WO2010053048A1 - 軟磁性膜用Co-Fe系合金、軟磁性膜および垂直磁気記録媒体 - Google Patents

軟磁性膜用Co-Fe系合金、軟磁性膜および垂直磁気記録媒体 Download PDF

Info

Publication number
WO2010053048A1
WO2010053048A1 PCT/JP2009/068652 JP2009068652W WO2010053048A1 WO 2010053048 A1 WO2010053048 A1 WO 2010053048A1 JP 2009068652 W JP2009068652 W JP 2009068652W WO 2010053048 A1 WO2010053048 A1 WO 2010053048A1
Authority
WO
WIPO (PCT)
Prior art keywords
soft magnetic
alloy
based alloy
film
recording medium
Prior art date
Application number
PCT/JP2009/068652
Other languages
English (en)
French (fr)
Inventor
友典 上野
淳 福岡
英 上野
光晴 藤本
Original Assignee
日立金属株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立金属株式会社 filed Critical 日立金属株式会社
Priority to US13/058,119 priority Critical patent/US20110143168A1/en
Priority to JP2010510572A priority patent/JP4721126B2/ja
Publication of WO2010053048A1 publication Critical patent/WO2010053048A1/ja

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/64Record carriers characterised by the selection of the material comprising only the magnetic material without bonding agent
    • G11B5/66Record carriers characterised by the selection of the material comprising only the magnetic material without bonding agent the record carriers consisting of several layers
    • G11B5/667Record carriers characterised by the selection of the material comprising only the magnetic material without bonding agent the record carriers consisting of several layers including a soft magnetic layer
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/07Alloys based on nickel or cobalt based on cobalt
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • C23C14/3414Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/08Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers
    • H01F10/10Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition
    • H01F10/12Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition being metals or alloys
    • H01F10/16Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition being metals or alloys containing cobalt
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/14Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates
    • H01F41/18Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates by cathode sputtering

