WO2010050021A1 - 化合物半導体装置及びその製造方法 - Google Patents

化合物半導体装置及びその製造方法 Download PDF

Info

Publication number
WO2010050021A1
WO2010050021A1 PCT/JP2008/069676 JP2008069676W WO2010050021A1 WO 2010050021 A1 WO2010050021 A1 WO 2010050021A1 JP 2008069676 W JP2008069676 W JP 2008069676W WO 2010050021 A1 WO2010050021 A1 WO 2010050021A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
compound semiconductor
forming
semiconductor device
gan layer
Prior art date
Application number
PCT/JP2008/069676
Other languages
English (en)
French (fr)
Inventor
忠紘 今田
Original Assignee
富士通株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士通株式会社 filed Critical 富士通株式会社
Priority to CN200880131746.9A priority Critical patent/CN102197468B/zh
Priority to EP08877732.1A priority patent/EP2346071B1/en
Priority to KR1020117009163A priority patent/KR101167651B1/ko
Priority to JP2010535561A priority patent/JP5533661B2/ja
Priority to PCT/JP2008/069676 priority patent/WO2010050021A1/ja
Publication of WO2010050021A1 publication Critical patent/WO2010050021A1/ja
Priority to US13/091,322 priority patent/US8618577B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/0843Source or drain regions of field-effect devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0642Isolation within the component, i.e. internal isolation
    • H01L29/0649Dielectric regions, e.g. SiO2 regions, air gaps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0684Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions
    • H01L29/0692Surface layout
    • H01L29/0696Surface layout of cellular field-effect devices, e.g. multicellular DMOS transistors or IGBTs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/107Substrate region of field-effect devices
    • H01L29/1075Substrate region of field-effect devices of field-effect transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/402Field plates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66446Unipolar field-effect transistors with an active layer made of a group 13/15 material, e.g. group 13/15 velocity modulation transistor [VMT], group 13/15 negative resistance FET [NERFET]
    • H01L29/66462Unipolar field-effect transistors with an active layer made of a group 13/15 material, e.g. group 13/15 velocity modulation transistor [VMT], group 13/15 negative resistance FET [NERFET] with a heterojunction interface channel or gate, e.g. HFET, HIGFET, SISFET, HJFET, HEMT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • H01L29/7786Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with direct single heterostructure, i.e. with wide bandgap layer formed on top of active layer, e.g. direct single heterostructure MIS-like HEMT
    • H01L29/7787Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with direct single heterostructure, i.e. with wide bandgap layer formed on top of active layer, e.g. direct single heterostructure MIS-like HEMT with wide bandgap charge-carrier supplying layer, e.g. direct single heterostructure MODFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • H01L29/7788Vertical transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/80Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/80Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier
    • H01L29/812Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier with a Schottky gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02373Group 14 semiconducting materials
    • H01L21/02381Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02455Group 13/15 materials
    • H01L21/02458Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/0254Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02636Selective deposition, e.g. simultaneous growth of mono- and non-monocrystalline semiconductor materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/2003Nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/26Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, elements provided for in two or more of the groups H01L29/16, H01L29/18, H01L29/20, H01L29/22, H01L29/24, e.g. alloys
    • H01L29/267Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, elements provided for in two or more of the groups H01L29/16, H01L29/18, H01L29/20, H01L29/22, H01L29/24, e.g. alloys in different semiconductor regions, e.g. heterojunctions

