxylic acid copolymer, etc.
  • moisture-permeable resins can be used alone or in combination of two or more.
  • Preferred moisture-permeable resins are urethane resins, crosslinked polyvinyl alcohol, fluorine ion exchange resins, and the like.
  • the term “film” 12 is defined as a layer other than the reinforcing layer 15.
  • a single-layer film particularly a porous resin film
  • a plurality of films particularly porous resin films
  • These “single layer” or “laminated film” are also included in the “film” 12 of the present invention.
  • a preferred film 12 is a monolayer film which may be filled with a moisture permeable resin, or a laminate of a moisture permeable resin on a single layer film.
  • the thickness of the film 12 is, for example, about 0.5 ⁇ m to 100 ⁇ m, preferably about 5 ⁇ m to 50 ⁇ m, and more preferably about 7 ⁇ m to 30 ⁇ m. Area also the film 12 is, for example, 4 cm 2 ⁇ 10000 cm 2 or so, preferably from 10 cm 2 ⁇ 5000 cm 2 or so, more preferably 100 cm 2 ⁇ 3000 cm 2 approximately.
  • the reinforcing layer 15 is laminated and bonded to the film 12, but can be laminated by various methods as long as the reinforcing layer 15 can reinforce the film 12.
  • the reinforcing layer 15 may be laminated to the film 12 by heat fusion. Good.
  • the method of laminating and bonding the film 12 and the reinforcing layer 15 or laminating and fusing is not particularly limited. For example, after the film 12 and the reinforcing layer 15 are laminated, the film 12 and the reinforcing layer 15 are passed through a hot roll and thermally fused. Also good.
  • the reinforcing layer 15 is not particularly limited as long as it is solvent-soluble or solvent-disintegrable and can reinforce the film 12 (laminate reinforcement).
  • a solvent-soluble or solvent-disintegratable material for example, sheets (including foam sheets), knitted fabrics, woven fabrics, non-woven fabrics, nets, etc.), solvent-resistant fibers, solvent-soluble or solvent-disintegrating materials
  • Solvent-soluble or solvent-disintegrating materials and solvent-resistant fibers can be used in various ways depending on the type of solvent (for example, water, organic solvent, acid, alkali, etc.).
  • examples of the solvent-soluble or solvent-disintegrating sheet molded article include polyvinyl alcohol sheets and starch sheets (such as wafers).
  • examples of solvent-soluble or solvent-disintegrating fiber molded products include molded products of polyvinyl alcohol fibers (for example, “Solbron (trade name)” manufactured by Aicello Chemical Co., Ltd., Kuraray Co., Ltd. “Kuraron K-II”, etc.); Examples thereof include paper formed from pulp fibers that are finely dispersed in water (for example, “water-soluble paper (trade name)” manufactured by Nippon Paper Industries Co., Ltd.).
  • examples of the solvent-soluble or solvent-disintegrating adhesive material include polyvinyl alcohol and starch paste.
  • examples of the solvent durable fiber include polyester fiber, polyethylene fiber, polypropylene fiber, and nylon fiber. Even when other solvents are used, the solvent-soluble or solvent-disintegrating materials and solvent-resistant fibers can be appropriately selected from known materials.
  • the shape of the frame body 23 can also be appropriately designed according to the use of the molded product 43.
  • the molded product 43 when used as a heat exchange membrane molded body, as shown in FIGS. 1 and 2, a frame body in which a plurality of spacers are formed on one side or both sides of the film 12 may be formed.
  • the portion of the frame that is parallel to the spacer is usually approximately the same (or greater) thickness as the spacer.
  • the resin is injected from the molds on both sides of the film 12.
  • Example 1 Dot-shaped urethane adhesive on a moisture-permeable film obtained by coating a stretched porous polytetrafluoroethylene film with an average pore size of 0.2 ⁇ m, porosity of 80%, and thickness of 20 ⁇ m with a moisture-permeable urethane resin at a coating amount of 8 g / m 2.
  • a polyvinyl alcohol non-woven fabric manufactured by Shinwa Co., Ltd., trade name “9040-E” was laminated and adhered.
  • An ABS resin frame was formed by setting the heat-laminated film on a vertical injection molding machine (model: TH100R12VSE) manufactured by Nissei Plastic Industry Co., Ltd. and insert molding.
  • the molding conditions were pre-drying: 3 hours, 90 ° C., cylinder setting temperature: 240 ° C., screw rotation speed: 90 rotations / minute, back pressure: 20 MPa, mold temperature: 60 ° C.
  • the injection molded body was immersed in water at a temperature of 25 ° C. for 5 minutes, and then rinsed with running water to obtain a molded article in which a moisture permeable film was attached to the resin frame alone.
  • Comparative Example 1 In the same manner as in Example 1, insert molding was performed. The polyvinyl alcohol nonwoven fabric laminated on the moisture permeable film was left without being removed with running water. The moisture permeability of the molded products obtained in Example 1 and Comparative Example 1 was measured according to JIS L1099A-1 method (conditions: 25 ° C., 75% RH). Three measurements were taken and the average value was determined. The results are shown in Table 1.
  • the molded product of Example 1 Compared with the molded product of Comparative Example 1, the molded product of Example 1 has high moisture permeability, which is comparable to the moisture permeability of the moisture permeable film before heat lamination of the polyvinyl alcohol nonwoven fabric.
  • the molded product 43 manufactured according to the present invention has a filter (including a vent filter), a gas-liquid separation membrane, a dehumidifying membrane, a humidifying membrane, and a vaporization membrane by appropriately changing the material of the film 12 and the shape of the frame body 23. It can be used for various applications such as heat exchange membranes and ion exchange membranes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)
  • Laminated Bodies (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

