WO2010047316A1 - 液晶配向処理剤及びそれを用いた液晶表示素子 - Google Patents

液晶配向処理剤及びそれを用いた液晶表示素子 Download PDF

Info

Publication number
WO2010047316A1
WO2010047316A1 PCT/JP2009/068036 JP2009068036W WO2010047316A1 WO 2010047316 A1 WO2010047316 A1 WO 2010047316A1 JP 2009068036 W JP2009068036 W JP 2009068036W WO 2010047316 A1 WO2010047316 A1 WO 2010047316A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
aligning agent
crystal aligning
diamine
polyamic acid
Prior art date
Application number
PCT/JP2009/068036
Other languages
English (en)
French (fr)
Inventor
欣也 松本
啓文 志田
皇晶 筒井
Original Assignee
日産化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産化学工業株式会社 filed Critical 日産化学工業株式会社
Priority to CN200980144834.7A priority Critical patent/CN102209928B/zh
Priority to JP2010534807A priority patent/JP5434927B2/ja
Publication of WO2010047316A1 publication Critical patent/WO2010047316A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1067Wholly aromatic polyimides, i.e. having both tetracarboxylic and diamino moieties aromatically bound
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133711Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by organic films, e.g. polymeric films
    • G02F1/133723Polyimide, polyamide-imide
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/13378Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by treatment of the surface, e.g. embossing, rubbing or light irradiation
    • G02F1/133784Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by treatment of the surface, e.g. embossing, rubbing or light irradiation by rubbing
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2203/00Function characteristic
    • G02F2203/60Temperature independent