Definitions

  • the present invention relates to a compound semiconductor device and a manufacturing method thereof.
  • HEMT high electron mobility transistor
  • AlGaN layer and a GaN layer are formed by crystal growth above a substrate, and the GaN layer functions as an electron transit layer.
  • the band gap of GaN is 3.4 eV, which is larger than the band gap of GaAs (1.4 eV).
  • the GaN-based HEMT has a high withstand voltage and is promising as a high withstand voltage power device for automobiles and the like.
  • the GaN-based HEMT structure includes a horizontal structure in which the source and drain are arranged in parallel to the surface of the substrate, and a vertical structure in which the source and drain are arranged perpendicular to the surface of the substrate.
  • the current path is three-dimensional, so that the amount of current per chip can be increased compared to the horizontal structure.
  • the drain electrode and the source electrode are located above and below the substrate, it is easy to reduce the chip area even if these areas are increased. Therefore, even if the area of the drain electrode and the source electrode is increased in order to pass a large current, the area of the chip is hardly increased. Furthermore, since the ratio of the metal per chip
  • a normally-off operation of a GaN-based HEMT is also desired from the viewpoint of failsafe.
  • An object of the present invention is to provide a compound semiconductor device capable of appropriately controlling electric charges between a source and a drain and a manufacturing method thereof.
  • a first compound semiconductor layer of a first conductivity type an electron transit layer formed above the first compound semiconductor layer, and formed above the electron transit layer.
  • the second compound semiconductor layer of the second conductivity type different from the first conductivity type formed between the electron transit layer and the drain electrode, and the potential of the second compound semiconductor layer are controlled. And control means for providing.
  • a second compound semiconductor layer of a second conductivity type different from the first conductivity type is formed above the first compound semiconductor layer of the first conductivity type, Thereafter, an electron transit layer is formed above the second compound semiconductor layer. Next, an electron supply layer is formed on the electron transit layer, and then a gate electrode and a source electrode are formed above the electron supply layer. In addition, a drain electrode is formed below the first compound semiconductor layer, and control means for controlling the potential of the second compound semiconductor layer is formed.
  • FIG. 1 is a cross-sectional view showing the structure of a GaN-based HEMT according to the first embodiment.
  • FIG. 2 is a diagram showing an example of a layout of a structure in which a plurality of GaN-based HEMTs are integrated.
  • FIG. 3 is a diagram illustrating another example of a layout of a structure in which a plurality of GaN-based HEMTs are integrated.
  • FIG. 4A is a graph showing the carrier density distribution below the gate electrode 15 when the GaN-based HEMT is off.
  • FIG. 4B is a graph showing a carrier density distribution below the gate electrode 15 when the GaN-based HEMT is on.
  • FIG. 5A is a cross-sectional view showing the method for manufacturing the GaN-based HEMT according to the first embodiment.
  • FIG. 5B is a cross-sectional view showing a method for manufacturing the GaN-based HEMT, following FIG. 5A.
  • FIG. 5C is a cross-sectional view showing a method for manufacturing the GaN-based HEMT, following FIG. 5B.
  • FIG. 5D is a cross-sectional view illustrating a method for manufacturing the GaN-based HEMT, following FIG. 5C.
  • FIG. 5E is a cross-sectional view illustrating a method for manufacturing the GaN-based HEMT, following FIG. 5D.
  • FIG. 5A is a cross-sectional view showing the method for manufacturing the GaN-based HEMT according to the first embodiment.
  • FIG. 5B is a cross-sectional view showing a method for manufacturing the GaN-based HEMT, following FIG. 5A.
  • FIG. 5C is a cross-sectional
  • FIG. 5F is a cross-sectional view illustrating a method for manufacturing the GaN-based HEMT, following FIG. 5E.
  • FIG. 5G is a cross-sectional view illustrating a method for manufacturing the GaN-based HEMT, following FIG. 5F.
  • FIG. 5H is a cross-sectional view illustrating a method for manufacturing the GaN-based HEMT, following FIG. 5G.
  • FIG. 5I is a cross-sectional view illustrating a method for manufacturing the GaN-based HEMT, following FIG. 5H.
  • FIG. 5J is a cross-sectional view illustrating a method for manufacturing the GaN-based HEMT, following FIG. 5I.
  • FIG. 5I is a cross-sectional view illustrating a method for manufacturing the GaN-based HEMT, following FIG. 5I.
  • FIG. 5K is a cross-sectional view illustrating a method for manufacturing the GaN-based HEMT, following FIG. 5J.
  • FIG. 5L is a cross-sectional view showing a method for manufacturing the GaN-based HEMT, following FIG. 5K.
  • FIG. 5M is a cross-sectional view illustrating a method for manufacturing the GaN-based HEMT following FIG. 5L.
  • FIG. 6 is a diagram illustrating a configuration of the HVPE apparatus.
  • FIG. 7 is a diagram showing the configuration of the MOCVD apparatus.
  • FIG. 8 is a cross-sectional view showing the structure of a GaN-based HEMT according to the second embodiment.
  • FIG. 9 is a cross-sectional view showing the structure of a GaN-based HEMT according to the third embodiment.
  • FIG. 10 is a cross-sectional view showing the structure of a GaN-based HEMT according to the fourth embodiment.
  • FIG. 11 is a cross-sectional view showing the structure of a GaN-based HEMT according to the fifth embodiment.
  • FIG. 12A is a graph showing IV characteristics during the off operation of the GaN-based HEMT according to the first embodiment.
  • FIG. 12B is a graph showing IV characteristics at the time of on-operation of the GaN-based HEMT according to the first embodiment.
  • FIG. 13A is a graph showing an IV characteristic during an off operation of the GaN-based HEMT according to the second embodiment.
  • FIG. 13B is a graph showing IV characteristics at the time of on operation of the GaN-based HEMT according to the second embodiment.
  • FIG. 1 is a cross-sectional view showing the structure of a GaN-based HEMT according to the first embodiment.
  • an AlN layer 2 and an n-type GaN layer 3 are formed on a substrate 1.
  • the substrate 1 is, for example, an n-type silicon single crystal substrate.
  • the thickness of the AlN layer 2 is about 1 ⁇ m to 10 ⁇ m.
  • the n-type GaN layer 3 is doped with Si by about 1 ⁇ 10 17 cm ⁇ 3 to 1 ⁇ 10 20 cm ⁇ 3 and has a thickness of about 1 ⁇ m to 10 ⁇ m.
  • a p-type GaN layer 4 is formed on the n-type GaN layer 3 as a current control layer (second compound semiconductor layer).
  • the p-type GaN layer 4 is doped with about 1 ⁇ 10 17 cm ⁇ 3 to about 1 ⁇ 10 20 cm ⁇ 3 of Mg, and the thickness is preferably about 1 nm to 1 ⁇ m, for example. This is because if the thickness is less than 1 nm, sufficient breakdown voltage cannot be obtained, and if it is greater than 1 ⁇ m, the on-state current density decreases due to an increase in on-resistance.
  • a silicon oxide film 5 having an opening 5a is formed on the p-type GaN layer 4 as a current confinement layer (current block layer).
  • the planar shape of the opening 5a serving as a current passage region is, for example, a rectangle having vertical and horizontal lengths of 0.5 ⁇ m and 500 ⁇ m, respectively.
  • the thickness of the silicon oxide film 5 is about 10 nm to 1000 nm.
  • n-type GaN layer 6 is formed in the opening 5a. Similar to the n-type GaN layer 3, the n-type GaN layer 6 is doped with Si by about 1 ⁇ 10 17 cm ⁇ 3 to 1 ⁇ 10 19 cm ⁇ 3 .
  • a non-doped GaN layer 7, a non-doped AlGaN layer 8, an n-type AlGaN layer 9, and an n-type GaN layer 10 are formed on the silicon oxide film 5 and the n-type GaN layer 6, and an element isolation trench is formed in these. 11 is formed.
  • the thickness of the GaN layer 7 is about 0.05 ⁇ m to 5 ⁇ m, and the GaN layer 7 functions as an electron transit layer.
  • the thickness of the AlGaN layer 8 is about 1 nm to 20 nm.
  • the n-type AlGaN layer 9 is doped with Si by about 1 ⁇ 10 17 cm ⁇ 3 to 1 ⁇ 10 19 cm ⁇ 3 and has a thickness of about 5 nm to 50 nm.
  • the n-type AlGaN layer 9 functions as an electron supply layer that supplies electrons to the GaN layer 7 (electron transit layer), and the AlGaN layer 8 includes the GaN layer 7 (electron transit layer) and the n-type AlGaN layer 9 (electron supply layer). ) Function as a spacer layer that is separated from each other. Since the AlGaN layer 8 has a wide band gap, a deep potential well is formed in the vicinity of the interface between the GaN layer 7 and the AlGaN layer 8, and a two-dimensional electron gas 2DEG is generated there.
  • the n-type GaN layer 10 is doped with Si by about 1 ⁇ 10 17 cm ⁇ 3 to 1 ⁇ 10 19 cm ⁇ 3 and has a thickness of about 1 nm to 20 nm.
  • a silicon nitride film 12 is formed on the n-type GaN layer 10.
  • an opening for a gate electrode is formed at the center of the silicon nitride film 12, and an opening for a source electrode surrounding the opening is formed.
  • an opening 10 a that matches the opening for the source electrode of the silicon nitride film 12 is formed.
  • a gate electrode 15 is formed in the opening for the gate electrode of the silicon nitride film 12, and a source electrode 13 is formed in the opening for the source electrode of the silicon nitride film 12 and the opening 10 a of the n-type GaN layer 10. ing.
  • a drain electrode 14 is formed on the back surface of the substrate 1. Further, a control electrode 16 for controlling the potential of the p-type GaN layer 4 is formed on the silicon oxide film 5 in the element isolation trench 11.
  • GaN-based HEMT is configured. Further, such GaN-based HEMTs are provided so as to be arranged in two directions orthogonal to each other via the element isolation trench 11 as shown in FIG. Further, such a GaN-based HEMT may be provided so as to be arranged in one direction via the element isolation trench 11 as shown in FIG.
  • the potentials of the gate electrode 15 and the control electrode 16 are made equal to the potential of the source electrode 13.
  • the conductivity type of the p-type GaN layer 4 is p-type, the band of the conduction band is increased, and the probability of existence of electrons is extremely small.
  • a voltage of, for example, 1V is applied to the gate electrode 15 and a predetermined voltage, for example, a voltage of, for example, 5V is applied to the control electrode 16 in order to increase the current value.
  • a current flows through the p-type GaN layer 4 and the amount of current can be controlled by the gate electrode 15. The normally-off operation will be described in detail next.
  • the current collapse phenomenon in which the on-resistance changes during operation is suppressed by the action of the n-type GaN layer 10 and the silicon nitride film 12.
  • FIG. 4A is a graph showing a carrier density distribution below the gate electrode 15 when the GaN-based HEMT (p-type GaN layer 4 thickness: 100 nm) is off.
  • the carrier density decreases in the GaN layer 7 along with the depth, and the carrier density increases in the n-type GaN layer 6.
  • the carrier density in the p-type GaN layer 4 current control layer
  • the carrier density in the n-type GaN layer 3 suddenly increases again. Due to such carrier density distribution, no current flows between the source electrode 16 and the drain electrode 14 even when a voltage is applied to the gate electrode 15.
  • FIG. 4B is a graph showing a carrier density distribution below the gate electrode 15 when the GaN-based HEMT (p-type GaN layer 4 thickness: 100 nm) is on. As shown in FIG. 4B, when on, the carrier density of the p-type GaN layer 4 is significantly higher than when off due to the influence of the voltage applied to the control electrode 16. Therefore, when a predetermined voltage is applied to the gate electrode 15, a current flows between the source electrode 16 and the drain electrode 14.
  • 5A to 5M are cross-sectional views showing the method of manufacturing the GaN-based HEMT according to the first embodiment in the order of steps.
  • halogen vapor phase epitaxy HVPE is formed on a substrate 1.
  • the AlN layer 2 is formed by the phase epitaxy method.
  • FIG. 6 is a diagram illustrating a configuration of the HVPE apparatus.
  • a high frequency coil 31 for induction heating is wound around a quartz reaction tube 30, and a carbon susceptor 32 for placing the substrate 101 is disposed therein.
  • Two gas introduction pipes 34 and 35 are connected to the upstream end (the left end in FIG. 6) of the reaction tube 30, and 1 is connected to the downstream end (the right end in FIG. 6) of the reaction tube 30.
  • a gas exhaust pipe 36 is connected.
  • a boat 38 is arranged on the upstream side of the susceptor 32 in the reaction tube 30, and a group 39 element source 39 of a compound to be grown is accommodated therein.
  • the source 39 is Al, for example, when an AlN layer is crystal-grown.
  • Ammonia (NH 3 ) gas is introduced from the gas introduction pipe 34 as the N source gas, and hydrogen chloride (HCl) gas is introduced from the gas introduction pipe 35.
  • the HCl gas reacts with the group III source 39 in the boat 38 to generate a group III element chloride (such as AlCl) as the source gas.
