WO2010044376A1 - 多孔質炭を原料とする成型固形燃料の製造方法 - Google Patents

多孔質炭を原料とする成型固形燃料の製造方法 Download PDF

Info

Publication number
WO2010044376A1
WO2010044376A1 PCT/JP2009/067622 JP2009067622W WO2010044376A1 WO 2010044376 A1 WO2010044376 A1 WO 2010044376A1 JP 2009067622 W JP2009067622 W JP 2009067622W WO 2010044376 A1 WO2010044376 A1 WO 2010044376A1
Authority
WO
WIPO (PCT)
Prior art keywords
coal
oil
slurry
solid fuel
porous
Prior art date
Application number
PCT/JP2009/067622
Other languages
English (en)
French (fr)
Inventor
裕 美藤
山本 誠一
卓夫 重久
繁 木下
清水 孝浩
Satoru SUGITA (杉田 哲)
Original Assignee
株式会社神戸製鋼所
杉田 裕子
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社神戸製鋼所, 杉田 裕子 filed Critical 株式会社神戸製鋼所
Priority to AU2009304764A priority Critical patent/AU2009304764B2/en
Priority to RU2011119444/04A priority patent/RU2482167C2/ru
Priority to US13/124,133 priority patent/US8523961B2/en
Priority to CN200980135771.9A priority patent/CN102149798B/zh
Priority to DE112009002456T priority patent/DE112009002456B9/de
Publication of WO2010044376A1 publication Critical patent/WO2010044376A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L5/00Solid fuels
    • C10L5/02Solid fuels such as briquettes consisting mainly of carbonaceous materials of mineral or non-mineral origin
    • C10L5/06Methods of shaping, e.g. pelletizing or briquetting
    • C10L5/10Methods of shaping, e.g. pelletizing or briquetting with the aid of binders, e.g. pretreated binders
    • C10L5/22Methods of applying the binder to the other compounding ingredients; Apparatus therefor
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L5/00Solid fuels
    • C10L5/02Solid fuels such as briquettes consisting mainly of carbonaceous materials of mineral or non-mineral origin
    • C10L5/06Methods of shaping, e.g. pelletizing or briquetting
    • C10L5/08Methods of shaping, e.g. pelletizing or briquetting without the aid of extraneous binders
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L5/00Solid fuels
    • C10L5/02Solid fuels such as briquettes consisting mainly of carbonaceous materials of mineral or non-mineral origin
    • C10L5/06Methods of shaping, e.g. pelletizing or briquetting
    • C10L5/10Methods of shaping, e.g. pelletizing or briquetting with the aid of binders, e.g. pretreated binders
    • C10L5/14Methods of shaping, e.g. pelletizing or briquetting with the aid of binders, e.g. pretreated binders with organic binders
    • C10L5/16Methods of shaping, e.g. pelletizing or briquetting with the aid of binders, e.g. pretreated binders with organic binders with bituminous binders, e.g. tar, pitch
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L5/00Solid fuels
    • C10L5/02Solid fuels such as briquettes consisting mainly of carbonaceous materials of mineral or non-mineral origin
    • C10L5/34Other details of the shaped fuels, e.g. briquettes
    • C10L5/36Shape
    • C10L5/361Briquettes
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L5/00Solid fuels
    • C10L5/02Solid fuels such as briquettes consisting mainly of carbonaceous materials of mineral or non-mineral origin
    • C10L5/34Other details of the shaped fuels, e.g. briquettes
    • C10L5/36Shape
    • C10L5/363Pellets or granulates

