WO2010052846A1 - 巻取式真空処理装置 - Google Patents

巻取式真空処理装置 Download PDF

Info

Publication number
WO2010052846A1
WO2010052846A1 PCT/JP2009/005652 JP2009005652W WO2010052846A1 WO 2010052846 A1 WO2010052846 A1 WO 2010052846A1 JP 2009005652 W JP2009005652 W JP 2009005652W WO 2010052846 A1 WO2010052846 A1 WO 2010052846A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
roller
processing apparatus
vacuum processing
chamber
Prior art date
Application number
PCT/JP2009/005652
Other languages
English (en)
French (fr)
Inventor
廣野貴啓
多田勲
Original Assignee
株式会社アルバック
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社アルバック filed Critical 株式会社アルバック
Priority to US13/127,306 priority Critical patent/US8673078B2/en
Priority to JP2010536651A priority patent/JP5324596B2/ja
Priority to RU2011122610/02A priority patent/RU2482219C2/ru
Priority to CN2009801422991A priority patent/CN102197159B/zh
Priority to DE112009002631T priority patent/DE112009002631A5/de
Publication of WO2010052846A1 publication Critical patent/WO2010052846A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/54Apparatus specially adapted for continuous coating
    • C23C16/545Apparatus specially adapted for continuous coating for coating elongated substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/505Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/52Controlling or regulating the coating process
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32733Means for moving the material to be treated
    • H01J37/32752Means for moving the material to be treated for moving the material across the discharge
    • H01J37/32761Continuous moving
    • H01J37/3277Continuous moving of continuous material