  • Source gas (AlCl gas or the like) and NH 3 gas are conveyed onto the substrate 101 and react on the surface of the substrate 101 to grow an AlN layer or the like. Excess gas is discharged from the gas discharge pipe 36 to the detoxification tower.
  • the source 39 for crystal growth of the GaN layer is Ga
  • the source gas of the group III element chloride is GaCl.
  • the conditions for forming the AlN layer 2 are set as follows, for example. Pressure: normal pressure HCl gas flow rate: 100 ccm (100 cm 3 / min), NH 3 gas flow rate: 10 lm (10 liters / min), Temperature: 1100 ° C.
  • an organic chemical vapor deposition (MOCVD) is formed on the AlN layer 2.
  • MOCVD organic chemical vapor deposition
  • the n-type GaN layer 3 is formed by a deposition method.
  • FIG. 7 is a diagram showing the configuration of the MOCVD apparatus.
  • a high frequency coil 41 is disposed around the quartz reaction tube 40, and a carbon susceptor 42 for placing the substrate 101 is disposed inside the reaction tube 40.
  • Two gas introduction pipes 44 and 45 are connected to the upstream end of the reaction tube 40 (the left end portion in FIG. 7), and a compound source gas is supplied.
  • NH 3 gas is introduced from the gas introduction pipe 44 as an N source gas
  • organic substances such as trimethylaluminum (TMA), trimethylgallium (TMA), and trimethylindium (TMI) are used as a group III element source gas from the gas introduction pipe 45.
  • Group III compound raw material is introduced.
  • Crystal growth is performed on the substrate 101, and excess gas is discharged from the gas discharge pipe 46 to the detoxification tower.
  • the gas discharge pipe 46 is connected to a vacuum pump, and the discharge port of the vacuum pump is connected to a detoxification tower.
  • the MOCVD apparatus is used to form not only the n-type GaN layer 3 but also the p-type GaN layer 4 and the like.
  • the conditions for forming the n-type GaN layer 3 are set as follows, for example. Trimethylgallium (TMG) flow rate: 0-50 sccm, Trimethylaluminum (TMA) flow rate: 0-50 sccm, Trimethylindium (TMI) flow rate: 0-50 sccm, Ammonia (NH 3 ) flow rate: 20 slm, n-type impurity: silane (SiH 4 ), Pressure: 100 Torr, Temperature: 1100 ° C.
  • TMG Trimethylgallium
  • TMA Trimethylaluminum
  • TMI Trimethylindium
  • Ammonia (NH 3 ) flow rate 20 slm
  • n-type impurity silane (SiH 4 )
  • Pressure 100 Torr
  • Temperature 1100 ° C.
  • the conditions for forming the p-type GaN layer 4 and the like are set as follows, for example. Trimethylgallium (TMG) flow rate: 0-50 sccm, Trimethylaluminum (TMA) flow rate: 0-50 sccm, Trimethylindium (TMI) flow rate: 0-50 sccm, Ammonia (NH 3 ) flow rate: 20 slm, p-type impurities: biscyclopentadienyl magnesium (Cp2Mg), Pressure: 100 Torr, Temperature: 1100 ° C.
  • TMG Trimethylgallium
  • TMA Trimethylaluminum
  • TMI Trimethylindium
  • Ammonia (NH 3 ) flow rate 20 slm
  • p-type impurities biscyclopentadienyl magnesium (Cp2Mg)
  • Pressure 100 Torr
  • Temperature 1100 ° C.
  • the GaN layer is difficult to grow on it. For this reason, it is preferable to form an AlGaN layer (not shown) containing 10 atomic% (at%) of Al in the initial stage of forming the n-type GaN layer 3.
  • a p-type GaN layer 4 (current control layer) is formed on the n-type GaN layer 3 by MOCVD as shown in FIG. 5C.
  • a silicon oxide film 5 (current confinement layer) having an opening 5 a is formed on the p-type GaN layer 4.
  • a silicon oxide film is formed on the entire surface, and a resist pattern exposing a region where an opening 5a is to be formed is formed thereon, and this resist pattern is used as a mask.
  • the silicon oxide film may be etched. Thereafter, the resist pattern is removed.
  • an n-type GaN layer 6 is formed in the opening 5a by MOCVD.
  • the n-type GaN layer 6 grows in the thickness direction on the p-type GaN layer 4 exposed from the opening 5a by selective growth, and does not grow in the thickness direction on the silicon oxide film 5.
  • a non-doped GaN layer 7 (electron transit layer) is formed on the silicon oxide film 5 and the n-type GaN layer 6 by MOCVD.
  • the GaN layer 7 grows in the thickness direction on the n-type GaN layer 6 and grows laterally from the portion grown in the thickness direction.
  • a non-doped AlGaN layer 8, an n-type AlGaN layer 9, and an n-type GaN layer 10 are formed on the GaN layer 7 in this order by the MOCVD method.
  • element isolation grooves 11 are formed in the n-type GaN layer 10, the n-type AlGaN layer 9, the AlGaN layer 8, and the GaN layer 7 by recess etching.
  • a silicon nitride film 12 is formed on the entire surface of the substrate 1 by plasma CVD, and an opening for a gate electrode and an opening for a source electrode are formed in the silicon nitride film 12. .
  • selective etching using SF 6 gas is performed using the resist pattern as a mask.
  • an opening 10a is formed by performing time-controlled etching using chlorine gas on the portion of the n-type GaN layer 10 exposed from the opening for the source electrode. To do.
  • the source electrode 13 is formed in the opening for the source electrode of the silicon nitride film 12 and the opening 10a of the n-type GaN layer 10 by, for example, a lift-off method.
  • a Ta film is formed, and an Al film is formed thereon.
  • a surface protective layer 19 is formed on the entire surface of the substrate 1 and the front and back of the substrate 1 are reversed. Then, the thickness of the substrate 1 is set to a predetermined thickness by polishing the back surface of the substrate 1 as necessary. Then, the drain electrode 14 is formed on the entire back surface of the substrate 1.
  • the gate electrode 15 is formed in the opening for the gate electrode of the silicon nitride film 12 by, for example, the lift-off method, and the control electrode 16 is formed on the exposed silicon nitride film 5.
  • the gate electrode 15 and the control electrode 16 a Ni film is formed, and an Au film is formed thereon.
  • a GaN-based HEMT is formed. Thereafter, a passivation film, an external electrode, and the like are formed as necessary to complete the semiconductor device in which the GaN-based HEMT is integrated.
  • FIG. 8 is a cross-sectional view showing the structure of a GaN-based HEMT according to the second embodiment.
  • an aluminum nitride film (AlN film) 22 having an opening 22a is provided.
  • the n-type GaN layer 6 and the GaN layer 7 are in direct contact with the silicon oxide film 5, but in the second embodiment, the n-type GaN layer 6, the GaN layer 7, and the aluminum nitride film.
  • An n-type AlGaN layer 21 is formed between them.
  • the n-type AlGaN layer 21 is doped with Si by about 1.0 ⁇ 10 17 cm ⁇ 3 to 1.0 ⁇ 10 19 cm ⁇ 3 and has a thickness of about 1 nm to 50 nm.
  • Other configurations are the same as those of the first embodiment.
  • a fixed negative charge is generated near the interface between the GaN layer 7 and the n-type AlGaN layer 21.
  • This charge is a piezo charge generated due to the difference in lattice constant between GaN and AlGaN.
  • repelling this negative charge electrons are less likely to be present in the current confinement (opening 22a), and the current in the electron confinement is significantly reduced.
  • a positive voltage is applied to the control electrode 16
  • the potential of the p-type GaN layer 4 rises, and electrons are first present in the electron confinement portion, and current flows. As described above, if no voltage is applied to the control electrode 16, no current flows through the current confinement portion, and if a voltage is applied, the current flows.
  • the normally-off operation is more reliable. Also, a two-dimensional electron gas is generated near the interface between the n-type GaN layer 6 and the n-type AlGaN layer 21, and a current also flows through that portion. For this reason, the on-resistance during operation is reduced.
  • FIG. 9 is a cross-sectional view showing the structure of a GaN-based HEMT according to the third embodiment.
  • the silicon oxide film 5 and the n-type GaN layer 6 are formed in contact with the n-type GaN layer 3, and the p-type GaN layer 4 is formed on the silicon oxide film 5 and the n-type GaN layer 6. ing. That is, the stacking relationship between the p-type GaN layer 4 and the combination of the silicon oxide film 5 and the n-type GaN layer 6 is opposite to that in the first embodiment. Other configurations are the same as those of the first embodiment.
  • the same effect as that of the first embodiment can also be obtained by the third embodiment.
  • the third embodiment since the p-type GaN layer 4 is close to the 2DEG region, the depletion layer extends to the 2DEG region, and the off-current can be reduced.
  • FIG. 10 is a cross-sectional view showing the structure of a GaN-based HEMT according to the fourth embodiment.
  • n-type GaN layers 3a and 3b are provided instead of the n-type GaN layer 3, and the p-type GaN layer 4 is provided therebetween. That is, the n-type GaN layer 3 a is formed on the AlN layer 2, the p-type GaN layer 4 is formed on the n-type GaN layer 3 a, and the n-type GaN layer 3 b is formed on the p-type GaN layer 4.
  • Other configurations are the same as those of the first embodiment.
  • the same effect as that of the first embodiment can also be obtained by the fourth embodiment.
  • the fourth embodiment since the p-type GaN layer 4 is not etched, the crystallinity thereof is easily maintained. As a result, the on-resistance can be further reduced, and the current blocking capability at the off time can be improved.
  • the portion of the n-type GaN layer 3b located between the control electrode 16 and the p-type GaN layer 4 is removed. It is preferable. However, even if the n-type GaN layer 3b remains, since the n-type GaN layer 3b is very thin compared to the area of the control electrode 16, it is possible to apply a voltage from the control electrode 16 to the p-type GaN layer 4. It is.
  • FIG. 11 is a cross-sectional view showing the structure of a GaN-based HEMT according to the fifth embodiment.
  • the n-type GaN layer 6 is formed not only in the opening 5 a but also on the silicon oxide film 5.
  • the thickness of the n-type GaN layer 6 in this embodiment is about 500 nm.
  • the n-type GaN layer 6 grows in the thickness direction in the opening 5a, and then grows laterally from the portion grown in the thickness direction.
  • Other configurations are the same as those of the first embodiment.
  • the same effect as that of the first embodiment can also be obtained by the fifth embodiment.
  • the contact area between the 2DEG region and the n-type GaN layer 6 is large, the on-resistance is reduced.
  • the n-type GaN layer 6 in the fifth embodiment may be applied to the second to fourth embodiments.
  • the material, thickness, impurity concentration, and the like of the substrate 1 and each layer are not particularly limited.
  • the substrate 1 in addition to the conductive silicon substrate, a conductive sapphire substrate, a conductive SiC substrate, a conductive GaN substrate, or the like may be used.
  • a p-type GaN layer may be used as the current confinement layer (current block layer).
  • the etching of the p-type GaN layer is difficult as compared with the etching of the silicon oxide film and the aluminum nitride film, and the pinch-off characteristic tends to be lowered.
  • the lattice constant of the sapphire substrate is relatively different from the lattice constant of the nitride-based compound semiconductor layer, dislocations are likely to occur in the compound semiconductor layer, and the crystallinity tends to be low. For this reason, it becomes difficult to obtain desired characteristics. Therefore, a conductive semiconductor substrate is preferable as the substrate, and a silicon oxide film or an aluminum nitride film is preferable as the current confinement layer (current blocking layer).
  • control electrode 16 and the p-type GaN layer 4 may be in direct contact.
  • FIG. 12A, 12B, 13A, and 13B show the characteristics of the GaN-based HEMT according to the first embodiment during the off operation and during the on operation, respectively.
  • FIGS. 13A and 13B show the characteristics of the GaN-based HEMT according to the third embodiment during the off operation and during the on operation, respectively.
  • the horizontal axis indicates the voltage (Vds) applied between the source electrode 13 and the drain electrode 14, and the vertical axis indicates the density (Ids) of the current flowing between the source electrode 13 and the drain electrode 14. Indicates.
  • the normally-off operation is confirmed if the thickness of the p-type GaN layer 4 is 1 nm, 10 nm, 100 nm, or 1 ⁇ m.
  • a current flows at an appropriate density during the on-operation.
  • the normally-off operation was not confirmed in the sample with the p-type GaN layer 4 having a thickness of 0.5 nm. Further, as shown in FIGS. 12A and 13A, as shown in FIGS.
  • the current density at the on time was very low. Therefore, if the thickness of the p-type GaN layer 4 is 1 nm or more and 1 ⁇ m or less, the p-type GaN layer 4 can exhibit sufficient current blocking characteristics when turned off and can have a sufficiently low on-resistance. it is conceivable that.
  • the GaN-based HEMT according to the first embodiment has a high withstand voltage
  • the GaN-based HEMT according to the third embodiment has a high resistance during on-operation. This is because in the GaN-based HEMT according to the third embodiment, the p-type GaN layer 4 is formed after the selective growth of the n-type GaN layer 6, and there is a defect in the periphery of the p-type GaN layer 4. This is thought to be due to a relatively large increase.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Junction Field-Effect Transistors (AREA)