 樹脂製枠体にフィルムを貼設した成形品は、1)フィルムを溶剤可溶性又は溶剤崩壊性の補強層で補強し、2)射出成形金型に前記補強されたフィルムを挿入し、3)前記金型に樹脂を供給して枠体を射出成形しつつ前記補強されたフィルムに貼り付け、4)得られた射出成形体を溶剤で処理して前記補強層を除去する方法によって製造する。この製造方法によって、フィルムの大きさを問わず、該フィルムを単独で枠体に貼設(一体成形)できる技術が確立される。前記フィルムは、延伸多孔質ポリテトラフルオロエチレンフィルムが好ましく、透湿性樹脂が前記延伸多孔質ポリテトラフルオロエチレンフィルムと複合化されているのが好ましい。

Description

成形品の製造方法、及び熱交換用膜エレメント
 本発明は、樹脂製枠体にフィルムを貼設する方法に関するものであり、好ましくは樹脂製枠体に透湿性フィルムを貼設して熱交換用膜エレメントを製造する技術に関する。
 室内を冷暖房したり、換気したりする際に、室内に供給する新鮮な空気(給気)と室内から排出する空気(排気)との間で、熱交換膜を介して、温度(顕熱)や湿度(潜熱)の交換(全熱交換)が行われている。
 全熱交換には、例えば、熱交換膜と、この膜を支持するための樹脂製枠体とからなる熱交換用膜エレメントが使用されている(特許文献1など)。図1(a)、図1(b)は、特許文献1において従来技術として紹介されている膜エレメントと、この膜エレメントを使用した全熱交換器の概略斜視図であり、図2(a)、図2(b)、図2(c)は、特許文献1の発明例として紹介されている膜エレメントと、この膜エレメントを使用した全熱交換器の概略斜視図である。
 図1の例では、熱交換用膜エレメント41は、熱交換膜11と、樹脂製枠体21とから構成されており、これらは別々に製造されている。樹脂製枠体21には、互いに平行する複数の棒状スペーサー(リブ)31が形成されており、枠体21のうち棒状スペーサーと平行する部分(平行部)25も棒状スペーサー31と同様(又はそれ以上)の厚さに形成されている。この平行部25(及び棒状スペーサー31)の向きを替えつつ、樹脂製枠体21と熱交換膜11とを交互に積み重ねていくと、全熱交換器51を形成できる。この全熱交換器51では、前記平行部25によって給気流路と排気流路が区切られており、熱交換膜11を介して給気と排気との間で全熱交換ができるようになっている。
 また図2の例では、第1及び第2からなる一対の熱交換用膜エレメント42a、42bを使用しており、これらを交互に積層することで、全熱交換器52を形成している。第1の熱交換用膜エレメント42aは、より詳細には、熱交換膜11と、これと一体的に成形された樹脂製枠体22aとから構成されている。また熱交換膜11の片面側には、互いに平行する複数の棒状スペーサー(リブ)32aが形成され、前記熱交換膜11の反対面側にも互いに平行する複数の棒状スペーサー(リブ)33aが形成され、片面側のスペーサー32aと、反対面側のスペーサー33aとは直交している。さらに枠体22aのうち片面側の棒状スペーサー32aと平行する部分(平行部A)26aは、この平行する棒状スペーサー32aと同様(又はそれ以上)の厚さに形成されている。また反対面側の棒状スペーサー33aと平行する部分(平行部B)27aも、この平行する棒状スペーサー33aと同様(又はそれ以上)の厚さに形成されている。
 第2の熱交換用膜エレメント42bも、前記第1の熱交換用膜エレメント42aと同様の構造になっている。また第2の熱交換用膜エレメント42bのスペーサーには、位置決め用の第2の係合部34bが形成されており、この第2係合部34bは、同じく第1の熱交換用膜エレメント42aに形成された第1の係合部34aと係り合うことで、両エレメント42a、42bの位置ずれを防止できるようになっている。そして全熱交換器52を形成する際には、これら第1及び第2の熱交換用膜エレメント42a、42bを、互いに対向するスペーサー(リブ)32a、32b、33a、33bの方向を揃えつつ、交互に積層する。
 この図2の熱交換器52でも、平行部26a、26b、27a、27bによって給気流路と排気流路が区切られており、熱交換膜11を介して給気と排気との間で全熱交換ができるようになっている。
 ところで、通常のプラスチックフィルムや金属箔は、温度(顕熱)を交換できても、湿度(潜熱)の交換はできないため、全熱交換膜として使用することはできない。そこで全熱交換膜として特許文献1には紙が使用されており、また特許文献2でも紙基材を開示する。紙基材は、潜熱交換率が高いというメリットを有するが、結露耐久性が低く、結露が凍結すると全熱交換膜(紙)が破れる場合がある。
 また全熱交換膜として、例えば、特許文献3に示されるように、延伸多孔質ポリテトラフルオロエチレンフィルムなどの多孔質樹脂フィルムも使用されている。多孔質樹脂フィルムは、結露耐久性に優れている。
特開2007-285691号公報 特開2007-119969号公報 特開平7-133994号公報 特開平4-45812号公報 特開2003-97831号公報