Definitions

  • the present invention continuously unwinds a flexible processing object under reduced pressure, closely contacts the unwound processing object to a can roller, and performs a predetermined process on the processing object on the can roller.
  • the present invention relates to a take-up vacuum processing apparatus that winds up a processing object.
  • a thin film forming apparatus that forms a thin film on a substrate while continuously unwinding and winding the magnetic recording medium with a roller.
  • Such a thin film forming apparatus generates plasma by a reactive gas between the can and the first anode disposed opposite to the can while the magnetic recording medium is brought into close contact with the rotating can. .
  • a protective film is formed on the magnetic recording medium (see, for example, Patent Document 1).
  • a plasma processing apparatus that performs plasma processing (for example, RIE (Reactive Ion Etching)) while continuously unwinding and winding a plastic film such as PET or PI (polyimide).
  • plasma processing for example, RIE (Reactive Ion Etching)
  • RIE reactive Ion Etching
  • a plastic film such as PET or PI (polyimide).
  • Such a plasma processing apparatus generates plasma by a process gas between a can and an anode arranged so as to face the can while the plastic film is allowed to travel on a rotating can. Thereby, a film is etched and the surface modification of a film can be performed.
  • a high frequency power source is connected to the can, and high frequency power is supplied from the high frequency power source when the can rotates at a predetermined speed.
  • the rotating can and the stationary high-frequency power source are connected by a rotation introducing unit (not shown) such as a rotary connector using mercury, a capacitor coupling or a slip ring made of a plurality of opposed flat plates, for example.
  • the rotary connector has a structure including a rotating electrode connected to the can side at both ends of a box filled with mercury, and a fixed electrode connected to the high frequency power source side.
  • a high frequency such as 13.56 MHz
  • heat is generated and there is a risk of damage to the rotary connector.
  • one rotating flat plate is connected to the can side, and the other fixed plurality of flat plates respectively facing the flat plates are connected to the high frequency power source side.
  • dielectric breakdown may occur at a high voltage.
  • the slip ring When the slip ring is used as a connection part of a high frequency power source, there is a risk of damage due to heat generation.
  • the electrode since the electrode is a contact type in the slip ring, the electrode is worn by the contact, and is not suitable for extending the life.
  • a winding type vacuum processing apparatus includes a chamber, a first electrode, a gas supply unit, and a third electrode.
  • the chamber can maintain a vacuum state.
  • the first electrode is of a roller type and is rotatably provided in the chamber.
  • the flexible processing object contacts and rotates to allow the processing object to run.
  • the gas supply unit includes a second electrode arranged to face the first electrode in the chamber, and the processing object in contact with the first electrode, the second electrode, It is possible to supply process gas during this period.
  • the third electrode is disposed in the chamber so as to face the first electrode, and is applied with an AC voltage from the AC power source.
  • FIG. 1 It is a schematic block diagram which shows a plasma processing apparatus as a winding type vacuum processing apparatus which concerns on one Embodiment of this invention. It is a schematic side view of the plasma processing apparatus. It is sectional drawing which shows the electrode unit which concerns on other embodiment.
  • a winding type vacuum processing apparatus includes a chamber, a first electrode, a gas supply unit, and a third electrode.
  • the chamber can maintain a vacuum state.
  • the first electrode is of a roller type and is rotatably provided in the chamber.
  • the flexible processing object contacts and rotates to allow the processing object to run.
  • the gas supply unit includes a second electrode arranged to face the first electrode in the chamber, and the processing object in contact with the first electrode, the second electrode, It is possible to supply process gas during this period.
  • the third electrode is disposed in the chamber so as to face the first electrode, and is applied with an AC voltage from the AC power source.
  • the third electrode is disposed in the chamber, when the interior of the chamber is maintained at a predetermined degree of vacuum, the occurrence of dielectric breakdown between the first electrode and the third electrode is prevented. Can do.
  • the third electrode is arranged with a predetermined gap from the first electrode, that is, since an AC voltage is applied to the first electrode in a non-contact manner, there is no wear due to contact and the electrode has a long life. Can be achieved.
  • the first electrode may be provided so as to extend in the rotation axis direction of the first electrode.
  • the length of the third electrode in the direction of the rotation axis of the first electrode is closer to the length of the first electrode in that direction, charges are uniformly generated in the first electrode and the third electrode.
  • the longer the length of the can roller in the rotating shaft direction the longer the rotating shaft of the can roller. Resistance to supply of electric charges to the other end in the direction increases.
  • the take-up type vacuum processing apparatus of this embodiment such a problem of electrical resistance can be solved, and as a result, plasma by the reaction gas can be generated uniformly between the first electrode and the second electrode. Can do.
  • the first electrode may have an outer peripheral surface
  • the third electrode may have a surface facing the outer peripheral surface along the outer peripheral surface of the first electrode while keeping a gap constant. Good.
  • the distance between the first electrode and the third electrode can be made substantially constant.
  • plasma by the reactive gas can be generated uniformly between the first electrode and the second electrode.
  • the winding-type vacuum processing apparatus may further include a temperature adjustment mechanism that cools or heats the first electrode. Thereby, it can be made to run, cooling or heating the processing object which contacts the 1st electrode.
  • the take-up vacuum processing apparatus may further include a cooling mechanism for cooling the third electrode.
  • the third electrode is fixed, it is easier to install the water cooling mechanism on the third electrode as compared with the conventional case where the rotation introducing unit is provided with a cooling mechanism.
  • FIG. 1 is a schematic configuration diagram showing a plasma processing apparatus as a winding type vacuum processing apparatus according to an embodiment of the present invention.
  • FIG. 2 is a schematic side view of the plasma processing apparatus 100.
  • This plasma processing apparatus 100 uses, for example, a tape-shaped film 5 as a processing target.
  • a resin film is used, and typical examples thereof include those having a heat resistant temperature of 200 ° C. or higher, such as polyimide, polyamide, and aramid.
  • the film 5 is not limited to a resin film, and may be, for example, a magnetic film used for a magnetic recording medium or other films.
  • the plasma processing apparatus 100 includes a vacuum chamber 15, a traveling mechanism 10, a gas supply unit 20, an electrode unit 9, and an RF power source 3.
  • the vacuum chamber 15 has a partition wall 16 provided with a connection portion 17 to which an exhaust pipe (not shown) is connected.
  • a vacuum pump (not shown) is connected to the connection portion 17 via the exhaust pipe, and a predetermined vacuum state is maintained in the vacuum chamber 15 by the operation of the vacuum pump.
  • the degree of vacuum can be set as appropriate within a known range suitable for plasma processing.
  • the inside of the vacuum chamber 15 is divided into a chamber in which the electrode unit 9 is disposed by a partition plate 28 and a chamber in which a plasma generation unit including a counter electrode 23 described later is disposed.
  • the partition plate 28 has an arc portion 28 a provided so as to face the side surface of the can roller 13. By providing these arc portions 28a, the conductance of gas between the two chambers can be reduced. By reducing the conductance between the rooms, it becomes easy to individually adjust the pressure in each room.
  • the chamber in which the plasma generation unit including the counter electrode 23 is disposed is adjusted to a pressure suitable for plasma processing, and the chamber in which the electrode unit 9 is disposed has abnormal discharge or the like between the electrode unit 9 and the can roller 13. The pressure is adjusted so that it does not occur. It is preferable that an exhaust means is also connected to the chamber in which the electrode unit 9 is arranged so that exhaust can be performed individually.
  • the traveling mechanism 10 is disposed in the vacuum chamber 15 and causes the film 5 to travel so that the film 5 can be surface-treated.
