WO2004113732A1 - 送風機 - Google Patents

送風機 Download PDF

Info

Publication number
WO2004113732A1
WO2004113732A1 PCT/JP2004/008839 JP2004008839W WO2004113732A1 WO 2004113732 A1 WO2004113732 A1 WO 2004113732A1 JP 2004008839 W JP2004008839 W JP 2004008839W WO 2004113732 A1 WO2004113732 A1 WO 2004113732A1
Authority
WO
WIPO (PCT)
Prior art keywords
wing
impeller
bell mouth
diameter
boss
Prior art date
Application number
PCT/JP2004/008839
Other languages
English (en)
French (fr)
Inventor
Masahiro Arinaga
Kunihiko Kaga
Shoji Yamada
Katsuhisa Ootsuta
Hitoshi Kikuchi
Yoshimi Iwamura
Yasuyoshi Makino
Original Assignee
Mitsubishi Denki Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Denki Kabushiki Kaisha filed Critical Mitsubishi Denki Kabushiki Kaisha
Priority to JP2005507274A priority Critical patent/JP4610484B2/ja
Priority to US10/521,787 priority patent/US7331758B2/en
Publication of WO2004113732A1 publication Critical patent/WO2004113732A1/ja

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D17/00Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps
    • F04D17/06Helico-centrifugal pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/32Rotors specially for elastic fluids for axial flow pumps
    • F04D29/38Blades
    • F04D29/384Blades characterised by form
    • F04D29/386Skewed blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/4206Casings; Connections of working fluid for radial or helico-centrifugal pumps especially adapted for elastic fluid pumps
    • F04D29/4213Casings; Connections of working fluid for radial or helico-centrifugal pumps especially adapted for elastic fluid pumps suction ports