Abstract

 n型GaN層(3)と、n型GaN層(3)の上方に形成されたGaN層(7)と、GaN層(7)の上方に形成されたn型AlGaN層(9)と、n型AlGaN層(9)の上方に形成されたゲート電極(15)及びソース電極(13)と、n型GaN層(3)の下方に形成されたドレイン電極(14)と、GaN層(7)とドレイン電極(14)との間に形成されたp型GaN層(4)とが設けられている。

Description

化合物半導体装置及びその製造方法
 本発明は、化合物半導体装置及びその製造方法に関する。
 従来、基板の上方に結晶成長によりAlGaN層及びGaN層が形成され、GaN層が電子走行層として機能する高電子移動度トランジスタ(HEMT:high electron mobility transistor)についての研究が行われている。GaNのバンドギャップは3.4eVであり、GaAsのバンドギャップ(1.4eV)よりも大きい。このため、GaN系のHEMTの耐圧は高く、自動車用等の高耐圧電力デバイスとして有望である。
 また、GaN系のHEMTの構造には、ソース及びドレインが基板の表面に平行に配置された横型構造と、ソース及びドレインが基板の表面に垂直に配置された縦型構造とがある。
 縦型構造は、電流の経路が3次元的になるため、チップ当たりの電流量を横型構造と比較して増加することができる。また、ドレイン電極及びソース電極が基板の上下に位置するため、これらの面積を大きくしてもチップの面積を小さくしやすい。従って、大きな電流を流すために、ドレイン電極及びソース電極の面積を大きくしても、チップの面積は増加しにくい。更に、チップ当たりの金属の割合が大きくなるため、放熱特性が向上する。
 GaN系のHEMTにおいては、ゲートに電圧を印加しない場合でも、GaN層とAlGaN層との間の格子定数の差に起因する2次元電子ガスが存在するため、チャネルに電流が流れる。つまり、ノーマリーオン動作をする。一方、電源投入時及びゲート電極が破壊された時等のゲート電極に意図的でなく0Vが印加されている時に、ソースとドレインとの間に電流が流れてしまうことも考えられる。そこで、フェールセーフの観点からもGaN系HEMTのノーマリーオフ動作が望まれている。
特開2006-140368号公報 Japanese Journal of AppliedPhysics vol. 46, No. 21, 2007, pp. L503-L505
 本発明は、ソースとドレインとの間で電荷を適切に制御することができる化合物半導体装置及びその製造方法を提供することを目的とする。
 化合物半導体装置の一態様には、第1の導電型の第1の化合物半導体層と、前記第1の化合物半導体層の上方に形成された電子走行層と、前記電子走行層の上方に形成された電子供給層と、前記電子供給層の上方に形成されたゲート電極及びソース電極と、前記第1の化合物半導体層の下方に形成されたドレイン電極と、が設けられている。更に、前記電子走行層と前記ドレイン電極との間に形成された前記第1の導電型と異なる第2の導電型の第2の化合物半導体層と、前記第2の化合物半導体層の電位を制御する制御手段と、が設けられている。
 化合物半導体装置の製造方法の一態様では、第1の導電型の第1の化合物半導体層上方に、前記第1の導電型と異なる第2の導電型の第2の化合物半導体層を形成し、その後、前記第2の化合物半導体層の上方に電子走行層を形成する。次に、前記電子走行層上に電子供給層を形成し、その後、前記電子供給層の上方にゲート電極及びソース電極を形成する。また、前記第1の化合物半導体層の下方にドレイン電極を形成し、前記第2の化合物半導体層の電位を制御する制御手段を形成する。
図1は、第1の実施形態に係るGaN系HEMTの構造を示す断面図である。 図2は、複数のGaN系HEMTが集積した構造のレイアウトの例を示す図である。 図3は、複数のGaN系HEMTが集積した構造のレイアウトの他の例を示す図である。 図4Aは、GaN系HEMTのオフ時のゲート電極15の下方におけるキャリア密度の分布を示すグラフである。 図4Bは、GaN系HEMTのオン時のゲート電極15の下方におけるキャリア密度の分布を示すグラフである。 図5Aは、第1の実施形態に係るGaN系HEMTの製造方法を示す断面図である。 図5Bは、図5Aに引き続き、GaN系HEMTの製造方法を示す断面図である。 図5Cは、図5Bに引き続き、GaN系HEMTの製造方法を示す断面図である。 図5Dは、図5Cに引き続き、GaN系HEMTの製造方法を示す断面図である。 図5Eは、図5Dに引き続き、GaN系HEMTの製造方法を示す断面図である。 図5Fは、図5Eに引き続き、GaN系HEMTの製造方法を示す断面図である。 図5Gは、図5Fに引き続き、GaN系HEMTの製造方法を示す断面図である。 図5Hは、図5Gに引き続き、GaN系HEMTの製造方法を示す断面図である。 図5Iは、図5Hに引き続き、GaN系HEMTの製造方法を示す断面図である。 図5Jは、図5Iに引き続き、GaN系HEMTの製造方法を示す断面図である。 図5Kは、図5Jに引き続き、GaN系HEMTの製造方法を示す断面図である。 図5Lは、図5Kに引き続き、GaN系HEMTの製造方法を示す断面図である。 図5Mは、図5Lに引き続き、GaN系HEMTの製造方法を示す断面図である。 図6は、HVPE装置の構成を示す図である。 図7は、MOCVD装置の構成を示す図である。 図8は、第2の実施形態に係るGaN系HEMTの構造を示す断面図である。 図9は、第3の実施形態に係るGaN系HEMTの構造を示す断面図である。 図10は、第4の実施形態に係るGaN系HEMTの構造を示す断面図である。 図11は、第5の実施形態に係るGaN系HEMTの構造を示す断面図である。 図12Aは、第1の実施形態に倣ったGaN系HEMTのオフ動作時のI-V特性を示すグラフである。 図12Bは、第1の実施形態に倣ったGaN系HEMTのオン動作時のI-V特性を示すグラフである。 図13Aは、第2の実施形態に倣ったGaN系HEMTのオフ動作時のI-V特性を示すグラフである。 図13Bは、第2の実施形態に倣ったGaN系HEMTのオン動作時のI-V特性を示すグラフである。
 以下、実施形態について、添付の図面を参照して具体的に説明する。
 (第1の実施形態)
 先ず、第1の実施形態について説明する。図1は、第1の実施形態に係るGaN系HEMTの構造を示す断面図である。
 第1の実施形態では、基板1上にAlN層2及びn型GaN層3(第1の化合物半導体層)が形成されている。基板1は、例えばn型のシリコン単結晶基板である。AlN層2の厚さは1μm~10μm程度である。n型GaN層3にはSiが1×1017cm-3~1×1020cm-3程度ドーピングされており、その厚さは1μm~10μm程度である。
 n型GaN層3上に、p型GaN層4が電流制御層(第2の化合物半導体層)として形成されている。p型GaN層4にはMgが1×1017cm-3程度~1×1020cm-3程度ドーピングされており、その厚さは、例えば1nm~1μm程度であることが好ましい。1nmより薄いと十分な耐圧が取れなくなり、1μmより厚いとオン抵抗の増加により、オン時の電流密度が低下するためである。
 p型GaN層4上に、開口部5aを備えたシリコン酸化膜5が電流狭窄層(電流ブロック層)として形成されている。電流通過領域としての開口部5aの平面形状は、例えば縦横の長さが夫々0.5μm、500μmの長方形である。また、シリコン酸化膜5の厚さは10nm~1000nm程度である。
 そして、開口部5a内にn型GaN層6が形成されている。n型GaN層6には、n型GaN層3と同様に、Siが1×1017cm-3~1×1019cm-3程度ドーピングされている。
 更に、シリコン酸化膜5及びn型GaN層6上に、ノンドープのGaN層7、ノンドープのAlGaN層8、n型AlGaN層9及びn型GaN層10が形成されており、これらに、素子分離溝11が形成されている。GaN層7の厚さは0.05μm~5μm程度であり、GaN層7は電子走行層として機能する。AlGaN層8の厚さは1nm~20nm程度である。n型AlGaN層9にはSiが1×1017cm-3~1×1019cm-3程度ドーピングされており、その厚さは5nm~50nm程度である。n型AlGaN層9は、GaN層7(電子走行層)に電子を供給する電子供給層として機能し、AlGaN層8は、GaN層7(電子走行層)とn型AlGaN層9(電子供給層)とを互いから離間するスペーサ層として機能する。AlGaN層8のバンドギャップが広いため、GaN層7のAlGaN層8との界面近傍に深いポテンシャルウェルが形成され、ここに2次元電子ガス2DEGが生じる。n型GaN層10にはSiが1×1017cm-3~1×1019cm-3程度ドーピングされており、その厚さは1nm~20nm程度である。
 また、n型GaN層10上にシリコン窒化膜12が形成されている。平面視で、シリコン窒化膜12の中央部にゲート電極用の開口部が形成され、更に、この開口部を取り囲むソース電極用の開口部が形成されている。n型GaN層10には、シリコン窒化膜12のソース電極用の開口部に整合する開口部10aが形成されている。