 前記特許文献3の例では、多孔質樹脂フィルムをそのまま使用する例が開示されているが、特許文献1に示されるような枠体に多孔質樹脂フィルムを貼設し、膜エレメントとして使用すれば、熱交換器の組み立てを容易にできると期待される。しかし、多孔質樹脂フィルムに枠体を取り付けるのは容易ではない。
 熱交換膜とは技術分野や枠体形状を異にするが、多孔質樹脂フィルムを枠体に貼設する方法として、特許文献4には、ポリテトラフルオロエチレン多孔質膜の周側に溶融プラスチックを浸透凝結させる射出成形法が開示されている。しかし特許文献4で製造されるのは、直径約1cm以下程度の大きさでよい膜面積が極めて小さい通気フィルターの製造方法であり、この方法を膜面積の大きな熱交換膜に適用することはできない。多孔質樹脂フィルムは、枠体の射出成型時の熱で収縮する場合がある。また射出成形の樹脂圧で多孔質樹脂フィルムも押し流されてしまい、膜形状が崩れたり、膜が破れたりする。そのため、膜面積の大きな多孔質樹脂フィルムを使用する場合には、不織布によって予め補強しておくことが必須であった。例えば、特許文献5は中空型の気液分離エレメントに関するものであって、平膜型の熱交換膜用エレメントとは枠体形状は異なるが、膜面積は平膜型の熱交換膜と同様に大きい為、多孔質樹脂フィルムに不織布を積層した後で、インサート成形している。
 以上の通り、面積の大きな多孔質樹脂フィルムを枠体に取り付ける場合、多孔質樹脂フィルムを不織布等で補強しなければならなかった。しかし、補強層を積層すると、多孔質樹脂フィルムの潜熱交換率が低下する。
 本発明は上記の様な事情に着目してなされたものであって、その目的は、フィルムの大きさを問わず、該フィルムを単独で枠体に貼設(一体成形)できる技術を確立することにある。
 本発明の好ましい目的は、結露耐久性と潜熱交換特性(透湿特性)に優れた熱交換用膜エレメントを提供することにある。
 本発明者らは、前記課題を解決するために鋭意研究を重ねた結果、溶剤可溶性又は溶剤崩壊性の補強層を予めフィルムに積層してフィルムを補強しておき、フィルムに枠体を射出成形した後で、補強層を溶剤で除去すれば、フィルム面積を問わず、該フィルムを単独で枠体に貼設(一体成形)できることを見出し、本発明を完成した。
 すなわち、本発明に係る樹脂製枠体にフィルムを貼設した成形品の製造方法は、1)フィルムを溶剤可溶性又は溶剤崩壊性の補強層で補強し、2)射出成形金型に前記補強されたフィルム(即ちフィルムと補強層との積層体)を挿入し、3)前記金型に樹脂を供給して枠体を射出成形しつつ前記積層体に貼り付け、4)得られた射出成形体を溶剤で処理して補強層を除去することを特徴とする。好ましいフィルムは、延伸多孔質ポリテトラフルオロエチレンフィルムであり、より好ましくは透湿性樹脂が前記延伸多孔質ポリテトラフルオロエチレンフィルムと複合化されている。前記透湿性樹脂は、例えば、ウレタン樹脂、ポリビニルアルコールの架橋体、フッ素系イオン交換樹脂などである。フィルムの厚さは、例えば、0.5~100μm程度である。前記溶剤が水の場合、前記補強層は例えば、水溶性繊維で形成されたものであってもよく、ポリビニルアルコール系繊維の成形体、又は水中で微細分散するパルプ繊維から形成された紙などであってもよい。前記フィルム-補強層積層体は、一対の射出成形型用金型の間に挿入されており、これら両金型には枠体部形成用キャビティが形成されていると共に、これら枠体部形成用キャビティよりも内側の金型面が彫り込まれているのが望ましい。
 本発明には、延伸多孔質ポリテトラフルオロエチレンフィルムが単独で樹脂製枠体に一体成形によって貼設されている熱交換用膜エレメントも含まれる。
 本発明によれば、フィルムを単独で枠体に貼設(一体成形)できる。このようにして製造できる成形品を熱交換膜用エレメントに使用すれば、結露耐久性と潜熱交換特性(透湿特性)を両立できる。
図1は本発明で製造できる枠体形状の一例を示す概略斜視図である。 図2は本発明で製造できる枠体形状の他の例を示す概略斜視図である。 図3は本発明で使用する金型の一例を示す概略断面図である。 図4は本発明の製造方法の一例を示す概略断面図である。 図5は本発明で製造できる成形品の一例を示す概略斜視図である。
 以下、適宜、図面を参照しつつ本発明をより詳細に説明する。なお同じ構成部分については同一の符号を付して重複説明を避ける。
 図3(a)は本発明で使用する一対の射出成型用金型を側方から見た概略断面図であり、図3(b)は片方の金型の正面図である。なお図3(a)の断面図は図3(b)のI-I’線での切断面に相当する。図4は、図3の金型を用いたインサート成形手順を示す断面図であり、図5(a)は図4の方法で得られた成形品の正面側を示す概略斜視図、図5(b)は前記成形品の背面側を示す概略斜視図である。
 図4の製造例では、フィルム12を溶剤可溶性又は溶剤崩壊性の補強層15と積層接着した補強フィルム(積層フィルム)16を、一対の射出成型用金型61、71の間に挿入し(図4(a))、適当な手段(ピン、真空引きなど)で金型に固定した後、片方の金型61から枠体23形成用の樹脂を射出しつつ補強フィルム16に貼り付け(図4(b))、脱型した後(図4(c))、溶剤で処理して補強層15を除去している(図4(d))。補強層15を使用することによって、射出成型時のフィルム12の型崩れや、収縮、破れを防止できる。そしてこの補強層15を成形後に溶剤で除去しているため、枠体23にフィルム12を単独で貼設(一体成形)した成形品43を製造できる(図5(a)、(b))。