Definitions

  • the present invention relates to a method for producing a molded solid fuel using porous coal such as lignite as a raw material.
  • Patent Document 1 a production method described in Patent Document 1 is known as a production method of solid fuel using porous coal such as brown coal as a raw material.
  • a mixed oil containing a heavy oil and a solvent oil is mixed with porous coal to obtain a raw slurry, and this slurry is heated to advance dehydration of the porous coal.
  • a mixed fuel containing a heavy oil and a solvent oil is contained in the pores of the porous charcoal, and then the slurry is solid-liquid separated and dried.
  • moisture in the pores of the porous coal is generated by heating the raw slurry (a mixture of a mixed oil containing a heavy oil and a solvent oil and a porous coal). As the gas evaporates, the pores are covered with a mixed oil containing a heavy oil, and finally, the mixed oil, particularly the heavy oil, preferentially fills the pores. As a result, the adsorption and oxidation reaction of oxygen to the active sites present in the pores are suppressed, so that the spontaneous combustion of the porous coal is suppressed. In addition, the heating causes the heavy oil to fill the pores, and the porous charcoal increases in calories. Therefore, according to the method for producing a solid fuel described in Patent Document 1, it is possible to obtain a solid fuel having a low moisture content, a low pyrophoric property, and a high calorie content.
  • the reformed coal (solid fuel) after the drying step is in the form of powder, which causes a problem with respect to its transportation. Specifically, if the modified coal remains in powder form, the bulk density is low, the transportation cost increases due to leakage during transportation, and the loss resulting from scattering, and dust pollution is caused. . Therefore, it is desirable to form the powdered modified coal into briquettes by using a molding machine.
  • the powdered modified coal cannot be molded unless the pressure is high, reduction of molding cost for briquetting has been a problem.
  • strength of a briquette is not high, it will become easy to powder in the case of handling.
  • Patent Document 2 Conventionally, as a technique for molding powdered modified coal, for example, a method for producing a molded coal described in Patent Document 2 is known.
  • the production method described in Patent Document 2 is a method in which starch is added to powdered coal, mixed and pressure-molded, that is, a method using starch as a binder.
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to provide a method for producing a molded solid fuel capable of reducing the molding cost while maintaining the strength of the molded product.
  • the present inventors have adjusted the moisture content of the modified coal after the drying step to 3 to 10 wt%, and by press molding the modified coal, The present inventors have found that a molded article (molded solid fuel) having high strength can be molded without using any binder, and that the above-mentioned problems can be solved, and based on this knowledge, the present invention has been completed.
  • the present invention comprises a mixing step of mixing a mixed oil containing heavy oil and solvent oil and porous charcoal to obtain a slurry, an evaporation step of heating the slurry to dehydrate to obtain a dehydrated slurry, A solid-liquid separation step of separating the solvent oil from the dehydrated slurry to obtain a cake; a drying step of heating the cake to further separate the solvent oil from the cake to obtain modified coal; and the modified coal.
  • a method for producing a molded solid fuel comprising a humidifying step of humidifying to obtain a humidified modified coal having a moisture content of 3 to 10 wt% and a molding step of pressure-molding the humidified modified coal.
  • the moisture content means the ratio (mass basis) of water contained in the mixture of modified coal and pulverized porous coal, and the mass of water contained in the mixture of modified coal and pulverized porous coal. Is divided by the mass of the mixture.
  • the moisture content means the ratio (mass basis) of water contained in the modified coal, and the mass of water contained in the modified coal is divided by the mass of the modified coal. It is a thing.
  • the modified coal means coal that has been modified so that the amount of heat per unit mass is increased by reducing the water content.
  • the porous coal is mixed with the modified coal in the humidification step.
  • the cost of the product can be reduced. That is, it is because the moisture which the pulverized charcoal itself which does not require a modification process can be used as a humidifying means in the humidifying step. Therefore, in the humidification step, it is possible to have a simple configuration in which the modified coal after the reforming treatment and the pulverized coal that has not been reformed are mixed by a known device such as a mixer.
  • the humidification step it is preferable to supply wastewater obtained in the evaporation step to the reformed coal.
  • the waste water can be supplied by spraying the reformed coal.
  • the reformed coal after the drying process in particular, is humidified to obtain a humidified coal having a moisture content of 3 to 10 wt%, and the humidified coal is pressure-molded.
  • the bond between the particles can be strengthened, and as a result, a molded solid fuel with high strength can be molded without using a binder such as starch. That is, the molding cost can be reduced while maintaining the strength of the molded product.
  • FIG. 1 is a flowchart showing a method for producing a molded solid fuel according to an embodiment of the present invention, and is also a block diagram of a molded solid fuel production apparatus 100.
  • the manufacturing apparatus 100 includes a pulverizing unit 1 that pulverizes porous coal (raw coal), and a mixed oil containing porous coal pulverized by the pulverizing unit 1, heavy oil, and solvent oil.
  • Moisture is given to the liquid separation unit 5, the final drying unit 6 for heating the cake separated in the solid-liquid separation unit 5 to further separate the solvent oil, and the powdered modified coal obtained in the final drying unit 6.
  • molding part 8 which press-molds the humidification modified coal obtained in the humidification part 7, and makes it the form of a briquette are provided.
  • molding solid fuel which concerns on this Embodiment is demonstrated in detail.
  • porous charcoal (raw coal) is supplied to the pulverizing unit 1 and pulverized.
  • the porous coal (coking coal) supplied to the pulverizing unit 1 is, for example, so-called low-grade coal containing 30 to 70 wt% of water and desired to be dehydrated.
  • Examples of such porous coal include lignite, lignite, subbituminous coal, and the like.
  • Brown coal includes Victoria coal, North Dakota coal, Belga coal, and sub-bituminous coal includes West Banco coal, Binungan coal, Samarangau coal, Ecocoal coal, and the like.
  • the particle diameter of the pulverized porous coal is, for example, about 0.05 to 3 mm, and the average particle diameter is about several hundred micrometers. Moreover, wt% means mass% (mass ratio). In addition, when the porous coal (coking coal) is originally transported in a state where the particle diameter is small, it is not particularly necessary to pulverize the porous coal (coking coal).
  • the mixed oil containing heavy oil and solvent oil and the pulverized porous coal are mixed in the mixing unit 2 to obtain a slurry.
  • the heavy oil is an oil containing a heavy component or a large amount (specifically, 50 wt% or more) that does not substantially show a vapor pressure even at 400 ° C., such as a vacuum residue oil.
  • the solvent oil refers to an oil in which heavy oil is dissolved and dispersed.
  • the solvent oil for example, light boiling oil is used from the viewpoints of affinity with heavy oil, handling property as a slurry, ease of penetration into pores, and the like.
