WO2010053037A1 - 送風機及びこの送風機を用いたヒートポンプ装置 - Google Patents

送風機及びこの送風機を用いたヒートポンプ装置 Download PDF

Info

Publication number
WO2010053037A1
WO2010053037A1 PCT/JP2009/068567 JP2009068567W WO2010053037A1 WO 2010053037 A1 WO2010053037 A1 WO 2010053037A1 JP 2009068567 W JP2009068567 W JP 2009068567W WO 2010053037 A1 WO2010053037 A1 WO 2010053037A1
Authority
WO
WIPO (PCT)
Prior art keywords
propeller fan
bell mouth
blower
fan
cross
Prior art date
Application number
PCT/JP2009/068567
Other languages
English (en)
French (fr)
Inventor
加藤 康明
敬英 田所
馬場 正信
高田 博之
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to US13/123,174 priority Critical patent/US9513021B2/en
Priority to CN200980143663.6A priority patent/CN102203430B/zh
Priority to EP09824737.2A priority patent/EP2343458B1/en
Publication of WO2010053037A1 publication Critical patent/WO2010053037A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/06Separate outdoor units, e.g. outdoor unit to be linked to a separate room comprising a compressor and a heat exchanger
    • F24F1/38Fan details of outdoor units, e.g. bell-mouth shaped inlets or fan mountings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/08Sealings
    • F04D29/16Sealings between pressure and suction sides
    • F04D29/161Sealings between pressure and suction sides especially adapted for elastic fluid pumps
    • F04D29/162Sealings between pressure and suction sides especially adapted for elastic fluid pumps of a centrifugal flow wheel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/08Sealings
    • F04D29/16Sealings between pressure and suction sides
    • F04D29/161Sealings between pressure and suction sides especially adapted for elastic fluid pumps
    • F04D29/164Sealings between pressure and suction sides especially adapted for elastic fluid pumps of an axial flow wheel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/52Casings; Connections of working fluid for axial pumps
    • F04D29/522Casings; Connections of working fluid for axial pumps especially adapted for elastic fluid pumps
    • F04D29/526Details of the casing section radially opposing blade tips
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/66Combating cavitation, whirls, noise, vibration or the like; Balancing
    • F04D29/661Combating cavitation, whirls, noise, vibration or the like; Balancing especially adapted for elastic fluid pumps
    • F04D29/663Sound attenuation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/06Separate outdoor units, e.g. outdoor unit to be linked to a separate room comprising a compressor and a heat exchanger
    • F24F1/40Vibration or noise prevention at outdoor units