 なお図示例では、片方の金型61に樹脂供給口64が形成されているが、両方の金型61、71から樹脂を供給してもよい。また金型61、71では、枠体部形成用キャビティ64、74よりも内側の金型面63、73が彫り込まれており、このキャビティ64、74と彫り込み部(凹部)63、73の間が、峰状に突出することでフィルムの押さえ部62、72となっている。彫り込み部(凹部)63、73を形成しておくことで、フィルム12が金型に接触するのを防止でき、フィルム12の熱損傷を防止できる。ただし、彫り込み部(凹部)63、73は必須ではなく、彫り込み部(凹部)63、73の高さをフィルム押さえ部62、72と同じ高さにして、面状にフィルムを押さえてもよい。
 前記フィルム12は、成形品43の用途(例えば、フィルター(ベントフィルターを含む)、気液分離膜、除湿膜、加湿膜、パーベーパレーション膜、熱交換膜、イオン交換膜など)に応じて適切なものが使用できるが、好ましくは多孔質樹脂(特に延伸多孔質ポリテトラフルオロエチレン)を基材とするフィルムである。多孔質樹脂、特に延伸多孔質ポリテトラフルオロエチレンフィルムは、極めて柔らかくかつ伸びやすく、熱により収縮しやすいので、そのままでインサート成形することは非常に難しいが、本発明によれば、この様なフィルムでも単独で一体成形によって枠体に貼設できる。
 成形品43をフィルター(ベントフィルターを含む)用エレメントとして使用する場合、多孔質樹脂をそのまま前記フィルム12として使用すればよい。また成形品43をフィルター以外の用途(特に気液分離膜)に使用する場合には、多孔質樹脂をそのままフィルム12として使用してもよいが、例えば、透湿性樹脂を前記多孔質樹脂フィルムと組み合わせた複合化フィルムをフィルム12として使用する。複合化フィルムとしては、透湿性樹脂を前記多孔質樹脂フィルムに積層するのが好ましく、より好ましくは前記積層と共に又は前記積層に代えて透湿性樹脂を多孔質フィルム内の多孔質空間に充填する。
 なお多孔質樹脂フィルム(特に、延伸多孔質ポリテトラフルオロエチレン)の平均孔径や空孔率は、成形品の用途に応じて適宜設定されるが、例えば、平均孔径は、例えば、0.05~10μm程度、好ましくは0.1~5μm程度であり、空孔率は、例えば、30~97%程度、好ましくは50~95%程度、さらに好ましくは70~90%程度である。
 平均孔径は、細孔分布(孔径に対する容積分布)から求めた値である。すなわち多孔質樹脂フィルムの全ての細孔を円筒形と仮定して細孔分布を測定し、細孔容積の中間値に対応する細孔径を平均孔径として求めた。なお、本発明では、コールターエレクトロニクス社のコールターポロメーターを使用して平均孔径を求めた。
 また多孔質樹脂フィルムの空孔率は、多孔質樹脂フィルムの質量Wと、空孔を含む見かけの体積Vとを測定することによって求まる嵩密度D(D=W/V:単位はg/cm3)と、全く空孔が形成されていないときの密度Dstandard(ポリテトラフルオロエチレンの場合は2.2g/cm3)を用い、下記式に基づいて算出できる。なお、体積Vを算出する際の厚みは、ダイヤルシックネスゲージで測定した(テクロック社製「SM-1201」を用い、本体バネ荷重以外の荷重をかけない状態で測定した)平均厚さによる。
 空孔率(%)=[1-(D/Dstandard)]×100
 多孔質樹脂フィルムと複合化する透湿性樹脂としては、例えば、ウレタン樹脂、ポリスチレンスルホン酸、ポリビニルアルコールの架橋体(例えば、グルタルアルデヒドとHClとの混合液による架橋体、ホルムアルデヒドによる架橋体、ブロックドイソシアネートによる架橋体など)、ビニルアルコール共重合体(エチレン-ビニルアルコール共重合体、テトラフルオロエチレン-ビニルアルコール共重合体)、フッ素系イオン交換樹脂(デュポン社製「ナフィオン(登録商標)」、旭硝子株式会社製「フレミオン(登録商標)」など)、ジビニルベンゼンスルホン酸共重合体、ジビニルベンゼンカルボン酸共重合体などのイオン交換樹脂などの繰り返し単位にプロトン性親水性基を有する樹脂(プロトン性親水性樹脂);ポリエチレンオキサイド、ポリビニルピリジン、ポリビニルエーテル、ポリビニルピロリドン、ピロリドンなどの繰り返し単位に非プロトン性親水性基を有する樹脂(非プロトン性親水性樹脂)などが挙げられる。これら透湿性樹脂は、単独で又は2種以上を組み合わせて使用できる。好ましい透湿性樹脂は、ウレタン樹脂、ポリビニルアルコールの架橋体、フッ素系イオン交換樹脂などである。
 なお本明細書において用語「フィルム」12は、補強層15以外の層として定義され、例えば、単層のフィルム(特に多孔質樹脂フィルム)、フィルム(特に多孔質樹脂フィルム)を複数枚積層したもの、これら単層又は積層フィルム(特に単層又は積層多孔質樹脂フィルム)にさらに透湿性樹脂を積層したものなども本発明の「フィルム」12に含まれる。好ましいフィルム12は、透湿性樹脂が充填されていてもよい単層フィルム、単層フィルムに透湿性樹脂を積層したものである。