Definitions

  • the present invention relates to a Co—Fe-based alloy for forming a soft magnetic film, the soft magnetic film, and a perpendicular magnetic recording medium having the soft magnetic film.
  • Perpendicular magnetic recording is a method in which the magnetic film of a perpendicular magnetic recording medium is formed so that the axis of easy magnetization is oriented perpendicularly to the medium surface. This is a method suitable for high recording density with a small decrease in recording and reproduction characteristics.
  • a recording medium having a magnetic recording film layer and a soft magnetic film layer with improved recording sensitivity has been developed.
  • the soft magnetic film of such a magnetic recording medium is required to have a high saturation magnetic flux density, and a Co—Fe alloy having a high saturation magnetic flux density is preferably used.
  • a Co—Fe alloy having a high saturation magnetic flux density is preferably used.
  • As the soft magnetic film of the magnetic recording medium an amorphous film having excellent soft magnetic characteristics is required. Therefore, an element that promotes amorphization is required for the Co—Fe alloy.
  • Zr, Ta, or the like is employed.
  • the soft magnetic film as described above is generally formed by magnetron sputtering using a target material having the same composition.
  • a target material in which Al or Cr is added to a Co—Fe based alloy has been proposed (for example, Patent Document 1).
  • the target material for forming a soft magnetic film disclosed in Patent Document 1 described above has a certain effect of improving weather resistance by adding 0.2 to 5 atomic% of Al or Cr to a Co—Fe alloy. It is valid. However, according to the study of the present inventors, it has been confirmed that the weather resistance may not be sufficiently obtained with the addition of Al or Cr.
  • An object of the present invention is to provide a Co—Fe based alloy for a soft magnetic film which is used for a perpendicular magnetic recording medium and the like having excellent weather resistance while solving the above problems and maintaining high soft magnetic characteristics. is there.
  • the present invention provides a composition formula in the atomic ratio ((Co 100-X -Fe X ) 100-Y -Ni Y) 100- (a + b + C) -M1 a -M2 b -Ti c, 5 ⁇ X ⁇ 80,
  • M2 element of the above composition formula is one or two elements selected from (Ta, Nb).
  • Fe-based alloy The Co—Fe based alloy for soft magnetic films of the present invention can contain B in a range of 5 atomic% or less.
  • the Co—Fe based alloy for soft magnetic films of the present invention can be applied to a sputtering target material or a soft magnetic film layer of a perpendicular magnetic recording medium.
  • the Co—Fe based alloy for soft magnetic films of the present invention preferably has a saturation magnetization of 1.0 (T) or more.
  • Ti is selected as the optimum element in the Co—Fe-based alloy for the soft magnetic film so as to effectively improve the weather resistance without significantly deteriorating the soft magnetic properties
  • the optimum addition amount for realizing the above effect is found.
  • the Co—Fe alloy used as the base of the present invention is represented by ((Co 100-X —Fe X ) 100-Y —Ni Y ), 5 ⁇ X ⁇ 80, 0 ⁇ Y ⁇ 25. Composition. This is because a Co—Fe alloy in this composition range has a large saturation magnetization and is suitable as a soft magnetic film. Further, a part of the Co—Fe alloy can be replaced in a range where the addition amount Y of Ni satisfies 0 ⁇ Y ⁇ 25. This is because it is effective in improving the soft magnetic characteristics without greatly reducing the saturation magnetization.
  • Co—Fe alloy 2 to 6 atomic% of one or more elements selected from (Zr, Hf, Y) as the M1 element and 1 (Ta, Nb) as the M2 element are selected. Add 2-10 atom% of seeds or two elements. This is because the inclusion of the M1 element and the M2 element in the above range can make the sputtered film amorphous and improve the magnetic characteristics without significantly impairing the saturation magnetization of the Co—Fe alloy.
  • the Co—Fe based alloy of the present invention contains 0.5 to 10 atomic% of Ti as an essential element for effectively improving the weather resistance in the above Co—Fe based alloy. From the potential-pH diagram, it is confirmed that Ti has a passive region in a wide pH range, so Ti was selected as an additive element effective for improving the weather resistance. When the above effect is less than 0.5 atomic%, the weather resistance improving effect is low, and when it exceeds 10 atomic%, the magnetization decreases, so that 0.5 to 10 atomic%. It is important to control. In order to further suppress the decrease in magnetization, the Ti content is desirably 5 atomic% or less.
  • the Co—Fe-based alloy of the present invention has a composition formula in the atomic ratio of ((Co 100 ⁇ X ⁇ Fe X ) 100 ⁇ Y ⁇ Ni Y ) 100 ⁇ (a + b + c) ⁇ M1 a ⁇ M2 b ⁇ Ti. c ⁇ Co ⁇ Fe ⁇ 5 ⁇ X ⁇ 80, 0 ⁇ Y ⁇ 25, 2 ⁇ a ⁇ 6, 2 ⁇ b ⁇ 10, 0.5 ⁇ c ⁇ 10.
  • Inevitable impurities may be included within a range not detracting from.
  • the purity of the Co—Fe alloy represented by the above composition formula may be 99.9% or more.
  • the Co—Fe based alloy of the present invention can further contain B in a range of 5 atomic% or less. Addition of B at 5 atomic% or less can improve the mechanical properties of the alloy, particularly the hardness, without significantly degrading the weather resistance and magnetization.
  • a melt casting method or a powder sintering method can be applied.
  • the melt casting method it is possible to produce a cast ingot or a bulk body obtained by applying plastic processing or pressure processing to the cast ingot.