Definitions

  • the present invention relates to a liquid crystal alignment treatment agent, a liquid crystal alignment film using the same, and a liquid crystal display element.
  • a liquid crystal display element has a structure in which liquid crystal molecules are sandwiched between liquid crystal alignment films formed on a substrate, and is a display element utilizing the fact that liquid crystal molecules aligned in a certain direction by a liquid crystal alignment film respond with voltage. is there.
  • This liquid crystal alignment film is generally produced by performing a so-called “rubbing process” in which the surface of a polyimide film formed on a substrate with electrodes is rubbed against the surface with rayon or nylon cloth. . Since the rubbing treatment determines the alignment direction and the pretilt angle of the liquid crystal molecules, the rubbing treatment is a very important process. However, the rubbing treatment has a big problem of scratches on the film surface and peeling of the film. Scratches and peeling on the surface of the liquid crystal alignment film are important problems because they cause display defects when the liquid crystal display element is formed.
  • a method of forming a coating film using a solution of a polyimide precursor such as polyamic acid and imidizing on the substrate, and a soluble polyimide that has been imidized in advance As a means for forming a polyimide film on a substrate with electrodes, a method of forming a coating film using a solution of a polyimide precursor such as polyamic acid and imidizing on the substrate, and a soluble polyimide that has been imidized in advance. And a method using a solution containing. Among them, the method using a solution containing a soluble polyimide is capable of forming a polyimide film having good characteristics when used as a liquid crystal alignment film even when firing at a relatively low temperature. Further, the strength of the film is low, and problems associated with the rubbing treatment are likely to occur.
  • Patent Document 1 a specific diamine component according to Patent Document 1 in which the solubility of polyimide in an organic solvent is improved and the film surface is not easily scratched or peeled off by rubbing treatment.
  • the liquid crystal aligning agent containing the soluble polyimide which imidized the polyamic acid obtained by using is proposed.
  • a decrease in the pretilt angle is becoming a problem due to the heat generated from the backlight.
  • a diamine having an alkyl side chain for example, see Patent Document 2
  • a diamine having a steroid skeleton in the side chain for example, Patent Document 3
  • a diamine having a ring structure in the side chain for example, Patent Document 4
  • the liquid crystal orientation is good, but the thermal stability of the pretilt angle is poor, and the pretilt angle decreases as the temperature increases.
  • a polyamic acid or soluble polyimide using a diamine having a steroid skeleton or a ring structure in the side chain is excellent in thermal stability at a pretilt angle, but tends to decrease liquid crystal orientation and solubility in an organic solvent.
  • an object of the present invention is to provide a liquid crystal alignment treatment agent for forming a liquid crystal alignment film that satisfies alignment during liquid crystal injection, resistance to rubbing treatment, and stabilization of a pretilt angle at high temperature. . That is, according to the present invention, scratches on the liquid crystal alignment film surface due to rubbing treatment and peeling of the liquid crystal alignment film hardly occur, the liquid crystal alignment property at the time of liquid crystal injection is good, and the pretilt angle is stable and difficult to decrease even at high temperatures. It aims at providing the liquid-crystal aligning agent for forming a film
  • the present invention has the following gist.
  • a polyamic acid obtained by reacting a diamine component with a tetracarboxylic dianhydride component and a soluble polyimide obtained by imidizing the polyamic acid, containing at least one polymer, wherein the diamine component has the formula A liquid crystal aligning agent comprising a diamine represented by [1] and a diamine represented by formula [2].
  • n is an integer of 0 to 19.
  • the diamine represented by the formula [2] in the diamine component is contained in an amount of 0.1 mol to 1.2 mol per mol of the diamine represented by the formula [1]. 4)
  • the liquid-crystal aligning agent in any one of. (6) The above (1) to (5), wherein the positional relationship between the two amino groups of the diamine represented by the formula [1] and the diamine represented by the formula [2] is the meta position or the para position.
  • the liquid crystal aligning agent according to any one of (7) The liquid crystal aligning agent according to any one of (1) to (6), wherein the tetracarboxylic dianhydride component contains a tetracarboxylic dianhydride having an alicyclic structure or an aliphatic structure.
  • liquid crystal aligning agent of the present invention it is possible to form a liquid crystal alignment film with good liquid crystal alignment during liquid crystal injection, and scratching the surface of the liquid crystal alignment film during rubbing or Since peeling is suppressed and the pretilt angle is difficult to decrease at high temperatures, a liquid crystal display element having few display defects and stable characteristics at high temperatures can be obtained.
  • the liquid-crystal aligning agent of this invention contains the polyamic acid obtained by making a diamine component and a tetracarboxylic dianhydride component react, and / or the soluble polyimide which imidated this polyamic acid,
  • the said diamine component is And a diamine represented by the following formula [1] and formula [2].
  • the soluble polyimide refers to a polyimide that is soluble in an organic solvent used in the liquid crystal aligning agent of the present invention.
  • n is an integer from 0 to 19.
  • the position of each substituent on the benzene ring is not particularly limited, but the positional relationship between the two amino groups is preferably meta or para. Although the preferable specific example of this diamine is given to the following, it is not limited to this.
  • the diamine component used as a raw material for the polyamic acid or soluble polyimide may be only the diamine represented by the formula [1] and the formula [2], or one or more selected from other diamines. And may be combined.
  • the diamine represented by the formula [1] as a diamine component for obtaining a polyamic acid or a soluble polyimide, problems such as scratches on the film surface and film peeling when the coating film is rubbed are improved.
  • the solubility of polyimide in an organic solvent increases.
  • the diamine represented by the formula [1] increases the effect of suppressing scratches on the surface of the alignment film during the rubbing treatment and peeling of the film as the content ratio increases.
  • the solubility of the soluble polyimide in the organic solvent is also increased.
  • the content of the diamine represented by the formula [1] is 5 mol% or more of the total diamine component, the effect of suppressing scratches on the alignment film surface and the film peeling during the rubbing treatment can be obtained. % Or more is preferable because sufficient resistance can be obtained even when combined with a diamine having low resistance to rubbing.
  • content of this diamine is 95 mol% or less.
  • the diamine represented by the formula [2] is an essential component for developing good liquid crystal orientation and a stable pretilt angle at high temperatures.
  • the content of the diamine represented by the formula [2] in the diamine component is 0.1 to 1.2 mol, preferably 0.3 to 1. mol per mol of the diamine represented by the formula [1]. 1 mol, more preferably 0.5 to 1.1 mol.
  • the content of the diamine represented by the formula [2] in the diamine component can be adjusted depending on the target pretilt angle, but it is preferably 1 to 90 mol%, more preferably 5 to 60 mol%.
  • the position of each substituent on the benzene ring is not particularly limited, but the positional relationship between the two amino groups is preferably meta or para. Although the preferable specific example of this diamine is given to the following, it is not limited to this.
  • n is an integer from 0 to 19.
  • n is small, the pretilt angle does not appear.
  • n is large, the solubility of the soluble polyimide decreases. Therefore, a preferable range of n is 3 to 15, more preferably 5 to 10.
  • the formulas [1] and [2] may be only these, but other diamines may be used in combination, and the other diamines in that case are not particularly limited, but specific examples thereof If indicated, the following amines may be mentioned.
  • alicyclic diamines examples include 1,4-diaminocyclohexane, 1,3-diaminocyclohexane, 4,4′-diaminodicyclohexylmethane, 4,4′-diamino-3,3′-dimethyldicyclohexylamine, isophorone Examples include diamines.
  • aromatic diamines examples include o-phenylenediamine, m-phenylenediamine, p-phenylenediamine, 2,4-diaminotoluene, 2,5-diaminotoluene, 3,5-diaminotoluene, 1,4-diamino -2-methoxybenzene, 2,5-diamino-p-xylene, 1,3-diamino-4-chlorobenzene, 3,5-diaminobenzoic acid, 1,4-diamino-2,5-dichlorobenzene, 4,4 '-Diamino-1,2-diphenylethane, 4,4'-diamino-2,2'-dimethylbibenzyl, 4,4'-diaminodiphenylmethane, 3,3'-diaminodiphenylmethane, 3,4'-diaminodiphenylmethane 4,4′-diamin
  • aromatic-aliphatic diamines include 3-aminobenzylamine, 4-aminobenzylamine, 3-amino-N-methylbenzylamine, 4-amino-N-methylbenzylamine, 3-aminophenethylamine, 4-aminobenzylamine, Aminophenethylamine, 3-amino-N-methylphenethylamine, 4-amino-N-methylphenethylamine, 3- (3-aminopropyl) aniline, 4- (3-aminopropyl) aniline, 3- (3-methylaminopropyl) Aniline, 4- (3-methylaminopropyl) aniline, 3- (4-aminobutyl) aniline, 4- (4-aminobutyl) aniline, 3- (4-methylaminobutyl) aniline, 4- (4-methyl Aminobutyl) aniline, 3- (5-aminopentyl) aniline, 4- (5-aminopentyl) Aniline, 3- (5-methyl)
  • heterocyclic diamines examples include 2,6-diaminopyridine, 2,4-diaminopyridine, 2,4-diamino-1,3,5-triazine, 2,7-diaminodibenzofuran, 3,6-diamino
  • examples thereof include carbazole, 2,4-diamino-6-isopropyl-1,3,5-triazine, 2,5-bis (4-aminophenyl) -1,3,4-oxadiazole.
  • aliphatic diamines examples include 1,2-diaminoethane, 1,3-diaminopropane, 1,4-diaminobutane, 1,5-diaminopentane, 1,6-diaminohexane, 1,7-diaminoheptane 1,8-diaminooctane, 1,9-diaminononane, 1,10-diaminodecane, 1,3-diamino-2,2-dimethylpropane, 1,6-diamino-2,5-dimethylhexane, 1,7 -Diamino-2,5-dimethylheptane, 1,7-diamino-4,4-dimethylheptane, 1,7-diamino-3-methylheptane, 1,9-diamino-5-methylheptane, 1,12-diamino Examples include dodecane, 1,18-diaminoocta
  • diamines having a long-chain alkyl group, a perfluoroalkyl group, an aromatic cyclic group, an aliphatic cyclic group, a substituent combining these, a steroid skeleton group, and the like include the following.
  • j represents an integer of 5 to 20
  • k represents an integer of 1 to 20.
  • the tetracarboxylic dianhydride component used as a raw material for polyamic acid or soluble polyimide may be one type of tetracarboxylic dianhydride, or a mixture of two or more types of tetracarboxylic dianhydride. May be used.
  • tetracarboxylic dianhydrides are particularly effective in improving the problems of the liquid crystal alignment properties, such as scratches and peeling of the surface of the liquid crystal alignment film that occur during rubbing treatment, and reduction of the pretilt angle at high temperatures. It is not limited.
  • a tetracarboxylic dianhydride having an alicyclic structure or an aliphatic structure from the viewpoint that the voltage holding ratio of the liquid crystal cell can be increased.
  • the tetracarboxylic dianhydride having an alicyclic structure or an aliphatic structure include 1,2,3,4-cyclobutanetetracarboxylic dianhydride, 1,2-dimethyl-1,2,3,4-cyclobutane.
  • Tetracarboxylic dianhydride 1,3-dimethyl-1,2,3,4-cyclobutanetetracarboxylic dianhydride, 1,2,3,4-tetramethyl-1,2,3,4-cyclobutanetetra Carboxylic dianhydride, 1,2,3,4-cyclopentanetetracarboxylic dianhydride, 2,3,4,5-tetrahydrofurantetracarboxylic dianhydride, 1,2,4,5-cyclohexanetetracarboxylic Acid dianhydride, 3,4-dicarboxy-1-cyclohexylsuccinic dianhydride, 3,4-dicarboxy-1,2,3,4-tetrahydro-1-naphthalene succinic dianhydride, 1, , 3,4-Butanetetracarboxylic dianhydride, bicyclo [3,3,0] octane-2,4,6,8-tetracarboxylic dianhydride, 3,3 ′, 4,4′-dicyclo
  • the liquid crystal alignment is improved and the accumulated charge of the liquid crystal cell is reduced. Since it can reduce, it is preferable.
  • Aromatic tetracarboxylic dianhydrides include pyromellitic dianhydride, 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride, 2,2 ′, 3,3′-biphenyltetracarboxylic acid Dianhydride, 2,3,3 ′, 4-biphenyltetracarboxylic dianhydride, 3,3 ′, 4,4′-benzophenonetetracarboxylic dianhydride, 2,3,3 ′, 4-benzophenonetetra Carboxylic dianhydride, bis (3,4-dicarboxyphenyl) ether dianhydride, bis (3,4-dicarboxyphenyl) sulfone dianhydride, 1,2,5,6-naphthalenetetracarboxylic dianhydride And 2,3,6,7-naphthalenetetracarboxylic dianhydride and the like.
  • tetracarboxylic dianhydride having an alicyclic structure or aliphatic structure, and aromatic It is preferable to use together a group tetracarboxylic dianhydride.
  • the former / latter molar ratio is preferably 90/10 to 50/50, more preferably 80/20 to 60/40.
  • the polyamic acid or soluble polyimide used in the liquid crystal aligning agent of the present invention is a polyamic acid obtained by reacting the diamine component and the tetracarboxylic dianhydride component, or a polyimide obtained by imidizing this.
  • the reaction for obtaining a polyamic acid is possible by mixing a tetracarboxylic dianhydride component and a diamine component in an organic solvent.
  • a method of mixing a tetracarboxylic dianhydride component and a diamine component in an organic solvent a solution in which the diamine component is dispersed or dissolved in an organic solvent is stirred, and the tetracarboxylic dianhydride component is left as it is or organically.
  • a method of adding by dispersing or dissolving in a solvent a method of adding a diamine component to a solution in which a tetracarboxylic dianhydride component is dispersed or dissolved in an organic solvent, and a tetracarboxylic dianhydride component and a diamine component. The method of adding alternately etc. are mentioned.
  • the tetracarboxylic dianhydride component or the diamine component when they are composed of a plurality of types of compounds, they may be subjected to a polycondensation reaction in a state in which these plural types of compounds are mixed in advance, or may be sequentially subjected to a polycondensation reaction individually. Good.
  • the temperature for the polycondensation reaction of the tetracarboxylic dianhydride component and the diamine component in an organic solvent is usually 0 to 150 ° C., preferably 5 to 100 ° C., more preferably 10 to 80 ° C. The higher the temperature, the faster the polycondensation reaction is completed. However, if the temperature is too high, a high molecular weight polymer may not be obtained.
  • the polycondensation reaction can be carried out at an arbitrary concentration. However, if the total mass concentration of the tetracarboxylic dianhydride component and the diamine component is too low, it becomes difficult to obtain a high molecular weight polymer. If the concentration of the total mass of the acid dianhydride component and the diamine component is too high, the viscosity of the reaction solution becomes too high and uniform stirring becomes difficult, so 1 to 50% by mass, more preferably 5 to 30% is preferable. % By mass.
  • the initial stage of the polycondensation reaction may be performed at a high concentration, and then an organic solvent may be added.
  • the organic solvent used in the above reaction is not particularly limited as long as the generated polyamic acid dissolves.
  • Specific examples are N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, 1,3-dimethylimidazolidinone, N-methyl.
  • Examples include caprolactam, dimethyl sulfoxide, tetramethyl urea, pyridine, dimethyl sulfone, hexamethyl sulfoxide, and ⁇ -butyrolactone. These may be used alone or in combination.
  • the solvent does not dissolve the polyamic acid, it may be used by mixing with the above solvent as long as the produced polyamic acid does not precipitate.
  • water in the organic solvent inhibits the polycondensation reaction and further causes hydrolysis of the produced polyamic acid, it is preferable to use a dehydrated and dried organic solvent as much as possible.
  • the molar ratio of the tetracarboxylic dianhydride component and the diamine component used for the polycondensation reaction of the polyamic acid is preferably 1: 0.8 to 1: 1.2, and this molar ratio is 1: 1. The closer the molecular weight of the polyamic acid obtained, the greater. By controlling the molecular weight of this polyamic acid, the molecular weight of the soluble polyimide obtained after imidization can be adjusted.
  • the molecular weight of the soluble polyimide contained in the liquid crystal aligning agent of the present invention is not particularly limited, but from the viewpoint of the strength of the coating film and the ease of handling as a liquid crystal aligning agent, the weight average molecular weight is 2,000 to 200. Is preferably 5,000 to 50,000.
  • the imidation of the polyamic acid obtained as described above is performed by stirring in an organic solvent, preferably in the presence of a basic catalyst and an acid anhydride, preferably for 1 to 100 hours.
  • Examples of the basic catalyst include pyridine, triethylamine, trimethylamine, tributylamine, trioctylamine and the like. Of these, pyridine is preferable because it has an appropriate basicity for proceeding with the reaction.
  • Examples of the acid anhydride include acetic anhydride, trimellitic anhydride, pyromellitic anhydride, and the like. Among them, acetic anhydride is preferable because the obtained polyimide can be easily purified after imidization.
  • As an organic solvent the solvent used at the time of the polycondensation reaction of the polyamic acid mentioned above can be used.
  • the imidization rate of the soluble polyimide can be controlled by adjusting the amount of catalyst, reaction temperature, and reaction time.
  • the amount of the basic catalyst at this time is preferably 0.2 to 10 times mol, more preferably 0.5 to 5 times mol of the amic acid group.
  • the amount of the acid anhydride is preferably 1 to 30 times mol, more preferably 1 to 10 times mol of the amic acid group.
  • the reaction temperature is preferably ⁇ 20 to 250 ° C., more preferably 0 to 180 ° C.
  • the reaction time is preferably 1 to 100 hours, preferably 1 to 20 hours.
  • the imidation ratio of the soluble polyimide contained in the liquid crystal aligning agent of the present invention is not particularly limited, it is preferably 40% or more, and preferably 60% or more, more preferably to obtain a high voltage holding ratio. 80% or more.
  • the imidization ratio of polyimide was measured as follows. Add 20 mg of polyimide powder to an NMR (nuclear magnetic resonance absorption) sample tube, add 0.53 ml of deuterated dimethyl sulfoxide (DMSO-d 6 , 0.05% TMS (tetramethylsilane) mixture), and dissolve completely I let you. This solution was measured for proton NMR at 500 MHz with an NMR measuring instrument (JNM-ECA500) manufactured by JEOL Datum.
  • the soluble polyimide can be recovered by putting the solution after imidization into a poor solvent that is being stirred, and precipitating the polyimide, followed by filtration.