Definitions

  • the present invention relates to a blower used for ventilation, for example.
  • the reference line of the wing is bent in the direction of rotation from the root to the middle at a predetermined inclination angle from the root to the middle, and the wing is bent from the middle to the tip.
  • the reference line is bent at a predetermined inclination angle in the direction opposite to the rotation direction so that the outermost end of the reference line is located on the opposite side of the rotation direction from the line connecting the rotation center and the root. It is recorded.
  • the conventional blower of the above configuration is basically a so-called axial blower in which air flows substantially along the axial direction. For this reason, there was a problem in that the mixed flow effect due to the blade shape was small in the outer periphery, and a sufficient increase in static pressure could not be obtained, the ventilation efficiency was poor, and noise increased. Disclosure of the invention
  • An object of the present invention is to solve the above-described problems, and an object of the present invention is to obtain a blower capable of improving the blowing efficiency by increasing the static pressure and reducing the noise. It is.
  • a blower includes: an impeller having a plurality of axial flow blades mounted on an outer peripheral surface of a boss at an interval in a circumferential direction; a case surrounding the impeller; and A bell mouth squeezed into a cylindrical shape to guide it to the case,
  • the inner diameter of the mouse is smaller than the outer diameter of the impeller.
  • an impeller having a plurality of blades mounted on the outer peripheral surface of the boss at an interval in the circumferential direction, a case surrounding the impeller, and a tube for guiding gas to the case.
  • a bell mouth narrowed in a shape, wherein the inner diameter of the bell mouth is smaller than the outer diameter of the impeller, and a part of the wing portion located on the outer peripheral side from the inner diameter of the bell mouth is a part of the impeller.
  • the bell mouth projects from the reduced-diameter end to the enlarged-diameter end in the direction along the rotation center axis.
  • a boss and a plurality of blades attached to the outer peripheral surface of the boss at an interval in the circumferential direction are arranged, and when the wing is vertically projected on a plane perpendicular to the rotation center axis, A curve formed by connecting the concentric circles extending in the radial direction around the intersection with the rotation center axis and the center points of the arc lengths extending in the circumferential direction where the projected wing overlaps is formed in the circumferential direction.
  • a straight line connecting the intersection and an end point on the boss side of the circumferential center curve of the wing, and a straight line connecting the intersection and any point of the circumferential center curve are defined as a center curve.
  • the blade When the angle formed is a forward angle ⁇ ⁇ ⁇ with the rotation direction of the blade being positive, and the rate of change of this forward angle ⁇ ⁇ per unit length in the radial direction is defined as a forward ratio, the blade has a radially-advancing advance rate.
  • FIG. 1 is a front view of a blower according to Embodiment 1 of the present invention.
  • FIG. 2 is a front view of FIG. 1 excluding the bell mouth.
  • FIG. 3 is a perspective view of the wing of FIG.
  • FIG. 4 is a cross-sectional view taken along the line IV-IV in FIG. 1 when the blades are rotating, and is a diagram showing the flow of air when the air volume is large.
  • FIG. 5 is a cross-sectional view taken along the line IV-IV in FIG. 1 when the blades are rotating, and is a diagram showing the flow of air when the air flow is small.
  • FIG. 6 is a sectional view taken along the line VI-VI of FIG.
  • Figure 7 shows the ratio (%) and the specific noise level (dBA) for the fan of the first embodiment.
  • FIG. 8 is a relationship diagram between a forward movement rate of a swept wing portion and a specific noise level in the blower according to the first embodiment.
  • FIG. 9 shows a blower according to Embodiment 2 of the present invention, and is a cross-sectional view along a rotation center axis when a blade is rotating.
  • FIG. 10 shows a blower according to Embodiment 3 of the present invention, and is a cross-sectional view along a rotation center axis when a blade is rotating.
  • FIG. 11 is a diagram showing the relationship between the ratio (%) and the relative value of the specific noise level in the blower according to the third embodiment.
  • FIG. 12 is a diagram showing the relationship between the ratio (%) and the relative value of the static pressure difference in the blower according to the third embodiment.
  • FIG. 13 shows a blower according to Embodiment 4 of the present invention, and is a cross-sectional view along the rotation center axis when the blades are rotating.
  • FIG. 14 shows a blower according to Embodiment 4 of the present invention, and is a cross-sectional view along a rotation center axis when the blades are rotating.
  • FIG. 15 is a view for explaining a stagger angle according to the first embodiment.
  • FIG. 16 is a diagram for describing a radial center line according to the first embodiment.
  • FIG. 1 is a front view of a blower according to Embodiment 1 of the present invention as viewed from a suction side,
  • FIG. 2 is a front view without the bell mouth 8 in FIG. 1
  • FIG. 3 is a perspective view of the wing 4 in FIG. 1
  • FIG. 4 and 5 are cross-sectional views taken along line IV-IV when the wing 4 of FIG. 1 is rotating
  • FIG. 6 is a cross-sectional view taken along line VI-VI of FIG.
  • FIG. 2 shows a state in which the wing 4 is projected on a plane perpendicular to the rotation axis 30 which is the center axis of the boss 1, and is a view in which the plane perpendicular to the rotation axis 30 is viewed from the suction side. is there.
  • This blower has a motor shaft 20, a cylindrical boss 1 directly connected concentrically with the motor shaft 20, and four bosses 1 attached at equal intervals in the circumferential direction to the outer peripheral surface of the boss 1. It has a wing 4, a cylindrical case 19 surrounding the periphery of the wing 4, and a bell mouse 8 attached to the suction side end of the case 19 to guide air into the case 19. I have.
  • the boss 1 and the four blades 4 constitute an impeller, and the arrows in FIGS. 1 and 2 indicate the rotation direction of the impeller (boss 1).
  • the rotation axis 30 which is the center axis of the boss 1 is the same as the rotation center axis of the impeller.
  • an apparatus having a curved portion, which is disposed on the flow suction side and smoothly guides the airflow to the impeller, is called a bellmouth.
  • Each wing 4 includes a forward wing portion 2 and a backward wing portion 3.
  • the outermost end of the wing 4) connecting an arbitrary point of the curve 6 is defined as an advance angle ⁇ with the rotation direction of the wing 4 being positive, and the advance angle ⁇
  • the rate of change per unit length in the radial direction is defined as the advance rate (° / mm).
  • the advance angle 0 assumes that the clockwise rotation direction of the wing 4 from the first straight line toward the paper is positive, and the reverse rotation direction is negative. I do.
  • the wing 4 rotates clockwise when viewed from a plane perpendicular to the rotation axis 30, and the suction direction is from the front to the back of the paper.
  • the advance angle 0 of the wing 4 is a positive value when the second straight port is clockwise with respect to the first straight line, and the second straight port is When it is on the counterclockwise side, it is a negative value.
  • the portion of the wing 4 having a positive forward value in the radial direction is the forward wing portion 2, and the portion of the wing 4 having a negative forward value is the retreating wing portion 3.
  • the wing 4 composed of the forward wing portion 2 and the backward wing portion 3 has a larger arc length as going from the boss 1 side to the outer peripheral portion 7.
  • the arc shape of the boundary portion 5 between the forward wing portion 2 and the retreat wing portion 3 substantially matches the arc shape at the wing radius position where the wing 4 is located.
  • the advancing rate which is the variation of the advancing angle 0 of the wing 4 per unit length in the radial direction, is zero at the intersection C between the boundary 5 and the circumferential center curve 6, and the outer diameter ( On the (outer circumference) side, the forward wing portion 3 is a negative retreat wing portion 3, and on the inner diameter (boss) side of the intersection C, the forward wing portion 2 has a positive forward speed.
  • the blade 4 described above is referred to as a composite blade, and the blade used for a general axial flow blower is referred to as an axial flow blade.
  • the forward wing portion 2 mainly functions as an axial blower
  • the backward wing portion 3 mainly functions as a centrifugal blower.
  • the size of the diameter D1 of the opening 8A of the bell mouth 8 attached to the air suction side of the wing 4 approximately matches the size of the diameter D3 of the boundary 5 .
  • the approximate agreement here means that there is a deviation of about 10% between the diameter D1 of the bell mouth 8 and the diameter D3 of the boundary 5 of the wing 4.
  • the blade 4 As shown in FIG. 15, the blade 4 according to the present embodiment has a leading edge 4F, which is the front side in the rotation direction of each blade, and a rear edge in the rotation direction, in a cascade in which the blades 4 are developed in a cylindrical surface of each diameter.
  • the angle between the straight line L2 connecting the trailing edge 4B, which is the side, and the straight line L1 parallel to the direction of the rotation center axis, as viewed from the suction side (the stagger angle) is ⁇
  • FIG. In the range from 0 ° to 90 ° in a counterclockwise direction toward the plane of paper 5.
  • the center axis of rotation (rotation axis) at the portion of blade 4 in contact with boss 1 is a straight line that extends the center point of the height in the 0 direction perpendicular to the axis to the outer periphery of the blade.
  • the line connecting the center points of the axial heights at each radius of the wing is defined as the radial center line g.
  • a straight line that connects the center point of the axial height at the boss and any point on the radial center line G is defined as a straight line.
  • the angle between the straight line and the straight line c is defined as ⁇ .
  • the four blades 4 arranged on the outer peripheral surface of the boss 1 have an inclination ⁇ > 0 toward the suction side with respect to a plane perpendicular to the rotation axis 30.
  • a straight line is It is inclined to the gas suction side.
  • the curved surface on the pressure surface side of the impeller is inclined toward the discharge side and the outer peripheral side, so that a flow outward in the radial direction can be generated, and the static pressure can be increased.
  • FIG. 16 shows the case where the radial center line G is a curve, it may be a straight line.
  • FIG. 4 shows a case where the radial center line G is a straight line, and the straight line overlaps the radial center line G.
  • the wing 4 has a circumferential cross-sectional shape (shape when the wing 4 is cut perpendicularly to the rotation axis 30) in the forward wing portion 2 in the area on the inner peripheral side of the diameter D 1 of the bell mouth 8.
  • the swept wing portion 3 located on the outer diameter side from the diameter D 1 of the bell mouth 8 is similar to the wing of a centrifugal blower (referred to as a centrifugal wing in this specification), and has a radial direction as shown by an arrow in FIG. It becomes a meridional flow that spreads over the sea, creating a flow field similar to that of a centrifugal blower.
  • Fig. 4 shows the blower with the above configuration when the air volume is large. That is, as shown by the arrow 2, the fluid flows substantially along the direction of the central axis 30 and the circumferential cross section of the blade 4 is equal to that of the axial blower, so that the fluid operates as an axial blower.
  • the air volume when the air volume is small, it becomes as shown in Fig. 5. That is, the diameter of the opening 8A of the bell mouth 8 (D1 shown in Fig. 4) is smaller than the inner diameter of the case 19 (D2 shown in Fig. 4), and the meridional flow is a mixed flow as shown by arrow E.
  • the component increases, and flows out of the swept wing section 3 with a negative advancing rate.
  • the swept wing section 3 has a wing shape that roughly matches the meridional flow spreading in the centrifugal direction. As a result, the load on the wing 4 is reduced, and the blowing efficiency is increased.
  • the wing 4 includes the forward wing portion 2 on the boss 1 side having a positive forward ratio in the radial direction and the retreat wing portion 3 on the outer peripheral side of the wing 4 having a negative forward value.
  • the arc length of the wing 4 increases from the boss 1 side toward the outer peripheral side. Therefore, the arc length of the blade becomes longer toward the outer circumference in the radial direction. As the blade area increases and the effective radius of the blade flow increases, the static pressure rise due to centrifugal force increases, and it is possible to increase the blade work.
  • the forward wing 2 has the same flow as the axial blower, and operates as the axial blower.
  • the advancing rate retreats negatively so as to roughly match the flow, and the portion corresponding to the retreating wing 3 is similar to the wing of a centrifugal blower. Operate.
  • the blower according to the present embodiment has both functions of an axial blower and a centrifugal blower, and has a flow field that expands in the radial direction similar to that of the centrifugal blower caused by the installation of the bellmouth, and a blower similar to the axial blower.
  • the wing shape can be made to conform to the two flow fields, the flow field flowing in the direction parallel to the rotation center axis, and the increase in noise due to turbulence can be reduced.
  • the tangent angle of the circumferential center curve 6 gradually inclines greatly toward the gas discharge side as the boss 1 moves from the boss 1 side to the boundary section 5 side.
  • the tangent of the circumferential center curve 6 gradually inclines to the gas suction side, so the curved surface of the impeller is inclined to the outer periphery side, An outward flow can be generated, and a static pressure can be increased.
  • the diameter of the blower on the suction side becomes equal to the diameter D1 of the bell mouth 8, and the suction area is reduced.
  • the diameter of the suction side of the impeller is The diameter is equal to D1, and the flow becomes the same as that of the axial blower even when the air flow is large or small, and it operates as an axial blower.
  • FIG. 7 is a diagram in which the inventor of the present application obtained an experiment of the performance of the blower having the above-described configuration.