 フィルム12の厚さは、例えば、0.5μm~100μm程度、好ましくは5μm~50μm程度、さらに好ましくは7μm~30μm程度である。またフィルム12の面積は、例えば、4cm2~10000cm2程度、好ましくは10cm2~5000cm2程度、さらに好ましくは100cm2~3000cm2程度である。
 図示例では、補強層15をフィルム12に積層接着したが、補強層15でフィルム12を補強できる限り種々の方法で積層でき、例えば、熱融着によって補強層15をフィルム12に積層してもよい。
 フィルム12と補強層15を積層接着したり、積層融着したりする方法は特に限定されないが、例えば、フィルム12と補強層15とを積層した後、熱ロールに通して、熱融着してもよい。
 補強層15としては、溶剤可溶性又は溶媒崩壊性であって、前記フィルム12を補強(積層補強)可能である限り特に限定されないが、例えば、溶剤可溶性又は溶剤崩壊性の材料(樹脂、繊維など)で形成された成形体(例えば、シート(発泡シートを含む)の他、編物、織布、不織布、ネットなどの繊維成形体など)、溶剤耐久性のある繊維を溶剤可溶性又は溶剤崩壊性の材料で接着した不織布などが挙げられる。なお溶剤可溶性又は溶剤崩壊性の繊維を溶剤可溶性又は溶剤崩壊性の接着剤で接着した不織布も、当然、補強層15に含まれる。
 溶剤可溶性又は溶剤崩壊性の材料や溶剤耐久性繊維は、溶剤(例えば、水、有機溶剤、酸、アルカリなど)の種類に応じて種々使用できる。例えば、溶剤として水を使用する場合、溶剤可溶性又は溶剤崩壊性のシート成形体としては、例えば、ポリビニルアルコールシート、デンプンシート(オブラートなど)などが挙げられる。溶剤可溶性又は溶剤崩壊性の繊維成形体としては、ポリビニルアルコール系繊維(例えば、アイセロ化学(株)製「ソルブロン(商品名)」、クラレ(株)「クラロンK-II」など)の成形体;水中で微細分散するパルプ繊維から形成された紙(例えば、日本製紙パピリア(株)製「水溶紙(商品名)」)などを例示できる。
 また溶剤として水を使用する場合、溶剤可溶性又は溶剤崩壊性の接着材料としては、ポリビニルアルコール、でんぷん糊などが例示できる。溶剤耐久性繊維は、例えば、ポリエステル繊維、ポリエチレン繊維、ポリプロピレン繊維、ナイロン繊維などである。
  他の溶剤を使用する場合にも、溶剤可溶性又は溶剤崩壊性の材料や溶剤耐久性繊維は、公知の材料から適宜選択できる。
 枠体23の形状も、成形品43の用途に応じて適宜設計できる。例えば成形品43を熱交換用膜成形体として使用する場合、図1や図2に示すように、複数のスペーサーがフィルム12の片側又は両側に形成された枠体を形成してもよく、該枠体のうちスペーサーと平行する部分は、通常、スペーサーと略同じ(又はそれ以上の)厚さになっている。なおフィルム12の両側にスペーサーを形成する場合、樹脂は、フィルム12の両側の金型から射出される。
 以下、実施例を挙げて本発明をより具体的に説明するが、本発明はもとより下記実施例によって制限を受けるものではなく、前・後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも勿論可能であり、それらはいずれも本発明の技術的範囲に包含される。
 実施例1
 平均孔径0.2μm、空孔率80%、厚さ20μmの延伸多孔質ポリテトラフルオロエチレンフィルムに透湿性ウレタン樹脂を塗布量8g/m2でコーティングした透湿性フィルムにウレタン系接着剤をドット状に転写し、ポリビニルアルコール製不織布((株)シンワ製、商品名「9040-E」)を積層して接着した。
 日精樹脂工業(株)製の縦型射出成形機(型式:TH100R12VSE)に、前記熱ラミネートフィルムをセットし、インサート成形することによってABS樹脂製枠体を形成した。なお成形条件は、予備乾燥:3時間、90℃、シリンダー設定温度:240℃、スクリュー回転数:90回転/分、背圧:20MPa、金型温度:60℃とした。射出成形体を温度25℃の水に5分間浸積した後、流水で洗い流すことによって、樹脂製枠体に透湿性フィルムが単独で貼り付けられた成形品を得た。
 比較例1
 実施例1と同様にして、インサート成形した。透湿性フィルムに積層されたポリビニルアルコール製不織布は、流水で除去することなくそのままにした。
 実施例1及び比較例1で得られた成形品の透湿性を、JIS L1099A-1法に準拠して測定した(条件:25℃、75%RH)。3回測定し、その平均値を求めた。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 比較例1の成形品に比べると、実施例1の成形品の透湿性は高く、ポリビニルアルコール製不織布を熱ラミネートする前の透湿性フィルムの透湿性に匹敵する。
 本発明によって製造される成形品43は、フィルム12の材質や枠体23の形状を適宜変更することによって、フィルター(ベントフィルターを含む)、気液分離膜、除湿膜、加湿膜、ベーパレーション膜、熱交換膜、イオン交換膜などの種々の用途に使用できる。
 12 フィルム
 15 補強層
 16 補強されたフィルム
 23 樹脂製枠体
 61、71 射出成形金型
 43 成形品