Definitions

  • the present invention relates to a blower provided with a bell mouth and an impeller and a heat pump device using the blower.
  • an air conditioning outdoor unit In a device equipped with a blower such as a propeller fan type blower or an air conditioner outdoor unit (hereinafter referred to as an air conditioning outdoor unit), in order to reduce aerodynamic noise, the turbulence and fluctuation of the airflow flowing into the blower are minimized. It is essential. In order to reduce aerodynamic noise, it is also effective to reduce the relative speed between the blade and the gas by increasing the diameter of the impeller, or to reduce the absolute speed of the gas by ensuring the gas cross-sectional area. It is.
  • the suction space outside the radial direction of the impeller is generally a plurality of side surfaces, and the section perpendicular to the fan rotation axis is generally rectangular, and the space is large enough to make the bell mouth large enough. In many cases, the entire cross-sectional shape cannot be the same.
  • Japanese Patent No. 2769211 Japanese Patent Publication No. 7-117077 (Page 2, Fig. 2-3)
  • the conventional blower described above changes the size of the curvature of the bell mouth corresponding to the non-uniformity due to the circumferential position of the suction side air passage, but the separation of the airflow flowing along the bell mouth
  • noise reduction cannot be realized because there is no effect of reducing the turbulence of the inflowing airflow itself.
  • the present invention has been made to solve such a problem, and even when there is non-uniformity due to the circumferential position around the rotation axis of the suction side air passage, the disturbance of the inflowing air current itself is reduced. Therefore, it is to obtain a blower that achieves low noise.
  • a blower includes a propeller fan, a propeller fan driving device that rotationally drives the propeller fan, a bell mouth that covers the outer peripheral edge of the rear edge of the propeller fan, and at least one surface on the radially outer side of the propeller fan.
  • the blade of the propeller fan has the plate that forms the air path from the suction side to the blowout side, and the blade of the propeller fan is at the position of the plate where the distance between the propeller fan and the plate that forms the radially outer air path is relatively narrow
  • the bellmouth cross section at the front and back positions is closer to the cross section at a position where the distance between the propeller fan and the plate is relatively wide. The bellmouth cross-sectional shape between the two is gently changed.
  • the outer peripheral edge of the rear edge side of the propeller fan that is rotationally driven by the propeller fan driving device is covered with a bell mouth, and the air path that extends from the suction side to the blowout side on at least one outer surface in the radial direction of the propeller fan
  • the cross-section of the bell mouth at the position before and after the propeller fan blades are closest to each other at a position where the distance between the propeller fan and the plate constituting the radially outer air passage is relatively narrow.
  • the horizontal sectional view which shows the outdoor unit of the air conditioner of Embodiment 1 of this invention The front view which shows the outdoor unit of the air conditioner.
  • the front view of the propeller fan mounted in the outdoor unit of the air conditioner The cylindrical cross-section expanded view of the propeller fan mounted in the outdoor unit of the air conditioner.
  • Sectional drawing which shows the shape of the bellmouth in the A section of FIG. Sectional drawing which shows the shape of the bellmouth in the B section of FIG.
  • Supplemental sectional drawing explaining another characteristic of the bellmouth of the outdoor unit of the air conditioner are examples of the bellmouth of the outdoor unit of the air conditioner.
  • the horizontal sectional view which shows the outdoor unit of the air conditioner of Embodiment 2 of this invention.
  • the front view which shows the outdoor unit of the air conditioner.
  • the graph which shows the aerodynamic characteristic of the outdoor unit of the air conditioner compared with the past.
  • the horizontal sectional view of the outdoor unit of the heat pump type water heater of Embodiment 3 of the present invention The front view of the outdoor unit of the heat pump type water heater.
  • FIG. 1 is a horizontal sectional view showing an outdoor unit of an air conditioner according to Embodiment 1 of the present invention
  • FIG. 2 is a front view showing the outdoor unit of the air conditioner
  • FIG. 3 is mounted on the outdoor unit of the air conditioner.
  • 4 is a front sectional view of the propeller fan
  • FIG. 4 is a developed cylindrical sectional view of the propeller fan mounted on the outdoor unit of the air conditioner
  • FIG. 5 is a sectional view showing the shape of the bell mouth in part A of FIG. 2
  • FIG. FIG. 7 is another front view showing the outdoor unit of the air conditioner
  • FIG. 8 explains the characteristics of the bell mouth of the outdoor unit of the air conditioner.
  • FIG. 1 is a horizontal sectional view showing an outdoor unit of an air conditioner according to Embodiment 1 of the present invention
  • FIG. 2 is a front view showing the outdoor unit of the air conditioner
  • FIG. 3 is mounted on the outdoor unit of the air conditioner.
  • 4 is a front sectional view of the propeller fan
  • a propeller fan type blower 2 of an outdoor unit 1 of a separate air conditioner that is a heat pump device covers a propeller fan 3 and an outer peripheral edge 3b on the trailing edge 3c side of the blade of the propeller fan 3. It consists of a bell mouth 4, a blowing plate 5 continuous with the bell mouth 4, and a motor 6 that rotationally drives the propeller fan 3.
  • the rotation axis direction means a direction perpendicular to the rotation direction of the propeller fan 3 and the motor 6.
  • the blade shape of the propeller fan 3 is a forward blade shape in which the midpoint P1 of the outer peripheral edge 3b is ahead of the midpoint P2 of the boss side in the rotational direction as shown in FIG. .
  • FIG. 4 is a developed plan view in which the outer peripheral edge 3b side of the propeller fan 3 is cut along a cylindrical section taken along the line AA in FIG. The chord length L of the outer peripheral edge 3b is longer on the outer peripheral edge side 3b than on the boss side. And the negative pressure surface of the cross-sectional shape of the outer peripheral edge 3b developed in the plane of the propeller fan 3 shown in the plan development view of FIG.
  • the air passage chamber 7 with the propeller fan 3 is surrounded by the upper plate 8, the lower plate 9, the lateral plate 10, and the machine chamber plate 11 on the radially outer side of the propeller fan 3, and the surface facing the blowing plate 5 is heat exchanged.
  • the vessel 12 is covered.
  • the cross section of the air channel chamber perpendicular to the direction of the rotation axis in the air channel chamber 7 is vertically long when viewed from the front where the length of the horizontal plate 10 and the machine chamber plate 11 is longer than the length of the upper plate 8 and the lower plate 9. .
  • refrigerant circuit components connected to the heat exchanger 12 and an electric circuit for controlling the heat pump device are stored in the machine room 13 separated from the air passage room 7 by the machine room plate 11, in addition to the compressor 14, refrigerant circuit components connected to the heat exchanger 12 and an electric circuit for controlling the heat pump device are stored.
  • the heat exchanger 12 is provided with multi-layer fins for heat transfer on the outer surface of a pipe through which a refrigerant circulates.
  • both the A portion and the B portion in FIG. 2 have a radius of curvature R2 larger than R1 from the radius of curvature R1 on the suction side immediately from the minimum inner diameter portion of the bell mouth 4 to the suction side.
  • the radius of curvature R2 is extremely large, the cross section is close to a straight line, and the radius of curvature R1 is almost the same over the entire circumference.
  • the expansion angle ⁇ 1 from the rotation axis on the suction side of the bell mouth 4 makes the A portion where the space changes abruptly smaller than the B portion where the air passage chamber space on the radially outer side of the bell mouth 4 is wide. It gradually changes between the A part and the B part in FIG.
  • the overlapping height Hb of the bell mouth 4 and the propeller fan 3 in the rotation axis direction is higher in the A portion than in the B portion.
  • FIG. 1 is located in the fan rotation direction side rather than the intersection direction of the upper board 8 and the machine room board 11 seeing the outdoor unit 1 from the front.
  • the air passage chamber space on the radially outer side of the propeller fan 3 is a narrow portion.
  • the cross-sectional shape of the bell mouth 4 in this part is connected with a larger radius of curvature from the radius of curvature on the suction side immediately from the smallest inner diameter portion of the bell mouth 4 in the same way as the portion A, and the bell mouth 4 and the propeller fan are connected.
  • the overlapping height in the direction of the rotation axis 3 is higher than that in the B portion.
  • the position at the side where the horizontal plate 10 and the blades of the propeller fan 3 are closest to each other is limited in size as the outdoor unit 1, and the noise of the bell mouth 4 is considered.
  • the shape of the bell mouth 4 is considered as described above in order to reduce noise for A and B in FIG.
  • the airflow around the propeller fan 3 will be described in more detail.
  • the gas in the region in which the propeller fan 3 rotates is pushed out to the blow-out side space, and the rotation region of the propeller fan 3 becomes negative pressure, so that the gas in the air passage chamber 7 rotates the propeller fan 3.
  • the gas in the air passage chamber 7 flows into the propeller fan 3 from the surface formed by the rotation locus of the blade leading edge 3a of the propeller fan 3 or the surface formed by the rotation locus of the blade outer peripheral edge 3b.
  • a part of the gas flowing into the propeller fan 3 leaks from the pressure surface facing the rotation direction of the propeller fan 3 to the negative pressure surface opposite to the pressure surface via the outside of the outer peripheral edge 3b.
  • a flow having a vortex structure called a blade tip vortex is generated at a position along the outer peripheral edge 3b of the suction surface based on the leakage flow generated in the vicinity of the front edge 3a of the outer peripheral edge 3b.
  • the blade tip vortex grows as it moves from the leading edge side to the trailing edge side, and departs from the outer peripheral edge in the vicinity of a half position on the outer periphery of the blade where the flow direction becomes large.
  • the blade tip vortex separated from the outer peripheral edge 3b is gradually discharged to the outside while being pushed by the entire flow while weakening the structure as a vortex.
  • the flow In the vicinity of the outer peripheral edge 3b, the flow mainly enters the fan rotation area, but as described above, there is also a flow that partially exits the rotation area. There are also tip vortices. Therefore, the aerodynamic performance of the blower 2 is greatly influenced by the air passage chamber space outside the propeller fan 3 in the radial direction.
  • the flow around the propeller fan 3 becomes unstable if the space of the air passage chamber 7 on the radially outer side changes abruptly.
  • the pressure fluctuation on the surface of the propeller fan 3 increases and noise increases. Even on the surface of the bell mouth 4, the pressure fluctuation increases and the noise increases.
  • the blades of the rotating propeller fan 3 are closest to the horizontal plate 10 at a horizontal position passing through the center of the rotation axis. At this time, the air passage chamber space on the radially outer side of the propeller fan 3 is narrowest on the horizontal plate 10 side. Thereafter, as the portion A in FIG. 2 is approached, the air channel space outside in the radial direction gradually increases, and the distance between the propeller fan 3 and the lateral plate 10 increases rapidly in the vicinity of the portion A, and the radial direction of the outer periphery of the fan The outside air channel room space widens rapidly.
  • the overlap height Hb between the propeller fan 3 and the bell mouth 4 is relatively increased in the portion A of FIG.
  • the propeller is caused by a sudden change in the air passage space.
  • the presence of the bell mouth 4 having a small expansion angle on the bell mouth suction side in the air channel space where the air current flowing through the fan changes abruptly reduces the abrupt change in the air channel space, and the air current changes It can be suppressed and aerodynamic noise can be reduced.
  • the cross-section of the bell mouth 4 is gradually changed to gradually change the overlap height Hb between the propeller fan 3 and the bell mouth 4. Changes in the road shape can be made smooth, fluctuations in the flow around the fan periphery can be suppressed, and an increase in aerodynamic noise can be suppressed.
  • the spread angle ⁇ 1 is relatively increased to widen the space outside the outer periphery of the fan.
  • the flow velocity can be lowered and aerodynamic noise in the suction portion can be suppressed.
  • the distance between the surface of the bell mouth 4 and the propeller fan 3 is large, the pressure fluctuation on the bell mouth surface due to the fluctuation of the flow around the fan outer periphery such as the blade tip vortex is reduced, and the generated noise is reduced. it can.
  • the overlap height Hb of the propeller fan 3 and the bell mouth 4 is larger than half the height Hf of the fan outer periphery in the A part and B part of FIG. That is, the position about half of the fan outer peripheral height is a position where the blade tip vortex is separated from the blade surface, and the fluctuation of the flow near the fan outer periphery is large.
  • the blade tip vortex is stabilized, the flow fluctuation caused by the blade tip vortex can be suppressed, and the aerodynamic noise of the propeller fan 3 can be reduced.
  • the D part, the E part, and the F part shown in FIG. 7 correspond to the A part, the B part, and the C part, and the bell mouth cross section is similar to the shape from the A part to the C part.
  • the same flow as described can be realized, and aerodynamic noise can be reduced.
  • With the bellmouth cross-section noise reduction can be achieved only on the upper side and only on the lower side. When implemented on both the upper and lower sides, a larger noise reduction effect can be obtained.
  • the distance between the outer periphery of the fan and the surface of the bell mouth can be increased.
  • the aerodynamic noise in the suction portion can be suppressed by reducing the flow velocity.
  • the distance between the surface of the bell mouth 4 and the propeller fan 3 is wide, the pressure fluctuation on the bell mouth surface due to the flow fluctuation near the outer periphery of the fan, such as the blade tip vortex, becomes low, and the generated noise is reduced. it can.
  • the propeller fan 3 has a longer chord length on the outer peripheral edge 3b side than the boss side and has a forward wing shape, so that the outer peripheral edge 3b side of the front edge 3a protrudes in the rotation direction. Longitudinal vortices generated from the outer peripheral edge 3b and the leading edge 3a of the projecting portion are strengthened, and a large blade tip vortex is generated along the outer peripheral edge on the suction surface side based on the vertical vortex on the outer peripheral edge 3b side. The blade tip vortex increases the suction force from the outer peripheral direction to the propeller fan 3 and has a noise reduction effect.
  • the blade of the propeller fan 3 has a negative pressure surface with a convex curvature in the anti-rotation direction. Moderate warpage diverts the flow through the wing, reducing the relative velocity of the gas seen by the wing and increasing the pressurizing action. As a result, the fan speed is reduced, and the noise is reduced. In addition, the tip vortex tends to separate from the blade surface at about half the blade height at which the warpage is maximum near the outer periphery.
  • the overlapping height of the bell mouth 4 and the propeller fan 3 in the rotation axis direction at the A part, the C part, the D part, and the F part where the air passage space on the outer side in the radial direction widens suddenly increases. Since the height Hb is increased, fluctuations in the blade tip vortex can be suppressed and noise can be reduced. In particular, the effect is enhanced by making the overlap height Hb higher than half the height of the fan outer periphery.
  • a low noise blower can be obtained. Moreover, the low noise heat pump apparatus as the outdoor unit 1 of the air conditioner which mounts the air blower 2 can be obtained. If the noise is the same as before, a blower with a large air volume can be obtained. That is, it is possible to obtain a heat pump device having high heat exchange processing capability and excellent energy saving characteristics.
  • FIG. FIG. 10 is a horizontal sectional view showing an outdoor unit of an air conditioner according to Embodiment 2 of the present invention
  • FIG. 11 is a front view showing the outdoor unit of the air conditioner, and a protective grill is omitted.
  • the side opposite to the machine room 13 is the horizontal plate 10 when viewed from the front of the propeller fan 3, whereas in the second embodiment, the heat exchanger 12 is opposite to the machine room 13.
  • the surface facing the blowing plate 5 is covered with the heat exchanger 12 as in the first embodiment.
  • the degree of negative pressure is strong, and when there is a heat exchanger 12, which is a resistor that allows gas to pass radially outward near the propeller fan 3, the propeller fan depends on the distance to the propeller fan 3.
  • the velocity of the gas flowing into 3 changes. Therefore, the fluctuation is increased in the airflow around the blades of the propeller fan 3 when passing through the portion.
  • the overlap height between the propeller fan 3 and the bell mouth 4 is relatively increased in the A part and the F part as in the first embodiment. Variations in the airflow flowing through the propeller fan due to sudden changes can be suppressed, and aerodynamic noise can be reduced.
  • the operations and effects described in the first embodiment are the same as those in the second embodiment.
  • a low noise blower can be obtained. Moreover, the low noise heat pump apparatus as the outdoor unit 1 of the air conditioner which mounts the air blower can be obtained. If the noise is the same as before, a blower with a large air volume can be obtained. That is, it is possible to obtain a heat pump device having high heat exchange processing capability and excellent energy saving characteristics.
  • FIG. 12 is a result of experimentally confirming the low noise effect of the air conditioner outdoor unit according to the second embodiment.
  • the general specification one-dot chain line
  • suction from R1 Specification (broken line) in which the enlarged part is connected to the side and the enlarged angle of the entire circumference is 45 degrees (indicated by a broken line)
  • the enlarged angles of the A part, C part, D part, and F part are 45 degrees
  • B part, E The specifications (solid line) where the expansion angle of the part was 70 degrees were compared.
  • the specification connected to the suction side with an expansion angle of 45 degrees upstream can achieve low noise. ing. It can be seen that the specification in which the expansion angle according to the second embodiment is changed from 45 degrees to 70 degrees can further reduce noise.
  • FIG. 13 is a horizontal sectional view of the outdoor unit of the heat pump type hot water heater according to the third embodiment
  • FIG. 14 is a front view of the outdoor unit of the heat pump type hot water heater, and the protective grill is omitted.
  • the side opposite to the machine room 13 is a heat exchanger 12, the surface facing the blowout plate 5 is covered with the heat exchanger 12, and the outdoor side
  • a water heat exchanger 17 for performing a heat exchanger between the refrigerant and water is installed in the lower part of the machine 1.
  • the water heat exchanger 17 occupies the lower part in the outdoor unit 1, and the air channel chamber upper surface 17 a becomes one surface of the plate constituting the air channel chamber 7 when viewed from the propeller fan 3.
  • the cross section of the air passage chamber 7 is horizontally long when viewed from the front, in which the lengths of the heat exchanger 12 and the machine chamber plate 11 are shorter than the lengths of the upper plate 8 and the water heat exchanger upper surface 17a.
  • the A ′, C ′, D ′, and F ′ portions correspond to FIG. 5, and the B ′ and E ′ portions correspond to FIG.
  • a low noise blower can be obtained.
  • a low-noise heat pump device can be obtained as an outdoor unit of a heat pump type water heater equipped with the blower. If the noise is the same as before, a blower with a large air volume can be obtained. That is, it is possible to obtain a heat pump device having high heat exchange processing capability and excellent energy saving characteristics.
  • the upper plate 8, the lower plate 9, the horizontal plate 10, and the machine room plate 11 are provided in the vicinity of the outer side in the radial direction of the propeller fan 3.
  • the present invention is applied to the case where only the plate 8 is in the vicinity of the outer side in the radial direction of the propeller fan 3 and the other plates are located far away from the outer side in the radial direction of the propeller fan 3. .
  • blower of the present invention an outdoor unit of an air conditioner or an outdoor unit of a heat pump type hot water heater has been described as an example, but in addition, for example, various devices and facilities such as a ventilator where a blower is installed Can be widely used.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Other Air-Conditioning Systems (AREA)
  • Air-Conditioning Room Units, And Self-Contained Units In General (AREA)

Abstract

 プロペラファン駆動装置であるモータ6によって回転駆動されるプロペラファン3の後縁側外周縁をベルマウス4で覆い、プロペラファンの径方向外側に吸込み側の風路を構成する複数の板である上板8、下板9、横板10及び機械室板11を有し、プロペラファンと径方向外側の風路を構成する板との距離が相対的に狭い板の位置でプロペラファンの翼が最も近づく前後の位置のベルマウス断面が、プロペラファンと板との距離が相対的に広い位置の断面に対して、ベルマウス吸込み側の拡大角度θ1を小さく、プロペラファンとベルマウスとの重なり高さHbを大きくし、両者の間のベルマウス断面形状をなだらかに変化させるようにしたものである。

Description

送風機及びこの送風機を用いたヒートポンプ装置
 本発明は、ベルマウスと羽根車を備える送風機及びこの送風機を用いたヒートポンプ装置に関するものである。
 プロペラファン形式の送風機や、空気調和機の室外機(以下、空調室外機)等の送風機を備える装置では、空力騒音低減を実現するためには送風機に流入する気流の乱れ、変動を極力小さくすることが不可欠である。
 また、空力騒音低減を実現するために、羽根車の径を大きくして翼と気体の相対速度を低減したり、気体の通過断面積を確保して気体の絶対速度を低減すること等も有効である。
 送風機に流入する気流の乱れ、変動を小さくするには、回転軸を中心として周方向に均一な十分に広い空間から気体を吸込むことが理想であるが、プロペラファン形式の送風機を搭載した空調室外機を例にとっても、羽根車の径方向外側の吸込み空間は複数の側面で、ファン回転軸に垂直な断面が概ね四角形であることが一般的であり、空間の広さもベルマウスを十分な大きさの全周同じ断面形状とできない場合が多い。
 ベルマウス面上の流れのベクトルが異なることへの従来の送風機の工夫として、ベルマウスの吸込み側先端部の曲率半径を場所により変えて、ベルマウス付近での気流の剥離を抑えて乱流音増加の抑制を図っているものがある(例えば、特許文献1参照。)。
特許第2769211号公報[特公平7-117077号公報](第2頁、第2-3図)
 上述した従来の送風機は、吸い込み側風路の周方向位置に因る不均一性に対応させてベルマウスの曲率の大きさを変えているが、ベルマウス上に沿って流れている気流の剥離などを低減する効果に留まり、流入する気流そのものの乱れを低減する効果はなく、騒音低減を実現することができないという問題があった。
 本発明はかかる問題を解決するためになされたもので、吸い込み側風路の回転軸を中心とした周方向位置に因る不均一性がある場合にも、流入する気流そのものの乱れを低減して、低騒音を図った送風機を得ることにある。
 本発明に係る送風機は、プロペラファンと、該プロペラファンを回転駆動するプロペラファン駆動装置と、前記プロペラファンの後縁側外周縁を覆うベルマウスと、前記プロペラファンの径方向外側の少なくとも1面に吸込み側から吹き出し側に至る風路を構成する板を有し、前記プロペラファンと径方向外側の風路を構成する板との距離が相対的に狭い板の位置で前記プロペラファンの翼が最も近づく前後の位置のベルマウス断面が、前記プロペラファンと板との距離が相対的に広い位置の断面に対して、ベルマウス吸込み側の拡大角度を小さく、プロペラファンとベルマウスとの重なり高さを大きくし、両者の間のベルマウス断面形状をなだらかに変化させたものである。
 本発明の送風機においては、プロペラファン駆動装置によって回転駆動されるプロペラファンの後縁側外周縁をベルマウスで覆い、前記プロペラファンの径方向外側の少なくとも1面に吸込み側から吹き出し側に至る風路を構成する板を有し、前記プロペラファンと径方向外側の風路を構成する板との距離が相対的に狭い板の位置で前記プロペラファンの翼が最も近づく前後の位置のベルマウス断面が、前記プロペラファンと板との距離が相対的に広い位置の断面に対して、ベルマウス吸込み側の拡大角度を小さく、プロペラファンとベルマウスとの重なり高さを大きくし、両者の間のベルマウス断面形状をなだらかに変化させるようにしたので、風路室空間が急激に変化することに起因するプロペラファンを流れる気流の変動が、急激に変化する風路室空間にベルマウス吸込み側の拡大角度が小さいベルマウスが存在することによって風路室空間の急激な変化が少なくなり、気流の変動が抑えられ、空力騒音を低くできるという効果がある。
本発明の実施の形態1の空気調和機の室外機を示す水平断面図。 同空気調和機の室外機を示す正面図。 同空気調和機の室外機に搭載するプロペラファンの正面図。 同空気調和機の室外機に搭載するプロペラファンの円筒断面展開図。 図2のA部におけるベルマウスの形状を示す断面図。 図2のB部におけるベルマウスの形状を示す断面図。 同空気調和機の室外機を示すもう1つの正面図。 同空気調和機の室外機のベルマウスの特徴を説明する補足断面図。 同空気調和機の室外機のベルマウスの別の特徴を説明する補足断面図。 本発明の実施の形態2の空気調和機の室外機を示す水平断面図。 同空気調和機の室外機を示す正面図。 同空気調和機の室外機の空力特性を従来と比較して示すグラフ。 本発明の実施の形態3のヒートポンプ式給湯機の室外機の水平断面図。 同ヒートポンプ式給湯機の室外機の正面図。
実施の形態1.
 図1は本発明の実施の形態1の空気調和機の室外機を示す水平断面図、図2は同空気調和機の室外機を示す正面図、図3は同空気調和機の室外機に搭載するプロペラファンの正面図、図4は同空気調和機の室外機に搭載するプロペラファンの円筒断面展開図、図5は図2のA部におけるベルマウスの形状を示す断面図、図6は図2のB部におけるベルマウスの形状を示す断面図、図7は同空気調和機の室外機を示すもう1つの正面図、図8は同空気調和機の室外機のベルマウスの特徴を説明する補足断面図、図9は同空気調和機の室外機のベルマウスの別の特徴を説明する補足断面図である。
 図1~図2において、ヒートポンプ装置であるセパレート型空気調和機の室外機1のプロペラファン形式の送風機2は、プロペラファン3と、プロペラファン3の翼の後縁3c側の外周縁3bを覆うベルマウス4と、ベルマウス4と連続する吹出し板5と、プロペラファン3を回転駆動するモータ6とからなる。ここで、回転軸方向とはプロペラファン3、モータ6の回転方向と垂直な方向を意味する。
 プロペラファン3の翼形状は、吹出し側から見た平面図である図3に示すように外周縁3bの中点P1がボス側の中点P2よりも回転方向の先になる前進翼形状である。
 図4はプロペラファン3の外周縁3b側を図3のA-A線の円筒断面で切断し、それを平面に展開した平面展開図で、その平面展開図に示すプロペラファン3の平面に展開した外周縁3bの弦長Lは、ボス側よりも外周縁側3bの方が長い。
 そして、図4の平面展開図で示すプロペラファン3の平面に展開した外周縁3bの断面形状の負圧面は回転方向の反対側に凸となる反り形状を持つ。
 プロペラファン3がある風路室7は、プロペラファン3の径方向外側四方を上板8、下板9、横板10、機械室板11で囲まれ、吹出し板5と対抗する面は熱交換器12に覆われている。その風路室7における回転軸方向に垂直な風路室断面は、横板10及び機械室板11の長さが上板8及び下板9の長さより長い正面から見て縦長となっている。
 機械室板11により風路室7から隔てられた機械室13には、圧縮機14の他に、熱交換器12と繋がる冷媒回路構成要素やヒートポンプ装置を制御する電気回路が格納されている。
 熱交換器12は、内部を冷媒が循環するパイプの外表面に伝熱用の多層形状のフィンを設けたものである。また、ベルマウス4の開口部は保護グリル15に覆われている。
 図2のA部は、図5の断面図で示すように、回転するプロペラファン3側から見た場合に、プロペラファン3の径方向外側の風路室空間が急に広がる部分を示している。即ち、図2のA部は、室外機1の正面から見て、横板10とプロペラファン3の翼とが最も接近するところからファン回転方向に進み、横板10と翼との距離が広がる位置である。
 図2のB部は、図6の断面図で示すように、回転するプロペラファン3側から見た場合に、プロペラファン3の径方向外側の風路室空間が広い部分であることを示している。
 図2のA部、B部はともに、図5及び図6で示すように、ベルマウス4の内径最小部から直ぐの吸込み側の曲率半径R1からさらに吸込み側へはR1よりも大きな曲率半径R2で繋がるように形成されている。図5及び図6に示す如く、曲率半径R2が極めて大きく断面は直線に近く、曲率半径R1は全周に渡りほぼ同じ大きさである。
 ベルマウス4の吸込み側の回転軸からの拡がり角度θ1は、ベルマウス4の径方向外側の風路室空間が広いB部よりも空間が急激に変化するA部を小さくしている。図2におけるA部からB部の間では徐々に変化している。ベルマウス4とプロペラファン3の回転軸方向の重なり高さHbはA部の方がB部よりも高い。
 図1のC部は、室外機1を正面から見て上板8と機械室板11との交点方向よりもファン回転方向側に位置する。プロペラファン3側から見た場合に、プロペラファン3の径方向外側の風路室空間が狭くなる部分である。この部分のベルマウス4の断面形状は、A部と同様にベルマウス4の内径最小部から直ぐの吸込み側の曲率半径からさらに吸込み側へはより大きな曲率半径で繋がり、ベルマウス4とプロペラファン3の回転軸方向の重なり高さはB部よりも高い。
 なお、室外機1の正面から見て、横板10とプロペラファン3の翼とが最も接近する真横の位置は室外機1としての寸法上の制約があってベルマウス4の形状を考えて騒音を低減することは困難であり、本発明ではあまり寸法上の制約がない図2のA、Bについて騒音を低減するためにベルマウス4の形状を以上のように考慮したものである。
 次に、本発明の実施形態1の空気調和機の室外機の動作について説明する。
 モータ6の駆動力によりプロペラファン3が回転すると、プロペラファン3の昇圧作用により、風路室7の気体がベルマウス4の開口から保護グリル15を通過して機外へ吹出す。それと共に、機外気体が熱交換器12のフィン間を介して風路室7に流入する。
 熱交換器12のパイプ内部には機外の気体の温度よりも高温または低温の冷媒が循環し、機外の気体が熱交換器12を通過する際に熱交換を行う。
 風路室7に流入する際に熱交換器12と熱交換を行い温度が上昇または低下した気体は、先に述べたようにプロペラファン3の回転により機外に吹き出される。この風量が多いほど熱交換量を多くすることができる。
 プロペラファン3の周りの気流について更に詳しく述べる。
 プロペラファン3が回転すると、プロペラファン3が回転する領域内の気体が吹出し側空間に押し出され、プロペラファン3の回転領域が負圧になるため、風路室7の気体がプロペラファン3の回転する領域に流入する。
 風路室7の気体はプロペラファン3の翼前縁3aの回転軌跡からなる面や、翼外周縁3bの回転軌跡からなる面からプロペラファン3へ流入する。
 プロペラファン3へ流入した気体の一部は外周縁3bの外側を介してプロペラファン3の回転方向に向いた圧力面から圧力面と反対の負圧面への漏れ流れとなる。
 また、外周縁3bの前縁3a付近で生じた漏れ流れを基にして負圧面の外周縁3bに沿う位置に翼端渦と呼ぶ渦構造を持つ流れが生じる。
 翼端渦は前縁側から後縁側へと移行するに伴い成長し、流れの転向が大きくなる翼外周の半分位置付近において外周縁から離脱する。
 外周縁3bから離脱した翼端渦は渦としての構造を弱めながら、全体的な流れに押されながら徐々に機外へ放出される。
 外周縁3b付近では、ファン回転領域へ入る流れが主となるが、先に述べたように一部回転領域から出る流れもある。更には翼端渦も存在している。そのためにプロペラファン3の径方向外側の風路室空間により送風機2の空力性能は大きく左右される。
 回転するプロペラファン3から見た場合に、径方向外側の風路室7の空間が急激に変化するとプロペラファン3の周りの流れが不安定となる。その結果、プロペラファン3の面上の圧力変動が大きくなり騒音が増加する。ベルマウス4の面上でも圧力変動が大きくなり騒音が増加する。
 回転するプロペラファン3の翼は、回転軸中心を通る水平位置において横板10に最も近づき、この時にプロペラファン3の径方向外側の風路室空間が横板10側で最も狭くなる。その後、図2のA部に近づくに伴い径方向外側の風路室空間が徐々に広くなり、A部付近においてプロペラファン3と横板10との距離が急激に増加し、ファン外周の径方向外側の風路室空間が急激に広くなる。
 本実施の形態1では、図2のA部においてプロペラファン3とベルマウス4との重なり高さHbを相対的に大きくしているので、風路室空間が急激に変化することに起因するプロペラファンを流れる気流の変動が、急激に変化する風路室空間にベルマウス吸い込み側の拡大角度が小さいベルマウス4が存在することによって風路室空間の急激な変化が少なくなり、気流の変動が抑えられ、空力騒音を低くできる。
 A部からB部にかけては上記の通り、ベルマウス4の断面は徐々に変化してプロペラファン3とベルマウス4との重なり高さHbを徐々に変化させているので、外周縁の外側の風路形状変化をなだらかにでき、ファン外周付近の流れの変動が抑制できて、空力騒音増加を抑制することができる。
 図1に示したB部ではベルマウス断面において、拡がり角度θ1を相対的に大きくしファン外周縁の外側の空間を広くしている。所要の流量をプロペラファン3に吸込む面積を広く取ることにより、流速を低くして、吸込み部における空力騒音を抑制できる。
 また、ベルマウス4の表面とプロペラファン3との距離が広くでているので、翼端渦などのファン外周縁付近の流れの変動によるベルマウス表面の圧力変動が低くなり、発生する騒音を小さくできる。
 回転するプロペラファン3の翼が図2に示したB部を超えてC部に向かうときにも、ベルマウス4の断面は徐々に変化するので、外周縁の外側の風路形状変化をなだらかにでき、ファン外周付近の流れの変動が抑制できて、空力騒音増加を抑制することができる。
 図2に示したC部付近では、プロペラファン3と機械室板11との距離が急激に減少し、ファン外周の径方向外側の風路室空間が急激に狭くなる。本実施の形態1では、C部においてA部と同様にプロペラファン3とベルマウス4との重なり高さHbを相対的に大きくしているので、風路室空間が急激に変化することに起因するプロペラファンを流れる気流の変動が抑えられ、空力騒音を低くできる。
 また、図2のA部、B部ではプロペラファン3とベルマウス4との重なり高さHbは、ファン外周の高さHfの半分よりも大きいことが望ましい。
 それは、ファン外周高さの半分ほどの位置は、翼端渦が翼面から離脱する位置であり、ファン外周付近の流れの変動が大きい。この部分をベルマウス4で覆うことにより翼端渦が安定し、翼端渦に起因する流れの変動を抑えられ、プロペラファン3の空力騒音を小さくすることができる。
 以上までは回転軸を含む水平面の上側についてのみ述べたが、下側についても同様である。図7に示すD部、E部、F部は、A部、B部、C部に対応しベルマウス断面をA部からC部にかけての形状と同様にすることにより、A部からC部にかけて説明した同様の流れを実現でき、空力騒音を小さくすることができる。
 ベルマウス断面の工夫は、上側のみ、下側のみでも騒音低減の効果は得られる。上下側とも実施した場合はより大きな低騒音効果が得られる。
 ベルマウス4の断面形状に係る説明を追加する。
 ベルマウス4の内径最小部から直ぐの吸込み側の曲率半径R1を全周同じとすることにより、図8の記号Sで示すベルマウス表面に沿う流れのベクトルを全周で均一化される。それによって、プロペラファン3の外周縁3bの後縁3c付近の流れの変動が小さくでき、空力騒音を小さくすることができる。
 また、曲率半径R1から上流をより大きい曲率半径R2とすることで、図9に破線16で示すように従来一般的なベルマウスの内径最小部から同一曲率半径でベルマウス断面を構成する場合に比べて、ファン外周縁とベルマウス表面の距離を広くとることができる。それによって、プロペラファン3に吸込む面積を広く取れるので、流速を低くして、吸込み部における空力騒音を抑制できる。
 さらに、ベルマウス4の表面とプロペラファン3との距離が広くでているので、翼端渦などのファン外周縁付近の流れの変動によるベルマウス表面の圧力変動が低くなり、発生する騒音を小さくできる。
 プロペラファン3の翼形状に係る説明を追加する。
 プロペラファン3はボス側よりも外周縁3b側の弦長が長く、前進翼形状としていることにより、前縁3aの外周縁3b側が回転方向に突出した形状となる。突出部分の外周縁3b、前縁3a部分から発生する縦渦が強くなり、外周縁3b側の縦渦を基として大きな翼端渦が負圧面側の外周縁に沿って生成される。
 翼端渦は外周方向からプロペラファン3への吸引力を高め、騒音低減作用を有する。その反面、変動が大きな流れである渦のベルマウス4やプロペラファン3の翼への干渉による騒音増加を伴う。
 回転するプロペラファン3の翼から見た径方向外側の風路空間変動は、渦を不安定なものにして流れを乱してしまうが、上記説明した本実施の形態1のベルマウス形状との組合せにより、ファン外周の吸込み空間の変化がなだらかにできるので、翼端渦の安定性を高め、低騒音が可能となる。
 プロペラファン3の翼は負圧面が反回転方向に凸の反りを有する。適度な反りは翼を通過する流れを転向させて、翼から見た気体の相対速度を減少させて昇圧作用を高める。
 その結果、ファン回転数が低減し低騒音化の効果を有する。また、外周縁付近では反りが最大となる翼高さの半分程で翼端渦が翼面から離脱し易い。
 回転するプロペラファン3から見た場合に、径方向外側の風路室空間が急に広がるA部、C部、D部、F部で、ベルマウス4とプロペラファン3の回転軸方向の重なり高さHbを高くしているので、翼端渦の変動を抑えて低騒音化することができる。特に、重なり高さHbをファン外周の高さの半分よりも高くすることによりその効果が高くなる。
 以上のように、本実施の形態1によれば、低騒音の送風機を得ることができる。また、その送風機2を搭載した空気調和機の室外機1としての低騒音のヒートポンプ装置を得ることができる。
 騒音を従来と同じとすれば、風量の多い送風機を得ることができる。つまり、熱交換処理能力の高く、省エネルギー特性に優れたヒートポンプ装置を得ることができる。
実施の形態2.
 図10は本発明の実施の形態2の空気調和機の室外機を示す水平断面図、図11は同空気調和機の室外機を示す正面図で、保護グリルを省略している。
 上記実施の形態1ではプロペラファン3の正面から見て、機械室13と反対側が横板10になっているのに対して、この実施の形態2は、機械室13と反対側が熱交換器12となっており、吹出し板5と対向する面は実施の形態1と同様に熱交換器12で覆われている。
 プロペラファン3の近傍は負圧の程度が強く、プロペラファン3に近い径方向外側に気体を通過させる抵抗体である熱交換器12が存在する場合は、プロペラファン3との距離により、プロペラファン3へ流入する気体の速度が変化する。そのため、その部分を通過するときにプロペラファン3の翼周りの気流に変動を増長させる。
 しかし、本実施の形態2では、A部やF部において実施の形態1と同様に、プロペラファン3とベルマウス4との重なり高さを相対的に大きくしているので、風路室空間が急激に変化することに起因するプロペラファンを流れる気流の変動が抑えられ、空力騒音を低くできる。
 その他、実施の形態1に説明した作用、効果は実施の形態2でも同様である。
 以上のように、本実施の形態2によれば、低騒音の送風機を得ることができる。またその送風機を搭載した空気調和機の室外機1としての低騒音のヒートポンプ装置を得ることができる。騒音を従来と同じとすれば、風量の多い送風機を得ることができる。つまり、熱交換処理能力の高く、省エネルギー特性に優れたヒートポンプ装置を得ることができる。
 図12は、実施の形態2における空気調和機室外機の低騒音効果を試験的に確認した結果である。外径490mmのプロペラファンを用いて、ベルマウス内径最小部の直ぐ吸込み側に曲率半径R1=30mmの1/4円弧の拡大部を全周とした一般的な仕様(一点鎖線)、R1から吸込み側に拡大部を繋げ全周の拡大角度を45度とした仕様(破線)、本実施の形態に係り、A部、C部、D部、F部の拡大角度を45度、B部、E部の拡大角度を70度とした仕様(実線)を比較した。
 図12のグラフを見ると、吸込み側の全周を同一曲率半径の1/4円弧とした仕様に比べ、その上流に拡大角度を45度で吸込み側に繋げた仕様は低騒音化を実現できている。本実施の形態2に係る拡大角度を45度から70度で変化させた仕様は更に低騒音化が実現できていることが分かる。
実施の形態3.
 図13は実施の形態3に係るヒートポンプ式給湯機の室外機の水平断面図、図14は同ヒートポンプ式給湯機の室外機の正面図で、保護グリルを省略している。
 この実施の形態3は、実施の形態2と同様に、機械室13と反対側が熱交換器12となっており、吹出し板5と対向する面は熱交換器12で覆われており、さらに室外機1内の下部に冷媒と水との間で熱交換器を行う水熱交換器17が設置されているものである。
 水熱交換器17は室外機1内の下部を占めており、プロペラファン3から見れば風路室上面17aが風路室7を構成する板の一面となる。
 つまり、風路室7の断面は熱交換器12、機械室板11の長さが上板8及び水熱交換器上面17aの長さよりも短い、正面から見て横長となっている。A'部、C'部、D'部、F'部が図5に対応し、B'部、E'部が図6に対応している。
 本実施の形態3も実施の形態1に説明した作用、効果が得られる。本実施の形態3によれば低騒音の送風機を得ることができる。またその送風機を搭載したヒートポンプ式給湯機の室外機としての低騒音のヒートポンプ装置を得ることができる。
 騒音を従来と同じとすれば、風量の多い送風機を得ることができる。つまり、熱交換処理能力の高く、省エネルギー特性に優れたヒートポンプ装置を得ることができる。
 上記実施の形態1~3は、いずれもプロペラファン3の径方向外側の近傍に上板8、下板9、横板10及び機械室板11がある場合の例を示しているが、例えば横板8だけがプロペラファン3の径方向外側の近傍にあり、それ以外の板はプロペラファン3の径方向外側の遠く離れた処にある場合についても本発明が適用されることはいうまでもない。
 本発明の送風機の適用例として、空気調和機の室外機やヒートポンプ式給湯機の室外機を例に挙げて説明したが、その他、送風機が設置される例えば換気扇等の各種の装置や設備などに広く利用することができる。
 1 空気調和機の室外機、2 送風機、3 プロペラファン、3a 前縁、3b 外周縁、3c 後縁、4 ベルマウス、5 吹出し板、6 モータ(プロペラファン駆動装置)、7 風路室、8 上板、9 下板、10 横板、11 機械室板、12 熱交換器、13 機械室、14 圧縮機、15 保護グリル、16 破線。

Claims (8)

  1.  プロペラファンと、
     該プロペラファンを回転駆動するプロペラファン駆動装置と、
     前記プロペラファンの後縁側外周縁を覆うベルマウスと、
     前記プロペラファンの径方向外側の少なくとも1面に吸込み側から吹き出し側に至る風路を構成する板を有し、前記プロペラファンと径方向外側の風路を構成する板との距離が相対的に狭い板の位置で前記プロペラファンの翼が最も近づく前後の位置のベルマウス断面が、前記プロペラファンと板との距離が相対的に広い位置の断面に対して、ベルマウス吸込み側の拡大角度を小さく、プロペラファンとベルマウスとの重なり高さを大きくし、両者の間のベルマウス断面形状をなだらかに変化させたことを特徴とする送風機。
  2.  前記プロペラファンとベルマウスとの重なり高さを大きくした部分のプロペラファンとベルマウスとの重なり高さが、前記プロペラファン外周高さの半分以上であることを特徴とする請求項1記載の送風機。
  3.  前記ベルマウス内径最小部から続く直ぐの上流側の拡大部の曲率半径を全周同じとしたことを特徴とする請求項1又は2記載の送風機。
  4.  前記ベルマウス内径最小部から続く直ぐの上流側の拡大部の曲率半径に対して更に上流側に続く拡大部の曲率半径を大きくしたことを特徴とする請求項1~3のいずれかに記載の送風機。
  5.  前記プロペラファン翼形状が前進翼であり、弦長がボス側よりも外周側が長いことを特徴とする請求項1~4のいずれかに記載の送風機。
  6.  前記プロペラファンの翼形状が回転軸を中心とした円筒断面において、負圧面が回転方向の反対側に凸となることを特徴とする請求項1~5のいずれかに記載の送風機。
  7.  請求項1~6に記載の送風機は、前記プロペラファンの径方向外側に吸込み側から吹き出し側に至る風路を複数の板を有して構成され、前記風路の吸込み側に熱交換器を備えたことを特徴とするヒートポンプ装置。
  8.  前記風路を構成する少なくとも1つの板が熱交換器であることを特徴とする請求項7記載のヒートポンプ装置。
PCT/JP2009/068567 2008-11-04 2009-10-29 送風機及びこの送風機を用いたヒートポンプ装置 WO2010053037A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US13/123,174 US9513021B2 (en) 2008-11-04 2009-10-29 Blower and heat pump apparatus using the same
CN200980143663.6A CN102203430B (zh) 2008-11-04 2009-10-29 送风机及使用该送风机的热泵装置
EP09824737.2A EP2343458B1 (en) 2008-11-04 2009-10-29 Blower and heat pump utilizing said blower

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-283519 2008-11-04
JP2008283519A JP4823294B2 (ja) 2008-11-04 2008-11-04 送風機及びこの送風機を用いたヒートポンプ装置

Publications (1)

Publication Number Publication Date
WO2010053037A1 true WO2010053037A1 (ja) 2010-05-14

Family

ID=42152846

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/068567 WO2010053037A1 (ja) 2008-11-04 2009-10-29 送風機及びこの送風機を用いたヒートポンプ装置

Country Status (5)

Country Link
US (1) US9513021B2 (ja)
EP (1) EP2343458B1 (ja)
JP (1) JP4823294B2 (ja)
CN (1) CN102203430B (ja)
WO (1) WO2010053037A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2618066A4 (en) * 2010-09-14 2018-04-04 Mitsubishi Electric Corporation Blower for outdoor unit, outdoor unit, and refrigeration cycle device
US20180363928A1 (en) * 2016-01-25 2018-12-20 Mitsubishi Electric Corporation Outdoor unit and air conditioner including the same

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5591335B2 (ja) * 2010-08-04 2014-09-17 三菱電機株式会社 空気調和機の室内機、及び空気調和機
GB2499356B (en) * 2011-01-28 2016-12-14 Mitsubishi Electric Corp Circulator
JP2013096622A (ja) * 2011-10-31 2013-05-20 Daikin Industries Ltd 空気調和装置の室外ユニット
JP2013113128A (ja) * 2011-11-25 2013-06-10 Sanyo Denki Co Ltd 軸流ファン
EP2957443B1 (en) * 2013-02-12 2018-05-09 Mitsubishi Electric Corporation Outdoor cooling unit for air conditioning device for vehicle
US9874227B2 (en) * 2013-07-05 2018-01-23 Mitsubishi Electric Corporation Air blower and outdoor unit
JP6385752B2 (ja) * 2013-12-02 2018-09-05 三星電子株式会社Samsung Electronics Co.,Ltd. 送風装置及び空気調和装置用室外機
KR20170039728A (ko) * 2014-08-08 2017-04-11 존슨 일렉트릭 에스.에이. 팬, 펌프, 모터 어셈블리 및 모터 구동용 집적 회로
JP2017053295A (ja) * 2015-09-11 2017-03-16 三星電子株式会社Samsung Electronics Co.,Ltd. 送風機および室外機
GB2557130C (en) * 2015-11-02 2021-03-31 Mitsubishi Electric Corp Outdoor Unit of Air Conditioner and Refrigeration Cycle Device
KR101734722B1 (ko) * 2015-12-14 2017-05-11 엘지전자 주식회사 공기 조화기의 오리피스
KR101996052B1 (ko) 2016-11-01 2019-07-03 엘지전자 주식회사 공기조화기
CN110073147B (zh) * 2016-12-19 2021-07-02 三菱电机株式会社 空调装置
IT201700009701A1 (it) * 2017-01-30 2018-07-30 Daikin Applied Europe S P A Ventola per sistema di condizionamento termico
KR102500528B1 (ko) * 2018-03-22 2023-02-15 엘지전자 주식회사 공기 조화기의 실외기
KR20220016992A (ko) * 2019-09-24 2022-02-10 도시바 캐리어 가부시키가이샤 냉동 사이클 장치의 실내기 및 임펠러
WO2021084605A1 (ja) 2019-10-29 2021-05-06 三菱電機株式会社 空気調和装置の室外機
US20230142460A1 (en) * 2020-06-12 2023-05-11 Mitsubishi Electric Corporation Outdoor unit for air-conditioning apparatus

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03233198A (ja) * 1990-02-06 1991-10-17 Matsushita Refrig Co Ltd 軸流送風機
JPH07117077A (ja) 1993-10-20 1995-05-09 Ricoh Co Ltd 型内転写成形方法及び形成用型枠
JP2769211B2 (ja) 1989-11-28 1998-06-25 松下冷機株式会社 送風機
JP2002221341A (ja) * 2001-01-24 2002-08-09 Daikin Ind Ltd 空気調和装置の室外ユニット
JP2005105865A (ja) * 2003-09-29 2005-04-21 Daikin Ind Ltd プロペラファン
JP2006077585A (ja) * 2004-09-07 2006-03-23 Mitsubishi Electric Corp 送風機および空調機

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3079766A (en) * 1961-06-21 1963-03-05 Gen Electric Condensate disposal arrangement for air conditioning apparatus
JP3084790B2 (ja) 1991-06-18 2000-09-04 ダイキン工業株式会社 プロペラファン
KR0132997B1 (ko) * 1994-08-20 1998-04-21 김광호 공기조화기의 실외기
KR980003248A (ko) * 1996-06-25 1998-03-30 구자홍 에어콘 실외기의 팬슈라우드
JP3233198B2 (ja) * 1997-05-23 2001-11-26 株式会社東京精密 測定機用制御装置
JP3582366B2 (ja) * 1998-07-06 2004-10-27 ダイキン工業株式会社 送風機
EP1166018B1 (en) * 2000-01-28 2004-11-10 Toshiba Carrier Corporation Cassette type air conditioner for mounting in the ceiling
DE60121222T2 (de) 2000-12-28 2007-05-16 Daikin Industries, Ltd. Gebläse und ausseneinheit für klimaanlage
JP2003184797A (ja) * 2001-12-14 2003-07-03 Daikin Ind Ltd 送風装置及び該送風装置を備えた空気調和機
WO2003085262A1 (en) * 2002-03-30 2003-10-16 University Of Central Florida High efficiency air conditioner condenser fan
JP3698150B2 (ja) * 2003-05-09 2005-09-21 ダイキン工業株式会社 遠心送風機
CN101408196B (zh) * 2003-06-18 2011-06-01 三菱电机株式会社 鼓风机
JP4501575B2 (ja) * 2004-07-26 2010-07-14 三菱電機株式会社 軸流送風機
JP2006084115A (ja) * 2004-09-16 2006-03-30 Matsushita Electric Ind Co Ltd ヒートポンプ給湯機

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2769211B2 (ja) 1989-11-28 1998-06-25 松下冷機株式会社 送風機
JPH03233198A (ja) * 1990-02-06 1991-10-17 Matsushita Refrig Co Ltd 軸流送風機
JPH07117077A (ja) 1993-10-20 1995-05-09 Ricoh Co Ltd 型内転写成形方法及び形成用型枠
JP2002221341A (ja) * 2001-01-24 2002-08-09 Daikin Ind Ltd 空気調和装置の室外ユニット
JP2005105865A (ja) * 2003-09-29 2005-04-21 Daikin Ind Ltd プロペラファン
JP2006077585A (ja) * 2004-09-07 2006-03-23 Mitsubishi Electric Corp 送風機および空調機

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2618066A4 (en) * 2010-09-14 2018-04-04 Mitsubishi Electric Corporation Blower for outdoor unit, outdoor unit, and refrigeration cycle device
US20180363928A1 (en) * 2016-01-25 2018-12-20 Mitsubishi Electric Corporation Outdoor unit and air conditioner including the same
US11054156B2 (en) * 2016-01-25 2021-07-06 Mitsubishi Electric Corporation Outdoor unit and air conditioner including the same

Also Published As

Publication number Publication date
CN102203430A (zh) 2011-09-28
US20110192186A1 (en) 2011-08-11
CN102203430B (zh) 2017-11-10
EP2343458A4 (en) 2014-12-31
EP2343458B1 (en) 2018-11-21
EP2343458A1 (en) 2011-07-13
US9513021B2 (en) 2016-12-06
JP2010112204A (ja) 2010-05-20
JP4823294B2 (ja) 2011-11-24

Similar Documents

Publication Publication Date Title
JP4823294B2 (ja) 送風機及びこの送風機を用いたヒートポンプ装置
CN102422025B (zh) 离心风扇及空调机
EP2270338B1 (en) Blower and heat pump device using same
JP6029738B2 (ja) 車両用空気調和装置の室外冷却ユニット
JP4690682B2 (ja) 空調機
JP6377172B2 (ja) プロペラファン、プロペラファン装置および空気調和装置用室外機
WO2004113732A1 (ja) 送風機
JPWO2014162758A1 (ja) プロペラファン、送風装置及び室外機
JP4689262B2 (ja) 軸流ファン、空気調和機の室外機
JP4865654B2 (ja) 遠心送風機および車両用空気調和装置
JP6739656B2 (ja) 羽根車、送風機、及び空気調和装置
JP2009281215A (ja) 空気調和機用室内機
JP4937331B2 (ja) 送風機及びヒートポンプ装置
JP6029355B2 (ja) 空気調和機の室内機
CN112050296B (zh) 空气调节机
JP6336135B2 (ja) プロペラファン、送風機および冷凍サイクル装置の室外機
JPH11289716A (ja) 電動機用冷却ファン
JP7103465B1 (ja) 送風機および室内機
JPWO2013150673A1 (ja) 空気調和装置の室内機
JP7120360B1 (ja) 送風機および室内機
JP6625213B2 (ja) 多翼ファン及び空気調和機
JP2009281682A (ja) 空気調和機
JP2008070110A (ja) 空気調和機
JP2006177641A (ja) 空気調和機
JP2000227236A (ja) 空気調和機用室外機

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980143663.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09824737

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2009824737

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13123174

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2797/CHENP/2011

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: DE