  • the ratio of the diameter D 3 of the boundary 5 to the inner diameter D 1 ′ of the bell mouth 8 D 3 ZD 1, (%) was plotted on the horizontal axis, and the bell mouth 8 was attached to the case 19 under almost the condition of the highest efficiency point.
  • lower specific noise level than when Bellmouth 8 is not attached
  • the inside diameter D 1 ′ of the bell mouth 8 is the diameter of the inner surface of the reduced diameter portion of the bell mouth 8 as shown in FIG.
  • the diameter D 1 of the bell mouth 8 shown in FIG. 4 is the diameter of the central part of the thickness of the reduced diameter portion of the bell mouth 8, and the inner diameter D 1 ′ of the bell mouth 8 is substantially equal to the diameter D 1 .
  • the highest efficiency point is defined as the outer diameter of the wing 4 (the outer diameter of the wing 4, ie, the boss 1), while the diameter D 1 (inner diameter D l,) of the opening 8 A of the bell mouth 8 is fixed. Is the outer diameter of the impeller composed of the four blades 4) and the highest point of the air blowing efficiency (static pressure X air flow / motor output) when changing.
  • FIG. 8 is a diagram obtained by conducting experiments on the performance of the blower having the above-described configuration.
  • the abscissa represents the advance rate of the swept wing 3 and the case 1 under the condition of the almost maximum efficiency point.
  • FIG. 9 is a diagram in which the vertical axis represents the value of the specific noise level (dBA), which is lower when the bellmouth 8 is attached to 9 than when the bellmouth 8 is not attached. From this figure, it can be seen that within the range of the forward rate of 12.0 (° / mm) to 12.9 (°-/ mm), a remarkable effect was obtained in reducing the noise of the blower. It was found that the specific noise level was reduced by about 11.1 [dBA] at maximum in Fig. 2.
  • a part 4 A of the wing part located on the outer peripheral side from the inner diameter of the bell mouth 8, that is, a part of the retreat wing part 3 in the present embodiment In the direction along the rotation axis 30, the bell mouth 8 protrudes from the reduced-diameter end 8 B toward the enlarged-diameter end 8 C. If the part 4 A of the wing part located on the outer peripheral side of the inner diameter of the bell mouth 8 is located at the reduced diameter end of the bell mouth 8 in the direction along the rotation center axis (rotation axis) 30 of the impeller.
  • a part 4 A of the wing portion located on the outer peripheral side from the inner diameter of the bell mouth 8 is displaced along the rotation center axis (rotation axis) 30 of the impeller. Protruding from the reduced-diameter end 8B toward the enlarged-diameter end 8C reduces the leakage flow generated between the impeller and the reduced-diameter end 8B. And loss of air volume can be reduced. In addition, since the turbulence caused by leakage is reduced, noise can be reduced.
  • the impeller having the composite wing described above but also a general axial flow wing or It has an impeller having centrifugal impellers, a case surrounding the impeller, and a bell mouth narrowed cylindrically to guide gas to the case, and the inside diameter of the bell mouth is smaller than the outside diameter of the impeller.
  • a blower that is configured so that a part of the wing part located on the outer peripheral side from the inner diameter of the bell mouth expands from the reduced diameter end of the bell mouth in the direction along the rotation center axis of the impeller. By protruding toward the side end, the blowing efficiency can be improved and noise can be reduced as in the case of the composite wing.
  • FIG. 9 is a view for explaining a configuration of a blower according to Embodiment 2 of the present invention, and is a cross-sectional view along a rotation axis (rotation center axis) 30 when blade 4 is rotating.
  • the boundary portion 5 serving as the boundary between the forward wing portion 2 and the backward wing portion 3 is located on the outer peripheral side of the inner diameter of the bell mouth 8. That is, D1 'and D3.
  • the wing shape of the wing 4 (impeller) on the inner peripheral side from the boundary 5 between the forward wing 2 and the retreat wing 3 is the forward wing 2 and the inner peripheral side of the inner diameter D 1 ′ of the bell mouth 8 In the area, it operates as an axial blower, so it has the characteristics of large air volume. Further, the wing shape of the wing 4 (impeller) on the inner peripheral side from the boundary part 5 is the forward wing part 2, and in the region on the outer peripheral side from the inner diameter D 1 ′ of the bell mouth 8, it is narrowed by the bell mouth 8. Therefore, the flow spreads radially outward, and the static pressure can be increased by centrifugal force.
  • the shape of the wing on the outer peripheral side from the boundary portion 5 between the forward wing portion 2 and the backward wing portion 3 of the wing 4 (impeller) is the backward wing portion 3, and operates as a centrifugal blower.
  • the flow almost coincides with the meridional flow spreading in the centrifugal direction, so that the load on is reduced and the air blowing efficiency is increased. Therefore, it is desirable that the boundary portion 5 between the forward wing portion 2 and the retreating wing portion 3 of the wing 4 (impeller) is located on the outer peripheral side of the inner diameter D 1 ′ of the bell mouth 8.
  • the inner diameter D l, of the bellmouth 8 be closer to the boss 1 than the radial position of the boundary 5 between the forward wing portion 2 and the backward wing portion 3 of the wing 4 (impeller).
  • the minimum noise point of the axial fan is on the open side, and the minimum noise point of the centrifugal fan is on the static pressure side.
  • the area where the flow spreads radially outward increases, and the flow state simulates the flow on the ⁇ static pressure side of the impeller.
  • the inner diameter D 1 ′ of the bell mouth 8 is increased, the flow area that spreads radially outward becomes smaller, and the area of the wing that operates as an axial blower on the boss 1 side is smaller than the inner diameter D 1 ′ of the bell mouth 8. The flow becomes larger and the flow simulates the flow on the low static pressure side.
  • the boundary portion 5 serving as the boundary between the forward wing portion 2 and the retreat wing portion 3 is located on the outer peripheral side from the inner diameter of the bell mouth 8, the inner diameter D of the bell mouth 8 is By changing 1 ′, the three-dimensional flow field generated in the impeller (wing 4) is changed, and the flow difference depending on the operating point can be controlled by the inner diameter D1 ′ of the bell mouth 8.
  • the relationship between the diameter D 3 of the boundary portion 5 which is the boundary between the forward wing portion 2 and the retreating wing portion 3 and the inner diameter D 1 ′ of the bell mouth 8 is D l. Not only when ⁇ D3, but also when the inner diameter D1 of the bellmouth is smaller than the outer diameter D4 of the wing, the flow can flow radially outward, and the flow spreads radially. As a result, the static pressure can be increased.
  • FIG. 10 is a view for explaining a configuration of a blower according to Embodiment 3 of the present invention, and is a cross-sectional view along rotation axis 30 when blade 4 is rotating.
  • the wing 4 has a forward wing portion 2 on the boss 1 side having a positive forward value in the radial direction, and an outer wing portion 2 having a negative value.
  • the case has been described in which the swept wing portion 3 is provided on the circumferential side, and the arc length of the wing 4 is a compound wing that is longer from the boss 1 side toward the outer circumferential side.
  • a blower including a bell mouth 8 narrowed in a shape and having a diameter smaller than the inner diameter D l of the bell mouth 8 and an outer diameter D 4 of a power impeller is also provided.
  • the inside diameter D 1 ′ of the bell mouth 8 is smaller than the outside diameter D 4 of the axial impeller, the gas flow is constricted by the bell mouth when flowing into the blade ratio on the suction side of the impeller, Spreads radially outward from the mouse toward the discharge side.
  • the region located inside the inner diameter D 1 ′ of the bell mouth 8 operates as an axial flow blower, and thus has a large air volume characteristic.
  • the area outside the inner diameter D 1 ′ of the bell mouth 8 is constricted by the bell mouth, so that the flow spreads outward in the radial direction. It is possible to increase the static pressure.
  • the inner diameter D 1 ′ of the bell mouth 8 is increased when the operating point is on the low static pressure side, and the inner diameter D 1 ′ is decreased when the operating point is on the high static pressure side.
  • the operating point can be controlled, and the operating point aimed at the impeller can be used. Therefore, low noise and high efficiency can be achieved.
  • the inner diameter of the bell mouth is smaller than the outer diameter of the axial flow impeller, it is possible to flow the flow radially outward.
  • the static pressure can be increased by the flow spreading in the direction.
  • the bell mouth that guides the air flow is located on the suction side of the axial blower (axial flow impeller), so that regardless of the mounting conditions of the axial flow impeller, the function of equalizing the distribution of the suction flow works. Turbulence flowing into the axial impeller can be reduced, and noise can be reduced.
  • FIG. 11 is a diagram in which the inventor of the present invention has experimentally determined the performance of the blower having the above-described configuration.
  • the outer diameter of the axial flow impeller constituted by the boss 1 and the four axial flow blades 40 is shown in FIG. (Shown as D4 in Fig. 10) and the ratio of D1 '/ D4 (%) when the inner diameter of bellmouth 8 (shown as D1' in Fig. 10) is changed
  • FIG. 9 is a diagram in which the value of the specific noise level K s (d BA), which is reduced when the bell mouth 8 is attached to the case 1 9 compared to when the bell mouth 8 is not attached, is taken as the axis, and the horizontal axis is used as the axis. .
  • FIG. 12 is a diagram in which the inventor of the present invention obtained an experiment of the performance of the blower having the above-described configuration.
  • the outer diameter of the axial flow impeller constituted by the boss 1 and the four axial flow blades 40 is shown in FIG. (Shown as D4 in Fig. 10) and the ratio of D1 '/ D4 (%) when the inner diameter of bellmouth 8 (shown as D1' in Fig. 10) is changed
  • D4 in Fig. 10 The ratio of D1 '/ D4 (%) when the inner diameter of bellmouth 8 (shown as D1' in Fig. 10) is changed
  • It is a diagram when the relative value of the static pressure difference between the upstream side and the downstream side of the blower is set as the axis, and the vertical axis is set as the axis.
  • the shaft Axial impellers can have high static pressure and low noise without relatively impairing the large air volume characteristics of the flow impeller.
  • FIG. 13 is a view for explaining the configuration of the blower according to the fourth embodiment of the present invention.
  • FIG. 14 is a cross-sectional view taken along the rotation axis 30 when the wing 4 is rotating.
  • FIG. 21 is a diagram for explaining another configuration of the blower according to the fourth embodiment, and is a cross-sectional view along a rotation axis 30 when a blade 4 is rotating.
  • the bold arrow Indicates the direction of gas inflow, the longer the speed is higher.
  • the air path in which the impeller is arranged differs depending on the mounting conditions, and there may be a difference in the suction flow velocity in the circumferential direction of the rotation center axis 30 of the impeller on the impeller suction side.
  • the inner surface of the constricted portion from the end on the enlarged diameter side to the end on the reduced diameter side of the bell mouth 8 has a curved surface shape in which the distance from the rotation center axis 30 of the impeller is not uniform in the circumferential direction.
  • the distance from the rotation center axis 30 of the blade * at the reduced-diameter end of the bell mouth 8 on the left and right in FIG. Once equal on the left and right, that is, the left distance d1 and the right distance d2 are equal.
  • the length (height) of the rotation center axis direction 30 (height) between the enlarged-diameter side end portion and the reduced-diameter side end portion is made longer on the right side, the inner surface of the throttle portion is rotated by the impeller.
  • the distance from the central axis 30 is different between the right side and the left side in FIG. That is, the curvature of the inner surface of the throttle portion on the right side, which is the high-speed inflow side, is made larger than that on the left side.
  • the length of the rotation center axis direction 30 between the enlarged-diameter side end and the reduced-diameter side end is equal on the left and right sides, and only the curvature is changed.
  • the curvature of the inner surface of the narrow portion on the right side, which is the side, may be larger than that on the left side. .
  • FIGS. 13 and 14 show a blower having the axial flow blade 40, a blower having the composite blade 4 can be similarly configured to obtain the same effect.
  • this blower is not limited to a blower for ventilation, but can of course be applied to a blower for cooling a heat exchanger of an automobile, a refrigerator, or an air conditioner. What is blown is not limited to air, but may be any gas.
  • the blower of the present invention since the inside diameter of the bell mouth is smaller than the outside diameter of the axial impeller, the flow is oblique, and the static pressure is increased by centrifugal force. In addition to creating a flow field that matches the flow near the wing surface to the wing, noise can be reduced.
  • the inner diameter of the bellmouth is smaller than the outer diameter of the impeller, and a part of the wing portion located on the outer peripheral side of the inner diameter of the bellmouth is located on the reduced diameter side of the bellmouth in the direction along the rotation center axis of the impeller. Since it protrudes from the end toward the enlarged end, the circulation vortex generated by the rotation of the impeller between the reduced end and the enlarged end of the bellmouth, and the contraction of the bellmouth It is possible to control both the leakage flow from the radial end and the impeller, and it is possible to achieve high efficiency and low noise by enabling high static pressure and large air volume. .
  • the wing has a forward wing portion on the boss side having a positive forward ratio in the radial direction and a retreating wing portion on the outer peripheral side having a negative value in the radial direction, and the arc length of the wing is from the boss side to the outer peripheral side. Therefore, the ventilation efficiency can be improved by increasing the static pressure, and the noise can be reduced.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

この発明に係る送風機では、ボス1の外周面に周方向に間隔を置いて取り付けられた複数枚の軸流翼40を配置した羽根車と、前記羽根車の周囲を囲ったケース19と、気体を前記ケースに案内するように筒状に絞られたベルマウス8とを備え、前記ベルマウスの内径D1'が前記羽根車の外径D4より小さい。また、翼4は、半径方向に前進率が正の値を持つボス側の前進翼部2及び負の値を持つ外周側の後退翼部3を備え、翼の円弧長は、ボス側から外周側に向かうに従って長くなっている。そのため、高静圧化等による送風効率の向上と、低騒音化が可能となる。

Description

送風機 技術分野
この発明は、 例えば換気に用いられる送風機に関するものである。 背景技術
送風機を高効率化するには、 静明圧を上昇させることが必要であるため、 相対場 で遠心方向の流れを増加させることと、 流れ方向の速度を減速させることが重要 となる。
一般に従来の送風機においては、 遠心方向の書流れを増加させるために翼後方の 流れを斜流化することが必要である。 このため、 例えば特開昭 5 3 - 1 1 6 5 1 3号公報には、 翼の基準線をその根元から中間部までは所定の傾斜角で回転方向 に向けて屈曲させ中間部から先端部までは所定の傾斜角で回転方向と反対方向に 向けて屈曲させて、 該基準線の最外端が回転中心と前記根元を結ぶ線より回転方 向と反対側に位置するようにしたものが記载されている。
上記構成の従来の送風機では、基本的にはほぼ軸線方向に沿つて空気が流れる、 所謂軸流送風機である。 そのために外周部では翼形状による斜流効果が小さく、 そのため十分な静圧上昇が得られず、 送風効率が悪く、 騒音が増加する等の問題 点があった。 発明の開示
この発明は、 上記のような問題点を解決することを課題とするものであって、 高静圧化等による送風効率の向上と、 低騒音化が可能な送風機を得ることを目的 とするものである。
この発明に係る送風機は、 ボスの外周面に周方向に間隔を置いて取り付けられ た複数枚の軸流翼を配置した羽根車と、 前記羽根車の周囲を囲ったケースと、 気 体を前記ケースに案内するように筒状に絞られたベルマウスとを備え、 前記ベル マウスの内径が前記羽根車め外径より小さいものである。
また、 ボスの外周面に周方向に間隔を置いて取り付けられた複数枚の翼を配置 した羽根車と、 前記羽根車の周囲を囲ったケースと、 気体を前記ケースに案内す るように筒状に絞られたベルマウスとを備え、 前記ベルマウスの内径が前記羽根 車の外径より小さく、 かつ前記ベルマウスの内径より外周側に位置する前記翼部 分の一部が、 前記羽根車の回転中心軸に沿った方向において前記ベルマウスの縮 径側端部から拡径側端部の方に突出しているものである。
また、 ボスとこのボスの外周面に周方向に間隔を置いて取り付けられた複数枚 の翼を配置し、 回転中心軸に対して垂直な面に翼を垂直に投影した際に、 前記面 と前記回転中心軸との交点を中心とした径方向に延びた各同心円と、 投影した前 記翼とが重なる周方向に延びた各円弧長の中心点を繋いで形成された曲線を周方 向中心曲線と定義し、 前記交点と前記翼の前記周方向中心曲線の前記ボス側の端 点とを結んだ直線と、 前記交点と前記周方向中心曲線の任意の点とを結んだ直線 とが成す角度を前記翼の回転方向を正とする前進角 Θとし、 この前進角 Θの半径 方向単位長さあたりの変化率を前進率と定義した場合、 前記翼は、 半径方向に前 記前進率が正の値を持つ前記ボス側の前進翼部及び負の値を持つ前記翼の外周側 の後退翼部を備え、 前記翼の前記円弧長は、 前記ボス側から前記外周側に向かう に従って長くなるものである。 図面の簡単な説明
図 1はこの発明の実施の形態 1の送風機の正面図である。
図 2は図 1のベルマウスを除いたときの正面図である。
図 3は図 1の翼の斜視図である。
図 4は翼が回転しているときにおける図 1の I V— I V線に沿った断面図であ り、 大風量時の空気の流れを示す図である。
図 5は翼が回転しているときにおける図 1の I V— I V線に沿った断面図であ り、 小風量時の空気の流れを示す図である。
図 6は図 5の V I—V I線に沿った断面図である。
図 7は実施の形態 1の送風機において比率 (%) と比騒音レベル (d B A) と の関係図である。
図 8は実施の形態 1の送風機において後退翼部の前進率と比騒音レベルとの関 係図である。
図 9はこの発明の実施の形態 2の送風機を示し、 翼が回転しているときにおけ る回転中心軸に沿つた断面図である。
図 1 0はこの発明の実施の形態 3の送風機を示し、 翼が回転しているときにお ける回転中心軸に沿つた断面図である。
図 1 1は実施の形態 3の送風機において比率 (%) と比騒音レベルの相対値と の関係図である。
図 1 2は実施の形態 3の送風機において比率 (%) と静圧差の相対値との関係 図である。
図 1 3はこの発明の実施の形態 4の送風機を示し、 翼が回転しているときにお ける回転中心軸に沿つた断面図である。
図 1 4はこの発明の実施の形態 4の送風機を示し、 翼が回転しているときにお ける回転中心軸に沿った断面図である。
図 1 5は実施の形態 1に係り、 食い違い角を説明するための図である。
図 1 6は実施の形態 1に係り、 径方向中心線を説明するための図である。 発明を実施するための最良の形態
以下、 この発明の好適な実施の形態について図面を参照して説明するが、 各実 施の形態において同一、 同等部材、 または部位については、 同一符号を付して説 明する。
実施の形態 1 .
図 1はこの発明の実施の形態 1による送風機の吸い込み側から見た正面図、 図
2は図 1のベルマウス 8を除いたときの正面図、 図 3は図 1の翼 4の斜視図、 図
4およぴ図 5は図 1の翼 4が回転しているときにおける I V— I V線に沿った断 面図、 図 6は図 5の V I — V I線に沿った断面図である。 なお、 図 2は、 ボス 1 の中心軸線である回転軸 3 0に垂直な面に翼 4を投影した様子を示しており、 回 転軸 3 0に垂直な面を吸込み側から見た図である。 この送風機は、 モータ軸 2 0と、 このモータ軸 2 0と同心になるように直結し た円柱形状のボス 1と、 このボス 1の外周面に周方向に等間隔で取り付けられた 4枚の翼 4と、 翼 4の周囲を囲った円筒形状のケース 1 9と、 このケース 1 9の 吸い込み側の端部に取り付けられ空気をケース 1 9の内部へと案内するベルマウ ス 8とを備えている。
ボス 1と 4枚の翼 4とで羽根車を構成しており、 図 1およぴ図 2中の矢印は羽 根車 (ボス 1 ) の回転方向を示している。 ボス 1の中心軸線である回転軸 3 0は 羽根車の回転中心軸と同一である。
なお、 本明細書では、 流れの吸込み側に配置された、 気流を羽根車になだらか に案内する曲線部を有する装置のことをベルマウスと呼ぶ。
各翼 4は、 前進翼部 2および後退翼部 3から構成されている。
ここで、 前進翼部 2および後退翼部 3について説明する。
先ず、 図 2に示すように、 ボス 1の中心軸線である回転軸 3 0に垂直な面に翼 4を投影した際に、 前記面と回転軸 3 0との交点である第 2の中心点 Bを中心と した径方向に延びた各同心円と、 投影した前記翼 4とが重なる周方向に延びた各 円弧長の中心点を繋いで形成された曲線を周方向中心曲線 6と定義する。 第 2の 中心点 Bと翼 4の周方向中心曲線 6のボス側の端点である第 1の中心点 Aとを結 んだ第 1の直線ィと、 第 2の中心点 Bと周方向中心曲線 6の任意の点とを結んだ 第 2の直線口 (図 2では翼 4の最外周端) とが成す角度を翼 4の回転方向を正と する前進角 Θとし、この前進角 Θの半径方向単位長さあたりの変化率を前進率 (° /mm) と定義する。
前進角 0は、 回転軸 3 0に垂直な面を吸込み側から見たとき、 第 1の直線ィか ら紙面に向かい翼 4の時計回りの回転方向を正とし、 逆回転の方向を負とする。 図 1およぴ図 2においては、 翼 4は回転軸 3 0に垂直な面から見たとき紙面に 向かって右回りの回転をし、 吸込み方向は、 紙面表から裏としている。 翼 4の前 進角 0は、 第 1の直線ィに対して第 2の直線口が右回り側にあるときが正の値で あり、第 1の直線ィに対して第 2の直線口が左回り側にあるときが負の値である。 そして、 半径方向に前進率が正の値を持つ翼 4の部位が前進翼部 2であり、 負の 値を持つ翼 4の部位が後退翼部 3である。 前進翼部 2および後退翼部 3からなる翼 4は、 ボス 1側から外周部 7に向かう に従って円弧長の寸法は増大する。 また、 前進翼部 2と後退翼部 3との間の境界 部 5の円弧形状は、翼 4めある翼半径位置における円弧形状と概略一致している。 この翼 4の前進角 0の半径方向単位長さあたりの変化分である前進率は、 境界部 5と周方向中心曲線 6との交点 Cの位置でゼロであり、 この点 Cより外径(外周) 側は前進率 0が負の後退翼部 3であり、 この交点 Cの内径 (ボス) 側は前進率が 正の前進翼部 2である。
なお、 本明細書では、 以上説明したような翼 4を複合翼と呼び、 一般的な軸流 送風機に用いられる翼を軸流翼と呼ぶ。 複合翼は以下で詳細に説明するように、 前進翼部 2が主に軸流送風機として作用し、 後退翼部 3が主に遠心送風機として 作用する。
図 4に示すように、 翼 4の空気の吸込み側に取り付けられたベルマウス 8の開 口部 8 Aの口径 D 1の寸法は、 境界部 5の径 D 3の寸法と概略一致している。 こ こでいう概略一致とはベルマウス 8の口径 D 1と翼 4の境界部 5の径 D 3との寸 法比が 1割程度のずれがある状態までとする。
また、 本実施の形態による翼 4は、 図 1 5に示すように、 翼 4を各径における 円筒面で展開した翼列において、 各翼の回転方向前側である前縁 4 Fと回転方向 後ろ側である後縁 4 Bを結んだ直線 L 2と、 回転中心軸方向に平行な直線 L 1と のなす角を吸い込み側から見た角 (食違い角) を γとしたとき、 が図 1 5の紙 面に向かって反時計回りの方向に 0 ° から 9 0 ° までの範囲にある。
さらに図 1 6に示すように、翼 4のボス 1と接する部分における回転中心軸(回 転軸) 3 0方向高さの中心点を翼外周部まで軸に垂直に延長した直線を直線ハと 定義する。 また、 翼部の各半径における軸方向高さの中心点を繋いだ線を径方向 中心線トと定義する。 ボス部における軸方向高さの中心点と径方向中心線ト上の 任意の点とを結んだ直線を直線へと定義する。 直線へと直線ハとのなす角を φと 定義する。 直線ハよりも気体の吸込み側 (紙面に向かって上側) を正とし、 直線 ハよりも気体の吐出側 (紙面に向かって下側) を負とすると、 φ > 0である。 言 い換えれば、 ボス 1の外周面に配置された 4枚の翼 4は、 回転軸 3 0に垂直な平 面に対し吸込側に向け角度 φ〉 0の傾きを持つ。 すなわち、 直線へは直線ハに対 して気体の吸込み側に傾いている。
このことから、 羽根車の圧力面側の曲面が吐出側かつ、 外周側に傾いており、 半径方向外側に向かう流れを生じさせることが可能となり、 静圧の上昇が可能と なる。