Claims (9)

  1.  樹脂製枠体にフィルムを貼設した成形品の製造方法であって、
     フィルムを溶剤可溶性又は溶剤崩壊性の補強層で補強し、
     射出成形金型に前記補強されたフィルムを挿入し、
     前記金型に樹脂を供給して枠体を射出成形しつつ前記補強されたフィルムに貼り付け、
     得られた射出成形体を溶剤で処理して前記補強層を除去することを特徴とする成形品の製造方法。
  2.  前記フィルムが延伸多孔質ポリテトラフルオロエチレンフィルムである請求項1に記載の成形品の製造方法。
  3.  透湿性樹脂が前記延伸多孔質ポリテトラフルオロエチレンフィルムと複合化されている請求項2に記載の成形品の製造方法。
  4.  前記透湿性樹脂がウレタン樹脂、ポリビニルアルコールの架橋体、及びフッ素系イオン交換樹脂から選択される少なくとも一種である請求項3に記載の成形品の製造方法。
  5.  前記フィルムの厚さが、0.5~100μmである請求項1~4のいずれかに記載の成形品の製造方法。
  6.  前記溶剤が水であり、前記補強層が水溶性繊維で形成されている請求項1~5のいずれかに記載の成形品の製造方法。
  7.  前記溶剤が水であり、前記補強層がポリビニルアルコール系繊維の成形体、又は水中で微細分散するパルプ繊維から形成された紙である請求項1~5のいずれかに記載の成形品の製造方法。
  8.  補強層で補強された前記フィルムが一対の射出成形型用金型の間に挿入されており、これら両金型には枠体部形成用キャビティが形成されていると共に、これら枠体部形成用キャビティよりも内側の金型面が彫り込まれている請求項1~7のいずれかに記載の製造方法。
  9.  延伸多孔質ポリテトラフルオロエチレンフィルムが単独で樹脂製枠体に一体成形によって貼設されている熱交換用膜エレメント。
PCT/JP2009/068815 2008-11-07 2009-11-04 成形品の製造方法、及び熱交換用膜エレメント WO2010053087A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020117013006A KR101419584B1 (ko) 2008-11-07 2009-11-04 성형품의 제조방법 및 열교환용 막 엘리멘트
US13/127,554 US8920699B2 (en) 2008-11-07 2009-11-04 Process for producing molded product, and heat-exchange membrane element
EP09824786.9A EP2351639B1 (en) 2008-11-07 2009-11-04 Process for producing molded article
CN200980149112.0A CN102232015B (zh) 2008-11-07 2009-11-04 成型品的制造方法及热交换用膜元件

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008286477A JP5568231B2 (ja) 2008-11-07 2008-11-07 成形品の製造方法
JP2008-286477 2008-11-07

Publications (1)

Publication Number Publication Date
WO2010053087A1 true WO2010053087A1 (ja) 2010-05-14

Family

ID=42152895

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/068815 WO2010053087A1 (ja) 2008-11-07 2009-11-04 成形品の製造方法、及び熱交換用膜エレメント

Country Status (6)

Country Link
US (1) US8920699B2 (ja)
EP (1) EP2351639B1 (ja)
JP (1) JP5568231B2 (ja)
KR (1) KR101419584B1 (ja)
CN (1) CN102232015B (ja)
WO (1) WO2010053087A1 (ja)

Families Citing this family (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8201109B2 (en) 2008-03-04 2012-06-12 Apple Inc. Methods and graphical user interfaces for editing on a portable multifunction device
US9598782B2 (en) * 2008-04-11 2017-03-21 Christopher M. McWhinney Membrane module
US9234665B2 (en) 2010-06-24 2016-01-12 Nortek Air Solutions Canada, Inc. Liquid-to-air membrane energy exchanger
US8915092B2 (en) 2011-01-19 2014-12-23 Venmar Ces, Inc. Heat pump system having a pre-processing module
JP5906528B2 (ja) 2011-07-29 2016-04-20 アピックヤマダ株式会社 モールド金型及びこれを用いた樹脂モールド装置
US9810439B2 (en) 2011-09-02 2017-11-07 Nortek Air Solutions Canada, Inc. Energy exchange system for conditioning air in an enclosed structure
JP5748863B2 (ja) * 2011-10-26 2015-07-15 三菱電機株式会社 全熱交換素子およびその製造方法
ES2527826T3 (es) 2012-01-20 2015-01-30 Zehnder Verkaufs- Und Verwaltungs Ag Elemento de intercambiador de calor y procedimiento para la producción
WO2013157045A1 (ja) * 2012-04-20 2013-10-24 三菱電機株式会社 熱交換素子
JP2013257107A (ja) * 2012-06-14 2013-12-26 Mitsubishi Electric Corp 熱交換素子及び熱交換素子の製造方法
US20140014289A1 (en) * 2012-07-11 2014-01-16 Kraton Polymers U.S. Llc Enhanced-efficiency energy recovery ventilation core
US9816760B2 (en) 2012-08-24 2017-11-14 Nortek Air Solutions Canada, Inc. Liquid panel assembly
US9109808B2 (en) 2013-03-13 2015-08-18 Venmar Ces, Inc. Variable desiccant control energy exchange system and method
US9772124B2 (en) 2013-03-13 2017-09-26 Nortek Air Solutions Canada, Inc. Heat pump defrosting system and method
US10352628B2 (en) 2013-03-14 2019-07-16 Nortek Air Solutions Canada, Inc. Membrane-integrated energy exchange assembly
US11408681B2 (en) 2013-03-15 2022-08-09 Nortek Air Solations Canada, Iac. Evaporative cooling system with liquid-to-air membrane energy exchanger
US10584884B2 (en) 2013-03-15 2020-03-10 Nortek Air Solutions Canada, Inc. Control system and method for a liquid desiccant air delivery system
ES2685068T3 (es) 2013-07-19 2018-10-05 Westwind Limited Elemento de intercambiador de calor/entalpía y método para la producción
EP2829836A1 (en) * 2013-07-22 2015-01-28 Zehnder Verkaufs- und Verwaltungs AG Enthalpy exchanger element and method for the production
JP6399796B2 (ja) 2013-09-02 2018-10-03 ローランド株式会社 打楽器およびその打楽器に用いられるドラムヘッド
DK3077734T3 (da) 2013-12-02 2019-10-28 Zehnder Group Int Ag System og fremgangsmåde til fastgørelse af et varme- eller kølelegeme
SG11201605236QA (en) * 2013-12-26 2016-07-28 Avichal Agrawal A fluid handling device and a method of heating or cooling a fluid flow
PL3151943T3 (pl) * 2014-06-05 2021-05-31 Evoqua Water Technologies Llc Panel filtracyjny i sposób jego wykonania
DK3183051T3 (da) 2014-08-19 2020-06-02 Nortek Air Solutions Canada Inc Væske-til-luftmembranenergivekslere
DE102015205645B4 (de) 2015-03-27 2018-02-15 Technogel Gmbh Spritzgussteil mit einem Basisteil und einem daran befestigten polsternden Formteil und Verfahren zu seiner Herstellung
US11092349B2 (en) 2015-05-15 2021-08-17 Nortek Air Solutions Canada, Inc. Systems and methods for providing cooling to a heat load
CN107850335B (zh) 2015-05-15 2021-02-19 北狄空气应对加拿大公司 利用液-气式膜能量交换器进行液体冷却
EP3314188B1 (en) 2015-06-26 2021-05-12 Nortek Air Solutions Canada, Inc. Three-fluid liquid to air membrane energy exchanger
JP6790516B2 (ja) * 2015-07-07 2020-11-25 東レ株式会社 熱交換用シート
KR101656310B1 (ko) * 2015-09-01 2016-09-09 김재욱 블로우 성형방식을 가미하여 사출성형제품을 제조하는 방법
NL2016347B1 (nl) * 2016-03-01 2017-09-11 Level Holding Bv Recuperator, waarvan delen zijn vervaardigd door spuitgieten.
SG10201913897RA (en) 2016-03-08 2020-03-30 Nortek Air Solutions Canada Inc Systems and methods for providing cooling to a heat load
JP6371803B2 (ja) * 2016-06-29 2018-08-08 Nissha株式会社 加飾成形品の製造方法及び金型
EP3612771B1 (en) 2017-04-18 2023-03-22 Nortek Air Solutions Canada, Inc. Desiccant enhanced evaporative cooling systems and methods
EP3722731B1 (en) * 2017-12-05 2024-08-14 Toray Industries, Inc. Sheet for heat exchange
CN108237660A (zh) * 2018-01-09 2018-07-03 国安瑞(北京)科技有限公司 热交换单体的制造装置和方法
JP6750892B2 (ja) * 2018-02-08 2020-09-02 キヤノン株式会社 液体供給部品、液体吐出ヘッド、および液体供給部品の製造方法
CN113150333A (zh) * 2021-02-07 2021-07-23 浙江汉丞科技有限公司 高透湿含氟超疏油微孔膜的制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001270293A (ja) * 2000-03-27 2001-10-02 Nissha Printing Co Ltd 反射防止性に優れた成形品の製造方法とこれに用いる転写材
JP2003097831A (ja) * 2001-07-17 2003-04-03 Japan Gore Tex Inc 気液分離エレメント、気液分離器及び気液分離ユニット
JP2008089199A (ja) * 2006-09-29 2008-04-17 Matsushita Electric Ind Co Ltd 全熱交換器

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07133994A (ja) * 1993-11-09 1995-05-23 Japan Gore Tex Inc 熱交換膜
JP3675529B2 (ja) * 1994-09-08 2005-07-27 ジャパンゴアテックス株式会社 加湿ユニット
TW200427503A (en) * 2003-05-27 2004-12-16 Kureha Chemical Ind Co Ltd Process for producing thermoplastic resin molding

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001270293A (ja) * 2000-03-27 2001-10-02 Nissha Printing Co Ltd 反射防止性に優れた成形品の製造方法とこれに用いる転写材
JP2003097831A (ja) * 2001-07-17 2003-04-03 Japan Gore Tex Inc 気液分離エレメント、気液分離器及び気液分離ユニット
JP2008089199A (ja) * 2006-09-29 2008-04-17 Matsushita Electric Ind Co Ltd 全熱交換器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2351639A4 *

Also Published As

Publication number Publication date
US20110259572A1 (en) 2011-10-27
EP2351639B1 (en) 2014-06-04
US8920699B2 (en) 2014-12-30
JP2010111051A (ja) 2010-05-20
JP5568231B2 (ja) 2014-08-06
EP2351639A4 (en) 2013-03-13
KR101419584B1 (ko) 2014-07-15
CN102232015B (zh) 2014-07-23
CN102232015A (zh) 2011-11-02
KR20110092298A (ko) 2011-08-17
EP2351639A1 (en) 2011-08-03

Similar Documents

Publication Publication Date Title
WO2010053087A1 (ja) 成形品の製造方法、及び熱交換用膜エレメント
CN102574358B (zh) 纤维增强成型体及其制造方法
KR101900241B1 (ko) 이축배향 다공막, 복합체, 및 제조방법 및 용도
JP5156504B2 (ja) 複合膜及びそれを用いた水分量調整モジュール
CN103079810B (zh) 纤维增强的成型体及其制造方法
CN102164719B (zh) 吸附片
JP5748863B2 (ja) 全熱交換素子およびその製造方法
JP2007526150A5 (ja)
WO2007119843A1 (ja) 熱交換器
CN106795864B (zh) 风车用桨叶
JP3675529B2 (ja) 加湿ユニット
JP2003103552A5 (ja)
JP2013015286A (ja) 全熱交換器及びこれに用いる仕切板の製造方法
JP2009210236A (ja) 熱交換器および熱交換器の製造方法
CN213649033U (zh) 一种电晕面热封流延聚乙烯透气膜结构
US11254090B2 (en) Method for fabricating a spacer fabric composite having a pattern
CN211280080U (zh) 一种新型硬化哑光双基材复合膜
JP2001301092A (ja) アルミニウム積層板
WO2021152839A1 (ja) 仕切板、全熱交換素子及び全熱交換器、並びに仕切板の製造方法
US20230166217A1 (en) Pleated composite pervaporation laminate and method of making same
JP4142798B2 (ja) 加湿エレメント及びそれを用いた加湿器
JP2006089666A (ja) Frpプレス成形用模様付けシート
US10391736B2 (en) Breathable and waterproof composite fabric and a method of making the same
JP3912155B2 (ja) 樹脂フィルムの熱成形方法及び加飾樹脂成形体の製造方法
JPH0788988A (ja) 積層成形品及びその製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980149112.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09824786

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2009824786

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20117013006

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13127554

Country of ref document: US