 そして、シリコン窒化膜12のゲート電極用の開口部内にゲート電極15が形成され、シリコン窒化膜12のソース電極用の開口部及びn型GaN層10の開口部10a内にソース電極13が形成されている。また、基板1の裏面にドレイン電極14が形成されている。更に、素子分離溝11内においてシリコン酸化膜5上に、p型GaN層4の電位を制御する制御電極16が形成されている。
 このようにして、1個のGaN系HEMTが構成されている。また、このようなGaN系HEMTは、図2に示すように、素子分離溝11を介して互いに直交する2方向に配列するように設けられている。また、このようなGaN系HEMTが、図3に示すように、素子分離溝11を介して一方向に配列するように設けられていてもよい。
 そして、ゲート電極15に電圧を印加せずに上記のGaN系HEMTをオフの状態としておく場合には、ゲート電極15及び制御電極16の電位をソース電極13の電位と等しくしておく。このような制御の結果、電子はp型GaN層4の内部に進入することができず、ノーマリーオフ動作が確保される。p型GaN層4の導電型がp型であり、伝導帯のバンドが上昇しており、電子の存在確率が著しく小さいためである。一方、上記のGaN系HEMTをオンの状態とする場合には、電流値を増大させるためにゲート電極15に例えば1Vの電圧を印加し、制御電極16に所定の電圧、例えば5Vの電圧を印加する。このような制御を行うことにより、p型GaN層4に電流が流れ、更に電流量をゲート電極15で制御することができるようになる。ノーマリーオフ動作については、次に詳細に説明する。また、動作中にオン抵抗が変化する電流コラプス現象が、n型GaN層10及びシリコン窒化膜12の作用により抑制される。
 図4Aは、GaN系HEMT(p型GaN層4の厚さ:100nm)のオフ時のゲート電極15の下方におけるキャリア密度の分布を示すグラフである。図4Aに示すように、オフ時には、GaN層7において、深さに付随してキャリア密度が減少し、n型GaN層6においてキャリア密度は増大する。そして、p型GaN層4(電流制御層)においてキャリア密度が極めて小さくなり、n型GaN層3においてキャリア密度が再び急激に増大している。このようなキャリア密度の分布があるため、ゲート電極15に電圧を印加したとしても、ソース電極16とドレイン電極14との間には電流が流れない。
 図4Bは、GaN系HEMT(p型GaN層4の厚さ:100nm)のオン時のゲート電極15の下方におけるキャリア密度の分布を示すグラフである。図4Bに示すように、オン時には、制御電極16に印加された電圧の影響によりp型GaN層4のキャリア密度がオフ時よりも著しく高くなる。このため、ゲート電極15に所定の電圧を印加すれば、ソース電極16とドレイン電極14との間に電流が流れる。
 次に、上述のようなGaN系HEMTを製造する方法について説明する。図5A乃至図5Mは、第1の実施形態に係るGaN系HEMTの製造方法を工程順に示す断面図である。
 先ず、図5Aに示すように、基板1上に、ハロゲン化気相エピタキシ(HVPE:halide vapor
phase epitaxy)法によりAlN層2を形成する。
 ここで、HVPE装置について説明する。図6は、HVPE装置の構成を示す図である。石英製反応管30の周囲に誘導加熱用の高周波コイル31が巻回され、その内部に基板101を載置するためのカーボンサセプタ32が配置されている。反応管30の上流端(図6中の左側の端部)に、2本のガス導入管34及び35が接続され、反応管30の下流端(図6中の右側の端部)には1本のガス排出管36が接続されている。反応管30内のサセプタ32よりも上流側にボート38が配置され、その内部に成長すべき化合物のIII族元素のソース39が収容される。ソース39は、例えばAlN層を結晶成長させる場合はAlである。ガス導入管34からNソースガスとしてアンモニア(NH)ガスが導入され、ガス導入管35から塩化水素(HCl)ガスが導入される。HClガスはボート38中のIII族ソース39と反応し、III族元素塩化物(AlCl等)をソースガスとして生成する。ソースガス(AlClガス等)及びNHガスは基板101上に運ばれ、基板101の表面で反応してAlN層等を成長させる。余剰のガスはガス排出管36から除害塔へ排出される。なお、GaN層を結晶成長させる場合のソース39はGaであり、III族元素塩化物のソースガスはGaClとなる。
 AlN層2を形成する場合の条件は、例えば、以下のように設定する。
 圧力:常圧、
 HClガスの流量:100ccm(100cm/min)、
 NHガスの流量:10lm(10リットル/min)、
 温度:1100℃。
 AlN層2を形成した後には、図5Bに示すように、AlN層2上に、有機化学気相堆積(MOCVD:metal organic chemical vapor
deposition)法によりn型GaN層3を形成する。
 ここで、MOCVD装置について説明する。図7は、MOCVD装置の構成を示す図である。石英製反応管40の周囲に高周波コイル41が配置され、反応管40の内側に基板101を載置するためのカーボンサセプタ42が配置されている。反応管40の上流端(図7中の左側の端部)に、2本のガス導入管44及び45が接続され、化合物のソースガスが供給される。例えば、ガス導入管44からNソースガスとしてNHガスが導入され、ガス導入管45からIII族元素のソースガスとしてトリメチルアルミニウム(TMA)、トリメチルガリウム(TMA)、トリメチルインジウム(TMI)等の有機III族化合物原料が導入される。基板101上で結晶成長が行われ、余剰のガスはガス排出管46から除害塔へ排出される。なお、MOCVD法による結晶成長を減圧雰囲気で行う場合は、ガス排出管46は真空ポンプへ接続され、真空ポンプの排出口が除害塔に接続される。MOCVD装置は、n型GaN層3だけでなく、p型GaN層4等の形成にも使用される。
 n型GaN層3を形成する場合の条件は、例えば、以下のように設定する。
 トリメチルガリウム(TMG)の流量:0~50sccm、
 トリメチルアルミニウム(TMA)の流量:0~50sccm、
 トリメチルインジウム(TMI)の流量:0~50sccm、
 アンモニア(NH)の流量:20slm、
 n型不純物:シラン(SiH)、
 圧力:100Torr、
 温度:1100℃。
 p型GaN層4等を形成する場合の条件は、例えば、以下のように設定する。
 トリメチルガリウム(TMG)の流量:0~50sccm、
 トリメチルアルミニウム(TMA)の流量:0~50sccm、
 トリメチルインジウム(TMI)の流量:0~50sccm、
 アンモニア(NH)の流量:20slm、
 p型不純物:ビスシクロペンタディエニルマグネシウム(Cp2Mg)、
 圧力:100Torr、
 温度:1100℃。
 なお、基板1としてシリコン基板を用いる場合、AlN層2が形成されていても、その上にGaN層は成長しにくい。このため、n型GaN層3の形成の初期段階において、Alを10原子%(at%)含むAlGaN層(図示せず)を形成することが好ましい。
 n型GaN層3を形成した後には、図5Cに示すように、n型GaN層3上に、MOCVD法によりp型GaN層4(電流制御層)を形成する。
 次いで、図5Dに示すように、p型GaN層4上に、開口部5aを備えたシリコン酸化膜5(電流狭窄層)を形成する。このようなシリコン酸化膜5の形成に際しては、例えば、全面にシリコン酸化膜を形成し、その上に開口部5aを形成する予定の領域を露出するレジストパターンを形成し、このレジストパターンをマスクとしてシリコン酸化膜をエッチングすればよい。その後、レジストパターンは除去する。
 続いて、図5Eに示すように、開口部5a内にMOCVDによりn型GaN層6を形成する。なお、n型GaN層6は選択成長により開口部5aから露出しているp型GaN層4上において厚さ方向に成長し、シリコン酸化膜5上では厚さ方向に成長しない。
 次いで、図5Fに示すように、シリコン酸化膜5及びn型GaN層6上に、ノンドープのGaN層7(電子走行層)をMOCVD法により形成する。GaN層7はn型GaN層6上において厚さ方向に成長すると共に、厚さ方向に成長した部分から横方向に成長する。
 その後、図5Gに示すように、GaN層7上に、ノンドープのAlGaN層8、n型AlGaN層9及びn型GaN層10をMOCVD法によりこの順で形成する。
 続いて、図5Hに示すように、n型GaN層10、n型AlGaN層9、AlGaN層8及びGaN層7に、素子分離溝11をリセスエッチングにより形成する。
 次いで、図5Iに示すように、基板1の表面側の全面にシリコン窒化膜12をプラズマCVD法により形成し、シリコン窒化膜12にゲート電極用の開口部及びソース電極用の開口部を形成する。これらの開口部の形成の際には、レジストパターンをマスクとして、SFガスを用いた選択エッチングを行う。