  • petroleum oil having a boiling point of 100 ° C. or higher and 300 ° C. or lower.
  • petroleum oils include kerosene, light oil, and heavy oil.
  • heavy oil containing mixed oil is produced
  • the mixing part 2 is comprised from the mixing tank for receiving and mixing mixed oil and porous charcoal, and the stirrer etc. which are provided in this mixing tank.
  • the slurry obtained in the mixing unit 2 is preheated in the preheating unit 3 and then dehydrated in the evaporation unit 4 to obtain a dehydrated slurry.
  • the slurry is heated to, for example, 70 ° C. to 100 ° C. in the preheating unit 3 and then supplied to the evaporation tank of the evaporation unit 4, and water contained in the porous coal in the slurry is evaporated and dehydrated.
  • the mixed oil is impregnated into the pores of the porous coal, and the heavy oil is preferentially filled into the pores of the porous coal.
  • moisture content contained in the porous coal in a slurry is discharged
  • the preheating unit 3 is composed of a heat exchanger and the like
  • the evaporation unit 4 is an evaporation tank for receiving the slurry obtained in the mixing unit 2 and evaporating the water, a stirrer provided in the evaporation tank, and It consists of a heat exchanger that heats the slurry.
  • a heat exchanger such as a multi-tube type, a plate type, or a spiral type is used as the heat exchanger.
  • Solid-liquid separation process Next, the solvent oil is mechanically separated from the dehydrated slurry to obtain a cake.
  • the dehydrated slurry is supplied to the solid-liquid separator of the solid-liquid separation unit 5 and is subjected to solid-liquid separation.
  • the solid-liquid separator for example, a centrifugal separator that separates the dehydrated slurry into a cake and solvent oil by a centrifugal separation method is used from the viewpoint of improving the separation efficiency.
  • the final drying unit 6 includes a dryer and a gas cooler.
  • the dryer one that heats the workpiece while continuously conveying the workpiece inside is used.
  • a steam tube in which a plurality of heating steam tubes are arranged in the axial direction on the drum inner surface.
  • a formula dryer is used.
  • the cake is heated in the dryer, and the oil in the cake, especially the solvent oil, is evaporated. Then, the evaporated solvent oil is transferred from the dryer to the gas cooler by the carrier gas. The solvent oil transferred to the gas cooler is condensed and recovered in the gas cooler.
  • the solvent oil separated and recovered from the dehydrated slurry or cake in the solid-liquid separation unit 5 and the final drying unit 6 is returned to the mixing unit 2 as a circulating oil.
  • the solvent oil returned to the mixing unit 2 is reused for adjusting the slurry in the mixing unit 2. Note that most of the components of the circulating oil returned to the mixing unit 2 are solvent oil, but the circulating oil contains a slight amount of heavy oil.
  • the first method is a method in which the raw material porous coal pulverized in the pulverizing unit 1 is mixed with the powdered modified coal from the final drying unit 6 to impart moisture.
  • the humidified modified coal becomes a mixture of the modified coal obtained through the drying step and the pulverized raw material porous coal. That is, the humidified modified coal includes not only the modified coal obtained through the drying step but also the pulverized raw material porous coal.
  • the second method is a method of spraying the waste water from the evaporating unit 4 on the powdered reformed coal from the final drying unit 6 to impart moisture. Note that only one of these two methods may be used, or a combination of both may be used. Moreover, you may provide a water
  • the humidification part 7 is comprised from the humidification tank for receiving and stirring powdery modified charcoal, the stirrer etc. which are provided in this humidification tank.
  • Example 2 Next, the experimental result of reformed coal molding will be described.
  • This experiment is for making modified coals with various moisture contents and examining the influence of moisture content on moldability.
  • the powdered modified coal obtained through the drying step was mixed with the pulverized raw material porous coal to give moisture and humidify.
  • Table 1 shows the mixing ratio of the pulverized porous coal to the modified coal obtained through the drying step and the moisture content of the mixture of the modified coal and the pulverized porous coal.
  • FIG. 2 is a graph showing the influence of the water content of the mixture of modified coal and pulverized porous coal on the crushing strength with respect to roll power.
  • filled diamonds, squares, and triangles are data of samples with a moisture content of the mixture of 0%, 3.1%, and 6.1%, respectively.
  • Square marks and diamond marks are data of samples having a water content of the mixture of 9.2%, 15.4%, and 30.7%, respectively.
  • the briquette crushing strength with respect to the roll power per unit rotation speed of the roll is up to 30% (the moisture content of the mixture is 9.2%) of the pulverized porous coal mixed with the modified coal.
  • the mixing rate is 50% and 100% (the water content of the mixture is 15.4% and 30.7%)
  • the crushing strength of the briquettes tends to decrease. That is, when the mixing rate was 50% and 100% (the water content of the mixture was 15.4% and 30.7%), the crushing strength of the briquette was not sufficiently increased as compared with other samples.
  • the modified coal alone (the pulverized porous coal mixing ratio is about 0.1%) / Rpm (extrapolated value) roll power is required, but when the mixing ratio of the pulverized porous coal to the modified coal is 30% (the water content of the mixture is 9.2%), it is about 0.14 kW / rpm. It becomes roll power and saves about 20% of power. Note that the greater the roll power, the greater the pressure applied by pressure molding.
  • the roll power for obtaining a briquette having a crushing strength of 10 kg was obtained by extrapolation. This is because in the case of the modified coal alone (the pulverized porous coal mixing ratio is 0%), briquettes with good moldability could not be obtained even when the roll power was increased to about 0.16 kW / rpm or more.
  • FIG. 3 shows the maximum crushing strength of briquettes that can be realized with a mixture of each moisture content by changing the roll power per unit revolution of the double roll molding machine.
  • FIG. 3 is a graph showing the relationship between the moisture content of the mixture of modified coal and pulverized porous coal and the maximum crushing strength of the briquette that is a molded product.
  • the modified coal after the drying process is humidified to a moisture content of 3 to 10 wt%, and the resultant is pressure-molded to form briquettes, thereby strengthening the bonding between the particles.
  • a molded solid fuel with high strength can be molded without using a binder such as starch. That is, the molding cost can be reduced while maintaining the briquette strength.
  • pulverized powdery raw material porous charcoal for humidifying the modified coal reduces the amount of porous charcoal treated in the drying process from the mixing process. If the processing volume of porous coal in the drying process is reduced from the mixing process, the consumption of mixed oil including heavy oil and solvent oil can be reduced, and the capacity of equipment in each process can be reduced, producing molded solid fuel. Cost can be reduced.
  • waste water discharged from the system can be reduced by using waste water from the evaporation unit 4 for humidifying the reformed coal.
  • waste water from the evaporation unit 4 for humidifying the reformed coal.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geology (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Solid Fuels And Fuel-Associated Substances (AREA)

Abstract

 成型品の強度を維持しつつ成型コストを低減することができる成型固形燃料の製造方法を提供すること。重質油および溶媒油を含む混合油と多孔質炭とを混合してスラリーを得、このスラリーを加熱して脱水し、脱水スラリーを得る。この脱水スラリーから溶媒油を分離してケーキを得、このケーキを加熱して当該ケーキからさらに溶媒油を分離し改質炭を得る。そして、この改質炭を加湿して含水率が3~10wt%の加湿改質炭を得た後、この加湿改質炭を加圧成型する。

Description

多孔質炭を原料とする成型固形燃料の製造方法
 本発明は、褐炭などの多孔質炭を原料とする成型固形燃料の製造方法に関する。
 褐炭などの多孔質炭を原料とする固形燃料の製造方法に関し、従来、特許文献1に記載された製造方法が知られている。特許文献1に記載された固形燃料の製造方法は、重質油分と溶媒油分を含む混合油を多孔質炭と混合して原料スラリーを得、このスラリーを加熱して多孔質炭の脱水を進めるとともに、多孔質炭の細孔内に重質油分と溶媒油分を含む混合油を含有せしめ、その後、このスラリーを固液分離しかつ乾燥することを特徴とする固形燃料の製造方法である。
 特許文献1に記載された固形燃料の製造方法においては、原料スラリー(重質油分及び溶媒油分を含む混合油と多孔質炭との混合体)の加熱により多孔質炭の細孔内の水分が気化蒸発するとともに、細孔内は重質油分を含む混合油によって被覆され、ついにはこの混合油、特に重質油分が優先して細孔内に充満する。その結果、細孔内に存在する活性点への酸素の吸着および酸化反応が抑制されるので、多孔質炭の自然発火が抑制される。また、上記加熱により、重質油分が細孔内に充満して多孔質炭はそのカロリーが高くなる。したがって、特許文献1に記載された固形燃料の製造方法によれば、含水率が低く、自然発火性が低くて、かつ高カロリー化された固形燃料を得ることができる。
 しかしながら、特許文献1に記載された固形燃料の製造方法では、乾燥工程後の改質炭(固形燃料)は粉末の形態となっているため、その輸送に関して問題が生じる。具体的には、改質炭が粉末のままでは、嵩密度が低いこと、輸送時の漏れ、および飛散に起因するロスによって輸送コストが上昇したり、粉塵公害を引き起こしたりすること等が挙げられる。したがって、粉末の改質炭を、成型機によって成型しブリケットにすることが望ましい。ここで、粉末の改質炭は高圧でないと成型できないため、ブリケットにするための成型コストの低減が課題であった。なお、ブリケットの強度が高くないと、ハンドリングの際に粉化しやすくなる。
 粉末の改質炭を成型する技術としては、従来、例えば特許文献2に記載された成型炭の製造方法が知られている。特許文献2に記載された製造方法は、粉状の石炭に、澱粉を添加、混合して加圧成型する方法であり、すなわち、澱粉をバインダーとして用いる方法である。
特開平7-233383号公報 特開2003-64377号公報
 しかしながら、特許文献2に記載された澱粉をバインダーとして用いる成型方法では、粉状の石炭に対して少なくとも数%の量の澱粉を添加する必要があり、このような数%の量の澱粉添加は、成型コスト面で現実的ではなかった。
 本発明は、上記実情に鑑みてなされたものであって、その目的は、成型品の強度を維持しつつ成型コストを低減することができる成型固形燃料の製造方法を提供することである。
 本発明者らは、前記課題を解決すべく鋭意検討した結果、乾燥工程後の改質炭の含水率を3~10wt%に調整し、その改質炭を加圧成型することにより、澱粉などのバインダーを用いることなく強度の高い成型品(成型固形燃料)を成型でき、これにより前記課題を解決できることを見出し、この知見に基づき本発明を完成するに至ったのである。
 すなわち、本発明は、重質油および溶媒油を含む混合油と多孔質炭とを混合してスラリーを得る混合工程と、前記スラリーを加熱して脱水し、脱水スラリーを得る蒸発工程と、前記脱水スラリーから前記溶媒油を分離してケーキを得る固液分離工程と、前記ケーキを加熱して当該ケーキからさらに前記溶媒油を分離し、改質炭を得る乾燥工程と、前記改質炭を加湿して、含水率が3~10wt%の加湿改質炭を得る加湿工程と、前記加湿改質炭を加圧成型する成型工程と、を備える成型固形燃料の製造方法である。ここで、含水率とは、改質炭と粉砕多孔質炭との混合物に含まれる水の割合(質量基準)を意味し、改質炭と粉砕多孔質炭との混合物に含まれる水の質量を当該混合物の質量で除したものである。粉砕多孔質炭を含まない場合は、含水率とは、改質炭に含まれる水の割合(質量基準)を意味し、改質炭に含まれる水の質量を当該改質炭の質量で除したものである。また、改質炭とは、水分の割合が減じられて、単位質量当たりの熱量が高まるように改質された石炭を意味する。
 また本発明において、前記加湿工程において、前記多孔質炭の粉砕炭を前記改質炭に混合することが好ましい。これにより、製品のコストダウンが可能となる。すなわち、加湿工程における加湿手段として、改質処理が不要な粉砕炭自身の保有する水分を利用することができるためである。したがって、加湿工程においては、改質処理後の改質炭と改質処理されていない粉砕炭をミキサー等の公知の機器により混合するだけのシンプルな構成とすることができる。
 さらに本発明において、前記加湿工程において、前記蒸発工程において得られた排水を前記改質炭に供給することが好ましい。例えば、前記改質炭に前記排水を噴霧することにより供給することができる。これにより、工場の排水処理設備で処理される水の量を減らす効果が得られる。
 本発明によれば、その構成要件、特に、乾燥工程後の改質炭を加湿して、含水率が3~10wt%の加湿改質炭とし、その加湿改質炭を加圧成型することにより、粒子同士の結合を強くすることができ、その結果、澱粉などのバインダーを用いることなく強度の高い成型固形燃料を成型することができる。すなわち、成型品の強度を維持しつつ成型コストを低減することができる。
本発明の一実施形態に係る成型固形燃料の製造方法を示すフロー図であり、成型固形燃料の製造装置のブロック図でもある。 改質炭と粉砕多孔質炭との混合物の含水率のロール動力に対する圧壊強度への影響を示すグラフである。 改質炭と粉砕多孔質炭との混合物の含水率と、成型品であるブリケットの最大圧壊強度との関係を示すグラフである。
 1 粉砕部
 2 混合部
 3 予熱部
 4 蒸発部
 5 固液分離部
 6 最終乾燥部
 7 加湿部
 8 成型部
 100 成型固形燃料の製造装置
 以下、本発明を実施するための最良の形態について図面を参照しつつ説明する。
 図1は、本発明の一実施形態に係る成型固形燃料の製造方法を示すフロー図であり、成型固形燃料の製造装置100のブロック図でもある。図1に示すように、製造装置100は、多孔質炭(原料炭)を粉砕する粉砕部1と、粉砕部1で粉砕された多孔質炭と重質油および溶媒油を含む混合油とを混合する混合部2と、混合部2で得られたスラリーを予熱する予熱部3と、上記スラリーを脱水する蒸発部4と、蒸発部4で得られた脱水スラリーから溶媒油を機械分離する固液分離部5と、固液分離部5において分離されたケーキを加熱してさらに溶媒油を分離する最終乾燥部6と、最終乾燥部6において得られた粉末状の改質炭に水分を与える加湿部7と、加湿部7において得られた加湿改質炭を加圧成型してブリケットの形態にする成型部8と、を備えている。
 以下、本実施の形態に係る成型固形燃料の製造方法の各工程について詳細に説明する。
(粉砕工程)
 まず、多孔質炭(原料炭)を、粉砕部1に供給して粉砕する。ここで、粉砕部1へ供給される多孔質炭(原料炭)は、例えば30~70wt%の水分を含有し、脱水することが望まれるいわゆる低品位石炭である。そのような多孔質炭としては、褐炭、亜炭、亜れき青炭などが挙げられる。また褐炭には、ビクトリア炭、ノースダコタ炭、ベルガ炭などがあり、亜れき青炭には、西バンコ炭、ビヌンガン炭、サマランガウ炭、エココール炭などがある。また、粉砕された多孔質炭の粒子径は、例えば、0.05~3mm程度であり、平均粒子径で数百マイクロメートル程度である。また、wt%とは、質量%(質量比)のことをいう。なお、もともと粒子径が小さい状態で多孔質炭(原料炭)が運ばれてきた場合、特に当該多孔質炭(原料炭)を粉砕する必要はない。
(混合工程)
 次に、重質油および溶媒油を含む混合油と、粉砕された多孔質炭とを、混合部2において混合しスラリーを得る。ここで、重質油とは、真空残渣油のごとく、例えば400℃でも実質的に蒸気圧を示すことがないような重質分あるいはこれを多く(具体的には、50wt%以上)含む油のことをいう。また、溶媒油とは、重質油を溶解させて分散させる油のことをいう。溶媒油としては、重質油との親和性、スラリーとしてのハンドリング性、細孔内への侵入容易性などの観点から、例えば軽沸油が用いられる。なお、水分蒸発温度での安定性を考慮して、沸点100℃以上、300℃以下の石油系油を使用することが推奨される。石油系油としては、灯油、軽油、重油などが挙げられる。そして、重質油と溶媒油とで重質油含有混合油が生成される。このような重質油含有混合油を使用することにより、当該重質油含有混合油が適切な流動性を示し多孔質炭の細孔内への油の侵入が促進される。
 なお、混合部2は、混合油と多孔質炭とを受け入れて混合するための混合槽、およびこの混合槽に設けられる攪拌機などから構成される。
(蒸発工程)
 次に、混合部2で得られたスラリーを予熱部3で予熱した後、蒸発部4で脱水し脱水スラリーを得る。スラリーは、予熱部3で例えば70℃~100℃に加熱された後、蒸発部4の蒸発槽に供給され、スラリー中の多孔質炭に含まれる水分が蒸発して脱水される。この脱水処理と同時に、多孔質炭の細孔内への混合油の含浸もなされ、重質油分が優先して多孔質炭の細孔内に充満する。また、蒸発部4からは、スラリー中の多孔質炭に含まれていた水分が排水として排出される。
 なお、予熱部3は、熱交換器などから構成され、蒸発部4は、混合部2で得られたスラリーを受け入れてその水分を蒸発させるための蒸発槽、この蒸発槽に設けられる攪拌機、およびスラリーを加熱する熱交換器などから構成される。なお、熱交換器としては、多管式型、プレート型、またはスパイラル型などの熱交換器が用いられる。
(固液分離工程)
 次に、脱水スラリーから溶媒油を機械分離してケーキを得る。脱水スラリーは、固液分離部5の固液分離機に供給されて固液分離される。固液分離機としては、例えば、分離効率向上の観点から、遠心分離法により脱水スラリーをケーキと溶媒油とに分離する遠心分離機を用いる。なお、沈降法、濾過法、圧搾法などの形式の固液分離機を用いてもよい。
(乾燥工程)
 固液分離工程において分離されたケーキは、混合油により未だ湿潤しているので、最終乾燥部6において当該ケーキを加熱してさらに溶媒油を分離する。これにより、ケーキは粉末状の改質炭となる。なお、最終乾燥部6は、乾燥機、およびガス冷却器などから構成される。乾燥機は、その内部で被処理物を連続的に搬送しつつ当該被処理物を加熱するものが用いられ、例えば、ドラム内面に複数の加熱用スチームチューブが軸方向に配設されたスチームチューブ式ドライヤが用いられる。
 ケーキは、乾燥機内で加熱され、当該ケーキ中の油分、特に溶媒油分が蒸発させられる。そして、蒸発した溶媒油分は、キャリアガスにより乾燥機からガス冷却器へ移送される。ガス冷却器へ移送された溶媒油分は、ガス冷却器内で凝縮され回収される。
(循環工程)
 固液分離部5および最終乾燥部6で、脱水スラリーまたはケーキから分離回収された溶媒油は、循環油として混合部2に戻される。混合部2に戻された溶媒油は、混合部2でのスラリーの調整に再利用される。なお、混合部2に戻される循環油の成分のほとんどは溶媒油分であるが、この循環油にはわずかながら重質油分が含まれている。
(加湿工程)
 乾燥工程を経て得られた粉末状の改質炭に、加湿部7において水分を与え、含水率が3~10wt%の加湿改質炭とする。ここで、改質炭への水分付与方法は、少なくとも2つある。1つ目の方法は、最終乾燥部6からでてきた粉末状の改質炭に、粉砕部1にて粉砕された原料の多孔質炭を混合して、水分を付与する方法である。この方法によると、加湿改質炭は、乾燥工程を経て得られた改質炭と粉砕された原料の多孔質炭との混合物となる。すなわち、加湿改質炭は、乾燥工程を経て得られた改質炭だけではなく粉砕された原料の多孔質炭を含むものとなる。2つ目の方法は、最終乾燥部6からでてきた粉末状の改質炭に、蒸発部4からの排水を噴霧して、水分を付与する方法である。なお、これら2つの方法のうちいずれか一方のみ用いてもよいし、両方を組み合わせて用いてもよい。また、上記以外の方法で、粉末状の改質炭に水分を付与してもよい。
 なお、加湿部7は、粉末状の改質炭を受入れ攪拌するための加湿槽、およびこの加湿槽に設けられる攪拌機などから構成される。
(成型工程)
 次に、含水率が3~10wt%の加湿改質炭を、成型部8において加圧成型してブリケットの形態にする。そして、ブリケットに成型された改質炭は成型固形燃料として利用される。なお、成型部8は、ダブルロール型成型機などから構成される。
 本実施の形態に係る成型固形燃料の製造方法によれば、固形燃料の成型に際し、バインダーを用いるのではなく、安価な水、特に当該製造方法において排出された排水を用いるため、成型コストを低減することができる。また、含水率を上記のような所定量に設定することにより、成型品の強度を維持することができる。
(実施例)
 次に、改質炭成型の実験結果について説明する。この実験は、さまざまな含水率の改質炭をつくり、成型性への含水率の影響を調べるためのものである。そして、この実験においては、乾燥工程を経て得られた粉末状の改質炭に、粉砕された原料の多孔質炭を混合して水分を付与して加湿した。まず、乾燥工程を経て得られた改質炭への粉砕多孔質炭の混合率と、改質炭と粉砕多孔質炭との混合物の含水率を表1に示す。
[表1]
Figure JPOXMLDOC01-appb-I000001
 ここで、原料である粉砕された多孔質炭単独の含水率は、30.7%であった。また、[表1]において、粉砕多孔質炭混合率が100%のときの混合物は、乾燥工程を経て得られた改質炭の比率はゼロであり、粉砕多孔質炭の比率が100%となっている。また、粉砕多孔質炭混合率が0%のときの混合物は、乾燥工程を経て得られた改質炭の比率が100%であり、粉砕多孔質炭の比率はゼロである。
 次に、[表1]に示した6つのサンプルを、ダブルロール型成型機を用いて加圧成型してブリケットとしたときのブリケットの圧壊強度と、ダブルロール型成型機の単位回転数あたりのロール動力との関係を図2に示す。図2は、改質炭と粉砕多孔質炭との混合物の含水率のロール動力に対する圧壊強度への影響を示すグラフである。図2において、塗りつぶしの菱印、四角印、および三角印は、それぞれ、混合物の含水率が0%、3.1%、および6.1%のサンプルのデータであり、白抜きの三角印、四角印、および菱印は、それぞれ、混合物の含水率が9.2%、15.4%、および30.7%のサンプルのデータである。
 図2に示すように、ロール単位回転数あたりのロール動力に対するブリケットの圧壊強度は、改質炭への粉砕多孔質炭の混合率が30%(混合物の含水率が9.2%)までは混合率が大きくなるほど高くなる。しかしながら、混合率が50%、100%(混合物の含水率が15.4%、30.7%)ではロール動力が所定値より高くなると、ブリケットの圧壊強度は低下の傾向を示した。すなわち、混合率が50%、100%(混合物の含水率が15.4%、30.7%)では、他のサンプルに比してブリケットの圧壊強度が十分に高まらなかった。
 また、粉砕多孔質炭を混合することによるロール動力の低減効果に関しては、例えば圧壊強度10kgのブリケットを得るために、改質炭単独(粉砕多孔質炭混合率が0%)では約0.18kW/rpm(外挿値)のロール動力が必要であるが、改質炭への粉砕多孔質炭の混合率が30%(混合物の含水率が9.2%)では約0.14kW/rpmのロール動力となり、約20%の動力を節約できている。なお、ロール動力が大きいほど、加圧成型の加圧力が大きいことになる。
 上記したように、改質炭単独(粉砕多孔質炭混合率が0%)の場合は、圧壊強度10kgのブリケットを得るためのロール動力を外挿により求めた。改質炭単独(粉砕多孔質炭混合率が0%)の場合、ロール動力を約0.16kW/rpm以上に上げても成型性のよいブリケットが得られなかったためである。
 次に、ダブルロール型成型機の単位回転数あたりのロール動力を変化させることにより、各含水率の混合物で実現できたブリケットの最大圧壊強度を図3に示す。図3は、改質炭と粉砕多孔質炭との混合物の含水率と、成型品であるブリケットの最大圧壊強度との関係を示すグラフである。
 図3に示すように、改質炭と粉砕多孔質炭との混合物の含水率が、3~10wt%のとき、ブリケットの最大圧壊強度は20kgを超えている。
 以上、説明したように、乾燥工程後の改質炭を加湿して、含水率が3~10wt%の状態とし、それを加圧成型してブリケットとすることにより、粒子同士の結合を強くすることができ、その結果、澱粉などのバインダーを用いることなく強度の高い成型固形燃料を成型できる。すなわち、ブリケットの強度を維持しつつ成型コストを低減することができる。
 なお、改質炭の加湿に、粉砕された粉末状の原料の多孔質炭を用いることで、混合工程から乾燥工程における多孔質炭の処理量が減ることになる。混合工程から乾燥工程における多孔質炭の処理量が減ると、重質油および溶媒油を含む混合油の消費量が減り、また各工程における機器の容量も下げることができ、成型固形燃料の製造コストを低減できる。
 また、改質炭の加湿に、蒸発部4からの排水を利用することで系外に排出される排水を少なくすることができる。その結果、系外に排出される排水の処理コストを抑えることができ、プラント全体として成型固形燃料の製造コストの低減につながる。
 以上、本発明の実施形態について説明したが、本発明は上述の実施の形態に限られるものではなく、特許請求の範囲に記載した限りにおいて様々に変更して実施することが可能なものである。

Claims (4)

  1.  重質油および溶媒油を含む混合油と多孔質炭とを混合してスラリーを得る混合工程と、
     前記スラリーを加熱して脱水し、脱水スラリーを得る蒸発工程と、
     前記脱水スラリーから前記溶媒油を分離してケーキを得る固液分離工程と、
     前記ケーキを加熱して当該ケーキからさらに前記溶媒油を分離し、改質炭を得る乾燥工程と、
     前記改質炭を加湿して、含水率が3~10wt%の加湿改質炭を得る加湿工程と、
     前記加湿改質炭を加圧成型する成型工程と、
     を備える成型固形燃料の製造方法。
  2.  前記加湿工程において、前記多孔質炭の粉砕炭を前記改質炭に混合する請求項1に記載の成型固形燃料の製造方法。
  3.  前記加湿工程において、前記蒸発工程において得られた排水を前記改質炭に供給する請求項1に記載の成型固形燃料の製造方法。
  4.  前記加湿工程において、前記蒸発工程において得られた排水を前記改質炭に供給する請求項2に記載の成型固形燃料の製造方法。
PCT/JP2009/067622 2008-10-14 2009-10-09 多孔質炭を原料とする成型固形燃料の製造方法 WO2010044376A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
AU2009304764A AU2009304764B2 (en) 2008-10-14 2009-10-09 Manufacturing method for molded solid fuel using porous coal as starting material
RU2011119444/04A RU2482167C2 (ru) 2008-10-14 2009-10-09 Способ получения брикетированного твердого топлива с использованием пористого угля в качестве исходного материала
US13/124,133 US8523961B2 (en) 2008-10-14 2009-10-09 Method for manufacturing briquetted solid fuel using porous coal as starting material
CN200980135771.9A CN102149798B (zh) 2008-10-14 2009-10-09 以多孔煤为原料的成型固体燃料的制造方法
DE112009002456T DE112009002456B9 (de) 2008-10-14 2009-10-09 Verfahren zur Herstellung eines brikettierten festen Brennstoffs unter Verwendung von poröser Kohle als Ausgangsmaterial

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008265504 2008-10-14
JP2008-265504 2008-10-14

Publications (1)

Publication Number Publication Date
WO2010044376A1 true WO2010044376A1 (ja) 2010-04-22

Family

ID=42106539

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/067622 WO2010044376A1 (ja) 2008-10-14 2009-10-09 多孔質炭を原料とする成型固形燃料の製造方法

Country Status (7)

Country Link
US (1) US8523961B2 (ja)
JP (1) JP4603620B2 (ja)
CN (1) CN102149798B (ja)
AU (1) AU2009304764B2 (ja)
DE (1) DE112009002456B9 (ja)
RU (1) RU2482167C2 (ja)
WO (1) WO2010044376A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014175015A1 (ja) * 2013-04-24 2014-10-30 株式会社神戸製鋼所 成型固形燃料の製造方法
WO2015049961A1 (ja) * 2013-10-01 2015-04-09 株式会社神戸製鋼所 改質石炭の製造方法及び改質石炭
JP2015140434A (ja) * 2014-01-30 2015-08-03 株式会社神戸製鋼所 改質石炭の製造方法及び改質石炭
US20150376529A1 (en) * 2013-04-24 2015-12-31 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Method for producing molded solid fuel
US20160010011A1 (en) * 2013-03-28 2016-01-14 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Method for producing ashless coal

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4805802B2 (ja) * 2006-12-13 2011-11-02 株式会社神戸製鋼所 固形燃料の製造方法および製造装置
JP5739785B2 (ja) * 2011-10-31 2015-06-24 株式会社神戸製鋼所 残渣炭成形物の製造方法
KR101325032B1 (ko) * 2012-11-09 2013-11-04 한국에너지기술연구원 석탄의 개질방법
JP6023642B2 (ja) 2013-04-26 2016-11-09 株式会社神戸製鋼所 石炭・灯油スラリーの流量制御方法、及び、改質褐炭の製造装置
RU2553985C1 (ru) * 2014-02-07 2015-06-20 Дмитрий Викторович Кулёв Установка для брикетирования угольных шламов
JP6262074B2 (ja) * 2014-05-19 2018-01-17 株式会社神戸製鋼所 改質石炭の製造方法
JP6174521B2 (ja) * 2014-05-23 2017-08-02 株式会社神戸製鋼所 改質石炭の貯蔵方法
JP6632496B2 (ja) 2016-08-24 2020-01-22 株式会社神戸製鋼所 固形燃料の製造方法
CN111944572A (zh) * 2020-08-25 2020-11-17 中天恒合(天津)国际贸易有限公司 一种化工产品混煤的配方

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5481301A (en) * 1977-12-13 1979-06-28 Mitsubishi Chem Ind Ltd Compression molding of coal powder
JPS5883087A (ja) * 1981-11-11 1983-05-18 Nippon Kokan Kk <Nkk> 冶金用コ−クスの製造方法
JP2005139342A (ja) * 2003-11-07 2005-06-02 Kobe Steel Ltd 低品位炭を原料とする固形燃料の製造方法および製造装置

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
HU178442B (en) * 1978-09-26 1982-05-28 Koezponti Banyaszati Fejleszte Process for briquetting granular fuels,particularly carbon fuels
JP3330639B2 (ja) 1992-06-26 2002-09-30 マツダ株式会社 自動車のサンシェード装置
AU666833B2 (en) 1993-12-27 1996-02-22 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel Ltd) Thermal treated coal, and process and apparatus for preparing the same
AU668328B2 (en) 1993-12-27 1996-04-26 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel Ltd) Solid fuel made from porous coal and production process and production apparatus therefore
JP2776278B2 (ja) * 1993-12-27 1998-07-16 株式会社神戸製鋼所 多孔質炭を原料とする固形燃料及びその製造方法
JP3935332B2 (ja) * 2001-08-30 2007-06-20 株式会社神戸製鋼所 成型炭の製造方法
CN102093922A (zh) * 2003-02-11 2011-06-15 联邦科学和工业研究组织 压制成型方法
JP4634900B2 (ja) * 2005-09-22 2011-02-16 株式会社神戸製鋼所 低品位炭を原料とする固形燃料の製造方法および製造装置
JP3920304B1 (ja) * 2005-11-22 2007-05-30 株式会社神戸製鋼所 低品位炭を原料とする固形燃料の製造方法および製造装置
CN101168677A (zh) * 2006-10-25 2008-04-30 许绍良 一种生产高强度后成型生物质炭的生产方法
JP4805802B2 (ja) 2006-12-13 2011-11-02 株式会社神戸製鋼所 固形燃料の製造方法および製造装置
JP4913574B2 (ja) * 2006-12-13 2012-04-11 株式会社神戸製鋼所 固形燃料の製造方法および製造装置
JP4231090B1 (ja) * 2008-01-09 2009-02-25 株式会社神戸製鋼所 固形燃料の製造装置および製造方法
CN101220308B (zh) * 2008-01-28 2011-02-02 沈阳航空工业学院 低阶煤干燥与型煤生产工艺及成套设备

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5481301A (en) * 1977-12-13 1979-06-28 Mitsubishi Chem Ind Ltd Compression molding of coal powder
JPS5883087A (ja) * 1981-11-11 1983-05-18 Nippon Kokan Kk <Nkk> 冶金用コ−クスの製造方法
JP2005139342A (ja) * 2003-11-07 2005-06-02 Kobe Steel Ltd 低品位炭を原料とする固形燃料の製造方法および製造装置

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160010011A1 (en) * 2013-03-28 2016-01-14 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Method for producing ashless coal
US9714394B2 (en) * 2013-03-28 2017-07-25 Kobe Steel, Ltd. Method for producing ashless coal
US9598656B2 (en) 2013-04-24 2017-03-21 Kobe Steel, Ltd. Method for producing molded solid fuel
US20150376529A1 (en) * 2013-04-24 2015-12-31 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Method for producing molded solid fuel
WO2014175015A1 (ja) * 2013-04-24 2014-10-30 株式会社神戸製鋼所 成型固形燃料の製造方法
JP2014214200A (ja) * 2013-04-24 2014-11-17 株式会社神戸製鋼所 成型固形燃料の製造方法
US9738844B2 (en) * 2013-04-24 2017-08-22 Kobe Steel, Ltd. Method for producing molded solid fuel
JP2015067824A (ja) * 2013-10-01 2015-04-13 株式会社神戸製鋼所 改質石炭の製造方法及び改質石炭
WO2015049961A1 (ja) * 2013-10-01 2015-04-09 株式会社神戸製鋼所 改質石炭の製造方法及び改質石炭
AU2014330633B2 (en) * 2013-10-01 2016-08-18 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Method for producing modified coal, and modified coal
US9994783B2 (en) 2013-10-01 2018-06-12 Kobe Steel, Ltd. Method for producing modified coal, and modified coal
JP2015140434A (ja) * 2014-01-30 2015-08-03 株式会社神戸製鋼所 改質石炭の製造方法及び改質石炭
WO2015115199A1 (ja) * 2014-01-30 2015-08-06 株式会社神戸製鋼所 改質石炭の製造方法及び改質石炭
US10005977B2 (en) 2014-01-30 2018-06-26 Kobe Steel, Ltd. Method of producing modified coal, and modified coal

Also Published As

Publication number Publication date
US8523961B2 (en) 2013-09-03
DE112009002456T5 (de) 2012-08-30
DE112009002456B9 (de) 2013-09-19
AU2009304764A1 (en) 2010-04-22
AU2009304764B2 (en) 2013-03-14
DE112009002456B4 (de) 2013-09-05
US20120291342A1 (en) 2012-11-22
JP4603620B2 (ja) 2010-12-22
JP2010116544A (ja) 2010-05-27
DE112009002456T8 (de) 2012-10-25
RU2011119444A (ru) 2012-11-27
CN102149798B (zh) 2013-09-04
RU2482167C2 (ru) 2013-05-20
CN102149798A (zh) 2011-08-10

Similar Documents

Publication Publication Date Title
JP4603620B2 (ja) 多孔質炭を原料とする成型固形燃料の製造方法
JP4045232B2 (ja) 低品位炭を原料とする固形燃料の製造方法および製造装置
JP4979538B2 (ja) 間接加熱乾燥装置、被乾燥物の間接加熱乾燥方法、ならびに固形燃料の製造方法および製造装置
RU2483097C2 (ru) Способ получения твердого топлива и твердое топливо, полученное данным способом
US9090843B2 (en) Apparatus for producing solid fuel from coal
JPH07233383A (ja) 多孔質炭を原料とする固形燃料、その製造方法及び製造装置
EP2652422A2 (en) Methods of drying biomass and carbonaceous materials
WO2014174985A1 (ja) 成型固形燃料の製造方法
RU2628522C2 (ru) Способ изготовления формованного твердого топлива
KR20090045161A (ko) 펠렛 형태의 고체연료 및 그의 제조방법
JP6262074B2 (ja) 改質石炭の製造方法
JP2017193696A (ja) 改質バイオマスの製造方法
JP2009286959A (ja) 固形燃料の製造方法および製造装置
WO2017179603A1 (ja) 改質バイオマスの製造方法
JP6151143B2 (ja) 改質石炭の製造方法
WO2017047270A1 (ja) 改質石炭の製造方法
JP6026367B2 (ja) 改質石炭の製造方法
JP6219185B2 (ja) 改質石炭の製造方法及び改質石炭
JPS6212954B2 (ja)

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980135771.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09820554

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2009304764

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 2468/CHENP/2011

Country of ref document: IN

ENP Entry into the national phase

Ref document number: 2009304764

Country of ref document: AU

Date of ref document: 20091009

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13124133

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1120090024564

Country of ref document: DE

WWE Wipo information: entry into national phase

Ref document number: 2011119444

Country of ref document: RU

122 Ep: pct application non-entry in european phase

Ref document number: 09820554

Country of ref document: EP

Kind code of ref document: A1