  • the powder sintering method an alloy powder having the final composition of the Co—Fe based alloy is manufactured by a gas atomizing method and used as a raw material powder.
  • the mixed powder thus mixed can be used as a raw material powder.
  • pressure sintering such as hot isostatic pressing, hot pressing, discharge plasma sintering, and extrusion press sintering.
  • the Co—Fe-based alloy of the present invention can be processed into a target material suitable for the type of various sputtering apparatuses and sputtered to form a soft magnetic film having excellent weather resistance.
  • a casting ingot having a Co—Fe based alloy composition shown in Table 1 was produced.
  • the cast ingot was heated and melted in a high-frequency heating furnace in vacuum using a raw material having a purity of 99.9% or higher, and then cast into an iron mold to produce an ingot having a diameter of 220 mm ⁇ 45 mm.
  • the produced ingot was processed to produce a Co—Fe based alloy bulk body having a diameter of 180 mm ⁇ thickness of 7 mm.
  • a sample having a diameter of 10 mm ⁇ 20 mm was prepared from a cast ingot, immersed in 10% hydrochloric acid at 50 ° C.
  • the Co—Fe alloy (sample 1) containing 0.5 to 10 atomic% of Ti of the present invention is a Co—Fe alloy (sample 3) to which no Ti is added and Co to which Al or Cr is added. It can be seen that it has higher weather resistance than the Fe-based alloy (Sample 2). From Table 2, the sample 1 of the present invention and the sample 2 of the Co—Fe-based alloy to which Al or Cr are added show the same value of magnetization as the bulk body. The alloy is effective as a target material or a soft magnetic film having excellent weather resistance.
  • a casting ingot having a Co—Fe based alloy composition shown in Table 3 was produced.
  • the casting ingot was heated and melted in a high-frequency heating furnace in vacuum using a raw material having a purity of 99.9% or higher, and then cast into an iron mold to produce an ingot having a diameter of 200 mm ⁇ 25 mm.
  • the produced ingot was processed to produce a Co—Fe based alloy bulk body having a diameter of 180 mm ⁇ thickness of 7 mm.
  • a sample having a diameter of 10 mm ⁇ 20 mm was prepared from a cast ingot, immersed in 10% sulfuric acid at 50 ° C. for 24 hours, and the weight reduction rate was measured to evaluate the weather resistance of the bulk body.
  • Table 3 shows the measurement results.
  • a sample of 30 mm ⁇ 10 mm ⁇ 5 mm was prepared from a cast ingot, and magnetized at an external magnetic field of 160 k (A / m) using a DC magnetic property measuring apparatus (TRF5A manufactured by Toei Kogyo).
  • TRF5A DC magnetic property measuring apparatus manufactured by Toei Kogyo
  • Table 4 shows the results.
  • a hardness evaluation of the bulk body a 10 mm ⁇ 10 mm ⁇ 5 mm sample was prepared from a cast ingot, and the hardness was measured on a C scale using a Rockwell hardness meter. The results are shown in Table 5.
  • the Co—Fe based alloys (samples 4, 5 and 6) containing 0.5 to 10 atomic% of Ti of the present invention are Co—Fe based alloys to which Al and Cr are added (samples 7 and 8). It can be seen that it has higher weather resistance.
  • Samples 4, 5 and 6 of the present invention show values similar to those of Co-Fe alloy samples 7 and 8 to which Al or Cr is added and magnetization as a bulk body.
  • Table 5 shows that the hardness of the Co—Fe-based alloy (sample 4) containing 0.5 to 10 atomic percent of Ti of the present invention and containing 5 atomic percent or less of B is improved. .
  • a casting ingot having a Co—Fe alloy composition shown in Table 6 was prepared.
  • the cast ingot was heated and melted in a high-frequency heating furnace in vacuum using a raw material having a purity of 99.9% or higher, and then cast into an iron mold to produce an ingot having a diameter of 200 mm ⁇ 25 mm.
  • the produced ingot was processed to produce a Co—Fe-based alloy target material having a diameter of 180 mm ⁇ thickness of 7 mm.
  • a Co—Fe alloy thin film was formed on the substrate by magnetron sputtering, and the following test evaluation was performed. In all cases, sputtering conditions were Ar pressure 0.6 Pa and input power 500 W.
  • Weather resistance test Table 6 shows the results of a weather resistance test in which each sample formed with a film thickness of 200 nm on a glass substrate was immersed in pure water for 24 hours and the corrosion area was visually observed. In Table 6, the case where the corrosion area is not visually observed is indicated by ⁇ , and the case where the corrosion area is visually observed is indicated by ⁇ .
  • Magnetization evaluation Table 6 shows the results of evaluation of saturation magnetization of each sample after determining each sample formed with a film thickness of 300 nm on a Si wafer to 10 ⁇ 10 mm. The measurement was performed by applying an external magnetic field of 800,000 (A / m) using a vibrating sample magnetometer VSM-3 manufactured by Toei Kogyo Co., Ltd.
  • Hardness evaluation A thin film having a thickness of 4 ⁇ m was formed on an aluminum substrate. Table 6 shows the results of measuring the hardness of each of the deposited samples. In addition, hardness measurement measured 5 points
  • the Co—Fe based alloy containing 0.5 to 10 atomic% of Ti of the present invention is an alloy having excellent weather resistance even when formed into a thin film by sputtering.
  • the Co—Fe-based alloy for soft magnetic films of the present invention is excellent in weather resistance while maintaining soft magnetic properties, and thus can be stably applied to the formation of soft magnetic films such as perpendicular magnetic recording media.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Magnetic Record Carriers (AREA)
  • Physical Vapour Deposition (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)
  • Thin Magnetic Films (AREA)

Abstract

 軟磁気特性を高く維持した上で、耐候性に優れた垂直磁気記録媒体等に用いられる軟磁性膜用Co-Fe系合金を提供する。  原子比における組成式が((Co100-X-Fe100-Y-Ni100-(a+b+c)-M1-M2-Ti、5≦X≦80、0≦Y≦25、2≦a≦6、2≦b≦10、0.5≦c≦10で表され、残部不可避的不純物からなるCo-Fe系合金であって、前記組成式のM1元素が(Zr、Hf、Y)から選ばれる1種もしくは2種以上の元素、前記組成式のM2元素が(Ta、Nb)から選ばれる1種もしくは2種の元素である軟磁性膜用Co-Fe系合金である。

Description

軟磁性膜用Co-Fe系合金、軟磁性膜および垂直磁気記録媒体
 本発明は、軟磁性膜を形成するためのCo-Fe系合金、その軟磁性膜および軟磁性膜を有する垂直磁気記録媒体に関するものである。
 近年、磁気記録技術の進歩は著しく、ドライブの大容量化のために、磁気記録媒体の高記録密度化が進められている。しかしながら、現在広く世の中で使用されている面内磁気記録方式の磁気記録媒体では、高記録密度化を実現しようとすると、記録ビットが微細化し、記録ヘッドで記録できないほどの高保磁力が要求される。そこで、これらの問題を解決し、記録密度を向上させる手段として垂直磁気記録方式が検討されている。
 垂直磁気記録方式とは、垂直磁気記録媒体の磁性膜を媒体面に対して磁化容易軸が垂直方向に配向するように形成したものであり、記録密度を上げて行ってもビット内の反磁界が小さく、記録再生特性の低下が少ない高記録密度に適した方法である。そして、垂直磁気記録方式においては、記録感度を高めた磁気記録膜層と軟磁性膜層とを有する記録媒体が開発されている。
 このような磁気記録媒体の軟磁性膜としては、高い飽和磁束密度を有することが要求されており、飽和磁束密度が大きいCo-Fe合金が好適に利用されている。そして、磁気記録媒体の軟磁性膜としては、軟磁気特性に優れたアモルファス膜が要求されていることから、上記のCo-Fe合金に対してはアモルファス化を促進する元素の添加が必要とされ、一般的にZrやTaなどが採用されている。
 そして、上記のような軟磁性膜は、一般的に同一組成のターゲット材を利用したマグネトロンスパッタリングによって形成されている。一方で、このようなCo-Fe系合金のターゲット材では、耐候性に課題を有していることからCo-Fe系合金にAlやCrを添加したターゲット材などが提案されている(例えば、特許文献1参照)。
特開2007-284741号公報
 上述の特許文献1に開示される軟磁性膜形成用ターゲット材は、Co-Fe合金にAlやCrを0.2~5原子%添加することで、一定の耐候性の向上効果が得られるため有効である。しかしながら、本発明者の検討によれば、このAlやCrの添加では、耐候性を十分に得ることができない場合があることを確認した。
 本発明の目的は、上記の問題を解決し、軟磁気特性を高く維持した上で、耐候性に優れた垂直磁気記録媒体等に用いられる軟磁性膜用Co-Fe系合金を提供することである。
 本発明者らは、垂直磁気記録媒体等に用いられる軟磁性膜を形成するためのCo-Fe系合金について、Co-Fe系合金への添加元素について種々の検討を行った結果、Ti添加およびその好適な添加範囲を見出し本発明に到達した。
 すなわち、本発明は、原子比における組成式が((Co100-X-Fe100-Y-Ni100-(a+b+C)-M1-M2-Ti、5≦X≦80、0≦Y≦25、2≦a≦6、2≦b≦10、0.5≦c≦10で表され、残部不可避的不純物からなるCo-Fe系合金であって、前記組成式のM1元素が(Zr、Hf、Y)から選ばれる1種もしくは2種以上の元素、前記組成式のM2元素が(Ta、Nb)から選ばれる1種もしくは2種の元素である軟磁性膜用Co-Fe系合金である。また、本発明の軟磁性膜用Co-Fe系合金は5原子%以下の範囲でBを含むことができる。
 また、本発明の軟磁性膜用Co-Fe系合金は、スパッタリングターゲット材、あるいは垂直磁気記録媒体の軟磁性膜層に適用できる。また、本発明の軟磁性膜用Co-Fe系合金は、飽和磁化が1.0(T)以上であることが好ましい。
 本発明により、軟磁気特性を高く維持した上で、耐候性に優れた垂直磁気記録媒体等の軟磁性膜用のCo-Fe系合金を提供でき、垂直磁気記録媒体を製造する上で極めて有効な技術となる。
 本発明の最も重要な特徴は、軟磁性膜用のCo-Fe系合金中に、軟磁気特性を大きく損なうことなく、耐候性の向上を効果的に実現するための最適な元素としてTiを選択し、さらに上記の効果を実現するための最適な添加量を見出した点にある。
 まず、本発明のベースとなるCo-Fe系合金に関して説明する。
 本発明のCo-Fe系合金のベースとなるCo-Fe合金は、((Co100-X-Fe100-Y-Ni)、5≦X≦80、0≦Y≦25で表される組成である。それは、この組成範囲にあるCo-Fe合金は飽和磁化が大きく軟磁性膜として適切であるためである。また、Co-Fe合金の一部は、Niの添加量Yが0≦Y≦25となる範囲で置換可能である。それは、飽和磁化を大きく低減することなく、軟磁気特性の改善に有効なためである。
 上記のCo-Fe合金には、M1元素として(Zr、Hf、Y)から選ばれる1種もしくは2種以上の元素を2~6原子%、およびM2元素として(Ta、Nb)から選ばれる1種もしくは2種の元素を2~10原子%添加する。それは、M1元素とM2元素とを上記範囲で含有することで、Co-Fe合金の飽和磁化を大きく損なうことなく、スパッタ膜としてのアモルファス化や磁気特性の改善を行えるためである。
 本発明のCo-Fe系合金では、上述のCo-Fe系合金に耐候性を効果的に向上させる必須元素としてTiを0.5~10原子%含有する。電位-pH図より、Tiは広いpH範囲で不動態域が存在することが確認されるため、耐候性の向上に有効な添加元素としてTiを選択した。なお、上記の効果は、0.5原子%に満たない場合には、耐候性改善効果が低く、また、10原子%を超える場合には、磁化が低下するため、0.5~10原子%に制御することが重要である。磁化の低下をより抑制するにはTiの含有量は5原子%以下であることが望ましい。
 以上の通り、本発明のCo-Fe系合金は、原子比における組成式が((Co100-X-Fe100-Y-Ni100-(a+b+c)-M1-M2-Ti、5≦X≦80、0≦Y≦25、2≦a≦6、2≦b≦10、0.5≦c≦10で表されるCo-Fe系合金であるが、本発明の作用を損なわない範囲で不可避的不純物を含み得る。例えば、上記の組成式で表されるCo-Fe系合金の純度が99.9%以上であればよい。
 また、本発明のCo-Fe系合金は、さらに、5原子%以下の範囲でBを含むことも可能である。5原子%以下のB添加は、耐候性や磁化を大きく劣化させること無く、合金の機械的性質、特に硬度を改善することが可能となる。
 上述したCo-Fe系合金の製造方法としては、溶解鋳造法や粉末焼結法が適用可能である。溶解鋳造法では、鋳造インゴット、もしくは、鋳造インゴットに塑性加工や加圧加工を加えたバルク体とすることで製造可能となる。また、粉末焼結法では、ガスアトマイズ法でCo-Fe系合金の最終組成の合金粉末を製造し原料粉末とすることや、複数の合金粉末や純金属粉末をCo-Fe系合金の最終組成となるように混合した混合粉末を原料粉末とすることが可能である。原料粉末の焼結方法としては、熱間静水圧プレス、ホットプレス、放電プラズマ焼結、押し出しプレス焼結等の加圧焼結を用いることが可能である。
 また、本発明のCo-Fe系合金は、各種スパッタリング装置の形式に合致したターゲット材に加工して、スパッタリングすることで、耐候性に優れた軟磁性膜を形成可能である。
 以下の実施例で本発明を更に詳しく説明する。
 まず、表1に示すCo-Fe系合金組成の鋳造インゴットを作製した。なお、鋳造インゴットは、純度99.9%以上の原料を用い真空中の高周波加熱炉で加熱・溶解したのち、鉄製の鋳型に鋳造し直径220mm×45mmのインゴットを作製した。作製したインゴットを加工して、直径180mm×厚さ7mmのCo-Fe系合金バルク体を作製した。
 バルク体の耐候性評価として、鋳造インゴットから直径10mm×20mmの試料を作製し、50℃の10%塩酸に24時間浸漬し重量の減少率を測定して、バルク体の耐候性を評価した。測定結果を表1に示す。
 また、バルク体の磁性評価として、鋳造インゴットから30mm×10mm×5mmの試料を作製し、直流磁気特性測定装置(東英工業製TRF5A)を用いて、外部磁場160k(A/m)時の磁化を測定した。その結果を表2に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 表1から、本発明のTiを0.5~10原子%含有するCo-Fe系合金(試料1)は、Tiを添加しないCo-Fe系合金(試料3)やAlやCrを添加したCo-Fe系合金(試料2)より高い耐候性を有していることが分かる。なお、表2から、本発明の試料1とAlやCrを添加したCo-Fe系合金の試料2とは、バルク体としての磁化が同程度の値を示しており、試料1のCo-Fe系合金は、耐候性の優れたターゲット材あるいは軟磁性膜として有効である。
 まず、表3に示すCo-Fe系合金組成の鋳造インゴットを作製した。なお、鋳造インゴットは、純度99.9%以上の原料を用い真空中の高周波加熱炉で加熱・溶解したのち、鉄製の鋳型に鋳造し直径200mm×25mmのインゴットを作製した。作製したインゴットを加工して、直径180mm×厚さ7mmのCo-Fe系合金バルク体を作製した。
 バルク体の耐候性評価として、鋳造インゴットから直径10mm×20mmの試料を作製し50℃の10%硫酸に24時間浸漬し重量の減少率を測定して、バルク体の耐候性を評価した。測定結果を表3に示す。
 また、バルク体の磁性評価として、鋳造インゴットから30mm×10mm×5mmの試料を作製し、直流磁気特性測定装置(東英工業製TRF5A)を用いて、外部磁場160k(A/m)時の磁化を測定した。その結果を表4に示す。
 さらに、バルク体の硬度評価として、鋳造インゴットから10mm×10mm×5mmの試料を作製し、ロックウェル硬度計を用いて、Cスケールで硬度を測定した。その結果を表5に示す。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
 表3より、本発明のTiを0.5~10原子%含有するCo-Fe系合金(試料4、5および6)は、AlやCrを添加したCo-Fe系合金(試料7および8)より高い耐候性を有していることが分かる。なお、表4から、本発明の試料4、5および6は、AlやCrを添加したCo-Fe系合金の試料7および8とバルク体としての磁化が同程度の値を示しており、さらに、表5より本発明のTiを0.5~10原子%含有し、かつ、5原子%以下のBを含有するCo-Fe系合金(試料4)は、硬度が改善されていることがわかる。
 まず、表6に示すCo-Fe系合金組成の鋳造インゴットを作製した。なお、鋳造インゴットは、純度99.9%以上の原料を用い真空中の高周波加熱炉で加熱・溶解したのち、鉄製の鋳型に鋳造し直径200mm×25mmのインゴットを作製した。作製したインゴットを加工して、直径180mm×厚さ7mmのCo-Fe系合金ターゲット材を作製した。
 上記で得られた各ターゲット材を用いてマグネトロンスパッタリング法よって、基板上にCo-Fe系合金薄膜を成膜し、以下の試験評価を行った。なお、いずれもスパッタリング条件はAr圧0.6Pa、投入電力は500Wで行った。
(1)耐候性試験
 ガラス基板上に膜厚200nmで成膜した各試料を純水中に24時間浸漬した耐候性試験を行い、腐食領域を目視観察した結果を表6に示す。なお、表6では、腐食領域が目視で観察されないものを○、目視で観察されるものを×と表示している。
(2)磁化評価
 Siウェハー上に膜厚300nmで成膜した各試料を10×10mmに割り出した後、各試料の飽和磁化評価を行った結果を表6に示す。なお、測定は東英工業(株)製振動試料型磁力計VSM-3を用いて、外部磁場800000(A/m)を印加して測定をした。
(3)硬度評価
 アルミ基板上に膜厚4μmの薄膜を成膜した。成膜した各試料を硬度測定した結果を表6に示す。なお、硬度測定は、マイクロビッカースを用いて、25(g)の印加荷重で5点を測定し、その平均値を硬度として表6に示した。
Figure JPOXMLDOC01-appb-T000006
 本発明のTiを0.5~10原子%含有するCo-Fe系合金は、表6からスパッタリングで薄膜としても、耐候性に優れた合金であることが確認される。
 本発明の軟磁性膜用Co-Fe系合金は、軟磁気特性を維持した上で、耐候性に優れているため、安定して垂直磁気記録媒体等の軟磁性膜の形成に適用できる。