 その後、図5Jに示すように、n型GaN層10のソース電極用の開口部から露出している部分に対して、塩素ガスを用いた時間制御によるエッチングを行うことにより、開口部10aを形成する。
 続いて、図5Kに示すように、シリコン窒化膜12のソース電極用の開口部及びn型GaN層10の開口部10a内にソース電極13を、例えばリフトオフ法により形成する。ソース電極13の形成の際には、Ta膜を形成し、その上にAl膜を形成する。
 次いで、図5Lに示すように、基板1の表面側の全面に表面保護層19を形成し、基板1の表裏を反転させる。その後、必要に応じて、基板1の裏面を研磨することにより、基板1の厚さを所定の厚さにする。そして、基板1の裏面の全体にドレイン電極14を形成する。
 続いて、図5Mに示すように、基板1の表裏を反転させ、表面保護層19を除去する。次いで、例えばリフトオフ法により、シリコン窒化膜12のゲート電極用の開口部内にゲート電極15を形成し、露出しているシリコン窒化膜5上に制御電極16を形成する。ゲート電極15及び制御電極16の形成の際には、Ni膜を形成し、その上にAu膜を形成する。
 このようにしてGaN系HEMTを形成する。その後、必要に応じてパッシベーション膜及び外部電極等を形成してGaN系HEMTが集積した半導体装置を完成させる。
 (第2の実施形態)
 次に、第2の実施形態について説明する。図8は、第2の実施形態に係るGaN系HEMTの構造を示す断面図である。
 第2の実施形態では、シリコン酸化膜5の代わりに、開口部22aが形成されたアルミニウム窒化膜(AlN膜)22が設けられている。また、第1の実施形態では、n型GaN層6及びGaN層7がシリコン酸化膜5と直接接しているが、第2の実施形態では、n型GaN層6及びGaN層7とアルミニウム窒化膜22との間にn型AlGaN層21が形成されている。n型AlGaN層21にはSiが1.0×1017cm-3~1.0×1019cm-3程度ドーピングされており、その厚さは1nm~50nm程度である。他の構成は第1の実施形態と同様である。
 このような第2の実施形態では、GaN層7のn型AlGaN層21との界面近傍に固定の負の電荷が発生する。この電荷は、GaNとAlGaNとの間の格子定数の違いにより発生するピエゾ電荷である。そして、この負電荷と反発することで、電子が電流狭窄部(開口部22a)内に存在しにくくなり、電子狭窄部における電流は著しく減少する。一方、制御電極16に正電圧を印加すると、p型GaN層4の電位が上昇し、そこではじめて電子狭窄部に電子が存在するようになり、電流が流れる。このように、制御電極16に電圧を印加しなければ電流狭窄部を介して電流が流れず、電圧を印加すれば電流が流れるようになるので、ノーマリーオフ動作がより確実になる。また、n型GaN層6のn型AlGaN層21との界面近傍にも2次元電子ガスが発生し、その部分にも電流が流れる。このため、動作時のオン抵抗が低減される。
 (第3の実施形態)
 次に、第3の実施形態について説明する。図9は、第3の実施形態に係るGaN系HEMTの構造を示す断面図である。
 第3の実施形態では、シリコン酸化膜5及びn型GaN層6がn型GaN層3と接するように形成され、シリコン酸化膜5及びn型GaN層6上にp型GaN層4が形成されている。つまり、p型GaN層4と、シリコン酸化膜5及びn型GaN層6の組み合わせとの積層関係が第1の実施形態と比較して反対になっている。他の構成は第1の実施形態と同様である。
 このような第3の実施形態によっても第1の実施形態と同様の効果を得ることができる。また、第3の実施形態では、p型GaN層4が2DEG領域に近いため、空乏層が2DEG領域にまで広がって、オフ電流を減少させることができる。
 (第4の実施形態)
 次に、第4の実施形態について説明する。図10は、第4の実施形態に係るGaN系HEMTの構造を示す断面図である。
 第4の実施形態では、n型GaN層3の代わりに、n型GaN層3a及び3bが設けられており、これらの間にp型GaN層4が設けられている。つまり、AlN層2上にn型GaN層3aが形成され、n型GaN層3a上にp型GaN層4が形成され、p型GaN層4上にn型GaN層3bが形成されている。他の構成は第1の実施形態と同様である。
 このような第4の実施形態によっても第1の実施形態と同様の効果を得ることができる。また、第4の実施形態では、p型GaN層4がエッチングされないため、その結晶性が高く保持されやすい。この結果、オン抵抗をより低くすることができ、また、オフ時の電流阻止能力を向上させることができる。
 なお、制御電極16からp型GaN層4に電圧を効率的に印加するためには、n型GaN層3bの制御電極16とp型GaN層4との間に位置する部分は除去されていることが好ましい。但し、n型GaN層3bが残っていても、制御電極16の面積と比較してn型GaN層3bが非常に薄いため、制御電極16からp型GaN層4に電圧を印加することは可能である。
 (第5の実施形態)
 次に、第5の実施形態について説明する。図11は、第5の実施形態に係るGaN系HEMTの構造を示す断面図である。
 第5の実施形態では、n型GaN層6が開口部5a内だけでなく、シリコン酸化膜5上にも広がって形成されている。本実施形態におけるn型GaN層6の厚さは500nm程度である。n型GaN層6は、開口部5a内において厚さ方向に成長した後に、厚さ方向に成長した部分から横方向に成長している。他の構成は第1の実施形態と同様である。
 このような第5の実施形態によっても第1の実施形態と同様の効果を得ることができる。また、第5の実施形態では、2DEG領域とn型GaN層6との接触面積広いため、オン抵抗が低減される。なお、第5の実施形態におけるn型GaN層6を第2~第4の実施形態に適用してもよい。
 なお、いずれの実施形態においても、基板1及び各層の材料、厚さ及び不純物濃度等は特に限定されない。例えば、基板1として、導電性のシリコン基板の他に、導電性サファイア基板、導電性SiC基板、導電性GaN基板等を用いてもよい。また、電流狭窄層(電流ブロック層)として、シリコン酸化膜及びアルミニウム窒化膜の他に、p型GaN層を用いてもよい。
 但し、p型GaN層のエッチングは、シリコン酸化膜及びアルミニウム窒化膜のエッチングと比較すると困難であり、ピンチオフ特性が低くなりやすい。また、サファイア基板の格子定数が、窒化物系の化合物半導体層の格子定数と比較的大きく相違しているため、化合物半導体層に転位が生じやすく、結晶性が低くなりやすい。このため、所望の特性が得にくくなる。従って、基板としては導電性の半導体基板が好ましく、電流狭窄層(電流ブロック層)としては、シリコン酸化膜又はアルミニウム窒化膜が好ましい。
 また、いずれの実施形態においても、制御電極16とp型GaN層4とが直接接していてもよい。
 次に、本願発明者が実際に行った実験について説明する。この実験では、第1の実施形態に倣ったGaN系HEMT(図1参照)、及び第3の実施形態に倣ったGaN系HEMT(図9参照)を作製した。このとき、p型GaN層4の厚さは、0.5nm、1nm、10nm、100nm、1μm及び2μmの6種類とし、総計で6個の試料を作製した。そして、各試料のI-V特性を測定した。この結果を、図12A、図12B、図13A及び図13Bに示す。図12A、図12Bは、夫々、第1の実施形態に倣ったGaN系HEMTのオフ動作時、オン動作時の特性を示す。また、図13A及び図13Bは、夫々、第3の実施形態に倣ったGaN系HEMTのオフ動作時、オン動作時の特性を示す。各グラフにおける横軸は、ソース電極13とドレイン電極14との間に印加した電圧(Vds)を示し、縦軸は、ソース電極13とドレイン電極14との間に流れた電流の密度(Ids)を示す。
 図12A及び図13Aに示すように、いずれの実施形態に倣ったGaN系HEMTにおいても、p型GaN層4の厚さが1nm、10nm、100nm又は1μmであれば、ノーマリーオフ動作が確認され、図12B及び図13Bに示すように、オン動作時には適切な密度で電流が流れた。一方、図12A及び図13Aに示すように、p型GaN層4の厚さが0.5nmの試料では、ノーマリーオフ動作が確認されなかった。また、図12B及び図13Bに示すように、p型GaN層4の厚さが2μmの試料では、オン時の電流密度が非常に低かった。従って、p型GaN層4の厚さが1nm以上、1μm以下であれば、p型GaN層4は、オフ時に十分な電流ブロック特性を発揮し、かつ、オン抵抗を十分に低くすることができると考えられる。
 なお、第1の実施形態に倣ったGaN系HEMTにおいて耐電圧が高く、第3の実施形態に倣ったGaN系HEMTにおいてオン動作時の抵抗が高くなっている。これは、第3の実施形態に倣ったGaN系HEMTでは、p型GaN層4の形成がn型GaN層6の選択成長の後に行われており、p型GaN層4の周辺部に欠陥が比較的多くなったためであると考えられる。
 化合物半導体装置及びその製造方法によれば、ノーマリーオフ動作が可能となる。このため、自動車等の部品として実用化することも可能である。

Claims (18)

  1.  第1の導電型の第1の化合物半導体層と、
     前記第1の化合物半導体層の上方に形成された電子走行層と、
     前記電子走行層の上方に形成された電子供給層と、
     前記電子供給層の上方に形成されたゲート電極及びソース電極と、
     前記第1の化合物半導体層の下方に形成されたドレイン電極と、
     前記電子走行層と前記ドレイン電極との間に形成された前記第1の導電型と異なる第2の導電型の第2の化合物半導体層と、
     前記第2の化合物半導体層の電位を制御する制御手段と、
     を有することを特徴とする化合物半導体装置。
  2.  前記電子走行層と前記ドレイン電極との間に形成され、開口部を備えた電流狭窄層を有することを特徴とする請求項1に記載の化合物半導体装置。
  3.  前記電子走行層と前記第2の化合物半導体層との間に形成された前記第1の導電型の第3の化合物半導体層を有することを特徴とする請求項1に記載の化合物半導体装置。
  4.  前記開口部内に形成された前記第1の導電型の第3の化合物半導体層を有することを特徴とする請求項2に記載の化合物半導体装置。
  5.  前記第2の化合物半導体層は、前記第1の化合物半導体層と前記電子走行層との間に位置していることを特徴とする請求項1に記載の化合物半導体装置。
  6.  前記第2の化合物半導体層は、前記第1の化合物半導体層と前記電流狭窄層との間に位置していることを特徴とする請求項2に記載の化合物半導体装置。
  7.  前記第2の化合物半導体層は、前記電流狭窄層と前記電子走行層との間に位置していることを特徴とする請求項2に記載の化合物半導体装置。
  8.  前記電流狭窄層は、AlN層であり、
     前記電子走行層は、n型GaN層であり、
     前記電流狭窄層と前記電子走行層との間に形成されたn型AlGaN層を有することを特徴とする請求項2に記載の化合物半導体装置。
  9.  前記第1の化合物半導体層と前記ドレイン電極との間に位置する導電性基板を有することを特徴とする請求項1に記載の化合物半導体装置。
  10.  前記第2の化合物半導体層の厚さは、1nm乃至1μmであることを特徴とする請求項1に記載の化合物半導体装置。
  11.  第1の導電型の第1の化合物半導体層上方に、前記第1の導電型と異なる第2の導電型の第2の化合物半導体層を形成する工程と、
     前記第2の化合物半導体層の上方に電子走行層を形成する工程と、
     前記電子走行層上に電子供給層を形成する工程と、
     前記電子供給層の上方にゲート電極及びソース電極を形成する工程と、
     前記第1の化合物半導体層の下方にドレイン電極を形成する工程と、
     前記第2の化合物半導体層の電位を制御する制御手段を形成する工程と、
     を有することを特徴とする化合物半導体装置の製造方法。
  12.  前記電子走行層を形成する工程の前に、開口部を備えた電流狭窄層を前記第1の化合物半導体層の上方に形成する工程を有することを特徴とする請求項11に記載の化合物半導体装置の製造方法。
  13.  前記第2の化合物半導体層を形成する工程と前記電子走行層を形成する工程との間に、前記第2の化合物半導体層の上方に前記第1の導電型の第3の化合物半導体層を形成する工程を有することを特徴とする請求項11に記載の化合物半導体装置の製造方法。
  14.  前記開口部内に、前記第1の導電型の第3の化合物半導体層を形成する工程を有することを特徴とする請求項12に記載の化合物半導体装置の製造方法。
  15.  前記電流狭窄層を形成する工程を、前記第2の化合物半導体層を形成する工程と前記電子走行層を形成する工程との間に行うことを特徴とする請求項12に記載の化合物半導体装置の製造方法。
  16.  前記電流狭窄層を形成する工程を、前記第2の化合物半導体層を形成する工程の前に行うことを特徴とする請求項12に記載の化合物半導体装置の製造方法。
  17.  前記電流狭窄層として、AlN層を形成し、
     前記電子走行層として、n型GaN層を形成し、
     前記電流狭窄層を形成する工程と前記電子走行層を形成する工程との間に、前記電流狭窄層上にn型AlGaN層を形成する工程を有することを特徴とする請求項12に記載の化合物半導体装置の製造方法。
  18.  前記第2の化合物半導体層の厚さを1nm乃至1μmとすることを特徴とする請求項11に記載の化合物半導体装置の製造方法。
PCT/JP2008/069676 2008-10-29 2008-10-29 化合物半導体装置及びその製造方法 WO2010050021A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN200880131746.9A CN102197468B (zh) 2008-10-29 2008-10-29 化合物半导体器件及其制造方法
EP08877732.1A EP2346071B1 (en) 2008-10-29 2008-10-29 Compound semiconductor device and method for manufacturing the same
KR1020117009163A KR101167651B1 (ko) 2008-10-29 2008-10-29 화합물 반도체 장치 및 그 제조 방법
JP2010535561A JP5533661B2 (ja) 2008-10-29 2008-10-29 化合物半導体装置及びその製造方法
PCT/JP2008/069676 WO2010050021A1 (ja) 2008-10-29 2008-10-29 化合物半導体装置及びその製造方法
US13/091,322 US8618577B2 (en) 2008-10-29 2011-04-21 Compound semiconductor device and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2008/069676 WO2010050021A1 (ja) 2008-10-29 2008-10-29 化合物半導体装置及びその製造方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/091,322 Continuation US8618577B2 (en) 2008-10-29 2011-04-21 Compound semiconductor device and manufacturing method thereof

Publications (1)

Publication Number Publication Date
WO2010050021A1 true WO2010050021A1 (ja) 2010-05-06

Family

ID=42128400

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/069676 WO2010050021A1 (ja) 2008-10-29 2008-10-29 化合物半導体装置及びその製造方法

Country Status (6)

Country Link
US (1) US8618577B2 (ja)
EP (1) EP2346071B1 (ja)
JP (1) JP5533661B2 (ja)
KR (1) KR101167651B1 (ja)
CN (1) CN102197468B (ja)
WO (1) WO2010050021A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102468331A (zh) * 2010-11-02 2012-05-23 富士通株式会社 半导体器件及其制造方法

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9029866B2 (en) 2009-08-04 2015-05-12 Gan Systems Inc. Gallium nitride power devices using island topography
US9818857B2 (en) 2009-08-04 2017-11-14 Gan Systems Inc. Fault tolerant design for large area nitride semiconductor devices
US9064947B2 (en) 2009-08-04 2015-06-23 Gan Systems Inc. Island matrixed gallium nitride microwave and power switching transistors
EP2559064A4 (en) * 2010-04-13 2018-07-18 GaN Systems Inc. High density gallium nitride devices using island topology
JP5919626B2 (ja) * 2011-02-25 2016-05-18 富士通株式会社 化合物半導体装置及びその製造方法
JP5784441B2 (ja) * 2011-09-28 2015-09-24 トランスフォーム・ジャパン株式会社 半導体装置及び半導体装置の製造方法
JP2013197315A (ja) * 2012-03-19 2013-09-30 Fujitsu Ltd 半導体装置及び半導体装置の製造方法
JP5895651B2 (ja) * 2012-03-28 2016-03-30 富士通株式会社 化合物半導体装置及びその製造方法
JP2014072397A (ja) * 2012-09-28 2014-04-21 Fujitsu Ltd 化合物半導体装置及びその製造方法
JP2014146646A (ja) * 2013-01-28 2014-08-14 Fujitsu Ltd 半導体装置
KR102036349B1 (ko) * 2013-03-08 2019-10-24 삼성전자 주식회사 고 전자이동도 트랜지스터
KR102055839B1 (ko) 2013-03-08 2019-12-13 삼성전자주식회사 질화계 반도체 소자
KR102065114B1 (ko) * 2013-03-14 2020-01-10 삼성전자주식회사 파워 소자의 전류 붕괴를 감소시키는 구동방법
JP6174874B2 (ja) * 2013-03-15 2017-08-02 ルネサスエレクトロニクス株式会社 半導体装置
JP6070846B2 (ja) * 2013-07-31 2017-02-01 富士電機株式会社 半導体装置の製造方法および半導体装置
JP2015032744A (ja) * 2013-08-05 2015-02-16 株式会社東芝 半導体装置および半導体装置の製造方法
FR3011981B1 (fr) * 2013-10-11 2018-03-02 Centre National De La Recherche Scientifique - Cnrs - Transistor hemt a base d'heterojonction
FR3012049B1 (fr) 2013-10-17 2022-02-25 Abc Membranes Fabrication d'une membrane de filtration
US9590048B2 (en) * 2013-10-31 2017-03-07 Infineon Technologies Austria Ag Electronic device
FR3030114B1 (fr) 2014-12-15 2018-01-26 Centre National De La Recherche Scientifique - Cnrs - Transistor hemt
CN106449406B (zh) * 2016-05-30 2020-05-12 湖南理工学院 一种垂直结构GaN基增强型场效应晶体管及其制造方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6191965A (ja) * 1984-10-12 1986-05-10 Hitachi Ltd 半導体装置
JPH0730073A (ja) * 1993-05-12 1995-01-31 Semiconductor Res Found 半導体デバイス及びその製造方法
JP2006140368A (ja) 2004-11-15 2006-06-01 Toyota Central Res & Dev Lab Inc 半導体装置とその製造方法
JP2008218813A (ja) * 2007-03-06 2008-09-18 Toyota Central R&D Labs Inc 半導体装置とその製造方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0631326B1 (en) * 1993-05-12 1999-02-24 Zaidan Hojin Handotai Kenkyu Shinkokai Semiconductor memory device and method of manufacturing same
JP2000106371A (ja) * 1998-07-31 2000-04-11 Denso Corp 炭化珪素半導体装置の製造方法
US7084441B2 (en) * 2004-05-20 2006-08-01 Cree, Inc. Semiconductor devices having a hybrid channel layer, current aperture transistors and methods of fabricating same
JP4916671B2 (ja) 2005-03-31 2012-04-18 住友電工デバイス・イノベーション株式会社 半導体装置
US8575651B2 (en) * 2005-04-11 2013-11-05 Cree, Inc. Devices having thick semi-insulating epitaxial gallium nitride layer
JP4932305B2 (ja) * 2006-03-30 2012-05-16 株式会社豊田中央研究所 Iii族窒化物系化合物半導体素子の製造方法
JP2008021756A (ja) * 2006-07-12 2008-01-31 Toyota Motor Corp Iii族窒化物半導体装置
JP5048382B2 (ja) * 2006-12-21 2012-10-17 株式会社豊田中央研究所 半導体装置とその製造方法
DE112008000410T5 (de) * 2007-02-16 2009-12-24 Sumitomo Chemical Company, Limited Epitaxialer Galliumnitridkristall, Verfahren zu dessen Herstellung und Feldeffekttransistor
JP5099116B2 (ja) * 2007-02-27 2012-12-12 富士通株式会社 化合物半導体装置とその製造方法
JP5095253B2 (ja) * 2007-03-30 2012-12-12 富士通株式会社 半導体エピタキシャル基板、化合物半導体装置、およびそれらの製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6191965A (ja) * 1984-10-12 1986-05-10 Hitachi Ltd 半導体装置
JPH0730073A (ja) * 1993-05-12 1995-01-31 Semiconductor Res Found 半導体デバイス及びその製造方法
JP2006140368A (ja) 2004-11-15 2006-06-01 Toyota Central Res & Dev Lab Inc 半導体装置とその製造方法
JP2008218813A (ja) * 2007-03-06 2008-09-18 Toyota Central R&D Labs Inc 半導体装置とその製造方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JAPANESE JOURNAL OF APPLIED PHYSICS, vol. 46, no. 21, 2007, pages L503 - L505
See also references of EP2346071A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102468331A (zh) * 2010-11-02 2012-05-23 富士通株式会社 半导体器件及其制造方法

Also Published As

Publication number Publication date
KR101167651B1 (ko) 2012-07-20
JP5533661B2 (ja) 2014-06-25
CN102197468B (zh) 2014-04-02
EP2346071B1 (en) 2017-04-05
KR20110074557A (ko) 2011-06-30
CN102197468A (zh) 2011-09-21
JPWO2010050021A1 (ja) 2012-03-29
EP2346071A1 (en) 2011-07-20
US8618577B2 (en) 2013-12-31
US20110193096A1 (en) 2011-08-11
EP2346071A4 (en) 2012-09-12

Similar Documents

Publication Publication Date Title
JP5533661B2 (ja) 化合物半導体装置及びその製造方法
JP5099116B2 (ja) 化合物半導体装置とその製造方法
US9548376B2 (en) Method of manufacturing a semiconductor device including a barrier structure
US8735942B2 (en) Compound semiconductor device and manufacturing method of the same
US8866192B1 (en) Semiconductor device, high electron mobility transistor (HEMT) and method of manufacturing
JP2007165431A (ja) 電界効果型トランジスタおよびその製造方法
JP5566670B2 (ja) GaN系電界効果トランジスタ
JP2010192633A (ja) GaN系電界効果トランジスタの製造方法
JP7013710B2 (ja) 窒化物半導体トランジスタの製造方法
JPWO2007122669A1 (ja) 多結晶SiC基板を有する化合物半導体ウエハ、化合物半導体装置とそれらの製造方法
JP2005183733A (ja) 高電子移動度トランジスタ
JP2009170546A (ja) GaN系電界効果トランジスタ
JP5593673B2 (ja) 半導体装置及びその製造方法
JP4748501B2 (ja) 高電子移動度トランジスタ
CN106910770B (zh) 氮化镓基反相器芯片及其形成方法
JP6519920B2 (ja) 半導体基板の製造方法、及び半導体装置の製造方法
JP2013149959A (ja) 窒化物系半導体装置
JP5534049B2 (ja) 多結晶SiC基板を有する化合物半導体ウエハ、化合物半導体装置とそれらの製造方法
JP2006060071A (ja) GaN系電界効果トランジスタ
JP4924046B2 (ja) 接合型iii族窒化物トランジスタを作製する方法
EP3564987A1 (en) Semiconductor substrate and electronic device

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880131746.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08877732

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010535561

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20117009163

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2008877732

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2008877732

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE