JPWO2013150673A1 - 空気調和装置の室内機 - Google Patents

空気調和装置の室内機 Download PDF

Info

Publication number
JPWO2013150673A1
JPWO2013150673A1 JP2014508997A JP2014508997A JPWO2013150673A1 JP WO2013150673 A1 JPWO2013150673 A1 JP WO2013150673A1 JP 2014508997 A JP2014508997 A JP 2014508997A JP 2014508997 A JP2014508997 A JP 2014508997A JP WO2013150673 A1 JPWO2013150673 A1 JP WO2013150673A1
Authority
JP
Japan
Prior art keywords
blade
region
wing
impeller
indoor unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014508997A
Other languages
English (en)
Other versions
JP5774206B2 (ja
Inventor
池田 尚史
尚史 池田
敬英 田所
敬英 田所
代田 光宏
光宏 代田
平川 誠司
誠司 平川
幸治 山口
幸治 山口
紘一 梅津
紘一 梅津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from PCT/JP2012/002418 external-priority patent/WO2013150569A1/ja
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2014508997A priority Critical patent/JP5774206B2/ja
Application granted granted Critical
Publication of JP5774206B2 publication Critical patent/JP5774206B2/ja
Publication of JPWO2013150673A1 publication Critical patent/JPWO2013150673A1/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Air-Conditioning Room Units, And Self-Contained Units In General (AREA)

Abstract

羽根車が有する翼は、当該翼を縦断面視したときに、翼の圧力面及び当該圧力面の反対側の負圧面が、羽根車の回転軸から翼の外側に向かうにしたがって羽根車回転方向に湾曲し、翼の中央付近が翼の内側端部と外側端部とを結ぶ直線に対して最も離れる弓形に形成され、圧力面及び負圧面が、少なくとも一つの円弧で形成される曲面で形成され、一方側が曲面に接続され、他方側が翼の内側端部側に延出し、圧力面及び負圧面のうち円弧で形成された方の表面が連続して平面である直線部が形成され、圧力面及び負圧面に内接する円の直径を翼厚としたとき、外側端部が内側端部よりも小さく、外側端部から徐々に増加し直線部で略同一の肉厚となるように形成されている。

Description

本発明は、送風手段として用いられる貫流ファンを搭載した空気調和装置の室内機に関するものである。
羽根車のそり線を異なる半径の2つの円弧に形成し、1つの円弧の場合と比較すると、
翼間を空気が通過する空気の流れが、翼表面に沿うようにした貫流ファンを備えた空気調和装置が提案されている(たとえば、特許文献1参照)。特許文献1に記載の技術は、羽根車外周側のそり線半径R2を羽根車内周側の反り半径R1よりも大きくし、「羽根肉厚が羽根車内周側から外周側にかけて略同一」とする、又は「羽根車内周端が最大肉厚で外周側にかけて次第に小さく」したものである。
また、「ブレードの羽根車内周側で最大肉厚とし、ブレードの羽根車の外周側に向かって徐々に肉厚を減少させるようにした肉厚分布」のブレードを有し、ブレードの最大反り高さ位置を規定した貫流ファンを備えた空気調和装置が提案されている(たとえば、特許文献2参照)。特許文献2に記載の技術は、このようなブレードの貫流ファンを搭載することで、同一の騒音当たりの風量性能を増加させている。
また、「翼と翼の間の翼間寸法が、羽根車の外周側と内周側とで略等しくなるように羽根車外周側ほど翼を薄肉化」した貫流ファンを備えた空気調和装置が提案されている(たとえば、特許文献3参照)。
さらに、ブレードの最大肉厚位置が当該ブレードの翼弦長の内側から4%の箇所となるように形成するとともに、ブレードの最大肉厚位置から両端部へ向け肉厚を順次薄く形成した貫流ファンを備えた空気調和装置が提案されているたとえば、特許文献4参照)。
また、翼の長手方向長さを複数の領域に分割し、支持板に隣接する部分を第1領域、翼中央部を第2領域、第1領域と第2領域との間の部分を第3領域とした場合、各領域の翼外周端部における翼出口角が、第2領域<第1領域<第3領域の順に大きい貫流ファンが提案されている(たとえば、特許文献5参照)。
特開2001−280288号公報(たとえば、4頁、[0035]、[0040]及び図5) 特開2001−323891号公報(たとえば、2頁、[0016]及び[0018]及び図5) 特開平5−79492号公報(2頁、[0010]及び図1) 特許第3661579号公報(2頁、[0011]及び図1) 特許第4896213号公報(6頁、[0024]及び図7)
特許文献1に記載の技術は、羽根肉厚が羽根車内周側から外周側にかけて略同一、すなわち、ケーシングの巻始め部である上流側からスタビライザー側の下流側までの範囲では翼肉厚が略同一で薄肉なので、羽根車内周側で流れが剥離してしまう可能性があった。
特許文献1に記載の技術は、羽根車内周端が最大肉厚で外周側にかけて次第に小さくなるので、内周端で流れが衝突した後に、羽根車の外周側で再付着せず下流側へ向け剥離したままとなる可能性があった。
このように、特許文献1に記載の技術は、流れの剥離が起こり、翼間を乱れなく通過する有効翼列範囲が狭くなり、吹出風速が増加して騒音が悪化してしまうという課題があった。
特許文献2に記載の技術は、ブレードの羽根車内周側で最大肉厚とし、ブレードの羽根車の外周側に向かって徐々に肉厚を減少させるようにした肉厚分布としているため、たとえば最大肉厚位置を内周端(翼弦長の内周側からの比率0%)の1箇所とした場合においては、この内周端で流れが衝突した後に、翼面に再付着せず下流側へ剥離してしまう可能性があった。
特許文献2に記載の技術において、最大肉厚位置を、内周端以外の任意の位置としたとしても、内周端は薄肉であるため、羽根車反回転方向面に再付着せず流れが剥離したまま下流側へ流れてしまう可能性があった。
このように、特許文献2に記載の技術は、流れの剥離が起こり、有効翼間距離が狭くなり、吹出風速が増加して騒音が悪化してしまうという課題があった。
特許文献3に記載の技術は、翼と翼の間の翼間寸法が、羽根車の外周側と内周側とで略等しくしているため、その分、翼の肉厚が厚くなってしまい、翼間距離が小さくなり、通過風速が増加して騒音悪化を引き起こす可能性があった。
特許文献3に記載の技術は、羽根車内周端が最大肉厚となるため、この内周端で流れが衝突した後に、翼面に再付着せず下流側へ剥離してしまう可能性があった。
このように、特許文献3に記載の技術は、通過風速が増加して騒音が悪化すること、及び翼面に再付着せず下流側へ剥離して有効翼間距離が狭くなり、吹出風速が増加して騒音が悪化するという課題があった。
特許文献4に記載の技術は、ブレードの最大肉厚位置が当該ブレードの翼弦長の内側から4%の箇所であるため、ほぼ最大肉厚位置が内周端である。このため、内周端で流れが衝突した後に、羽根車の外周側で再付着せず下流側へ向け剥離したままとなる可能性があった。
このように、特許文献4に記載の技術は、流れの剥離が起こり、有効翼間距離が狭くなり、吹出風速が増加して騒音が悪化してしまうという課題があった。
特許文献5に記載の技術は、翼長手方向で翼出口角が変化し、翼出口角が、第2領域(翼中央部)<第1領域(支持板隣接部)<第3領域(第1領域と第2領域の間)の順に大きい。しかし、翼断面形状において羽根車内周端部が最大肉厚部から徐々に薄肉で、薄すぎる場合、流れが剥離する恐れがある。
このように特許文献5に記載の技術は、流れの剥離が起こり、有効翼間距離が狭くなり、吹出風速が増加して騒音悪化及び、効率悪化してしまう課題があった。
本発明は、上記の課題のうちの少なくとも1つを解決するためになされたもので、騒音の発生を抑制する空気調和装置の室内機を提供することを目的としている。
本発明に係る空気調和装置は、吸込口及び吹出口を有する本体と、本体内に設けられ、自身が回転することで吸込口から空気を本体内に取り込み吹出口から吹き出す羽根車を有する貫流ファンと、本体内の空間を貫流ファンより上流側である吸込側流路と、下流側である吹出側流路とに区画するスタビライザーと、を有し、羽根車が有する翼は、当該翼を縦断面視したときに、翼の圧力面及び当該圧力面の反対側の負圧面が、羽根車の回転軸から翼の外側に向かうにしたがって羽根車回転方向に湾曲し、翼の中央付近が翼の内側端部と外側端部とを結ぶ直線に対して最も離れる弓形に形成され、圧力面及び負圧面が、少なくとも一つの円弧で形成される曲面で形成され、一方側が曲面に接続され、他方側が翼の内側端部側に延出し、圧力面及び負圧面のうち円弧で形成された方の表面が連続して平面である直線部が形成され、圧力面及び負圧面に内接する円の直径を翼厚としたとき、外側端部が内側端部よりも小さく、外側端部から徐々に増加し直線部で略同一の肉厚となるように形成されているものである。
本発明に係る空気調和装置の室内機によれば、上記構成を有しているため、騒音の発生を抑制することができる。
本発明の実施の形態1に係る空気調和装置の室内機を設置した状態の斜視図である。 図1に示す空気調和装置の室内機の縦断面図である。 (a)が図2に示す貫流ファンの羽根車の正面図であり、(b)が図2に示す貫流ファンの羽根車の側面図である。 図3に示す貫流ファンの羽根車に翼が1枚設けられた状態の斜視図である。 図3の貫流ファンの翼のA−A断面図である。 図3の貫流ファンの翼のA−A断面図である。 翼弦最大反り長さLp、Lsと翼弦長Loの比Lp/Lo、Ls/Loと騒音の関係の説明図である。 最大反り高さHp、Hsの翼弦長Loとの比と騒音値の関係の説明図である。 図3の貫流ファンの翼の変形例を説明するためのA−A断面図である。 Lf/Loとファンモータ入力Wmの関係の説明図である。 Lf/Loと騒音との関係の説明図である。 屈曲角度θeとファンモータ入力Wm[W]との関係の説明図である。 Lt/Loに対するファンモータ入力の変化の説明図である。 (a)が本発明の実施の形態2に係る貫流ファンの羽根車の正面図であり、(b)が貫流ファンの羽根車の側面図である。 図14のC−C断面図であり、実施の形態1の図5に対応する図である。 図14のC−C断面図であり、実施の形態1の図6に対応する図である。 図14のC−C断面図であり、実施の形態1の図9に対応する図である。 図14のA−A断面図、B−B断面図、及びC−C断面図を重ねるように示した図である。 本発明の実施の形態2に係る貫流ファンの羽根車の翼が1枚設けられた状態の斜視概要図である。 各領域における翼外周側端部における翼出口角の差と、騒音差との関係の説明図である。 リング間の翼長さWLに対する連結部の翼長さWL4の比率と、騒音差との関係の説明図である。 第3領域における翼弦長Lo3と、直線部翼弦長さLt3の比と、ファンモータ入力Wmとの関係の説明図である。 WL3/WLとファンモータ入力との関係の説明図である。
実施の形態1.
以下、本発明の実施の形態を図面に基づいて説明する。
図1は、実施の形態1に係る空気調和装置の室内機を設置した状態の斜視図である。図2は、図1に示す空気調和装置の室内機の縦断面図である。図3は、(a)が図2に示す貫流ファンの羽根車の正面図であり、(b)が図2に示す貫流ファンの羽根車の側面図である。図4は、図3に示す貫流ファンの羽根車に翼が1枚設けられた状態の斜視図である。
本実施の形態1に係る空気調和装置の室内機は、騒音の発生を抑制することができるように、室内機に搭載される貫流ファンの翼について改良が加えられたものである。
[室内機100の構成]
図1に図示されるように、室内機100は、本体1及び本体1の前面に設けられる前面パネル1bによって、室内機100の外郭が構成されている。ここで、図1では、室内機100が空調対象空間である部屋11の壁11aに設置されている。すなわち、図1では、室内機100が壁掛け型である例を図示しているが、それに限定されるものではなく、天井埋込型などでもよい。また、室内機100は、部屋11に設置されることに限定されるものではなく、たとえばビルの一室や倉庫などに設置されていてもよい。
図2に図示されるように、本体1の上部を構成する本体上部1aには室内空気を室内機100内に吸い込むための吸込グリル2が形成され、本体1の下側には空調空気を室内に供給するための吹出口3が形成され、さらに、後述の貫流ファン8から放出された空気を吹出口3に導くガイドウォール10が形成されている。
図2に示すように、本体1は、吸込グリル2から吸い込まれる空気中の塵埃などを除去するフィルタ5と、冷媒の温熱又は冷熱を空気に伝達して空調空気を生成する熱交換器7と、吸込側風路E1と吹出側風路E2とを区画するスタビライザー9と、吸込グリル2から空気を吸い込み吹出口3から空気を吹き出す貫流ファン8と、貫流ファン8から吹き出された空気の方向を調整する上下風向ベーン4a及び左右風向ベーン4bとを有している。
吸込グリル2は、貫流ファン8によって強制的に室内空気を室内機100内部に取り込む開口である。吸込グリル2は本体1の上面に開口形成されている。なお、図1及び図2では、この吸込グリル2は、本体1の上面にのみ開口形成されている例を図示しているが、前面パネル1bに開口形成されていてもよいことは言うまでもない。また、この吸込グリル2の形状は、特に限定されるものではない。
吹出口3は、吸込グリル2から吸い込まれ、熱交換器7を通過した空気を室内に供給する際に、当該空気が通過する開口である。吹出口3は、前面パネル1bに開口形成されている。なお、吹出口3の形状は、特に限定されるものではない。
ガイドウォール10は、スタビライザー9の下面側とともに、吹出側風路E2を構成するものである。ガイドウォール10は、貫流ファン8から吹出口3にかけて傾斜している斜面を形成している。この斜面の形状は、たとえば渦巻形状の「一部」に対応するように形成するとよい。
フィルタ5は、たとえば網目状に形成され、吸込グリル2から吸い込まれる空気中の塵埃などを除去するものである。フィルタ5は、吸込グリル2から吹出口3までの風路(本体1内部の中央部)のうち、吸込グリル2の下流側であって熱交換器7の上流側に設けられている。
熱交換器7(室内熱交換器)は、冷房運転時において、蒸発器として機能して空気を冷却し、暖房運転時において、凝縮器(放熱器)として機能して空気を加温するものである。この熱交換器7は、吸込グリル2から吹出口3までの風路(本体1内部の中央部)のうち、フィルタ5の下流側であって貫流ファン8の上流側に設けられている。なお、図2では、熱交換器7の形状は、貫流ファン8の前面及び上面を取り囲むような形状をしているが、特に限定されるものではない。
なお、熱交換器7は、圧縮機、室外熱交換器、及び絞り装置などを有する室外機に接続されて冷凍サイクルを構成しているものとする。また、熱交換器7は、たとえば伝熱管と多数のフィンとにより構成されるクロスフィン式のフィン・アンド・チューブ型熱交換器で構成するとよい。
スタビライザー9は、吸込側風路E1と吹出側風路E2とを区画するものである。
スタビライザー9は、図2に図示されるように熱交換器7の下側に設けられており、その上面側が吸込側風路E1であり、その下面側が吹出側風路E2となっている。スタビライザー9には、熱交換器7に付着した結露水を一時的に貯留するドレンパン6を有している。
貫流ファン8は、吸込グリル2から室内空気を吸い込み、吹出口3から空調空気を吹き出すためのものである。貫流ファン8は、吸込グリル2から吹出口3までの風路(本体1内部の中央部)のうち、熱交換器7の下流側であって吹出口3の上流側に設けられている。
貫流ファン8は、図3に示すように、たとえばABS樹脂などの熱可塑性樹脂で構成される羽根車8aと、羽根車8aを回転させるためのモータ12と、モータ12の回転を羽根車8aに伝達させるモータシャフト12aとを有している。
羽根車8aは、たとえばABS樹脂などの熱可塑性樹脂で構成され、自身が回転することで、吸込グリル2から室内空気を吸い込み、吹出口3に空調空気として送り込むものである。
羽根車8aは、複数の翼8c及び複数の翼8cの端部側に固定されるリング8bを有する羽根車単体8dが、複数連結されて構成されている。すなわち、羽根車8aは、円板状のリング8bの外周部側面から略垂直に伸びた複数の翼8cが、リング8bの周方向に所定間隔で連設して構成される羽根車単体8dを、複数溶着し連結して一体としたものである。
羽根車8aは、羽根車8aの内部側に突出したファンボス8eと、モータシャフト12aがネジ等で固定されるファンシャフト8fとを有している。そして、羽根車8aは、羽根車8aの一方側がファンボス8eを介してモータシャフト12aに支持され、羽根車8aの他方側がファンシャフト8fによって支持されている。これにより、羽根車8aは、両端側が支持された状態で、羽根車8aの回転軸中心Oを中心に回転方向ROに回転し、吸込グリル2から室内空気を吸い込み、吹出口3に空調空気を送り込むことができるようになっている。
なお、羽根車8aについては、図4〜図7でさらに詳しく説明する。
上下風向ベーン4aは貫流ファン8から吹き出された空気の方向のうちの上下を調整するものであり、左右風向ベーン4bは貫流ファン8から吹き出された空気の方向のうちの左右を調整するものである。
上下風向ベーン4aは、左右風向ベーン4bよりも下流側に設けられている。上下風向ベーン4aは、図2に示すように、その上部がガイドウォール10に回動自在に取り付けられている。
左右風向ベーン4bは、上下風向ベーン4aよりも上流側に設けられている。左右風向ベーン4bは、図1に示すように、その両端部側が本体1のうち吹出口3を構成する部分に回動自在に取り付けられている。
図4は、図3に示す貫流ファン8の羽根車8aに翼8cが1枚設けられた状態の斜視図である。図5及び図6は、図3の貫流ファンの翼のA−A断面図である。なお、図4では、説明の便宜上、翼8cが1枚設けられた状態を図示している。
図5及び図6に示すように、翼8cの外周側端部(外側端部)15a及び内周側端部(内側端部)15bは、それぞれ円弧形状で形成されている。そして、翼8cは、外周側端部15aの方が、内周側端部15bに対して羽根車回転方向ROに前傾するように形成されている。すなわち、翼8cを縦断面視した際において、翼8cの圧力面13a及び負圧面13bが、羽根車8aの回転軸Oから翼8cの外側に向かうにしたがって、羽根車回転方向ROに湾曲しているということである。そして、翼8cは、翼8cの中央付近が、外周側端部15aと内周側端部15bとを結ぶ直線に対して最も離れるように弓形に形成されている。
外周側端部15aに形成される円弧形状に対応する円の中心をP1(円弧中心P1とも称する)とし、外周側端部15aに形成される円弧形状に対応する円の中心をP2(円弧中心P2とも称する)とする。また、円弧中心P1、P2を結ぶ線分を翼弦線Lとすると、図6に示すように、翼弦線Lの長さはLoとなる(以下、翼弦長Loとも称する)。
翼8cは、羽根車8aの回転方向RO側の表面である圧力面13aと、羽根車8aの回転方向ROとは反対側の表面である負圧面13bとを有し、翼8cは翼弦線Lの中央付近が、圧力面13aから負圧面13bに向かう方向に湾曲した凹形状をしている。
また、翼8cは、圧力面13a側の円弧形状に対応する円の半径が、羽根車8aの外周側と、羽根車8aの内周側とで異なっている。
すなわち、図5に示すように、翼8cの圧力面13a側の表面は、羽根車8aの外周側の円弧形状に対応する半径(円弧半径)がRp1である外周側曲面Bp1と、羽根車8aの内周側の円弧形状に対応する半径(円弧半径)がRp2である内周側曲面Bp2とを有しており、多重円弧曲面となっている。
さらに、翼8cの圧力面13a側の表面は、内周側曲面Bp2の端部のうち内周側の端部に接続され、平面形状をしている平面Qpを有している。
このように、翼8cの圧力面13a側の表面は、外周側曲面Bp1、内周側曲面Bp2及び平面Qpが連続的に接続されて構成されている。なお、翼8cを縦断面視した際に、平面Qpを構成する直線は、内周側曲面Bp2を構成する円弧に接続される点において、接線となっている。
一方、翼8cの負圧面13b側の表面は、圧力面13a側の表面と対応した表面となっている。具体的には、翼8cの負圧面13b側の表面は、羽根車8aの外周側の円弧形状に対応する半径(円弧半径)がRs1である外周側曲面Bs1と、羽根車8aの内周側の円弧形状に対応する半径(円弧半径)がRs2である内周側曲面Bs2とを有している。さらに、翼8cの負圧面13b側の表面は、内周側曲面Bs2の端部のうち内周側の端部に接続され、平面形状をしている平面Qsを有している。
このように、翼8cの負圧面13b側の表面は、外周側曲面Bs1、内周側曲面Bs2及び平面Qsが連続的に接続されて構成されている。なお、翼8cを縦断面視した際に、平面Qsを構成する直線は、内周側曲面Bs2を構成する円弧に接続される点において、接線となっている。
ここで、翼8cを縦断面視した際に、その翼面に内接する円の直径を翼厚tとする。
すると、図5及び図6に示すように、外周側端部15aの翼厚t1は、内周側端部15bの翼厚t2よりも薄い。なお、翼厚t1は、外周側端部15aの円弧を構成する円の半径R1×2に対応し、翼厚t2は、内周側端部15bの円弧を構成する円の半径R2×2に対応する。
つまり、翼8cの圧力面13a及び負圧面13bに内接する円の直径を翼厚としたとき、翼厚は、外周側端部15aが内周側端部15bよりも小さく、外周側端部15aから中央へ向け徐々に増加し、中央付近の所定位置で最大となり、内側に向け徐々に薄肉となり、直線部Qで略同一の肉厚となるように形成されている。
より詳細には、翼8cの翼厚tは、外周側端部15a及び内周側端部15bを除く、圧力面13aと負圧面13bで形成される外周側曲面及び内周側曲面Bp1、Bp2、Bs1、Bs2の範囲において、外周側端部15aから翼8cの中央へ向けて徐々に増加し、翼弦線Lの中央付近の所定位置で最大肉厚t3となり、内周側端部15bに向けて徐々に薄肉化する。そして、翼厚tは、直線部Qの範囲、すなわち、平面Qpと平面Qsとの間の範囲において、略一定値である内周側端部肉厚t2となっている。
ここで、翼8cのうち内周側端部15bの平面Qp、Qsを表面として有する部分を直線部Qと称する。すなわち、翼8cの負圧面13bは、羽根車外周側から内周側にかけて多重円弧と直線部Qで形成されている。
(1)このため、翼8cが吸込側風路E1を通過する時、翼表面の流れが外周側曲面Bs1で剥離しかけた時に次の円弧半径が異なる内周側曲面Bs2により流れが再付着する。
(2)また、翼8cが平面Qsを有し、負圧が生成さるため、内周側曲面Bs2で流れが剥離しかけたとしても再付着する。
(3)また、翼厚tが羽根車外周側に比べて羽根車内周側が増加するため、隣り合う翼8cとの間の距離が縮小する。
(4)さらに、平面Qsが平坦なので、曲面の場合に比べ翼厚tが羽根車外周に向け急激に増加しないので摩擦抵抗が抑制できる。
翼8cの圧力面13aも、羽根車外周側から内周側にかけて多重円弧と直線部(平面)で形成されている。
(5)このため、空気が外周側曲面Bp1から円弧半径の異なる内周側曲面Bp2へ流れる際、流れが徐々に加速され、負圧面13bへ圧力勾配を生成するため、剥離を抑制し流体異常音が発生しない。
(6)また、下流側の平面Qpは、内周側曲面Bs2に対する接線となっている。言い換えれば、翼8cは、下流側の平面Qpを有するため、回転方向ROに対して所定角度屈曲した形状となっている。このため、直線表面(平面Qp)がない場合と比較すると、内周側端部15bの翼肉厚t2が厚肉であったとしても、負圧面13bへ流れを向けることができ、内周側端部15bから羽根車内部へ流入する時の後流渦を抑制できる。
翼8cは、内周側端部15bが厚肉となっており、吹出側風路E2でのさまざまな流入方向に対し剥離しづらくなっている。
(8)また、翼8cは、平面Qsの下流側である翼弦中央付近で最大肉厚をもつ。このため、流れが平面Qsを通過後に剥離しそうとなると、内周側曲面Bs2で翼弦中央付近へ向け翼厚tが徐々に厚くなるため流れが沿い剥離が抑制できる。
(9)さらに、翼8cは、内周側曲面Bs2の下流側に、円弧半径の異なる内周側曲面Bp2を有するため、流れの剥離が抑制され、羽根車からの有効吹出側風路が拡大でき、吹出風速の低減及び均一化が図れ、翼面にかかる負荷トルクが減少できる。その結果、羽根車吸込側、吹出側で翼面での流れの剥離を抑制できるので低騒音化が図れ、またファンモータの消費電力が低減できる。つまり、静粛で省エネな貫流ファン8を搭載した室内機100を得ることができる。
<翼8cの変形例1>
翼8cは、円弧半径Rp1、Rp2、Rs1、Rs2について、次のような大小関係を満たすように形成するとよい。すなわち、翼8cは、Rs1>Rp1>Rs2>Rp2となるように形成するとよい。
この場合、吹出側風路E2では、翼8cが、次のような効果を奏する。
(10)負圧面13bは、外周側曲面Bs1の円弧半径Rs1が内周側曲面Bs2の円弧半径Rs2より大きく、湾曲の程度が小さい平坦気味の円弧となっている。このため、吹出側風路E2では、流れが外周側曲面Bs1の外周側端部15a付近まで沿うこととなり後流渦を小さくすることができる。
圧力面13aは、外周側曲面Bp1の円弧半径Rp1が内周側曲面Bp2の円弧半径Rp2より大きく、湾曲の程度が小さい平坦気味の円弧となるので、流れが圧力面13a側に集中せずなだらかに流れるため摩擦損失が小さくできる。
一方、吸込側風路E1では、翼8cが、次のような効果を奏する。
(11)外周側曲面Bs1が湾曲の程度が小さい平坦気味の円弧のため急激に流れが転向されない。このため、流れが剥離せず負圧面13bに流れを沿わせることができる。
(10)及び(11)の結果、羽根車吸込側、吹出側で翼面での流れの剥離を抑制できるので低騒音化が図れ、またファンモータの消費電力が低減できる。つまり、静粛で省エネな貫流ファン8を搭載した室内機100を得ることができる。
<翼8cの変形例2>
図6に示すように、圧力面13aに接する翼弦線Lとの平行線Wpと圧力面13aとの接点を、最大反り位置Mpとし、負圧面13bに接する翼弦線Lsとの平行線Wsと負圧面13bとの接点を最大反り位置Msとする。
また、最大反り位置Mpを通る翼弦線Lの垂線との交点を、最大反り翼弦点Ppとし、最大反り位置Msを通る翼弦線Lの垂線との交点を、最大反り翼弦点Psとする。
また、円弧中心P2と最大反り翼弦点Ppとの距離を、翼弦最大反り長さLpとし、円弧中心P2と最大反り翼弦点Psとの距離を、翼弦最大反り長さLsとする。
さらに、最大反り位置Mpと最大反り翼弦点Ppとの線分距離を最大反り高さHpとし、最大反り位置Msと最大反り翼弦点Psとの線分距離を最大反り高さHsとする。
ここで、翼弦最大反り長さLp、Lsと、翼弦長Loの比Lp/Lo、Ls/Loとを以下のように設定することで騒音を低減することができる。
図7は、翼弦最大反り長さLp、Lsと翼弦長Loの比Lp/Lo、Ls/Loと騒音の関係の説明図である。
最大反り位置が外周側すぎると内周側曲面Bs2の平坦の範囲が拡大する。また、最大反り位置が内周側過ぎると外周側曲面Bs1の平坦の範囲が拡大する。さらに、内周側曲面Bs2を反りすぎる。このように、翼8cの「平坦の範囲」が拡大したり、「反りすぎ」となると、吹出側風路E2で剥離が生じやすく、騒音が悪化してしまう。
そこで、本実施の形態では、最適範囲の最大反り位置となるように翼8cを形成したものである。
図7に示すように、Ls/Lo、Lp/Loが40%より小さく、最大反り位置が羽根車内周側に寄っている場合は、翼8cの内周側曲面Bs2、Bp2の円弧半径が小さいことと対応している。そして、翼8cの内周側曲面Bs2、Bp2の円弧半径が小さということは、反りが大きくなり急激に湾曲することになる。このため、吹出側風路E2において、内周側端部15bを通り平面Qs及び平面Qpを通過した流れは、内周側曲面Bs2、Bp2に沿うことができず、剥離して圧力変動が生じる。
また、Ls/Lo、Lp/Loが50%より大きく、羽根車外周側に寄っている場合は、翼8cの外周側曲面Bs1、Bp1の円弧半径が大きいことと対応している。そして、、翼8cの外周側曲面Bs1、Bp1の円弧半径が大きいということは、翼8cの反りが小さいこと指す。このため、翼8cの外周側曲面Bs1、Bp1で流れが剥離し、後流渦が増大してしまう。
また、Lp/Lo、Ls/Loが40%から50%の範囲内であっても、Ls/Lo>Lp/Loとなっていると、負圧面13bの方が圧力面13aより最大反り位置が外周側にあることとなり、隣り合う翼8c同士の間隔が、内周側端部15bから外周側端部15aにかけて増減を繰り返してしまい圧力変動が生じてしまう。
そこで、本実施の形態では、40%≦Ls/Lo<Lp/Lo≦50%のを満たすように翼8cを形成することで、羽根車吸込側、吹出側で翼面での流れの剥離を抑制でき、低騒音化が図れ、またファンモータの消費電力が低減できる。つまり、静粛で省エネな貫流ファン8を搭載した室内機100を得ることができる。
<翼8cの変形例3>
図8は、最大反り高さHp、Hsの翼弦長Loとの比と騒音値の関係の説明図である。
最大反り高さHp、Hsが大きすぎて曲面円弧半径が小さく反りが大きかったり、最大反り高さHp、Hsが小さすぎると曲面円弧半径が大きく反りが小さすぎる。また、隣り合う翼8c同士の間隔が広すぎ流れを制御できず翼面で剥離渦が発生し流体異常音が発生したり、逆に狭すぎ風速が増加し騒音が悪化してしまう。
そこで、本実施の形態では、最適範囲の最大反り高さとなるように翼8cを形成したものである。
Hp、Hsはそれぞれ圧力面13a、負圧面13bの最大反り高さなのでHs>Hpの関係となっている。
図8に示すように、Hs/Lo、Hp/Loが10%より小さい場合には、曲面円弧半径が大きく反りが小さすぎ、隣り合う翼8c同士の間隔が広すぎ流れを制御できず、翼面で剥離渦が発生し流体異常音が発生し、最終的に騒音値が急激に悪化している。
また、Hs/Lo、Hp/Loが25%より大きい場合には、隣り合う翼同士の間隔が狭すぎ風速が増加し、急激に騒音が悪化している。
そこで、本実施の形態では、25%≧Hs/Lo>Hp/Lo≧10%を満たすように翼8cを形成することで、羽根車吸込側、吹出側で翼面での流れの剥離を抑制でき、低騒音化が図れ、またファンモータの消費電力が低減できる。つまり、静粛で省エネな貫流ファン8を搭載した室内機100を得ることができる。
<翼8cの変形例4>
図9は、図3の貫流ファン8の翼8cの変形例4〜6を説明するための断面図である。図10は、Lf/Loとファンモータ入力Wmの関係の説明図である。図11は、Lf/Loと騒音との関係の説明図である。
図9に示すように、内周側曲面Bp2と平面Qpとの接続位置(第1接続位置)及び内周側曲面Bs2と平面Qsとの接続位置(第2接続位置)に接するように描かれる内接円の中心をP4とする。翼8cのうち直線部Qより外周側であって、内周側曲面Bp2及び内周側曲面Bs2との間を通る翼8cの中心線を肉厚中心線Sbとする。
また、中心P4と円弧中心P2とを通る直線を延長線Sfとする。肉厚中心線Sbの中心P4における接線をSb1とする。接線Sb1と延長線Sfとのなす角度を屈曲角度θeとする。
さらに、円弧中心P2を通る翼弦線Lの垂線と、中心P4を通る翼弦線Lの垂線との距離を直線部翼弦長さLfとする。翼の最大肉厚部における内接円の中心P3とする。中心P3を通る翼弦線Lの垂線と、円弧中心P2を通る翼弦線Lの垂線との距離を最大肉厚部長さLtとする。
翼8cの内周側端部15bの直線部Qの翼弦長さLfが翼弦長Loに対し大きすぎると、結果的に直線部Qより外周側の外周側曲面Bp1、Bs1及び内周側曲面Bp2、Bs2の円弧半径が小さく反りが大きくなる。このため、流れが剥離傾向となり損失が増加しファンモータ入力が増加し、且つ翼8c同士の間の距離が内周側から外周側で極端に変化し圧力変動が発生するため騒音が悪化する。
逆に、直線部Qの翼弦長さLfが翼弦長Loに対し小さすぎ、すぐ曲面で形成されると内周側端部15bで流れが衝突後、負圧面13bで負圧が生じないため再付着せず剥離し騒音悪化してしまう。特にフィルタ5にホコリが堆積してきて通風抵抗が増加した場合に顕著に生じる。
図10に示すように、Lf/Loが30%以下であれば、ファンモータ入力Wmの変化は小さく、形状変化に対する悪化は小さい。また、図11に示すように、Lf/Loが5%以上30%以下であれば、騒音変化は小さく、形状変化に対する悪化は小さい。
したがって、30%≧Lf/Lo≧5%を満たすように翼8cを形成することで、羽根車吸込側、吹出側で翼面での流れの剥離を抑制でき、低騒音化が図れ、またファンモータの消費電力が低減できる。つまり、静粛で省エネな貫流ファン8を搭載した室内機100を得ることができる。
<翼8cの変形例5>
図12は、屈曲角度θeとファンモータ入力Wm[W]との関係の説明図である。
翼8cの羽根車内周側に形成した直線部Qの表面である平面Qs、Qpで形成された翼直線部Qが羽根車外周側の多重円弧形状部に対し接するまたは羽根車回転方向へ屈曲することで、内周側端部15bの翼肉厚t2が厚肉でも直線表面がない場合に比べ負圧面13bへ流れを向けることで内周側端部15bから羽根車内部へ流入する時の後流渦を抑制できるが、屈曲角度が大きすぎると逆に後流渦幅が拡大、又は吹出側風路E2において、内周側端部15bで剥離が大きく発生し、効率が悪化しファンモータ入力が増加してしまう恐れがある。
そこで、本実施の形態では、最適範囲の屈曲角度となるように翼8cを形成したものである。
図12に示すように、屈曲角度θeがマイナス、すなわち反回転方向に屈曲する場合には、吹出側風路E2において、圧力面側である平面Qpで流れが衝突し、負圧面側である平面Qsで剥離してしまい、流れが失速してしまう。
また、屈曲角度θeが15°より大きくなると、吸込側風路E1において、直線部Qの圧力面側の表面である平面Qpで流れが急激に曲げられ、且つ、流れが集中し風速が増加してしまう。さらに直線部Qの負圧面側の表面である平面Qsで流れが剥離してしまい後流渦が大幅に拡大放出され損失が増大する。
そこで、本実施の形態では、0°≦θe≦15°を満たすように翼8cを形成することで、羽根車吸込側、及び吹出側で翼面での流れの剥離を抑制でき、低騒音化が図れ、またファンモータの消費電力が低減できる。つまり、静粛で省エネな貫流ファン8を搭載した室内機100を得ることができる。
<翼8cの変形例6>
図13は、Lt/Loに対するファンモータ入力の変化の説明図である。
翼8cの最大肉厚部が翼弦線Lの中点より羽根車外周側の場合(つまりLt/Loが50%より大きい場合)には、翼8cの負圧面と、この翼8cと隣り合う翼8cの圧力面とに接するように描かれる内接円の直径であらわされる翼間距離が狭くなる。これにより、通過風速が増加し、通風抵抗が増加し、ファンモータ入力が増加してしまう。
また、最大肉厚部が内周側端部15b寄りにある場合には、吹出側風路E2において、内周側端部15bで流れが衝突後、再付着せず下流側の外周側曲面Bp1、Bs1まで剥離し通過風速が増加し損失が増加し、ファンモータ入力が増加してしまう。
そこで、本実施の形態では、最適範囲のLt/Loとなるように翼8cを形成したものである。
図13に示すように、本実施の形態では、40%≦Lt/Lo≦50%を満たすように翼8cを形成することで、羽根車吸込側、吹出側で翼面での流れの剥離を抑制でき、低騒音化が図れ、またファンモータの消費電力が低減できる。つまり、静粛で省エネな貫流ファン8を搭載した室内機100を得ることができる。
[実施の形態に係る室内機100の有する効果]
実施の形態に係る室内機100は、多重円弧曲面及び直線部Qを有しているので、流れの剥離を抑制し、有効翼間距離が狭くなり、吹出風速が増加して騒音が悪化してしまうことを抑制することができる。
実施の形態に係る室内機100は、翼8cの翼厚が外周側端部15aが内周側端部15bよりも小さく、外周側端部15aから中央へ向け徐々に増加し、中央付近の所定位置で最大となり、内側に向け徐々に薄肉となり、直線部Qで略同一の肉厚となる。このように、室内機100の翼8cは、翼肉厚が略同一で薄肉でないため、流れの剥離を抑制し、有効翼間距離が狭くなり、吹出風速が増加して騒音悪化してしまうことを抑制することができる。
実施の形態に係る室内機100は、翼8cを、25%≧Hs/Lo>Hp/Lo≧10%、40%≦Lt/Lo≦50%を満たすように形成している。このため、翼の肉厚が厚くなってしまい、翼間距離が小さくなり、通過風速が増加して騒音悪化を引き起こすことを抑制することができる。
本実施の形態に係る室内機100は、広帯域騒音全体の騒音値の低減、吹出流れの不安定によるファンへの逆流を防止できる。その結果、高効率で省エネで、聴感が良く低騒音で静粛で、羽根車が結露し外部に結露水を放出することを防止でき、高品質な空気調和装置を得ることができる。
なお、本実施の形態では、圧力面13a及び負圧面13bの両方が多重円弧形状となっている場合を例に説明したが、それに限定されるものではない。すなわち、翼8cは、圧力面13a及び負圧面13bのうちの少なくとも一方を多重円弧形状としたものを採用してもよい。
実施の形態2.
図14は、(a)が本実施の形態2の貫流ファンの羽根車の正面図であり、(b)が貫流ファンの羽根車の側面図である。なお、図14(a)及び図14(b)は、実施の形態1における図3(a)及び図3(b)に対応する図である。
図15〜図17は、図14のC−C断面図である。なお、図15は、実施の形態1の図5に対応し、図16は、実施の形態1の図6に対応し、図17は、実施の形態1の図9に対応する。さらに、図19は、実施の形態2に係る貫流ファンの羽根車の翼が1枚設けられた状態の斜視概要図である。
ここで、図15〜図17は、図14(b)における2つの支持板(リング)8b間距離WLに対し各リング8b表面から羽根車単体8d内方に所定長さWL1である翼リング近傍部8caと、2つのリング8bの間の長手方向中心に所定長さWL2である翼中央部8cbとの間の所定長さWL3での翼間部8ccの回転軸に直交するC−C断面図である。 なお、図15〜図17に示された構成や各種長さ(たとえば、翼厚tや最大肉厚部長さLtなど)は、実施の形態1で説明しているため説明を省略する。図14〜図17及び図19を参照して、実施の形態2に係る羽根車の翼8cの構成について詳しく説明する。
本実施の形態2に係る翼8cは、図19に示すように、翼8cの長手方向の幅において、3つの領域に分割されている。この3つの領域とは、羽根車に形成した状態でリング8bに隣接する両端部側に設けられている翼リング近傍部8caと、翼中央部に設けられる翼中央部8cbと、翼リング近傍部8caと翼中央部8cbとの間に設けられる翼間部8ccとである。ここで、以下の説明において、翼リング近傍部8caを第1領域、翼中央部8cbを第2領域、翼間部8ccを第3領域とも称する。
第1領域と第3領域との間は、翼8cの凹形状に対応するように湾曲している第1連結部である連結部8gが設けられている。つまり、第1領域と第3領域とは、連結部8gで接続されている。
また、第3領域と第2領域との間には、翼8cの凹形状に対応するように湾曲している第2連結部である連結部8gが設けられている。つまり、第3領域と第2領域とは、連結部8gで接続されている。
なお、連結部8gは、翼8cの長手方向に沿ってみたとき、一方の領域側から他方の領域側にかけて傾斜している。すなわち、連結部8gは、図19に示すように、翼8cが凹状であることによる短手方向の傾斜を有することに加えて、長手方向にも傾斜しているということである。
より詳細には、図19に示すように、第1領域側よりも第3領域側の方が、翼回転方向で後退した側に配置されるように連結部8gが傾斜している。すなわち、第3領域の方が第1領域よりも、紙面奥側に位置するように連結部8gが傾斜している。
また、第2領域側よりも第3領域側の方が、翼回転方向で後退した側に配置されるように連結部8gが傾斜している。すなわち、第3領域の方が第2領域よりも、紙面奥側に位置するように連結部8gが傾斜している。
ここで、図19に示すように、翼8cの長手方向における翼リング近傍部8caの幅をWL1、翼中央部8cbの幅をWL2、翼間部8ccの幅をWL3と定義する。
また、図19に示すように、翼8cの長手方向における連結部8gの幅をWL4と定義する。
また、翼8cの長手方向における翼8cの長さ、すなわち全長をWLと定義する。
翼8cの長手方向に沿って、翼8c近傍の構成を順番に挙げると次のようになる。
すなわち、翼8cは、支持板である一方側のリング8b、一方側の支持板であるリング8b、一方側の翼リング近傍部8ca、連結部8g、一方側の翼間部8cc、連結部8g、翼中央部8cb、連結部8g、他方側の翼間部8cc、連結部8g、他方側の翼リング近傍部8ca、支持板である他方側のリング8bの順番で、各構成が設けられている。翼8cは、両端部側のリング8bの間に、5つの領域及び4つの連結部8gを有しているということである。
また、本実施の形態2に係る翼8cの翼リング近傍部8ca、翼中央部8cb、翼間部8ccは、それぞれ所定長さWL1、WL2、WL3の幅の間では長手方向同一形状で形成されている。
図18は、図14のA−A断面図、B−B断面図、及びC−C断面図を重ねるように示した図である。より詳細には、図18は、図14(b)における2つの支持板(リング)8b間距離WLに対し各リング8b表面から羽根車単体8d内方に所定長さWL1である翼リング近傍部8caの回転軸に直交するA−A断面と、2つのリング8bの間の長手方向中心に所定長さWL2である翼中央部8cbの回転軸に直交するB−B断面と、翼リング近傍部8caと翼中央部8cbとの間の所定長さWL3での翼間部8ccの回転軸に直交するC−C断面を重ねた図である。図18を参照して、翼8cは、翼8cの外径などについて説明する。
図14のA−A断面、B−B断面、C−C断面を重ねた図18において、翼8cの円弧形状の外周側端部15aの円弧中心P1と羽根車回転中心Oを結ぶ直線O−P1の外径Roは、翼リング近傍部8ca、翼中央部8cb、翼間部8ccともに略同一であり、全翼の外接円の直径となる羽根車有効外径半径は長手方向で同一である。
すなわち、羽根車回転軸方向に沿って、次々に翼8cの縦断面を見ると、外径Roの値は、どの縦断面においても略同一となっているということである。
また、本実施の形態2に係る翼8cは、貫流ファン8の羽根車回転軸に直交する翼断面において当該羽根車回転軸と翼8cの外周側端部15aとを結ぶ線分に対応する外径Roが、羽根車回転軸方向である長手方向における一方の端部側から他方の端部側にかけて略同一となるように形成されているともいうことができる。
このように、貫流ファン8の羽根車回転軸方向である長手方向において、羽根車回転軸に直交する翼断面図における翼8cの外周側端部15aの外径Roは、略同一であるので、従来のように外径が羽根車回転軸方向で異なるような翼形状に比べ、羽根車吸込領域と吹出領域を分離するスタビライザーでの漏れ流れを抑制でき効率向上できる。
ここで、翼出口角について説明する。
翼8cの回転方向RO側面(圧力面)13a、逆回転側面(負圧面)13bとの肉厚中心線であるそり線Sbとする。すると、羽根車回転中心Oから所定半径R03から外側のそり線Sbを外周側そり線S1aと定義し、羽根車回転中心Oから所定半径R03より内側のそり線を内周側そり線S2aと定義することができる。
また、羽根車回転中心Oを中心とし、翼8cの外周側端部15aの円弧中心P1を通る円において、当該円には、円弧中心P1における接線を1本引くことができる。
翼出口角βbとは、この接線と、外周側そり線S1aとのなす狭角をいう。
そこで、図18に示すように、第1領域(翼リング近傍部8ca)の翼出口角をβb1と定義し、第2領域(翼中央部8cb)の翼出口角をβb2と定義し、第3領域(翼リング近傍部8caと翼中央部8cbとの間の翼間部8cc)の翼出口角をβb3と定義する。
第1領域(翼リング近傍部8ca)、第2領域(翼中央部8cb)、第3領域(翼リング近傍部8caと翼中央部8cbとの間の翼間部8cc)で異なる翼出口角としている。つまり、翼出口角βb1、翼出口角βb2、翼出口角βb3の値は、それぞれ異なる値に設定されているということである。
また、翼中央部8cbの外周側は、他の領域よりも最も羽根車回転方向ROに前進し、翼間部8ccの外周側は逆に最も後退した形状とするとよい。外周側端部15aは、第3領域で最も回転方向逆側へ向き、後退した翼断面形状であり、第2領域で最も回転方向に前進した翼断面形状となっているということである。より詳細には、翼出口角βb1、翼出口角βb2、翼出口角βb3は、βb2<βb1<βb3という関係を満たしているとなおよいということである。
また、羽根車回転中心Oと翼8cの内周側端部15bの円弧中心P2とを通る直線と、羽根車回転中心Oと翼8cの外周側端部15aの円弧中心P1とを通る直線とのなす角度を前進角と定義する。
そして、図18に示すように、第1領域(翼リング近傍部8ca)の前進角をδ1と定義し、第2領域(翼中央部8cb)の前進角をδ2と定義し、第3領域(翼リング近傍部8caと翼中央部8cbとの間の翼間部8cc)の前進角をδ3と定義する。
上述の翼出口角βbにおける関係では、、βb2<βb1<βb3であったが、翼出口角βbの代わりに前進角δを利用して表記すると、δ3<δ1<δ2となる。
このように、翼8cは、一対の支持板の間で、翼8cを長手方向で複数の領域に分割し、羽根車に形成した状態での支持板に隣接する両端部の領域を第1領域、翼中央部を第2領域、第1領域と第2領域との間の翼中央部両側に配設する第3領域に分割している。そして、各領域は翼出口角βb及び前進角δが異なる形状で適正な翼出口角βb及び前進角δとしているので、流れの剥離を抑制し低騒音化できる。
よって、長手方向で同じ翼形状であるものに比べ、さらに高効率、低騒音な貫流ファンを搭載した省エネで静粛な空気調和装置の室内機が得られる。
図14に示すように、従来の長手方向で同一翼断面形状の貫流ファンでは吹出口高さ方向の風速分布V1のように、相対的に風速がリング間中央部で速く、翼リング近傍部8caはリング8b表面の摩擦損失の影響で遅い分布である。
一方、本実施の形態2の貫流ファン8では、風速分布がV2に示すようになる。このように、翼中央部8cbの翼出口角βb2が最小で(翼前進角が最大で)翼回転方向ROへ突出し、翼間距離が小さい形状なので、リング間の長手方向中央部に流れが集中しすぎることを抑制することができる。また、翼間部8ccは翼出口角βb3が最も大きく(前進角が最も小さく)、他の領域(第1領域及び第2領域)に比べ相対的に半径方向へ吹出され、翼回転方向ROに隣合う翼8cと、翼8cとの間の距離も拡大することで風速を低減できる。
また、低速なリング近傍部8acは、翼出口角βb1を小さくし(前進角を大きくし)て、翼間距離を縮小している。これにより、流れの不安定さによる乱れ生成を防止でき、かつ風速を増加できる。
さらに、従来のように外周側端部15aが、長手方向で徐々に湾曲する波形を形成することで外周側端部15aで流れを拡散し乱れを抑制するのではなく、本実施の形態2では異なる翼出口角βbを有する領域が所定幅一定となる矩形状に翼形状が変化するので、羽根車の吹出し風向を長手方向で制御することで、下流側の吹出口への風速分布を均一化が図れる。
その結果、長手方向で同じ翼形状であるものに比べ、さらに高効率、低騒音な貫流ファンを搭載した省エネで静粛な空気調和装置の室内機が得られる。
図20は、各領域における外周側端部における翼出口角の差と、騒音差との関係の説明図である。より詳細には、図20は、それぞれ第3領域と第2領域のそれぞれの外周側端部における翼出口角の差と騒音の関係図、及び、第1領域と第2領域のそれぞれの外周側端部における翼出口角の差と騒音の関係図を示している。
隣り合う領域で、翼出口角βbの差が大きすぎると、領域ごとの通過風速差が大きくなりすぎ、せん断乱れが生じ、効率及び騒音が悪化してしまう。そこで、隣り合う領域での翼出口角度差の適正範囲が存在する。
図20のように、翼8cは、第3領域と第2領域のそれぞれの外周側端部15aにおける翼出口角の差が、7°〜15°、第1領域と第2領域のそれぞれの外周側端部15aにおける翼出口角の差が、4°〜10°となるように翼が形成されることで、低騒音を維持できる。
また、翼出口角の異なる5つの領域が傾斜面の連結部8gでつながり、略直角段差でないので、翼面上で急激に流れの変化が生じないので段差による乱れが生じない。
よって、流れ方向で風速分布が均一化され、局所的に高風速域が無くなるので負荷トルクが低減するためモータの消費電力が低減できる。また下流側に配設される風向ベーンにも局所的な高速流が当たらないので通風抵抗が低減し、さらに負荷トルクが低減できる。
また、風向ベーンへの風速が均一化し局所的に高速な領域が無くなるので風向ベーン表面での境界層乱れによる騒音も低減できる。
このように、本発明の翼形状は、さらに羽根車外周側、内周側両方で剥離防止や風速分布の均一化などを図れることで、高効率で低騒音な貫流ファン、及びそれを搭載した省エネで静粛な貫流ファン8を搭載した室内機100を得ることができる。
図21は、リング8b間の翼長さWLに対する連結部の翼長さWL4の比率と、騒音差との関係の説明図である。
しかし、連結部8gの翼長さが長すぎると主機能となる翼面積が減少してしまい特性悪化する。そこで、連結部8gの翼長さに適正範囲が存在する。
図21のように、各領域をつなぐ連結部それぞれの翼長さWL4は、支持板間の翼長さWLとの比率が2〜6%となるように翼を形成することで低騒音化が維持される。
そして、翼は第1、第2、第3の各領域において、内周側端部15b側の表面が平面で、略同一肉厚となる直線部を有し、さらに外周側では羽根車長手方向で翼断面形状が変化し、直線部は羽根車長手方向で翼断面形状が同一となるように形成しているので、平面Qsで負圧が生成させるため、内周側曲面Bs2で流れが剥離しかけたとしても再付着する。
さらに、平面Qsが平坦なので、曲面の場合に比べ翼厚tが羽根車外周に向け急激に増加しないので摩擦抵抗が抑制できる。
また、羽根車軸方向で同一形状部を有しているので、樹脂成形時凹凸により樹脂流動や冷却の影響で生じる反りを抑制し、組立製造性が容易にできる。
図22は、第3領域における翼弦長Lo3と、直線部翼弦長さLt3の比と、ファンモータ入力Wmとの関係の説明図である。
翼8cを縦断面視したときに、当該翼8cの外周側端部15a及び内周側端部15bとがそれぞれ円弧で形成され、外周側端部15aの円弧中心P1と内周側端部15bの円弧中心P2とを結ぶ線分である翼弦線の長さを翼弦長Loとし、第3領域での翼弦長をLo3とする。
また、圧力面13a及び負圧面13bに内接する円であって翼8cの最大肉厚部における内接円の中心を通る翼弦線の垂線と、当該翼弦線との交点を最大肉厚部翼弦点とする。 さらに、内周側端部15bの円弧中心P2と、最大肉厚部翼弦点との距離を、直線部翼弦長さLtとし、第3領域(翼間部8cc)での直線部翼弦長さLt3とする。
図22より、たとえば30%≦Lt3/Lo3≦50%を満たすように翼8cを形成することで、ファンモータ入力を低く維持でき、省エネな空気調和装置の室内機が得られる。
また、本実施の形態2に係る翼8cは、各領域ごとに、異なる翼出口角βbを有しているので、翼面の剥離が抑制でき、最大肉厚位置の範囲が拡大できる。
図23は、WL3/WLとファンモータ入力との関係の説明図である。
また、第3領域の翼長さWL3が、支持板であるリング8b間の翼長さWLに対し、短すぎると翼長さ方向全体で翼間距離が狭まり翼間風速が増加する。このため、ファンモータ入力が悪化してしまう。一方、第3領域の翼長さWL3が、支持板であるリング8b間の翼長さWLに対し、長すぎると翼出口角βbが翼長さ方向で同一の翼形状(WL3/WL=100%)と差が小さくなる。このため、支持板間の翼長さWLに対する第3領域の翼長さWL3の適正範囲が存在することとなる。
図23に示すように、たとえばWL3/WLが20%〜40%となるように翼8cを形成することでファンモータ入力を低く維持で、省エネな空気調和装置の室内機が得られる。
1 本体、1a 本体上部、1b 前面パネル、2 吸込グリル、3 吹出口、 4a 上下風向ベーン 、4b 左右風向ベーン、5 フィルタ、6 ドレンパン、7 熱交換器、8 貫流ファン、8a 羽根車、8b リング、8c 翼、8d 羽根車単体、8e ファンボス、8f ファンシャフト、8g 連結部、9 スタビライザー、10 ガイドウォール、11 部屋、11a 部屋の壁、12 モータ、12a モータシャフト、13a 圧力面、13b 負圧面、15a 外周側端部、15b 内周側端部、100 室内機、Bp1、Bs1 外周側曲面、Bp2、Bs2 内周側曲面、E1 吸込側風路、E2 吹出側風路、Hp 最大反り高さ(第1最大反り高さ)、Hs 最大反り高さ(第2最大反り高さ)、L 翼弦線、Lo 翼弦長、Lo3 第3領域での翼延長、Lp 翼弦最大反り長さ(第1翼弦最大反り長さ)、Ls 翼弦最大反り長さ(第2翼弦最大反り長さ)、Lt 翼の最大肉厚部における内接円の中心P3とする。中心P3を通る翼弦線Lの垂線と、円弧中心P2を通る翼弦線Lの垂線との距離である最大肉厚部長さ、Lt3 第3領域での最大肉厚部長さ、Mp 最大反り位置(第1最大反り位置)、Ms 最大反り位置(第2最大反り位置)O 羽根車回転軸中心、P1、P2、P4、P13 中心、Pp 最大反り翼弦点(第1最大反り翼弦点)、Ps 最大反り翼弦点(第2最大反り翼弦点)、Pt 最大肉厚部翼弦点、Rp1、Rp2、Rs1、Rs2 円弧半径、Q 直線部、Qp、Qs 平面、RO 回転方向、Sb 肉厚中心線、Sb1 接線、Sf 延長線、Wp、Ws 平行線、t1 翼厚(外周側端部)、t2 翼厚(内周側端部)、t3 最大肉厚、βb 翼出口角、βb1 第1領域の翼出口角、βb2 第2領域の翼出口角、βb3 第3領域の翼出口角、δ 翼前進角、δ1 第1領域の翼前進角、δ2 第2領域の翼前進角、δ3 第3領域の翼前進角、θe 屈曲角度、8ca 翼リング近傍部、8cb 翼リング間中央部、8cc 翼間部、8ce 連結部、U1 従来の風速分布、U2 本発明の風速分布、WL 貫流ファンの羽根車の2つのリング間距離、WL1 翼リング近傍部長さ、WL2 翼リング間中央部長さ、WL3 翼間部長さ、WL4 連結部の翼長さ。
本発明に係る空気調和装置は、吸込口及び吹出口を有する本体と、本体内に設けられ、自身が回転することで吸込口から空気を本体内に取り込み吹出口から吹き出す羽根車を有する貫流ファンと、本体内の空間を貫流ファンより上流側である吸込側流路と、下流側である吹出側流路とに区画するスタビライザーと、を有し、羽根車が有する翼は、当該翼を縦断面視したときに、翼の圧力面及び当該圧力面の反対側の負圧面が、羽根車の回転軸から翼の外側に向かうにしたがって羽根車回転方向に湾曲し圧力面及び負圧面が、少なくとも一つの円弧で形成される曲面で形成され、一方側が曲面に接続され、他方側が翼の側端部側に延出し、圧力面及び負圧面のうち円弧で形成された方の表面が連続して平面である直線部が形成されものである。
図4は、図3に示す貫流ファン8の羽根車8aに翼8cが1枚設けられた状態の斜視図である。図5及び図6は、図3の貫流ファンの翼のA−A断面図である。なお、図4では、説明の便宜上、翼8cが1枚設けられた状態を図示している。
図5及び図6に示すように、翼8cの外周側端部(外側端部)15a及び内周側端部(内側端部)15bは、それぞれ円弧形状で形成されている。そして、翼8cは、外周側端部15aの方が、内周側端部15bに対して羽根車回転方向ROに前傾するように形成されている。すなわち、翼8cを縦断面視した際において、翼8cの圧力面13a及び負圧面13bが、羽根車8aの回転軸Oから翼8cの外側に向かうにしたがって、羽根車回転方向ROに湾曲しているということである。そして、翼8cは、翼8cの中央付近が、外周側端部15aと内周側端部15bとを結ぶ直線に対して最も離れるように弓形に形成されている。
外周側端部15aに形成される円弧形状に対応する円の中心をP1(円弧中心P1とも称する)とし、内周側端部15bに形成される円弧形状に対応する円の中心をP2(円弧中心P2とも称する)とする。また、円弧中心P1、P2を結ぶ線分を翼弦線Lとすると、図6に示すように、翼弦線Lの長さはLoとなる(以下、翼弦長Loとも称する)。
翼8cの長手方向に沿って、翼8c近傍の構成を順番に挙げると次のようになる。
すなわち、翼8cは、支持板である一方側のリング8b一方側の翼リング近傍部8ca、連結部8g、一方側の翼間部8cc、連結部8g、翼中央部8cb、連結部8g、他方側の翼間部8cc、連結部8g、他方側の翼リング近傍部8ca、支持板である他方側のリング8bの順番で、各構成が設けられている。翼8cは、両端部側のリング8bの間に、5つの領域及び4つの連結部8gを有しているということである。
図14に示すように、従来の長手方向で同一翼断面形状の貫流ファンでは吹出口高さ方向の風速分布V1のように、相対的に風速がリング間中央部で速く、翼リング近傍部8caはリング8b表面の摩擦損失の影響で遅い分布である。
一方、本実施の形態2の貫流ファン8では、風速分布がV2に示すようになる。このように、翼中央部8cbの翼出口角βb2が最小で(翼前進角が最大で)翼回転方向ROへ突出し、翼間距離が小さい形状なので、リング間の長手方向中央部に流れが集中しすぎることを抑制することができる。また、翼間部8ccは翼出口角βb3が最も大きく(前進角が最も小さく)、他の領域(第1領域及び第2領域)に比べ相対的に半径方向へ吹出され、翼回転方向ROに隣合う翼8cと、翼8cとの間の距離も拡大することで風速を低減できる。
また、低速なリング近傍部8caは、翼出口角βb1を小さくし(前進角を大きくし)て、翼間距離を縮小している。これにより、流れの不安定さによる乱れ生成を防止でき、かつ風速を増加できる。
1 本体、1a 本体上部、1b 前面パネル、2 吸込グリル、3 吹出口、 4a 上下風向ベーン 、4b 左右風向ベーン、5 フィルタ、6 ドレンパン、7 熱交換器、8 貫流ファン、8a 羽根車、8b リング、8c 翼、8d 羽根車単体、8e ファンボス、8f ファンシャフト、8g 連結部、9 スタビライザー、10 ガイドウォール、11 部屋、11a 部屋の壁、12 モータ、12a モータシャフト、13a 圧力面、13b 負圧面、15a 外周側端部、15b 内周側端部、100 室内機、Bp1、Bs1 外周側曲面、Bp2、Bs2 内周側曲面、E1 吸込側風路、E2 吹出側風路、Hp 最大反り高さ(第1最大反り高さ)、Hs 最大反り高さ(第2最大反り高さ)、L 翼弦線、Lo 翼弦長、Lo3 第3領域での翼弦長、Lp 翼弦最大反り長さ(第1翼弦最大反り長さ)、Ls 翼弦最大反り長さ(第2翼弦最大反り長さ)、Lt 翼の最大肉厚部における内接円の中心P3とする。中心P3を通る翼弦線Lの垂線と、円弧中心P2を通る翼弦線Lの垂線との距離である最大肉厚部長さ、Lt3 第3領域での最大肉厚部長さ、Mp 最大反り位置(第1最大反り位置)、Ms 最大反り位置(第2最大反り位置)O 羽根車回転軸中心、P1、P2、P4、P13 中心、Pp 最大反り翼弦点(第1最大反り翼弦点)、Ps 最大反り翼弦点(第2最大反り翼弦点)、Pt 最大肉厚部翼弦点、Rp1、Rp2、Rs1、Rs2 円弧半径、Q 直線部、Qp、Qs 平面、RO 回転方向、Sb 肉厚中心線、Sb1 接線、Sf 延長線、Wp、Ws 平行線、t1 翼厚(外周側端部)、t2 翼厚(内周側端部)、t3 最大肉厚、βb 翼出口角、βb1 第1領域の翼出口角、βb2 第2領域の翼出口角、βb3 第3領域の翼出口角、δ 翼前進角、δ1 第1領域の翼前進角、δ2 第2領域の翼前進角、δ3 第3領域の翼前進角、θe 屈曲角度、8ca 翼リング近傍部、8cb 翼リング間中央部、8cc 翼間部、8ce 連結部、U1 従来の風速分布、U2 本発明の風速分布、WL 貫流ファンの羽根車の2つのリング間距離、WL1 翼リング近傍部長さ、WL2 翼リング間中央部長さ、WL3 翼間部長さ、WL4 連結部の翼長さ。

Claims (14)

  1. 吸込口及び吹出口を有する本体と、
    前記本体内に設けられ、自身が回転することで前記吸込口から空気を前記本体内に取り込み前記吹出口から吹き出す羽根車を有する貫流ファンと、
    前記本体内の空間を前記貫流ファンより上流側である吸込側流路と、下流側である吹出側流路とに区画するスタビライザーと、
    を有し、
    前記羽根車が有する翼は、
    当該翼を縦断面視したときに、
    前記翼の圧力面及び当該圧力面の反対側の負圧面が、前記羽根車の回転軸から前記翼の外側に向かうにしたがって前記羽根車回転方向に湾曲し、前記翼の中央付近が前記翼の内側端部と外側端部とを結ぶ直線に対して最も離れる弓形に形成され、
    前記圧力面及び前記負圧面が、少なくとも一つの円弧で形成される曲面で形成され、
    一方側が前記曲面に接続され、他方側が前記翼の前記内側端部側に延出し、前記圧力面及び前記負圧面のうち円弧で形成された方の表面が連続して平面である直線部が形成され、
    前記圧力面及び前記負圧面に内接する円の直径を翼厚としたとき、前記外側端部が前記内側端部よりも小さく、前記外側端部から徐々に増加し前記直線部で略同一の肉厚となるように形成されている
    ことを特徴とする空気調和装置の室内機。
  2. 前記翼は、
    当該翼を縦断面視したときに、
    前記圧力面及び前記負圧面のうち少なくとも一方が、二つ以上の異なる半径の円弧で形成される多重円弧曲面で形成された
    ことを特徴とする請求項1に記載の空気調和装置の室内機。
  3. 前記翼は、
    当該翼を縦断面視したときに、
    前記圧力面及び前記負圧面に内接する円の直径を翼厚としたとき、前記外側端部が前記内側端部よりも小さく、前記外側端部から中央へ向け徐々に増加し、中央付近の所定位置で最大となり、内側に向け徐々に薄肉となり、前記直線部で略同一の肉厚となるように形成されている
    ことを特徴とする請求項1又は2に記載の空気調和装置の室内機。
  4. 前記翼は、
    当該翼を縦断面視したときに、
    前記圧力面及び前記負圧面が、それぞれ二つの円弧で形成され、
    前記圧力面であって前記翼の前記外側端部側の円弧の半径をRp1とし、
    前記圧力面であって前記翼の前記内側端部側の円弧の半径をRp2とし、
    前記負圧面であって前記翼の前記外側端部側の円弧の半径をRs1とし、
    前記負圧面であって前記翼の前記内側端部側の円弧の半径をRs2とするとき、
    Rs1>Rp1>Rs2>Rp2
    を満たすように形成されている
    ことを特徴とする請求項1〜3のいずれか一項に記載の空気調和装置の室内機。
  5. 前記翼の長手方向における一方の端部側及び他方の端部側に、前記翼を支持する支持板が設けられ、
    前記翼は、
    前記貫流ファンの前記羽根車回転軸に直交する翼断面において当該羽根車回転軸と前記翼の前記外側端部とを結ぶ線分に対応する外径が、
    前記羽根車回転軸方向である長手方向における一方の端部側から他方の端部側にかけて略同一となるように形成され、
    かつ、
    一方の前記支持板と他方の前記支持板との間で前記翼を長手方向で複数の領域に分割し、前記羽根車に形成した状態での前記支持板に隣接する両端部の領域を第1領域とし、翼中央部を第2領域とし、前記第1領域と前記第2領域との間の前記翼中央部両側に配設する第3領域としたとき、
    前記第1領域、前記第2領域及び前記第3領域は翼出口角が異なる
    ことを特徴とする請求項1〜4のいずれか一項に記載の空気調和装置の室内機。
  6. 前記翼は、
    前記第1領域の前記翼出口角をβb1とし、前記第2領域の前記翼出口角をβb2とし、前記第3領域の前記翼出口角をβb3としたとき、
    βb2<βb1<βb3の関係を満たすように形成されている
    ことを特徴とする請求項5に記載の空気調和装置の室内機。
  7. 前記翼は、
    前記第2領域の前記外側端部は、前記第1領域の前記外側端部よりも回転方向に前進し、
    前記第1領域の前記外側端部は、前記第3領域の前記外側端部よりも回転方向に前進し、
    前記第1領域の前進角をδ1とし、前記第2領域の前進角をδ2とし、前記第3領域の前進角をδ3としたとき、
    δ3<δ1<δ2の関係を満たすように形成されている
    ことを特徴とする請求項5又は6に記載の空気調和装置の室内機。
  8. 前記翼は、
    前記第1領域と前記第3領域とを接続する第1連結部と、前記第3領域と前記第2領域とを接続する第2連結部を有し、
    前記第1連結部及び第2連結部は、
    前記貫流ファンの前記羽根車回転軸方向である長手方向において、
    一方に接続されている領域側から他方に接続されている領域側に向かって傾斜している
    ことを特徴とする請求項5〜7のいずれか一項に記載の空気調和装置の室内機。
  9. 前記翼は、
    前記第1領域、第2領域及び第3領域において、
    少なくとも前記内側端部側の表面が平面で、
    略同一肉厚となる前記直線部より外周側では羽根車長手方向で翼断面形状が変化し、
    前記直線部は前記翼の長手方向で翼断面形状が同一となるように形成した
    ことを特徴とする請求項5〜8のいずれか一項に記載の空気調和装置の室内機。
  10. 前記翼は、
    前記第3領域と第2領域のそれぞれの前記外側端部における翼出口角の差が、7°〜15°となるように形成されている
    ことを特徴とする請求項5〜9のいずれか一項に記載の空気調和装置の室内機。
  11. 前記翼は、
    前記第1領域と第2領域のそれぞれの前記外側端部における翼出口角の差が、4°〜10°となるように形成されている
    ことを特徴とする請求項10に記載の空気調和装置の室内機。
  12. 前記翼は、
    当該翼を縦断面視したときに、
    当該翼の前記外側端部及び前記内側端部がそれぞれ円弧で形成され、
    前記外側端部の円弧中心と前記内側端部の円弧中心とを結ぶ線分である翼弦線の長さを翼弦長とし、
    前記圧力面及び前記負圧面に内接する円であって前記翼の最大肉厚部における内接円の中心を通る前記翼弦線の垂線と、当該翼弦線との交点を最大肉厚部翼弦点とし、
    前記内側端部の円弧中心と、前記最大肉厚部翼弦点との距離を、直線部翼弦長さとし、
    前記第3領域における前記翼弦長をLo3とし、前記第3領域における前記直線部翼弦長さをLt3とするとき、
    30%≦Lt3/Lo3≦50%
    を満たすように形成されている
    ことを特徴とする請求項5〜11のいずれか一項に記載の空気調和装置の室内機。
  13. 前記翼は、
    前記第3領域の長さであって前記翼の長手方向の長さを、
    前記一方の端部側の前記支持板と前記他方の端部側の前記支持板との間の長さである翼長さで割って得られる比率が、
    20%〜40%となるように形成されている
    ことを特徴とする請求項5〜11のいずれか一項に記載の空気調和装置の室内機。
  14. 前記翼は、
    前記連結部の長さであって前記翼の長手方向の長さを、
    前記一方の端部側の前記支持板と前記他方の端部側の前記支持板との間の長さである翼長さで割って得られる比率が、
    2〜6%となるように形成されている
    ことを特徴とする請求項5〜13のいずれか一項に記載の空気調和装置の室内機。
JP2014508997A 2012-04-06 2012-10-04 空気調和装置の室内機 Active JP5774206B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014508997A JP5774206B2 (ja) 2012-04-06 2012-10-04 空気調和装置の室内機

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JPPCT/JP2012/002418 2012-04-06
PCT/JP2012/002418 WO2013150569A1 (ja) 2012-04-06 2012-04-06 空気調和装置の室内機
PCT/JP2012/075780 WO2013150673A1 (ja) 2012-04-06 2012-10-04 空気調和装置の室内機
JP2014508997A JP5774206B2 (ja) 2012-04-06 2012-10-04 空気調和装置の室内機

Publications (2)

Publication Number Publication Date
JP5774206B2 JP5774206B2 (ja) 2015-09-09
JPWO2013150673A1 true JPWO2013150673A1 (ja) 2015-12-17

Family

ID=54192639

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014508997A Active JP5774206B2 (ja) 2012-04-06 2012-10-04 空気調和装置の室内機

Country Status (1)

Country Link
JP (1) JP5774206B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4112945A4 (en) * 2020-02-25 2024-03-20 LG Electronics, Inc. TANGENTIAL FAN

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7394614B2 (ja) * 2019-12-18 2023-12-08 サンデン株式会社 遠心送風機

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4112945A4 (en) * 2020-02-25 2024-03-20 LG Electronics, Inc. TANGENTIAL FAN

Also Published As

Publication number Publication date
JP5774206B2 (ja) 2015-09-09

Similar Documents

Publication Publication Date Title
WO2013150673A1 (ja) 空気調和装置の室内機
JP6041895B2 (ja) 空気調和機
JP5263198B2 (ja) 羽根車と送風機及びそれを用いた空気調和機
WO2009139422A1 (ja) 遠心送風機
JP5971667B2 (ja) プロペラファン、送風装置及び室外機
WO2012002081A1 (ja) ファン、成型用金型および流体送り装置
KR101826359B1 (ko) 횡류팬 및 공기 조화기
JP2011179331A (ja) 送風機とその送風機を用いた空気調和機
KR20200096721A (ko) 팬 및 이를 구비하는 공기 조화기 실내기
JP5774206B2 (ja) 空気調和装置の室内機
KR101883502B1 (ko) 횡류팬 및 공기 조화기
JP2009281215A (ja) 空気調和機用室内機
WO2015064617A1 (ja) 貫流ファン及び空気調和機
JP6000454B2 (ja) 空気調和装置の室内機
WO2015063851A1 (ja) 貫流ファン及び空気調和機
JP5179638B2 (ja) ファン、成型用金型および流体送り装置
JP6625213B2 (ja) 多翼ファン及び空気調和機
NZ700985B2 (en) Indoor unit for air conditioning device
NZ716887B2 (en) Indoor unit for air-conditioning apparatus

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150602

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150630

R150 Certificate of patent or registration of utility model

Ref document number: 5774206

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250