  • the traveling mechanism 10 includes an unwinding roller 11 that feeds out the film 5, a fed-out film 5 that comes into contact with and in close contact with, and a can roller 13 that cools the adhered film 5, and is fed out from the can roller 13.
  • a take-up roller 12 for taking up the film 5 is provided.
  • Guide rollers 14 are provided between the unwinding roller 11 and the can roller 13 and between the winding roller 12 and the can roller 13, respectively.
  • the film 5 comes into contact with the outer peripheral surface 18a of the can roller 13 at a predetermined holding angle.
  • the can roller 13 has a cylindrical shape, and the rotary shaft member 2 is rotatably supported by, for example, a support member 8a and a base plate 8b.
  • the can roller 13 includes a disk-shaped insulator 19 provided at both ends, and a roller electrode 18 that is a conductive member sandwiched between the insulators 19.
  • a cooling mechanism (not shown) is provided in the can roller 13 so that the roller electrode 18 of the can roller 13 is mainly cooled.
  • the cooling mechanism for example, a system in which a coolant such as water or silicone oil circulates can be used.
  • the refrigerant is introduced from, for example, a refrigerant introduction pipe 29 connected to the rotary shaft member 2, flows through the rotary shaft member 2, and is supplied into the can roller 13.
  • a motor (not shown) is connected to each of the rotating shaft members 2 of the unwinding roller 11, the winding roller 12, and the can roller 13. By driving these motors, the unwinding roller 11, the winding roller 12, and the can roller 13 rotate to give the film 5 power for running the film 5.
  • the arrangement of the unwinding roller 11, the winding roller 12, the can roller 13, and the guide roller 14 is not limited to the arrangement shown in FIG. Further, the number of guide rollers 14 is not limited to four as shown in FIG. 1, and may be any number as long as the desired tension is held on the film 5.
  • the gas supply unit 20 supplies a process gas from a process gas supply source 21, a counter electrode 23 arranged to face the can roller 13 below the can roller 13, and a process gas from the gas supply source 21 to the counter electrode 23 side.
  • a supply pipe 22 and the like are included.
  • the counter electrode 23 is disposed to face the position where the film 5 of the can roller 13 is in contact.
  • the counter electrode 23 is provided with an introduction port 23 a through which process gas is introduced from the supply pipe 22.
  • a shower plate 25 attached to an insulator 24 arranged around the counter electrode 23 is disposed on the can roller 13 side of the counter electrode 23.
  • the shower plate 25 may be formed of a conductor, and the shower plate 25 may constitute a part of the counter electrode 23. Further, the process gas may be introduced from the gas nozzle without using the shower plate.
  • the process gas supplied from the supply pipe 22 to the counter electrode 23 via the introduction port 23 a is supplied to the reaction region 27 formed between the can roller 13 and the shower plate 25 via the shower plate 25.
  • the counter electrode 23 is set to a ground potential, for example. Accordingly, plasma due to the reaction gas is generated in the reaction region 27 by the RF high-frequency voltage applied between the RF electrode 6 and the roller electrode 18 by the RF power source 3 described later.
  • the gas supply unit 20 includes a gas supply pipe 22 such as a gas cylinder corresponding to the gas to be used.
  • the process gas is appropriately set depending on the type of process such as plasma processing and etching, and the type of film formed on the film 5 by CVD or the like.
  • the film 5 when plasma is generated by introducing argon gas or nitrogen gas, the film 5 can be subjected to plasma treatment to perform surface modification of the film 5.
  • plasma treatment to perform surface modification of the film 5.
  • the electrode unit 9 includes an RF electrode 6, an RF power source 3 that generates high-frequency power, a matching box 4 that is connected between the RF power source 3 and the RF electrode 6 and performs impedance matching and the like.
  • the RF electrode 6 is disposed, for example, so as to leave a predetermined gap between the outer peripheral surface of the portion of the can roller 13 that is not in contact with the film 5, that is, the outer peripheral surface 18 a of the roller electrode 18.
  • the gap can be changed as appropriate, but in order to prevent efficient high-frequency propagation and short circuit between the RF electrode 6 and the can roller 13, the optimum distance differs depending on the pressure, but is adjusted to, for example, 1 to 5 mm. It is preferable.
  • the electrode unit 9 includes an insulator 7, a holding member 26 that holds the insulator and the RF electrode 6, and the like.
  • the holding member 26 is supported by, for example, a support member 8a and a base plate 8b.
  • a surface 6a of the RF electrode 6 facing the roller electrode 18 is formed in a shape (for example, an inner surface shape of a cylinder) along the cylindrical shape that is the shape of the outer peripheral surface 18a of the roller electrode 18.
  • the RF electrode 6 is provided so as to extend in the direction of the rotation axis of the can roller 13.
  • the RF electrode 6 has a length substantially the same as the length of the roller electrode 18 in the direction of the rotation axis or the length of the roller electrode 18. The length is close to.
  • the RF voltage is applied to the roller electrode 18 via the gap between the RF electrode 6 and the roller electrode 18.
  • plasma due to the process gas is generated in the reaction region 27 between the roller electrode 18 and the counter electrode 23 set at the ground potential.
  • the film 5 traveling while being in close contact with the can roller 13 and being cooled or heated is exposed to plasma, and the surface is modified.
  • the RF electrode 6 is arranged in the vacuum chamber 15. Therefore, for example, as compared with the case where the rotation introducing unit such as the capacitor coupling described above is disposed in the atmospheric pressure, the roller electrode 18 and the RF electrode can be used as long as the vacuum chamber 15 is maintained at a predetermined degree of vacuum. It is possible to prevent the dielectric breakdown between the six. Further, there is no problem of damage due to heat generation in a rotation introducing unit such as a conventional rotary connector.
  • the RF electrode 6 is disposed with a gap in between the roller electrode 18, that is, an AC voltage is applied to the roller electrode 18 in a non-contact manner, there is no wear due to contact, and the life of the RF electrode 6 is extended. be able to.
  • the RF electrode 6 Since the RF electrode 6 is provided so as to extend in the rotation axis direction of the can roller 13, charges are uniformly generated in the roller electrode 18 and the RF electrode 6.
  • the RF electrode 6 when an AC power source is connected to one end of the rotating shaft member of the can roller via a rotation introducing unit as in the prior art, the longer the length of the can roller in the rotating shaft direction, the other end of the can roller Resistance to supply of electric charge to (the opposite side of the one end) increases.
  • such a problem of electrical resistance can be solved, and as a result, plasma by the reactive gas can be uniformly generated in the reaction region 27.
  • the RF electrode 6 can be easily increased in size, and the area of the RF electrode 6 facing the roller electrode 18 can be increased.
  • FIG. 3 is a cross-sectional view showing an electrode unit according to another embodiment.
  • a cooling mechanism is provided in the RF electrode 36 of this electrode unit disposed on the roller electrode 18.
  • This cooling mechanism typically has a water channel 37 through which a cooling medium flows.
  • a cooling system in which a liquid phase medium circulates in the water channel 37, or a cooling system that uses a phase change of a refrigerant due to refrigerant circulation. Is used.
  • the liquid phase medium include water and silicone oil.
  • the RF electrode 36 when the RF electrode 36 is cooled by the cooling mechanism, problems due to heat generated from the RF electrode 36, for example, breakage of the RF electrode 36 can be prevented. Further, since the RF electrode 36 is fixed, the water cooling mechanism can be easily installed on the RF electrode 36 as compared with the conventional case where the rotation introducing unit is provided with a cooling mechanism.
  • the plasma processing apparatus 100 is taken as an example of the winding type vacuum processing apparatus according to the above embodiment.
  • a plasma CVD apparatus, plasma etching, and other apparatuses using plasma can be realized as long as the apparatus can process a flexible object to be processed.
  • the arrangement, size, and the like of the RF electrodes 6 and 36 and the counter electrode 23 can be changed as appropriate.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Analytical Chemistry (AREA)
  • Plasma Technology (AREA)
  • Chemical Vapour Deposition (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Cleaning In General (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

【課題】発熱による破損及び絶縁破壊の発生を防止し、長寿命化に適した巻取式真空処理装置を提供すること。 【解決手段】RF電極6が真空チャンバ15内に配置されている。したがって、例えばコンデンサカップリング等の回転導入ユニットが大気圧中に配置されている場合に比べ、真空チャンバ15内が所定の真空度に維持されていれば、ローラ電極18及びRF電極6間の絶縁破壊の発生を防止することができる。また、従来のロータリコネクタのような回転導入ユニットにおける発熱による破損の問題もない。RF電極6がローラ電極18に隙間をあけて配置されているので、つまり、ローラ電極18に非接触で交流電圧が加えられるので、接触による磨耗がなく電極の長寿命化を図ることができる。

Description

巻取式真空処理装置
 本発明は、減圧下において、フレキシブルな処理対象物を連続的に巻き出し、巻き出された処理対象物をキャンローラに密着させ、キャンローラ上の処理対象物に所定の処理を施し、処理された処理対象物を巻き取る巻取式真空処理装置に関する。
 従来から、磁性記録媒体をローラにより連続的に巻き出し及び巻き取りながら、その基体上に薄膜を形成する薄膜形成装置がある。このような薄膜形成装置は、回転するキャンに磁性記録媒体を密着させて走行させながら、キャンと、キャンに対向して配置された第1のアノードとの間に、反応ガスによるプラズマを発生させる。これにより磁性記録媒体上に保護膜が形成される(例えば、特許文献1参照)。
 他に、PETやPI(ポリイミド)等のプラスチックフィルムを連続的に巻き出し及び巻き取りながら、プラズマ処理(例えばRIE(Reactive Ion Etching))を行うプラズマ処理装置がある。このようなプラズマ処理装置は、回転するキャン上にプラスチックフィルムを密着させて走行させながら、キャンとキャンに対向するように配置されたアノードとの間にプロセスガスによるプラズマを発生させる。これにより、フィルムがエッチングされ、フィルムの表面改質を行うことができる。
 ところで、このようなプラズマを使用する薄膜形成装置や処理装置では、キャンには高周波電源が接続され、キャンが所定速度で回転する際にその高周波電源により高周波電力が供給されるようになっている。その回転するキャンと静止した高周波電源とは、例えば、水銀を用いたロータリコネクタ、複数の対向する平板でなるコンデンサカップリングやスリップリング等の、図示しない回転導入ユニットにより接続される。
特許第3429369号公報
 ロータリコネクタは、水銀が封入されたボックスの両端にキャン側に接続され回転する電極と、高周波電源側に接続された固定の電極とを含む構造を有している。このようなロータリコネクタに13.56MHz等の高周波が印加されると、発熱し、ロータリコネクタが破損する危険性があるため、ロータリコネクタは、キャン及び高周波電源の接続には適さない。
 複数の対向する平板でなるコンデンサカップリングでは、一方の回転する複数の平板がキャン側に接続され、それらの平板にそれぞれ対向する他方の固定の複数の平板が高周波電源側に接続される。このようなコンデンサカップリングの手法では、それら複数の平板が大気圧下におかれる場合、高い電圧では絶縁破壊が起こるおそれがある。
 スリップリングが高周波電源の接続部として用いられる場合、発熱による破損のおそれがある。また、スリップリングでは電極が接触型であるため、その接触による電極の磨耗が生じ、長寿命化に適さない。
 以上のような事情に鑑み、本発明の目的は、発熱による破損及び絶縁破壊の発生を防止し、長寿命化に適した巻取式真空処理装置を提供することにある。
 上記目的を達成するため、本発明の一形態に係る巻取式真空処理装置は、チャンバと、第1の電極と、ガス供給ユニットと、第3の電極とを具備する。 
 前記チャンバは、真空状態を維持することが可能である。 
 前記第1の電極は、ローラ型であり、前記チャンバ内で回転可能に設けられ、フレキシブルな処理対象物が接触し、回転することで前記処理対象物を走行させることが可能である。 
 前記ガス供給ユニットは、前記チャンバ内で前記第1の電極に対向するように配置された第2の電極を有し、前記第1の電極に接触した前記処理対象物と前記第2の電極との間にプロセスガスを供給することが可能である。 
 前記第3の電極は、前記チャンバ内で前記第1の電極に対向するように配置され、前記交流電源による交流電圧が印加される。
本発明の一実施形態に係る巻取式真空処理装置として、プラズマ処理装置を示す概略的な構成図である。 そのプラズマ処理装置の概略的な側面図である。 他の実施形態に係る電極ユニットを示す断面図である。
 本発明の一実施形態に係る巻取式真空処理装置は、チャンバと、第1の電極と、ガス供給ユニットと、第3の電極とを具備する。 
 前記チャンバは、真空状態を維持することが可能である。 
 前記第1の電極は、ローラ型であり、前記チャンバ内で回転可能に設けられ、フレキシブルな処理対象物が接触し、回転することで前記処理対象物を走行させることが可能である。 
 前記ガス供給ユニットは、前記チャンバ内で前記第1の電極に対向するように配置された第2の電極を有し、前記第1の電極に接触した前記処理対象物と前記第2の電極との間にプロセスガスを供給することが可能である。 
 前記第3の電極は、前記チャンバ内で前記第1の電極に対向するように配置され、前記交流電源による交流電圧が印加される。 
 第3の電極は、チャンバ内に配置されているので、チャンバ内が所定の真空度に維持されている場合、第1の電極と第3の電極との間で絶縁破壊の発生を防止することができる。また、第3の電極が第1の電極に所定の隙間をあけて配置されているので、つまり、第1の電極に非接触で交流電圧が加えられるので、接触による磨耗がなく電極の長寿命化を図ることができる。
 前記第1の電極は、前記第1の電極の回転軸方向に延びるように設けられていてもよい。
 第3の電極の、第1の電極の回転軸方向の長さが第1の電極のその方向の長さに近いほど、第1の電極及び第3の電極に均一に電荷が発生する。例えば、従来のようにキャンローラの回転軸部材の一端に、回転導入ユニットを介して交流電源が接続される場合には、キャンローラの回転軸方向の長さが長いほど、キャンローラの回転軸方向の他端への電荷の供給に対する抵抗が大きくなる。しかしながら本形態による巻取式真空処理装置によれば、そのような電気抵抗の問題を解決することができる結果、反応ガスによるプラズマを第1の電極及び第2の電極間に均一に発生させることができる。
 前記第1の電極は外周面を有し、前記第3の電極は、ギャップを一定に保ちながら前記第1の電極の前記外周面に沿うように前記外周面に対面する面を有してもよい。
 これにより、第1の電極及び第3の電極間の距離を実質的に一定にすることができる。その結果、反応ガスによるプラズマを第1の電極及び第2の電極間に均一に発生させることができる。
 巻取式真空処理装置は、前記第1の電極を冷却または加熱する温度調節機構をさらに具備してもよい。 
 これにより、第1の電極に接触する処理対象物を冷却または加熱しながら走行させることができる。
 巻取式真空処理装置は、前記第3の電極を冷却する冷却機構をさらに具備してもよい。
 これにより、第3の電極からの発熱による問題、例えば第3の電極の破損を防止することができる。また、第3の電極は固定なので、従来のように回転導入ユニットに冷却機構を設ける場合に比べ、第3の電極への水冷機構の設置が容易になる。
 以下、図面を参照しながら、本発明の実施形態を説明する。
 図1は、本発明の一実施形態に係る巻取式真空処理装置として、プラズマ処理装置を示す概略的な構成図である。図2は、そのプラズマ処理装置100の概略的な側面図である。
 このプラズマ処理装置100は、例えばテープ状のフィルム5を処理対象物とする。フィルム5の構成材料としては、例えば樹脂フィルムが用いられ、例えばポリイミド、ポリアミド、アラミド等の耐熱温度が200℃以上のものが典型例として挙げられる。しかし、フィルム5は樹脂フィルムに限られず、例えば磁気記録媒体に用いられる磁気フィルム、その他のフィルムであってもよい。
 プラズマ処理装置100は、真空チャンバ15、走行機構10、ガス供給ユニット20、電極ユニット9及びRF電源3を備えている。
 真空チャンバ15は、図示しない排気管が接続される接続部17を備えた隔壁16を有する。接続部17には、その排気管を介して図示しない真空ポンプが接続され、この真空ポンプの作動により真空チャンバ15内で所定の真空状態が維持されるようになっている。その真空度は、プラズマ処理に適した周知の範囲に適宜設定可能である。なお、真空チャンバ15内は、仕切り板28により電極ユニット9が配置される室と、後述する対向電極23を含むプラズマの発生ユニットが配置される室とに分かれている。
 仕切り板28は、キャンローラ13の側面に対向するように設けられた円弧部28aをそれぞれ有している。これら円弧部28aが設けられることにより、両室内間におけるガスのコンダクタンスを小さくすることができる。室内間のコンダクタンスを小さくすることで、各室の圧力を個別に調整することが容易になる。対向電極23を含むプラズマの発生ユニットが配置される室は、プラズマ処理に好適な圧力に調整され、電極ユニット9が配置される室は、電極ユニット9とキャンローラ13の間に異常放電等が発生しない圧力に調整される。電極ユニット9が配置される室にも排気手段が接続され、個別に排気できることが好ましい。
 走行機構10は、真空チャンバ15内に配置されており、フィルム5が表面処理され得るようにフィルム5を走行させる。典型的には、走行機構10は、フィルム5を送り出す巻き出しローラ11、送り出されたフィルム5が接触して密着し、密着したフィルム5を冷却するキャンローラ13、及び、キャンローラ13から送り出されるフィルム5を巻き取る巻き取りローラ12を有する。巻き出しローラ11とキャンローラ13との間、及び巻き取りローラ12とキャンローラ13との間には、ガイドローラ14がそれぞれ設けられている。フィルム5は、キャンローラ13の外周面18aに所定の抱き角度で接触するようになっている。
 図2に示すように、キャンローラ13は筒状でなり、その回転軸部材2が例えば支持部材8a及びベースプレート8bにより回転可能に支持されている。キャンローラ13は、両端に設けられた円板状の絶縁体19と、これらの絶縁体19の間に挟まれた導電部材であるローラ電極18とを有する。キャンローラ13内には、図示しない冷却機構が設けられ、キャンローラ13の主にローラ電極18が冷却されるようになっている。冷却機構としては、例えば水やシリコーンオイル等の冷媒が循環する方式のものを用いることができる。冷媒は、例えば、回転軸部材2に接続された冷媒の導入管29から導入され、回転軸部材2の内部を流通してキャンローラ13内に供給されるようになっている。
 巻き出しローラ11、巻き取りローラ12及びキャンローラ13の回転軸部材2には、図示しないモータがそれぞれ接続されている。これらのモータの駆動により、巻き出しローラ11、巻き取りローラ12及びキャンローラ13が回転し、フィルム5の走行のための動力をフィルム5に与える。
 なお、巻き出しローラ11、巻き取りローラ12、キャンローラ13及びガイドローラ14の配置は、図1に示す配置に限定されない。また、ガイドローラ14の数は図1に示すように4つに限られず、フィルム5に所期のテンションが保持されれば、いくつあってもよい。
 ガス供給ユニット20は、プロセスガスの供給源21、キャンローラ13の下部でキャンローラ13に対向するように配置された対向電極23、ガス供給源21からのプロセスガスを対向電極23側へ供給する供給管22等を有する。対向電極23は、キャンローラ13のフィルム5が接している位置に対向して配置される。対向電極23には、供給管22からプロセスガスが導入される導入口23aが設けられている。対向電極23のキャンローラ13側には、対向電極23の周囲に配置された絶縁物24に取り付けられたシャワープレート25が配置されている。シャワープレート25が導体で形成され、シャワープレート25が対向電極23の一部を構成してもよい。また、シャワープレートを用いず、ガスノズルからプロセスガスを導入してもよい。
 供給管22から導入口23aを介して対向電極23上に供給されたプロセスガスは、シャワープレート25を介して、キャンローラ13とシャワープレート25との間に形成される反応領域27に供給される。対向電極23は例えば接地電位に設定される。したがって、後述するRF電源3によりRF電極6及びローラ電極18間に印加されるRFの高周波電圧によって、反応領域27で反応ガスによるプラズマが発生する。
 プロセスガスとしては、プラズマ処理ガス、成膜のための反応ガス、クリーニングガス、エッチングガス、パージ用のガス等が用途に合わせて適宜選択されて使用される。ガス供給ユニット20は、使用するガスに応じたガスボンベ等、ガスの供給管22を備えている。
 プロセスガスは、プラズマ処理、エッチング等のプロセスの種類や、CVD等によりフィルム5に形成される膜の種類により適宜設定される。本実施形態では、例えばアルゴンガスや窒素ガスの導入によってプラズマが発生することにより、フィルム5をプラズマ処理してフィルム5の表面改質を行うことができる。均一に表面改質されることにより、その後の成膜プロセスにより形成される薄膜のフィルム5への密着力を均一に向上させることができる。
 電極ユニット9は、RF電極6、高周波電力を発生するRF電源3、RF電源3及びRF電極6の間に接続されインピーダンス整合等を行うマッチングボックス4等を有する。
 RF電極6は、例えば、キャンローラ13のフィルム5と接していない部分の外周面、すなわちローラ電極18の外周面18aとの間に所定の隙間をあけるように配置されている。その隙間は、適宜変更可能であるが、効率の良い高周波の伝播と、RF電極6とキャンローラ13の短絡を防止するためには、圧力により最適距離は異なるが、例えば1~5mmに調節されることが好ましい。電極ユニット9は、絶縁体7と、この絶縁体及びRF電極6を保持する保持部材26等を有し、保持部材26は例えば支持部材8a及びベースプレート8bに支持されている。RF電極6の、ローラ電極18に対面する面6aは、ローラ電極18の外周面18aの形状である円筒状に沿うような形状(例えば円筒の内面形状)に形成されている。RF電極6のローラ電極18と対向する面積を増加させることで、RF電極6からローラ電極18に高周波が伝播する効率が向上する。RF電極6は、キャンローラ13の回転軸方向に延びるように設けられ、典型的には、その回転軸方向においてローラ電極18の長さと実質的に同じ長さ、または、ローラ電極18の長さに近い長さでなる。
 以上のように構成されたプラズマ処理装置100では、RF電極6にRF電圧が印加されると、RF電極6とローラ電極18の間隔を介してローラ電極18にRF電圧が印加される。これによりローラ電極18及び接地電位とされた対向電極23の間の反応領域27でプロセスガスによるプラズマが発生する。これにより、キャンローラ13に密着されて冷却または加熱されながら走行するフィルム5がプラズマにさらされ、表面が改質される。
 以上のように本実施形態では、RF電極6が真空チャンバ15内に配置されている。したがって、例えば上記したようなコンデンサカップリング等の回転導入ユニットが大気圧中に配置されている場合に比べ、真空チャンバ15内が所定の真空度に維持されていれば、ローラ電極18及びRF電極6間の絶縁破壊の発生を防止することができる。また、従来のロータリコネクタのような回転導入ユニットにおける発熱による破損の問題もない。
 また、RF電極6がローラ電極18に隙間をあけて配置されているので、つまり、ローラ電極18に非接触で交流電圧が加えられるので、接触による磨耗がなくRF電極6の長寿命化を図ることができる。
 RF電極6は、キャンローラ13の回転軸方向に延びるように設けられているので、ローラ電極18及びRF電極6に均一に電荷が発生する。例えば、従来のようにキャンローラの回転軸部材の一端に、回転導入ユニットを介して交流電源が接続される場合には、キャンローラの回転軸方向の長さが長いほど、キャンローラの他端(上記一端の逆側)への電荷の供給に対する抵抗が大きくなる。しかしながら、本実施形態によれば、そのような電気抵抗の問題を解決することができる結果、反応ガスによるプラズマを反応領域27に均一に発生させることができる。また、RF電極6の大型化が容易となり、RF電極6の、ローラ電極18と対向する面積を大きく形成することができる。
 図3は、他の実施形態に係る電極ユニットを示す断面図である。ローラ電極18上に配置されたこの電極ユニットのRF電極36内には、冷却機構が設けられている。この冷却機構は、典型的には、冷却媒体が流通する水路37を有し、例えばその水路37内に液相媒体が循環する冷却方式、または、冷媒循環による冷媒の相変化を利用する冷却方式が用いられる。液相媒体として、水、シリコーンオイル等が挙げられる。
 このように、RF電極36が冷却機構により冷却されることにより、RF電極36からの発熱による問題、例えばRF電極36の破損を防止することができる。また、RF電極36は固定なので、従来のように回転導入ユニットに冷却機構を設ける場合に比べ、RF電極36への水冷機構の設置が容易になる。
 本発明に係る実施形態は、以上説明した実施形態に限定されず、他の種々の実施形態が考えられる。
 上記実施形態に係る巻取式真空処理装置として、プラズマ処理装置100を例に挙げた。しかし、フレキシブルな処理対象物を処理できる装置であれば、プラズマCVD装置や、プラズマエッチング、その他プラズマを利用した装置も実現可能である。
 RF電極6、36及び対向電極23の配置、大きさ等は、適宜変更可能である。
 3…RF電源
 5…フィルム
 6、36…RF電極
 7…絶縁体
 9…電極ユニット
 10…走行機構
 13…キャンローラ
 15…真空チャンバ
 18…ローラ電極
 18a…外周面
 20…ガス供給ユニット
 21…ガス供給源
 22…供給管
 23…対向電極
 36…RF電極
 37…水路
 100…プラズマ処理装置

Claims (5)

  1.  真空状態を維持することが可能なチャンバと、
     前記チャンバ内で回転可能に設けられ、フレキシブルな処理対象物が接触し、回転することで前記処理対象物を走行させることが可能なローラ型の第1の電極と、
     前記チャンバ内で前記第1の電極に対向するように配置された第2の電極を有し、前記第1の電極に接触した前記処理対象物と前記第2の電極との間にプロセスガスを供給することが可能なガス供給ユニットと、
     交流電源に接続され、前記チャンバ内で前記第1の電極に対向するように配置され、前前記第1の電極との間に前記交流電源による交流電圧が印加される第3の電極と、
     を具備する巻取式真空処理装置。
  2.  請求項1に記載の巻取式真空処理装置であって、
     前記第1の電極は、前記第1の電極の回転軸方向に延びるように設けられている巻取式真空処理装置。
  3.  請求項1に記載の巻取式真空処理装置であって、
     前記第1の電極は外周面を有し、
     前記第3の電極は、前記第1の電極の前記外周面に沿うように前記外周面に対面する面を有する巻取式真空処理装置。
  4.  請求項1に記載の巻取式真空処理装置であって、
     前記第1の電極の冷却または加熱する温度調節機構をさらに具備する巻取式真空処理装置。
  5.  請求項4に記載の巻取式真空処理装置であって、
     前記第3の電極を冷却する冷却機構をさらに具備する巻取式真空処理装置。
PCT/JP2009/005652 2008-11-05 2009-10-27 巻取式真空処理装置 WO2010052846A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US13/127,306 US8673078B2 (en) 2008-11-05 2009-10-27 Take-up vacuum processing apparatus
JP2010536651A JP5324596B2 (ja) 2008-11-05 2009-10-27 巻取式真空処理装置
RU2011122610/02A RU2482219C2 (ru) 2008-11-05 2009-10-27 Намоточное вакуумированное устройство
CN2009801422991A CN102197159B (zh) 2008-11-05 2009-10-27 卷绕式真空处理装置
DE112009002631T DE112009002631A5 (de) 2008-11-05 2009-10-27 Aufwickel-Vakuumverarbeitungsvorrichtung

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-283914 2008-11-05
JP2008283914 2008-11-05

Publications (1)

Publication Number Publication Date
WO2010052846A1 true WO2010052846A1 (ja) 2010-05-14

Family

ID=42152659

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/005652 WO2010052846A1 (ja) 2008-11-05 2009-10-27 巻取式真空処理装置

Country Status (8)

Country Link
US (1) US8673078B2 (ja)
JP (1) JP5324596B2 (ja)
KR (1) KR20110060953A (ja)
CN (1) CN102197159B (ja)
DE (1) DE112009002631A5 (ja)
RU (1) RU2482219C2 (ja)
TW (1) TWI498443B (ja)
WO (1) WO2010052846A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013157590A1 (ja) * 2012-04-19 2013-10-24 住友化学株式会社 積層フィルム
JP2014065932A (ja) * 2012-09-25 2014-04-17 Toray Eng Co Ltd 薄膜形成装置
KR20150114974A (ko) * 2013-01-31 2015-10-13 어플라이드 머티어리얼스, 인코포레이티드 조정가능한 전극을 갖는 증착 소스
WO2015170499A1 (ja) * 2014-05-09 2015-11-12 東レエンジニアリング株式会社 薄膜形成装置

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013108751A1 (ja) * 2012-01-16 2013-07-25 株式会社アルバック 成膜装置
JP6045265B2 (ja) * 2012-09-18 2016-12-14 リンテック株式会社 イオン注入装置
US9275835B2 (en) * 2012-11-29 2016-03-01 Gregory DeLarge Plasma generating device with moving carousel and method of use
EP2762608B1 (en) * 2013-01-31 2019-10-02 Applied Materials, Inc. Gas separation by adjustable separation wall
JP6451129B2 (ja) * 2013-09-17 2019-01-16 株式会社リコー プラズマ処理装置、印刷装置、印刷システムおよび印刷物の製造方法
KR101602897B1 (ko) * 2014-05-27 2016-03-11 명성기계 주식회사 진공단열재의 제조장치
CN105234130B (zh) * 2015-10-22 2017-10-27 苏州求是真空电子有限公司 适用于可扰曲材料的等离子清洗装置
US10373794B2 (en) 2015-10-29 2019-08-06 Lam Research Corporation Systems and methods for filtering radio frequencies from a signal of a thermocouple and controlling a temperature of an electrode in a plasma chamber
US10043636B2 (en) * 2015-12-10 2018-08-07 Lam Research Corporation Apparatuses and methods for avoiding electrical breakdown from RF terminal to adjacent non-RF terminal
EP3246935A1 (de) * 2016-05-20 2017-11-22 Meyer Burger (Germany) AG Plasmabehandlungsvorrichtung mit einer kontaktlosen hf-spannungszuführung an eine bewegliche plasmaelektrodeneinheit und verfahren zum betreiben einer solchen plasmabehandlungsvorrichtung
CN108559974A (zh) * 2017-12-25 2018-09-21 兰州空间技术物理研究所 一种基于弧形电极结构的pecvd镀膜设备
DE102019124489B3 (de) * 2019-09-12 2020-11-12 VON ARDENNE Asset GmbH & Co. KG Vakuumanordnungen, Verfahren und Verwendung einer Elektrode im Vakuum
CN113194592A (zh) * 2021-04-16 2021-07-30 清华大学 一种等离子装置、用于儿童玩具质检的装置及方法
CN113426763A (zh) * 2021-06-15 2021-09-24 扬州国兴技术有限公司 一种用于清洗印制电路板钻针胶渣残屑装置及方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09228054A (ja) * 1996-02-16 1997-09-02 Hitachi Ltd 磁気記録媒体およびその製造方法と製造装置
WO2006033233A1 (ja) * 2004-09-21 2006-03-30 Konica Minolta Holdings, Inc. 透明ガスバリア性フィルム
WO2006093168A1 (ja) * 2005-03-04 2006-09-08 Youtec Co., Ltd. Cvd装置と、それを用いた多層膜形成方法と、それにより形成された多層膜
JP2008031521A (ja) * 2006-07-28 2008-02-14 Sony Corp ロールツーロール型のプラズマ真空処理装置

Family Cites Families (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4013532A (en) * 1975-03-03 1977-03-22 Airco, Inc. Method for coating a substrate
JPS51125455A (en) * 1975-04-14 1976-11-01 Jiyunkichi Nakai Method of surface treatment of molded article
JPS5849095B2 (ja) * 1978-06-06 1983-11-01 日本真空技術株式会社 真空雰囲気内で作動する回転電極への高周波大電力の供給装置
JPS60237626A (ja) * 1984-05-10 1985-11-26 Hitachi Maxell Ltd 磁気記録媒体
JPS62274080A (ja) * 1986-05-21 1987-11-28 Hitachi Ltd プラズマ処理方法
US4968918A (en) * 1987-07-06 1990-11-06 Kanebo, Ltd. Apparatus for plasma treatment
JP2587507B2 (ja) * 1989-12-13 1997-03-05 松下電器産業株式会社 薄膜製造装置
EP0561243B1 (en) * 1992-03-13 1997-08-13 Matsushita Electric Industrial Co., Ltd. Plasma CVD apparatus and method therefor
JPH0676281A (ja) * 1992-06-19 1994-03-18 Sony Corp 磁気記録媒体及びその製造方法、製造装置
FR2703073B1 (fr) * 1993-03-26 1995-05-05 Lorraine Laminage Procédé et dispositif pour le revêtement en continu d'un matériau métallique en défilement par un dépôt de polymère à gradient de composition, et produit obtenu par ce procédé.
JP3429369B2 (ja) * 1994-07-29 2003-07-22 ソニー株式会社 薄膜形成装置
US6116185A (en) * 1996-05-01 2000-09-12 Rietzel; James G. Gas injector for plasma enhanced chemical vapor deposition
US5743966A (en) * 1996-05-31 1998-04-28 The Boc Group, Inc. Unwinding of plastic film in the presence of a plasma
US6110540A (en) * 1996-07-12 2000-08-29 The Boc Group, Inc. Plasma apparatus and method
JP3634599B2 (ja) 1997-11-14 2005-03-30 三洋電機株式会社 回転電極を用いた薄膜形成装置
RU2167955C2 (ru) * 1999-02-12 2001-05-27 ТОО "Симпла" Установка для нанесения покрытий на ленту
JP2000355772A (ja) * 1999-06-14 2000-12-26 Okura Ind Co Ltd 円筒状基材の表面改質装置、および円筒状基材の表面改質方法
RU2208658C2 (ru) * 2000-04-10 2003-07-20 Розанов Леонид Николаевич Способ и устройство для нанесения вакуумных покрытий на рулонные материалы
JP2001353804A (ja) * 2000-06-14 2001-12-25 Dainippon Printing Co Ltd バリア性フィルムおよびそれを使用した積層材
JP3509758B2 (ja) * 2001-01-31 2004-03-22 シャープ株式会社 プラズマ処理装置およびプラズマ処理機、並びにプラズマ処理方法
ATE536628T1 (de) * 2001-04-20 2011-12-15 Gen Plasma Inc Dipol-ionenquelle
JP2003049273A (ja) * 2001-08-08 2003-02-21 Kobe Steel Ltd プラズマcvd装置及びプラズマcvdによる成膜方法
JP4082061B2 (ja) 2002-04-02 2008-04-30 東レ株式会社 コロナ放電処理方法、プラスチックフィルムの製造方法および装置
CN2627658Y (zh) * 2003-07-04 2004-07-21 王红卫 碱性二次电池隔膜处理设备
EP1598660B1 (de) * 2004-05-22 2006-12-13 Applied Materials GmbH & Co. KG Beschichtungsanlage mit einer Messvorrichtung für die Messung von optischen Eigenschaften von beschichteten Substraten
US7666766B2 (en) * 2005-09-27 2010-02-23 Semiconductor Energy Laboratory Co., Ltd. Film formation apparatus, method for forming film, and method for manufacturing photoelectric conversion device
RU54375U1 (ru) * 2006-02-27 2006-06-27 Лев Викторович Мисожников Установка для нанесения покрытий в вакууме
JP4803742B2 (ja) 2007-02-07 2011-10-26 株式会社アルバック 巻取式真空成膜装置
JP4870615B2 (ja) * 2007-04-25 2012-02-08 株式会社アルバック プラズマcvd成膜装置およびプラズマcvd成膜方法
JP2009074154A (ja) * 2007-09-25 2009-04-09 Fujifilm Corp 成膜装置
ITBS20080009A1 (it) 2008-01-22 2009-07-23 Simlux S P A Lampada
JP5157741B2 (ja) * 2008-08-12 2013-03-06 コニカミノルタホールディングス株式会社 プラズマ放電処理装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09228054A (ja) * 1996-02-16 1997-09-02 Hitachi Ltd 磁気記録媒体およびその製造方法と製造装置
WO2006033233A1 (ja) * 2004-09-21 2006-03-30 Konica Minolta Holdings, Inc. 透明ガスバリア性フィルム
WO2006093168A1 (ja) * 2005-03-04 2006-09-08 Youtec Co., Ltd. Cvd装置と、それを用いた多層膜形成方法と、それにより形成された多層膜
JP2008031521A (ja) * 2006-07-28 2008-02-14 Sony Corp ロールツーロール型のプラズマ真空処理装置

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013157590A1 (ja) * 2012-04-19 2013-10-24 住友化学株式会社 積層フィルム
JPWO2013157590A1 (ja) * 2012-04-19 2015-12-21 住友化学株式会社 積層フィルム
JP2014065932A (ja) * 2012-09-25 2014-04-17 Toray Eng Co Ltd 薄膜形成装置
KR20150114974A (ko) * 2013-01-31 2015-10-13 어플라이드 머티어리얼스, 인코포레이티드 조정가능한 전극을 갖는 증착 소스
JP2016514198A (ja) * 2013-01-31 2016-05-19 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated 調整可能な電極を有する堆積源
KR102033673B1 (ko) 2013-01-31 2019-10-17 어플라이드 머티어리얼스, 인코포레이티드 조정가능한 전극을 갖는 증착 소스
WO2015170499A1 (ja) * 2014-05-09 2015-11-12 東レエンジニアリング株式会社 薄膜形成装置
JP2015214726A (ja) * 2014-05-09 2015-12-03 東レエンジニアリング株式会社 薄膜形成装置
US10351947B2 (en) 2014-05-09 2019-07-16 Toray Engineering Co., Ltd. Thin-film forming device

Also Published As

Publication number Publication date
RU2482219C2 (ru) 2013-05-20
JP5324596B2 (ja) 2013-10-23
US8673078B2 (en) 2014-03-18
KR20110060953A (ko) 2011-06-08
TWI498443B (zh) 2015-09-01
RU2011122610A (ru) 2012-12-20
CN102197159A (zh) 2011-09-21
JPWO2010052846A1 (ja) 2012-04-05
DE112009002631A5 (de) 2011-09-15
US20110209830A1 (en) 2011-09-01
TW201026875A (en) 2010-07-16
CN102197159B (zh) 2013-07-10

Similar Documents

Publication Publication Date Title
JP5324596B2 (ja) 巻取式真空処理装置
JP4139441B2 (ja) 移動基材上にカーボンリッチ被膜を付着させるための方法および装置
KR100898141B1 (ko) 파이프 음극을 갖는 스퍼터 장치 및 스퍼터 장치의작동방법
US5888594A (en) Process for depositing a carbon-rich coating on a moving substrate
US20090120782A1 (en) Atmospheric Treater With Roller Confined Discharge Chamber
US20110064890A1 (en) Film deposition method
EP2862956B1 (en) Roller device for vacuum deposition arrangement, vacuum deposition arrangement with roller and method for operating a roller
KR101593073B1 (ko) 플렉시블 기판 처리장치 및 이를 이용한 플렉시블 기판 처리방법
JP2011068970A (ja) 機能膜の製造装置および製造方法
JP2011208191A (ja) 成膜装置
JP2015200011A (ja) プラズマcvd成膜装置
JP5040067B2 (ja) 成膜装置及び成膜方法
KR101600433B1 (ko) 플렉시블 기판 처리장치 및 이를 이용한 플렉시블 기판 처리방법
WO2015151722A1 (ja) プラズマcvd成膜装置
KR20150077116A (ko) 플렉시블 기판 처리장치 및 이를 이용한 플렉시블 기판 처리방법
KR101568821B1 (ko) 플렉시블 기판 처리장치 및 이를 이용한 플렉시블 기판 처리방법
KR101575817B1 (ko) 플렉시블 기판 처리장치 및 이를 이용한 플렉시블 기판 처리방법
KR100368052B1 (ko) 플라즈마를 이용한 고분자막 연속중합장치
KR101556287B1 (ko) 플렉시블 기판 처리장치 및 이를 이용한 플렉시블 기판 처리방법
KR100343468B1 (ko) 웨이퍼 홀딩척
JPH0443101B2 (ja)
JPH0443102B2 (ja)
JPS62294437A (ja) シ−ト状物のプラズマ処理装置
KR20020037993A (ko) 플라즈마 연속중합장비의 시트 냉각장치
JPH01283362A (ja) プラズマ処理装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980142299.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09824547

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2010536651

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20117009331

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13127306

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1120090026311

Country of ref document: DE

WWE Wipo information: entry into national phase

Ref document number: 2011122610

Country of ref document: RU

REG Reference to national code

Ref country code: DE

Ref legal event code: R225

Ref document number: 112009002631

Country of ref document: DE

Effective date: 20110915

122 Ep: pct application non-entry in european phase

Ref document number: 09824547

Country of ref document: EP

Kind code of ref document: A1