なお、 図 1 6では径方向中心線トが曲線である場合を示したが、 直線であって もよい。 図 4では径方向中心線トが直線である場合を示しており、 直線へは径方 向中心線トと重なる。
また、 この翼 4は、 ベルマウス 8の口径 D 1の内周側の領域にある前進翼部 2 では、 周方向断面形状 (回転軸 3 0に対して垂直に翼 4を切断したときの形状) が軸流送風機の翼 (軸流翼) と類似し、 図 4に矢印で示すように回転中心軸 3 0 に沿った流れとなる。 また、 ベルマウス 8の口径 D 1より外径側にある後退翼部 3では、遠心送風機の翼 (本明細書では遠心翼と呼ぶ。) と類似し、 図 6の矢印で 示すように半径方向に広がる子午面流れとなり、 遠心送風機と同様な流れ場とな る。
このような構成により、 遠心送風機の高静圧特性と、 軸流送風機の大風量特性 を満たす送風機の実現が可能となる。
上記構成の送風機では、 大風量時では図 4に示すようになる。 すなわち、 子午 面流れは矢印二に示すように、 流体はほぼ中心軸線 3 0の方向に沿って流れ、 翼 4の周方向断面形状が軸流送風機と等しいため軸流送風機として動作する。 これに対して、 小風量時では図 5に示すようになる。 すなわち、 ベルマウス 8 の開口部 8 Aの口径 (図 4に示す D 1 ) がケース 1 9の内径 (図 4に示す D 2 ) より小さく、 子午面流れは矢印ホに示すように、 斜流成分が増加し、 前進率が負 の後退翼部 3から斜流化して流出するが、 この後退翼部 3では、 遠心方向に拡が る子午面流れに対し、 概略一致する翼形状をしているので、 翼 4にかかる負荷が 減少し、 送風効率が上昇する。
このように、 翼 4は、 半径方向に前進率が正の値を持つボス 1側の前進翼部 2 及ぴ負の値を持つ翼 4の外周側の後退翼部 3を備えている。 しかも、 翼 4の円弧 長は、 ボス 1側から外周側に向かうに従って長くなつている。 したがって、 半径 方向外周側に向かって翼の円弧長が長い形状となるため、 翼外周部で流れに沿う 翼面積が増加し、 翼の流れに対する実質的な半径が増加するため遠心力による静 圧上昇が増加し、 翼の仕事量を増加させることが可能となる。
また、 前進翼部 2の周方向中心曲線 6上では、 ボス 1側から境界部 5側に移行 するに従って、 周方向中心曲線 6の接線の傾斜角度が回転軸を基準として回転方 向側に漸次大きく傾いており、 また境界部 5側から外周側に移行するに従って、 周方向中心曲線 6の接線の傾斜角度が回転方向と反対側に漸次大きく傾いている。 このことから、 前進翼部 2においては、 軸流送風機と同一の流れとなり、 軸流 送風機として動作する。 この翼 4の外周側では、 流れに対して概略一致するよう に前進率が負に後退しており、 後退翼部 3に相当する部位が遠心送風機の翼と類 似しており、 遠心送風機として動作する。
従って、 本実施の形態による送風機では、 軸流送風機および遠心送風機の両機 能を持つとともに、 ベルマゥスを設置したことにより生じた遠心送風機と同様の 半径方向に拡がる流れ場と、 軸流送風機と同様の回転中心軸と平行方向に流れる 流れ場との 2つの流れ場に対して、 翼の形状をそれぞれ沿わせることが可能とな り、 乱れによる騒音の増加を低下させることが可能となる。
前進翼部 2の周方向中心曲線 6上では、 ボス 1側から境界部 5側に移行するに 従って、 周方向中心曲線 6の接線の傾斜角度が気体の吐出側に漸次大きく傾いて おり、 また境界部 5側から外周側に移行するに従って、 周方向中心曲線 6の接線 の傾斜角度が気体の吸込み側に漸次大きく傾いていることから、 羽根車の曲面が 外周側に傾いており、半径方向外側に向かう流れを生じさせることが可能となり、 静圧の上昇が可能となる。
また、ケース 1 9の空気の吸い込み側にベルマウス 8を取り付けたことにより、 送風機の吸込み側の口径がベルマウス 8の口径 D 1と等しくなり、 吸込み面積が 減少する。 流れ場が軸流送風機と同じ状態である、 翼 4の径がベルマウス 8の口 径 D 1よりも小さい領域にある前進翼部 2においては、 羽根車の吸込み側の口径 がベルマウス 8の口径 D 1 と等しくなり、 大風量時、 小風量時においても軸流送 風機と同一の流れとなり、 軸流送風機として動作する。
—方、 流れ場が半径方向外側に向かう流れとなっている、 翼 4の径がベルマウ ス 8の口径 D 1より大きい領域にある後退翼部 3においては、 図 6で説明したよ うに翼 4の後退翼部 3の断面が遠心方向に拡がる流れに対し、 この翼 4の外周側 では、 流れに対して概略一致するように前進率が負に後退しており、 後退翼部 3 に相当する部位が遠心送風機の翼と類似しており、 遠心送風機として動作する。 従って、 この送風機では、 軸流送風機および遠心送風機の両機能を持つととも に、 遠心力による全圧 (オイラーヘッ ド) の上昇が見込まれ、 高静圧化が可能と なる。
図 7は、本願発明者が、上記構成の送風機の性能を実験により求めた図であり、 ベルマウス 8の内径 D 1 ' を一定にして境界部 5の径 D 3を変化させた場合の、 ベルマウス 8の内径 D 1 ' に対する境界部 5の径 D 3の比率 D 3 ZD 1, (%) を 横軸とし、 ほぼ最高効率点の条件下で、 ケース 1 9にベルマウス 8を取り付けた ときにベルマウス 8を取り付けていないときと比較して低下する比騷音レベル
(d B A) の値を縦軸としたときの図である。 なお、 ここでベルマウス 8の内径 D 1'とは、 図 9に示すように、 ベルマウス 8の縮径部の内面の径である。 また、 図 4で示したベルマウス 8の口径 D 1とは、 ベルマウス 8の縮径部の肉厚中央部 の径であり、 ベルマウス 8の内径 D 1'と口径 D 1とはほぼ等しい。 また、 ここで 最高効率点とは、ベルマウス 8の開口部 8 Aの口径 D 1 (内径 D l,) を一定にし て翼 4の外径 (翼 4の外径とは、 すなわち、 ボス 1と 4枚の翼 4とで構成される 羽根車の外径である。) を変更したときの送風効率 (静圧 X風量/モータ出力) の 最も高い点をいう。
この図から、 比率が 80%から 1 30%までの範囲の翼 4の形状にある場合に おいては、 送風機の低騒音化が、 ほぼ 3. 0 (d BA) からほぼ 4. 7 (d B A) 減少するという、顕著な効果が得られ、比率が 105 %で比騒音レベルが最大 4. 7 (d B A) 低減されることが分かった。 また、 比率が 100%から 1 1 0%ま でであれば、 比騒音レベルが 4. 5 (dBA) 以上減少し、 静音効果が特に顕著 である。 なお、 この図から分かるように、 図中 147%では比騒音レベルはゼロ となり、 このときにはベルマウス 8は比騒音レベルの低減化には寄与せず、 ベル マウス 8が無いときと同じである。
また、 図 8は、 本願発明者が、 上記構成の送風機の性能を実験により求めた図 であり、 後退翼部 3の前進率を横軸とし、 ほぼ最高効率点の条件下で、 ケース 1 9にベルマウス 8を取り付けたときに、 ベルマウス 8を取り付けていないときと 比較して低下する比騒音レベル (d B A) の値を縦軸としたときの図である。 この図から、 前進率が一 2 . 0 (° /mm) から一 2 . 9 (°- /mm) までの範 囲で、 送風機の低騒音化に顕著な効果が得られ、 前進率一 2 . 2で比騒音レベル が最大約 1 1 [ d B A]低減されることが分かった。
また、 図 4に示すように、 ベルマウス 8の内径より外周側に位置する翼部分の 一部 4 A、 すなわち本実施の形態では後退翼部 3の一部が、 羽根車の回転中心軸 (回転軸) 3 0に沿った方向においてベルマウス 8の縮径側端部 8 Bから拡径側 端部 8 Cの方に突出している。 もしもこのように、 ベルマウス 8の内径より外周 側に位置する翼部分の一部 4 Aが、 羽根車の回転中心軸 (回転軸) 3 0に沿った 方向においてベルマウス 8の縮径側端部 8 Bから拡径側端部 8 Cの方に突出して いない場合には、 ベルマウス 8の縮径側端部 8 Bと拡径側端部 8 C間に羽根車の 回転により発生する循環渦と、 羽根車と縮径側端部 8 Bとの間より漏れる漏れ流 れとが生ずるため、 騒音が増加し、 入力が増加するという問題が発生する。 また、 翼部分の一部 4 Aを突出させる代わりに、 例えばベルマウスの厚みを大 きくするなどして翼部分の一部 4 Aが突出するべき空間を埋めると、 縮径側端部 と循環渦が吸い込み側に移動し、 翼の有効面積が減少する結果、 騒音が増加し入 力が増加するという問題が発生する。
そこで、 図 4に示すように、 ベルマウス 8の内径より外周側に位置する翼部分 の一部 4 Aを、 羽根車の回転中心軸 (回転軸) 3 0に沿った方向においてベルマ ウス 8の縮径側端部 8 Bから拡径側端部 8 Cの方に突出させると、 羽根車と縮径 側端部 8 Bとの間より生ずる漏れ流れが減少するため、 漏れ流れによる静圧上昇 の損失および風量の損失を低下させることが可能となる。 また、 漏れにより生じ た乱れが減少するため、 騒音を低下させることが可能となる。
したがって、 ベルマウス 8の縮径側端部 8 Bと拡径側端部 8 Cとの間に羽根車 の回転により発生する循環渦と、 ベルマウス 8の縮径側端部 8 Bと羽根車との間 からの漏れ流れとの両方を制御することができ、 高静圧化および大風量化が可能 となることによる高効率化およぴ低騷音化を図ることができる。
なお、 上記のような複合翼を有する羽根車に限らず、 一般的な軸流翼あるいは 遠心翼を有する羽根車と、 羽根車の周囲を囲ったケースと、 気体をケースに案内 するように筒状に絞られたベルマウスとを備え、 ベルマウスの内径が羽根車の外 径より小さくなるように構成された送風機においても、 ベルマウスの内径より外 周側に位置する翼部分の一部が、 羽根車の回転中心軸に沿つた方向においてベル マウスの縮径側端部から拡径側端部の方に突出していることにより、 上記複合翼 の場合と同様に、 送風効率の向上を図ることができるともに、 低騒音化が可能と なる。
実施の形態 2 .
図 9はこの発明の実施の形態 2による送風機の構成を説明するための図であり、 翼 4が回転しているときにおける回転軸 (回転中心軸) 3 0に沿った断面図であ る。
上記実施の形態 1では、 前進翼部 2と後退翼部 3との境目となる境界部 5と、 ベルマウス 8の内径とがほぼ一致している場合について示した。
これに対して、 本実施の形態では、 図 9に示すように、 前進翼部 2と後退翼部 3との境目となる境界部 5が、 ベルマウス 8の内径より外周側に位置する。 すな わち、 D 1 ' く D 3である。
翼 4 (羽根車) の前進翼部 2と後退翼部 3との境界部 5より内周側における翼 形状は前進翼部 2であり、 かつベルマウス 8の内径 D 1 ' より内周側の領域では 軸流送風機として動作するため、 大風量の特性を持つ。 また、 翼 4 (羽根車) の 前記境界部 5より内周側における翼形状は前進翼部 2であり、 ベルマウス 8の内 径 D 1 ' より外周側の領域では、 ベルマウス 8によって絞られるため、 半径方向 外側に広がる流れとなり、 遠心力により静圧を上昇させることが可能となる。 他方、 翼 4 (羽根車) の前進翼部 2と後退翼部 3との境界部 5より外周側にお ける翼形状は後退翼部 3であり、 遠心送風機として動作する。 このため、 遠心方 向に拡がる子午面流れに対し、 概略一致しているので、 にかかる負荷が減少し、 送風効率が上昇する。 したがって、 翼 4 (羽根車) の前進翼部 2と後退翼部 3と の境界部 5はベルマウス 8の内径 D 1 ' より外周側にあることが望ましい。 その ため、 ベルマウス 8の内径 D l, は、 翼 4 (羽根車) の前進翼部 2と後退翼部 3 との境界部 5の半径位置より、 ボス 1側にあることが望ましい。 軸流送風機の最小騒音点は開放側にあり、 遠心送風機の最小騒音点は髙静圧側 にある。 このため、 必要動作点に応じて、 前進翼部 2と後退翼部 3の割合とベル マウス 8の内径寸法を変化させることで、 羽根車 (翼 4 ) に生じる 3次元流れ場 を変化させることとなり、 動作点による流れの違いをベルマウス 8の内径 D 1 ' で制御することが可能となる。 例えば、 ベルマウス 8の内径 D 1 ' を小さくする と、 流れが半径方向外側に拡がる領域が大きくなり、 羽根車の髙静圧側の流れを 模擬する流れの状態となる。 一方、 ベルマウス 8の内径 D 1 ' を大きくすると、 半径方向外側に広がる流れの領域が小さくなり、 ベルマウス 8の内径 D 1 ' より もボス 1側の軸流送風機として動作する翼の領域が大きくなり、 低静圧側の流れ を模擬する流れの状態となる。
以上説明したように、 本実施の形態では、 前進翼部 2と後退翼部 3との境目と なる境界部 5が、 ベルマウス 8の内径より外周側に位置するので、 ベルマウス 8 の内径 D 1 ' を変化させることで、 羽根車 (翼 4 ) に生じる 3次元流れ場を変化 させることとなり、 動作点による流れの違いをベルマウス 8の内径 D 1 ' で制御 することが可能となる。
なお、 実施の形態 1および 2で説明したように、 前進翼部 2と後退翼部 3の境 目となる境界部 5の径 D 3とベルマウス 8の内径 D 1 ' との関係が D l ' ≤D 3 である場合に限らず、 ベルマウスの内径 D 1 ' が翼の外径 D 4より小さい場合で あれば、 流れを径方向外向きに流すことが可能となり、 半径方向に広がる流れに よる静圧の上昇が可能となる。
実施の形態 3 .
図 1 0はこの発明の実施の形態 3による送風機の構成を説明するための図であ り、 翼 4が回転しているときにおける回転軸 3 0に沿った断面図である。
上記実施の形態 1および 2では、 例えば図 2および図 3で示したように、 翼 4 力 半径方向に前進率が正の値を持つボス 1側の前進翼部 2及び負の値を持つ外 周側の後退翼部 3を備え、 翼 4の円弧長は、 ボス 1側から外周側に向かうに従つ て長くなつている複合翼である場合について説明した。 し力 ^し、 このような複合 翼を有する羽根車に限らず、 一般的な軸流翼 4 0を有する羽根車 (軸流羽根車) と、 羽根車の周囲を囲ったケース 1 9と、 気体をケース 1 9に案内するように筒 状に絞られたベルマウス 8とを備え、 ベルマウス 8の内径 D l, 力 S羽'根車の外径 D 4より小さくなるように構成された送風機においても、 上記実施の形態と同様 に、 高静圧化により送風効率の向上を図ることができるともに、 低騒音化が可能 となる。
すなわち、 ベルマウス 8の内径 D 1 ' が軸流羽根車の外径 D 4より小さい場合 の気体の流れは、 羽根車の吸込み側で羽根率に流入する際、 ベルマウスにより絞 りこまれ、 ベルマウスから吐き出し側に向かうにつれ半径方向外側に広がる。 軸流羽根車 (軸流翼 4 0 ) において、 ベルマウス 8の内径 D 1 ' より内周側の 領域では、 軸流送風機として動作するため、 大風量の特性を持つ。 他方、 軸流羽 根車(軸流翼 4 0 ) において、ベルマウス 8の内径 D 1 ' より外周側の領域では、 ベルマウスによって絞られるため、 半径方向外側に広がる流れとなり、 遠心力に より静圧を上昇させることが可能となる。
したがって、 ベルマウス 8の内径 D 1 ' を小さくすると、 流れが半径方向外側 に拡がる領域が大きくなり、 軸流羽根車の高静圧側の流れを模擬する流れの状態 となる。 これに対して、 ベルマウス 8の内径 D 1 ' を大きくすると、 半径方向外 側に広がる流れの領域が小さくなり、 ベルマウス 8の内径 D 1 ' よりもボス 1側 の軸流送風機として動作する翼の領域が大きくなり、 低静圧側の流れを模擬する 流れの状態となる。
そのため、 軸流羽根車の外径の範囲内でベルマウス 8の内径 D 1 ' を変化させ ることで、 軸流羽根車に生じる 3次元流れ場を変化させることとなり、 動作点に よる流れの違いとして、 流れ場をベルマウス 8の内径 D 1 ' の大きさで制御する ことが可能となる。
例えば、 低静圧側の動作点で使用する場合はベルマウス 8の内径 D 1 ' を大き くし、 高静圧側で使用する場合はベルマウス 8の内径 D 1 ' を小さくする。 ' , このように、 ベルマウス 8の内径 D 1 ' の大きさを制御することにより、 動作 点を制御することが可能となり、 羽根車を狙いとする動作点で使用することが可 能となるため、 低騒音化および高効率化することが可能となる。
以上説明したように、 ベルマウスの内径が軸流羽根車の外径より小さくなるよ うに構成することにより、 流れを径方向外向きに流すことが可能となり、 半径方 向に広がる流れによる静圧の上昇が可能となる。
さらに、 軸流送風機 (軸流羽根車) の吸い込み側に気流を案内するベルマウス を配置するため、 軸流羽根車の実装条件によらず、 吸い込み流れの分布を均一化 する作用が働くので、 軸流羽根車に流入する乱れを低減し、 低騒音化することが 可能となる。
また、 図 1 1は、 本願発明者が、 上記構成の送風機の性能を実験により求めた 図であり、 ボス 1と 4枚の軸流翼 4 0とで構成される軸流羽根車の外径 (図 1 0 に D 4で示す。) を一定にしてベルマウス 8の内径 (図 1 0に D 1 ' で示す。) を 変化させた場合の比率 D 1 ' /D 4 (%) を横軸とし、 ケース 1 9にベルマウス 8を取り付けたときにベルマウス 8を取り付けていないときと比較して低下する 比騒音レベル K sの値 (d B A) を横軸としたときの図である。
図 1 1から分かるように、 比率がほぼ 5 0 %から 8 5 %までの範囲で比騒音レ ペルが減少し、 静音効果が顕著である。
また、 図 1 2は、 本願発明者が、 上記構成の送風機の性能を実験により求めた 図であり、 ボス 1と 4枚の軸流翼 4 0とで構成される軸流羽根車の外径 (図 1 0 に D 4で示す。) を一定にしてベルマウス 8の内径 (図 1 0に D 1 ' で示す。) を 変化させた場合の比率 D 1 ' /D 4 (%) を横軸とし、 送風機の上流側と下流側 間の静圧差の相対値を縦軸としたときの図である。
この図から分かるように、 比率がほぼ 5 0 %から 8 5 %までの範囲で静圧上昇 効果が顕著である。
図 1 1およぴ図 1 2の結果より、 ベルマウス 8の内径寸法 D 1 ' を軸流羽根車 の外径寸法 D 4の 5 0 %以上、 望ましくは 8 5 %以下とした時に、 軸流羽根車の 大風量特性を比較的損なわず、 軸流羽根車を高静圧化、 低騒音化することが可能 となる。
実施の形態 4 .
図 1 3はこの発明の実施の形態 4による送風機の構成を説明するための図であ り、 翼 4が回転しているときにおける回転軸 3 0に沿った断面図、 図 1 4はこの 発明の実施の形態 4による送風機の別の構成を説明するための図であり、 翼 4が 回転しているときにおける回転軸 3 0に沿った断面図である。 図中、 太線矢印は 気体の流入方向を示しており、 長い方が速度が大きい。
羽根車を配置する風路は実装条件により異なり、 羽根車吸込み側で羽根車の回 転中心軸 3 0の周方向に吸込み流速に差が生ずる場合がある。 このような場合、 ベルマウス 8の拡径側端部から縮径側端部に至る絞り部内面は、 羽根車の回転中 心軸 3 0からの距離が周方向に不均一な曲面形状とし、 流速の早い部位において はベルマウスの絞り部内面の曲率を他の部位におけるよりも大きくすることによ り、 ベルマウス上の剥離により生ずる乱れを減少させ、 騒音の増加を防ぐことが できる。 さらに、 風路の周方向不均一構成により生ずる吸込み側の流速の不均一 分布をなだらかにし、 吸込み側の流速の不均一による回転騒音を低減することが 可能となる。
本実施の形態では、 図 1 3に示すように、 図 1 3に向かって左右でベルマウス 8の縮径側端部における羽根 *の回転中心軸 3 0からの距離は、 図 1 3に向かつ て左右で等しく、 すなわち、 左の距離 d 1と右の距離 d 2は等しい。 しかも、 拡 径側端部と縮径側端部間の回転中心軸方向 3 0の長さ (高さ) を右側の方が長く なるようにすることにより、 絞り部内面は、 羽根車の回転中心軸 3 0からの距離 が図 1 3の右側と左側で異なるようにしている。 すなわち、 高速度流入側である 右側の絞り部内面の曲率を左側におけるよりも大きくしている。
なお、 図 1 4に示すように、 拡径側端部と縮径側端部間の回転中心軸方向 3 0 の長さは左側と右側とで等しく して曲率のみを変化させ、 高速度流入側である右 側の絞り部内面の曲率を左側におけるよりも大きくしてもよい。 .
なお、 図 1 3およぴ図 1 4では軸流翼 4 0を有する送風機について示したが、 複合翼 4を有する送風機であっても同様に構成することにより、 同様の効果が得 ら る。
なお、 上記各実施の形態では、 4枚の翼をボスに取り付けた場合について説明 したが、 勿論この数に限定されるものではなく、 この発明は、 複数枚の翼につい て適用される。
また、 この送風機は、 換気用の送風機に限定されるものではなく、 例えば自動 車、 冷蔵庫、 空気調和機の熱交換器を冷却する送風機にも勿論適用できる。 また、 送風されるものは空気に限定されるものではなく、 気体であればよい。 以上説明したように本発明の送風機によれば、 ベルマウスの内径が軸流羽根車 の外径より小さいので、 流れを斜流化し遠心力により高静圧化するため、 送風効 率の向上を図ることができるともに、 翼面近傍の流れを翼に一致させる流れ場を 生じさせるため、 低騒音化が可能となる。
また、 ベルマウスの内径が羽根車の外径より小さく、 かつベルマウスの内径よ り外周側に位置する翼部分の一部が、 羽根車の回転中心軸に沿った方向において ベルマゥスの縮径側端部から拡径側端部の方に突出しているので、 ベルマウスの 縮径側端部と拡径側端部との間に羽根車の回転により発生する循環渦と、 ベルマ ゥスの縮径側端部と羽根車との間からの漏れ流れとの両方を制御することができ、 高静圧化および大風量化が可能となることによる高効率化および低騒音化を図る ことができる。
また、 翼は、 半径方向に前進率が正の値を持つボス側の前進翼部及び負の値を 持つ外周側の後退翼部を備え、 翼の円弧長は、 ボス側から外周側に向かうに従つ て長くなっているので、 高静圧化により送風効率の向上を図ることができるとも に、 低騒音化が可能となる。