  • the poor solvent at this time include methanol, acetone, hexane, butyl cellosolve, heptane, methyl ethyl ketone, methyl isobutyl ketone, ethanol, toluene, and benzene.
  • the recovered soluble polyimide can be washed with this poor solvent.
  • the polyimide recovered and washed in this way can be powdered by drying at normal temperature or under reduced pressure at room temperature or by heating.
  • the liquid crystal aligning agent of this invention is a polyamic acid and / or soluble polyimide (polyamic acid of this invention) obtained using the diamine component containing the diamine represented by Formula [1], and the diamine represented by Formula [2]. And / or soluble polyimide)), but other polyamic acid and / or soluble polyimide can also be contained in an appropriate ratio.
  • the content of the polyamic acid and / or soluble polyimide of the present invention is 10 to 90% by mass with respect to all the polyamic acid and / or soluble polyimide. It is preferably 10 to 40% by mass.
  • the liquid-crystal aligning agent of this invention contains at least 1 sort (s) of a polymer among the said polyamic acid and soluble polyimide, it is also possible to contain only a polyamic acid alone, and contains soluble polyimide alone. Is also possible. In order to obtain better printability and good afterimage characteristics, a liquid crystal aligning agent containing a polyamic acid and a soluble polyimide in an appropriate ratio can be obtained.
  • the content of the soluble polyimide contained in the liquid crystal aligning agent is preferably 10 to 50% by mass with respect to the total content of the soluble polyimide and the polyamic acid, and is 10 to 30% by mass. More preferably.
  • the preparation method of the liquid-crystal aligning agent of this invention is not specifically limited.
  • the polyamic acid solution obtained as described above is diluted to a desired concentration.
  • the soluble polyimide solution is a method of dissolving the soluble polyimide powder obtained as described above in an organic solvent to obtain a polyimide solution, and then diluting to a desired concentration.
  • adjustment of the solvent composition for controlling the coating property to the substrate, addition of an additive for improving the properties of the coating film, and the like can be performed.
  • examples include pyrrolidone, N-methylcaprolactam, 2-pyrrolidone, N-vinylpyrrolidone, dimethyl sulfoxide, tetramethylurea, dimethyl sulfone, hexamethyl sulfoxide, ⁇ -butyrolactone, 1,3-dimethyl-imidazolidinone.
  • Solvents added to control the coating property to the substrate include ethyl cellosolve, butyl cellosolve, ethyl carbitol, butyl carbitol, ethyl carbitol acetate, ethylene glycol, 1-methoxy-2-propanol, 1-ethoxy-2- Propanol, 1-butoxy-2-propanol, 1-phenoxy-2-propanol, propylene glycol monoacetate, propylene glycol diacetate, propylene glycol-1-monomethyl ether-2-acetate, propylene glycol-1-monoethyl ether-2 -Acetate, dipropylene glycol, 2- (2-ethoxypropoxy) propanol, lactate methyl ester, lactate ethyl ester, lactate n-propyl ester, lactate n-butyl ester, lactate i Such as amyl ester, and the like.
  • solvents include a solvent that cannot dissolve polyamic acid or soluble polyimide alone, but can be mixed with the liquid crystal aligning agent of the present invention as long as polyamic acid or polyimide does not precipitate. it can.
  • the coating film uniformity is improved upon application to a substrate by appropriately mixing a solvent having a low surface tension, and it is also suitably used in the liquid crystal aligning agent of the present invention.
  • Additives for improving the properties of the coating include 3-aminopropylmethyldiethoxysilane, 3-phenylaminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, (aminoethylaminomethyl) phenethyltrimethoxysilane And silane coupling agents such as By adding these silane coupling agents, the adhesion of the coating film to the substrate can be further improved.
  • the solid content concentration of the liquid crystal alignment treatment agent of the present invention can be appropriately changed depending on the thickness of the liquid crystal alignment film to be formed, but is preferably 0.5 to 10% by mass, and 1 to 8% by mass. More preferably. If it is less than 0.5% by mass, it is difficult to form a uniform and defect-free coating film, and if it exceeds 10% by mass, the storage stability of the solution may deteriorate.
  • the term “solid content” as used herein refers to a component obtained by removing the solvent from the liquid crystal aligning agent.
  • the liquid crystal alignment treatment agent obtained as described above is preferably filtered before being applied to the substrate.
  • the liquid crystal aligning agent of this invention can be used as a liquid crystal aligning film by apply
  • the substrate to be used is not particularly limited as long as it is a highly transparent substrate, and a glass substrate, a plastic substrate such as an acrylic substrate or a polycarbonate substrate can be used, and an ITO electrode for driving a liquid crystal is formed. It is preferable to use a new substrate from the viewpoint of simplification of the process.
  • an opaque substrate such as a silicon wafer can be used as long as only one substrate is used. In this case, a material that reflects light such as aluminum can be used as the electrode.
  • Examples of the method for applying the liquid crystal aligning agent include spin coating, printing, and ink-jet methods. From the viewpoint of productivity, the flexographic printing method is widely used industrially, and the liquid crystal aligning treatment of the present invention. It is also preferably used in agents.
  • the drying process after applying the liquid crystal alignment treatment agent is not necessarily required, but if the time from application to baking is not constant for each substrate, or if baking is not performed immediately after application, the drying process is performed. Inclusion is preferred.
  • This drying is not particularly limited as long as the solvent is evaporated to such an extent that the shape of the coating film is not deformed by transporting the substrate or the like.
  • a method of drying on a hot plate at 50 to 150 ° C., preferably 80 to 120 ° C., for 0.5 to 30 minutes, preferably 1 to 5 minutes is employed.
  • the substrate coated with the liquid crystal aligning agent can be baked at an arbitrary temperature of 100 to 350 ° C., preferably 150 to 300 ° C., more preferably 180 to 250 ° C.
  • an amic acid group is present in the liquid crystal aligning agent, the conversion rate from the amic acid to the imide varies depending on the firing temperature, but the liquid crystal aligning agent of the present invention does not necessarily need to be 100% imidized.
  • baking is preferably performed at a temperature higher by 10 ° C. or more than the heat treatment temperature required for the liquid crystal cell manufacturing process, such as sealing agent curing.
  • the thickness of the coating film after baking is too thick, it is disadvantageous in terms of power consumption of the liquid crystal display element, and if it is too thin, the reliability of the liquid crystal display element may be lowered, so it is preferably 10 to 200 nm, more preferably 50 to 100 nm.
  • an existing rubbing apparatus can be used.
  • the material of the rubbing cloth at this time include cotton, rayon, and nylon.
  • the liquid crystal display element of the present invention is a liquid crystal display element obtained by obtaining a substrate with a liquid crystal alignment film from the liquid crystal aligning agent of the present invention by the method described above, and then preparing a liquid crystal cell by a known method.
  • a pair of substrates on which a liquid crystal alignment film is formed is preferably an arbitrary rubbing direction of 0 to 270 ° with a spacer of preferably 1 to 30 ⁇ m, more preferably 2 to 10 ⁇ m.
  • a method is generally used in which the angle is set to be fixed, the periphery is fixed with a sealant, and liquid crystal is injected and sealed.
  • the method for enclosing the liquid crystal is not particularly limited, and examples thereof include a vacuum method of injecting liquid crystal after reducing the pressure inside the produced liquid crystal cell, and a dropping method of sealing after dropping the liquid crystal.
  • the liquid crystal display device thus obtained has good liquid crystal alignment properties, and display defects due to scratches and peeling of the liquid crystal alignment film that occur during rubbing treatment, and alignment defects due to a decrease in pretilt angle at high temperatures are reduced. Since the liquid crystal display device can be made highly reliable, it can be suitably used for display elements of various systems such as a TN liquid crystal display element, an STN liquid crystal display element, a TFT liquid crystal display element, and an OCB liquid crystal display element.
  • DA1 2,4-diamino-N, N-diallylaniline
  • DA2 1,3-diamino-4-octadecyloxybenzene
  • DA3 4- (trans-4-pentylcyclohexyl) benzamide-2 ′, 4′-phenylene Diamine
  • DA4 p-phenylenediamine
  • DA5 4- ⁇ 4- (4-heptylcyclohexyl) phenoxy ⁇ -1,3-diaminobenzene
  • DA6 4-aminobenzylamine
  • DA7 3-aminobenzylamine
  • DA8 1,3-diamino -4-Dodecyloxybenzene
  • DA9 Di (4-aminophenyl) methane
  • DA10 1,3-diamino-4-tetradecyloxybenzene
  • GPC device manufactured by Shodex (GPC-101) Column: manufactured by Shodex (series of KD803 and KD805) Column temperature: 50 ° C Eluent: N, N-dimethylformamide (as additive, lithium bromide-hydrate (LiBr ⁇ H 2 O) 30 mmol / L, phosphoric acid / anhydrous crystal (o-phosphoric acid) 30 mmol / L , Tetrahydrofuran (THF) at 10 ml / L) Flow rate: 1.0 ml / min Standard sample for preparing a calibration curve: TSK standard polyethylene oxide (molecular weight: about 900,000, 150,000, 100,000, 30,000) manufactured by Tosoh Corporation and polyethylene glycol (molecular weight: about 12,000, 4,000, 1,000) manufactured by Polymer Laboratories .
  • TSK standard polyethylene oxide molecular weight: about 900,000, 150,000, 100,000, 30,000
  • polyethylene glycol molecular weight: about 12,000,
  • the imidation ratio of polyimide was measured as follows. Add 20 mg of polyimide powder to an NMR (nuclear magnetic resonance absorption) sample tube, add 0.53 ml of deuterated dimethyl sulfoxide (DMSO-d 6 , 0.05% TMS (tetramethylsilane) mixture), and dissolve completely I let you. This solution was measured for proton NMR at 500 MHz with an NMR measuring instrument (JNM-ECA500) manufactured by JEOL Datum.
  • NMR nuclear magnetic resonance absorption
  • a liquid crystal alignment treatment agent is spin-coated on a glass substrate with a transparent electrode, dried on a hot plate at a temperature of 70 ° C. for 70 seconds, and then baked on a hot plate at 210 ° C. for 10 minutes to form a coating film having a thickness of 100 nm. I let you.
  • This coating film surface was rubbed with a rubbing apparatus having a roll diameter of 120 mm using a rayon cloth under the conditions of a roll rotation speed of 1000 rpm, a roll traveling speed of 50 mm / sec, and an indentation amount of 0.3 mm to obtain a substrate with a liquid crystal alignment film.
  • pretilt angle was measured using the liquid crystal cell obtained in the same manner as in the above ⁇ Production of liquid crystal cell>.
  • TBA107 manufactured by autotronic was used for the measurement. The measurement was performed before heating (23 ° C.) and under the condition that the liquid crystal cell was held at 60 ° C., and the amount of change in pretilt angle before and after heating was evaluated.
  • Example 1 As a tetracarboxylic dianhydride component, 12.49 g (42 mmol) of CA1 was used, 2.73 g (25 mmol) of DA4 and 3.43 g (8.4 mmol) of DA3 were used as a diamine component, and 1.71 g of DA1 was further used. (8.4 mmol) was used to react in 81.37 g of NMP at room temperature for 24 hours to obtain a polyamic acid solution.
  • Example 2 As tetracarboxylic dianhydride component, CA1 6.20 g (22 mmol), CA3 5.38 g (22 mmol), diamine component DA4 2.79 g (26 mmol), DA3 3.51 g (8.6 mmol) Then, 1.75 g (8.6 mmol) of DA1 was reacted in 78.49 g of NMP at 80 ° C. for 24 hours to obtain a polyamic acid solution. To 50 g of this polyamic acid solution, 114.3 g of NMP was added for dilution, and 6.34 g of acetic anhydride and 9.84 g of pyridine were added and reacted at a temperature of 100 ° C.
  • Example 3 As a tetracarboxylic dianhydride component, 7.68 g (40 mmol) of CA2 and 2.60 g (24 mmol) of DA4, 3.42 g (8.4 mmol) of DA3 and 1.63 g (8. 4 mmol) in NMP 85.96 g at room temperature for 24 hours to obtain a polyamic acid (PAA-1) solution. The number average molecular weight of this polyamic acid was 18,374, and the weight average molecular weight was 43,407. 10.5 g of NMP and 7.5 g of BC were added to 8 g of this solution and stirred at room temperature for 20 hours to obtain a uniform liquid crystal aligning agent. Using this liquid crystal aligning agent, rubbing resistance, orientation and tilt angle were evaluated. The results are shown in Table 2.
  • Example 4 As a tetracarboxylic dianhydride component, 8.18 g (42 mmol) of CA2 and 1.63 g (7.5 mmol) of CA4, as a diamine component, 1.22 g (10 mmol) of DA7 and 5.08 g (25 mmol) of DA1 Then, 6.11 g (15 mmol) of DA3 was used and reacted at room temperature in 88.96 g of NMP for 24 hours to obtain a polyamic acid solution.
  • Example 5 As a tetracarboxylic dianhydride component, CA2 was 13.53 g (69 mmol), CA4 was 6.54 g (30 mmol), and as a diamine component, DA1 was 8.13 g (40 mmol), DA6 was 3.67 g (30 mmol), DA8.
  • a polyamic acid solution To 34.81 g of this polyamic acid solution, 62.65 g of NMP was added for dilution, and 5.15 g of acetic anhydride and 2.19 g of pyridine were added and reacted at a temperature of 50 ° C. for 3 hours to imidize.
  • the reaction solution was cooled to about room temperature and then poured into 366.8 ml of methanol to recover the precipitated solid.
  • the solid was washed several times with methanol, and then dried under reduced pressure at a temperature of 100 ° C. to obtain a white powder of polyimide (SPI-4).
  • the number average molecular weight of this polyimide was 12,016, and the weight average molecular weight was 35,126.
  • the imidation ratio was 90%. 10.8 g of ⁇ BL was added to 1.2 g of this polyimide powder, and the mixture was stirred at a temperature of 50 ° C. for 24 hours. The polyimide was completely dissolved at the end of stirring.
  • Example 6 As a tetracarboxylic dianhydride component, CA2 was 6.86 g (35 mmol), CA4 was 3.27 g (15 mmol), diamine component was DA7 2.44 g (20 mmol), DA1 3.04 g (15 mmol), DA3 was reacted for 24 hours at room temperature in 87.0 g of NMP to obtain a polyamic acid solution (PAA-2). The number average molecular weight of this polyamic acid was 15,539, and the weight average molecular weight was 47,210. 10.5 g of NMP and 7.5 g of BC were added to 8 g of this solution and stirred at room temperature for 20 hours to obtain a uniform liquid crystal aligning agent. The PAA-2 and SPI-3 were mixed at a mass ratio of 8: 2 to obtain the liquid crystal aligning agent of the present invention. Using this liquid crystal aligning agent, rubbing resistance, orientation and tilt angle were evaluated. The results are shown in Table 2.
  • Example 7 Using 9.80 g (50 mmol) of CA2 as a tetracarboxylic dianhydride component, 9.60 g (44 mmol) of CA4, and 19.8 g (100 mmol) of DA9 as a diamine component, the reaction was conducted at room temperature for 5 hours in 222 g of NMP. To obtain a polyamic acid solution (PAA-3). The number average molecular weight of this polyamic acid was 11,153, and the weight average molecular weight was 29,487. 10.5 g of NMP and 7.5 g of BC were added to 8 g of this solution and stirred at room temperature for 20 hours to obtain a uniform liquid crystal aligning agent. The PAA-3 and PAA-1 were mixed at a mass ratio of 5: 5 to obtain the liquid crystal aligning agent of the present invention. Using this liquid crystal aligning agent, rubbing resistance, orientation and tilt angle were evaluated. The results are shown in Table 2.
  • Example 8 SPI-3, SPI-4, and PAA-3 were mixed at a mass ratio of 1: 1: 8 to obtain the liquid crystal aligning agent of the present invention. Using this liquid crystal aligning agent, rubbing resistance, orientation and tilt angle were evaluated. The results are shown in Table 2.
  • Example 9 As a tetracarboxylic dianhydride component, 7.84 g (40 mmol) of CA2 was used, 6.51 g (32 mmol) of DA1 was used as a diamine component, and 3.26 g (8 mmol) of DA3 was used. The reaction was performed for a time to obtain a polyamic acid solution. The number average molecular weight of this polyamic acid was 14,119, and the weight average molecular weight was 39,572. 10.5 g of NMP and 7.5 g of BC were added to 8 g of this solution and stirred at room temperature for 20 hours to obtain a uniform polyamic acid solution (PAA-4). This solution was used as a liquid crystal alignment treatment agent. Using this liquid crystal aligning agent, rubbing resistance, orientation and tilt angle were evaluated. The results are shown in Table 2.
  • the reaction solution was cooled to about room temperature and then poured into 1480.5 ml of methanol to recover the precipitated solid.
  • the solid was washed several times with methanol and then dried under reduced pressure at a temperature of 100 ° C. to obtain a white powder of polyimide (SPI-T1).
  • the number average molecular weight of this polyimide was 12,120, and the weight average molecular weight was 35,728.
  • the imidation ratio was 85%. 10.8 g of ⁇ BL was added to 1.2 g of this polyimide powder, and the mixture was stirred at a temperature of 50 ° C. for 24 hours. The polyimide was completely dissolved at the end of stirring.
  • the reaction solution was cooled to about room temperature and then poured into 374.7 ml of methanol to recover the precipitated solid.
  • the solid was washed several times with methanol and then dried under reduced pressure at a temperature of 100 ° C. to obtain a white powder of polyimide (SPI-T4).
  • the number average molecular weight of this polyimide was 13,472, and the weight average molecular weight was 35,859. Further, the imidization ratio was 89%.
  • 10.8 g of ⁇ BL was added to 1.2 g of this polyimide powder and stirred at a temperature of 50 ° C. for 24 hours. The polyimide was completely dissolved at the end of stirring.
  • the reaction solution was cooled to about room temperature and then poured into 351.7 ml of methanol to recover the precipitated solid.
  • the solid was washed several times with methanol and then dried under reduced pressure at a temperature of 100 ° C. to obtain a white powder of polyimide (SPI-T5).
  • the number average molecular weight of this polyimide was 10,111, and the weight average molecular weight was 33,653.
  • the imidation ratio was 90%.
  • 10.8 g of ⁇ BL was added to 1.2 g of this polyimide powder and stirred at a temperature of 50 ° C. for 24 hours. The polyimide was completely dissolved at the end of stirring.
  • the liquid crystal display element produced using the liquid crystal aligning agent of this invention can be used as a highly reliable liquid crystal display device, such as a TN liquid crystal display element, an STN liquid crystal display element, a TFT liquid crystal display element, and an OCB liquid crystal display element. It is suitably used for display elements by various methods.
  • a TN liquid crystal display element such as a TN liquid crystal display element, an STN liquid crystal display element, a TFT liquid crystal display element, and an OCB liquid crystal display element. It is suitably used for display elements by various methods.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Liquid Crystal (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)

Abstract

 ラビング処理時の液晶配向膜表面への傷や液晶配向膜の剥離が抑制され、高温においてプレチルト角が低下し難いポリイミド系の液晶配向処理剤を提供する。  ジアミン成分とテトラカルボン酸二無水物成分とを反応させて得られるポリアミック酸及びこれをイミド化して得られる可溶性ポリイミドのうち少なくとも1種の重合体を含有し、上記ジアミン成分が、式[1]で表されるジアミン、及び式[2]で表されるジアミンを含有することを特徴とする、液晶配向処理剤。 (式中、nは0~19の整数である。)

Description

液晶配向処理剤及びそれを用いた液晶表示素子
 本発明は、液晶配向処理剤、それを用いた液晶配向膜及び液晶表示素子に関する。
 液晶表示素子は、液晶分子が基板に形成された液晶配向膜で挟まれた構造をしており、液晶配向膜によって一定方向に配向した液晶分子が、電圧によって応答することを利用した表示素子である。この液晶配向膜は、一般的には電極付き基板上に形成されたポリイミド膜の表面を、レーヨンやナイロン布によってその表面に圧力をかけて擦る、いわゆる”ラビング処理”を行って作製されている。このラビング処理により液晶分子の配向方向及びプレチルト角が決定されるため、ラビング処理は非常に重要な工程となるが、ラビング処理により膜表面への傷や膜の剥離が大きな問題となっている。液晶配向膜表面の傷や剥離は、液晶表示素子とした際に表示不良が起こる原因となるため重要な問題である。
 電極付き基板上にポリイミド膜を形成させる手段としては、ポリアミック酸などのポリイミド前駆体の溶液を使用して塗膜を形成し、基板上でイミド化させる方法と、あらかじめイミド化させてある可溶性ポリイミドを含む溶液を使用する方法とがある。
 このうち、可溶性ポリイミドを含む溶液を使用する方法は、比較的低温の焼成であっても、液晶配向膜としたときの特性が良好なポリイミド膜を形成させることが可能であるという反面、形成された膜の強度が低く上記ラビング処理に伴う問題が起き易い。
 上記の事情から、本出願人は、既に、特許文献1により、ポリイミドの有機溶媒への溶解性の向上と、ラビング処理による膜表面への傷や膜の剥離が起き難い、特定のジアミン成分を使用して得られたポリアミック酸をイミド化した可溶性ポリイミドを含む液晶配向処理剤を提案している。
 さらに、パネルの大型化、高輝度化に伴い、バックライトから発生する熱により、プレチルト角の低下が問題になりつつある。プレチルト角の発現方法としては、アルキル側鎖を有するジアミン(例えば特許文献2参照)、ステロイド骨格を側鎖に有するジアミン(例えば特許文献3参照)、環構造を側鎖に有するジアミン(例えば特許文献4参照)を用いることが提案されている。一般的にアルキル側鎖を有するジアミンを用いると、液晶配向性は良好であるが、プレチルト角の熱安定性に劣り、温度が高くなるとプレチルト角は低下してしまう。一方、ステロイド骨格や環構造を側鎖に有するジアミンを用いたポリアミック酸又は可溶性ポリイミドは、プレチルト角の熱安定性に優れるが、液晶配向性、有機溶媒に対する溶解性が低下する傾向にある。
国際公開第2006/126555号パンフレット 特開平05-043687号公報 特開平04-281427号公報 特開平02-223916号公報
 本発明は上記の状況を鑑み、液晶注入時の配向性、ラビング処理耐性及び高温でのプレチルト角の安定化を満たす液晶配向膜を形成するための液晶配向処理剤を提供することを目的とする。即ち、本発明は、ラビング処理による液晶配向膜表面への傷や液晶配向膜の剥離が起き難く、液晶注入時の液晶配向性が良好で、かつ高温でもプレチルト角が安定で低下し難い液晶配向膜を形成するための液晶配向処理剤を提供することを目的とする。
 本発明者は、上記の目的を達成するために鋭意研究を行った結果、本発明を完成するに至った。即ち、本発明は以下の要旨を有するものである。
(1)ジアミン成分とテトラカルボン酸二無水物成分とを反応させて得られるポリアミック酸及びこれをイミド化して得られる可溶性ポリイミドのうち少なくとも1種の重合体を含有し、上記ジアミン成分が、式[1]で表されるジアミン、及び式[2]で表されるジアミンを含有することを特徴とする、液晶配向処理剤。
Figure JPOXMLDOC01-appb-C000002
 (式中、nは0~19の整数である。)
(2)テトラカルボン酸二無水物成分とジアミン成分の含有比率が、モル比で1:0.8~1:1.2である上記(1)に記載の液晶配向処理剤。
(3)ジアミン成分が、式[1]で表されるジアミンを20モル%以上含有する上記(1)又は(2)に記載の液晶配向処理剤。
(4)ジアミン成分が、式[2]で表されるジアミンを5~60モル%含有する上記(1)~(3)のいずれかに記載の液晶配向処理剤。
(5)ジアミン成分中の式[2]で表されるジアミンが、式[1]で表されるジアミンの1モルに対して0.1モル~1.2モル含有する上記(1)~(4)のいずれかに記載の液晶配向処理剤。
(6)式[1]で表されるジアミン及び式[2]で表されるジアミンの、それぞれの有する2つのアミノ基の位置関係が、メタ位又はパラ位である上記(1)~(5)のいずれかに記載の液晶配向処理剤。
(7)テトラカルボン酸二無水物成分が、脂環式構造又は脂肪族構造を有するテトラカルボン酸二無水物を含有する上記(1)~(6)のいずれかに記載の液晶配向処理剤。
(8)テトラカルボン酸二無水物成分が、芳香族テトラカルボン酸二無水物を含有する上記(1)~(7)のいずれかに記載の液晶配向処理剤。
(9)上記(1)~(8)のいずれかに記載の液晶配向処理剤を電極付き基板上に塗布、焼成し、ラビング処理して得られる液晶配向膜。
(10)上記(9)に記載の液晶配向膜を用いた液晶表示素子。
 本発明の液晶配向処理剤を用いることにより、液晶注入時の液晶配向性が良好な液晶配向膜を形成させることができ、なおかつ、ラビング処理時の液晶配向膜表面への傷や液晶配向膜の剥離が抑制され、高温においてプレチルト角が低下し難いため、表示不良が少なく、高温下において安定な特性を有する液晶表示素子を得ることができる。
 本発明の液晶配向処理剤は、ジアミン成分とテトラカルボン酸二無水物成分とを反応させて得られるポリアミック酸、及び/又は、該ポリアミック酸をイミド化した可溶性ポリイミドを含有し、上記ジアミン成分は、下記式[1]、及び式[2]で表されるジアミンを含有する。なお、本発明において、可溶性ポリイミドとは、本発明の液晶配向処理剤に使用される有機溶媒に可溶性であるポリイミドを言う。
Figure JPOXMLDOC01-appb-C000003
 ここでnは0~19の整数である。
 式[1]で表されるジアミンにおいて、ベンゼン環上の各置換基の位置は特に限定されないが、2つのアミノ基の位置関係はメタ又はパラが好ましい。以下にこのジアミンの好ましい具体例を挙げるが、これに限定されるものではない。
Figure JPOXMLDOC01-appb-C000004
 本発明において、ポリアミック酸又は可溶性ポリイミドの原料となるジアミン成分は、式[1]及び式[2]で表されるジアミンのみであってもよく、その他のジアミンから選ばれる1種又は2種以上とを組み合わせてもよい。ポリアミック酸又は可溶性ポリイミドを得るためのジアミン成分として、式[1]で表されるジアミンを含有させることで、塗膜をラビング処理する時の膜表面への傷や膜の剥離といった問題が改善され、また、同時にポリイミドの有機溶媒に対する溶解性が高くなる。
 上記のジアミン成分において、式[1]で表されるジアミンは、その含有比率が多くなるほど、ラビング処理時の配向膜表面の傷や膜の剥離を抑制する効果が高くなり、また、ポリアミック酸又は可溶性ポリイミドの有機溶媒に対する溶解性も高くなる。
 式[1]で表されるジアミンの含有量は、全ジアミン成分の5モル%以上であれば、ラビング処理時の配向膜表面の傷や膜の剥離を抑制する効果が得られるが、20モル%以上であると、ラビング削れの耐性が弱いジアミンと組み合わせても十分な耐性が得られるため好ましい。また、該ジアミンの含有量は95モル%以下であると好ましい。
 式[2]で表されるジアミンは、良好な液晶配向性、高温で安定なプレチルト角を発現するために必須な成分である。ジアミン成分中における式[2]で表されるジアミンの含有量は、式[1]で表されるジアミンの1モルに対して0.1~1.2モル、好ましくは0.3~1.1モル、より好ましくは0.5~1.1モルである。式[2]で表されるジアミンの含有量が少ない場合は、所望のプレチルト角が発現しない場合があり、逆に含有量が多い場合は、ラビング削れが悪くなる。
 ジアミン成分中における式[2]で表されるジアミンの含有量は、目的のプレチルト角の大きさにより調整できるが、1~90モル%が好ましく、より好ましくは5~60モル%である。
 式[2]で表されるジアミンにおいて、ベンゼン環上の各置換基の位置は特に限定されないが、2つのアミノ基の位置関係はメタ又はパラが好ましい。以下にこのジアミンの好ましい具体例を挙げるが、これに限定されるものではない。
Figure JPOXMLDOC01-appb-C000005
 ここでnは0~19の整数である。nは小さい場合、プレチルト角が発現せず、大きい場合、可溶性ポリイミドの溶解性が低下する。よって好ましいnの範囲は3~15であり、より好ましくは5~10である。
 上記のジアミン成分において、式[1]及び[2]は、これらのみでもよいが、他のジアミンを併用してもよい、その場合の他のジアミンとしては、特に限定されないが、その具体例を示すならば以下のアミン類が挙げられる。
 脂環式ジアミン類の例としては、1,4-ジアミノシクロヘキサン、1,3-ジアミノシクロヘキサン、4,4’-ジアミノジシクロヘキシルメタン、4,4’-ジアミノ-3,3’-ジメチルジシクロヘキシルアミン、イソホロンジアミン等が挙げられる。
 芳香族ジアミン類の例としては、o-フェニレンジアミン、m-フェニレンジアミン、p-フェニレンジアミン、2,4-ジアミノトルエン、2,5-ジアミノトルエン、3,5-ジアミノトルエン、1,4-ジアミノ-2-メトキシベンゼン、2,5-ジアミノ-p-キシレン、1,3-ジアミノ-4-クロロベンゼン、3,5-ジアミノ安息香酸、1,4-ジアミノ-2,5-ジクロロベンゼン、4,4’-ジアミノ-1,2-ジフェニルエタン、4,4’-ジアミノ-2,2’-ジメチルビベンジル、4,4’-ジアミノジフェニルメタン、3,3’-ジアミノジフェニルメタン、3,4’-ジアミノジフェニルメタン、4,4’-ジアミノ-3,3’―ジメチルジフェニルメタン、2,2’-ジアミノスチルベン、4,4’-ジアミノスチルベン、4,4’-ジアミノジフェニルエーテル、3,4’-ジアミノジフェニルエーテル、4,4’-ジアミノジフェニルスルフィド、4,4’-ジアミノジフェニルスルホン、3,3’-ジアミノジフェニルスルホン、4,4’-ジアミノベンゾフェノン、1,3-ビス(3-アミノフェノキシ)ベンゼン、1,3-ビス(4-アミノフェノキシ)ベンゼン、1,4-ビス(4-アミノフェノキシ)ベンゼン、3,5-ビス(4-アミノフェノキシ)安息香酸、4,4’-ビス(4-アミノフェノキシ)ビベンジル、2,2-ビス[(4-アミノフェノキシ)メチル]プロパン、2,2-ビス[4-(4-アミノフェノキシ)フェニル]ヘキサフロロプロパン、2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン、ビス[4-(3-アミノフェノキシ)フェニル]スルホン、ビス[4-(4-アミノフェノキシ)フェニル]スルホン、1,1-ビス(4-アミノフェニル)シクロヘキサン、α、α’-ビス(4-アミノフェニル)-1,4-ジイソプロピルベンゼン、9,9-ビス(4-アミノフェニル)フルオレン、2,2-ビス(3-アミノフェニル)ヘキサフロロプロパン、2,2-ビス(4-アミノフェニル)ヘキサフロロプロパン、4,4’-ジアミノジフェニルアミン、2,4-ジアミノジフェニルアミン、1,8-ジアミノナフタレン、1,5-ジアミノナフタレン、1,5-ジアミノアントラキノン、1,3-ジアミノピレン、1,6-ジアミノピレン、1,8―ジアミノピレン、2,7-ジアミノフルオレン、1,3-ビス(4-アミノフェニル)テトラメチルジシロキサン、ベンジジン、2,2’-ジメチルベンジジン、1,2-ビス(4-アミノフェニル)エタン、1,3-ビス(4-アミノフェニル)プロパン、1,4-ビス(4-アミノフェニル)ブタン、1,5-ビス(4-アミノフェニル)ペンタン、1,6-ビス(4-アミノフェニル)ヘキサン、1,7-ビス(4-アミノフェニル)ヘプタン、1,8-ビス(4-アミノフェニル)オクタン、1,9-ビス(4-アミノフェニル)ノナン、1,10-ビス(4-アミノフェニル)デカン、1,3-ビス(4-アミノフェノキシ)プロパン、1,4-ビス(4-アミノフェノキシ)ブタン、1,5-ビス(4-アミノフェノキシ)ペンタン、1,6-ビス(4-アミノフェノキシ)ヘキサン、1,7-ビス(4-アミノフェノキシ)ヘプタン、1,8-ビス(4-アミノフェノキシ)オクタン、1,9-ビス(4-アミノフェノキシ)ノナン、1,10-ビス(4-アミノフェノキシ)デカン、ジ(4-アミノフェニル)プロパン-1,3-ジオエート、ジ(4-アミノフェニル)ブタン-1,4-ジオエート、ジ(4-アミノフェニル)ペンタン-1,5-ジオエート、ジ(4-アミノフェニル)ヘキサン-1,6-ジオエート、ジ(4-アミノフェニル)ヘプタン-1,7-ジオエート、ジ(4-アミノフェニル)オクタン-1,8-ジオエート、ジ(4-アミノフェニル)ノナン-1,9-ジオエート、ジ(4-アミノフェニル)デカン-1,10-ジオエート、1,3-ビス〔4-(4-アミノフェノキシ)フェノキシ〕プロパン、1,4-ビス〔4-(4-アミノフェノキシ)フェノキシ〕ブタン、1,5-ビス〔4-(4-アミノフェノキシ)フェノキシ〕ペンタン、1,6-ビス〔4-(4-アミノフェノキシ)フェノキシ〕ヘキサン、1,7-ビス〔4-(4-アミノフェノキシ)フェノキシ〕ヘプタン、1,8-ビス〔4-(4-アミノフェノキシ)フェノキシ〕オクタン、1,9-ビス〔4-(4-アミノフェノキシ)フェノキシ〕ノナン、1,10-ビス〔4-(4-アミノフェノキシ)フェノキシ〕デカンなどが挙げられる。
 芳香族-脂肪族ジアミンの例としては、3-アミノベンジルアミン、4-アミノベンジルアミン、3-アミノ-N-メチルベンジルアミン、4-アミノ-N-メチルベンジルアミン、3-アミノフェネチルアミン、4-アミノフェネチルアミン、3-アミノ-N-メチルフェネチルアミン、4-アミノ-N-メチルフェネチルアミン、3-(3-アミノプロピル)アニリン、4-(3-アミノプロピル)アニリン、3-(3-メチルアミノプロピル)アニリン、4-(3-メチルアミノプロピル)アニリン、3-(4-アミノブチル)アニリン、4-(4-アミノブチル)アニリン、3-(4-メチルアミノブチル)アニリン、4-(4-メチルアミノブチル)アニリン、3-(5-アミノペンチル)アニリン、4-(5-アミノペンチル)アニリン、3-(5-メチルアミノペンチル)アニリン、4-(5-メチルアミノペンチル)アニリン、2-(6-アミノナフチル)メチルアミン、3-(6-アミノナフチル)メチルアミン、2-(6-アミノナフチル)エチルアミン、3-(6-アミノナフチル)エチルアミンなどが挙げられる。
 複素環式ジアミン類の例としては、2,6-ジアミノピリジン、2,4-ジアミノピリジン、2,4-ジアミノ-1,3,5-トリアジン、2,7-ジアミノジベンゾフラン、3,6-ジアミノカルバゾール、2,4-ジアミノ-6-イソプロピル-1,3,5-トリアジン、2,5-ビス(4-アミノフェニル)-1,3,4-オキサジアゾールなどが挙げられる。
 脂肪族ジアミン類の例としては、1,2-ジアミノエタン、1,3-ジアミノプロパン、1,4-ジアミノブタン、1,5-ジアミノペンタン、1,6-ジアミノヘキサン、1,7-ジアミノヘプタン、1,8-ジアミノオクタン、1,9-ジアミノノナン、1,10-ジアミノデカン、1,3-ジアミノ-2,2-ジメチルプロパン、1,6-ジアミノ-2,5-ジメチルヘキサン、1,7-ジアミノ-2,5-ジメチルヘプタン、1,7-ジアミノ-4,4-ジメチルヘプタン、1,7-ジアミノ-3-メチルヘプタン、1,9-ジアミノ-5-メチルヘプタン、1,12-ジアミノドデカン、1,18-ジアミノオクタデカン、1,2-ビス(3-アミノプロポキシ)エタンなどが挙げられる。
 長鎖アルキル基、パーフルオロアルキル基、芳香族環状基、脂肪族環状基、若しくはこれらを組み合わせた置換基、ステロイド骨格基などを有するジアミン類の例としては、以下のものが挙げられる。なお、以下に例示する構造においてjは5~20の整数を表し、kは1~20の整数を表す。
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000016
 本発明において、ポリアミック酸、又は可溶性ポリイミドの原料となるテトラカルボン酸二無水物成分は、1種類のテトラカルボン酸二無水物であってもよく、2種類以上のテトラカルボン酸二無水物を混合して用いてもよい。
 本発明の、液晶配向性、ラビング処理時に発生する液晶配向膜の表面の傷や剥離、高温でのプレチルト角低下などの問題を改善するという効果において、これらのテトラカルボン酸二無水物は、特に限定されない。
 しかしながら、液晶セルの電圧保持率を高くできる点などから、脂環式構造又は脂肪族構造を有するテトラカルボン酸二無水物を用いることが好ましい。脂環式構造又は脂肪族構造を有するテトラカルボン酸二無水物としては、1,2,3,4-シクロブタンテトラカルボン酸二無水物、1,2-ジメチル-1,2,3,4-シクロブタンテトラカルボン酸二無水物、1,3-ジメチル-1,2,3,4-シクロブタンテトラカルボン酸二無水物、1,2,3,4-テトラメチル-1,2,3,4-シクロブタンテトラカルボン酸二無水物、1,2,3,4-シクロペンタンテトラカルボン酸二無水物、2,3,4,5-テトラヒドロフランテトラカルボン酸二無水物、1,2,4,5-シクロヘキサンテトラカルボン酸二無水物、3,4-ジカルボキシ-1-シクロヘキシルコハク酸二無水物、3,4-ジカルボキシ-1,2,3,4-テトラヒドロ-1-ナフタレンコハク酸二無水物、1,2,3,4-ブタンテトラカルボン酸二無水物、ビシクロ[3,3,0]オクタン-2,4,6,8-テトラカルボン酸二無水物、3,3’,4,4’-ジシクロヘキシルテトラカルボン酸二無水物、2,3,5-トリカルボキシシクロペンチル酢酸二無水物、シス-3,7-ジブチルシクロオクタ-1,5-ジエン-1,2,5,6-テトラカルボン酸二無水物、トリシクロ[4.2.1.02,5]ノナン-3,4,7,8-テトラカルボン酸-3,4:7,8-二無水物、ヘキサシクロ[6.6.0.12,7.03,6.19,14.010,13]ヘキサデカン-4,5,11,12-テトラカルボン酸-4,5:11,12-二無水物、4-(2,5-ジオキソテトラヒドロフラン-3-イル)-1,2,3,4-テトラヒドロナフタレンー1,2-ジカルボン酸無水物などが挙げられる。
 更には、上記脂環式構造又は脂肪族構造を有するテトラカルボン酸二無水物に加えて、芳香族テトラカルボン酸二無水物を使用すると、液晶配向性が向上し、かつ液晶セルの蓄積電荷を低減させることができるので好ましい。芳香族テトラカルボン酸二無水物としては、ピロメリット酸二無水物、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物、2,2’,3,3’-ビフェニルテトラカルボン酸二無水物、2,3,3’,4-ビフェニルテトラカルボン酸二無水物、3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物、2,3,3’,4-ベンゾフェノンテトラカルボン酸二無水物、ビス(3,4-ジカルボキシフェニル)エーテル二無水物、ビス(3,4-ジカルボキシフェニル)スルホン二無水物、1,2,5,6-ナフタレンテトラカルボン酸二無水物、2,3,6,7-ナフタレンテトラカルボン酸二無水物などが挙げられる。
 ポリアミック酸、又は可溶性ポリイミドの、液晶の配向性、電圧保持率、蓄積電荷などの各特性のバランスを考慮するならば、脂環式構造又は脂肪族構造を有するテトラカルボン酸二無水物と、芳香族テトラカルボン酸二無水物と、を併用するのが好ましい。その場合、前者/後者のモル比は、90/10~50/50が好ましく、より好ましくは80/20~60/40である。
 本発明の液晶配向処理剤に用いられるポリアミック酸、又は可溶性ポリイミドは、上記したジアミン成分とテトラカルボン酸二無水物成分とを反応させて得られるポリアミック酸、又はこれをイミド化したポリイミドである。ここで、ポリアミック酸を得る反応は、テトラカルボン酸二無水物成分とジアミン成分とを有機溶媒中で混合させることで可能である。
 テトラカルボン酸二無水物成分とジアミン成分とを有機溶媒中で混合させる方法としては、ジアミン成分を有機溶媒に分散あるいは溶解させた溶液を攪拌させ、テトラカルボン酸二無水物成分をそのまま、又は有機溶媒に分散あるいは溶解させて添加する方法、逆にテトラカルボン酸二無水物成分を有機溶媒に分散あるいは溶解させた溶液にジアミン成分を添加する方法、テトラカルボン酸二無水物成分とジアミン成分とを交互に添加する方法などが挙げられる。また、テトラカルボン酸二無水物成分又はジアミン成分が複数種の化合物からなる場合は、これら複数種の化合物をあらかじめ混合した状態で重縮合反応させてもよく、個別に順次重縮合反応させてもよい。
 テトラカルボン酸二無水物成分とジアミン成分を有機溶剤中で重縮合反応させる際の温度は、通常0~150℃、好ましくは5~100℃、より好ましくは10~80℃である。温度が高い方が重縮合反応は早く終了するが、温度が高すぎると高分子量の重合体が得られない場合がある。
 また、重縮合反応は任意の濃度で行うことができるが、テトラカルボン酸二無水物成分とジアミン成分との合計質量の濃度が低すぎると高分子量の重合体を得ることが難しくなり、テトラカルボン酸二無水物成分とジアミン成分との合計質量の濃度が高すぎると反応液の粘性が高くなり過ぎて均一な攪拌が困難となるので、好ましくは1~50質量%、より好ましくは5~30質量%である。重縮合反応初期は高濃度で行い、その後、有機溶媒を追加しても構わない。
 上記反応の際に用いられる有機溶媒は、生成したポリアミック酸が溶解するものであれば特に限定されない。その具体例を挙げるならば、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン、N-エチル-2-ピロリドン、1,3-ジメチルイミダゾリジノン、N-メチルカプロラクタム、ジメチルスルホキシド、テトラメチル尿素、ピリジン、ジメチルスルホン、ヘキサメチルスルホキシド、γ-ブチロラクトン等を挙げることができる。これらは単独でも、また混合して使用してもよい。さらに、ポリアミック酸を溶解させない溶媒であっても、生成したポリアミック酸が析出しない範囲で、上記溶媒に混合して使用してもよい。
 また、有機溶媒中の水分は重縮合反応を阻害し、さらには生成したポリアミック酸を加水分解させる原因となるので、有機溶媒はなるべく脱水乾燥させたものを用いることが好ましい。
 ポリアミック酸の重縮合反応に用いるテトラカルボン酸二無水物成分とジアミン成分の比率は、モル比で1:0.8~1:1.2であることが好ましく、このモル比が1:1に近いほど得られるポリアミック酸の分子量は大きくなる。このポリアミック酸の分子量を制御することで、イミド化後に得られる可溶性ポリイミドの分子量を調整することができる。
 本発明の液晶配向処理剤に含有される可溶性ポリイミドの分子量は特に限定されないが、塗膜の強度と液晶配向処理剤としての取り扱いのしやすさの観点から、重量平均分子量で2,000~200,000が好ましく、より好ましくは5,000~50,000である。
 上記のようにして得られたポリアミック酸のイミド化は、有機溶媒中において、好ましくは塩基性触媒と酸無水物の存在下で好ましくは1~100時間攪拌することにより行われる。
 塩基性触媒としてはピリジン、トリエチルアミン、トリメチルアミン、トリブチルアミン、トリオクチルアミン等を挙げることができる。中でもピリジンは、反応を進行させるのに適度な塩基性を有するので好ましい。
 また、酸無水物としては無水酢酸、無水トリメリット酸、無水ピロメリット酸などを挙げることができる。中でも無水酢酸は、イミド化終了後に、得られたポリイミドの精製が容易となるので好ましい。有機溶媒としては前述したポリアミック酸の重縮合反応時に用いる溶媒を使用することができる。
 可溶性ポリイミドのイミド化率は、触媒量、反応温度、反応時間を調節することにより制御することができる。このときの塩基性触媒の量はアミック酸基の0.2~10倍モルが好ましく、より好ましくは0.5~5倍モルである。また、酸無水物の量はアミック酸基の1~30倍モルが好ましく、より好ましくは1~10倍モルである。反応温度は-20~250℃が好ましく、より好ましくは0~180℃である。反応時間は、好ましくは1~100時間、好ましくは1~20時間である。
 本発明の液晶配向処理剤に含有される可溶性ポリイミドのイミド化率は特に限定されないが、40%以上であることが好ましく、高い電圧保持率を得るためには60%以上が好ましく、より好ましくは80%以上である。
 なお、本発明において、ポリイミドのイミド化率は次のようにして測定した。ポリイミド粉末20mgをNMR(核磁気共鳴吸収)サンプル管に入れ、重水素化ジメチルスルホキシド(DMSO-d、0.05%TMS(テトラメチルシラン)混合品)0.53mlを添加し、完全に溶解させた。この溶液を日本電子データム社製NMR測定器(JNM-ECA500)にて500MHzのプロトンNMRを測定した。
 可溶性ポリイミドのイミド化率は、イミド化前後で変化しない構造に由来するプロトンを基準プロトンとして決め、このプロトンのピーク積算値と、9.5~10.0ppm付近に現れるアミック酸のNH基に由来するプロトンピーク積算値とを用い、次式によって求めた。
 イミド化率(%)=(1-α・x/y)×100
 上記式において、xはアミック酸のNH基由来のプロトンピーク積算値、yは基準プロトンのピーク積算値、αはポリアミック酸(イミド化率が0%)の場合におけるアミック酸のNH基プロトン一個に対する基準プロトンの個数割合である。
 このようにして得られた可溶性ポリイミドの溶液内には、添加した触媒などが残存しているので、可溶性ポリイミドを回収・洗浄してから本発明の液晶配向処理剤に用いることが好ましい。
 可溶性ポリイミドの回収は、イミド化後の溶液を攪拌している貧溶媒に投入し、ポリイミドを析出させた後にろ過することで可能である。このときの貧溶媒としてはメタノール、アセトン、ヘキサン、ブチルセロソルブ、ヘプタン、メチルエチルケトン、メチルイソブチルケトン、エタノール、トルエン、ベンゼンなどを挙げることができる。回収した可溶性ポリイミドの洗浄も、この貧溶媒で行うことができる。
 このようにして回収・洗浄したポリイミドは、常圧あるいは減圧下で、常温あるいは加熱乾燥して粉末とすることができる。
 本発明の液晶配向処理剤は、式[1]で表わされるジアミンと式[2]で表わされるジアミンとを含むジアミン成分を使用して得られるポリアミック酸及び/又は可溶性ポリイミド(本発明のポリアミック酸及び/又は可溶性ポリイミドともいう。)を含有するが、それ以外のポリアミック酸及び/又は可溶性ポリイミドも適当な比率で含有することができる。その場合、適切なチルト角・配向性の観点から、本発明のポリアミック酸及び/又は可溶性ポリイミドの含有量は、全てのポリアミック酸及び/又は可溶性ポリイミドに対して、10~90質量%であるのが好ましく、10~40質量%であるのがより好ましい。
 本発明の液晶配向処理剤は、上記ポリアミック酸及び可溶性ポリイミドのうち少なくとも1種の重合体を含有するが、ポリアミック酸だけを単独で含有することも可能であり、可溶性ポリイミドを単独で含有することも可能である。より良好な印刷性や良残像特性を得たい場合には、ポリアミック酸と可溶性ポリイミドとを適当な比率で含有させた液晶配向処理剤とすることができる。本発明では、液晶配向処理剤に含有される可溶性ポリイミドの含有量は、可溶性ポリイミドとポリアミック酸との合計含有量に対して、10~50質量%であることが好ましく、10~30質量%であることがより好ましい。
 本発明の液晶配向処理剤の調製方法は特に限定されない。その一例を挙げるならば、上記のようにして得られたポリアミック酸溶液を所望の濃度まで希釈する方法である。また可溶性ポリイミド溶液は、上記のようにして得られた可溶性ポリイミドの粉末を、有機溶媒に再溶解させてポリイミド溶液とし、次いで、所望の濃度まで希釈する方法などである。この希釈工程において、基板への塗布性を制御する為の溶媒組成の調整や、塗膜の特性を改善する為の添加物の追加などを行うことができる。
 更には、上記とは異なる構造の可溶性ポリイミドの溶液や、ポリアミック酸の溶液と混合したり、他の樹脂成分を添加してもよい。
 ポリアミック酸を希釈させる有機溶媒、若しくはポリイミド粉末を再溶解させるための有機溶媒としては、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン、N-エチル-2-ピロリドン、N-メチルカプロラクタム、2-ピロリドン、N-ビニルピロリドン、ジメチルスルホキシド、テトラメチル尿素、ジメチルスルホン、ヘキサメチルスルホキシド、γ-ブチロラクトン、1,3-ジメチル-イミダゾリジノンなどが挙げられる。
 基板への塗布性を制御するために加える溶媒としては、エチルセロソルブ、ブチルセロソルブ、エチルカルビトール、ブチルカルビトール、エチルカルビトールアセテート、エチレングリコール、1-メトキシ-2-プロパノール、1-エトキシ-2-プロパノール、1-ブトキシ-2-プロパノール、1-フェノキシ-2-プロパノール、プロピレングリコールモノアセテート、プロピレングリコールジアセテート、プロピレングリコール-1-モノメチルエーテル-2-アセテート、プロピレングリコール-1-モノエチルエーテル-2-アセテート、ジプロピレングリコール、2-(2-エトキシプロポキシ)プロパノール、乳酸メチルエステル、乳酸エチルエステル、乳酸n-プロピルエステル、乳酸n-ブチルエステル、乳酸イソアミルエステルなどが挙げられる。これらの溶媒には、単独ではポリアミック酸、又は可溶性ポリイミドを溶解させることができない溶媒も含まれるが、ポリアミック酸又はポリイミドが析出しない範囲であれば、本発明の液晶配向処理剤に混合することができる。特に、低表面張力を有する溶媒を適度に混合させることにより、基板への塗布時に塗膜均一性が向上することが知られており、本発明の液晶配向処理剤においても好適に用いられる。
 塗膜の特性を改善するための添加物としては、3-アミノプロピルメチルジエトキシシラン、3-フェニルアミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、(アミノエチルアミノメチル)フェネチルトリメトキシシランなどのシランカップリング剤が挙げられる。これらシランカップリング剤の添加により、基板に対する塗膜の密着性を更に向上させることができる。
 本発明の液晶配向処理剤の固形分濃度は、形成する液晶配向膜の厚みの設定によって適宜変更することができるが、0.5~10質量%とすることが好ましく、1~8質量%とすることがより好ましい。0.5質量%未満では均一で欠陥のない塗膜を形成させることが困難となり、10質量%よりも多いと溶液の保存安定性が悪くなる場合がある。ここで言うところの固形分とは、液晶配向処理剤から溶媒を除いた成分を言う。
 以上のようにして得られた液晶配向処理剤は、基板に塗布する前に濾過することが好ましい。
 本発明の液晶配向処理剤は、基板に塗布し、乾燥、焼成することで塗膜とすることができ、この塗膜面をラビング処理することにより、液晶配向膜として使用される。
 この際、用いる基板としては透明性の高い基板であれば特に限定されず、ガラス基板、アクリル基板やポリカーボネート基板などのプラスチック基板などを用いることができ、液晶駆動のためのITO電極などが形成された基板を用いることがプロセスの簡素化の観点から好ましい。また、反射型の液晶表示素子では、片側の基板のみにならばシリコンウエハー等の不透明な基板でも使用でき、この場合の電極はアルミ等の光を反射する材料も使用できる。
 液晶配向処理剤の塗布方法としては、スピンコート法、印刷法、インクジェット法などが挙げられるが、生産性の面から工業的にはフレキソ印刷法が広く用いられており、本発明の液晶配向処理剤においても好適に用いられる。
 液晶配向処理剤を塗布した後の乾燥の工程は、必ずしも必要とされないが、塗布後から焼成までの時間が基板ごとに一定していない場合や、塗布後ただちに焼成されない場合には、乾燥工程を含める方が好ましい。この乾燥は、基板の搬送等により塗膜形状が変形しない程度に溶媒が蒸発していればよく、乾燥手段については特に限定されない。具体例を挙げるならば、50~150℃、好ましくは80~120℃のホットプレート上で、0.5~30分、好ましくは1~5分乾燥させる方法がとられる。
 液晶配向処理剤を塗布した基板の焼成は、100~350℃の任意の温度で行うことができるが、好ましくは150℃~300℃であり、さらに好ましくは180℃~250℃である。液晶配向処理剤中にアミック酸基が存在する場合は、この焼成温度によってアミック酸からイミドへの転化率が変化するが、本発明の液晶配向処理剤は、必ずしも100%イミド化させる必要は無い。ただし、液晶セル製造行程で必要とされる、シール剤硬化などの熱処理温度より、10℃以上高い温度で焼成することが好ましい。
 焼成後の塗膜の厚みは、厚すぎると液晶表示素子の消費電力の面で不利となり、薄すぎると液晶表示素子の信頼性が低下する場合があるので、好ましくは10~200nm、より好ましくは50~100nmである。
 上記のようにして基板上に形成された塗膜面のラビング処理は、既存のラビング装置を使用することができる。この際のラビング布の材質としては、コットン、レーヨン、ナイロンなどが挙げられる。
 本発明の液晶表示素子は、上記した手法により本発明の液晶配向処理剤から液晶配向膜付き基板を得た後、公知の方法で液晶セルを作製し、液晶表示素子としたものである。
 液晶セル作製の一例を挙げるならば、液晶配向膜の形成された1対の基板を、好ましくは1~30μm、より好ましくは2~10μmのスペーサーを挟んで、ラビング方向が0~270°の任意の角度となるように設置して周囲をシール剤で固定し、液晶を注入して封止する方法が一般的である。液晶封入の方法については特に制限されず、作製した液晶セル内を減圧にした後液晶を注入する真空法、液晶を滴下した後封止を行う滴下法などが例示できる。
 このようにして得られた液晶表示素子は、液晶配向性が良好で、ラビング処理時に発生する液晶配向膜の傷や膜の剥離に伴う表示不良、高温でのプレチルト角低下による配向不良が軽減され、信頼性の高い液晶表示デバイスとすることができるので、TN液晶表示素子、STN液晶表示素子、TFT液晶表示素子、OCB液晶表示素子など、種々の方式による表示素子に好適に用いられる。
 以下、実施例を挙げて本発明を説明するが、本発明はこれらに限定されるものではない。
 実施例及び比較例で使用する化合物の略号は以下の通りである。
<テトラカルボン酸二無水物>
 CA1:4-(2,5-ジオキソテトラヒドロフラン-3-イル)-1,2,3,4-テトラヒドロナフタレンー1,2-ジカルボン酸無水物
 CA2:1,2,3,4-シクロブタンテトラカルボン酸二無水物
 CA3:[3,3,0]ビシクロオクタン-2,3,5,6-テトラカルボン酸二無水物
CA4:ピロメリット酸二無水物
Figure JPOXMLDOC01-appb-C000017
<ジアミン>
 DA1:2,4-ジアミノ-N,N-ジアリルアニリン
 DA2:1,3-ジアミノ-4-オクタデシルオキシベンゼン
 DA3:4-(トランス-4-ペンチルシクロへキシル)ベンズアミド-2’,4’-フェニレンジアミン
 DA4:p-フェニレンジアミン
 DA5:4-{4-(4-ヘプチルシクロヘキシル)フェノキシ}-1,3-ジアミノベンゼン
 DA6: 4-アミノベンジルアミン
 DA7: 3-アミノベンジルアミン
 DA8: 1,3-ジアミノ-4-ドデシルオキシベンゼン
 DA9: ジ(4-アミノフェニル)メタン
 DA10:1,3-ジアミノ-4-テトラデシルオキシベンゼン
Figure JPOXMLDOC01-appb-C000018
<有機溶媒>
 NMP:N-メチル-2-ピロリドン
 γBL:γ-ブチロラクトン
 BC:ブチルセロソルブ
 以下に、本実施例で行った評価方法について示す。
<分子量の測定>
 ポリアミック酸及びポリイミドの分子量は、該ポリイミドをGPC(常温ゲル浸透クロマトグラフィー)装置によって測定し、ポリエチレングリコール、ポリエチレンオキシド換算値として数平均分子量と重量平均分子量を算出した。
 GPC装置:Shodex社製(GPC-101)
 カラム:Shodex社製(KD803、KD805の直列)
 カラム温度:50℃
 溶離液:N,N-ジメチルホルムアミド(添加剤として、臭化リチウム-水和物(LiBr・HO)が30ミリモル/L、リン酸・無水結晶(o-リン酸)が30ミリモル/L、テトラヒドロフラン(THF)が10ml/L)
 流速:1.0ml/分
 検量線作成用標準サンプル:東ソー社製 TSK 標準ポリエチレンオキサイド(分子量約900,000、150,000、100,000、30,000)、及び、ポリマーラボラトリー社製ポリエチレングリコール(分子量約12,000、4,000、1,000)。
<イミド化率の測定>
 ポリイミドのイミド化率は次のようにして測定した。ポリイミド粉末20mgをNMR(核磁気共鳴吸収)サンプル管に入れ、重水素化ジメチルスルホキシド(DMSO-d、0.05%TMS(テトラメチルシラン)混合品)0.53mlを添加し、完全に溶解させた。この溶液を日本電子データム社製NMR測定器(JNM-ECA500)にて500MHzのプロトンNMRを測定した。イミド化率は、イミド化前後で変化しない構造に由来するプロトンを基準プロトンとして決め、このプロトンのピーク積算値と、9.5~10.0ppm付近に現れるアミック酸のNH基に由来するプロトンピーク積算値とを用い、次式によって求めた。
 イミド化率(%)=(1-α・x/y)×100
 上記式において、xはアミック酸のNH基由来のプロトンピーク積算値、yは基準プロトンのピーク積算値、αはポリアミック酸(イミド化率が0%)の場合におけるアミック酸のNH基プロトン一個に対する基準プロトンの個数割合である。
<液晶セルの作製>
 液晶配向処理剤を透明電極付きガラス基板にスピンコートし、温度70℃のホットプレート上で70秒乾燥させた後、210℃のホットプレートで10分間焼成を行い、膜厚100nmの塗膜を形成させた。この塗膜面をロール径120mmのラビング装置でレーヨン布を用いて、ロール回転数1000rpm、ロール進行速度50mm/sec、押し込み量0.3mmの条件でラビングし、液晶配向膜付き基板を得た。
 この基板を2枚用意し、その1枚の液晶配向膜面上に6μmのスペーサーを散布し、その上からシール剤を印刷し、もう1枚の基板を液晶配向膜面が向き合いラビング方向が直行するようにして張り合わせた後、シール剤を硬化させて空セルを作製した。この空セルに減圧注入法によって、液晶MLC-2003(メルク・ジャパン社製)を注入し、注入口を封止して、ツイストネマティック液晶セルを得た。
<プレチルト角の測定>
 上記<液晶セルの作製>と同様にして得られた液晶セルを用いてプレチルト角の測定を行った。測定にはautronic社製のTBA107を用いた。測定は、加熱前(23℃)と、液晶セルを60℃に保持した条件で行い、加熱前後のプレチルト角変化量を評価した。
<ラビング耐性の評価>
 上記<液晶セルの作製>において、ラビングローラーの押し込みを0.5mmに変えた条件でラビングを行い、液晶配向膜付き基板を作製した。この液晶配向膜の表面をレーザー顕微鏡にて観察し、目視にて下記の評価を行った。
○:削れカスやラビング傷がほとんど発生しない。
△:カスが発生する、又はラビング傷がつく。
×:膜が剥離する。ラビング傷がスジ状になって観察される。
<液晶配向性の評価>
 上記<液晶セルの作製>において、ラビングローラーの押し込みを0.2mmに変更した以外は同じ条件で液晶セル(アンチパラレル)を作製した。その際、液晶注入時に、液晶セルの注入口から液晶の流動配向の有無を観察し、下記の評価を行った。
○:流動配向が観測されない。
×:スジ状の流動配向が多数観測される。
[実施例1]
 テトラカルボン酸二無水物成分として、CA1を12.49g(42mmol)、ジアミン成分として、DA4を2.73g(25mmol)、DA3を3.43g(8.4mmol)を用い、さらにDA1を1.71g(8.4mmol)を用いNMP81.37g中、室温で24時間反応させポリアミック酸溶液を得た。このポリアミック酸溶液95.8gに、NMPを242.7g加えて希釈し、無水酢酸42.81gとピリジン19.91gを加え、温度40℃で3時間反応させてイミド化した。この反応溶液を室温程度まで冷却後、メタノール1404.1ml中に投入し、沈殿した固形物を回収した。さらに、この固形物をメタノールで数回洗浄した後、温度100℃で減圧乾燥して、可溶性ポリイミド(SPI-1)の白色粉末を得た。このポリイミドの数平均分子量は12,207、重量平均分子量は40,065であった。また、イミド化率は85%であった。このポリイミド粉末1.2gに、γBLを10.8g加え、温度50℃で24時間攪拌した。攪拌終了時点でポリイミドは完全に溶解していた。この溶液12gを23℃まで冷却後、γBLを2g、及びBCを6g加え、温度50℃で20時間攪拌した。攪拌終了後、23℃まで冷却し、均一な液晶配向処理剤を得た。
 この液晶配向処理剤を用い、ラビング耐性、配向性及びチルト角の評価を行った。この結果を表2に示す。
[実施例2]
 テトラカルボン酸二無水物成分として、CA1を6.20g(22mmol)、CA3を5.38g(22mmol)、ジアミン成分として、DA4を2.79g(26mmol)、DA3を3.51g(8.6mmol)を用い、さらにDA1を1.75g(8.6mmol)を用いNMP78.49g中、80℃で24時間反応させポリアミック酸溶液を得た。このポリアミック酸溶液50gに、NMPを114.3g加えて希釈し、無水酢酸6.34gとピリジン9.84gを加え、温度100℃で3時間反応させてイミド化した。この反応溶液を室温程度まで冷却後、メタノール631.7ml中に投入し、沈殿した固形物を回収した。さらに、この固形物をメタノールで数回洗浄した後、温度100℃で減圧乾燥して、ポリイミド(SPI-2)の白色粉末を得た。このポリイミドの数平均分子量は10,250、重量平均分子量は49,802であった。また、イミド化率は82%であった。このポリイミド粉末1.2gに、γBLを10.8g加え、温度50℃で24時間攪拌した。攪拌終了時点でポリイミドは完全に溶解していた。この溶液12gを23℃まで冷却後、γBLを2g、及びBCを6g加え、温度50℃で20時間攪拌した。攪拌終了後、23℃まで冷却し、均一な液晶配向処理剤を得た。
 この液晶配向処理剤を用い、ラビング耐性、配向性及びチルト角の評価を行った。この結果を表2に示す。
[実施例3]
 テトラカルボン酸二無水物成分として、CA2を7.68g(40mmol)、ジアミン成分として、DA4を2.60g(24mmol)、DA3を3.42g(8.4mmol)、DA1を1.63g(8.4mmol)を用い、NMP85.96g中、室温で24時間反応させポリアミック酸(PAA-1)溶液を得た。このポリアミック酸の数平均分子量は18,374、重量平均分子量は43,407であった。この溶液8gにNMPを10.5g、及びBCを7.5g加え、室温で20時間攪拌し、均一な液晶配向処理剤を得た。
 この液晶配向処理剤を用い、ラビング耐性、配向性及びチルト角の評価を行った。この結果を表2に示す。
[実施例4]
 テトラカルボン酸二無水物成分として、CA2を8.18g(42mmol)、CA4を1.63g(7.5mmol)、ジアミン成分として、DA7を1.22g(10mmol)、DA1を5.08g(25mmol)、DA3を6.11g(15mmol)を用い、NMP88.96g中、室温で24時間反応させポリアミック酸溶液を得た。このポリアミック酸溶液95.8gに、NMPを228.5g加えて希釈し、無水酢酸15.1gとピリジン6.4gを加え、温度50℃で3時間反応させてイミド化した。この反応溶液を室温程度まで冷却後、メタノール1259.1ml中に投入し、沈殿した固形物を回収した。さらに、この固形物をメタノールで数回洗浄した後、温度100℃で減圧乾燥して、可溶性ポリイミド(SPI-3)の白色粉末を得た。このポリイミドの数平均分子量は18,195、重量平均分子量は57,063であった。また、イミド化率は93%であった。このポリイミド粉末1.2gに、γBLを10.8g加え、温度50℃で24時間攪拌した。攪拌終了時点でポリイミドは完全に溶解していた。この溶液12gを23℃まで冷却後、γBLを2g、及びBCを6g加え、温度50℃で20時間攪拌した。攪拌終了後、23℃まで冷却し、均一な液晶配向処理剤を得た。
 この液晶配向処理剤を用い、ラビング耐性、配向性及びチルト角の評価を行った。この結果を表2に示す。
[実施例5]
 テトラカルボン酸二無水物成分として、CA2を13.53g(69mmol)、CA4を6.54g(30mmol)、ジアミン成分として、DA1を8.13g(40mmol)、DA6を3.67g(30mmol)、DA8を8.77g(30mmol)用い、NMP161.8g中、室温で24時間反応させポリアミック酸溶液を得た。
 このポリアミック酸溶液34.81gに、NMPを62.65g加えて希釈し、無水酢酸5.15gとピリジン2.19gを加え、温度50℃で3時間反応させてイミド化した。
 この反応溶液を室温程度まで冷却後、メタノール366.8ml中に投入し、沈殿した固形物を回収した。さらに、この固形物をメタノールで数回洗浄した後、温度100℃で減圧乾燥して、ポリイミド(SPI-4)の白色粉末を得た。このポリイミドの数平均分子量は12,016、重量平均分子量は35,126であった。また、イミド化率は90%であった。
 このポリイミド粉末1.2gに、γBLを10.8g加え、温度50℃で24時間攪拌した。攪拌終了時点でポリイミドは完全に溶解していた。この溶液12gを23℃まで冷却後、γBLを2g、及びBCを6g加え、温度50℃で20時間攪拌した。攪拌終了後、23℃まで冷却し、均一な液晶配向処理剤を得た。
 このSPI-4とSPI-3が質量比で7:3となるように混合して、本発明の液晶配向処理剤を得た。この液晶配向処理剤を用い、ラビング耐性、配向性及びチルト角の評価を行った。この結果を表2に示す。
[実施例6]
 テトラカルボン酸二無水物成分として、CA2を6.86g(35mmol)、CA4を3.27g(15mmol)、ジアミン成分として、DA7を2.44g(20mmol)、DA1を3.04g(15mmol)、DA3を6.11g(15mmol)を用い、NMP87.0g中、室温で24時間反応させポリアミック酸溶液(PAA-2)を得た。このポリアミック酸の数平均分子量は15,539、重量平均分子量は47,210であった。この溶液8gにNMPを10.5g、及びBCを7.5g加え、室温で20時間攪拌し、均一な液晶配向処理剤を得た。
 このPAA-2とSPI-3が質量比で8:2となるように混合して、本発明の液晶配向処理剤を得た。この液晶配向処理剤を用い、ラビング耐性、配向性及びチルト角の評価を行った。この結果を表2に示す。
[実施例7]
 テトラカルボン酸二無水物成分として、CA2を9.80g(50mmol)、CA4を9.60g(44mmol)、ジアミン成分として、DA9を19.8g(100mmol)を用い、NMP222g中、室温で5時間反応させポリアミック酸溶液(PAA-3)を得た。このポリアミック酸の数平均分子量は11,153、重量平均分子量は29,487であった。この溶液8gにNMPを10.5g、及びBCを7.5g加え、室温で20時間攪拌し、均一な液晶配向処理剤を得た。
 このPAA-3とPAA-1が質量比で5:5となるように混合して、本発明の液晶配向処理剤を得た。この液晶配向処理剤を用い、ラビング耐性、配向性及びチルト角の評価を行った。この結果を表2に示す。
[実施例8]
 SPI-3とSPI-4とPAA-3が質量比で1:1:8となるように混合して、本発明の液晶配向処理剤を得た。この液晶配向処理剤を用い、ラビング耐性、配向性及びチルト角の評価を行った。この結果を表2に示す。
[実施例9]
 テトラカルボン酸二無水物成分として、CA2を7.84g(40mmol)、ジアミン成分として、DA1を6.51g(32mmol)、DA3を3.26g(8mmol)を用い、NMP70.4g中、室温で24時間反応させポリアミック酸溶液を得た。このポリアミック酸の数平均分子量は14,119、重量平均分子量は39,572であった。この溶液8gにNMPを10.5g、及びBCを7.5g加え、室温で20時間攪拌し、均一なポリアミック酸溶液(PAA-4)を得た。この溶液を液晶配向処理剤とした。この液晶配向処理剤を用い、ラビング耐性、配向性及びチルト角の評価を行った。この結果を表2に示す。
[比較例1]
 テトラカルボン酸二無水物成分として、CA1を13.38g(45mmol)、ジアミン成分として、DA4を3.89g(36mmol)、DA3を3.67g(9mmol)を用い、NMP83.76g中、室温で24時間反応させポリアミック酸溶液を得た。このポリアミック酸溶液98.5gに、NMPを256.1g加えて希釈し、無水酢酸46.68gとピリジン21.71gを加え、温度40℃で3時間反応させてイミド化した。この反応溶液を室温程度まで冷却後、メタノール1480.5ml中に投入し、沈殿した固形物を回収した。さらに、この固形物をメタノールで数回洗浄した後、温度100℃で減圧乾燥して、ポリイミド(SPI-T1)の白色粉末を得た。このポリイミドの数平均分子量は12,120、重量平均分子量は35,728であった。また、イミド化率は85%であった。このポリイミド粉末1.2gに、γBLを10.8g加え、温度50℃で24時間攪拌した。攪拌終了時点でポリイミドは完全に溶解していた。この溶液12gを23℃まで冷却後、γBLを2g、及びBCを6g加え、温度50℃で20時間攪拌した。攪拌終了後、23℃まで冷却し、均一なポリイミド溶液を得た。この溶液を液晶配向処理剤とした。
 この液晶配向処理剤を用い、ラビング耐性、配向性及びチルト角の評価を行った。この結果を表2に示す。
[比較例2]
 テトラカルボン酸二無水物成分として、CA1を6.48g(23mmol)、CA3を5.63g(23mmol)、ジアミン成分として、DA4を3.89g(36mmol)、DA3を3.67g(9mmol)を用い、NMP78.71g中、80℃で24時間反応させポリアミック酸溶液を得た。このポリアミック酸溶液50gに、NMPを110g加えて希釈し、無水酢酸6.45gとピリジン9.99gを加え、温度100℃で3時間反応させてイミド化した。この反応溶液を室温程度まで冷却後、メタノール617.6ml中に投入し、沈殿した固形物を回収した。さらに、この固形物をメタノールで数回洗浄した後、温度100℃で減圧乾燥して、可溶性ポリイミド(SPI-T2)の白色粉末を得た。このポリイミドの数平均分子量は12,105、重量平均分子量は74,076であった。また、イミド化率は82%であった。このポリイミド粉末1.2gに、γBLを10.8g加え、温度50℃で24時間攪拌した。攪拌終了時点でポリイミドは完全に溶解していた。この溶液12gを23℃まで冷却後、γBLを2g、及びBCを6g加え、温度50℃で20時間攪拌した。攪拌終了後、23℃まで冷却し、均一なポリイミド溶液を得た。この溶液を液晶配向処理剤とした。
 この液晶配向処理剤を用い、ラビング耐性、配向性及びチルト角の評価を行った。この結果を表2に示す。
[比較例3]
 テトラカルボン酸二無水物成分として、CA2を8.07g(42mmol)、ジアミン成分として、DA4を3.63g(34mmol)、DA3を3.26g(8mmol)を用い、NMP85.73g中、室温で24時間反応させポリアミック酸(PAA-T1)溶液を得た。このアミック酸の数平均分子量は26,985、重量平均分子量は66,365であった。この溶液8gにNMPを10.5g、及びBCを7.5g加え、室温で20時間攪拌し、均一なポリアミック酸溶液を得た。この溶液を液晶配向処理剤とした。
 この液晶配向処理剤を用い、ラビング耐性、配向性及びチルト角の評価を行った。この結果を表2に示す。
[比較例4]
 テトラカルボン酸二無水物成分として、CA1を30.03g(100mmol)、ジアミン成分として、DA4を9.73g(90mmol)、DA2を3.77g(10mmol)用い、NMP247g中、40度で3時間反応させポリアミック酸溶液を得た。
 このポリアミック酸溶液50gを、NMPにより5重量%に希釈し、さらにイミド化触媒として無水酢酸17.6g、及びピリジン8.2gを加え、40℃で3時間反応させ、可溶性ポリイミド樹脂溶液を調製した。この溶液を0.6Lのメタノール中に投入し、得られた沈殿物を濾別し、乾燥し、白色の可溶性ポリイミド(SPI-T3)を得た。この可溶性ポリイミドの分子量を測定した結果、数平均分子量は13,430、重量平均分子量は26,952であった。また、イミド化率は85%であった。このポリイミド粉末1gをγBL 11.8g、及びBC 4.8gに溶解させ、均一なポリイミド溶液を得た。この溶液を液晶配向処理剤とした。
 この液晶配向処理剤を用い、ラビング耐性、配向性及びチルト角の評価を行った。この結果を表2に示す。
[比較例5]
 テトラカルボン酸二無水物成分として、CA2を5.59g(29mmol)、ジアミン成分として、DA4を3.08g(28mmol)、DA5を0.571g(1.5mmol)を用い、NMP83.18g中、室温で24時間反応させポリアミック酸(PAA-T2)溶液を得た。このポリアミック酸の数平均分子量は17,630、重量平均分子量は41,068であった。この溶液12gにNMPを2g、及びBCを6g加え、室温で20時間攪拌し、均一なポリアミック酸溶液を得た。この溶液を液晶配向処理剤とした。
 この液晶配向処理剤を用い、ラビング耐性、配向性及びチルト角の評価を行った。この結果を表2に示す。
[比較例6]
 テトラカルボン酸二無水物成分として、CA2を5.59g(29mmol)、ジアミン成分として、DA4を2.43g(23mmol)、DA5を0.571g(1.5mmol)、DA1を1.219g(6mmol)を用い、NMP83.18g中、室温で24時間反応させポリアミック酸(PAA-T3)溶液を得た。このポリアミック酸の数平均分子量は16,132、重量平均分子量は34,880であった。この溶液12gにNMPを2g、及びBCを6g加え、室温で20時間攪拌し、均一なポリアミック酸溶液を得た。この溶液を液晶配向処理剤とした。
 この液晶配向処理剤を用い、ラビング耐性、配向性及びチルト角の評価を行った。この結果を表2に示す。
[比較例7]
 テトラカルボン酸二無水物成分として、CA2を13.53g(69mmol)、CA4を6.54g(30mmol)、ジアミン成分として、DA10を9.62g(30mmol)、DA1を6.10g(30mmol)、DA7を4.89g(40mmol)を用いNMP162.7g、室温で24時間反応させポリアミック酸溶液を得た。このポリアミック酸溶液35.79gに、NMPを63.91g加えて希釈し、無水酢酸5.16gとピリジン2.20gを加え、温度50℃で3時間反応させてイミド化した。
 この反応溶液を室温程度まで冷却後、メタノール374.7ml中に投入し、沈殿した固形物を回収した。さらに、この固形物をメタノールで数回洗浄した後、温度100℃で減圧乾燥して、ポリイミド(SPI-T4)の白色粉末を得た。このポリイミドの数平均分子量は13,472、重量平均分子量は35,859であった。また、イミド化率は89%であった。
 このポリイミド粉末1.2gに、γBLを10.8g加え、温度50℃で24時間攪拌した。攪拌終了時点でポリイミドは完全に溶解していた。この溶液12gを23℃まで冷却後、γBLを2g、及びBCを6g加え、温度50℃で20時間攪拌した。攪拌終了後、23℃まで冷却し、均一な液晶配向処理剤を得た。
 このSPI-T4とSPI-4が質量比で3:7となるように混合して、本発明の液晶配向処理剤を得た。この液晶配向処理剤を用い、ラビング耐性、配向性及びチルト角の評価を行った。この結果を表2に示す。
[比較例8]
 テトラカルボン酸二無水物成分として、CA2を13.33g(68mmol)、CA4を6.54g(30mmol)、ジアミン成分として、DA5を3.81g(10mmol)、DA1を8.13g(40mmol)、DA6を7.64g(50mmol)を用いNMP151.7g、室温で24時間反応させポリアミック酸溶液を得た。このポリアミック酸溶液33.38gに、NMPを59.61g加えて希釈し、無水酢酸5.26gとピリジン2.24gを加え、温度50℃で3時間反応させてイミド化した。
 この反応溶液を室温程度まで冷却後、メタノール351.7ml中に投入し、沈殿した固形物を回収した。さらに、この固形物をメタノールで数回洗浄した後、温度100℃で減圧乾燥して、ポリイミド(SPI-T5)の白色粉末を得た。このポリイミドの数平均分子量は10,111、重量平均分子量は33,653であった。また、イミド化率は90%であった。
 このポリイミド粉末1.2gに、γBLを10.8g加え、温度50℃で24時間攪拌した。攪拌終了時点でポリイミドは完全に溶解していた。この溶液12gを23℃まで冷却後、γBLを2g、及びBCを6g加え、温度50℃で20時間攪拌した。攪拌終了後、23℃まで冷却し、均一な液晶配向処理剤を得た。
 このSPI-T5とSPI-4が質量比で3:7となるように混合して、本発明の液晶配向処理剤を得た。この液晶配向処理剤を用い、ラビング耐性、配向性及びチルト角の評価を行った。この結果を表2に示す。
Figure JPOXMLDOC01-appb-T000019
 表1中、「-」は、該当するジアミンをポリアミック酸又はポリイミドの原料として使用していないことを表す。
Figure JPOXMLDOC01-appb-T000020
 本発明の液晶配向処理剤を用いて作製した液晶表示素子は、信頼性の高い液晶表示デバイスとすることができ、TN液晶表示素子、STN液晶表示素子、TFT液晶表示素子、OCB液晶表示素子など、種々の方式による表示素子に好適に用いられる。

 なお、2008年10月22日に出願された日本特許出願2008-272410号の明細書、特許請求の範囲、及び要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。

Claims (9)

  1.  ジアミン成分とテトラカルボン酸二無水物成分とを反応させて得られるポリアミック酸及びこれをイミド化して得られる可溶性ポリイミドのうち少なくとも1種の重合体を含有し、上記ジアミン成分が、式[1]で表されるジアミン、及び式[2]で表されるジアミンを含有することを特徴とする、液晶配向処理剤。
    Figure JPOXMLDOC01-appb-C000001
     (式中、nは0~19の整数である。)
  2.  ジアミン成分中の式[2]で表されるジアミンが、式[1]で表されるジアミンの1モルに対して0.1モル~1.2モル含有する請求項1に記載の液晶配向処理剤。
  3.  ジアミン成分が、式[1]で表されるジアミンを20モル%以上含有する請求項1又は2に記載の液晶配向処理剤。
  4.  ジアミン成分が、式[2]で表されるジアミンを5~60モル%含有する請求項1から請求項3のいずれかに記載の液晶配向処理剤。
  5.  式[1]で表されるジアミン及び式[2]で表されるジアミンの、ぞれぞれの有する2つのアミノ基の位置関係がメタ位又はパラ位である請求項1から請求項4のいずれかに記載の液晶配向処理剤。
  6.  テトラカルボン酸二無水物成分が、脂環式構造又は脂肪族構造を有するテトラカルボン酸二無水物を含有する請求項1から請求項5のいずれかに記載の液晶配向処理剤。
  7.  テトラカルボン酸二無水物成分が、芳香族テトラカルボン酸二無水物を含有する請求項1から請求項6のいずれかに記載の液晶配向処理剤。
  8.  請求項1から請求項7のいずれかに記載の液晶配向処理剤を電極付き基板上に塗布、焼成し、ラビング処理して得られる液晶配向膜。
  9.  請求項8に記載の液晶配向膜を用いた液晶表示素子。
PCT/JP2009/068036 2008-10-22 2009-10-19 液晶配向処理剤及びそれを用いた液晶表示素子 WO2010047316A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN200980144834.7A CN102209928B (zh) 2008-10-22 2009-10-19 液晶取向处理剂及使用该处理剂的液晶显示元件
JP2010534807A JP5434927B2 (ja) 2008-10-22 2009-10-19 液晶配向処理剤及びそれを用いた液晶表示素子

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-272410 2008-10-22
JP2008272410 2008-10-22

Publications (1)

Publication Number Publication Date
WO2010047316A1 true WO2010047316A1 (ja) 2010-04-29

Family

ID=42119354

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/068036 WO2010047316A1 (ja) 2008-10-22 2009-10-19 液晶配向処理剤及びそれを用いた液晶表示素子

Country Status (5)

Country Link
JP (1) JP5434927B2 (ja)
KR (1) KR101613755B1 (ja)
CN (1) CN102209928B (ja)
TW (1) TWI461462B (ja)
WO (1) WO2010047316A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011084724A (ja) * 2009-09-16 2011-04-28 Jsr Corp 液晶配向剤
WO2011132751A1 (ja) * 2010-04-22 2011-10-27 日産化学工業株式会社 液晶配向処理剤、液晶配向膜及び液晶表示素子
WO2012121259A1 (ja) * 2011-03-07 2012-09-13 日産化学工業株式会社 組成物、液晶配向処理剤、液晶配向膜、及び液晶表示素子
WO2012121257A1 (ja) * 2011-03-07 2012-09-13 日産化学工業株式会社 組成物、液晶配向処理剤、液晶配向膜、及び液晶表示素子
JP2021533237A (ja) * 2018-08-07 2021-12-02 ザイマージェン インコーポレイテッド 光透過性ポリイミド

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006126555A1 (ja) * 2005-05-25 2006-11-30 Nissan Chemical Industries, Ltd. 液晶配向処理剤及びそれを用いた液晶表示素子
WO2008062877A1 (fr) * 2006-11-24 2008-05-29 Nissan Chemical Industries, Ltd. Agent de traitement d'orientation de cristaux liquides et élément d'affichage à cristaux liquides produit en utilisant ledit agent

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002062537A (ja) * 2000-08-21 2002-02-28 Jsr Corp Stn型液晶表示素子用液晶配向剤およびstn型液晶表示素子
CN100427529C (zh) * 2003-11-26 2008-10-22 日产化学工业株式会社 垂直定向用液晶定向处理剂及液晶显示元件
KR101235412B1 (ko) * 2004-12-28 2013-02-20 닛산 가가쿠 고교 가부시키 가이샤 수직 배향용 액정 배향제, 액정 배향막 및 그것을 이용한 액정 표시 소자

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006126555A1 (ja) * 2005-05-25 2006-11-30 Nissan Chemical Industries, Ltd. 液晶配向処理剤及びそれを用いた液晶表示素子
WO2008062877A1 (fr) * 2006-11-24 2008-05-29 Nissan Chemical Industries, Ltd. Agent de traitement d'orientation de cristaux liquides et élément d'affichage à cristaux liquides produit en utilisant ledit agent

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011084724A (ja) * 2009-09-16 2011-04-28 Jsr Corp 液晶配向剤
WO2011132751A1 (ja) * 2010-04-22 2011-10-27 日産化学工業株式会社 液晶配向処理剤、液晶配向膜及び液晶表示素子
KR101775182B1 (ko) 2010-04-22 2017-09-05 닛산 가가쿠 고교 가부시키 가이샤 액정 배향 처리제, 액정 배향막 및 액정 표시 소자
KR101775181B1 (ko) 2010-04-22 2017-09-05 닛산 가가쿠 고교 가부시키 가이샤 액정 배향 처리제, 액정 배향막 및 액정 표시 소자
JP5713009B2 (ja) * 2010-04-22 2015-05-07 日産化学工業株式会社 液晶配向処理剤、液晶配向膜及び液晶表示素子
JPWO2012121259A1 (ja) * 2011-03-07 2014-07-17 日産化学工業株式会社 組成物、液晶配向処理剤、液晶配向膜、及び液晶表示素子
CN103502312A (zh) * 2011-03-07 2014-01-08 日产化学工业株式会社 组合物、液晶取向处理剂、液晶取向膜及液晶显示元件
JPWO2012121257A1 (ja) * 2011-03-07 2014-07-17 日産化学工業株式会社 組成物、液晶配向処理剤、液晶配向膜、及び液晶表示素子
CN103492462A (zh) * 2011-03-07 2014-01-01 日产化学工业株式会社 组合物、液晶取向处理剂、液晶取向膜及液晶显示元件
CN103502312B (zh) * 2011-03-07 2015-07-29 日产化学工业株式会社 组合物、液晶取向处理剂、液晶取向膜及液晶显示元件
JP6003882B2 (ja) * 2011-03-07 2016-10-05 日産化学工業株式会社 組成物、液晶配向処理剤、液晶配向膜、及び液晶表示素子
JP6075286B2 (ja) * 2011-03-07 2017-02-08 日産化学工業株式会社 組成物、液晶配向処理剤、液晶配向膜、及び液晶表示素子
WO2012121257A1 (ja) * 2011-03-07 2012-09-13 日産化学工業株式会社 組成物、液晶配向処理剤、液晶配向膜、及び液晶表示素子
WO2012121259A1 (ja) * 2011-03-07 2012-09-13 日産化学工業株式会社 組成物、液晶配向処理剤、液晶配向膜、及び液晶表示素子
JP2021533237A (ja) * 2018-08-07 2021-12-02 ザイマージェン インコーポレイテッド 光透過性ポリイミド

Also Published As

Publication number Publication date
CN102209928B (zh) 2014-02-26
KR101613755B1 (ko) 2016-04-19
TWI461462B (zh) 2014-11-21
JP5434927B2 (ja) 2014-03-05
TW201030058A (en) 2010-08-16
KR20110074607A (ko) 2011-06-30
JPWO2010047316A1 (ja) 2012-03-22
CN102209928A (zh) 2011-10-05

Similar Documents

Publication Publication Date Title
JP5151478B2 (ja) 液晶配向処理剤及びそれを用いた液晶表示素子
JP5578075B2 (ja) 液晶配向処理剤及びそれを用いた液晶表示素子
JP5594136B2 (ja) 液晶配向処理剤及びそれを用いた液晶表示素子
JP5282573B2 (ja) 液晶配向剤、それを用いた液晶配向膜及び液晶表示素子
JP5109979B2 (ja) 液晶配向処理剤及びそれを用いた液晶表示素子
TWI793067B (zh) 液晶配向劑、液晶配向膜及液晶顯示元件
JPWO2004021076A1 (ja) 液晶配向剤およびそれを用いた液晶表示素子
JP5434821B2 (ja) 液晶配向剤及びそれを用いた液晶表示素子
JP5660160B2 (ja) ジアミン化合物
JP5900328B2 (ja) 液晶配向剤、それを用いた液晶配向膜及び液晶表示素子
KR101759756B1 (ko) 액정 배향제, 그것을 사용한 액정 배향막 및 액정 표시 소자
JP5434927B2 (ja) 液晶配向処理剤及びそれを用いた液晶表示素子
JP5326355B2 (ja) 液晶配向処理剤及びそれを用いた液晶表示素子

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980144834.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09822013

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2010534807

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20117011486

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 09822013

Country of ref document: EP

Kind code of ref document: A1