Claims (8)

  1.  原子比における組成式が((Co100-X-Fe100-Y-Ni100-(a+b+c)-M1-M2-Ti、5≦X≦80、0≦Y≦25、2≦a≦6、2≦b≦10、0.5≦c≦10で表され、残部不可避的不純物からなるCo-Fe系合金であって、前記組成式のM1元素が(Zr、Hf、Y)から選ばれる1種もしくは2種以上の元素、前記組成式のM2元素が(Ta、Nb)から選ばれる1種もしくは2種の元素であることを特徴とする軟磁性膜用Co-Fe系合金。
  2.  さらに、Bを含み、原子比における組成式が((Fe100-X-Co100-Y-Ni100-(a+b+c+d)-M1-M2-Ti-B、5≦X≦80、0≦Y≦25、2≦a≦6、2≦b≦10、0.5≦c≦10、d≦5で表され、残部不可避的不純物からなるCo-Fe系合金であることを特徴とする請求項1に記載の軟磁性膜用Co-Fe系合金。
  3.  スパッタリングターゲット材として使用されることを特徴とする請求項1または2に記載の軟磁性膜用Co-Fe系合金。
  4.  垂直磁気記録媒体の軟磁性膜層を形成することを特徴とする請求項1または2に記載の軟磁性膜用Co-Fe系合金。
  5.  飽和磁化が1.0(T)以上であることを特徴とする請求項1または2に記載の軟磁性膜用Co-Fe系合金。
  6.  スパッタリング成膜により形成された請求項1または2に記載の軟磁性膜用Co-Fe系合金であることを特徴とする軟磁性膜。
  7.  請求項1または2に記載の軟磁性膜用Co-Fe系合金からなる膜を磁気記録膜層の下地層として少なくとも1層以上用いたことを特徴とする垂直磁気記録媒体。
  8.  スパッタリング成膜により形成された請求項1または2に記載の軟磁性膜用Co-Fe系合金である軟磁性膜を磁気記録膜層の下地層として少なくとも1層以上用いたことを特徴とする垂直磁気記録媒体。
PCT/JP2009/068652 2008-11-05 2009-10-30 軟磁性膜用Co-Fe系合金、軟磁性膜および垂直磁気記録媒体 WO2010053048A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US13/058,119 US20110143168A1 (en) 2008-11-05 2009-10-30 Co-fe alloy for soft magnetic films, soft magnetic film, and perpendicular magnetic recording medium
JP2010510572A JP4721126B2 (ja) 2008-11-05 2009-10-30 軟磁性膜用Co−Fe系合金、軟磁性膜および垂直磁気記録媒体

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2008-284284 2008-11-05
JP2008284284 2008-11-05
JP2009219776 2009-09-24
JP2009-219776 2009-09-24

Publications (1)

Publication Number Publication Date
WO2010053048A1 true WO2010053048A1 (ja) 2010-05-14

Family

ID=42152858

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/068652 WO2010053048A1 (ja) 2008-11-05 2009-10-30 軟磁性膜用Co-Fe系合金、軟磁性膜および垂直磁気記録媒体

Country Status (3)

Country Link
US (1) US20110143168A1 (ja)
JP (2) JP4721126B2 (ja)
WO (1) WO2010053048A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010143602A1 (ja) * 2009-06-10 2010-12-16 山陽特殊製鋼株式会社 垂直磁気記録媒体における軟磁性膜層用CoFeNi系合金およびスパッタリングターゲット材、垂直磁気記録媒体
CN102485948A (zh) * 2010-12-06 2012-06-06 北京有色金属研究总院 一种FeCoTaZr系合金溅射靶材及其制造方法
WO2013047328A1 (ja) * 2011-09-28 2013-04-04 山陽特殊製鋼株式会社 垂直磁気記録媒体における軟磁性薄膜層用合金およびスパッタリングターゲット材並びに軟磁性薄膜層を有する垂直磁気記録媒体
JP2014240515A (ja) * 2013-06-12 2014-12-25 日立金属株式会社 Fe−Co系合金スパッタリングターゲット材およびその製造方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5066136B2 (ja) * 2009-06-05 2012-11-07 光洋應用材料科技股▲分▼有限公司 磁場透過率の高いコバルト鉄合金スパッタリングターゲット材
US9064519B2 (en) 2011-07-06 2015-06-23 Hitachi Metals, Ltd. Soft magnetic under layer

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008115461A (ja) * 2006-10-10 2008-05-22 Hitachi Metals Ltd Co−Fe−Zr系合金スパッタリングターゲット材およびその製造方法
JP2008121071A (ja) * 2006-11-13 2008-05-29 Sanyo Special Steel Co Ltd 軟磁性FeCo系ターゲット材
JP2009191359A (ja) * 2008-01-15 2009-08-27 Hitachi Metals Ltd Fe−Co−Zr系合金ターゲット材

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4325733A (en) * 1979-12-28 1982-04-20 International Business Machines Corporation Amorphous Co-Ti alloys
JP3235572B2 (ja) * 1998-09-18 2001-12-04 日本電気株式会社 磁気抵抗効果素子,磁気抵抗効果センサ及びそれらを利用したシステム
JP4331182B2 (ja) * 2006-04-14 2009-09-16 山陽特殊製鋼株式会社 軟磁性ターゲット材
JP2008108380A (ja) * 2006-09-29 2008-05-08 Fujitsu Ltd 磁気記録媒体及び磁気記録装置
TWI369406B (en) * 2006-10-10 2012-08-01 Hitachi Metals Ltd Co-fe-zr based alloy sputtering target material and process for production thereof
JP2008135137A (ja) * 2006-11-29 2008-06-12 Fujitsu Ltd 磁気記録媒体、磁気記録媒体の製造方法及び磁気記録装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008115461A (ja) * 2006-10-10 2008-05-22 Hitachi Metals Ltd Co−Fe−Zr系合金スパッタリングターゲット材およびその製造方法
JP2008121071A (ja) * 2006-11-13 2008-05-29 Sanyo Special Steel Co Ltd 軟磁性FeCo系ターゲット材
JP2009191359A (ja) * 2008-01-15 2009-08-27 Hitachi Metals Ltd Fe−Co−Zr系合金ターゲット材

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010143602A1 (ja) * 2009-06-10 2010-12-16 山陽特殊製鋼株式会社 垂直磁気記録媒体における軟磁性膜層用CoFeNi系合金およびスパッタリングターゲット材、垂直磁気記録媒体
JP2010287269A (ja) * 2009-06-10 2010-12-24 Sanyo Special Steel Co Ltd 垂直磁気記録媒体における軟磁性膜層用CoFeNi系合金およびスパッタリングターゲット材
CN102485948A (zh) * 2010-12-06 2012-06-06 北京有色金属研究总院 一种FeCoTaZr系合金溅射靶材及其制造方法
WO2013047328A1 (ja) * 2011-09-28 2013-04-04 山陽特殊製鋼株式会社 垂直磁気記録媒体における軟磁性薄膜層用合金およびスパッタリングターゲット材並びに軟磁性薄膜層を有する垂直磁気記録媒体
JP2013072114A (ja) * 2011-09-28 2013-04-22 Sanyo Special Steel Co Ltd 垂直磁気記録媒体における軟磁性薄膜層用合金およびスパッタリングターゲット材並びに軟磁性薄膜層を有する垂直磁気記録媒体。
CN103842549A (zh) * 2011-09-28 2014-06-04 山阳特殊制钢株式会社 在垂直磁记录介质上的软磁性薄膜层中使用的合金,溅射靶材,以及具有软磁性薄膜层的垂直磁记录介质
JP2014240515A (ja) * 2013-06-12 2014-12-25 日立金属株式会社 Fe−Co系合金スパッタリングターゲット材およびその製造方法

Also Published As

Publication number Publication date
JP2011099166A (ja) 2011-05-19
JPWO2010053048A1 (ja) 2012-04-05
US20110143168A1 (en) 2011-06-16
JP5477724B2 (ja) 2014-04-23
JP4721126B2 (ja) 2011-07-13

Similar Documents

Publication Publication Date Title
JP5477724B2 (ja) 軟磁性膜用Co−Fe系合金、軟磁性膜および垂直磁気記録媒体
TWI627286B (zh) CoFe-based alloy for soft magnetic film layer and sputtering target for perpendicular magnetic recording medium
TWI508114B (zh) A magneto-magnetic recording medium for magnetic recording, a sputtering target, and a magnetic recording medium
JP5359890B2 (ja) 軟磁性膜形成用Fe−Co系合金スパッタリングターゲット材
WO2012070464A1 (ja) 磁気記録媒体のシード層用合金およびスパッタリングターゲット材
WO2015166762A1 (ja) 磁気記録用軟磁性合金及びスパッタリングターゲット材並びに磁気記録媒体
JP5631659B2 (ja) 垂直磁気記録媒体用軟磁性合金およびスパッタリングターゲット材並びに磁気記録媒体
WO2013115384A1 (ja) 磁気記録媒体に用いる低飽和磁束密度を有する軟磁性膜層用合金およびスパッタリングターゲット材
JP5385018B2 (ja) 高スパッタ率を有する軟磁性膜作製用スパッタリングターゲット材用原料粉末およびスパッタリングターゲット材
JP2012108997A (ja) 磁気記録用軟磁性合金およびスパッタリングターゲット材並びに磁気記録媒体
JP5403418B2 (ja) Co−Fe−Ni系合金スパッタリングターゲット材の製造方法
JP2010150591A (ja) 軟磁性膜用Co−Fe系合金
WO2010143602A1 (ja) 垂直磁気記録媒体における軟磁性膜層用CoFeNi系合金およびスパッタリングターゲット材、垂直磁気記録媒体
TWI422689B (zh) And an alloy for a soft magnetic film layer of a vertical magnetic recording medium
JP2011068985A (ja) 軟磁性膜用Co−Fe系合金および軟磁性膜形成用Co−Fe系合金スパッタリングターゲット材
JP6128417B2 (ja) 軟磁性下地層
JP6302153B2 (ja) 垂直磁気記録媒体内の軟磁性薄膜層及び垂直磁気記録媒体
JP6442460B2 (ja) 垂直磁気記録媒体における軟磁性膜層用CoFe系合金およびスパッタリングターゲット材
JP6113817B2 (ja) 垂直磁気記録媒体における軟磁性薄膜層用合金およびスパッタリングターゲット材並びに軟磁性薄膜層を有する垂直磁気記録媒体。
JP2013143156A (ja) Co−Fe系合金軟磁性下地層
JP2011181140A (ja) 磁気記録媒体用Fe−Co系合金軟磁性膜
WO2020040082A1 (ja) 磁気記録媒体の軟磁性層用Co系合金
JP2020135907A (ja) 垂直磁気記録媒体の軟磁性層形成用スパッタリングターゲット、並びに、垂直磁気記録媒体及びその軟磁性層

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2010510572

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09824748

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13058119

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09824748

Country of ref document: EP

Kind code of ref document: A1