Claims

請 求 の 範 囲
1 . ボスの外周面に周方向に間隔を置いて取り付けられた複数枚の軸流翼を配置 した羽根車と、 前記羽根車の周囲を囲ったケースと、 気体を前記ケースに案内す るように筒状に絞られたベルマウスとを備え、 前記ベルマウスの内径が前記羽根 車の外径より小さいことを特徴とする送風機。
2 . 前記ベルマウスの内径寸法を前記羽根車の外径寸法の 5 0 %以上としたこと を特徴とする請求項 1に記載の送風機。
3 . 前記ベルマウスの拡径側端部から縮径側端部に至る絞り部内面は、 前記羽根 車の回転中心軸からの距離が周方向に不均一な曲面形状であることを特徴とする 請求項 1に記載の送風機。
4 . ボスの外周面に周方向に間隔を置いて取り付けられた複数枚の翼を配置した 羽根車と、 前記羽根車の周囲を囲ったケースと、 気体を前記ケースに案内するよ うに筒状に絞られたベルマウスとを備え、 前記ベルマウスの内径が前記羽根車の 外径より小さく、 かつ前記ベルマウスの内径より外周側に位置する前記翼部分の 一部が、 前記羽根車の回転中心軸に沿った方向において前記ベルマウスの縮径側 端部から拡径側端部の方に突出していることを特徴とする送風機。
5 .前記羽根車は、その回転中心軸に対して垂直な面に翼を垂直に投影した際に、 前記面と前記回転中心軸との交点を中心とした径方向に延びた各同心円と、 投影 した前記翼とが重なる周方向に延びた各円弧長の中心点を繫ぃで形成された曲線 を周方向中心曲線と定義し、 前記交点と前記翼の前記周方向中心曲線の前記ボス 側の端点とを結んだ直線と、 前記交点と前記周方向中心曲線の任意の点とを結ん だ直線とが成す角度を前記翼の回転方向を正とする前進角 Θとし、 この前進角 Θ の半径方向単位長さあたりの変化率を前進率と定義した場合、 前記翼は、 半径方 向に前記前進率が正の値を持つ前記ボス側の前進翼部及び負の値を持つ前記翼の 外周側の後退翼部を備え、 前記翼の前記円弧長は、 前記ボス側から前記外周側に 向かうに従って長くなるように構成されていることを特徴とする請求項 4に記載 の送風機。
6 . 前記後退翼部の一部が、 前記羽根車の回転中心軸に沿った方向において前記 ベルマゥスの縮径側端部から拡径側端部の方に突出していることを特徴とする請 求項 5に記載の送風機。
7 . ボスとこのボスの外周面に周方向に間隔を置いて取り付けられた複数枚の翼 を配置し、 回転中心軸に対して垂直な面に翼を垂直に投影した際に、 前記面と前 記回転中心軸との交点を中心とした径方向に延びた各同心円と、 投影した前記翼 とが重なる周方向に延びた各円弧長の中心点を繋いで形成された曲線を周方向中 心曲線と定義し、 前記交点と前記翼の前記周方向中心曲線の前記ボス側の端点と を結んだ直線と、 前記交点と前記周方向中心曲線の任意の点とを結んだ直線とが 成す角度を前記翼の回転方向を正とする前進角 0とし、 この前進角 0の半径方向 単位長さあたりの変化率を前進率と定義した場合、 前記翼は、 半径方向に前記前 進率が正の値を持つ前記ボス側の前進翼部及び負の値を持つ前記翼の外周側の後 退翼部を備え、 前記翼の前記円弧長は、 前記ボス側から前記外周側に向かうに従 つて長くなることを特徴とする送風機。
8 . 前記翼の周囲を囲ったケースと、 気体を前記ケースに案内するように筒状に 絞られたベルマウスとを備え、 前記ベルマウスの内径が前記翼の外径より小さい ことを特徴とする請求項 7に記載の送風機。
9 . 前記前進翼部と前記後退翼部との境目となる境界部と、 前記ベルマウスの内 径とがほぼ一致していることを特徴とする請求項 8に記載の送風機。
1 0 . 前記前進翼部と前記後退翼部との境目となる境界部が、 前記ベルマウスの 内径より外周側に位置することを特徴とする請求項 8に記載の送風機。
1 1 . 前記ベルマウスの内径に対して前記境界部の径の比率が 8 0 %から 1 3 0 %までの範囲であることを特徴とする請求項 8に記載の送風機。
1 2 . 前記比率が 1 0 0 %から 1 1 0 %までの範囲であることを特徴とする請求 項 1 1に記載の送風機。
1 3 . 前記ベルマウスの拡径側端部かち縮径側端部に至る絞り部内面は、 前記羽 根車の回転中心軸からの距離が周方向に不均一な曲面形状であることを特徴とす る請求項 7に記載の送風機。
1 4 . 前記翼の前記ボスと接する部分における回転中心軸方向高さの中心点を前 記翼の外周部まで前記回転中心軸に垂直に延長した直線を直線ハと定義し、 前記 翼の各半径における前記回転中心軸方向高さの中心点を繋いだ線を径方向中心線 トと定義し、 前記中心点と前記径方向中心線ト上の任意の点とを結んだ直線を直 線へと定義すると、 前記直線へは直線ハに対して気体の吸込み側に傾いているこ とを特徴とする請求項 7に記載の送風機。
1 5 . 前記前進翼部の前記周方向中心曲線上では、 前記ボス側から前記境界部側 に移行するに従って、 周方向中心曲線の接線の傾斜角度が気体の吐出側に漸次大 きく傾いており、 また前記境界部側から外周側に移行するに従って、 周方向中心 曲線の接線の傾斜角度が気体の吸込み側に漸次大きく傾いていることを特徴とす る請求項 7に記載の送風機。 .
1 6 . 前記翼の前記後退翼部は、 前進率が一 2 . 0 (° /mm) から一 2 . 9 (° /mm) までの範囲であることを特徴とする請求項 7に記載の送風機。
PCT/JP2004/008839 2003-06-18 2004-06-17 送風機 WO2004113732A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2005507274A JP4610484B2 (ja) 2003-06-18 2004-06-17 送風機
US10/521,787 US7331758B2 (en) 2003-06-18 2004-06-17 Blower

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003173867 2003-06-18
JP2003-173867 2003-06-18

Publications (1)

Publication Number Publication Date
WO2004113732A1 true WO2004113732A1 (ja) 2004-12-29

Family

ID=33534737

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/008839 WO2004113732A1 (ja) 2003-06-18 2004-06-17 送風機

Country Status (5)

Country Link
US (1) US7331758B2 (ja)
JP (2) JP4610484B2 (ja)
CN (3) CN101144485B (ja)
TW (1) TWI274814B (ja)
WO (1) WO2004113732A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011065039A1 (ja) * 2009-11-26 2011-06-03 株式会社クボタ 渦巻ポンプ
JP2014231844A (ja) * 2014-09-12 2014-12-11 株式会社クボタ 渦巻ポンプ
WO2017199444A1 (ja) * 2016-05-20 2017-11-23 三菱電機株式会社 遠心送風機、空気調和装置および冷凍サイクル装置

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2008093390A1 (ja) * 2007-01-29 2010-05-20 三菱電機株式会社 多翼遠心送風機
US8225623B2 (en) * 2007-03-14 2012-07-24 Mitsubishi Electric Corporation Centrifugal fan, air conditioner
CN102563758B (zh) 2007-03-14 2015-03-25 三菱电机株式会社 空气调节器
JP2008267176A (ja) * 2007-04-17 2008-11-06 Sony Corp 軸流ファン装置、ハウジング及び電子機器
KR20090040690A (ko) * 2007-10-22 2009-04-27 엘지전자 주식회사 공기 조화기
US8235672B2 (en) * 2007-10-25 2012-08-07 Lg Electronics Inc. Fan
JP4823294B2 (ja) * 2008-11-04 2011-11-24 三菱電機株式会社 送風機及びこの送風機を用いたヒートポンプ装置
US20120045323A1 (en) * 2010-08-17 2012-02-23 Nidec Servo Corporation Fan
DE102012000376B4 (de) 2012-01-12 2013-08-14 Ebm-Papst St. Georgen Gmbh & Co. Kg Axial- oder Diagonalventilator
KR101400665B1 (ko) * 2012-06-12 2014-05-27 선문대학교 산학협력단 원심형 송풍장치
US9618010B2 (en) 2013-04-22 2017-04-11 Lennox Industries Inc. Fan systems
CN103291656A (zh) * 2013-06-08 2013-09-11 维尔纳(福建)电机有限公司 电机轴流风扇
KR102200395B1 (ko) * 2013-12-12 2021-01-08 엘지전자 주식회사 축류팬 및 이를 포함하는 공기 조화기
JP6529251B2 (ja) * 2014-12-24 2019-06-12 株式会社オカムラ 送風装置および冷凍冷蔵ショーケース
JP2017053295A (ja) * 2015-09-11 2017-03-16 三星電子株式会社Samsung Electronics Co.,Ltd. 送風機および室外機
CN108071090B (zh) * 2016-11-07 2021-03-05 南京德朔实业有限公司 吹风机及其轴流风扇
CN106907794B (zh) * 2017-03-01 2022-09-06 重庆耕爵科技有限公司 节能安全的空气净化器
JP6981226B2 (ja) * 2017-12-20 2021-12-15 トヨタ自動車株式会社 送風ファン
CN114962333A (zh) * 2022-05-27 2022-08-30 珠海格力电器股份有限公司 混流风机及风管机
CN115264599B (zh) * 2022-08-04 2024-07-19 珠海格力电器股份有限公司 一种风机及空调器

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53116513A (en) * 1977-03-22 1978-10-12 Aisin Seiki Co Ltd Flexible fan
JPS6336697U (ja) * 1986-08-26 1988-03-09
JPH02207197A (ja) * 1989-02-03 1990-08-16 Hikoichi Kanamori 広角度送風用回転羽根
JPH0968199A (ja) * 1995-08-31 1997-03-11 Mitsubishi Electric Corp 軸流送風機、空気調和機

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN87203532U (zh) * 1987-03-16 1988-02-24 北京航空学院 前倾钣料扭曲叶片低压轴流风机
US4927328A (en) * 1989-03-02 1990-05-22 Scoates William D Shroud assembly for axial flow fans
US5273400A (en) * 1992-02-18 1993-12-28 Carrier Corporation Axial flow fan and fan orifice
JP3491342B2 (ja) * 1994-06-27 2004-01-26 松下電工株式会社 軸流ファン
US5616004A (en) * 1995-04-19 1997-04-01 Valeo Thermique Moteur Axial flow fan
JPH0960942A (ja) * 1995-08-25 1997-03-04 Mitsubishi Electric Corp 送風機
JPH1089289A (ja) * 1996-09-13 1998-04-07 Ebara Corp 軸流送風機の羽根車
US6042335A (en) * 1998-05-04 2000-03-28 Carrier Corporation Centrifugal flow fan and fan/orifice assembly
JP2002022210A (ja) * 2000-07-11 2002-01-23 Daikin Ind Ltd 空気調和装置
CN2487901Y (zh) * 2001-05-21 2002-04-24 卜维平 闭式斜流叶轮筒形风机

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53116513A (en) * 1977-03-22 1978-10-12 Aisin Seiki Co Ltd Flexible fan
JPS6336697U (ja) * 1986-08-26 1988-03-09
JPH02207197A (ja) * 1989-02-03 1990-08-16 Hikoichi Kanamori 広角度送風用回転羽根
JPH0968199A (ja) * 1995-08-31 1997-03-11 Mitsubishi Electric Corp 軸流送風機、空気調和機

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011065039A1 (ja) * 2009-11-26 2011-06-03 株式会社クボタ 渦巻ポンプ
JP2011111956A (ja) * 2009-11-26 2011-06-09 Kubota Corp 渦巻ポンプ
CN102667176A (zh) * 2009-11-26 2012-09-12 株式会社久保田 离心泵
JP2014231844A (ja) * 2014-09-12 2014-12-11 株式会社クボタ 渦巻ポンプ
WO2017199444A1 (ja) * 2016-05-20 2017-11-23 三菱電機株式会社 遠心送風機、空気調和装置および冷凍サイクル装置
JPWO2017199444A1 (ja) * 2016-05-20 2019-02-21 三菱電機株式会社 遠心送風機、空気調和装置および冷凍サイクル装置

Also Published As

Publication number Publication date
CN1697932A (zh) 2005-11-16
US20050260075A1 (en) 2005-11-24
CN101408196A (zh) 2009-04-15
JP4610484B2 (ja) 2011-01-12
JPWO2004113732A1 (ja) 2006-08-03
CN101408196B (zh) 2011-06-01
TW200508503A (en) 2005-03-01
JP5059071B2 (ja) 2012-10-24
CN100491744C (zh) 2009-05-27
TWI274814B (en) 2007-03-01
CN101144485B (zh) 2011-10-12
US7331758B2 (en) 2008-02-19
JP2009281392A (ja) 2009-12-03
CN101144485A (zh) 2008-03-19

Similar Documents

Publication Publication Date Title
JP5059071B2 (ja) 送風機
US11506211B2 (en) Counter-rotating fan
JP3928083B2 (ja) ファン及びシュラウド組立体
JP4823294B2 (ja) 送風機及びこの送風機を用いたヒートポンプ装置
JP3385336B2 (ja) 軸流ファン用案内羽及びその案内羽を備える軸流ファンシュラウド組立体
WO2007015444A1 (ja) 軸流ファン
WO2014162758A1 (ja) プロペラファン、送風装置及び室外機
KR20050119071A (ko) 원심팬 및 이를 이용한 공기조화기
KR101870365B1 (ko) 선회유동 저감 구조를 갖는 냉각팬 장치
CN111441977B (zh) 一种轴流风叶、风机组件及其空调器
JP2006002689A (ja) 送風機
JP4989705B2 (ja) 貫流ファン及び送風機及び空気調和機
JP2004218450A (ja) 遠心式送風機
CN110914553B (zh) 叶轮、送风机及空调装置
JP2010236372A (ja) 軸流送風機、空気調和機及び換気扇
JP4444307B2 (ja) 送風機
JP6932295B1 (ja) 送風機
WO2021124630A1 (ja) 遠心送風機
CN212130847U (zh) 一种轴流风叶、风机组件及其空调器
JP4423921B2 (ja) 遠心送風機及びこれを用いた空気調和機
JPH10311296A (ja) 送風機
JP7195490B1 (ja) 軸流羽根車及び軸流送風機
WO2012124021A1 (ja) 貫流ファン及び送風機及び空気調和機
JP7487854B1 (ja) 送風機
WO2022190818A1 (ja) 送風機

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2005507274

Country of ref document: JP

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

WWE Wipo information: entry into national phase

Ref document number: 10521787

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 20048006801

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase